CINXE.COM

Search results for: sulfonated poly (ether ether ketone) (SPEEK)

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: sulfonated poly (ether ether ketone) (SPEEK)</title> <meta name="description" content="Search results for: sulfonated poly (ether ether ketone) (SPEEK)"> <meta name="keywords" content="sulfonated poly (ether ether ketone) (SPEEK)"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="sulfonated poly (ether ether ketone) (SPEEK)" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="sulfonated poly (ether ether ketone) (SPEEK)"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 830</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: sulfonated poly (ether ether ketone) (SPEEK)</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">830</span> Synthesis and Characterizations of Sulfonated Poly (Ether Ether Ketone) Speek Nanofiber Membrane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Hasbullah">N. Hasbullah</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20A.%20Sekak"> K. A. Sekak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The sulfonated poly (ether ether ketone) SPEEK nanofiber membrane were successfully electrospun for Polymer Electrolyte Membrane (PEM) in Proton Exchange Membrane Fuel Cell (PEMFC) and their nanosized properties were investigated. The poly (ether ether ketone) PEEK victrex® grade 90p was sulfonated with concentrated sulfuric acid (95-98% w/w) at room temperature for 60 hours sulfonation times. The degree sulfonation of SPEEK are 70% was determined by H1 NMR and the functional groups of the SPEEK were characterize using FTIR. Then, the SPEEK nanofiber membrane were prepared via electrospinning method using DMAC as a solvent. The SPEEK sample were successfully electrospun using predetermine set up. FESEM show the electrospun fiber mat surface and confirmed the nanostructure membrane cell. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymer%20electrolyte%20membrane%20%28PEM%29" title="polymer electrolyte membrane (PEM)">polymer electrolyte membrane (PEM)</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfonated%20poly%20%28ether%20ether%20ketone%29%20%28SPEEK%29" title=" sulfonated poly (ether ether ketone) (SPEEK)"> sulfonated poly (ether ether ketone) (SPEEK)</a>, <a href="https://publications.waset.org/abstracts/search?q=degree%20sulfonation" title=" degree sulfonation"> degree sulfonation</a>, <a href="https://publications.waset.org/abstracts/search?q=Electrospinning" title=" Electrospinning"> Electrospinning</a>, <a href="https://publications.waset.org/abstracts/search?q=Nanofibers" title=" Nanofibers "> Nanofibers </a> </p> <a href="https://publications.waset.org/abstracts/26841/synthesis-and-characterizations-of-sulfonated-poly-ether-ether-ketone-speek-nanofiber-membrane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26841.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">829</span> Physicochemical Characterization of Low Sulfonated Polyether Ether Ketone/ Layered Double Hydroxide/Sepiolite Hybrid to Improve the Performance of Sulfonated Poly Ether Ether Ketone Composite Membranes for Proton Exchange Membrane Fuel Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zakaria%20Ahmed">Zakaria Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Charradi"> Khaled Charradi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sherif%20M.%20A.%20S.%20%20Keshk"> Sherif M. A. S. Keshk</a>, <a href="https://publications.waset.org/abstracts/search?q=Radhouane%20Chtourou"> Radhouane Chtourou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sulfonated poly ether ether ketone (SPEEK) with a low sulfonation degree was blended using nanofiller Layered Double Hydroxide (LDH, Mg2AlCl) /sepiolite nanostructured material as additive to use as an electrolyte membrane for fuel cell application. Characterization assessments, i.e., mechanical stability, thermal gravimetric analysis, ion exchange capability, swelling properties, water uptake capacities, electrochemical impedance spectroscopy analysis, and Fourier transform infrared spectroscopy (FTIR) of the composite membranes were conducted. The presence of LDH/sepiolite nanoarchitecture material within SPEEK was found to have the highest water retention and proton conductivity value at high temperature rather than LDH/SPEEK and pristine SPEEK membranes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SPEEK" title="SPEEK">SPEEK</a>, <a href="https://publications.waset.org/abstracts/search?q=sepiolite%20clay" title=" sepiolite clay"> sepiolite clay</a>, <a href="https://publications.waset.org/abstracts/search?q=LDH%20clay" title=" LDH clay"> LDH clay</a>, <a href="https://publications.waset.org/abstracts/search?q=proton%20exchange%20membrane" title=" proton exchange membrane"> proton exchange membrane</a> </p> <a href="https://publications.waset.org/abstracts/132896/physicochemical-characterization-of-low-sulfonated-polyether-ether-ketone-layered-double-hydroxidesepiolite-hybrid-to-improve-the-performance-of-sulfonated-poly-ether-ether-ketone-composite-membranes-for-proton-exchange-membrane-fuel-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">828</span> Synthesis and Characterization of SiO2/PVA/ SPEEK Composite Membrane for Proton Exchange Membrane Fuel Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Yusuf%20Ansari">M. Yusuf Ansari</a>, <a href="https://publications.waset.org/abstracts/search?q=Asad%20Abbas"> Asad Abbas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Proton exchange membrane (PEM) fuel cell is a very efficient and promising energy conversion device. Although Nafion® is considered as benchmark materials for membrane used in PEM fuel cell, it has limitations that restrict its uses. Alternative materials for the membrane is always a challenging field for researchers. Sulfonated poly(ether ether ketone) (SPEEK) is one of the promising material for membrane due to its chemical and mechanical stability and lower cost. In this work, SPEEK is synthesized, and property booster such as silica nanoparticles and polyvinyl alcohol (PVA) are also added to analyse changes in properties such as water uptake, IEC, and conductivity. It has been found that adding PVA support high water uptake and proton conductivity but at large amount of PVA reduces the proton conductivity due to very high water uptake. Adding silica enhances water uptake and proton conductivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PEM%20Membrane" title="PEM Membrane">PEM Membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfonated%20poly%20%28ether%20ether%20ketone%29%20%28SPEEK%29" title=" sulfonated poly (ether ether ketone) (SPEEK)"> sulfonated poly (ether ether ketone) (SPEEK)</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20fumes%20%28SiO2%29" title=" silica fumes (SiO2)"> silica fumes (SiO2)</a>, <a href="https://publications.waset.org/abstracts/search?q=polyvinyl%20alcohol%20%28PVA%29" title=" polyvinyl alcohol (PVA)"> polyvinyl alcohol (PVA)</a> </p> <a href="https://publications.waset.org/abstracts/88749/synthesis-and-characterization-of-sio2pva-speek-composite-membrane-for-proton-exchange-membrane-fuel-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88749.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">827</span> Molecular Engineering of High-Performance Nanofiltration Membranes from Intrinsically Microporous Poly (Ether-Ether-Ketone)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20A.%20Abdulhamid">Mahmoud A. Abdulhamid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Poly(ether-ether-ketone) (PEEK) has received increased attention due to its outstanding performance in different membrane applications including gas and liquid separation. However, it suffers from a semi-crystalline morphology, bad solubility and low porosity. To fabricate membranes from PEEK, the usage of harsh acid such as sulfuric acid is essential, regardless its hazardous properties. In this work, we report the molecular design of poly(ether-ether-ketones) (iPEEKs) with intrinsic porosity character, by incorporating kinked units into PEEK backbone such as spirobisindane, Tröger's base, and triptycene. The porous polymers were used to fabricate stable membranes for organic solvent nanofiltration application. To better understand the mechanism, we conducted molecular dynamics simulations to evaluate the possible interactions between the polymers and the solvents. Notable enhancement in separation performance was observed confirming the importance of molecular engineering of high-performance polymers. The iPEEKs demonstrated good solubility in polar aprotic solvents, a high surface area of 205–250 m² g⁻¹, and excellent thermal stability. Mechanically flexible nanofiltration membranes were prepared from N-methyl-2-pyrrolidone dope solution at iPEEK concentrations of 19–35 wt%. The molecular weight cutoff of the membranes was fine-tuned in the range of 450–845 g mol⁻¹ displaying 2–6 fold higher permeance (3.57–11.09 L m⁻² h⁻¹ bar⁻¹) than previous reports. The long-term stabilities were demonstrated by a 7 day continuous cross-flow filtration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=molecular%20engineering" title="molecular engineering">molecular engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20synthesis" title=" polymer synthesis"> polymer synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20fabrication" title=" membrane fabrication"> membrane fabrication</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20separation" title=" liquid separation"> liquid separation</a> </p> <a href="https://publications.waset.org/abstracts/158572/molecular-engineering-of-high-performance-nanofiltration-membranes-from-intrinsically-microporous-poly-ether-ether-ketone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158572.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">826</span> The Effect of Interfacial Chemistry on Mechanical Properties of Epoxy Composites Containing Poly (Ether Ether Ketone) Grafted Multiwall Carbon Nanotubes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prajakta%20Katti">Prajakta Katti</a>, <a href="https://publications.waset.org/abstracts/search?q=Suryasarathi%20Bose"> Suryasarathi Bose</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Kumar"> S. Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, carboxyl functionalized multiwall carbon nanotubes (a-MWNTs) covalently grafted with hydroxylated functionalized poly (ether ether ketone), HPEEK, which is miscible with the pre-polymer (epoxy) through the esterification reaction. The functionalized MWNTs were systematically characterized using spectroscopic techniques. The epoxy composites containing a-MWNTs and HPEEK grafted multiwall carbon nanotubes (HPEEK-g-MWNTs) were formulated using mechanical stirring coupled with a bath sonicator to improve the dispersion property of the nanoparticles and were subsequently cured at 80 ̊C and post cured at 180 ̊C. With the addition of 0.5 wt% of HPEEK-g-MWNTs, an impressive 44% enhancement in the storage modulus, 22% increase in tensile strength and 38% increase in fracture toughness was observed with respect to neat epoxy. In addition to these mechanical properties, the epoxy composites displayed significant enhancement in the hardness without reducing thermal stability. These improved properties were attributed to the tailored interface between HPEEK-MWNTs and epoxy matrix. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epoxy" title="epoxy">epoxy</a>, <a href="https://publications.waset.org/abstracts/search?q=MWNTs" title=" MWNTs"> MWNTs</a>, <a href="https://publications.waset.org/abstracts/search?q=HPEEK-g-MWNTs" title=" HPEEK-g-MWNTs"> HPEEK-g-MWNTs</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20properties" title=" tensile properties"> tensile properties</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoindentation" title=" nanoindentation"> nanoindentation</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20toughness" title=" fracture toughness"> fracture toughness</a> </p> <a href="https://publications.waset.org/abstracts/63639/the-effect-of-interfacial-chemistry-on-mechanical-properties-of-epoxy-composites-containing-poly-ether-ether-ketone-grafted-multiwall-carbon-nanotubes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63639.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">825</span> Synthesis of Bisphenols Containing Pendant Furyl Group Based on Chemicals Derived from Lignocellulose and Their Utilization for Preparation of Clickable Poly(Arylene Ether Sulfone)s</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samadhan%20S.%20Nagane">Samadhan S. Nagane</a>, <a href="https://publications.waset.org/abstracts/search?q=Sachin%20S.%20Kuhire"> Sachin S. Kuhire</a>, <a href="https://publications.waset.org/abstracts/search?q=Prakash%20P.%20Wadgaonkar"> Prakash P. Wadgaonkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lignocellulose-derived chemicals such as furfural, furandicarboxylic acid, syringol, guaiacol, etc are highly attractive as sustainable alternatives to petrochemicals for the synthesis of monomers and polymers. We wish to report herein the facile synthesis of fully bio-based bisphenols containing pendant furyl group by base-catalyzed condensation of furfural with guaiacol. Bisphenols possessing pendant furyl group represent valuable monomers for the synthesis of a range of polymers which include epoxy resins, polyesters, polycarbonates, poly(aryl ether)s, etc. Several new homo/co-poly(arylene ether sulfone)s have been prepared by the reaction of 4,4(-fluorodiphenyl sulfone (FDS) with 4,4'-(furan-2-ylmethylene)bis(2-methoxyphenol) (BPF) and 4,4(-isopropylidenediphenol (BPA) using different molar ratios of bisphenols. Poly(arylene ether sulfone)s showed inherent viscosities in the range 0.92-1.47 dLg-1 and number average molecular weights (Mn), obtained from gel permeation chromatography (GPC), were in the range 91,300 – 1,31,000. Poly(arylene ether sulfone)s could be cast into tough, transparent and flexible films from chloroform solutions. X-Ray diffraction studies indicated amorphous nature of poly(arylene ether sulfone)s. Poly(arylene ether sulfone)s showed Tg values in the range 179-191 oC. Additionally, the pendant furyl groups in poly(arylene ether sulfone)s provide reactive sites for chemical modifications and cross-linking via Diels-Alder reaction with maleimides and bismaleimides, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-based" title="bio-based">bio-based</a>, <a href="https://publications.waset.org/abstracts/search?q=bisphenols" title=" bisphenols"> bisphenols</a>, <a href="https://publications.waset.org/abstracts/search?q=Diels-Alder%20reaction" title=" Diels-Alder reaction"> Diels-Alder reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%28arylene%20ether%20sulfone%29s" title=" poly(arylene ether sulfone)s"> poly(arylene ether sulfone)s</a> </p> <a href="https://publications.waset.org/abstracts/62434/synthesis-of-bisphenols-containing-pendant-furyl-group-based-on-chemicals-derived-from-lignocellulose-and-their-utilization-for-preparation-of-clickable-polyarylene-ether-sulfones" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62434.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">824</span> Study of Ether Species Effects on Physicochemical Properties of Palm Oil Ether Monoesters as Novel Biodiesels </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hejun%20Guo">Hejun Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Shenghua%20Liu"> Shenghua Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Five palm oil ether monoesters utilized as novel biodiesels were synthesized and structurally identified in the paper. Investigation was made on the effect of ether species on physicochemical properties of the palm oil ether monoesters. The results showed that density, kinematic viscosity, smoke point, and solidifying point increase linearly with their CH2 group number in certain relationships. Cetane number is enhanced whereas heat value decreases linearly with CH2 group number. In addition, the influencing regularities of volumetric content of the palm oil ether monoesters on the fuel properties were also studied when the ether monoesters are used as diesel fuel additives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=palm%20oil%20ether%20monoester" title=" palm oil ether monoester"> palm oil ether monoester</a>, <a href="https://publications.waset.org/abstracts/search?q=ether%20species" title=" ether species"> ether species</a>, <a href="https://publications.waset.org/abstracts/search?q=physicochemical%20property" title=" physicochemical property"> physicochemical property</a> </p> <a href="https://publications.waset.org/abstracts/1852/study-of-ether-species-effects-on-physicochemical-properties-of-palm-oil-ether-monoesters-as-novel-biodiesels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1852.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">823</span> Surface Modification of Titanium Alloy with Laser Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nassier%20A.%20Nassir">Nassier A. Nassir</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Birch"> Robert Birch</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Rico%20Sierra"> D. Rico Sierra</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20P.%20Edwardson"> S. P. Edwardson</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Dearden"> G. Dearden</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhongwei%20Guan"> Zhongwei Guan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of laser surface treatment parameters on the residual strength of titanium alloy has been investigated. The influence of the laser surface treatment on the bonding strength between the titanium and poly-ether-ketone-ketone (PEKK) surfaces was also evaluated and compared to those offered by titanium foils without surface treatment to optimize the laser parameters. Material characterization using an optical microscope was carried out to study the microstructure and to measure the mean roughness value of the titanium surface. The results showed that the surface roughness shows a significant dependency on the laser power parameters in which surface roughness increases with the laser power increment. Moreover, the results of the tensile tests have shown that there is no significant dropping in tensile strength for the treated samples comparing to the virgin ones. In order to optimize the laser parameter as well as the corresponding surface roughness, single-lap shear tests were conducted on pairs of the laser treated titanium stripes. The results showed that the bonding shear strength between titanium alloy and PEKK film increased with the surface roughness increment to a specific limit. After this point, it is interesting to note that there was no significant effect for the laser parameter on the bonding strength. This evidence suggests that it is not necessary to use very high power of laser to treat titanium surface to achieve a good bonding strength between titanium alloy and the PEKK film. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bonding%20strength" title="bonding strength">bonding strength</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20surface%20treatment" title=" laser surface treatment"> laser surface treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=PEKK" title=" PEKK"> PEKK</a>, <a href="https://publications.waset.org/abstracts/search?q=poly-ether-ketone-ketone" title="poly-ether-ketone-ketone">poly-ether-ketone-ketone</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20alloy" title=" titanium alloy"> titanium alloy</a> </p> <a href="https://publications.waset.org/abstracts/92507/surface-modification-of-titanium-alloy-with-laser-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">822</span> A Review on Development of Pedicle Screws and Characterization of Biomaterials for Fixation in Lumbar Spine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shri%20Dubey">Shri Dubey</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamal%20Ghorieshi"> Jamal Ghorieshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Instability of the lumbar spine is caused by various factors that include degenerative disc, herniated disc, traumatic injuries, and other disorders. Pedicle screws are widely used as a main fixation device to construct rigid linkages of vertebrae to provide a fully functional and stable spine. Various technologies and methods have been used to restore the stabilization. However, loosening of pedicle screws is the main cause of concerns for neurosurgeons. This could happen due to poor bone quality with osteoporosis as well as types of pedicle screw used. Compatibilities and stabilities of pedicle screws with bone depend on design (thread design, length, and diameter) and material. Grip length and pullout strength affect the motion and stability of the spine when it goes through different phases such as extension, flexion, and rotation. Pullout strength of augmented pedicle screws is increased in both primary and salvage procedures by 119% (p = 0.001) and 162% (p = 0.01), respectively. Self-centering pedicle screws at different trajectories (0°, 10°, 20°, and 30°) show the same pullout strength as insertion in a straight-ahead trajectory. The outer cylindrical and inner conical shape of pedicle screws show the highest pullout strength in Grades 5 and 15 foams (synthetic bone). An outer cylindrical and inner conical shape with a V-shape thread exhibit the highest pullout strength in all foam grades. The maximum observed pullout strength is at axial pullout configuration at 0°. For Grade 15 (240 kg/m³) foam, there is a decline in pull out strength. The largest decrease in pullout strength is reported for Grade 10 (160 kg/m³) foam. The maximum pullout strength of 2176 N (0.32-g/cm³ Sawbones) on all densities. Type 1 Pedicle screw shows the best fixation due to smaller conical core diameter and smaller thread pitch (Screw 2 with 2 mm; Screws 1 and 3 with 3 mm). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymethylmethacrylate" title="polymethylmethacrylate">polymethylmethacrylate</a>, <a href="https://publications.waset.org/abstracts/search?q=PMMA" title=" PMMA"> PMMA</a>, <a href="https://publications.waset.org/abstracts/search?q=classical%20pedicle%20screws" title=" classical pedicle screws"> classical pedicle screws</a>, <a href="https://publications.waset.org/abstracts/search?q=CPS" title=" CPS"> CPS</a>, <a href="https://publications.waset.org/abstracts/search?q=expandable%20poly-ether-ether-ketone%20shell" title=" expandable poly-ether-ether-ketone shell"> expandable poly-ether-ether-ketone shell</a>, <a href="https://publications.waset.org/abstracts/search?q=EPEEKS" title=" EPEEKS"> EPEEKS</a>, <a href="https://publications.waset.org/abstracts/search?q=includes%20translaminar%20facet%20screw" title=" includes translaminar facet screw"> includes translaminar facet screw</a>, <a href="https://publications.waset.org/abstracts/search?q=TLFS" title=" TLFS"> TLFS</a>, <a href="https://publications.waset.org/abstracts/search?q=poly-ether-ether-ketone" title=" poly-ether-ether-ketone"> poly-ether-ether-ketone</a>, <a href="https://publications.waset.org/abstracts/search?q=PEEK" title=" PEEK"> PEEK</a>, <a href="https://publications.waset.org/abstracts/search?q=transfacetopedicular%20screw" title=" transfacetopedicular screw"> transfacetopedicular screw</a>, <a href="https://publications.waset.org/abstracts/search?q=TFPS" title=" TFPS "> TFPS </a> </p> <a href="https://publications.waset.org/abstracts/108357/a-review-on-development-of-pedicle-screws-and-characterization-of-biomaterials-for-fixation-in-lumbar-spine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108357.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">821</span> Ionic Polymer Actuators with Fast Response and High Power Density Based on Sulfonated Phthalocyanine/Sulfonated Polysulfone Composite Membrane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taehoon%20Kwon">Taehoon Kwon</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyeongrae%20Cho"> Hyeongrae Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Dirk%20Henkensmeier"> Dirk Henkensmeier</a>, <a href="https://publications.waset.org/abstracts/search?q=Youngjong%20Kang"> Youngjong Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chong%20Min%20%20Koo"> Chong Min Koo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ionic polymer actuators have been of interest in the bio-inspired artificial muscle devices. However, the relatively slow response and low power density were the obstacles for practical applications. In this study, ionic polymer actuators are fabricated with ionic polymer composite membranes based on sulfonated poly(arylene ether sulfone) (SPAES) and copper(II) phthalocyanine tetrasulfonic acid (CuPCSA). CuPCSA is an organic filler with very high ion exchange capacity (IEC, 4.5 mmol H+/g) that can be homogeneously dispersed on the molecular scale into the SPAES membrane. SPAES/CuPCSA actuators show larger ionic conductivity, mechanical properties, bending deformation, exceptional faster response to electrical stimuli, and larger mechanical power density (3028 W m–3) than Nafion actuators. This outstanding actuation performance of SPAES/CuPCSA composite membrane actuators makes them attractive for next generation transducers with high power density, which are currently developed biomimetic devices such as endoscopic surgery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=actuation%20performance" title="actuation performance">actuation performance</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20membranes" title=" composite membranes"> composite membranes</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20polymer%20actuators" title=" ionic polymer actuators"> ionic polymer actuators</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20filler" title=" organic filler"> organic filler</a> </p> <a href="https://publications.waset.org/abstracts/75672/ionic-polymer-actuators-with-fast-response-and-high-power-density-based-on-sulfonated-phthalocyaninesulfonated-polysulfone-composite-membrane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75672.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">820</span> Analysis of Solvent Effect on the Mechanical Properties of Poly(Ether Ether Ketone) Using Nano-Indentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tanveer%20Iqbal">Tanveer Iqbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Saima%20Yasin"> Saima Yasin</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Zafar"> Muhammad Zafar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Shakeel"> Ahmad Shakeel</a>, <a href="https://publications.waset.org/abstracts/search?q=Fahad%20Nazir"> Fahad Nazir</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20F.%20Luckham"> Paul F. Luckham</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The contact performance of polymeric composites is dependent on the localized mechanical properties of materials. This is particularly important for fiber oriented polymeric materials where self-lubrication from top layers has been the basic requirement. The nanoindentation response of fiber reinforced poly(etheretherketone), PEEK, composites have been evaluated to determine the near-surface mechanical characteristics. Load-displacement compliance, hardness and elastic modulus data based on contact compliance mode (CSM) indentation of carbon fiber oriented and glass fiber oriented PEEK composites are reported as a function of indentation contact displacement. The composite surfaces were indented to a maximum penetration depth of 5µm using Berkovich tip indenter. A typical multiphase response of the composite surface is depicted from analysis of the indentation data for the composites, showing presence of polymer matrix, fibers, and interphase regions. The observed experimental results show that although the surface mechanical properties of carbon fiber based PEEK composite were comparatively higher, the properties of matrix material were seen to be increased in the presence of glass fibers. The experimental methodology may provide a convenient means to understand morphological description of the multimodal polymeric composites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoindentation" title="nanoindentation">nanoindentation</a>, <a href="https://publications.waset.org/abstracts/search?q=PEEK" title=" PEEK"> PEEK</a>, <a href="https://publications.waset.org/abstracts/search?q=modulus" title=" modulus"> modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticization" title=" plasticization"> plasticization</a> </p> <a href="https://publications.waset.org/abstracts/78722/analysis-of-solvent-effect-on-the-mechanical-properties-of-polyether-ether-ketone-using-nano-indentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78722.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">819</span> Cold Crystallization of Poly (Ether Ether Ketone)/Graphene Composites by Time-Resolved Synchrotron X-Ray Diffraction </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Alvaredo">A. Alvaredo </a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Guzman%20De%20Villoria"> R. Guzman De Villoria</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Castell"> P. Castell</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20P.%20Fernandez-Blazquez"> Juan P. Fernandez-Blazquez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since graphene was discovered in 2004, has been considered as superb material, due to its outstanding mechanical, electrical and thermal properties. Graphene has been incorporated as reinforcement in several high performance polymers in order to obtain a good balance of properties and to get new properties as thermal or electric conductivity. As well known, the properties of semicrystalline polymer and its composites depends heavily on degree of crystallinity. In this context, our research group has studied the crystallization behavior from amorphous state of PEEK/GNP composites. The monitoring of cold crystallization processes studied by time-resolved simultaneous wide-angle X-ray scattering (WAXS) and small-angle X-ray scattering (SAXS). These techniques allowed to get an extremely relevant information about the evolution of the morphology of the PEEK/GNP composites. In addition, the thermal evolution of cold crystallization was followed by differential scanning calorimetry (DSC) as well. The experimental results showed changes in crystallization kinetics and c parameter unit cell when adding graphene. The main aim of this work is to produce PEEK/GNP composites and characterize their morphology, unit cell parameters and crystallization kinetic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PEEK" title="PEEK">PEEK</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=synchrotron" title=" synchrotron"> synchrotron</a>, <a href="https://publications.waset.org/abstracts/search?q=cold%20crystallization" title=" cold crystallization"> cold crystallization</a> </p> <a href="https://publications.waset.org/abstracts/77469/cold-crystallization-of-poly-ether-ether-ketonegraphene-composites-by-time-resolved-synchrotron-x-ray-diffraction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">818</span> Synthesis of Nanoparticle Mordenite Zeolite for Dimethyl Ether Carbonylation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Haitao">Zhang Haitao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The different size of nanoparticle mordenite zeolites were prepared by adding different soft template during hydrothermal process for carbonylation of dimethyl ether (DME) to methyl acetate (MA). The catalysts were characterized by X-ray diffraction, Ar adsorption-desorption, high-resolution transmission electron microscopy, NH3-temperature programmed desorption, scanning electron microscopy and Thermogravimetric. The characterization results confirmed that mordenite zeolites with small nanoparticle showed more strong acid sites which was the active site for carbonylation thus promoting conversion of DME and MA selectivity. Furthermore, the nanoparticle mordenite had increased the mass transfer efficiency which could suppress the formation of coke. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticle%20mordenite" title="nanoparticle mordenite">nanoparticle mordenite</a>, <a href="https://publications.waset.org/abstracts/search?q=carbonylation" title=" carbonylation"> carbonylation</a>, <a href="https://publications.waset.org/abstracts/search?q=dimethyl%20ether" title=" dimethyl ether"> dimethyl ether</a>, <a href="https://publications.waset.org/abstracts/search?q=methyl%20acetate" title=" methyl acetate"> methyl acetate</a> </p> <a href="https://publications.waset.org/abstracts/120694/synthesis-of-nanoparticle-mordenite-zeolite-for-dimethyl-ether-carbonylation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120694.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">817</span> Comparative Analysis of Petroleum Ether and Aqueous Extraction Solvents on Different Stages of Anopheles Gambiae Using Neem Leaf and Neem Stem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tochukwu%20Ezechi%20Ebe">Tochukwu Ezechi Ebe</a>, <a href="https://publications.waset.org/abstracts/search?q=Fechi%20Njoku-Tony"> Fechi Njoku-Tony</a>, <a href="https://publications.waset.org/abstracts/search?q=Ifeyinwa%20Mgbenena"> Ifeyinwa Mgbenena</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Comparative analysis of petroleum ether and aqueous extraction solvents on different stages of Anopheles gambiae was carried out using neem leaf and neem stem. Soxhlet apparatus was used to extract each pulverized plant part. Each plant part extract from both solvents were separately used to test their effects on the developmental stages of Anopheles gambiae. The result showed that the mean mortality of extracts from petroleum ether extraction solvent was higher than that of aqueous extract. It was also observed that mean mortality decreases with increase in developmental stage. Furthermore, extracts from neem leaf was found to be more susceptible than extracts from neem stem using same extraction solvent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=petroleum%20ether" title="petroleum ether">petroleum ether</a>, <a href="https://publications.waset.org/abstracts/search?q=aqueous" title=" aqueous"> aqueous</a>, <a href="https://publications.waset.org/abstracts/search?q=developmental" title=" developmental"> developmental</a>, <a href="https://publications.waset.org/abstracts/search?q=stages" title=" stages"> stages</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=Anopheles%20gambiae" title=" Anopheles gambiae"> Anopheles gambiae</a> </p> <a href="https://publications.waset.org/abstracts/16040/comparative-analysis-of-petroleum-ether-and-aqueous-extraction-solvents-on-different-stages-of-anopheles-gambiae-using-neem-leaf-and-neem-stem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16040.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">511</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">816</span> Mansonone G and Its Ether Analogues as New Antibacterial Agents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rita%20Hairani">Rita Hairani</a>, <a href="https://publications.waset.org/abstracts/search?q=Warinthorn%20Chavasiri"> Warinthorn Chavasiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Naphthoquinones are secondary metabolites widespread in nature and can be produced by plants, fungi and actinomycetes. The interest of naphthoquinones is not only limited as organic dyes, but also their wide variety of biological activities such as antitumor, antibacterial, and cytotoxic activities. Typical 1,2-naphthoquinones such as mansonones can be found in Mansonia gagei Drumm. (“chan-cha-mod”), Sterculaceae family. This plant has been used traditionally to treat some diseases such as antiemetic and antidepressant. In this study, some natural mansonones isolated from the CH2Cl2 extract of M. gagei heartwood have been assessed for their antibacterial activities using agar well diffusion method. According to the antibacterial activity results of four natural mansonones (mansonones C, E, G and H), mansonones E and G showed higher activities than the others against Staphylococcus aureus, Propionibacterium acnes and Salmonella typhi, respectively. Since mansonone G exhibited good antibacterial activity and was obtained in the highest yield, we decided to derivertize mansonone G into five ether analogues. Based on the antibacterial activities of these synthesized compounds, four ether analogues (compounds 1-4) revealed higher antibacterial activities than its natural mansonone G against S. aureus and S. typhi. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mansonia%20gagei%20Drumm." title="Mansonia gagei Drumm.">Mansonia gagei Drumm.</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20activities" title=" antibacterial activities"> antibacterial activities</a>, <a href="https://publications.waset.org/abstracts/search?q=mansonone%20G" title=" mansonone G"> mansonone G</a>, <a href="https://publications.waset.org/abstracts/search?q=ether%20analogues" title=" ether analogues"> ether analogues</a> </p> <a href="https://publications.waset.org/abstracts/35966/mansonone-g-and-its-ether-analogues-as-new-antibacterial-agents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35966.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">815</span> Bioactivities and Phytochemical Studies of Petroleum Ether Extract of Pleiogynium timorense Bark</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gehan%20F.%20Abdel%20Raoof">Gehan F. Abdel Raoof</a>, <a href="https://publications.waset.org/abstracts/search?q=Ataa%20A.%20Said"> Ataa A. Said</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Y.%20Mohamed"> Khaled Y. Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Hala%20M.%20Mohammed"> Hala M. Mohammed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pleiogynium timorense(DC.) Leenh is one of the therapeutically active plants belonging to the family Anacardiaceae. The bark of Pleiogynium timorense needs further studies to investigate its phytochemical and biological activities. This work was carried out to investigate the chemical composition of petroleum ether extract of Pleiogynium timorense bark as well as to evaluate the analgesic and anti-inflammatory activities. The unsaponifiable matter and fatty acid methyl esters were analyzed by Gas chromatography–mass spectrometry (GC-MS). Moreover, analgesic and anti-inflammatory activities were evaluated using acetic acid-induced writhing test and carrageen hind paw oedema models in rats, respectively. The results showed that twenty one compounds in the unsaponifiable fraction were identified representing 92.54 % of the total beak area, the major compounds were 1-Heptene (35.32%), Butylated hydroxy toluene (19.42%) and phytol (12.53%), whereas fifteen compounds were identified in the fatty acid methyl esters fraction representing 94.15% of the total identified peak area. The major compounds were 9-Octadecenoic acid methyl ester (35.34%) and 9,12-Octadecadienoic acid methyl ester (29.32%). Moreover, petroleum ether extract showed a significant reduction in pain and inflammation in a dose dependent manner. This study aims to be the first step toward the use of petroleum ether extract of Pleiogynium timorense bark as analgesic and anti-inflammatory drug. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analgesic" title="analgesic">analgesic</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-inflammatory" title=" anti-inflammatory"> anti-inflammatory</a>, <a href="https://publications.waset.org/abstracts/search?q=bark" title=" bark"> bark</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum%20ether%20extract" title=" petroleum ether extract"> petroleum ether extract</a>, <a href="https://publications.waset.org/abstracts/search?q=Pleiogynium%20timorense" title=" Pleiogynium timorense "> Pleiogynium timorense </a> </p> <a href="https://publications.waset.org/abstracts/93698/bioactivities-and-phytochemical-studies-of-petroleum-ether-extract-of-pleiogynium-timorense-bark" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93698.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">814</span> Enhancement of Interface Properties of Thermoplastic Composite Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reyhan%20Ozbask">Reyhan Ozbask</a>, <a href="https://publications.waset.org/abstracts/search?q=Emek%20Moroydor%20Derin"> Emek Moroydor Derin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Dogu"> Mustafa Dogu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are a limited number of global companies in the world that manufacture and commercially offer thermoplastic composite prepregs in accordance with aerospace requirements. High-performance thermoplastic materials supplied for aerospace structural applications are PEEK (polyetheretherketone), PPS (polyphenylsulfite), PEI (polyetherimide), and PEKK (polyetherketoneketone). Among these, PEEK is the raw material used in the first applications and has started to become widespread. However, the use of these thermoplastic raw materials in composite production is very difficult due to their high processing temperatures and impregnation difficulties. This study, it is aimed to develop carbon fiber-reinforced thermoplastic PEEK composites that comply with the requirements of the aviation industry that are superior mechanical properties as well as being lightweight. Therefore, it is aimed to obtain high-performance thermoplastic composite materials with improved interface properties by using the sizing method (suspension development through chemical synthesis and functionalization), to optimize the production process. The use of boron nitride nanotube as a bonding agent by modifying its surface constitutes the original aspect of the study as it has not been used in composite production with high-performance thermoplastic materials yet. For this purpose, laboratory-scale studies on the application of thermoplastic compatible sizing will be carried out in order to increase the fiber-matrix interfacial adhesion. The method respectively consists of the selection of appropriate sizing type, laboratory-scale carbon fiber (CF) / poly ether ether ketone (PEEK) polymer interface enhancement studies, manufacturing of laboratory-scale BNNT coated CF/PEEK woven prepreg composites and their tests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20fiber%20reinforced%20composite" title="carbon fiber reinforced composite">carbon fiber reinforced composite</a>, <a href="https://publications.waset.org/abstracts/search?q=interface%20enhancement" title=" interface enhancement"> interface enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=boron%20nitride%20nanotube" title=" boron nitride nanotube"> boron nitride nanotube</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoplastic%20composite" title=" thermoplastic composite"> thermoplastic composite</a> </p> <a href="https://publications.waset.org/abstracts/141518/enhancement-of-interface-properties-of-thermoplastic-composite-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141518.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">225</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">813</span> Effectiveness of the Use of Polycarboxylic Ether Superplasticizers in High Performance Concrete Containing Silica Fume</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alya%20Harichane">Alya Harichane</a>, <a href="https://publications.waset.org/abstracts/search?q=Badreddine%20Harichane"> Badreddine Harichane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The incorporation of polycarboxylate ether superplasticizer (PCE) and silica fume (SF) in high-performance concretes (HPC) leads to the achievement of remarkable rheological and mechanical improvements. In the fresh state, PCEs are adsorbed on cement particles and dispersants, in turn promoting the workability of the concrete. Silica fume enables a very well compacted concrete to be obtained, which is characterized by high mechanical parameters in its hardened state. Some PCEs are incompatible with silica fume, which can result in the loss of slump and in poor rheological behavior. The main objective of the research is the study of the influence of three types of PCEs, which all have a different molecular architecture, on the rheological and mechanical behavior of high-performance concretes containing 10% of SF as a partial replacement of cement. The results show that the carboxylic density of PCE has an influence on its compatibility with SF. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polycarboxylate-ether%20superplasticizer" title="polycarboxylate-ether superplasticizer">polycarboxylate-ether superplasticizer</a>, <a href="https://publications.waset.org/abstracts/search?q=rheology" title=" rheology"> rheology</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=high-performance%20concrete" title=" high-performance concrete"> high-performance concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20fume" title=" silica fume"> silica fume</a> </p> <a href="https://publications.waset.org/abstracts/167643/effectiveness-of-the-use-of-polycarboxylic-ether-superplasticizers-in-high-performance-concrete-containing-silica-fume" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167643.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">812</span> Thermodynamic Properties of Binary Mixtures of 1, 2-Dichloroethane with Some Polyethers: DISQUAC Calculations Compared with Dortmund UNIFAC Results</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Amireche">F. Amireche</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Mokbel"> I. Mokbel</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Jose"> J. Jose</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20F.%20Belaribi"> B. F. Belaribi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The experimental vapour-liquid equilibria (VLE) at isothermal conditions and excess molar Gibbs energies GE are carried out for the three binary mixtures: 1, 2- dichloroethane + ethylene glycol dimethyl ether, + diethylene glycol dimethyl ether or + diethylene glycol diethyl ether, at ten temperatures ranging from 273 to 353.15 K. A good static device was employed for these measurements. The VLE data were reduced using the Redlich-Kister equation by taking into consideration the vapour pressure non-ideality in terms of the second molar virial coefficient. The experimental data were compared to the results predicted with the DISQUAC and Dortmund UNIFAC group contribution models for the total pressures P, the excess molar Gibbs energies GE and the excess molar enthalpies HE. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Disquac%20model" title="Disquac model">Disquac model</a>, <a href="https://publications.waset.org/abstracts/search?q=Dortmund%20UNIFAC%20model" title=" Dortmund UNIFAC model"> Dortmund UNIFAC model</a>, <a href="https://publications.waset.org/abstracts/search?q=1" title=" 1"> 1</a>, <a href="https://publications.waset.org/abstracts/search?q=2-%20dichloroethane" title=" 2- dichloroethane"> 2- dichloroethane</a>, <a href="https://publications.waset.org/abstracts/search?q=excess%20molar%20Gibbs%20energies%20GE" title=" excess molar Gibbs energies GE"> excess molar Gibbs energies GE</a>, <a href="https://publications.waset.org/abstracts/search?q=polyethers" title=" polyethers"> polyethers</a>, <a href="https://publications.waset.org/abstracts/search?q=VLE" title=" VLE"> VLE</a> </p> <a href="https://publications.waset.org/abstracts/26058/thermodynamic-properties-of-binary-mixtures-of-1-2-dichloroethane-with-some-polyethers-disquac-calculations-compared-with-dortmund-unifac-results" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26058.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">811</span> Thermodynamic Attainable Region for Direct Synthesis of Dimethyl Ether from Synthesis Gas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thulane%20Paepae">Thulane Paepae</a>, <a href="https://publications.waset.org/abstracts/search?q=Tumisang%20Seodigeng"> Tumisang Seodigeng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper demonstrates the use of a method of synthesizing process flowsheets using a graphical tool called the GH-plot and in particular, to look at how it can be used to compare the reactions of a combined simultaneous process with regard to their thermodynamics. The technique uses fundamental thermodynamic principles to allow the mass, energy and work balances locate the attainable region for chemical processes in a reactor. This provides guidance on what design decisions would be best suited to developing new processes that are more effective and make lower demands on raw material and energy usage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=attainable%20regions" title="attainable regions">attainable regions</a>, <a href="https://publications.waset.org/abstracts/search?q=dimethyl%20ether" title=" dimethyl ether"> dimethyl ether</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20reaction%20network" title=" optimal reaction network"> optimal reaction network</a>, <a href="https://publications.waset.org/abstracts/search?q=GH%20Space" title=" GH Space"> GH Space</a> </p> <a href="https://publications.waset.org/abstracts/48978/thermodynamic-attainable-region-for-direct-synthesis-of-dimethyl-ether-from-synthesis-gas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48978.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">810</span> Chemical Stability and Characterization of Ion Exchange Membranes for Vanadium Redox Flow Batteries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Min-Hwa%20Lim">Min-Hwa Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=Mi-Jeong%20Park"> Mi-Jeong Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Ho-Young%20Jung"> Ho-Young Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Imidazolium-brominated polyphenylene oxide (Im-bPPO) is based on the functionalization of bromomethylated poly(2,6-dimethyl-1,4-phenylene oxide) (BPPO) using 1-Methylimdazole. For the purpose of long cycle life of vanadium redox battery (VRB), the chemical stability of Im-bPPO, sPPO (sulfonated 2,6-dimethyl-1,4-phenylene oxide) and Fumatech membranes were evaluated firstly in the 0.1M vanadium (V) solution dissolved in 3M sulfuric acid (H2SO4) for 72h, and UV analyses of the degradation products proved that ether bond in PPO backbone was vulnerable to be attacked by vanadium (V) ion. It was found that the membranes had slightly weight loss after soaking in 2 ml distilled water included in STS pressure vessel for 1 day at 200◦C. ATR-FT-IR data indicated before and after the degradation of the membranes. Further evaluation on the degradation mechanism of the menbranes were carried out in Fenton’s reagent solution for 72 h at 50 ◦C and analyses of the membranes before and after degradation confirmed the weight loss of the membranes. The Fumatech membranes exhibited better performance than AEM and CEM, but Nafion 212 still suffers chemical degradation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vanadium%20redox%20flow%20battery" title="vanadium redox flow battery">vanadium redox flow battery</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20exchange%20membrane" title=" ion exchange membrane"> ion exchange membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=permeability" title=" permeability"> permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=degradation" title=" degradation"> degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20stability" title=" chemical stability"> chemical stability</a> </p> <a href="https://publications.waset.org/abstracts/44968/chemical-stability-and-characterization-of-ion-exchange-membranes-for-vanadium-redox-flow-batteries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44968.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">809</span> New Biobased(Furanic-Sulfonated) Poly(esteramide)s</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Souhir%20Abid">Souhir Abid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The growing interest in vegetal biomass as an alternative for fossil resources has stimulated the development of numerous classes of monomers. Polymers from renewable resources have attracted an increasing amount of attention over the last two decades, predominantly due to two major reasons (i) firstly environmental concerns, and (ii) secondly the use of monomers from renewable feedstock is a steadily growing field of interest in order to reduce the amount of petroleum consumed in the chemical industry and to open new high-value-added markets to agriculture. Furanic polymers have been considered as alternative environmentally friendly polymers. In our earlier work, modifying furanic polyesters by incorporation of amide functions along their backbone, lead to a particular class of polymer ‘poly(ester-amide)s’, was investigated to combine the excellent mechanical properties of polyamides and the biodegradability of polyesters. As a continuation of our studies on this family of polymer, a series of furanic poly(ester-amide)s bearing sulfonate groups in the main chain were synthesized from 5,5’-Isopropylidene-bis(ethyl 2-furoate), dimethyl 5-sodiosulfoisophthalate, ethylene glycol and hexamethylene diamine by melt polycondensation using zinc acetate as a catalyst. In view of the complexity of the NMR spectrum analysis of the resulting sulfonated poly(ester-amide)s, we found that it is useful to prepare initially the corresponding homopolymers: sulfonated polyesters and polyamides. Structural data of these polymers will be used as a basic element in 1H NMR characterization. The hydrolytic degradation in acidic aqueous conditions (pH = 4,35 ) at 37 °C over the period of four weeks show that the mechanism of the hydrolysis of poly(ester amide)s was elucidated in relation with the microstructure. The strong intermolecular hydrogen bonding interactions between amide functions and water molecules increases the hydrophilicity of the macromolecular chains and consequently their hydrolytic degradation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=furan" title="furan">furan</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrolytic%20degradation" title=" hydrolytic degradation"> hydrolytic degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=polycondensation" title=" polycondensation"> polycondensation</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%28ester%20amide%29" title=" poly(ester amide)"> poly(ester amide)</a> </p> <a href="https://publications.waset.org/abstracts/38209/new-biobasedfuranic-sulfonated-polyesteramides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38209.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">808</span> Techno-Economic Study on the Potential of Dimethyl Ether (DME) as a Substitute for LPG</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Widya%20Anggraini%20Pamungkas">Widya Anggraini Pamungkas</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosana%20Budi%20Setyawati"> Rosana Budi Setyawati</a>, <a href="https://publications.waset.org/abstracts/search?q=Awaludin%20Fitroh%20Rifai"> Awaludin Fitroh Rifai</a>, <a href="https://publications.waset.org/abstracts/search?q=Candra%20Pangesti%20Setiawan"> Candra Pangesti Setiawan</a>, <a href="https://publications.waset.org/abstracts/search?q=Anatta%20Wahyu%20Budiiman"> Anatta Wahyu Budiiman</a>, <a href="https://publications.waset.org/abstracts/search?q=Inayati"> Inayati</a>, <a href="https://publications.waset.org/abstracts/search?q=Joko%20Waluyo"> Joko Waluyo</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunu%20Herwi%20Pranolo"> Sunu Herwi Pranolo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increase in LPG consumption in Indonesia is not balanced with the amount of supply. The high demand for LPG due to the success of the government's kerosene-to-LPG conversion program and the Covid-19 pandemic in 2020 led to an increase in LPG consumption in the household sector and caused Indonesia's trade balance to experience a deficit. The high consumption of LPG encourages the need for alternative fuels as a substitute or which aims to substitute LPG; one of the materials that can be used is Dimethyl Ether (DME). Dimethyl ether (DME) is an organic compound with the chemical formula CH 3. OCH 3 has a high cetane number and has characteristics similar to LPG. DME can be produced from various sources, such as coal, biomass and natural gas. Based on the economic analysis conducted at 10% IRR, coal has the largest NPV of Rp. 20,034,837,497,241 with a payback period of 3.86 years, then biomass with an NPV of Rp. 10,401,526,072,850 and a payback period of 5.16. the latter is natural gas with an NPV of IDR 7,401,272,559,191 and a payback period of 6.17 years. Of the three sources of raw materials used, if the sensitivity is calculated using the selling price of DME equal to the selling price of LPG, it will get an NPV value that is greater than the NPV value when using the current DME price. The advantages of coal as a raw material for DME are not only because it is profitable, namely: low price and abundant resources, but has high greenhouse gas emissions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LPG" title="LPG">LPG</a>, <a href="https://publications.waset.org/abstracts/search?q=DME" title=" DME"> DME</a>, <a href="https://publications.waset.org/abstracts/search?q=coal" title=" coal"> coal</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20gas" title=" natural gas"> natural gas</a> </p> <a href="https://publications.waset.org/abstracts/161115/techno-economic-study-on-the-potential-of-dimethyl-ether-dme-as-a-substitute-for-lpg" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161115.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">807</span> Modification of Aliphatic-Aromatic Copolyesters with Polyether Block for Segmented Copolymers with Elastothemoplastic Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Irska">I. Irska</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Paszkiewicz"> S. Paszkiewicz</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Pawlikowska"> D. Pawlikowska</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Piesowicz"> E. Piesowicz</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Linares"> A. Linares</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20A.%20Ezquerra"> T. A. Ezquerra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the number of advantages such as high tensile strength, sensitivity to hydrolytic degradation, and biocompatibility poly(lactic acid) (PLA) is one of the most common polyesters for biomedical and pharmaceutical applications. However, PLA is a rigid, brittle polymer with low heat distortion temperature and slow crystallization rate. In order to broaden the range of PLA applications, it is necessary to improve these properties. In recent years a number of new strategies have been evolved to obtain PLA-based materials with improved characteristics, including manipulation of crystallinity, plasticization, blending, and incorporation into block copolymers. Among the other methods, synthesis of aliphatic-aromatic copolyesters has been attracting considerable attention as they may combine the mechanical performance of aromatic polyesters with biodegradability known from aliphatic ones. Given the need for highly flexible biodegradable polymers, in this contribution, a series of aromatic-aliphatic based on poly(butylene terephthalate) and poly(lactic acid) (PBT-b-PLA) copolyesters exhibiting superior mechanical properties were copolymerized with an additional poly(tetramethylene oxide) (PTMO) soft block. The structure and properties of both series were characterized by means of attenuated total reflectance – Fourier transform infrared spectroscopy (ATR-FTIR), nuclear magnetic resonance spectroscopy (¹H NMR), differential scanning calorimetry (DSC), wide-angle X-ray scattering (WAXS) and dynamic mechanical, thermal analysis (DMTA). Moreover, the related changes in tensile properties have been evaluated and discussed. Lastly, the viscoelastic properties of synthesized poly(ester-ether) copolymers were investigated in detail by step cycle tensile tests. The block lengths decreased with the advance of treatment, and the block-random diblock terpolymers of (PBT-ran-PLA)-b-PTMO were obtained. DSC and DMTA analysis confirmed unambiguously that synthesized poly(ester-ether) copolymers are microphase-separated systems. The introduction of polyether co-units resulted in a decrease in crystallinity degree and melting temperature. X-ray diffraction patterns revealed that only PBT blocks are able to crystallize. The mechanical properties of (PBT-ran-PLA)-b-PTMO copolymers are a result of a unique arrangement of immiscible hard and soft blocks, providing both strength and elasticity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aliphatic-aromatic%20copolymers" title="aliphatic-aromatic copolymers">aliphatic-aromatic copolymers</a>, <a href="https://publications.waset.org/abstracts/search?q=multiblock%20copolymers" title=" multiblock copolymers"> multiblock copolymers</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20behavior" title=" phase behavior"> phase behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoplastic%20elastomers" title=" thermoplastic elastomers"> thermoplastic elastomers</a> </p> <a href="https://publications.waset.org/abstracts/111230/modification-of-aliphatic-aromatic-copolyesters-with-polyether-block-for-segmented-copolymers-with-elastothemoplastic-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111230.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">806</span> Removal of Pb(II) Ions from Wastewater Using Magnetic Chitosan–Ethylene Glycol Diglycidyl Ether Beads as Adsorbent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pyar%20Singh%20Jassal">Pyar Singh Jassal</a>, <a href="https://publications.waset.org/abstracts/search?q=Priti%20Rani"> Priti Rani</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajni%20Johar"> Rajni Johar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The adsorption of Pb(II) ions from wastewater using ethylene glycol diglycidyl ether cross-linked magnetic chitosan beads (EGDE-MCB) was carried out by considering a number of parameters. The removal efficiency of the metal ion by magnetic chitosan beads (MCB) and its cross-linked derivatives depended on viz contact time, dose of the adsorbent, pH, temperature, etc. The concentration of Cd( II) at different time intervals was estimated by differential pulse anodic stripping voltammetry (DPSAV) using 797 voltametric analyzer computrace. The adsorption data could be well interpreted by Langmuir and Freundlich adsorption model. The equilibrium parameter, RL values, support that the adsorption (0<RL<1) is a favorable and spontaneous process. The thermodynamic parameters suggest that it is an exothermic reaction which results with an increase in the randomness of the adsorption process. The kinetic data of Pb(II) ions fitted well with the pseudo-second-order kinetic model. The EGDE-MCB was characterized by using FTIR, SEM, EDX, and TGA techniques. The desorption of metal ion loaded chitosan beads was performed with 0.1M ethylene diamine tetra acetic acid (EDTA) solution for further use. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20chitosan%20beads" title="magnetic chitosan beads">magnetic chitosan beads</a>, <a href="https://publications.waset.org/abstracts/search?q=ethylene%20glycol%20diglycidyl%20ether" title=" ethylene glycol diglycidyl ether"> ethylene glycol diglycidyl ether</a>, <a href="https://publications.waset.org/abstracts/search?q=equilibrium%20parameters" title=" equilibrium parameters"> equilibrium parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=desorption" title=" desorption"> desorption</a> </p> <a href="https://publications.waset.org/abstracts/147347/removal-of-pbii-ions-from-wastewater-using-magnetic-chitosan-ethylene-glycol-diglycidyl-ether-beads-as-adsorbent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147347.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">805</span> Preliminary Phytopharmacological Evaluation of Methanol and Petroleum Ether Extracts of Selected Vegetables of Bangladesh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Mohammad%20Abdul%20Motalib%20Momin">A. Mohammad Abdul Motalib Momin</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Sheikh%20Mohammad%20Adil%20Uddin"> B. Sheikh Mohammad Adil Uddin</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Md%20Mamunur%20Rashid"> C. Md Mamunur Rashid</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Sheikh%20Arman%20Mahbub"> D. Sheikh Arman Mahbub</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Mohammad%20Sazzad%20Rahman"> E. Mohammad Sazzad Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Abdullah%20Faruque"> F. Abdullah Faruque</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study was designed to investigate the antioxidant and cytotoxicity potential of methanol and pet ether extracts of the Lagenaria siceraria (LM, LP), Cucumis sativus (CSM, CSP), Cucurbita maxima (CMM, CMP) plants. For the phytochemical screening, crude extract was tested for the presence of different chemical groups. In Lagenaria siceraria the following groups were identified: alkaloids, steroids, glycosides and saponins for methanol extract and alkaloids, steroids, glycosides, tannins and saponins are for pet ether extract. Glycosides, steroids, alkaloids, saponins and tannins are present in the methanol extract of Cucumis sativus; the pet ether extract has the alkaloids, steroids and saponins. Glycosides, steroids, alkaloids, saponins and tannins are present in both the methanolic and pet ether extract of Cucurbita maxima. In vitro antioxidant activity of the extracts were performed using DPPH radical scavenging, nitric oxide (NO) scavenging, total antioxidant capacity, total phenol content, total flavonoid content, and Cupric Reducing Antioxidant Capacity assays. The most prominent antioxidant activity was observed with the CSM in the DPPH free radical scavenging test with an IC50 value of 1667.23±11.00271 μg/ml as opposed to that of standard ascorbic acid (IC50 value of 15.707± 1.181 μg/ml.) In total antioxidant capacity method, CMP showed the highest activity (427.81±11.4 mg ascorbic acid/g). The total phenolic and flavonoids content were determined by Folin-Ciocalteu Reagent and aluminium chloride colorimetric method, respectively. The highest total phenols and total flavonoids content were found in CMM and LP with the value of 79.06±16.06 mg gallic acid/g & 119.0±1.41 mg quercetin/g, respectively. In nitric oxide (NO) scavenging the most prominent antioxidant activity was observed in CMM with an IC50 value of 8.119± 0.0036 μg/ml. The Cupric reducing capacity of the extracts was strong and dose dependent manner and CSM showed lowest reducing capacity. The cytotoxicity was determined by Brine shrimp lethality test and among these extracts most potent cytotoxicity was shown by CMM with LC50 value 16.98 µg/ml. The obtained results indicate that the investigated plants could be potential sources of natural antioxidants and can be used for various types of diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title="antioxidant">antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxicity" title=" cytotoxicity"> cytotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=methanol" title=" methanol"> methanol</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum%20ether" title=" petroleum ether"> petroleum ether</a> </p> <a href="https://publications.waset.org/abstracts/7709/preliminary-phytopharmacological-evaluation-of-methanol-and-petroleum-ether-extracts-of-selected-vegetables-of-bangladesh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">577</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">804</span> Biological Activity of Essential Oils from Salvia nemorosa L.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdol-Hassan%20Doulah">Abdol-Hassan Doulah </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, antimicrobial activity of essential oil and ethyl acetate and ether extracts of S. nemorosa were examined against some species of bacteria and fungi. The essential oil of the aerial part of S. nemorosa was examined by GC and GC-MS. In the essential oil of S. nemorosa 26 Compounds have been identified. 2-Nonanone (44.09 %), 2-Undecanone (33.79 %), E-Caryophyllene (3.74 %) and 2-Decanone (2.89 %) were the main components of the essential oil. The essential oil analysis showed greatest antimicrobial activity against Staphylococcus epidermidis (5.3 μg/ml) and S. cerevisiae (9.3 μg/ml). The ethyl acetate showed greatest antimicrobial activity against Bacillus subtilis (106.7 μg/ml), Candida albicans (5.3 μg/ml) and ether extract showed greatest antimicrobial activity against Klebseilla pneumoniae (10.7 μg/ml) and Saccharomyces cerevisiae (10.7 μg/ml). In conclusion, we suggest that the antimicrobial activity of S. nemorosa may be due to its content of germacrene and linalool. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20activity" title="antibacterial activity">antibacterial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=antifungal%20activity" title=" antifungal activity"> antifungal activity</a>, <a href="https://publications.waset.org/abstracts/search?q=Salvia%20nemorosa%20L." title=" Salvia nemorosa L."> Salvia nemorosa L.</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oils" title=" essential oils"> essential oils</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20activity" title=" biological activity"> biological activity</a> </p> <a href="https://publications.waset.org/abstracts/31804/biological-activity-of-essential-oils-from-salvia-nemorosa-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31804.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">494</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">803</span> Heterocyclic Ring Extension of Estrone: Synthesis and Cytotoxicity of Fused Pyrin, Pyrimidine and Thiazole Derivatives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rafat%20M.%20Mohareb">Rafat M. Mohareb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Several D-ring alkylated estrone analogues display exceptionally high affinity for estrogen receptors. In particular, compounds in which an E-ring is formed are known to be involved in the inhibition of steroidogenic enzymes. Such compounds also have an effect on steroid dehydrogenase activity and the ability to inhibit the detrimental action of the steroid sulfatase enzyme. Generally, E-ring extended steroids have been accessed by modification of the C17-ketone in the D-ring by either arylimine or oximino formation, addition of a carbon nucleophile or hydrazone formation. Other approaches have included ketone reduction, silyl enol ether formation or ring-closing metathesis (giving five- or six-membered E-rings). Chemical modification of the steroid D-ring provides a way to alter the functional groups, sizes and stereochemistry of the D-ring, and numerous structure-activity relationships have been established by such synthetic alterations. Steroids bearing heterocycles fused to the D-ring of the steroid nucleus have been of pharmaceutical interest. In the present paper, we report on the efficient synthesis of estrone possessing pyran, pyrimidine and thiazole ring systems. This study focused on the synthesis and biochemical evaluation of newly synthesized heterocyclic compounds which were then subjected through inhibitory evaluations towards human cancer and normal cell lines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=estrone" title="estrone">estrone</a>, <a href="https://publications.waset.org/abstracts/search?q=heterocyclization" title=" heterocyclization"> heterocyclization</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxicity" title=" cytotoxicity"> cytotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedicine" title=" biomedicine"> biomedicine</a> </p> <a href="https://publications.waset.org/abstracts/1735/heterocyclic-ring-extension-of-estrone-synthesis-and-cytotoxicity-of-fused-pyrin-pyrimidine-and-thiazole-derivatives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1735.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">802</span> A Study on Bonding Strength, Waterproofing and Flexibility of Environment Friendly, and Cost Effective Cementitious Grout Mixture for Tile Joints</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gowthamraj%20Vungarala">Gowthamraj Vungarala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the experimental investigation on the bond strength, waterproofing abilities and flexibility of tile joint when Ordinary Portland Cement (OPC) or White Portland Cement (WPC) CEM II A-LL 42.5N and porcelain powder graded between 200 microns and 75 microns is mixed with vinyl acetate monomer (VAM), hydroxypropyl methyl cellulose ether, ethylene co-polymer rubber powder and Styrene butyl rubber (SBR). Use of porcelain powder which is tough to decompose as a form of industrial refuse which helps environmental safety and waste usage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=styrene%20butane%20rubber" title="styrene butane rubber">styrene butane rubber</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroxypropyl%20methyl%20cellulose%20ether" title=" hydroxypropyl methyl cellulose ether"> hydroxypropyl methyl cellulose ether</a>, <a href="https://publications.waset.org/abstracts/search?q=vinyl%20acetate%20monomer" title=" vinyl acetate monomer"> vinyl acetate monomer</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20modified%20cement" title=" polymer modified cement"> polymer modified cement</a>, <a href="https://publications.waset.org/abstracts/search?q=polyethylene" title=" polyethylene"> polyethylene</a>, <a href="https://publications.waset.org/abstracts/search?q=porcelain%20powder" title=" porcelain powder"> porcelain powder</a> </p> <a href="https://publications.waset.org/abstracts/154204/a-study-on-bonding-strength-waterproofing-and-flexibility-of-environment-friendly-and-cost-effective-cementitious-grout-mixture-for-tile-joints" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154204.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">801</span> Isolation and Biological Activity of Betulinic and Oleanolic Acids from the Aerial Plant Parts of Maesobotrya Barteri (Baill)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christiana%20Ene%20Ogwuche">Christiana Ene Ogwuche</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20Amupitan"> Joseph Amupitan</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Ndukwe"> George Ndukwe</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachael%20Ayo"> Rachael Ayo </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Maesobotrya barteri (Baill), belonging to the family Euphorbiaceae, is a medicinal plant growing widely in tropical Africa. The Aerial plant parts of Maesobotrya barteri (Baill) were collected fresh from Orokam, Ogbadibo local Government of Benue State, Nigeria in July 2013. Taxonomical identification was done by Mallam Musa Abdullahi at the Herbarium unit of Biological Sciences Department, ABU, Zaria, Nigeria. Pulverized aerial parts of Maesobotrya barteri (960g) was exhaustively extracted successively using petroleum ether, chloroform, ethyl acetate and methanol and concentrated in the rotary evaporator at 40°C. The Petroleum ether extract had the second highest activity against test microbes from preliminary crude microbial screenings. The Petroleum ether extract was subjected to phytochemical studies, antimicrobial analysis and column chromatography (CC). The column chromatography yielded fraction PE, which was further purified using preparative thin layer chromatography to give PE1. The structure of the isolated compound was established using 1-D NMR and 2-D NMR spectroscopic analysis and by direct comparison with data reported in literature was confirmed to be a mixture, an isomer of Betulinic acid and Oleanolic acid, both with the molecular weight (C₃₀H₄₈O₃). The bioactivity of this compound was carried out using some clinical pathogens and the activity compared with standard drugs, and this was found to be comparable with the standard drug. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maesobotrya%20barteri" title="Maesobotrya barteri">Maesobotrya barteri</a>, <a href="https://publications.waset.org/abstracts/search?q=medicinal%20plant" title=" medicinal plant"> medicinal plant</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactivity" title=" bioactivity"> bioactivity</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum%20spirit%20extract" title=" petroleum spirit extract"> petroleum spirit extract</a>, <a href="https://publications.waset.org/abstracts/search?q=butellinic%20acid" title=" butellinic acid"> butellinic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=oleanilic%20acid" title=" oleanilic acid"> oleanilic acid</a> </p> <a href="https://publications.waset.org/abstracts/79031/isolation-and-biological-activity-of-betulinic-and-oleanolic-acids-from-the-aerial-plant-parts-of-maesobotrya-barteri-baill" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79031.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sulfonated%20poly%20%28ether%20ether%20ketone%29%20%28SPEEK%29&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sulfonated%20poly%20%28ether%20ether%20ketone%29%20%28SPEEK%29&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sulfonated%20poly%20%28ether%20ether%20ketone%29%20%28SPEEK%29&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sulfonated%20poly%20%28ether%20ether%20ketone%29%20%28SPEEK%29&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sulfonated%20poly%20%28ether%20ether%20ketone%29%20%28SPEEK%29&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sulfonated%20poly%20%28ether%20ether%20ketone%29%20%28SPEEK%29&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sulfonated%20poly%20%28ether%20ether%20ketone%29%20%28SPEEK%29&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sulfonated%20poly%20%28ether%20ether%20ketone%29%20%28SPEEK%29&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sulfonated%20poly%20%28ether%20ether%20ketone%29%20%28SPEEK%29&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sulfonated%20poly%20%28ether%20ether%20ketone%29%20%28SPEEK%29&amp;page=27">27</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sulfonated%20poly%20%28ether%20ether%20ketone%29%20%28SPEEK%29&amp;page=28">28</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sulfonated%20poly%20%28ether%20ether%20ketone%29%20%28SPEEK%29&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10