CINXE.COM

Search results for: dynamic characteristic of bridge

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: dynamic characteristic of bridge</title> <meta name="description" content="Search results for: dynamic characteristic of bridge"> <meta name="keywords" content="dynamic characteristic of bridge"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="dynamic characteristic of bridge" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="dynamic characteristic of bridge"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 6045</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: dynamic characteristic of bridge</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6045</span> Axle Load Estimation of Moving Vehicles Using BWIM Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Changgil%20Lee">Changgil Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Seunghee%20Park"> Seunghee Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although vehicle driving test for the development of BWIM system is necessary, but it needs much cost and time in addition application of various driving condition. Thus, we need the numerical-simulation method resolving the cost and time problems of vehicle driving test and the way of measuring response of bridge according to the various driving condition. Using the precision analysis model reflecting the dynamic characteristic is contributed to increase accuracy in numerical simulation. In this paper, we conduct a numerical simulation to apply precision analysis model, which reflects the dynamic characteristic of bridge using Bridge Weigh-in-Motion technique and suggest overload vehicle enforcement technology using precision analysis model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bridge%20weigh-in-motion%28BWIM%29%20system" title="bridge weigh-in-motion(BWIM) system">bridge weigh-in-motion(BWIM) system</a>, <a href="https://publications.waset.org/abstracts/search?q=precision%20analysis%20model" title=" precision analysis model"> precision analysis model</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20characteristic%20of%20bridge" title=" dynamic characteristic of bridge"> dynamic characteristic of bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a> </p> <a href="https://publications.waset.org/abstracts/49092/axle-load-estimation-of-moving-vehicles-using-bwim-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49092.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6044</span> Early Detection of Damages in Railway Steel Truss Bridges from Measured Dynamic Responses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dinesh%20Gundavaram">Dinesh Gundavaram</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an investigation on bridge damage detection based on the dynamic responses estimated from a passing vehicle. A numerical simulation of steel truss bridge for railway was used in this investigation. The bridge response at different locations is measured using CSI-Bridge software. Several damage scenarios are considered including different locations and severities. The possibilities of dynamic properties of global modes in the identification of structural changes in truss bridges were discussed based on the results of measurement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bridge" title="bridge">bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=damage" title=" damage"> damage</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20responses" title=" dynamic responses"> dynamic responses</a>, <a href="https://publications.waset.org/abstracts/search?q=detection" title=" detection"> detection</a> </p> <a href="https://publications.waset.org/abstracts/64523/early-detection-of-damages-in-railway-steel-truss-bridges-from-measured-dynamic-responses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64523.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6043</span> Human-Induced Vibration and Degree of Human Comfortability Analysis of Intersection Pedestrian Bridge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yaowen%20Sheng">Yaowen Sheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiuxian%20Liu"> Jiuxian Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to analyze the pedestrian bridge dynamic characteristics and degree of comfortability, the finite element method and live load time history method is used to calculate the dynamic response of the bridge. The example bridge’s dynamic characteristics and degree of human comfortability need to be analyzed. The project background is a three-way intersection. The intersection has three side blocks. An intersection bridge is designed to help people cross the streets. The finite element model of the bridge is established by the Midas/Civil software, and the analysis of the model is done. The strength, stiffness, and stability checks are also completed. Apart from the static analysis of the bridge, the dynamic analysis of the bridge is also completed to avoid the problems resulted from vibrations. The results show that the pedestrian bridge has different dynamic characteristics compared to other normal bridges. The degree of human comfortability satisfies the requirements of Chinese and British specifications. The live load time history method can be used to calculate the dynamic response of the bridge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pedestrian%20bridge" title="pedestrian bridge">pedestrian bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20box%20girder" title=" steel box girder"> steel box girder</a>, <a href="https://publications.waset.org/abstracts/search?q=human-induced%20vibration" title=" human-induced vibration"> human-induced vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=degree%20of%20human%20comfortability" title=" degree of human comfortability"> degree of human comfortability</a> </p> <a href="https://publications.waset.org/abstracts/128977/human-induced-vibration-and-degree-of-human-comfortability-analysis-of-intersection-pedestrian-bridge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128977.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6042</span> Dynamic Amplification Factors of Some City Bridges</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Paeglite">I. Paeglite</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Paeglitis"> A. Paeglitis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents a study of dynamic effects obtained from the dynamic load testing of the city highway bridges in Latvia carried out from 2005 to 2012. 9 pre-stressed concrete bridges and 4 composite bridges were considered. 11 of 13 bridges were designed according to the Eurocodes but two according to the previous structural codes used in Latvia (SNIP 2.05.03-84). The dynamic properties of the bridges were obtained by heavy vehicles passing the bridge roadway with different driving speeds and with or without even pavement. The obtained values of the Dynamic amplification factor (DAF) and bridge natural frequency were analyzed and compared to the values of built-in traffic load models provided in Eurocode 1. The actual DAF values for even bridge deck in the most cases are smaller than the value adopted in Eurocode 1. Vehicle speed for uneven pavements significantly influence Dynamic amplification factor values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bridge" title="bridge">bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20effects" title=" dynamic effects"> dynamic effects</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20testing" title=" load testing"> load testing</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20amplification%20factor" title=" dynamic amplification factor"> dynamic amplification factor</a> </p> <a href="https://publications.waset.org/abstracts/10727/dynamic-amplification-factors-of-some-city-bridges" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10727.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6041</span> Analysis of the Influence of Support Failure on the Dynamic Effect of Bridge Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sun%20Fan">Sun Fan</a>, <a href="https://publications.waset.org/abstracts/search?q=Wu%20Xiaoguang"> Wu Xiaoguang</a>, <a href="https://publications.waset.org/abstracts/search?q=Fang%20Miaomiao"> Fang Miaomiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Chi"> Wei Chi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The degree of damage to the support is simulated by finite element software, and its influence on the static and dynamic effects of the bridge structure is analyzed. Four working conditions are selected for the study of bearing damage impact: the bearing is intact (condition 1), the bearing damage coefficient is 0.8 (condition 2), the bearing damage coefficient is 0.6 (condition 3), and the bearing damage coefficient is 0.4 (Working Condition 4). The effect value of the bridge structure under each working condition is calculated, and the simple-supported girder bridge and continuous girder bridge with typical spans are taken as examples to analyze the overall change of the bridge structure after the bearing completely fails. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bridge%20bearing%20damage" title="bridge bearing damage">bridge bearing damage</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20response" title=" dynamic response"> dynamic response</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20conditions" title=" load conditions"> load conditions</a> </p> <a href="https://publications.waset.org/abstracts/138578/analysis-of-the-influence-of-support-failure-on-the-dynamic-effect-of-bridge-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138578.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6040</span> Investigation of Vortex Induced Vibration and Galloping Characteristic for Various Shape Slender Bridge Hanger</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Matza%20Gusto%20Andika">Matza Gusto Andika</a>, <a href="https://publications.waset.org/abstracts/search?q=Syariefatunnisa"> Syariefatunnisa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hanger at the arch bridges is an important part to transfer load on the bridge deck onto the arch. Bridges are subjected to several types of loadings, such as dead load, temperature load, wind load, moving loads etc. Usually the hanger bridge has a typical bluff body shape such as circle, square, H beam, etc. When flow past bluff body, the flow separates from the body surface generating an unsteady broad wake. These vortices are shed to the wake periodically with some frequency that is related to the undisturbed wind speed and the size of the cross-section body by the well-known Strouhal relationship. The dynamic characteristic and hanger shape are crucial for the evaluation of vortex induced vibrations and structural vibrations. The effect of vortex induced vibration is not catastrophic as a flutter phenomenon, but it can make fatigue failure to the structure. Wind tunnel tests are conducted to investigate the VIV and galloping effect at circle, hexagonal, and H beam bluff body for hanger bridge. From this research, the hanger bridge with hexagonal shape has a minimum vibration amplitude due to VIV phenomenon compared to circle and H beam. However, when the wind bruises the acute angle of hexagon shape, the vibration amplitude of bridge hanger with hexagonal shape is higher than the other bluff body. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vortex%20induced%20vibration" title="vortex induced vibration">vortex induced vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=hanger%20bridge" title=" hanger bridge"> hanger bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel" title=" wind tunnel"> wind tunnel</a>, <a href="https://publications.waset.org/abstracts/search?q=galloping" title=" galloping"> galloping</a> </p> <a href="https://publications.waset.org/abstracts/70947/investigation-of-vortex-induced-vibration-and-galloping-characteristic-for-various-shape-slender-bridge-hanger" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70947.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6039</span> Estimation of the Dynamic Fragility of Padre Jacinto Zamora Bridge Due to Traffic Loads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kimuel%20Suyat">Kimuel Suyat</a>, <a href="https://publications.waset.org/abstracts/search?q=Francis%20Aldrine%20Uy"> Francis Aldrine Uy</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Paul%20%20Carreon"> John Paul Carreon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Philippines, composed of many islands, is connected with approximately 8030 bridges. Continuous evaluation of the structural condition of these bridges is needed to safeguard the safety of the general public. With most bridges reaching its design life, retrofitting and replacement may be needed. Concerned government agencies allocate huge costs for periodic monitoring and maintenance of these structures. The rising volume of traffic and aging of these infrastructures is challenging structural engineers to give rise for structural health monitoring techniques. Numerous techniques are already proposed and some are now being employed in other countries. Vibration Analysis is one way. The natural frequency and vibration of a bridge are design criteria in ensuring the stability, safety and economy of the structure. Its natural frequency must not be so high so as not to cause discomfort and not so low that the structure is so stiff causing it to be both costly and heavy. It is well known that the stiffer the member is, the more load it attracts. The frequency must not also match the vibration caused by the traffic loads. If this happens, a resonance occurs. Vibration that matches a systems frequency will generate excitation and when this exceeds the member’s limit, a structural failure will happen. This study presents a method for calculating dynamic fragility through the use of vibration-based monitoring system. Dynamic fragility is the probability that a structural system exceeds a limit state when subjected to dynamic loads. The bridge is modeled in SAP2000 based from the available construction drawings provided by the Department of Public Works and Highways. It was verified and adjusted based from the actual condition of the bridge. The bridge design specifications are also checked using nondestructive tests. The approach used in this method properly accounts the uncertainty of observed values and code-based structural assumptions. The vibration response of the structure due to actual loads is monitored using installed sensors on the bridge. From the determinacy of these dynamic characteristic of a system, threshold criteria can be established and fragility curves can be estimated. This study conducted in relation with the research project between Department of Science and Technology, Mapúa Institute of Technology, and the Department of Public Works and Highways also known as Mapúa-DOST Smart Bridge Project deploys Structural Health Monitoring Sensors at Zamora Bridge. The bridge is selected in coordination with the Department of Public Works and Highways. The structural plans for the bridge are also readily available. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=structural%20health%20monitoring" title="structural health monitoring">structural health monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20characteristic" title=" dynamic characteristic"> dynamic characteristic</a>, <a href="https://publications.waset.org/abstracts/search?q=threshold%20criteria" title=" threshold criteria"> threshold criteria</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20loads" title=" traffic loads"> traffic loads</a> </p> <a href="https://publications.waset.org/abstracts/75210/estimation-of-the-dynamic-fragility-of-padre-jacinto-zamora-bridge-due-to-traffic-loads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75210.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6038</span> Using Finite Element to Predict Failure of Light Weight Bridges Due to Vehicles Impact: Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amin%20H.%20Almasria">Amin H. Almasria</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajai%20Z.%20Alrousanb"> Rajai Z. Alrousanb</a>, <a href="https://publications.waset.org/abstracts/search?q=Al-Harith%20Manasrah"> Al-Harith Manasrah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The collapse of a light weight pedestrian bridges due to vehicle collision is investigated and studied in detail using a dynamic nonlinear finite element analysis. Typical bridge widely used in Jordan is studied and modeled under truck collision using one dimensional beam finite element in order to minimize analysis time due to the dynamic nature of the problem. Truck collision with the bridge is simulated at different speeds and locations of collisions using dynamic explicit finite element scheme with material nonlinearity taken into account. Energy absorption of bridge is investigated through principle of energy conservation, where truck kinetic energy is assumed to be stored in the bridge as strain energy. Weak failure points in the bridges were identified, and modifications are proposed in order to strengthen the bridge structure and prevent total collapse. The proposed design modifications on bridge structure were successful in allowing the bridge to fail locally rather than globally and expected to help in saving lives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title="finite element method">finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20impact" title=" dynamic impact"> dynamic impact</a>, <a href="https://publications.waset.org/abstracts/search?q=pedestrian%20bridges" title=" pedestrian bridges"> pedestrian bridges</a>, <a href="https://publications.waset.org/abstracts/search?q=strain%20energy" title=" strain energy"> strain energy</a>, <a href="https://publications.waset.org/abstracts/search?q=collapse%20failure" title=" collapse failure"> collapse failure</a> </p> <a href="https://publications.waset.org/abstracts/20714/using-finite-element-to-predict-failure-of-light-weight-bridges-due-to-vehicles-impact-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20714.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">624</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6037</span> Analysis of Moving Loads on Bridges Using Surrogate Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Susmita%20Panda">Susmita Panda</a>, <a href="https://publications.waset.org/abstracts/search?q=Arnab%20Banerjee"> Arnab Banerjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajinkya%20Baxy"> Ajinkya Baxy</a>, <a href="https://publications.waset.org/abstracts/search?q=Bappaditya%20Manna"> Bappaditya Manna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The design of short to medium-span high-speed bridges in critical locations is an essential aspect of vehicle-bridge interaction. Due to dynamic interaction between moving load and bridge, mathematical models or finite element modeling computations become time-consuming. Thus, to reduce the computational effort, a universal approximator using an artificial neural network (ANN) has been used to evaluate the dynamic response of the bridge. The data set generation and training of surrogate models have been conducted over the results obtained from mathematical modeling. Further, the robustness of the surrogate model has been investigated, which showed an error percentage of less than 10% with conventional methods. Additionally, the dependency of the dynamic response of the bridge on various load and bridge parameters has been highlighted through a parametric study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title="artificial neural network">artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=mode%20superposition%20method" title=" mode superposition method"> mode superposition method</a>, <a href="https://publications.waset.org/abstracts/search?q=moving%20load%20analysis" title=" moving load analysis"> moving load analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=surrogate%20models" title=" surrogate models"> surrogate models</a> </p> <a href="https://publications.waset.org/abstracts/156677/analysis-of-moving-loads-on-bridges-using-surrogate-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6036</span> Sensitivity Parameter Analysis of Negative Moment Dynamic Load Allowance of Continuous T-Girder Bridge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fan%20Yang">Fan Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ye-Lu%20Wang"> Ye-Lu Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Zhao"> Yang Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The dynamic load allowance, as an application result of the vehicle-bridge coupled vibration theory, is an important parameter for bridge design and evaluation. Based on the coupled vehicle-bridge vibration theory, the current work establishes a full girder model of a dynamic load allowance, selects a planar five-degree-of-freedom three-axis vehicle model, solves the coupled vehicle-bridge dynamic response using the APDL language in the spatial finite element program ANSYS, selects the pivot point 2 sections as the representative of the negative moment section, and analyzes the effects of parameters such as travel speed, unevenness, vehicle frequency, span diameter, span number and forced displacement of the support on the negative moment dynamic load allowance through orthogonal tests. The influence of parameters such as vehicle speed, unevenness, vehicle frequency, span diameter, span number, and forced displacement of the support on the negative moment dynamic load allowance is analyzed by orthogonal tests, and the influence law of each influencing parameter is summarized. It is found that the effects of vehicle frequency, unevenness, and speed on the negative moment dynamic load allowance are significant, among which vehicle frequency has the greatest effect on the negative moment dynamic load allowance; the effects of span number and span diameter on the negative moment dynamic load allowance are relatively small; the effects of forced displacement of the support on the negative moment dynamic load allowance are negligible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=continuous%20T-girder%20bridge" title="continuous T-girder bridge">continuous T-girder bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20load%20allowance" title=" dynamic load allowance"> dynamic load allowance</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity%20analysis" title=" sensitivity analysis"> sensitivity analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle-bridge%20coupling" title=" vehicle-bridge coupling"> vehicle-bridge coupling</a> </p> <a href="https://publications.waset.org/abstracts/152547/sensitivity-parameter-analysis-of-negative-moment-dynamic-load-allowance-of-continuous-t-girder-bridge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152547.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6035</span> Vibration-Based Monitoring of Tensioning Stay Cables of an Extradosed Bridge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chun-Chung%20Chen">Chun-Chung Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Bo-Han%20Lee"> Bo-Han Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Chi%20Sung"> Yu-Chi Sung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Monitoring the status of tensioning force of stay cables is a significant issue for the assessment of structural safety of extradosed bridges. Moreover, it is known that there is a high correlation between the existing tension force and the vibration frequencies of cables. This paper presents the characteristic of frequencies of stay cables of a field extradosed bridge by using vibration-based monitoring methods. The vibration frequencies of each stay cables were measured in stages from the beginning to the completion of bridge construction. The result shows that the vibration frequency variation trend of different lengths of cables at each measured stage is different. The observed feature can help the application of the bridge long-term monitoring system and contribute to the assessment of bridge safety. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vibration-based%20method" title="vibration-based method">vibration-based method</a>, <a href="https://publications.waset.org/abstracts/search?q=extradosed%20bridges" title=" extradosed bridges"> extradosed bridges</a>, <a href="https://publications.waset.org/abstracts/search?q=bridge%20health%20monitoring" title=" bridge health monitoring"> bridge health monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=bridge%20stay%20cables" title=" bridge stay cables"> bridge stay cables</a> </p> <a href="https://publications.waset.org/abstracts/105500/vibration-based-monitoring-of-tensioning-stay-cables-of-an-extradosed-bridge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105500.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6034</span> Structural Parameter Identification of Old Steel Truss Bridges</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Bogdanovic">A. Bogdanovic</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Vitanova"> M. Vitanova</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Bojadjieva"> J. Bojadjieva</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Rakicevic"> Z. Rakicevic</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Sesov"> V. Sesov</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Edip"> K. Edip</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Naumovski"> N. Naumovski</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Manojlovski"> F. Manojlovski</a>, <a href="https://publications.waset.org/abstracts/search?q=A.Popovska"> A.Popovska</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Shoklarovski"> A. Shoklarovski</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Kitanovski"> T. Kitanovski</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Ivanovski"> D. Ivanovski</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Markovski"> I. Markovski</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Filipovski"> D. Filipovski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The conditions of existing structures change in the course of time and can hardly be characterized particularly if a bridge has long been in function and there is no design documentation related to it. To define the real conditions of a structure, detailed static and dynamic analysis of the structure has to be carried out and its modal parameters have to be defined accurately. Modal analysis enables a quite accurate identification of the natural frequencies and mode shapes. Presented in this paper are the results from the performed detailed analyses of a steel truss bridge that has been in use for more than 7 decades by the military services of R.N. Macedonia and for which there is no documentation at all. Static and dynamic investigations and ambient vibration measurements were performed. The acquired data were used to identify the mode shapes that were used for comparison with the numerical model. Dynamic tests were performed to define the bridge behaviour and the damping index. Finally, based on all the conducted detailed analyses and investigations, conclusions on the conditions of the bridge structure were drawn. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ambient%20vibrations" title="ambient vibrations">ambient vibrations</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20identification" title=" dynamic identification"> dynamic identification</a>, <a href="https://publications.waset.org/abstracts/search?q=in-situ%20measurement" title=" in-situ measurement"> in-situ measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20truss%20bridge" title=" steel truss bridge"> steel truss bridge</a> </p> <a href="https://publications.waset.org/abstracts/153967/structural-parameter-identification-of-old-steel-truss-bridges" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153967.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6033</span> Dynamic Behaviors of a Floating Bridge with Mooring Lines under Wind and Wave Excitations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chungkuk%20Jin">Chungkuk Jin</a>, <a href="https://publications.waset.org/abstracts/search?q=Moohyun%20Kim"> Moohyun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Woo%20Chul%20Chung"> Woo Chul Chung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents global performance and dynamic behaviors of a discrete-pontoon-type floating bridge with mooring lines in time domain under wind and wave excitations. The structure is designed for long-distance and deep-water crossing and consists of the girder, columns, pontoons, and mooring lines. Their functionality and behaviors are investigated by using elastic-floater/mooring fully-coupled dynamic simulation computer program. Dynamic wind, first- and second-order wave forces, and current loads are considered as environmental loads. Girder&rsquo;s dynamic responses and mooring tensions are analyzed under different analysis methods and environmental conditions. Girder&rsquo;s lateral responses are highly influenced by the second-order wave and wind loads while the first-order wave load mainly influences its vertical responses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=floating%20bridge" title="floating bridge">floating bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=mooring%20line" title=" mooring line"> mooring line</a>, <a href="https://publications.waset.org/abstracts/search?q=pontoon" title=" pontoon"> pontoon</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20excitation" title=" wave excitation"> wave excitation</a> </p> <a href="https://publications.waset.org/abstracts/120268/dynamic-behaviors-of-a-floating-bridge-with-mooring-lines-under-wind-and-wave-excitations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120268.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6032</span> Human Walking Vertical Force and Vertical Vibration of Pedestrian Bridge Induced by Its Higher Components</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masahiro%20Yoneda">Masahiro Yoneda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to identify human walking vertical force by using FFT power spectrum density from the experimental acceleration data of the human body. An experiment on human walking is carried out on a stationary floor especially paying attention to higher components of dynamic vertical walking force. Based on measured acceleration data of the human lumbar part, not only in-phase component with frequency of 2 fw, 3 fw, but also in-opposite-phase component with frequency of 0.5 fw, 1.5 fw, 2.5 fw where fw is the walking rate is observed. The vertical vibration of pedestrian bridge induced by higher components of human walking vertical force is also discussed in this paper. A full scale measurement for the existing pedestrian bridge with center span length of 33 m is carried out focusing on the resonance phenomenon due to higher components of human walking vertical force. Dynamic response characteristics excited by these vertical higher components of human walking are revealed from the dynamic design viewpoint of pedestrian bridge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=simplified%20method" title="simplified method">simplified method</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20walking%20vertical%20force" title=" human walking vertical force"> human walking vertical force</a>, <a href="https://publications.waset.org/abstracts/search?q=higher%20component" title=" higher component"> higher component</a>, <a href="https://publications.waset.org/abstracts/search?q=pedestrian%20bridge%20vibration" title=" pedestrian bridge vibration"> pedestrian bridge vibration</a> </p> <a href="https://publications.waset.org/abstracts/28100/human-walking-vertical-force-and-vertical-vibration-of-pedestrian-bridge-induced-by-its-higher-components" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28100.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6031</span> Response of a Bridge Crane during an Earthquake</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Fekak">F. Fekak</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Gravouil"> A. Gravouil</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Brun"> M. Brun</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Depale"> B. Depale</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During an earthquake, a bridge crane may be subjected to multiple impacts between crane wheels and rail. In order to model such phenomena, a time-history dynamic analysis with a multi-scale approach is performed. The high frequency aspect of the impacts between wheels and rails is taken into account by a Lagrange explicit event-capturing algorithm based on a velocity-impulse formulation to resolve contacts and impacts. An implicit temporal scheme is used for the rest of the structure. The numerical coupling between the implicit and the explicit schemes is achieved with a heterogeneous asynchronous time-integrator. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bridge%20crane" title="bridge crane">bridge crane</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake" title=" earthquake"> earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20analysis" title=" dynamic analysis"> dynamic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=explicit" title=" explicit"> explicit</a>, <a href="https://publications.waset.org/abstracts/search?q=implicit" title=" implicit"> implicit</a>, <a href="https://publications.waset.org/abstracts/search?q=impact" title=" impact"> impact</a> </p> <a href="https://publications.waset.org/abstracts/41920/response-of-a-bridge-crane-during-an-earthquake" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41920.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6030</span> Dynamic Response Analyses for Human-Induced Lateral Vibration on Congested Pedestrian Bridges</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Yoneda">M. Yoneda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a lateral walking design force per person is proposed and compared with Imperial College test results. Numerical simulations considering the proposed walking design force which is incorporated into the neural-oscillator model are carried out placing much emphasis on the synchronization (the lock-in phenomenon) for a pedestrian bridge model with the span length of 50 m. Numerical analyses are also conducted for an existing pedestrian suspension bridge. As compared with full scale measurements for this suspension bridge, it is confirmed that the analytical method based on the neural-oscillator model might be one of the useful ways to explain the synchronization (the lock-in phenomenon) of pedestrians being on the bridge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pedestrian%20bridge" title="pedestrian bridge">pedestrian bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=human-induced%20lateral%20vibration" title=" human-induced lateral vibration"> human-induced lateral vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=neural-oscillator" title=" neural-oscillator"> neural-oscillator</a>, <a href="https://publications.waset.org/abstracts/search?q=full%20scale%20measurement" title=" full scale measurement"> full scale measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20response%20analysis" title=" dynamic response analysis"> dynamic response analysis</a> </p> <a href="https://publications.waset.org/abstracts/62163/dynamic-response-analyses-for-human-induced-lateral-vibration-on-congested-pedestrian-bridges" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62163.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6029</span> Approach for the Mathematical Calculation of the Damping Factor of Railway Bridges with Ballasted Track</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andreas%20Stollwitzer">Andreas Stollwitzer</a>, <a href="https://publications.waset.org/abstracts/search?q=Lara%20Bettinelli"> Lara Bettinelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Josef%20Fink"> Josef Fink</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The expansion of the high-speed rail network over the past decades has resulted in new challenges for engineers, including traffic-induced resonance vibrations of railway bridges. Excessive resonance-induced speed-dependent accelerations of railway bridges during high-speed traffic can lead to negative consequences such as fatigue symptoms, distortion of the track, destabilisation of the ballast bed, and potentially even derailment. A realistic prognosis of bridge vibrations during high-speed traffic must not only rely on the right choice of an adequate calculation model for both bridge and train but first and foremost on the use of dynamic model parameters which reflect reality appropriately. However, comparisons between measured and calculated bridge vibrations are often characterised by considerable discrepancies, whereas dynamic calculations overestimate the actual responses and therefore lead to uneconomical results. This gap between measurement and calculation constitutes a complex research issue and can be traced to several causes. One major cause is found in the dynamic properties of the ballasted track, more specifically in the persisting, substantial uncertainties regarding the consideration of the ballasted track (mechanical model and input parameters) in dynamic calculations. Furthermore, the discrepancy is particularly pronounced concerning the damping values of the bridge, as conservative values have to be used in the calculations due to normative specifications and lack of knowledge. By using a large-scale test facility, the analysis of the dynamic behaviour of ballasted track has been a major research topic at the Institute of Structural Engineering/Steel Construction at TU Wien in recent years. This highly specialised test facility is designed for isolated research of the ballasted track's dynamic stiffness and damping properties – independent of the bearing structure. Several mechanical models for the ballasted track consisting of one or more continuous spring-damper elements were developed based on the knowledge gained. These mechanical models can subsequently be integrated into bridge models for dynamic calculations. Furthermore, based on measurements at the test facility, model-dependent stiffness and damping parameters were determined for these mechanical models. As a result, realistic mechanical models of the railway bridge with different levels of detail and sufficiently precise characteristic values are available for bridge engineers. Besides that, this contribution also presents another practical application of such a bridge model: Based on the bridge model, determination equations for the damping factor (as Lehr's damping factor) can be derived. This approach constitutes a first-time method that makes the damping factor of a railway bridge calculable. A comparison of this mathematical approach with measured dynamic parameters of existing railway bridges illustrates, on the one hand, the apparent deviation between normatively prescribed and in-situ measured damping factors. On the other hand, it is also shown that a new approach, which makes it possible to calculate the damping factor, provides results that are close to reality and thus raises potentials for minimising the discrepancy between measurement and calculation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ballasted%20track" title="ballasted track">ballasted track</a>, <a href="https://publications.waset.org/abstracts/search?q=bridge%20dynamics" title=" bridge dynamics"> bridge dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=damping" title=" damping"> damping</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20design" title=" model design"> model design</a>, <a href="https://publications.waset.org/abstracts/search?q=railway%20bridges" title=" railway bridges"> railway bridges</a> </p> <a href="https://publications.waset.org/abstracts/137970/approach-for-the-mathematical-calculation-of-the-damping-factor-of-railway-bridges-with-ballasted-track" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137970.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6028</span> Investigation of Dynamic Characteristic of Planetary Gear Set Based On Three-Axes Torque Measurement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masao%20Nakagawa">Masao Nakagawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Toshiki%20Hirogaki"> Toshiki Hirogaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Eiichi%20Aoyama"> Eiichi Aoyama</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Ali%20Ben%20Abbes"> Mohamed Ali Ben Abbes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A planetary gear set is widely used in hybrid vehicles as the power distribution system or in electric vehicles as the high reduction system, but due to its complexity with planet gears, its dynamic characteristic is not fully understood. There are many reports on two-axes driving or displacement of the planet gears under these conditions, but only few reports deal with three-axes driving. A three-axes driving condition is tested using three-axes torque measurement and focuses on the dynamic characteristic around the planet gears in this report. From experimental result, it was confirmed that the transition forces around the planet gears were balanced and the torques were also balanced around the instantaneous rotation center. The meshing frequency under these conditions was revealed to be the harmonics of two meshing frequencies; meshing frequency of the ring gear and that of the planet gears. The input power of the ring gear is distributed to the carrier and the sun gear in the dynamic sequential change of three fixed conditions; planet, star and solar modes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20characteristic" title="dynamic characteristic">dynamic characteristic</a>, <a href="https://publications.waset.org/abstracts/search?q=gear" title=" gear"> gear</a>, <a href="https://publications.waset.org/abstracts/search?q=planetary%20gear%20set" title=" planetary gear set"> planetary gear set</a>, <a href="https://publications.waset.org/abstracts/search?q=torque%20measuring" title=" torque measuring"> torque measuring</a> </p> <a href="https://publications.waset.org/abstracts/7605/investigation-of-dynamic-characteristic-of-planetary-gear-set-based-on-three-axes-torque-measurement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7605.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6027</span> Two Dimensional Numerical Analysis for the Seismic Response of the Geosynthetic-Reinforced Soil Integral Abutments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dawei%20Shen">Dawei Shen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming%20Xu"> Ming Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Pengfei%20Liu"> Pengfei Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The joints between simply supported bridge decks and abutments need to be regularly repaired, which would greatly increase the cost during the service life of the bridge. Simply supported girder bridges suffered the most severe damage during earthquakes. Another type of bridge, the integral bridge, of which the superstructure and abutment are rigidly connected, was also used in some European countries. Because no bearings or joints exit in the integral bridge, this type of bridge could significantly reduce maintenance requirements and costs. However, conventional integral bridge usually result in high earth pressure on the abutment and surface settlement in the backfill. To solve these problems, a new type of integral bridge, geosynthetic-reinforced soil (GRS) integral bridge, was come up in recent years. This newly invented bridge has not been used in engineering practices. There was a lack of research on the seismic behavior of the conventional and new type of integral abutments. In addition, no common design code could be found for the calculation of seismic pressure of soil behind the abutment. This paper developed a dynamic constitutive model, which can consider the soil behaviors under cyclic loading. Numerical analyses of the seismic response of a full height integral bridge and GRS integral bridge were carried out using the two-dimensional numerical code, FLAC. A parametric study was also performed to investigate the soil-structure interaction. The results are presented below. The seismic responses of GRS integral bridge together with conventional simply supported bridge, GRS conventional bridge and conventional integral bridge were investigated. The results show that the GRS integral bridge holds the highest seismic stability, followed by conventional integral bridge, GRS simply supported bridge and conventional simply supported bridge. Compared with the integral bridge with 1 m thick abutments, the GRS integral bridge with 0.4 m thick abutments is subjected to a smaller bending moment, and the natural frequency and horizontal displacement remains almost the same. Geosynthetic-reinforcement will be more effective when the abutment becomes thinner or the abutment is higher. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geosynthetic-reinforced%20soil%20integral%20bridge" title="geosynthetic-reinforced soil integral bridge">geosynthetic-reinforced soil integral bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20hysteretic%20model" title=" nonlinear hysteretic model"> nonlinear hysteretic model</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis" title=" numerical analysis"> numerical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20response" title=" seismic response"> seismic response</a> </p> <a href="https://publications.waset.org/abstracts/66220/two-dimensional-numerical-analysis-for-the-seismic-response-of-the-geosynthetic-reinforced-soil-integral-abutments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66220.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">463</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6026</span> Used MATLAB Code to Study the Vehicle Bridge Coupling Vibration Based On the Method of Newmark-β</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saidi%20Abdelkrim">Saidi Abdelkrim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamouine%20Abdelmadjid"> Hamouine Abdelmadjid</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdellatif%20Megnounif"> Abdellatif Megnounif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study of interaction between vehicles and bridge structures has become extremely important. Large deflections and vibration induced by heavy and high-speed vehicles affect significantly the safety and efficiency of bridge. The vibration of a bridge caused by passage of vehicles is one of the most imperative considerations in the design of a bridge as a common sort of transportation structure. A major goal of this study is to create a simplified model of a vehicle bridge system in MATLAB. The model will then be used to study the influence of parameters to vehicle-bridge vibrations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vehicle-bridge%20interaction" title="vehicle-bridge interaction">vehicle-bridge interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=Newmark-%CE%B2" title=" Newmark-β"> Newmark-β</a>, <a href="https://publications.waset.org/abstracts/search?q=MATLAB%20code" title=" MATLAB code"> MATLAB code</a> </p> <a href="https://publications.waset.org/abstracts/29646/used-matlab-code-to-study-the-vehicle-bridge-coupling-vibration-based-on-the-method-of-newmark-v" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">616</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6025</span> Study of Structural Health Monitoring System for Vam Cong Cable-Stayed Bridge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20M.%20Chinh">L. M. Chinh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vam Cong Bridge beside Can Tho Bridge is the next cable-stayed bridge spanning the Hau River, connecting Lap Vo district with Thot Not district. After construction by the end of 2018, the Vam Cong Bridge with Cao Lanh Bridge will help to improve the road network in this region of Mekong Delta. For this bridge, the SHM system also had designed for two stages – construction stage and exploitation stage. At the moment over 65% of the bridge construction had completed, and the bridge will be completed at the end of 2018. During the construction stage, the SHM system had been install to monitor behaviors of the bridge. Based on the study of the design documentation of the SHM system of the Vam Cong Bridge and site visit during construction work, many designs and installation errors have been detected. In this paper author thoroughly analyzed the pros and cons of this SHM system, simultaneously make conclusions and recommendations for this system. Specially concentrated on the possibility of implementing the acoustic emission method (AE) into this SHM system, which is an alternative to the further development of the system, enabling a full and cost-effective solution for the bridge management, which is of utmost importance for the service life and safe operation of the bridge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SHM%20system" title="SHM system">SHM system</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20and%20installation" title=" design and installation"> design and installation</a>, <a href="https://publications.waset.org/abstracts/search?q=Vam%20Cong%20bridge" title=" Vam Cong bridge"> Vam Cong bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20stage" title=" construction stage"> construction stage</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustic%20emission%20method%20%28AE%29" title=" acoustic emission method (AE)"> acoustic emission method (AE)</a> </p> <a href="https://publications.waset.org/abstracts/75930/study-of-structural-health-monitoring-system-for-vam-cong-cable-stayed-bridge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75930.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6024</span> Comparison of Dynamic Characteristics of Railway Bridge Spans to Know the Health of Elastomeric Bearings Using Tri Axial Accelerometer Sensors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Narayanakumar%20Somasundaram">Narayanakumar Somasundaram</a>, <a href="https://publications.waset.org/abstracts/search?q=Venkat%20Nihit%20Chirivella"> Venkat Nihit Chirivella</a>, <a href="https://publications.waset.org/abstracts/search?q=Venkata%20Dilip%20Kumar%20Pasupuleti"> Venkata Dilip Kumar Pasupuleti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ajakool, India, has a multi-span bridge that is constructed for rail transport with a maximum operating speed of 100 km/hr. It is a standard RDSO design of a PSC box girder carrying a single railway track. The Structural Health Monitoring System (SHM) is designed and installed to compare and analyze the vibrations and displacements on the bridge due to different live loads from moving trains. The study is conducted for three different spans of the same bridge to understand the health of the elastomeric bearings. Also, to validate the same, a three-dimensional finite element model is developed, and modal analysis is carried out. The proposed methodology can help in detecting deteriorated elastomeric bearings using only wireless tri-accelerometer sensors. Detailed analysis and results are presented in terms of mode shapes, accelerations, displacements, and their importance to each other. This can be implemented with a lot of ease and can be more accurate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20effects" title="dynamic effects">dynamic effects</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20analysis" title=" vibration analysis"> vibration analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=accelerometer%20sensors" title=" accelerometer sensors"> accelerometer sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20health%20monitoring" title=" structural health monitoring"> structural health monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=elastomeric%20bearing" title=" elastomeric bearing"> elastomeric bearing</a> </p> <a href="https://publications.waset.org/abstracts/154069/comparison-of-dynamic-characteristics-of-railway-bridge-spans-to-know-the-health-of-elastomeric-bearings-using-tri-axial-accelerometer-sensors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154069.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6023</span> Tuned Mass Damper Vibration Control of Pedestrian Bridge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qinglin%20Shu">Qinglin Shu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Based on the analysis of the structural vibration comfort of a domestic bridge, this paper studies the vibration reduction control principle of TMD, the derivation process of design parameter optimization and how to simulate TMD in the finite element software ANSYS. The research shows that, in view of the problem that the comfort level of a bridge exceeds the limit in individual working conditions, the vibration reduction control design of the bridge can effectively reduce the vibration of the structure by using TMD. Calculations show that when the mass ratio of TMD is 0.01, the vibration reduction rate under different working conditions is more than 90%, and the dynamic displacement of the TMD mass block is within 0.01m, indicating that the design of TMD is reasonable and safe. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pedestrian%20bridges" title="pedestrian bridges">pedestrian bridges</a>, <a href="https://publications.waset.org/abstracts/search?q=human-induced%20vibration" title=" human-induced vibration"> human-induced vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=comfort" title=" comfort"> comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=tuned%20mass%20dampers" title=" tuned mass dampers"> tuned mass dampers</a> </p> <a href="https://publications.waset.org/abstracts/152738/tuned-mass-damper-vibration-control-of-pedestrian-bridge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152738.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6022</span> A Semidefinite Model to Quantify Dynamic Forces in the Powertrain of Torque Regulated Bascule Bridge Machineries </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kodo%20Sektani">Kodo Sektani</a>, <a href="https://publications.waset.org/abstracts/search?q=Apostolos%20Tsouvalas"> Apostolos Tsouvalas</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrei%20Metrikine"> Andrei Metrikine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The reassessment of existing movable bridges in The Netherlands has created the need for acceptance/rejection criteria to assess whether the machineries are meet certain design demands. However, the existing design code defines a different limit state design, meant for new machineries which is based on a simple linear spring-mass model. Observations show that existing bridges do not confirm the model predictions. In fact, movable bridges are nonlinear systems consisting of mechanical components, such as, gears, electric motors and brakes. Next to that, each movable bridge is characterized by a unique set of parameters. However, in the existing code various variables that describe the physical characteristics of the bridge are neglected or replaced by partial factors. For instance, the damping ratio ζ, which is different for drawbridges compared to bascule bridges, is taken as a constant for all bridge types. In this paper, a model is developed that overcomes some of the limitations of existing modelling approaches to capture the dynamics of the powertrain of a class of bridge machineries First, a semidefinite dynamic model is proposed, which accounts for stiffness, damping, and some additional variables of the physical system, which are neglected by the code, such as nonlinear braking torques. The model gives an upper bound of the peak forces/torques occurring in the powertrain during emergency braking. Second, a discrete nonlinear dynamic model is discussed, with realistic motor torque characteristics during normal operation. This model succeeds to accurately predict the full time history of the occurred stress state of the opening and closing cycle for fatigue purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dynamics%20of%20movable%20bridges" title="Dynamics of movable bridges">Dynamics of movable bridges</a>, <a href="https://publications.waset.org/abstracts/search?q=Bridge%20machinery" title=" Bridge machinery"> Bridge machinery</a>, <a href="https://publications.waset.org/abstracts/search?q=Powertrains" title=" Powertrains"> Powertrains</a>, <a href="https://publications.waset.org/abstracts/search?q=Torque%20measurements" title=" Torque measurements"> Torque measurements</a> </p> <a href="https://publications.waset.org/abstracts/118589/a-semidefinite-model-to-quantify-dynamic-forces-in-the-powertrain-of-torque-regulated-bascule-bridge-machineries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118589.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6021</span> Modeling The Deterioration Of Road Bridges At The Provincial Level In Laos</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hatthaphone%20Silimanotham">Hatthaphone Silimanotham</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Henry"> Michael Henry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effective maintenance of road bridge infrastructure is becoming a widely researched topic in the civil engineering field. Deterioration is one of the main issues in bridge performance, and it is necessary to understand how bridges deteriorate to optimally plan budget allocation for bridge maintenance. In Laos, many bridges are in a deteriorated state, which may affect the performance of the bridge. Due to bridge deterioration, the Ministry of Public Works and Transport is interested in the deterioration model to allocate the budget efficiently and support the bridge maintenance planning. A deterioration model can be used to predict the bridge condition in the future based on the observed behavior in the past. This paper analyzes the available inspection data of road bridges on the road classifications network to build deterioration prediction models for the main bridge type found at the provincial level (concrete slab, concrete girder, and steel truss) using probabilistic deterioration modeling by linear regression method. The analysis targets there has three bridge types in the 18 provinces of Laos and estimates the bridge deterioration rating for evaluating the bridge's remaining life. This research thus considers the relationship between the service period and the bridge condition to represent the probability of bridge condition in the future. The results of the study can be used for a variety of bridge management tasks, including maintenance planning, budgeting, and evaluating bridge assets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deterioration%20model" title="deterioration model">deterioration model</a>, <a href="https://publications.waset.org/abstracts/search?q=bridge%20condition" title=" bridge condition"> bridge condition</a>, <a href="https://publications.waset.org/abstracts/search?q=bridge%20management" title=" bridge management"> bridge management</a>, <a href="https://publications.waset.org/abstracts/search?q=probabilistic%20modeling" title=" probabilistic modeling"> probabilistic modeling</a> </p> <a href="https://publications.waset.org/abstracts/174726/modeling-the-deterioration-of-road-bridges-at-the-provincial-level-in-laos" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174726.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6020</span> CO2 Emissions Quantification of the Modular Bridge Superstructure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chanhyuck%20Jeon">Chanhyuck Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=Jongho%20Park"> Jongho Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinwoong%20Choi"> Jinwoong Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sungnam%20Hong"> Sungnam Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Sun-Kyu%20Park"> Sun-Kyu Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many industries put emphasis on environmentally-friendliness as environmental problems are on the rise all over the world. Among themselves, the Modular Bridge research is going on. Also performing cross-section optimization and duration reducing, this research aims at developing the modular bridge with Environment-Friendliness and economic feasibility. However, the difficulty lies in verifying environmental effectiveness because there are no field applications of the modular bridge until now. Therefore, this thesis is categorized according to the form of the modular bridge superstructure and assessed CO₂ emission quantification per work types and materials according to each form to verify the environmental effectiveness of the modular bridge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modular%20bridge" title="modular bridge">modular bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2%20emission" title=" CO2 emission"> CO2 emission</a>, <a href="https://publications.waset.org/abstracts/search?q=environmentally%20friendly" title=" environmentally friendly"> environmentally friendly</a>, <a href="https://publications.waset.org/abstracts/search?q=quantification" title=" quantification"> quantification</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20emission%20factor" title=" carbon emission factor"> carbon emission factor</a>, <a href="https://publications.waset.org/abstracts/search?q=LCA%20%28Life%20Cycle%20Assessment%29" title=" LCA (Life Cycle Assessment)"> LCA (Life Cycle Assessment)</a> </p> <a href="https://publications.waset.org/abstracts/28224/co2-emissions-quantification-of-the-modular-bridge-superstructure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28224.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">555</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6019</span> Numerical Simulation of the Remaining Life of Ramshir Bridge over the Karoon River</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Jalali%20Azizpour">M. Jalali Azizpour</a>, <a href="https://publications.waset.org/abstracts/search?q=V.Tavvaf"> V.Tavvaf</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Akhlaghi"> E. Akhlaghi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Mohammadi%20Majd"> H. Mohammadi Majd</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Shirani"> A. Shirani</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Moravvej"> S. M. Moravvej</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kazemi"> M. Kazemi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Aboudi%20Asl"> A. R. Aboudi Asl</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Jaderi"> A. Jaderi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The static and corrosion behavior of the bridge using for pipelines in the south of country have been evaluated. The bridge was constructed more than 40 years ago on the Karoon River. Mentioned bridge is located in Khuzestan province and at a distance of 15 km east from the suburbs of Ahwaz. In order to determine the mechanical properties, the experimental tools such as measuring the thickness and static simulations based on the actual load were used. In addition, the metallurgical studies were used to achieve a rate of corrosion of pipes in the river and in the river bed. The aim of this project is to determine the remaining life of the bridge using mechanical and metallurgical studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FEM" title="FEM">FEM</a>, <a href="https://publications.waset.org/abstracts/search?q=stress" title=" stress"> stress</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=bridge" title=" bridge"> bridge</a> </p> <a href="https://publications.waset.org/abstracts/33784/numerical-simulation-of-the-remaining-life-of-ramshir-bridge-over-the-karoon-river" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33784.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6018</span> The Application of Artificial Neural Network for Bridge Structures Design Optimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Angga%20S.%20Fajar">Angga S. Fajar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Aminullah"> A. Aminullah</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Kiyono"> J. Kiyono</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20A.%20Safitri"> R. A. Safitri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper discusses about the application of ANN for optimizing of bridge structure design. ANN has been applied in various field of science concerning prediction and optimization. The structural optimization has several benefit including accelerate structural design process, saving the structural material, and minimize self-weight and mass of structure. In this paper, there are three types of bridge structure that being optimized including PSC I-girder superstructure, composite steel-concrete girder superstructure, and RC bridge pier. The different optimization strategy on each bridge structure implement back propagation method of ANN is conducted in this research. The optimal weight and easier design process of bridge structure with satisfied error are achieved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bridge%20structures" title="bridge structures">bridge structures</a>, <a href="https://publications.waset.org/abstracts/search?q=ANN" title=" ANN"> ANN</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=back%20propagation" title=" back propagation"> back propagation</a> </p> <a href="https://publications.waset.org/abstracts/58189/the-application-of-artificial-neural-network-for-bridge-structures-design-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58189.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6017</span> Improvement of Brige Weigh-In-Motion Technique Considering the Driving Conditions of Vehicles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Changgil%20Lee">Changgil Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jooyoung%20Park"> Jooyoung Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Seunghee%20Park"> Seunghee Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, bridge weigh-in-motion (BWIM) system was simulated under various driving conditions of vehicles to improve the performance of the BWIM system. Two driving conditions were considered. One was the number of the axle of the vehicles. Since the vehicles have different number of axle according to the types of the vehicle, the vehicles were modeled considering the number of the axle. The other was the speed of the vehicles because the speed of the vehicles is not consistent on the bridge. To achieve the goal, the dynamic characteristics of a bridge such as modal parameters were considered in numerical simulation by analyzing precision models. Also, the driving vehicles were modeled as mass-spring-damping systems reflecting the axle information. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bridge%20weigh-in-motion%20%28BWIM%29%20system" title="bridge weigh-in-motion (BWIM) system">bridge weigh-in-motion (BWIM) system</a>, <a href="https://publications.waset.org/abstracts/search?q=driving%20conditions" title=" driving conditions"> driving conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=precision%20analysis%20model" title=" precision analysis model"> precision analysis model</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20number%20of%20axle" title=" the number of axle"> the number of axle</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20speed%20of%20vehicle" title=" the speed of vehicle"> the speed of vehicle</a> </p> <a href="https://publications.waset.org/abstracts/57266/improvement-of-brige-weigh-in-motion-technique-considering-the-driving-conditions-of-vehicles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57266.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6016</span> Bridge Construction and Type of Bridges and Their Construction Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mokhtar%20Nikgoo">Mokhtar Nikgoo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Definition of bridge: A bridge is a structure that allows people to pass through the communication road with two points. There are many different types of bridges, each of which is designed to perform a specific function. This article introduces the concept, history, components, uses, types, construction methods, selected factors, damage factors and principles of bridge maintenance. A bridge is a structure to cross a passage such as a water, valley or road without blocking another path underneath. This structure makes it possible to pass obstacles that are difficult or impossible to pass. There are different designs for bridge construction, each of which is used for a particular function and condition. In the old definition, a bridge is an arch over a river, valley, or any type of passage that makes traffic possible. But today, in the topic of urban management, the bridge is considered as a structure to cross physical barriers, so that while using space (not just the surface of the earth), it can facilitate the passage and access to places. The useful life of bridges may be between 30 and 80 years depending on the location and the materials used. But with proper maintenance and improvement, their life may last for hundreds of years. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bridge" title="bridge">bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20construction" title=" road construction"> road construction</a>, <a href="https://publications.waset.org/abstracts/search?q=surveying" title=" surveying"> surveying</a>, <a href="https://publications.waset.org/abstracts/search?q=transportation" title=" transportation"> transportation</a> </p> <a href="https://publications.waset.org/abstracts/173987/bridge-construction-and-type-of-bridges-and-their-construction-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173987.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dynamic%20characteristic%20of%20bridge&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dynamic%20characteristic%20of%20bridge&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dynamic%20characteristic%20of%20bridge&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dynamic%20characteristic%20of%20bridge&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dynamic%20characteristic%20of%20bridge&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dynamic%20characteristic%20of%20bridge&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dynamic%20characteristic%20of%20bridge&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dynamic%20characteristic%20of%20bridge&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dynamic%20characteristic%20of%20bridge&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dynamic%20characteristic%20of%20bridge&amp;page=201">201</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dynamic%20characteristic%20of%20bridge&amp;page=202">202</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dynamic%20characteristic%20of%20bridge&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10