CINXE.COM

Масса. Большая российская энциклопедия

<!DOCTYPE html><html lang="ru"><head><meta charset="utf-8"> <meta name="viewport" content="width=device-width,initial-scale=1,maximum-scale=1"> <title>Масса. Большая российская энциклопедия</title> <link href="https://mc.yandex.ru" rel="preconnect"> <link href="https://top-fwz1.mail.ru/js/code.js" as="script" crossorigin> <link href="https://news.gnezdo2.ru/gnezdo_news_tracker_new.js" as="script" crossorigin> <link href="https://mc.yandex.ru" rel="dns-prefetch"> <link href="https://mc.yandex.ru/metrika/tag.js" as="script" crossorigin> <meta name="msapplication-TileColor" content="#da532c"> <meta name="msapplication-config" content="/meta/browserconfig.xml"> <meta name="theme-color" content="#ffffff"> <link rel="icon" sizes="32x32" href="/favicon.ico"> <link rel="icon" type="image/svg+xml" href="/meta/favicon.svg"> <link rel="apple-touch-icon" href="/meta/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="48x48" href="/meta/favicon-48x48.png"> <link rel="manifest" href="/meta/site.webmanifest"> <meta content="2023-10-12T15:39:41.000Z" name="article:modified_time"> <meta content="Физические величины" property="article:section"> <meta content="Физические измерения" property="article:tag"> <meta content="Ма́сса, фундаментальная физическая величина, определяющая инерционные и гравитационные свойства тел – от макроскопических объектов до атомов и..." name="description"> <meta content="Физические измерения" name="keywords"> <meta content="Ма́сса, фундаментальная физическая величина, определяющая инерционные и гравитационные свойства тел – от макроскопических объектов до атомов и..." property="og:description"> <meta content="https://i.bigenc.ru/resizer/resize?sign=K2mwjNK87zofppSZEffyIw&filename=vault/3cf067030012eb10bb78b0ddf25f3b6b.webp&width=1200" property="og:image"> <meta content="«Большая российская энциклопедия»" property="og:image:alt"> <meta content="792" property="og:image:height"> <meta content="webp&width=1200" property="og:image:type"> <meta content="1200" property="og:image:width"> <meta content="Масса" property="og:title"> <meta content="article" property="og:type"> <meta content="https://bigenc.ru/c/massa-33317f" property="og:url"> <meta content="summary_large_image" property="twitter:card"> <meta content="Большая российская энциклопедия" property="og:site_name"> <meta content="2023-10-12T15:39:41.000Z" name="article:published_time"> <link rel="stylesheet" href="https://s.bigenc.ru/_nuxt/entry.mpjHLZVQ.css"> <link rel="stylesheet" href="https://s.bigenc.ru/_nuxt/components.EYp_E6uU.css"> <link rel="stylesheet" href="https://s.bigenc.ru/_nuxt/Formula.OAWbmYZe.css"> <link rel="modulepreload" as="script" crossorigin href="https://s.bigenc.ru/_nuxt/entry.-Z8AjeEO.js"> <link rel="modulepreload" as="script" crossorigin href="https://s.bigenc.ru/_nuxt/chunk.eVCQshbn.js"> <link rel="modulepreload" as="script" crossorigin href="https://s.bigenc.ru/_nuxt/components.a6A3eWos.js"> <link rel="modulepreload" as="script" crossorigin href="https://s.bigenc.ru/_nuxt/index.64RxBmGv.js"> <link rel="modulepreload" as="script" crossorigin href="https://s.bigenc.ru/_nuxt/Renderer.vue.KBqHlDjs.js"> <link rel="modulepreload" as="script" crossorigin href="https://s.bigenc.ru/_nuxt/ArticleSidebar.vue.QjMjnOY7.js"> <link rel="modulepreload" as="script" crossorigin href="https://s.bigenc.ru/_nuxt/Image.vue.hLe6_eLu.js"> <link rel="modulepreload" as="script" crossorigin href="https://s.bigenc.ru/_nuxt/MediaFigure.vue.8Cjz8VZ4.js"> <link rel="modulepreload" as="script" crossorigin href="https://s.bigenc.ru/_nuxt/Image.MIRfcYkN.js"> <link rel="modulepreload" as="script" crossorigin href="https://s.bigenc.ru/_nuxt/PreviewLink.1ksiu7wu.js"> <link rel="modulepreload" as="script" crossorigin href="https://s.bigenc.ru/_nuxt/Formula.hIoX9Hw3.js"> <link rel="prefetch" as="image" type="image/jpeg" href="https://s.bigenc.ru/_nuxt/fallback.OCsNm7LY.jpg"> <script type="module" src="https://s.bigenc.ru/_nuxt/entry.-Z8AjeEO.js" crossorigin></script></head><body><div id="__nuxt"><!--[--><div class="loading-indicator" style="position:fixed;top:0;right:0;left:0;pointer-events:none;width:0%;height:1px;opacity:0;background:repeating-linear-gradient(to right,#7698f5 0%,#436ee6 50%,#0047e1 100%);background-size:Infinity% auto;transition:width 0.1s, height 0.4s, opacity 0.4s;z-index:999999;"></div><div><!----><div class="bre-page" itemscope itemprop="mainEntity" itemtype="https://schema.org/WebPage"><header class="bre-header" itemprop="hasPart" itemscope itemtype="https://schema.org/WPHeader" style=""><div class="bre-header-fixed"><nav class="bre-header-nav"><div class="bre-header-nav-item _flex-start _logo"><a class="bre-header-logo -show-on-desktop-s _big" aria-label="Домой"></a><a class="bre-header-logo _small" aria-label="Домой"></a></div><div class="bre-header-nav-item _flex-start _catalog"><button type="button" class="b-button tw-gap-2 b-button--primary -text-button tw-rounded-lg tw-cursor-pointer tw-h-11 -show-on-desktop-s tw-px-4 tw-w-[132px] !tw-justify-start" data-v-cfbedafc><span class="nuxt-icon tw-text-2xl tw-shrink-0" data-v-cfbedafc><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"><path fill-rule="evenodd" clip-rule="evenodd" d="M20.75 6a.75.75 0 0 1-.75.75H4a.75.75 0 0 1 0-1.5h16a.75.75 0 0 1 .75.75Zm-7 6a.75.75 0 0 1-.75.75H4a.75.75 0 0 1 0-1.5h9a.75.75 0 0 1 .75.75ZM20 18.75a.75.75 0 0 0 0-1.5H4a.75.75 0 0 0 0 1.5h16Z" fill="currentColor"/></svg> </span><span class="c-button__content" data-v-cfbedafc><!--[--> Каталог <!--]--></span></button><button type="button" class="b-button b-button--transparent -text-button tw-rounded-lg tw-cursor-pointer tw-gap-0 md:tw-gap-2 -hide-on-desktop-s" data-v-cfbedafc><span class="nuxt-icon tw-text-2xl tw-shrink-0 tw-text-primary-black" data-v-cfbedafc><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"><path fill-rule="evenodd" clip-rule="evenodd" d="M20.75 6a.75.75 0 0 1-.75.75H4a.75.75 0 0 1 0-1.5h16a.75.75 0 0 1 .75.75Zm-7 6a.75.75 0 0 1-.75.75H4a.75.75 0 0 1 0-1.5h9a.75.75 0 0 1 .75.75ZM20 18.75a.75.75 0 0 0 0-1.5H4a.75.75 0 0 0 0 1.5h16Z" fill="currentColor"/></svg> </span><span class="c-button__content" data-v-cfbedafc><!--[--><span class="tw-hidden tw-pt-0.5 tw-text-primary-black md:tw-block">Каталог</span><!--]--></span></button></div><div class="bre-header-nav-item _flex-start lg:tw-flex-1"><div class="min-lg:tw-w-[228px] tw-relative max-md:tw-mb-[6px] max-md:tw-mt-4 lg:tw-w-full lg:tw-max-w-[606px] max-md:tw-hidden"><div class="tw-flex max-lg:tw-hidden" data-v-f39cd9b8><div class="tw-flex tw-w-full tw-items-center tw-border tw-border-solid tw-border-transparent tw-bg-gray-6 tw-px-3 tw-transition lg:hover:tw-bg-gray-5 lg:tw-bg-primary-white lg:tw-border-gray-5 lg:hover:tw-border-transparent lg:tw-rounded-e-none lg:tw-pr-4 tw-rounded-lg tw-h-11" data-v-f39cd9b8><span class="nuxt-icon _no-icon-margin tw-shrink-0 tw-text-2xl tw-text-gray-2 tw-cursor-pointer" style="display:none;" data-v-f39cd9b8><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path d="M10 17C13.866 17 17 13.866 17 10C17 6.13401 13.866 3 10 3C6.13401 3 3 6.13401 3 10C3 13.866 6.13401 17 10 17Z" stroke="currentColor" stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round"/> <path d="M21.0004 21.0004L15.5 15.5" stroke="currentColor" stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round"/> </svg> </span><input class="b-search-input -text-headline-6 tw-h-full tw-shrink tw-grow tw-basis-auto tw-border-none tw-bg-transparent tw-p-0 tw-indent-2 tw-leading-none tw-text-primary-black tw-outline-none tw-transition md:tw-w-[154px] tw-placeholder-gray-2 lg:tw-placeholder-gray-1 lg:tw-indent-1 lg:tw-pr-4 lg:-text-caption-1 placeholder-on-focus" name="new-search" value="" type="text" placeholder="Искать в энциклопедии" autocomplete="off" spellcheck="false" data-v-f39cd9b8><button type="button" class="b-button tw-gap-2 b-button--transparent -text-button tw-rounded-lg tw-cursor-pointer b-button--icon-only" style="display:none;" data-v-f39cd9b8 data-v-cfbedafc><span class="nuxt-icon nuxt-icon--fill nuxt-icon--stroke tw-text-2xl tw-shrink-0 tw-text-gray-2" data-v-cfbedafc><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" fill="none"><path stroke="currentColor" stroke-linecap="round" stroke-linejoin="round" stroke-width="1.5" d="M17 17 7 7M17 7 7 17"/></svg> </span><!----></button></div><!--[--><button type="button" class="b-button tw-gap-2 b-button--primary -text-button tw-rounded-lg tw-cursor-pointer b-button--icon-only tw-h-11 tw-w-11 tw-rounded-s-none tw-flex-none" style="" data-v-cfbedafc><span class="nuxt-icon tw-text-2xl tw-shrink-0" data-v-cfbedafc><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path d="M10 17C13.866 17 17 13.866 17 10C17 6.13401 13.866 3 10 3C6.13401 3 3 6.13401 3 10C3 13.866 6.13401 17 10 17Z" stroke="currentColor" stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round"/> <path d="M21.0004 21.0004L15.5 15.5" stroke="currentColor" stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round"/> </svg> </span><!----></button><!--]--></div><!----></div><button class="lg:tw-hidden"><span class="nuxt-icon tw-text-2xl tw-text-primary-black"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path d="M10 17C13.866 17 17 13.866 17 10C17 6.13401 13.866 3 10 3C6.13401 3 3 6.13401 3 10C3 13.866 6.13401 17 10 17Z" stroke="currentColor" stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round"/> <path d="M21.0004 21.0004L15.5 15.5" stroke="currentColor" stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round"/> </svg> </span></button></div><div class="bre-header-nav-item _flex-start -show-on-tablet button-author-animation lg:tw-justify-end lg:tw-basis-[calc(50vw-348px)]"><a class="b-button tw-gap-2 b-button--secondary -text-button tw-rounded-lg tw-cursor-pointer tw-h-10 tw-w-[172px] tw-px-6 lg:tw-h-11" data-v-cfbedafc><!----><span class="c-button__content" data-v-cfbedafc><!--[--> Стать автором <!--]--></span></a></div><div class="bre-header-nav-item _flex-start tw-relative max-md:tw-w-6 sm:tw-z-[9] md:tw-z-[21]"><div class="bre-header-profile"><!--[--><!--[--><a class="b-button tw-gap-2 b-button--primary -text-button tw-rounded-lg tw-cursor-pointer tw-h-10 tw-px-6 -show-on-tablet -hide-on-desktop-s tw-w-[102px]" data-v-cfbedafc><!----><span class="c-button__content" data-v-cfbedafc><!--[--> Войти <!--]--></span></a><a class="b-button tw-gap-2 b-button--primary -text-button tw-rounded-lg tw-cursor-pointer tw-h-11 tw-px-6 -show-on-desktop-s tw-w-[102px]" data-v-cfbedafc><!----><span class="c-button__content" data-v-cfbedafc><!--[--> Войти <!--]--></span></a><a class="b-button tw-gap-2 b-button--transparent -text-button tw-rounded-lg tw-cursor-pointer b-button--icon-only tw-mx-1 -hide-on-tablet" data-v-cfbedafc><span class="nuxt-icon tw-text-2xl tw-shrink-0 tw-text-primary-black" data-v-cfbedafc><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path d="M20 21V19C20 17.9391 19.5786 16.9217 18.8284 16.1716C18.0783 15.4214 17.0609 15 16 15H8C6.93913 15 5.92172 15.4214 5.17157 16.1716C4.42143 16.9217 4 17.9391 4 19V21" stroke="currentColor" stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round"/> <path d="M12 12C14.2091 12 16 10.2091 16 8C16 5.79086 14.2091 4 12 4C9.79086 4 8 5.79086 8 8C8 10.2091 9.79086 12 12 12Z" stroke="currentColor" stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round"/> </svg> </span><!----></a><!--]--></div></div></nav><!----><!----></div><!----><!----></header><main class="bre-page-main"><!--[--><div class="bre-article-layout _no-margin"><nav class="bre-article-layout__menu"><div class="bre-article-menu lg:tw-sticky"><div class="bre-article-menu__list"><!--[--><div class="tw-grow tw-basis-0 max-md:tw-max-w-[80px]"><span data-v-tippy class="tw-mx-auto tw-hidden lg:tw-flex"><!--[--><!--[--><span class="bre-article-menu__list-item _active"><span class="nuxt-icon _no-icon-margin tw-text-2xl tw-text-primary-blue"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path fill-rule="evenodd" clip-rule="evenodd" d="M4.29919 18V6C4.29919 4.61929 5.41848 3.5 6.79919 3.5H11.7992H13.4413C13.7192 3.5 13.9922 3.54628 14.25 3.63441V7C14.25 8.51878 15.4812 9.75 17 9.75H19.2992V12V18C19.2992 19.3807 18.1799 20.5 16.7992 20.5H6.79919C5.41848 20.5 4.29919 19.3807 4.29919 18ZM18.9149 8.25C18.8305 8.11585 18.7329 7.98916 18.623 7.87194L15.75 4.80733V7C15.75 7.69036 16.3096 8.25 17 8.25H18.9149ZM2.79919 6C2.79919 3.79086 4.59006 2 6.79919 2H11.7992H13.4413C14.5469 2 15.6032 2.45763 16.3594 3.26424L19.7173 6.84603C20.4124 7.58741 20.7992 8.56555 20.7992 9.58179V12V18C20.7992 20.2091 19.0083 22 16.7992 22H6.79919C4.59006 22 2.79919 20.2091 2.79919 18V6ZM7.04919 12C7.04919 11.5858 7.38498 11.25 7.79919 11.25H15.7992C16.2134 11.25 16.5492 11.5858 16.5492 12C16.5492 12.4142 16.2134 12.75 15.7992 12.75H7.79919C7.38498 12.75 7.04919 12.4142 7.04919 12ZM7.79919 16.25C7.38498 16.25 7.04919 16.5858 7.04919 17C7.04919 17.4142 7.38498 17.75 7.79919 17.75H12.7992C13.2134 17.75 13.5492 17.4142 13.5492 17C13.5492 16.5858 13.2134 16.25 12.7992 16.25H7.79919Z" fill="currentColor"/> </svg> </span><span class="bre-article-menu__list-item-text tw-hidden md:max-lg:tw-inline">Статья</span></span><!--]--><!--]--><span style="display:none;" class=""><span>Статья</span></span></span><span class="bre-article-menu__list-item _active tw-mx-auto tw-flex lg:tw-hidden"><span class="nuxt-icon _no-icon-margin tw-text-2xl tw-text-primary-blue"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path fill-rule="evenodd" clip-rule="evenodd" d="M4.29919 18V6C4.29919 4.61929 5.41848 3.5 6.79919 3.5H11.7992H13.4413C13.7192 3.5 13.9922 3.54628 14.25 3.63441V7C14.25 8.51878 15.4812 9.75 17 9.75H19.2992V12V18C19.2992 19.3807 18.1799 20.5 16.7992 20.5H6.79919C5.41848 20.5 4.29919 19.3807 4.29919 18ZM18.9149 8.25C18.8305 8.11585 18.7329 7.98916 18.623 7.87194L15.75 4.80733V7C15.75 7.69036 16.3096 8.25 17 8.25H18.9149ZM2.79919 6C2.79919 3.79086 4.59006 2 6.79919 2H11.7992H13.4413C14.5469 2 15.6032 2.45763 16.3594 3.26424L19.7173 6.84603C20.4124 7.58741 20.7992 8.56555 20.7992 9.58179V12V18C20.7992 20.2091 19.0083 22 16.7992 22H6.79919C4.59006 22 2.79919 20.2091 2.79919 18V6ZM7.04919 12C7.04919 11.5858 7.38498 11.25 7.79919 11.25H15.7992C16.2134 11.25 16.5492 11.5858 16.5492 12C16.5492 12.4142 16.2134 12.75 15.7992 12.75H7.79919C7.38498 12.75 7.04919 12.4142 7.04919 12ZM7.79919 16.25C7.38498 16.25 7.04919 16.5858 7.04919 17C7.04919 17.4142 7.38498 17.75 7.79919 17.75H12.7992C13.2134 17.75 13.5492 17.4142 13.5492 17C13.5492 16.5858 13.2134 16.25 12.7992 16.25H7.79919Z" fill="currentColor"/> </svg> </span><span class="bre-article-menu__list-item-text tw-hidden md:max-lg:tw-inline">Статья</span></span></div><div class="tw-grow tw-basis-0 max-md:tw-max-w-[80px]"><span data-v-tippy class="tw-mx-auto tw-hidden lg:tw-flex"><!--[--><!--[--><a href="/c/massa-33317f/annotation" class="bre-article-menu__list-item"><span class="nuxt-icon _no-icon-margin tw-text-2xl tw-text-gray-1"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path fill-rule="evenodd" clip-rule="evenodd" d="M18.2363 4.12686C18.2363 3.43651 18.796 2.87686 19.4863 2.87686C20.1767 2.87686 20.7363 3.43651 20.7363 4.12686C20.7363 4.81722 20.1767 5.37686 19.4863 5.37686C18.796 5.37686 18.2363 4.81722 18.2363 4.12686ZM19.4863 1.37686C17.9675 1.37686 16.7363 2.60808 16.7363 4.12686C16.7363 4.43206 16.786 4.72564 16.8778 4.99996H7C4.79086 4.99996 3 6.79082 3 8.99996V19C3 21.2091 4.79086 23 7 23H17C19.2091 23 21 21.2091 21 19V8.99996C21 8.16642 20.745 7.39244 20.3089 6.75173C21.4258 6.40207 22.2363 5.35911 22.2363 4.12686C22.2363 2.60808 21.0051 1.37686 19.4863 1.37686ZM7 6.49996H16.6319L14.6964 8.43547C14.4035 8.72837 14.4035 9.20324 14.6964 9.49613C14.9893 9.78903 15.4641 9.78903 15.757 9.49613L18.3547 6.89846C19.0438 7.34362 19.5 8.11852 19.5 8.99996V19C19.5 20.3807 18.3807 21.5 17 21.5H7C5.61929 21.5 4.5 20.3807 4.5 19V8.99996C4.5 7.61924 5.61929 6.49996 7 6.49996ZM9.25 12C9.25 11.5857 9.58579 11.25 10 11.25H12H14C14.4142 11.25 14.75 11.5857 14.75 12C14.75 12.4142 14.4142 12.75 14 12.75H12H10C9.58579 12.75 9.25 12.4142 9.25 12ZM9.25 17C9.25 16.5857 9.58579 16.25 10 16.25H12H14C14.4142 16.25 14.75 16.5857 14.75 17C14.75 17.4142 14.4142 17.75 14 17.75H12H10C9.58579 17.75 9.25 17.4142 9.25 17Z" fill="currentColor"/> </svg> </span><span class="bre-article-menu__list-item-text tw-hidden md:max-lg:tw-inline">Аннотация</span></a><!--]--><!--]--><span style="display:none;" class=""><span>Аннотация</span></span></span><a href="/c/massa-33317f/annotation" class="bre-article-menu__list-item tw-mx-auto tw-flex lg:tw-hidden"><span class="nuxt-icon _no-icon-margin tw-text-2xl tw-text-gray-1"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path fill-rule="evenodd" clip-rule="evenodd" d="M18.2363 4.12686C18.2363 3.43651 18.796 2.87686 19.4863 2.87686C20.1767 2.87686 20.7363 3.43651 20.7363 4.12686C20.7363 4.81722 20.1767 5.37686 19.4863 5.37686C18.796 5.37686 18.2363 4.81722 18.2363 4.12686ZM19.4863 1.37686C17.9675 1.37686 16.7363 2.60808 16.7363 4.12686C16.7363 4.43206 16.786 4.72564 16.8778 4.99996H7C4.79086 4.99996 3 6.79082 3 8.99996V19C3 21.2091 4.79086 23 7 23H17C19.2091 23 21 21.2091 21 19V8.99996C21 8.16642 20.745 7.39244 20.3089 6.75173C21.4258 6.40207 22.2363 5.35911 22.2363 4.12686C22.2363 2.60808 21.0051 1.37686 19.4863 1.37686ZM7 6.49996H16.6319L14.6964 8.43547C14.4035 8.72837 14.4035 9.20324 14.6964 9.49613C14.9893 9.78903 15.4641 9.78903 15.757 9.49613L18.3547 6.89846C19.0438 7.34362 19.5 8.11852 19.5 8.99996V19C19.5 20.3807 18.3807 21.5 17 21.5H7C5.61929 21.5 4.5 20.3807 4.5 19V8.99996C4.5 7.61924 5.61929 6.49996 7 6.49996ZM9.25 12C9.25 11.5857 9.58579 11.25 10 11.25H12H14C14.4142 11.25 14.75 11.5857 14.75 12C14.75 12.4142 14.4142 12.75 14 12.75H12H10C9.58579 12.75 9.25 12.4142 9.25 12ZM9.25 17C9.25 16.5857 9.58579 16.25 10 16.25H12H14C14.4142 16.25 14.75 16.5857 14.75 17C14.75 17.4142 14.4142 17.75 14 17.75H12H10C9.58579 17.75 9.25 17.4142 9.25 17Z" fill="currentColor"/> </svg> </span><span class="bre-article-menu__list-item-text tw-hidden md:max-lg:tw-inline">Аннотация</span></a></div><div class="tw-grow tw-basis-0 max-md:tw-max-w-[80px]"><span data-v-tippy class="tw-mx-auto tw-hidden lg:tw-flex"><!--[--><!--[--><a href="/c/massa-33317f/references" class="bre-article-menu__list-item"><span class="nuxt-icon _no-icon-margin tw-text-2xl tw-text-gray-1"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path fill-rule="evenodd" clip-rule="evenodd" d="M5 3.25C3.48122 3.25 2.25 4.48122 2.25 6V16.1667C2.25 17.6854 3.48122 18.9167 5 18.9167H9.3C9.80519 18.9167 10.2974 19.1269 10.6662 19.5139C11.0362 19.9022 11.25 20.4361 11.25 21C11.25 21.4142 11.5858 21.75 12 21.75C12.4142 21.75 12.75 21.4142 12.75 21C12.75 20.4227 12.9564 19.8833 13.3026 19.4973C13.6464 19.114 14.0941 18.9167 14.5412 18.9167H19C20.5188 18.9167 21.75 17.6855 21.75 16.1667V6C21.75 4.48122 20.5188 3.25 19 3.25H15.3882C14.2627 3.25 13.2022 3.74922 12.4341 4.60572C12.266 4.79308 12.1147 4.99431 11.9809 5.20674C11.8358 4.98777 11.6713 4.78092 11.4885 4.58908C10.6758 3.73626 9.56568 3.25 8.4 3.25H5ZM12.75 17.993C13.2735 17.6237 13.8929 17.4167 14.5412 17.4167H19C19.6904 17.4167 20.25 16.857 20.25 16.1667V6C20.25 5.30964 19.6904 4.75 19 4.75H15.3882C14.7165 4.75 14.0534 5.04681 13.5507 5.60725C13.0457 6.17037 12.75 6.95001 12.75 7.77778V17.993ZM11.25 18.0438V7.77778C11.25 6.96341 10.9414 6.18924 10.4026 5.62389C9.86506 5.05976 9.14388 4.75 8.4 4.75H5C4.30964 4.75 3.75 5.30964 3.75 6V16.1667C3.75 16.857 4.30964 17.4167 5 17.4167H9.3C10.0044 17.4167 10.6825 17.64 11.25 18.0438Z" fill="currentColor"/> </svg> </span><span class="bre-article-menu__list-item-text tw-hidden md:max-lg:tw-inline">Библиография</span></a><!--]--><!--]--><span style="display:none;" class=""><span>Библиография</span></span></span><a href="/c/massa-33317f/references" class="bre-article-menu__list-item tw-mx-auto tw-flex lg:tw-hidden"><span class="nuxt-icon _no-icon-margin tw-text-2xl tw-text-gray-1"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path fill-rule="evenodd" clip-rule="evenodd" d="M5 3.25C3.48122 3.25 2.25 4.48122 2.25 6V16.1667C2.25 17.6854 3.48122 18.9167 5 18.9167H9.3C9.80519 18.9167 10.2974 19.1269 10.6662 19.5139C11.0362 19.9022 11.25 20.4361 11.25 21C11.25 21.4142 11.5858 21.75 12 21.75C12.4142 21.75 12.75 21.4142 12.75 21C12.75 20.4227 12.9564 19.8833 13.3026 19.4973C13.6464 19.114 14.0941 18.9167 14.5412 18.9167H19C20.5188 18.9167 21.75 17.6855 21.75 16.1667V6C21.75 4.48122 20.5188 3.25 19 3.25H15.3882C14.2627 3.25 13.2022 3.74922 12.4341 4.60572C12.266 4.79308 12.1147 4.99431 11.9809 5.20674C11.8358 4.98777 11.6713 4.78092 11.4885 4.58908C10.6758 3.73626 9.56568 3.25 8.4 3.25H5ZM12.75 17.993C13.2735 17.6237 13.8929 17.4167 14.5412 17.4167H19C19.6904 17.4167 20.25 16.857 20.25 16.1667V6C20.25 5.30964 19.6904 4.75 19 4.75H15.3882C14.7165 4.75 14.0534 5.04681 13.5507 5.60725C13.0457 6.17037 12.75 6.95001 12.75 7.77778V17.993ZM11.25 18.0438V7.77778C11.25 6.96341 10.9414 6.18924 10.4026 5.62389C9.86506 5.05976 9.14388 4.75 8.4 4.75H5C4.30964 4.75 3.75 5.30964 3.75 6V16.1667C3.75 16.857 4.30964 17.4167 5 17.4167H9.3C10.0044 17.4167 10.6825 17.64 11.25 18.0438Z" fill="currentColor"/> </svg> </span><span class="bre-article-menu__list-item-text tw-hidden md:max-lg:tw-inline">Библиография</span></a></div><div class="tw-grow tw-basis-0 max-md:tw-max-w-[80px]"><span data-v-tippy class="tw-mx-auto tw-hidden lg:tw-flex"><!--[--><!--[--><a href="/c/massa-33317f/versions" class="bre-article-menu__list-item"><span class="nuxt-icon _no-icon-margin tw-text-2xl tw-text-gray-1"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path fill-rule="evenodd" clip-rule="evenodd" d="M10.9565 3.85864H7.51619C7.8045 3.2057 8.4577 2.75 9.21734 2.75H13.5652H14.7687C15.4365 2.75 16.0697 3.0466 16.4972 3.55959L19.2502 6.86313C19.5871 7.26748 19.7717 7.77718 19.7717 8.30354V10.6957V16.7826C19.7717 17.5422 19.316 18.1954 18.663 18.4838V13.3043V10.9122C18.663 10.0349 18.3555 9.18542 17.7939 8.51149L15.0409 5.20795C14.3284 4.35298 13.273 3.85864 12.1601 3.85864H10.9565ZM14.913 22.7499C16.6051 22.7499 18.0354 21.6293 18.5022 20.0898C20.0762 19.8113 21.2717 18.4365 21.2717 16.7826V10.6957V8.30354C21.2717 7.42628 20.9641 6.57678 20.4025 5.90285L17.6496 2.59931C16.9371 1.74434 15.8817 1.25 14.7687 1.25H13.5652H9.21734C7.56341 1.25 6.18869 2.44548 5.91016 4.01947C4.37062 4.48633 3.25 5.91662 3.25 7.60864V18.9999C3.25 21.071 4.92893 22.7499 7 22.7499H14.913ZM7 5.35864C5.75736 5.35864 4.75 6.366 4.75 7.60864V18.9999C4.75 20.2426 5.75736 21.2499 7 21.2499H14.913C16.1557 21.2499 17.163 20.2426 17.163 18.9999V13.3043V10.9122C17.163 10.7991 17.1545 10.6867 17.1378 10.5761H15.3043C13.9296 10.5761 12.8152 9.46164 12.8152 8.08694V5.45611C12.6051 5.39215 12.3845 5.35864 12.1601 5.35864H10.9565H7ZM14.3152 6.68014V8.08694C14.3152 8.63322 14.758 9.07607 15.3043 9.07607H16.3118L14.3152 6.68014ZM6.72827 13.3043C6.72827 12.8901 7.06406 12.5543 7.47827 12.5543H14.4348C14.849 12.5543 15.1848 12.8901 15.1848 13.3043C15.1848 13.7185 14.849 14.0543 14.4348 14.0543H7.47827C7.06406 14.0543 6.72827 13.7185 6.72827 13.3043ZM7.47827 16.9022C7.06406 16.9022 6.72827 17.238 6.72827 17.6522C6.72827 18.0664 7.06406 18.4022 7.47827 18.4022H10.9565C11.3707 18.4022 11.7065 18.0664 11.7065 17.6522C11.7065 17.238 11.3707 16.9022 10.9565 16.9022H7.47827Z" fill="currentColor"/> </svg> </span><span class="bre-article-menu__list-item-text tw-hidden md:max-lg:tw-inline">Версии</span></a><!--]--><!--]--><span style="display:none;" class=""><span>Версии</span></span></span><a href="/c/massa-33317f/versions" class="bre-article-menu__list-item tw-mx-auto tw-flex lg:tw-hidden"><span class="nuxt-icon _no-icon-margin tw-text-2xl tw-text-gray-1"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path fill-rule="evenodd" clip-rule="evenodd" d="M10.9565 3.85864H7.51619C7.8045 3.2057 8.4577 2.75 9.21734 2.75H13.5652H14.7687C15.4365 2.75 16.0697 3.0466 16.4972 3.55959L19.2502 6.86313C19.5871 7.26748 19.7717 7.77718 19.7717 8.30354V10.6957V16.7826C19.7717 17.5422 19.316 18.1954 18.663 18.4838V13.3043V10.9122C18.663 10.0349 18.3555 9.18542 17.7939 8.51149L15.0409 5.20795C14.3284 4.35298 13.273 3.85864 12.1601 3.85864H10.9565ZM14.913 22.7499C16.6051 22.7499 18.0354 21.6293 18.5022 20.0898C20.0762 19.8113 21.2717 18.4365 21.2717 16.7826V10.6957V8.30354C21.2717 7.42628 20.9641 6.57678 20.4025 5.90285L17.6496 2.59931C16.9371 1.74434 15.8817 1.25 14.7687 1.25H13.5652H9.21734C7.56341 1.25 6.18869 2.44548 5.91016 4.01947C4.37062 4.48633 3.25 5.91662 3.25 7.60864V18.9999C3.25 21.071 4.92893 22.7499 7 22.7499H14.913ZM7 5.35864C5.75736 5.35864 4.75 6.366 4.75 7.60864V18.9999C4.75 20.2426 5.75736 21.2499 7 21.2499H14.913C16.1557 21.2499 17.163 20.2426 17.163 18.9999V13.3043V10.9122C17.163 10.7991 17.1545 10.6867 17.1378 10.5761H15.3043C13.9296 10.5761 12.8152 9.46164 12.8152 8.08694V5.45611C12.6051 5.39215 12.3845 5.35864 12.1601 5.35864H10.9565H7ZM14.3152 6.68014V8.08694C14.3152 8.63322 14.758 9.07607 15.3043 9.07607H16.3118L14.3152 6.68014ZM6.72827 13.3043C6.72827 12.8901 7.06406 12.5543 7.47827 12.5543H14.4348C14.849 12.5543 15.1848 12.8901 15.1848 13.3043C15.1848 13.7185 14.849 14.0543 14.4348 14.0543H7.47827C7.06406 14.0543 6.72827 13.7185 6.72827 13.3043ZM7.47827 16.9022C7.06406 16.9022 6.72827 17.238 6.72827 17.6522C6.72827 18.0664 7.06406 18.4022 7.47827 18.4022H10.9565C11.3707 18.4022 11.7065 18.0664 11.7065 17.6522C11.7065 17.238 11.3707 16.9022 10.9565 16.9022H7.47827Z" fill="currentColor"/> </svg> </span><span class="bre-article-menu__list-item-text tw-hidden md:max-lg:tw-inline">Версии</span></a></div><!--]--></div></div></nav><!--[--><div><meta itemprop="image primaryImageOfPage" content="https://i.bigenc.ru/resizer/resize?sign=7JK17_fgqWlQEFIk2cRkfA&amp;filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&amp;width=120"><article itemscope itemprop="mainEntity" itemtype="https://schema.org/Article"><div itemprop="publisher" itemscope itemtype="https://schema.org/Organization"><meta itemprop="name" content="Автономная некоммерческая организация «Национальный научно-образовательный центр «Большая российская энциклопедия»"><meta itemprop="address" content="Покровский бульвар, д. 8, стр. 1А, Москва, 109028"><meta itemprop="telephone" content="+7 (495) 781-15-95"><meta itemprop="logo" content="https://s.bigenc.ru/_nuxt/logo.98u7ubS9.svg"></div><div itemprop="copyrightHolder" itemscope itemtype="https://schema.org/Organization"><meta itemprop="name" content="Автономная некоммерческая организация «Национальный научно-образовательный центр «Большая российская энциклопедия»"><meta itemprop="address" content="Покровский бульвар, д. 8, стр. 1А, Москва, 109028"><meta itemprop="telephone" content="+7 (495) 781-15-95"><meta itemprop="logo" content="https://s.bigenc.ru/_nuxt/logo.98u7ubS9.svg"></div><meta itemprop="articleSection" content="Физические величины"><meta itemprop="headline" content="Масса"><meta itemprop="keywords" content="Физические измерения"><!----><div class="bre-article-page max-md:tw-mt-10 md:max-lg:tw-mt-[81px] max-md:tw-mt-10"><!----><!----><div class="article-sidebar -hide-on-desktop-s"><div class="article-sidebar-button -show-on-tablet -hide-on-desktop-s"><span class="article-sidebar-title">Информация</span><span class="nuxt-icon _no-icon-margin tw-text-2xl tw-text-primary-black"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"><path d="M6 9l6 6 6-6" stroke="currentColor" stroke-width="1.5" stroke-linecap="round"/></svg> </span><!--[--><div class="article-sidebar-text -show-on-tablet -hide-on-desktop-s">Масса</div><!--]--></div><div class="article-sidebar-wrapper -hide-on-tablet"><header class="bre-article-header -hide-on-tablet"><div class="bre-label__wrap"><span data-v-tippy class="tw-leading-[0px]"><!--[--><!--[--><span class="bre-label">Физические величины</span><!--]--><!--]--><span style="display:none;" class=""><span>Физические величины</span></span></span><!----></div><!--[--><!----><h1 class="bre-article-header-title">Масса</h1><!--]--><!----></header><section class="-hide-on-tablet tw-h-14 md:tw-h-20"><!----></section><!----><span class="bre-media-image article-sidebar-image _note-exclude _clean" data-width="100%" data-display="block"><span class="bre-media-figure _note-exclude _clean" itemscope itemtype="https://schema.org/ImageObject" itemprop="image"><!--[--><span class="bre-media-image-container _placeholder"><meta itemprop="name" content="Физика"><meta itemprop="caption" content="Физика. Научно-образовательный портал «Большая российская энциклопедия»"><!----><!----><span class="tw-flex tw-w-full" style=""><img src="https://i.bigenc.ru/resizer/resize?sign=7JK17_fgqWlQEFIk2cRkfA&amp;filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&amp;width=120" onerror="this.setAttribute(&#39;data-error&#39;, 1)" alt="Физика" data-nuxt-img sizes="320px" srcset="https://i.bigenc.ru/resizer/resize?sign=7JK17_fgqWlQEFIk2cRkfA&amp;filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&amp;width=120 120w,https://i.bigenc.ru/resizer/resize?sign=Jf8Ovt6NK1CJRMEXmLmu9w&amp;filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&amp;width=320 320w,https://i.bigenc.ru/resizer/resize?sign=9FmjZNIS1_JG-eBy3nkCow&amp;filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&amp;width=480 480w,https://i.bigenc.ru/resizer/resize?sign=W0YAxakNej-ihBYTmKOUhA&amp;filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&amp;width=640 640w,https://i.bigenc.ru/resizer/resize?sign=bU5vxPnJKBxMhvgLEjl-uA&amp;filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&amp;width=768 768w,https://i.bigenc.ru/resizer/resize?sign=CO7eqX0CglCAJmsuCYDJxQ&amp;filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&amp;width=1024 1024w,https://i.bigenc.ru/resizer/resize?sign=SNrDJXfJeDUaOjs9TGABPA&amp;filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&amp;width=1280 1280w,https://i.bigenc.ru/resizer/resize?sign=A65s2m2zZF6hgTDDppMoDA&amp;filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&amp;width=1920 1920w" title="Физика" class="" itemprop="contentUrl"></span><!----></span><!--]--><!----></span><!----><!----></span><div class="article-sidebar-meta"><dl class="tw-mt-0"><!--[--><!--[--><dt>Области знаний:</dt><dd>Динамика материальной точки и системы точек</dd><!--]--><!--]--><!----></dl></div></div></div><div class="bre-article-page__container"><div class="bre-article-page__content bre-article-content"><header class="bre-article-header -show-on-tablet"><div class="bre-label__wrap"><span data-v-tippy class="tw-leading-[0px]"><!--[--><!--[--><span class="bre-label">Физические величины</span><!--]--><!--]--><span style="display:none;" class=""><span>Физические величины</span></span></span><!----></div><!--[--><!----><h1 class="bre-article-header-title">Масса</h1><!--]--><!----></header><section class="tw-flex"><div class="-show-on-tablet tw-h-14 md:tw-h-20"><div><div><div itemprop="interactionStatistic" itemscope itemtype="https://schema.org/InteractionCounter"><meta itemprop="interactionType" content="https://schema.org/ViewAction"><meta itemprop="userInteractionCount" content=""></div><div itemprop="interactionStatistic" itemscope itemtype="https://schema.org/InteractionCounter"><meta itemprop="interactionType" content="https://schema.org/ShareAction"><meta itemprop="userInteractionCount" content=""></div><div itemprop="interactionStatistic" itemscope itemtype="https://schema.org/InteractionCounter"><meta itemprop="interactionType" content="https://schema.org/LikeAction"><meta itemprop="userInteractionCount" content=""></div></div><span></span></div></div><span></span></section><div class="js-preview-link-root"><div itemprop="articleBody" class="bre-article-body"><!--[--><section><section><p><b>Ма́сса,</b> фундаментальная физическая величина, определяющая <a href="/c/inertsiia-abac52" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->инерционные<!--]--><!--]--><!----></a> и <a href="/c/gravitatsionnoe-vzaimodeistvie-0c9c56" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->гравитационные<!--]--><!--]--><!----></a> свойства тел – от макроскопических объектов до <a href="/c/atom-8fe711" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->атомов<!--]--><!--]--><!----></a> и <a href="/c/elementarnye-chastitsy-ce0b78" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->элементарных частиц<!--]--><!--]--><!----></a> – в нерелятивистском приближении, когда их скорости малы по сравнению со <a href="/c/skorost-sveta-a676e2" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->скоростью света<!--]--><!--]--><!----></a> <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>c</mi></mrow><annotation encoding="application/x-tex">c</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">c</span></span></span></span></span><!----></span>. В этом приближении масса тела служит мерой содержащегося в нём вещества и имеют место законы <a href="/c/zakon-sokhraneniia-massy-d408e8" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->сохранения<!--]--><!--]--><!----></a> и аддитивности массы. В релятивистской теории масса <a href="/c/izolirovannaia-sistema-a5a38d" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->изолированной системы<!--]--><!--]--><!----></a> тел также не меняется со временем, но она не равна сумме масс этих тел.</p><p>Массы элементарных частиц материи не произвольны, а фиксированы: все элементарные частицы данного типа имеют строго одинаковые массы. Существуют и безмассовые частицы – например, <a href="/c/foton-12c525" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->фотоны<!--]--><!--]--><!----></a>, <a href="/c/gliuony-e31b6e" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->глюоны<!--]--><!--]--><!----></a>. В <a href="/c/teoriia-otnositel-nosti-07d614" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->теории относительности<!--]--><!--]--><!----></a> масса <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi></mrow><annotation encoding="application/x-tex">m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">m</span></span></span></span></span><!----></span> частицы определяется через её <a href="/c/energiia-19e21c" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->энергию<!--]--><!--]--><!----></a> <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>E</mi></mrow><annotation encoding="application/x-tex">E</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">E</span></span></span></span></span><!----></span> и <a href="/c/impul-s-c287b2" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->импульс<!--]--><!--]--><!----></a> <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold-italic">p</mi><mtext>:</mtext></mrow><annotation encoding="application/x-tex">\boldsymbol {p} \text{:}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6389em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord"><span class="mord boldsymbol">p</span></span></span><span class="mord text"><span class="mord">:</span></span></span></span></span></span><!----></span></p><p><span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msup><mi>m</mi><mn>2</mn></msup><mo>=</mo><msup><mi>E</mi><mn>2</mn></msup><mi mathvariant="normal">/</mi><msup><mi>c</mi><mn>4</mn></msup><mo>−</mo><msup><mi mathvariant="bold-italic">p</mi><mn>2</mn></msup><mi mathvariant="normal">/</mi><msup><mi>c</mi><mn>2</mn></msup><mi mathvariant="normal">.</mi><mspace width="2em"/><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">m^2=E^2/c^4-\boldsymbol p^2/c^2. \qquad (1)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8641em;"></span><span class="mord"><span class="mord mathnormal">m</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.1141em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mord">/</span><span class="mord"><span class="mord mathnormal">c</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">4</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.1141em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol">p</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mord">/</span><span class="mord"><span class="mord mathnormal">c</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mord">.</span><span class="mspace" style="margin-right:2em;"></span><span class="mopen">(</span><span class="mord">1</span><span class="mclose">)</span></span></span></span></span></span><!----></span>Импульс частицы и её скорость <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>v</mi></mrow><annotation encoding="application/x-tex">v</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">v</span></span></span></span></span><!----></span> связаны соотношением</p><p><span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi mathvariant="bold-italic">p</mi><mo>=</mo><mi>E</mi><mi>v</mi><mi mathvariant="normal">/</mi><msup><mi>c</mi><mn>2</mn></msup><mi mathvariant="normal">.</mi><mspace width="2em"/><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\boldsymbol p =Ev/c^2. \qquad (2)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6389em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord"><span class="mord boldsymbol">p</span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.1141em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="mord mathnormal" style="margin-right:0.03588em;">v</span><span class="mord">/</span><span class="mord"><span class="mord mathnormal">c</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mord">.</span><span class="mspace" style="margin-right:2em;"></span><span class="mopen">(</span><span class="mord">2</span><span class="mclose">)</span></span></span></span></span></span><!----></span>Как следует из уравнения (1), энергия покоя <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>E</mi><mn>0</mn></msub></mrow><annotation encoding="application/x-tex">E_0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0576em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span> частицы, для которой <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>v</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">v=0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">v</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span></span><!----></span>, связана с её массой формулой Эйнштейна:</p><p><span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mi>E</mi><mn>0</mn></msub><mo>=</mo><mi>m</mi><msup><mi>c</mi><mn>2</mn></msup><mi mathvariant="normal">.</mi><mspace width="2em"/><mo stretchy="false">(</mo><mn>3</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">E_0=mc^2.\qquad (3)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0576em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.1141em;vertical-align:-0.25em;"></span><span class="mord mathnormal">m</span><span class="mord"><span class="mord mathnormal">c</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mord">.</span><span class="mspace" style="margin-right:2em;"></span><span class="mopen">(</span><span class="mord">3</span><span class="mclose">)</span></span></span></span></span></span><!----></span>Уравнения (1) – (3) в равной степени применимы к массивным частицам, таким как <a href="/c/proton-908670" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->протоны<!--]--><!--]--><!----></a>, и к безмассовым частицам. Из уравнения (1) следует, что для любой безмассовой частицы <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold-italic">p</mi><mn>2</mn></msup><mo>=</mo><msup><mi>E</mi><mn>2</mn></msup><mi mathvariant="normal">/</mi><msup><mi>c</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">\boldsymbol p^2=E^2/c^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0085em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol">p</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.0641em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mord">/</span><span class="mord"><span class="mord mathnormal">c</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></span><!----></span>, и, следовательно, в силу уравнения (2) <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>v</mi><mo>=</mo><mi>c</mi></mrow><annotation encoding="application/x-tex">v=c</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">v</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">c</span></span></span></span></span><!----></span>. Это означает, что безмассовые частицы никогда не бывают в состоянии покоя, а всегда движутся со скоростью <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>c</mi></mrow><annotation encoding="application/x-tex">c</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">c</span></span></span></span></span><!----></span> (<a href="/c/reliativistskie-chastitsy-347ede" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->релятивистские частицы<!--]--><!--]--><!----></a>).</p><p>Механика нерелятивистских частиц (т. н. <a href="/c/klassicheskaia-mekhanika-f6fea9" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->ньютонова механика<!--]--><!--]--><!----></a>) является предельным случаем <a href="/c/teoriia-otnositel-nosti-07d614" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->теории относительности<!--]--><!--]--><!----></a> при <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>v</mi><mo>≪</mo><mtext>с</mtext></mrow><annotation encoding="application/x-tex">v ≪ с</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">v</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≪</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord cyrillic_fallback">с</span></span></span></span></span><!----></span>. Как следует из теории относительности, формулы ньютоновой механики справедливы с точностью до членов порядка <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>v</mi><mn>2</mn></msup><mi mathvariant="normal">/</mi><msup><mi>c</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">v^2/c^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0641em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mord">/</span><span class="mord"><span class="mord mathnormal">c</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></span><!----></span>. В нерелятивистском приближении из уравнений (1) – (3) следует, что <a href="/c/kineticheskaia-energiia-06ee5a" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->кинетическая энергия<!--]--><!--]--><!----></a> тела <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>E</mi><mtext>кин</mtext></msub><mo>=</mo><mi>E</mi><mo>−</mo><msub><mi>E</mi><mn>0</mn></msub></mrow><annotation encoding="application/x-tex">E_{кин}=E-E_0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0576em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord cyrillic_fallback mtight">кин</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0576em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span> связана с его импульсом соотношением</p><p><span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mi>E</mi><mtext>кин</mtext></msub><mo>=</mo><msup><mi mathvariant="bold-italic">p</mi><mn>2</mn></msup><mi mathvariant="normal">/</mi><mn>2</mn><mi>m</mi><mo separator="true">,</mo><mspace width="2em"/><mo stretchy="false">(</mo><mn>4</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">E_{кин}=\boldsymbol p^2/2m,\qquad (4)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0576em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord cyrillic_fallback mtight">кин</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.1141em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol">p</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mord">/2</span><span class="mord mathnormal">m</span><span class="mpunct">,</span><span class="mspace" style="margin-right:2em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mopen">(</span><span class="mord">4</span><span class="mclose">)</span></span></span></span></span></span><!----></span>а импульс со скоростью – соотношением</p><p><span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi mathvariant="bold-italic">p</mi><mo>=</mo><mi>m</mi><mi mathvariant="bold">v</mi><mi mathvariant="normal">.</mi><mspace width="2em"/><mo stretchy="false">(</mo><mn>5</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\boldsymbol p=m \bold v.\qquad (5)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6389em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord"><span class="mord boldsymbol">p</span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">m</span><span class="mord mathbf" style="margin-right:0.01597em;">v</span><span class="mord">.</span><span class="mspace" style="margin-right:2em;"></span><span class="mopen">(</span><span class="mord">5</span><span class="mclose">)</span></span></span></span></span></span><!----></span>[При выводе формул (4) – (5) из формул (1) – (3) надо последовательно пренебрегать <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>E</mi><mtext>кин</mtext></msub></mrow><annotation encoding="application/x-tex">E_{кин}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0576em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord cyrillic_fallback mtight">кин</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span> по сравнению с <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>E</mi><mn>0</mn></msub></mrow><annotation encoding="application/x-tex">E_0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0576em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span> везде, где это возможно, в частности надо заменить <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>E</mi><mo>+</mo><msub><mi>E</mi><mn>0</mn></msub></mrow><annotation encoding="application/x-tex">E+E_0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0576em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span> на <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2</mn><msub><mi>E</mi><mn>0</mn></msub><mi mathvariant="normal">.</mi></mrow><annotation encoding="application/x-tex">2E_0.</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8333em;vertical-align:-0.15em;"></span><span class="mord">2</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0576em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">.</span></span></span></span></span><!----></span>]</p><p>Из определения <a href="/c/sila-77a176" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->силы<!--]--><!--]--><!----></a></p><p><span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi mathvariant="bold-italic">F</mi><mo>=</mo><mi>d</mi><mi mathvariant="bold-italic">p</mi><mi mathvariant="normal">/</mi><mi>d</mi><mi>t</mi><mspace width="2em"/><mo stretchy="false">(</mo><mn>6</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\boldsymbol F=d\boldsymbol p/dt \qquad (6)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6861em;"></span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.15972em;">F</span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">d</span><span class="mord"><span class="mord"><span class="mord boldsymbol">p</span></span></span><span class="mord">/</span><span class="mord mathnormal">d</span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:2em;"></span><span class="mopen">(</span><span class="mord">6</span><span class="mclose">)</span></span></span></span></span></span><!----></span>следует известная нерелятивистская формула, связывающая силу <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold-italic">F</mi></mrow><annotation encoding="application/x-tex">\boldsymbol F</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6861em;"></span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.15972em;">F</span></span></span></span></span></span></span><!----></span> и ускорение <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold-italic">a</mi></mrow><annotation encoding="application/x-tex">\boldsymbol a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4444em;"></span><span class="mord"><span class="mord"><span class="mord boldsymbol">a</span></span></span></span></span></span></span><!----></span>:</p><p><span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi mathvariant="bold-italic">F</mi><mo>=</mo><mi>m</mi><mi mathvariant="bold-italic">a</mi><mi mathvariant="normal">.</mi><mspace width="2em"/><mo stretchy="false">(</mo><mn>7</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\boldsymbol F =m\boldsymbol a. \qquad (7)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6861em;"></span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.15972em;">F</span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">m</span><span class="mord"><span class="mord"><span class="mord boldsymbol">a</span></span></span><span class="mord">.</span><span class="mspace" style="margin-right:2em;"></span><span class="mopen">(</span><span class="mord">7</span><span class="mclose">)</span></span></span></span></span></span><!----></span>Из уравнений (5) и/или (7) следует, что в ньютоновой механике мерой <a href="/c/inertsiia-abac52" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->инерции<!--]--><!--]--><!----></a> является масса <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi></mrow><annotation encoding="application/x-tex">m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">m</span></span></span></span></span><!----></span>. Именно эта нерелятивистская ипостась массы часто необдуманно переносится и на движения при <a href="/c/reliativistskaia-skorost-b4f25e" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->релятивистских скоростях<!--]--><!--]--><!----></a>, в то время как в теории относительности, как следует из уравнения (2), мерой инерции является не масса <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi></mrow><annotation encoding="application/x-tex">m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">m</span></span></span></span></span><!----></span>, а энергия, более точно <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>E</mi><mi mathvariant="normal">/</mi><msup><mi>c</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">E/c^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0641em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="mord">/</span><span class="mord"><span class="mord mathnormal">c</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></span><!----></span>. Чем больше энергия безмассовой или очень лёгкой частицы, тем труднее изменить её импульс. Только для нерелятивистских частиц существенна не кинетическая энергия, а энергия покоя (масса).</p><p>Аналогично использование понятия массы как источника гравитационного притяжения. Как известно, в ньютоновой физике <a href="/c/zakon-vsemirnogo-tiagoteniia-ac9aa2" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->сила всемирного тяготения<!--]--><!--]--><!----></a> между телами с массами <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>M</mi></mrow><annotation encoding="application/x-tex">M</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">M</span></span></span></span></span><!----></span> и <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi></mrow><annotation encoding="application/x-tex">m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">m</span></span></span></span></span><!----></span> равна</p><p><span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mi>F</mi><mi>g</mi></msub><mo>=</mo><mo>−</mo><mi>G</mi><mi>M</mi><mi>m</mi><mi mathvariant="bold-italic">r</mi><mi mathvariant="normal">/</mi><msup><mi>r</mi><mn>3</mn></msup><mo separator="true">,</mo><mspace width="2em"/><mo stretchy="false">(</mo><mn>8</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">F_g=-GMm\boldsymbol r/r^3, \qquad (8)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9694em;vertical-align:-0.2861em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">F</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.1389em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">g</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.1141em;vertical-align:-0.25em;"></span><span class="mord">−</span><span class="mord mathnormal" style="margin-right:0.10903em;">GM</span><span class="mord mathnormal">m</span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.03194em;">r</span></span></span><span class="mord">/</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:2em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mopen">(</span><span class="mord">8</span><span class="mclose">)</span></span></span></span></span></span><!----></span>где <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal">G</span></span></span></span></span><!----></span> – <a href="/c/gravitatsionnaia-postoiannaia-a53d76" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->гравитационная постоянная<!--]--><!--]--><!----></a>, <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold-italic">r</mi></mrow><annotation encoding="application/x-tex">\boldsymbol r</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4444em;"></span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.03194em;">r</span></span></span></span></span></span></span><!----></span> – радиус-вектор, направленный от тела с массой <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>M</mi></mrow><annotation encoding="application/x-tex">M</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">M</span></span></span></span></span><!----></span> к телу с массой <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi></mrow><annotation encoding="application/x-tex">m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">m</span></span></span></span></span><!----></span>. Из формул (7) и (8) следует, что <a href="/c/uskorenie-svobodnogo-padeniia-152fb3" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->ускорение тел, свободно падающих<!--]--><!--]--><!----></a> в гравитационное поле, не зависит ни от величины <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi></mrow><annotation encoding="application/x-tex">m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">m</span></span></span></span></span><!----></span> этих тел, ни от свойств вещества, из которого эти тела состоят. Эта закономерность проверена на опыте в <a href="/c/gravitatsionnoe-pole-zemli-0208db" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->гравитационном поле Земли<!--]--><!--]--><!----></a> с точностью порядка 10<sup>–8</sup> и в поле Солнца с точностью порядка 10<sup>–12</sup>.</p><p>Часто эту закономерность называют равенством <a href="/c/inertnaia-massa-662a93" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->инертной<!--]--><!--]--><!----></a> и <a href="/c/gravitatsionnaia-massa-f0dd00" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->гравитационной<!--]--><!--]--><!----></a><i> </i>масс. Однако этих понятий нет ни в исходной механике Ньютона – Галилея, ни в современной теории относительности: оба они использовались в начале 20 в. при построении теории относительности. В ньютоновой механике есть только одна физическая величина – масса, определяющая два различных явления: инерцию и гравитацию. В теории относительности масса <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi></mrow><annotation encoding="application/x-tex">m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">m</span></span></span></span></span><!----></span>, определяемая соотношением (1), не является ни мерой инерции, ни источником гравитации. Мерой инерции служит энергия, а источником гравитации – тензор энергии-импульса (некоторая комбинация энергии и импульса); обе эти величины (энергия и <a href="/c/tenzor-02fd2b" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->тензор<!--]--><!--]--><!----></a> энергии-импульса) переходят в массу <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi></mrow><annotation encoding="application/x-tex">m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">m</span></span></span></span></span><!----></span> только при <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>v</mi><mi mathvariant="normal">/</mi><mi>c</mi><mo>→</mo><mn>0.</mn></mrow><annotation encoding="application/x-tex">v/c→0.</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">v</span><span class="mord">/</span><span class="mord mathnormal">c</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">→</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.</span></span></span></span></span><!----></span></p><p>В теории относительности энергия и импульс свободных частиц обладают свойством <a href="/c/additivnost-177b72" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->аддитивности<!--]--><!--]--><!----></a>: суммарная энергия и суммарный импульс совокупности <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">n</span></span></span></span></span><!----></span> свободных частиц всегда равны сумме их энергий и сумме импульсов соответственно. В отличие от этого, суммарная масса совокупности свободных частиц равна сумме их масс только в том случае, когда эти частицы покоятся друг относительно друга. Если же они движутся, то их массы в силу уравнения (1) не могут быть аддитивны. Так, например, масса системы двух фотонов с энергией <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>E</mi></mrow><annotation encoding="application/x-tex">E</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">E</span></span></span></span></span><!----></span> у каждого, вычисленная по формуле (1), равна нулю, если они летят в одну сторону, и равна <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2</mn><mi>E</mi><mi mathvariant="normal">/</mi><msup><mi>c</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">2E/c^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0641em;vertical-align:-0.25em;"></span><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="mord">/</span><span class="mord"><span class="mord mathnormal">c</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></span><!----></span>, если они летят в противоположные стороны.</p><p>Поскольку энергия и импульс изолированной системы частиц сохраняются при любых взаимодействиях внутри этой системы, то сохраняется и масса этой системы. Так, например, при аннигиляции покоящихся <a href="/c/elektron-1c39f0" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->электрона<!--]--><!--]--><!----></a> и <a href="/c/pozitron-bb990e" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->позитрона<!--]--><!--]--><!----></a> в два фотона масса двух фотонов равна <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2</mn><mi>m</mi><mo separator="true">,</mo></mrow><annotation encoding="application/x-tex">2m,</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8389em;vertical-align:-0.1944em;"></span><span class="mord">2</span><span class="mord mathnormal">m</span><span class="mpunct">,</span></span></span></span></span><!----></span> где <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi></mrow><annotation encoding="application/x-tex">m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">m</span></span></span></span></span><!----></span> – масса электрона.</p><p>Из сказанного выше следует, что масса является характеристикой свободной частицы. В ряде случаев, однако, можно считать, что частица, находящаяся во внешнем силовом поле других частиц, имеет то же значение массы, что и свободная частица. Но для этого наряду с энергией покоя и энергией движения приходится вводить ещё и энергию взаимодействия, наиболее известным примером которой является <a href="/c/potentsial-naia-energiia-41eb77" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->потенциальная энергия<!--]--><!--]--><!----></a> <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>U</mi></mrow><annotation encoding="application/x-tex">U</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">U</span></span></span></span></span><!----></span>. В этом случае полная энергия <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="script">E</mi></mrow><annotation encoding="application/x-tex">ℰ</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7em;"></span><span class="mord mathscr" style="margin-right:0.18583em;">E</span></span></span></span></span><!----></span> представляет собой сумму трёх слагаемых:</p><p><span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi mathvariant="script">E</mi><mo>=</mo><msub><mi>E</mi><mn>0</mn></msub><mo>+</mo><msub><mi>E</mi><mtext>кин</mtext></msub><mo>+</mo><mi>U</mi><mi mathvariant="normal">.</mi></mrow><annotation encoding="application/x-tex">ℰ=E_0+E_{кин}+U.</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7em;"></span><span class="mord mathscr" style="margin-right:0.18583em;">E</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0576em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0576em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord cyrillic_fallback mtight">кин</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">U</span><span class="mord">.</span></span></span></span></span></span><!----></span>Единицей массы в СИ служит <a href="/c/kilogramm-015fbc" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->килограмм<!--]--><!--]--><!----></a>, в системе единиц СГС – <a href="/c/gramm-edinitsa-izmerenii-512b0e" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->грамм<!--]--><!--]--><!----></a>. Массы атомов и молекул обычно измеряются в <a href="/c/atomnaia-edinitsa-massy-b744c9" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->атомных единицах массы<!--]--><!--]--><!----></a>. Массу элементарных частиц принято измерять в эВ/<i>c</i><sup>2</sup>. Например, масса электрона <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>m</mi><mi>e</mi></msub></mrow><annotation encoding="application/x-tex">m_e</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">m</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">e</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span> = 0,511 МэВ/<i>c</i><sup>2</sup>, масса протона <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>m</mi><mi>p</mi></msub></mrow><annotation encoding="application/x-tex">m_p</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7167em;vertical-align:-0.2861em;"></span><span class="mord"><span class="mord mathnormal">m</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">p</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span> = 938,3 МэВ/<i>c</i><sup>2</sup>, масса <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>Z</mi></mrow><annotation encoding="application/x-tex">Z</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">Z</span></span></span></span></span><!----></span>-бозона <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>m</mi><mi>Z</mi></msub></mrow><annotation encoding="application/x-tex">m_Z</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">m</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.07153em;">Z</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span> = 91,2 ГэВ/<i>c</i><sup>2</sup>, масса самой тяжёлой из известных элементарных частиц (<a href="/c/t-kvark-b6a57b" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->t-кварка<!--]--><!--]--><!----></a>) равна примерно 172 ГэВ/<i>c</i><sup>2</sup>. Самые лёгкие частицы с отличными от нуля массами – <a href="/c/neitrino-75575f" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->нейтрино<!--]--><!--]--><!----></a>; их массы много меньше 1 эВ/<i>с</i><sup>2</sup>. Важную роль в природе играют безмассовые частицы: фотон (переносчик электромагнитного взаимодействия) и <a href="/c/graviton-5ab454" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->гравитон<!--]--><!--]--><!----></a> (переносчик гравитационного взаимодействия). Пока не существует теории, которая объясняла бы, почему массы элементарных частиц именно таковы, каковы они есть: от долей эВ/<i>с</i><sup>2</sup> до 10<sup>11</sup> эВ/<i>с</i><sup>2</sup>. </p><p>Массы всех известных частиц составляют лишь 5 % суммарной массы видимой <a href="/c/vselennaia-fc0cde" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->Вселенной<!--]--><!--]--><!----></a>, о чём свидетельствуют астрономические наблюдения, примерно 25 % составляют частицы т. н. <a href="/c/tiomnaia-materiia-454bd1" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->тёмной материи<!--]--><!--]--><!----></a>. Больше 70 % массы Вселенной создаёт т. н. <a href="/c/tiomnaia-energiia-39dd7d" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->тёмная энергия<!--]--><!--]--><!----></a>, как бы разлитая в пустоте (см. в статье <a href="/c/kosmologiia-8825bc" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->Космология<!--]--><!--]--><!----></a>).</p><p>Не все известные элементарные частицы в равной степени элементарны (фундаментальны). На современном уровне знания элементарны электроны и другие <a href="/c/leptony-36bf35" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->лептоны<!--]--><!--]--><!----></a>, а также фотоны и другие <a href="/c/kalibrovochnye-bozony-88deb7" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->калибровочные бозоны<!--]--><!--]--><!----></a>. <a href="/c/nuklony-e5b98d" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->Нуклоны<!--]--><!--]--><!----></a> (протоны и нейтроны) и другие многочисленные <a href="/c/adrony-b5c32e" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->адроны<!--]--><!--]--><!----></a> относят к элементарным частицам с известными оговорками, поскольку установлено, что хотя их массы строго фиксированы, но сами они состоят из более элементарных (фундаментальных) частиц – <a href="/c/kvarki-421093" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->кварков<!--]--><!--]--><!----></a> и глюонов. Согласно <a href="/c/kvantovaia-khromodinamika-038abc" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->квантовой хромодинамике<!--]--><!--]--><!----></a> (теории взаимодействия глюонов и кварков), ни глюоны, ни кварки не бывают в свободном состоянии: они всегда находятся внутри адронов (<a href="/c/konfainment-kvarkov-ab2281" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->конфайнмент<!--]--><!--]--><!----></a>) и могут лишь переходить внутри них из одного места в другое. Поэтому о массах этих частиц можно судить по их поведению не на больших, а на малых расстояниях друг от друга, где имеет место <a href="/c/asimptoticheskaia-svoboda-284250" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->асимптотическая свобода<!--]--><!--]--><!----></a>. На малых расстояниях масса глюонов равна нулю, а массы шести кварков <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>u</mi><mo separator="true">,</mo><mi>d</mi><mo separator="true">,</mo><mi>s</mi></mrow><annotation encoding="application/x-tex">u, d, s</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">u</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">d</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">s</span></span></span></span></span><!----></span> и <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>c</mi><mo separator="true">,</mo><mi>b</mi><mo separator="true">,</mo><mi>t</mi></mrow><annotation encoding="application/x-tex">c, b, t</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">c</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">b</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">t</span></span></span></span></span><!----></span> составляют примерно 3; 7; ∼ 100 МэВ/<i>c</i><sup>2</sup> и 1,3; 4,5; 170 ГэВ/<i>c</i><sup>2</sup> соответственно.</p><p>Массы адронов, состоящих из лёгких <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>u</mi></mrow><annotation encoding="application/x-tex">u</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">u</span></span></span></span></span><!----></span>- и <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi></mrow><annotation encoding="application/x-tex">d</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">d</span></span></span></span></span><!----></span>-кварков, обусловлены не массой кварков, а механизмом конфайнмента, который возникает из-за сильного взаимодействия между глюонами.</p><p>Масса составных частиц (примерами которых являются молекулы, состоящие из атомов, атомы, состоящие из электронов и атомных ядер, атомные ядра, состоящие из нуклонов), как правило, меньше, чем сумма масс составляющих их частиц. Соответствующую разность масс называют <a href="/c/defekt-massy-54d2c6" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->дефектом массы<!--]--><!--]--><!----></a> и обозначают <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">Δ</mi><mi>m</mi></mrow><annotation encoding="application/x-tex">Δm</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord">Δ</span><span class="mord mathnormal">m</span></span></span></span></span><!----></span>. Чтобы разделить составную частицу на составляющие её частицы, например атом водорода на электрон и протон, надо затратить энергию, равную <a href="/c/energiia-sviazi-090827" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->энергии связи<!--]--><!--]--><!----></a> <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">Δ</mi><mi>E</mi></mrow><annotation encoding="application/x-tex">\Delta E</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord">Δ</span><span class="mord mathnormal" style="margin-right:0.05764em;">E</span></span></span></span></span><!----></span>. В соответствии с соотношением между энергией и массой эта энергия равна</p><p><span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi mathvariant="normal">Δ</mi><mi>E</mi><mo>=</mo><mi mathvariant="normal">Δ</mi><mi>m</mi><msup><mi>c</mi><mn>2</mn></msup><mi mathvariant="normal">.</mi><mspace width="2em"/><mo stretchy="false">(</mo><mn>9</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">ΔE=Δmc^2.\qquad (9)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord">Δ</span><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.1141em;vertical-align:-0.25em;"></span><span class="mord">Δ</span><span class="mord mathnormal">m</span><span class="mord"><span class="mord mathnormal">c</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mord">.</span><span class="mspace" style="margin-right:2em;"></span><span class="mopen">(</span><span class="mord">9</span><span class="mclose">)</span></span></span></span></span></span><!----></span>Для атома <a href="/c/vodorod-7c381b" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->водорода<!--]--><!--]--><!----></a> <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">Δ</mi><mi>E</mi></mrow><annotation encoding="application/x-tex">ΔE</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord">Δ</span><span class="mord mathnormal" style="margin-right:0.05764em;">E</span></span></span></span></span><!----></span> = 13,6 эВ. Такая же энергия должна выделиться при образовании атома водорода из покоящихся электрона и протона. При делении ядра урана выделяется энергия порядка 200 МэВ. Это означает, что в кинетическую энергию продуктов деления переходит примерно 10<sup>–3</sup> от величины массы <a href="/c/uran-khimicheskii-element-ac6ea2" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->урана<!--]--><!--]--><!----></a>. В <a href="/c/termoiadernye-reaktsii-7ac0a5" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->термоядерных реакциях<!--]--><!--]--><!----></a>, идущих в звёздах и водородных бомбах, в кинетическую энергию переходит примерно 1 % суммарной массы водорода, превращающегося в <a href="/c/gelii-9d40bf" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->гелий<!--]--><!--]--><!----></a> (энергия связи каждого из четырёх нуклонов в ядре гелия примерно 8 МэВ, а масса нуклона примерно 940 МэВ). При аннигиляции электрона и позитрона вся их масса (энергия покоя) превращается в кинетическую энергию фотонов.</p><p>О превращении массы в кинетическую энергию часто не вполне точно говорят как о превращении массы в энергию. Неточность заключается в том, что такая формулировка может натолкнуть на неверную мысль, что в физических и химических процессах энергия не сохраняется. На самом же деле она сохраняется во всех вышеупомянутых процессах. Просто в них энергия покоя переходит в кинетическую энергию. Эта терминологическая неточность восходит к абсолютизации ньютоновой физики, в которой понятия энергии покоя <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>E</mi><mn>0</mn></msub></mrow><annotation encoding="application/x-tex">E_0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0576em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span> не было.</p><p>Аналогично на переходе от ньютоновой физике к релятивистской возникло и ложное представление о том, что масса движущегося тела возрастает с увеличением его скорости. Такое представление возникает, если в формуле (3) для энергии покоя <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>E</mi><mn>0</mn></msub></mrow><annotation encoding="application/x-tex">E_0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0576em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span> опустить для краткости индекс 0 и написать</p><p data-textalign="center"><span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>E</mi><mo>=</mo><mi>m</mi><msup><mi>c</mi><mn>2</mn></msup><mi mathvariant="normal">.</mi><mspace width="2em"/><mo stretchy="false">(</mo><mn>10</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">E =mc^2.\qquad (10)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.0641em;vertical-align:-0.25em;"></span><span class="mord mathnormal">m</span><span class="mord"><span class="mord mathnormal">c</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mord">.</span><span class="mspace" style="margin-right:2em;"></span><span class="mopen">(</span><span class="mord">10</span><span class="mclose">)</span></span></span></span></span><!----></span></p><p>Именно так поступают авторы многочисленных популярных статей, книг и даже учебников по теории относительности, выдавая уравнение (10) за истинное уравнение Эйнштейна (3). При такой отнюдь не безобидной замене место энергии покоя <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>E</mi><mn>0</mn></msub></mrow><annotation encoding="application/x-tex">E_0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0576em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span> занимает полная энергия движущегося тела <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="script">E</mi></mrow><annotation encoding="application/x-tex">ℰ</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7em;"></span><span class="mord mathscr" style="margin-right:0.18583em;">E</span></span></span></span></span><!----></span>, а масса <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi></mrow><annotation encoding="application/x-tex">m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">m</span></span></span></span></span><!----></span> оказывается зависящей от скорости тела. При этом от читателей по существу скрывают основное уравнение теории относительности для свободного тела (1), которое очевидным образом несовместимо с уравнением (10). Более того, обычную массу, удовлетворяющую уравнениям (1) и (3), приходится называть массой покоя и обозначать её <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>m</mi><mn>0</mn></msub></mrow><annotation encoding="application/x-tex">m_0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">m</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span>. Всё это затрудняет понимание сути теории относительности.</p><span itemscope itemprop="author" itemtype="https://schema.org/Person" class="-text-caption-2-italic tw-justify-end tw-mt-4 tw-mb-10 author _note-exclude"><a href="/a/lb-okun-0c77ac" class=""><span itemprop="name">Окунь Лев Борисович</span></a></span></section></section><!--]--></div><span class="bre-inline-menu _article-meta" style=""><meta itemprop="description" content="Ма́сса, фундаментальная физическая величина, определяющая инерционные и гравитационные свойства тел – от макроскопических объектов до атомов и..."><span><span class="bre-inline-menu__item _article-meta max-md:tw-block"><!--[-->Опубликовано <!--]--><span itemprop="datePublished">12 октября 2023 г. в 15:39 (GMT+3). </span></span><span class="bre-inline-menu__item _article-meta max-md:tw-block"> Последнее обновление <span itemprop="dateModified">12 октября 2023 г. в 15:39 (GMT+3).</span></span></span><span class="-flex-divider"></span><span class="bre-inline-menu__item tw-items-start"><button type="button" class="b-button tw-gap-2 b-button--link -text-button-text tw-rounded-lg tw-cursor-pointer" data-v-cfbedafc><!----><span class="c-button__content" data-v-cfbedafc><!--[-->Связаться с редакцией<!--]--></span></button></span></span></div></div><div class="bre-tags-wrap"><!--[--><span data-v-063d9480><a href="/l/fizicheskie-izmereniia-c71ebc" class="bre-article-tag bre-article-tag__link _default _no-border" data-v-063d9480>#Физические измерения</a><!----></span><!--]--></div></div><aside class="bre-article-page__sidebar -show-on-desktop-s" style=""><!----><!----><div class="bre-article-page__sidebar-wrapper _loc"><div class="article-sidebar"><div class="article-sidebar-button -show-on-tablet -hide-on-desktop-s"><span class="article-sidebar-title">Информация</span><span class="nuxt-icon _no-icon-margin tw-text-2xl tw-text-primary-black"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"><path d="M6 9l6 6 6-6" stroke="currentColor" stroke-width="1.5" stroke-linecap="round"/></svg> </span><!--[--><div class="article-sidebar-text -show-on-tablet -hide-on-desktop-s"></div><!--]--></div><div class="article-sidebar-wrapper -hide-on-tablet"><!----><!----><!----><span class="bre-media-image article-sidebar-image _note-exclude _clean" data-width="100%" data-display="block"><span class="bre-media-figure _note-exclude _clean" itemscope itemtype="https://schema.org/ImageObject" itemprop="image"><!--[--><span class="bre-media-image-container _placeholder"><meta itemprop="name" content="Физика"><meta itemprop="caption" content="Физика. Научно-образовательный портал «Большая российская энциклопедия»"><!----><!----><span class="tw-flex tw-w-full" style=""><img src="https://i.bigenc.ru/resizer/resize?sign=7JK17_fgqWlQEFIk2cRkfA&amp;filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&amp;width=120" onerror="this.setAttribute(&#39;data-error&#39;, 1)" alt="Физика" data-nuxt-img sizes="320px" srcset="https://i.bigenc.ru/resizer/resize?sign=7JK17_fgqWlQEFIk2cRkfA&amp;filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&amp;width=120 120w,https://i.bigenc.ru/resizer/resize?sign=Jf8Ovt6NK1CJRMEXmLmu9w&amp;filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&amp;width=320 320w,https://i.bigenc.ru/resizer/resize?sign=9FmjZNIS1_JG-eBy3nkCow&amp;filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&amp;width=480 480w,https://i.bigenc.ru/resizer/resize?sign=W0YAxakNej-ihBYTmKOUhA&amp;filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&amp;width=640 640w,https://i.bigenc.ru/resizer/resize?sign=bU5vxPnJKBxMhvgLEjl-uA&amp;filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&amp;width=768 768w,https://i.bigenc.ru/resizer/resize?sign=CO7eqX0CglCAJmsuCYDJxQ&amp;filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&amp;width=1024 1024w,https://i.bigenc.ru/resizer/resize?sign=SNrDJXfJeDUaOjs9TGABPA&amp;filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&amp;width=1280 1280w,https://i.bigenc.ru/resizer/resize?sign=A65s2m2zZF6hgTDDppMoDA&amp;filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&amp;width=1920 1920w" title="Физика" class="" itemprop="contentUrl"></span><!----></span><!--]--><!----></span><!----><!----></span><div class="article-sidebar-meta"><dl class="tw-mt-0"><!--[--><!--[--><dt>Области знаний:</dt><dd>Динамика материальной точки и системы точек</dd><!--]--><!--]--><!----></dl></div></div></div></div></aside></div><!----></article></div><!--]--></div><!----><!--]--><div></div></main><footer class="bre-footer" itemscope itemprop="hasPart" itemtype="https://schema.org/WPFooter"><meta itemprop="copyrightNotice" content="&amp;copy;&amp;nbsp;АНО БРЭ, 2022&amp;nbsp;&amp;mdash;&amp;nbsp;2024. Все права защищены."><div class="bre-footer__inner" itemprop="hasPart" itemscope itemtype="https://schema.org/SiteNavigationElement"><!--[--><div class="_menu bre-footer-section"><ul class="bre-inline-menu _footer-link-groups"><!--[--><li class="_footer-links bre-inline-menu__item"><ul class="bre-inline-menu _footer-links"><!--[--><li class="_button bre-inline-menu__item"><a href="/p/about-project" class="" itemprop="url"><!----><span>О портале</span></a></li><li class="_button bre-inline-menu__item"><a href="/p/author" class="" itemprop="url"><!----><span>Стать автором</span></a></li><li class="_button bre-inline-menu__item"><a href="/p/partners" class="" itemprop="url"><!----><span>Партнёры</span></a></li><li class="_button bre-inline-menu__item"><a href="/p/copyright-holders" class="" itemprop="url"><!----><span>Правообладателям</span></a></li><li class="_button bre-inline-menu__item"><a href="/p/contacts" class="" itemprop="url"><!----><span>Контакты</span></a></li><li class="_button _full-width bre-inline-menu__item"><a href="https://old.bigenc.ru/" rel="noopener noreferrer nofollow" target="_blank" itemprop="url"><!----><span>Старая версия сайта</span></a></li><!--]--></ul></li><li class="bre-inline-menu__item"><ul class="bre-inline-menu"><!--[--><li class="bre-inline-menu__item"><a href="https://t.me/bigenc" rel="noopener noreferrer nofollow" target="_blank"><span class="nuxt-icon tw-text-2xl tw-text-gray-4 tw-transition-colors tw-duration-200 hover:tw-text-primary-black _no-icon-margin" title="Telegram"><svg xmlns="http://www.w3.org/2000/svg" fill="none" viewBox="0 0 24 24"> <path fill="currentColor" d="m2.319 11.552 4.147 1.555 1.605 5.189a.49.49 0 0 0 .562.336.487.487 0 0 0 .214-.102l2.312-1.893a.686.686 0 0 1 .84-.024l4.17 3.043a.486.486 0 0 0 .766-.297L19.99 4.59a.494.494 0 0 0-.397-.584.49.49 0 0 0-.258.025l-17.022 6.6a.491.491 0 0 0 .006.92Zm5.493.728 8.107-5.02c.145-.088.294.11.17.227l-6.69 6.25a1.39 1.39 0 0 0-.43.832l-.228 1.698c-.03.227-.346.25-.41.03l-.875-3.096a.823.823 0 0 1 .356-.921Z"/> </svg> </span><!----></a></li><li class="bre-inline-menu__item"><a href="https://vk.com/bigenc_ru" rel="noopener noreferrer nofollow" target="_blank"><span class="nuxt-icon tw-text-2xl tw-text-gray-4 tw-transition-colors tw-duration-200 hover:tw-text-primary-black _no-icon-margin" title="ВКонтакте"><svg xmlns="http://www.w3.org/2000/svg" fill="none" viewBox="0 0 24 24"> <path fill="currentColor" d="M21.969 6.82c.17.425-.353 1.418-1.567 2.978-.17.213-.389.496-.656.85-.559.663-.875 1.1-.947 1.313-.122.284-.073.555.145.815.122.142.401.426.838.851h.037v.036c.996.874 1.664 1.62 2.004 2.234l.073.141.073.267v.336l-.255.266-.62.124-2.66.071c-.17.024-.37 0-.601-.07a2.607 2.607 0 0 1-.528-.213l-.22-.142a4.162 4.162 0 0 1-.728-.639 28.415 28.415 0 0 1-.71-.78 3.62 3.62 0 0 0-.638-.585c-.219-.153-.413-.206-.583-.16a.18.18 0 0 0-.091.036 1.473 1.473 0 0 0-.183.16 1.148 1.148 0 0 0-.218.301 2.19 2.19 0 0 0-.164.514c-.049.225-.073.49-.073.798a.939.939 0 0 1-.036.266 1.154 1.154 0 0 1-.073.195l-.037.036c-.146.141-.34.212-.583.212h-1.166a4.34 4.34 0 0 1-1.548-.141 5.719 5.719 0 0 1-1.367-.55c-.389-.225-.74-.45-1.057-.674a6.361 6.361 0 0 1-.729-.585l-.255-.248a1.58 1.58 0 0 1-.291-.284c-.122-.141-.37-.449-.747-.922a23.006 23.006 0 0 1-1.111-1.524A29.008 29.008 0 0 1 3.42 9.957 34.16 34.16 0 0 1 2.073 7.21.8.8 0 0 1 2 6.926c0-.071.012-.13.036-.177l.037-.036c.097-.142.291-.213.583-.213h2.879a.49.49 0 0 1 .218.054l.182.088.037.036c.121.07.206.177.255.319.146.33.31.68.492 1.046s.322.644.419.833l.146.284c.218.402.419.75.6 1.046.183.295.347.526.493.691.146.166.291.296.437.39.146.095.267.142.365.142.097 0 .194-.012.291-.036l.036-.053.128-.23.146-.461.09-.816V8.557a6.15 6.15 0 0 0-.108-.727 2.135 2.135 0 0 0-.146-.479l-.037-.106c-.17-.236-.473-.39-.91-.461-.074 0-.05-.083.072-.248a1.55 1.55 0 0 1 .401-.284c.364-.189 1.19-.272 2.478-.248.559 0 1.032.047 1.421.142.121.023.23.065.328.124.097.059.17.142.219.248.048.106.085.213.109.32.024.106.036.26.036.46v.55a5.784 5.784 0 0 0-.036.709v.85c0 .072-.006.214-.018.426a9.251 9.251 0 0 0-.018.497c0 .118.012.254.036.408.024.153.067.283.128.39a.55.55 0 0 0 .4.283c.061.012.152-.023.274-.106a2.55 2.55 0 0 0 .4-.355c.146-.153.328-.384.547-.691.219-.307.45-.662.692-1.064a18.64 18.64 0 0 0 1.13-2.305c.024-.047.055-.1.091-.16.037-.058.08-.1.128-.123h.036l.037-.036.145-.035h.219l2.988-.036c.267-.023.492-.011.674.036.182.047.286.106.31.177l.073.106Z"/> </svg> </span><!----></a></li><li class="bre-inline-menu__item"><a href="https://dzen.ru/bigenc" rel="noopener noreferrer nofollow" target="_blank"><span class="nuxt-icon tw-text-2xl tw-text-gray-4 tw-transition-colors tw-duration-200 hover:tw-text-primary-black _no-icon-margin" title="Дзен"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <defs> <mask id="inner-star"> <circle cx="12" cy="12" r="9" fill="#fff"/> <path d="M21 12.0964V11.9036C17.0143 11.775 15.195 11.6786 13.7357 10.2643C12.3214 8.805 12.2186 6.98571 12.0964 3H11.9036C11.775 6.98571 11.6786 8.805 10.2643 10.2643C8.805 11.6786 6.98571 11.7814 3 11.9036V12.0964C6.98571 12.225 8.805 12.3214 10.2643 13.7357C11.6786 15.195 11.7814 17.0143 11.9036 21H12.0964C12.225 17.0143 12.3214 15.195 13.7357 13.7357C15.195 12.3214 17.0143 12.2186 21 12.0964Z" fill="#000"/> </mask> </defs> <circle cx="12" cy="12" r="9" fill="currentColor" mask="url(#inner-star)"/> </svg> </span><!----></a></li><li class="bre-inline-menu__item"><a href="https://ok.ru/group/70000000707835" rel="noopener noreferrer nofollow" target="_blank"><span class="nuxt-icon tw-text-2xl tw-text-gray-4 tw-transition-colors tw-duration-200 hover:tw-text-primary-black _no-icon-margin" title="Одноклассники"><svg viewBox="0 0 200 200" fill="none" xmlns="http://www.w3.org/2000/svg"> <path d="M100.1 99.2C109.8 99.2 118.6 95.2 124.9 88.9C131.2 82.6 135.2 73.8 135.2 64.1C135.2 54.4 131.2 45.6 124.9 39.3C118.6 33 109.8 29 100.1 29C90.4 29 81.6 33 75.3 39.3C69 45.5 65 54.3 65 64.1C65 73.9 69 82.6 75.3 88.9C81.6 95.2 90.5 99.2 100.1 99.2ZM88.9 52.7C91.8 49.8 95.8 48 100.2 48C104.7 48 108.6 49.8 111.5 52.7C114.4 55.6 116.2 59.6 116.2 64C116.2 68.5 114.4 72.4 111.5 75.3C108.6 78.2 104.6 80 100.2 80C95.7 80 91.8 78.2 88.9 75.3C86 72.4 84.2 68.4 84.2 64C84.2 59.6 86.1 55.6 88.9 52.7Z" fill="currentColor"/> <path d="M147.5 113.4L137.2 99.3C136.6 98.5 135.4 98.4 134.7 99.1C125 107.4 113 112.8 100.1 112.8C87.2 112.8 75.3 107.4 65.5 99.1C64.8 98.5 63.6 98.6 63 99.3L52.7 113.4C52.2 114.1 52.3 115 52.9 115.6C61.6 122.6 71.7 127.4 82.2 129.9L60.4 168.3C59.8 169.4 60.6 170.8 61.8 170.8H83.1C83.8 170.8 84.4 170.4 84.6 169.7L99.8 135.7L115 169.7C115.2 170.3 115.8 170.8 116.5 170.8H137.8C139.1 170.8 139.8 169.5 139.2 168.3L117.4 129.9C127.9 127.4 138 122.8 146.7 115.6C148 115 148.1 114.1 147.5 113.4Z" fill="currentColor"/> </svg> </span><!----></a></li><li class="bre-inline-menu__item"><a href="https://www.youtube.com/channel/UCY4SUgcT8rBt4EgK9CAg6Ng" rel="noopener noreferrer nofollow" target="_blank"><span class="nuxt-icon tw-text-2xl tw-text-gray-4 tw-transition-colors tw-duration-200 hover:tw-text-primary-black _no-icon-margin" title="YouTube"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path fill-rule="evenodd" clip-rule="evenodd" d="M21.1623 4.21363C22.1781 4.48683 22.9706 5.28671 23.2453 6.30818C23.9638 9.22233 23.917 14.7319 23.2604 17.6916C22.9887 18.713 22.1932 19.5099 21.1774 19.7861C18.3094 20.4995 5.46414 20.4114 2.76226 19.7861C1.74641 19.5129 0.953955 18.713 0.679238 17.6916C0.0015019 14.914 0.0482943 9.04019 0.664143 6.32335C0.935842 5.30188 1.73131 4.50505 2.74716 4.22881C6.58112 3.42438 19.7977 3.68392 21.1623 4.21363ZM9.69057 8.44824L15.8491 11.9999L9.69057 15.5515V8.44824Z" fill="currentColor"/> </svg> </span><!----></a></li><li class="bre-inline-menu__item"><a href="https://rutube.ru/channel/29677486/" rel="noopener noreferrer nofollow" target="_blank"><span class="nuxt-icon tw-text-2xl tw-text-gray-4 tw-transition-colors tw-duration-200 hover:tw-text-primary-black _no-icon-margin" title="RUTUBE"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path fill-rule="evenodd" clip-rule="evenodd" d="M3 6.45205C3 4.54554 4.54554 3 6.45205 3H17.5479C19.4545 3 21 4.54554 21 6.45205V17.5479C21 19.4545 19.4545 21 17.5479 21H6.45205C4.54554 21 3 19.4545 3 17.5479V6.45205ZM14.8657 7.43835H6.20547V16.8082H8.6159V13.7598H13.2346L15.342 16.8082H18.0411L15.7173 13.7458C16.439 13.6335 16.9586 13.3665 17.2761 12.9451C17.5936 12.5237 17.7524 11.8494 17.7524 10.9503V10.2479C17.7524 9.71409 17.6947 9.29268 17.5936 8.96955C17.4926 8.64646 17.3194 8.3655 17.0741 8.11265C16.8142 7.87383 16.5256 7.70526 16.1792 7.59288C15.8328 7.49454 15.3997 7.43835 14.8657 7.43835ZM14.476 11.6948H8.6159V9.50336H14.476C14.808 9.50336 15.0389 9.55957 15.1544 9.65789C15.2698 9.75622 15.342 9.93886 15.342 10.2058V10.9925C15.342 11.2734 15.2698 11.456 15.1544 11.5543C15.0389 11.6527 14.808 11.6948 14.476 11.6948ZM19.274 6.57535C19.274 7.18816 18.7771 7.68494 18.1646 7.68494C17.5516 7.68494 17.0548 7.18816 17.0548 6.57535C17.0548 5.96254 17.5516 5.46576 18.1646 5.46576C18.7771 5.46576 19.274 5.96254 19.274 6.57535Z" fill="currentColor"/> </svg> </span><!----></a></li><!--]--></ul></li><!--]--></ul></div><div class="_border bre-footer-section"><ul class="bre-inline-menu"><!--[--><li class="_footer-text bre-inline-menu__item"><span><!----><span>Научно-образовательный портал «Большая российская энциклопедия»<br />Создан при финансовой поддержке Министерства цифрового развития, связи и массовых коммуникаций Российской Федерации.<br />Свидетельство о регистрации СМИ ЭЛ № ФС77-84198, выдано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор) 15&nbsp;ноября&nbsp;2022&nbsp;года.<br>ISSN: 2949-2076</span></span></li><li class="_footer-text bre-inline-menu__item"><span><!----><span>Учредитель: Автономная некоммерческая организация «Национальный научно-образовательный центр «Большая российская энциклопедия» <br /> Главный редактор: Кравец С. Л. <br />Телефон редакции: <a href="tel:+74959179000">+7 (495) 917 90 00</a> <br />Эл. почта редакции: <a href="mailto:secretar@greatbook.ru">secretar@greatbook.ru</a></span></span></li><li class="_half-width bre-inline-menu__item"><ul class="bre-inline-menu"><!--[--><li class="tw-h-12 tw-mt-3 bre-inline-menu__item"><span><span class="nuxt-icon tw-text-gray-2 tw-text-[60px] _no-icon-margin" title="АНО «БРЭ»"><svg viewBox="0 0 60 48" fill="none" xmlns="http://www.w3.org/2000/svg"><path fill-rule="evenodd" clip-rule="evenodd" d="M25.577.226C14.027 1.426 4.087 8.42.903 17.586c-1.187 3.417-1.206 8.83-.045 12.525 4.42 14.064 24.29 21.772 41.012 15.91 4.81-1.686 7.426-3.253 11.082-6.64 9.507-8.81 9.383-22.047-.29-31.086C45.986 2.058 36.151-.872 25.576.226zm12.902 3.345c1.283.355 3.172 1.009 4.198 1.452l1.866.806-2.498.863c-2.472.855-2.529.854-5.365-.107-3.749-1.27-9.587-1.36-14.153-.22-2.764.692-3.65.744-5.015.298-.91-.298-1.657-.717-1.657-.93 0-.435 4.797-2.101 7.962-2.765 2.75-.577 11.74-.207 14.662.603zM16.498 7.354c1.654.685 1.69.756 1.736 3.35.051 2.917.542 5.21.962 4.494.147-.251.406-1.213.574-2.138.169-.924.839-2.208 1.49-2.854 1.145-1.134 2.687-1.289 5.207-.523.928.282.818 10.774-.116 11.128-.385.147-.7.475-.7.73 0 .284 1.353.395 3.494.288 3.904-.195 5.13-.936 5.627-3.4.42-2.078-1.08-3.728-3.748-4.125l-2.108-.313v-2.05c0-2.032.015-2.051 1.617-2.051 1.196 0 1.764.27 2.187 1.04l.57 1.039.28-1.155c.768-3.16 5.399-.393 7.647 4.569 1.253 2.765 2.241 6.748 1.786 7.198-.136.136-5.723.237-12.415.226-9.379-.016-12.595-.173-14.033-.686-1.026-.366-1.918-.67-1.982-.673-.065-.004-.117.409-.117.917 0 .877-.311.924-6.085.924H2.285l.316-1.733c.84-4.62 3.604-9.246 7.303-12.224 3.61-2.905 4.04-3.034 6.594-1.978zm31.704.637c4.444 3.03 8.238 8.665 8.977 13.334l.311 1.964H48.171l-.258-2.821c-.33-3.602-2.508-8.06-5.049-10.334-1.046-.936-1.816-1.789-1.71-1.894.31-.306 3.796-1.516 4.471-1.552.339-.018 1.498.568 2.577 1.303zm-15.32.018c.815.318.741.406-.584.697-1.994.438-8.188-.192-6.88-.7 1.21-.47 6.259-.468 7.463.003zm-1.45 8.003c1.79 1.593 1.82 3.79.064 4.582-1.793.81-2.58-.147-2.58-3.137 0-2.827.585-3.163 2.516-1.445zm-17.73 10.05c-.164 1.016-.152 1.848.026 1.848s1.017-.728 1.864-1.618l1.54-1.617H43.459l-.306 1.964c-.824 5.29-2.498 8.885-4.907 10.53-.976.667-1.813.75-5.132.505l-3.964-.292-.132-5.43c-.129-5.327-.112-5.429.897-5.429 1.575 0 2.733 1.32 2.733 3.115 0 1.338-.219 1.668-1.4 2.11-1.494.558-1.867 1.244-.676 1.244 2.64 0 4.921-3.225 3.992-5.646-.584-1.52-1.303-1.747-5.542-1.747-2.972 0-3.418.095-2.744.583.696.504.787 1.301.672 5.882l-.133 5.298-2.262.374c-2.662.442-3.293.074-4.047-2.355-1.024-3.302-.923-3.132-1.405-2.376-.239.374-.438 1.837-.442 3.252l-.007 2.572-2.547 1.046c-1.475.605-2.943.921-3.486.75-1.374-.431-6.27-5.358-7.66-7.707-1.317-2.227-2.856-7.512-2.4-8.243.166-.266 2.655-.462 5.864-.462H14l-.299 1.848zm43.493.335c-.525 3.8-2.78 7.8-6.359 11.283-1.79 1.742-3.553 3.167-3.916 3.167-.364 0-1.837-.446-3.273-.99l-2.612-.99 2.245-2.36c2.681-2.82 4.187-5.74 4.564-8.85.438-3.62.174-3.444 5.144-3.444h4.51l-.303 2.184zM34.867 39.034c-1.24.715-5.09 1.044-8.004.684-4.526-.56-2.874-1.182 3.103-1.168 4.098.01 5.484.147 4.9.484zm7.727 1.625c1.2.405 2.182.91 2.182 1.122 0 .54-4.773 2.26-8.396 3.028-3.871.82-9.19.82-13.061 0-3.535-.749-8.397-2.485-8.397-2.997 0-.195.81-.62 1.801-.944 1.592-.52 1.955-.489 3.13.273 1.141.74 2.277.86 8.11.86 5.997 0 7.028-.116 8.883-1 2.592-1.235 3.025-1.26 5.748-.342z" fill="currentColor"/></svg> </span><!----></span></li><li class="tw-h-12 tw-mt-3 bre-inline-menu__item"><span><span class="nuxt-icon tw-text-gray-2 tw-text-5xl _no-icon-margin" title="Министерство цифрового развития, связи и массовых коммуникаций Российской Федерации"><svg viewBox="0 0 48 48" fill="none" xmlns="http://www.w3.org/2000/svg"><path fill-rule="evenodd" clip-rule="evenodd" d="M23.723.258c.06.157 0 .258-.15.258a.254.254 0 0 0-.248.258c0 .142.118.258.263.258.144 0 .216.078.159.172-.058.095.056.172.253.172.196 0 .31-.077.253-.172-.058-.094.014-.172.159-.172.149 0 .263-.146.263-.338 0-.232-.08-.308-.255-.24-.183.072-.226.022-.151-.177.077-.203.005-.277-.27-.277-.262 0-.344.077-.276.258zm-.11 1.57c-.21.214-.128.712.134.815.414.162.781-.076.726-.471-.05-.362-.62-.59-.86-.344zm-.086 1.303c-.277.283-.254 1.342.058 2.608.405 1.644.432 1.654.764.283.508-2.103.396-3.097-.35-3.097a.767.767 0 0 0-.472.206zm-1.65.296c-.984.45-1.211 1.079-.825 2.284.161.502.398 1.124.526 1.382.218.44.284.463 1.032.363.44-.059.823-.127.853-.152.08-.067-.675-3.928-.796-4.07-.056-.066-.412.02-.79.193zm3.392-.113c-.143.439-.788 3.943-.734 3.989.03.025.415.094.855.153.747.1.814.076 1.032-.363.127-.258.364-.88.525-1.382.432-1.348.155-1.927-1.17-2.44-.323-.125-.457-.114-.509.043zM10.175 4.2c-.473.491-.977.824-1.428.944-.977.26-1.39.573-.612.463.325-.046.932-.13 1.35-.186.418-.056 1.193-.33 1.723-.611.53-.28 1.214-.511 1.519-.514.552-.006.55-.008-.288-.429-.464-.233-1-.424-1.189-.425-.19 0-.673.34-1.075.758zm25.301-.313c-.741.39-.747.4-.25.407.28.004.963.233 1.519.508.974.484 1.306.572 2.95.783.912.117.64-.153-.443-.44-.45-.12-.954-.454-1.427-.945-.842-.874-1.193-.921-2.349-.313zm-18.727.71c-.182.21-.193.3-.04.352.112.038.161.14.109.227-.053.086.015.157.15.157.293 0 .477-.415.342-.774-.123-.326-.251-.317-.56.038zm13.94-.038c-.095.254.023.774.176.774.043 0 .193-.116.332-.258.225-.23.225-.287 0-.516-.14-.142-.289-.258-.332-.258-.043 0-.122.116-.175.258zm-18.352.043c-.01.071-.006.361.008.645.015.284-.092.855-.236 1.27-.665 1.913-.131 2.904 1.849 3.431l.675.18-.498-.376c-.83-.627-1.274-1.18-1.274-1.584 0-.21.19-.82.421-1.356.548-1.26.563-2.088.043-2.23-.524-.143-.967-.134-.988.02zm22.253-.014c-.43.12-.378 1.028.127 2.191.232.535.422 1.153.422 1.373 0 .42-.442.973-1.275 1.597l-.497.372.59-.13c1.968-.433 2.597-1.564 1.933-3.475-.144-.414-.239-1.024-.211-1.355.045-.535.004-.605-.372-.629a2.652 2.652 0 0 0-.717.056zM3.422 5.958c-.489.633-.737 1.705-.609 2.632.205 1.48.872 2.56 2.75 4.454.968.977 1.799 1.737 1.845 1.69.212-.216-.4-1.476-1.08-2.223-.728-.8-1.653-2.533-1.539-2.882.031-.095.54.524 1.13 1.377.59.852 1.132 1.512 1.204 1.467.072-.046.177-.272.234-.504.08-.325-.126-.783-.912-2.023-.56-.88-1.327-2.24-1.706-3.021-.38-.78-.753-1.42-.83-1.42-.075 0-.295.204-.487.453zm13.32-.109c0 .26.088.352.296.312.162-.032.295-.172.295-.312 0-.139-.133-.279-.295-.31-.208-.042-.296.051-.296.31zm13.924-.172c-.141.233.05.517.348.517.134 0 .243-.155.243-.345 0-.356-.407-.474-.59-.172zm12.595 1.248c-.38.78-1.147 2.14-1.706 3.021-.787 1.24-.993 1.697-.913 2.023.057.232.163.459.235.504.072.045.613-.615 1.204-1.467.59-.853 1.098-1.472 1.13-1.377.113.349-.812 2.082-1.54 2.882-.68.747-1.292 2.007-1.08 2.222.047.048.877-.712 1.846-1.689 2.38-2.4 3.154-4.12 2.674-5.937-.185-.698-.761-1.602-1.022-1.602-.076 0-.449.64-.828 1.42zM7.924 5.877c-.552.206-.574.402-.127 1.09.395.609.425 1.246.08 1.711-.137.184-.248.449-.248.59 0 .19.097.16.39-.12.528-.505.622-.474.622.21 0 .343.143.749.35.989l.349.406-.1-.475c-.06-.286.009-.688.173-1.011.312-.615.256-1.332-.209-2.684-.324-.943-.453-1.014-1.28-.706zm30.871.706c-.465 1.352-.52 2.069-.208 2.684.164.323.232.725.172 1.011l-.1.475.35-.406c.206-.24.35-.646.35-.99 0-.683.093-.714.621-.209.293.28.39.31.39.12 0-.141-.11-.406-.247-.59-.345-.465-.316-1.102.079-1.71.457-.704.426-.882-.194-1.102-.814-.289-.88-.25-1.213.717zm-22.156.03c-.112.296.049 1.64.265 2.227.117.315.162.264.334-.378.273-1.02.178-1.991-.2-2.065a.365.365 0 0 0-.4.216zm14.005.009c-.132.35.036 1.882.25 2.27.122.224.203.069.356-.688.11-.537.175-1.15.145-1.363-.064-.461-.601-.618-.752-.22zm-15.213.127c-.54.266-.614.788-.251 1.775.3.819.336.85.895.793.32-.032.595-.07.61-.086.014-.014-.091-.627-.235-1.36-.266-1.36-.348-1.451-1.02-1.122zm2.414.004c-.114.362-.428 2.024-.428 2.268 0 .127.237.266.527.31.48.07.554.016.84-.627.172-.387.316-.878.318-1.091.006-.703-1.073-1.442-1.257-.86zm11.397.118c-.435.444-.442 1.04-.021 1.882.29.58.385.644.844.576.587-.088.6-.162.292-1.672-.235-1.153-.542-1.37-1.115-.786zm2.307 1c-.144.733-.249 1.346-.234 1.36.014.015.285.054.602.086.544.056.593.015.905-.754.189-.465.288-.986.23-1.217-.087-.355-.707-.808-1.105-.808-.075 0-.255.6-.398 1.333zm-9.406.066c-.41.168-.413.18-.094.419.457.343 3.443.344 3.902.001.316-.237.31-.252-.148-.43-.591-.23-3.09-.223-3.66.01zm-.928.947c-.186.15-.793.495-1.35.769-1.002.492-1.007.497-.41.497.784 0 2.113-.412 2.857-.887l.59-.377-.421-.125c-.656-.194-.902-.17-1.266.123zm4.304-.123l-.422.125.59.377c.746.476 2.075.888 2.858.886l.602-.002-.9-.427c-.496-.236-1.116-.583-1.377-.773-.501-.364-.67-.387-1.351-.186zm-9.283.805c-.14.053-.365.132-.502.177-.218.072-.218.101 0 .242.531.342 3.034.11 2.683-.25-.138-.14-1.898-.276-2.181-.17zm13.797.01c-.255.045-.464.145-.464.223 0 .238.486.352 1.49.349.986-.003 1.572-.2 1.233-.414-.25-.157-1.688-.257-2.259-.158zm-14.81.807c0 .49.798 1.74 1.55 2.43.904.828 1.277.996.988.446-.264-.503-.213-.575.2-.28.551.394.865.356.638-.076-.212-.403-.049-.435.412-.08.458.353.643.314.512-.106-.11-.354-.106-.355.356-.047.462.309.466.308.374-.052-.092-.357-.082-.356.5.047.623.43 2.109.584 2.318.238.06-.098-.093-.172-.358-.172-.255 0-.798-.165-1.208-.367l-.744-.368.48-.4.48-.4-.588-.007-.588-.006.58-.317c.632-.346.96-.861.41-.646-.54.211-4.146.31-5.257.145-.705-.105-1.055-.1-1.055.018zm10.999-.06c.04.124.335.37.653.543l.58.317-.589.006-.588.006.48.4.48.401-.744.368c-.41.202-.953.367-1.207.367-.266 0-.419.074-.36.172.21.346 1.696.193 2.32-.238.582-.403.591-.404.5-.046-.093.36-.088.36.374.051.461-.308.466-.307.356.047-.131.42.054.459.511.106.46-.355.624-.323.412.08-.226.432.087.47.638.076.413-.295.465-.223.2.28-.289.55.085.382.987-.446.753-.69 1.55-1.94 1.55-2.43 0-.117-.35-.123-1.054-.018-1.11.166-4.716.066-5.256-.145-.224-.088-.295-.057-.243.103zm-11.42.515c-.153.251.405 1.128 1.001 1.576l.517.389-.294-.423a12.588 12.588 0 0 1-.637-1.068c-.366-.691-.426-.74-.587-.474zm17.818.453c-.193.367-.484.856-.646 1.089l-.295.423.517-.389c.673-.505 1.184-1.373.95-1.611-.12-.122-.285.032-.526.488zM.61 11.206c-.159.262.61 1.77 1.246 2.445.734.778 2.12 1.771 3.374 2.417.813.42.915.436 1.159.188.147-.15.239-.293.205-.318a74.556 74.556 0 0 0-.906-.584 9.907 9.907 0 0 1-1.52-1.248c-.65-.683-.657-.702-.188-.521.589.227 1.262.691 2.383 1.644.746.635 1.772 1.09 1.772.785 0-.171-2-2.117-3.088-3.004-.539-.439-1.365-.997-1.836-1.24-.912-.471-2.454-.806-2.6-.564zm45.728-.016c-1.464.295-3.226 1.487-5.419 3.666-.58.576-1.054 1.098-1.054 1.158 0 .304 1.026-.15 1.772-.785 1.12-.953 1.794-1.417 2.383-1.644.469-.18.462-.162-.19.521-.37.39-1.054.95-1.518 1.248-.464.296-.872.56-.906.584-.035.025.057.168.204.318.244.248.346.232 1.16-.188 1.253-.646 2.64-1.64 3.373-2.417.926-.982 1.595-2.716 1.011-2.621-.064.01-.431.082-.816.16zm-32.82.184c-.8.3-.994 1.35-.38 2.064.219.254.295.249.911-.062.645-.325.708-.327 1.535-.051 1.27.424 1.602.2.622-.422-.43-.273-.988-.772-1.24-1.108-.474-.634-.702-.7-1.448-.42zm3.818.077c-.378.292-.784.267-.889-.053-.048-.148.133-.213.577-.21.61.005.628.02.312.263zm14.216-.053c-.104.32-.51.345-.889.053-.316-.243-.299-.258.313-.263.444-.004.625.062.576.21zm1.481.397c-.252.336-.81.835-1.24 1.108-.98.621-.649.845.623.422.827-.276.89-.274 1.534.051.616.31.693.316.91.062.638-.741.418-1.768-.445-2.075-.763-.27-.884-.233-1.382.432zm-25.399.065c-.297.567-.205 2.075.178 2.88.31.655 2.21 2.636 2.526 2.636.215 0-.294-1.246-.574-1.406-.298-.17-1.123-1.516-1.123-1.83 0-.109.318.154.706.584.697.77.709.775.908.396.181-.345.112-.492-.68-1.442-.484-.582-1.022-1.305-1.196-1.605-.367-.633-.504-.672-.745-.213zm31.987.213c-.174.3-.713 1.023-1.198 1.605-.79.95-.86 1.097-.678 1.442.199.38.21.374.907-.396.389-.43.706-.693.706-.585 0 .316-.825 1.661-1.122 1.83-.28.16-.79 1.407-.575 1.407.317 0 2.215-1.98 2.526-2.636.383-.805.476-2.313.178-2.88-.241-.46-.377-.42-.744.213zm-25.41.486c0 .095-.114.172-.253.172-.14 0-.254-.077-.254-.172 0-.095.114-.172.254-.172.139 0 .253.077.253.172zm20 0c.057.095-.015.172-.16.172-.144 0-.262-.077-.262-.172 0-.095.071-.172.158-.172.088 0 .206.077.264.172zm-14.43.497c0 .091.322.48.717.863l.717.698.054-.635c.04-.454-.03-.698-.243-.857-.212-.158-.33-.167-.413-.032-.083.138-.213.136-.474-.006-.208-.114-.359-.127-.359-.03zm7.193.069c-.214.159-.283.402-.244.857l.054.635.718-.698c.752-.732.953-1.157.405-.858-.198.108-.37.11-.473.005-.103-.104-.27-.083-.46.058zm-8.038.304c0 .293-.052.318-.337.162-.525-.286-.4.055.285.773.561.59.634.621.747.327.264-.686.163-1.21-.273-1.412-.374-.174-.422-.157-.422.15zm9.663-.132c-.397.183-.485.739-.222 1.413.124.318.18.293.747-.335.676-.747.791-1.065.288-.79-.264.144-.336.117-.38-.142-.044-.266-.119-.29-.433-.146zm-7.097 1.126c-.04.796.019 1.088.285 1.419.331.412.336.413.593.072.4-.533.33-1.362-.168-1.965-.24-.291-.487-.53-.548-.53-.062.001-.134.452-.162 1.004zm4.285-.474c-.498.603-.569 1.432-.168 1.965.257.341.262.34.594-.072.265-.33.324-.623.284-1.42-.027-.55-.1-1.002-.162-1.002-.061 0-.308.238-.548.529zm-11.354.155c-.573.173-1.067.294-1.097.269-.03-.025-.26-.096-.513-.157-.586-.144-.484.267.14.557.77.358 1.725.244 2.184-.26.34-.374.55-.792.372-.736l-1.086.327zm1.244.142c-.25.265-.454.619-.454.786 0 .283.03.282.464-.026.6-.425 1.474-.725 2.135-.732.497-.005.507-.018.196-.258-.18-.139-.678-.253-1.108-.253-.634 0-.864.09-1.233.483zm14.304-.23c-.31.24-.3.253.196.258.662.007 1.536.307 2.135.732.452.32.464.321.464.006 0-.178-.213-.532-.474-.786-.37-.362-.638-.463-1.233-.463-.418 0-.908.114-1.088.253zm2.457-.093c0 .074.187.34.414.59.459.504 1.414.618 2.185.26.623-.29.726-.7.14-.557-.253.061-.485.133-.515.158-.03.025-.543-.096-1.14-.27-.596-.174-1.084-.256-1.084-.181zm-12.489.748c0 .77.366 1.501.751 1.501.259 0 .43-.37.43-.928 0-.348-.78-1.309-1.064-1.309-.064 0-.117.332-.117.736zm7.373-.253c-.444.473-.555.94-.35 1.482.145.386.508.337.816-.11.27-.394.37-1.854.125-1.854-.075 0-.341.217-.59.482zm-16.74.488c-.643 1 .008 2.858 1.268 3.617.577.348.664.584.167.452-.186-.05-.338-.144-.338-.209 0-.164-2.158-1.804-2.825-2.148-.57-.293-1.965-.438-2.173-.226-.215.22.51 1.366 1.183 1.868.361.27 1.074.692 1.583.938.746.36.955.402 1.07.216.227-.364.19-.419-.496-.734a6.155 6.155 0 0 1-1.14-.708c-.82-.683-.074-.502 1.09.265.575.378 1.175.689 1.334.69.206.002.169.065-.13.22-.56.288-.62.744-.178 1.353l.363.5-.39-.087a45.326 45.326 0 0 0-1.393-.264c-1.17-.206-1.775-.622-.683-.469.372.052.917.148 1.213.213.48.106.528.082.45-.226-.096-.372-1.576-.899-2.518-.897-.763.001-1.76.333-1.76.586 0 .325 1.216 1.138 1.971 1.317.9.213 2.54.197 2.952-.028.25-.136.396-.136.529 0s.062.188-.256.188c-.287 0-.597.189-.886.54l-.445.539.375.407c.252.274.564.407.951.407h.577l-.456.552c-.464.562-1.676 1.232-2.008 1.11-.1-.036.27-.29.822-.563 1.03-.51 1.392-.927.803-.927-.447 0-1.705.463-2.227.82-.233.159-.614.299-.846.31-.232.012-.875.15-1.428.306-.553.156-1.199.278-1.435.27-.777-.026.93-.689 2.388-.927.732-.12 1.367-.255 1.413-.302.045-.046-.343-.129-.862-.183-1.34-.142-3.548.262-4.717.862-.57.292-1.435 1.07-1.435 1.289 0 .262.913.51 1.89.512 1.32.003 3.558-.763 3.933-1.347.154-.24.318-.397.364-.35.047.047-.046.29-.205.537-.369.574-.252.68.73.663 1.12-.02 2.23-.502 2.244-.974.01-.364.012-.363.163.02.119.3.288.386.76.386.334 0 .75-.077.923-.172.286-.156.307-.118.224.407-.114.712.179 1.314.638 1.314.19 0 .561-.221.826-.491l.482-.49.11.447c.129.53.553 1.05.856 1.05.298 0 .914-.836.914-1.24 0-.272.106-.218.582.296.991 1.071 1.163.852 1.182-1.508.01-1.199-.05-2.021-.148-2.021-.09 0-.374.206-.632.458-.36.352-.688.477-1.401.538-1.114.094-1.79-.156-2.39-.883-.378-.458-.425-.641-.344-1.342a5.43 5.43 0 0 1 .441-1.505c.673-1.344.393-2.112-1.216-3.342-.596-.456-1.297-1.172-1.557-1.592-.26-.42-.491-.762-.513-.762-.023 0-.172.204-.333.454zm7.926.019c.156.644.644 1.477.85 1.45.364-.045.262-.855-.175-1.383-.555-.673-.828-.7-.675-.067zm10.308.067c-.433.524-.537 1.317-.184 1.4.194.047.703-.822.86-1.467.152-.633-.121-.606-.676.067zm7.763.21c-.264.426-.966 1.148-1.559 1.604-.592.455-1.188 1-1.323 1.21-.344.532-.306 1.318.1 2.132.192.38.39 1.058.442 1.505.082.7.035.884-.343 1.342-.6.727-1.276.977-2.39.883-.731-.062-1.04-.184-1.433-.568-.275-.27-.553-.435-.619-.369-.064.067-.129 1.01-.143 2.095-.024 1.86-.006 1.975.308 1.975.183 0 .588-.277.9-.615.468-.505.57-.555.57-.28 0 .403.616 1.239.914 1.239.302 0 .727-.52.856-1.05l.11-.448.481.491c.265.27.636.49.826.49.456 0 .752-.6.64-1.299l-.089-.564.536.218c.294.12.725.166.957.103.35-.095.418-.212.396-.677a1.759 1.759 0 0 0-.41-.978l-.382-.415h.526c.322 0 .71-.167 1-.43l.474-.43-.552-.516c-.303-.284-.663-.517-.801-.517s-.25-.085-.25-.19c0-.119.11-.14.295-.053.515.239 2.24.283 3.054.078.919-.233 2.051-.94 2.051-1.283 0-.296-.863-.616-1.66-.616-1.031 0-2.518.51-2.618.898-.08.308-.031.332.45.226.295-.065.84-.161 1.212-.213 1.163-.163.442.282-.773.477-.596.095-1.224.217-1.397.27-.282.088-.277.047.06-.415.45-.62.393-1.075-.17-1.365-.3-.155-.337-.218-.13-.22.158-.001.759-.312 1.333-.69 1.164-.767 1.91-.948 1.09-.265a6.155 6.155 0 0 1-1.14.708c-.683.314-.722.371-.5.727.17.275 1.581-.323 2.64-1.119.703-.529 1.428-1.663 1.207-1.888-.234-.24-1.62-.067-2.298.285-.574.298-2.453 1.734-2.707 2.068-.135.177-.675.345-.674.21 0-.069.217-.25.48-.402 1.28-.742 1.969-2.81 1.246-3.735l-.312-.4-.48.776zm-13.945.848c-.297.856-.255 1.26.192 1.842l.33.43.334-.43c.397-.512.429-1.048.099-1.698-.461-.909-.678-.941-.955-.144zm2.172-.436c-.71.83-.812 1.614-.296 2.278l.333.43.334-.43c.39-.502.443-1.482.113-2.13-.214-.42-.243-.43-.484-.148zm-24.734.003c-.348.243.62 1.431 1.618 1.983 1.108.615 3.585 1.253 5.432 1.4l1.435.116-.417-.34c-.23-.187-1.076-.497-1.88-.688-1.466-.349-3.02-.979-3.02-1.225 0-.194 1.282.087 2.574.565 2.08.77 1.095-.396-1.064-1.26-1.145-.457-1.724-.582-2.944-.635-.836-.036-1.616.002-1.734.084zm43.865.307c-.683.238-1.48.554-1.772.703-.49.251-1.107.867-1.115 1.115-.002.06.509-.082 1.135-.314 1.295-.48 2.574-.76 2.574-.564 0 .261-1.449.855-2.948 1.208-.842.198-1.719.512-1.95.698l-.418.338 1.434-.113c1.85-.146 4.327-.781 5.433-1.395.988-.547 1.97-1.744 1.617-1.972-.477-.31-2.727-.142-3.99.296zm-24.21.342c-.104.654.19 1.814.473 1.858.091.015.27-.192.395-.46.258-.547.07-1.246-.47-1.743-.28-.259-.305-.237-.398.345zm8.132-.325c-.568.663-.685 1.074-.481 1.702.224.692.375.741.633.206.309-.64.368-1.045.241-1.65-.115-.549-.133-.56-.393-.258zm-6.714.204c-.275.523-.22 1.258.135 1.806l.316.489.274-.398c.405-.59.347-1.396-.135-1.856-.405-.388-.408-.389-.59-.041zm5.087.072c-.444.482-.488 1.263-.102 1.825l.273.398.316-.489c.366-.566.413-1.409.103-1.841-.2-.28-.24-.274-.59.107zm-4.148 1.864c-.324.47-.364 1.497-.082 2.126.258.578.381.554.816-.163.407-.672.361-1.276-.15-1.959l-.306-.41-.278.405zm1.498.147c-.142.28-.257.712-.257.963 0 .434.473 1.454.675 1.454.201 0 .675-1.02.675-1.454 0-.52-.436-1.47-.675-1.47-.088 0-.276.228-.418.507zm1.724-.116c-.494.768-.527 1.268-.128 1.926.438.723.56.748.82.169.293-.656.24-1.705-.11-2.144l-.304-.384-.278.433zm-4.762.12c-.368.414-.407 1.208-.1 1.983l.206.516.41-.483c.49-.579.538-1.465.109-2.006l-.3-.377-.325.367zm6.261.026c-.401.585-.344 1.424.135 1.99l.41.483.205-.516c.32-.806.27-1.596-.125-2l-.35-.356-.274.4zm-25.371.503c-.784.158-1.4.447-1.4.656 0 .264.774.872 1.566 1.23.754.34 3.358.677 5.269.683l.675.002-.506-.416c-.35-.288-.818-.45-1.52-.527-.556-.061-1.268-.193-1.58-.292-.837-.265-.323-.493.834-.37.61.065 1.082.025 1.336-.113.543-.296.271-.419-1.674-.757-1.734-.301-1.946-.308-3-.096zm42.159.073c-.688.131-1.447.29-1.688.351-.428.11-.43.117-.1.37.253.194.594.234 1.35.161 1.221-.118 1.763.11.907.381-.313.1-1.025.23-1.581.292-.702.077-1.169.24-1.52.527l-.506.416.675-.002c3.165-.01 5.53-.526 6.454-1.411.51-.488.483-.625-.174-.904-.867-.37-2.442-.444-3.817-.181zm-22.524 1.74c-.624.936-.58 1.103.287 1.103.402 0 .77-.04.82-.09.15-.154-.044-.845-.36-1.272l-.302-.408-.445.667zm1.701-.117c-.159.274-.29.662-.29.86 0 .306.103.36.676.36.573 0 .675-.054.675-.36 0-.362-.495-1.36-.675-1.36-.053 0-.226.225-.386.5zm1.688 0c-.16.274-.29.662-.29.86 0 .306.103.36.675.36.573 0 .676-.054.676-.36 0-.362-.496-1.36-.675-1.36-.053 0-.227.225-.386.5zm1.67-.074c-.151.234-.293.602-.315.817-.037.352.04.397.76.444.579.038.802-.011.802-.175 0-.213-.786-1.512-.915-1.512-.032 0-.182.192-.333.426zm-6.104.14c-.265.702-1.728 1.048-2.363.558-.477-.368-.581-.324-.581.246 0 .582.494 1.135 1.124 1.258.45.088.672-.198.502-.65-.078-.207.066-.258.739-.258.743 0 .846-.046.938-.417.056-.23.025-.559-.07-.732-.165-.299-.178-.3-.289-.005zm7.613.094c-.235.755.026 1.06.907 1.06.774 0 .808.02.79.474-.015.409.039.465.404.414.615-.085 1.181-.692 1.181-1.266 0-.488-.002-.49-.497-.228-.879.463-1.806.28-2.394-.475l-.275-.352-.116.373zM2.312 21.689c-.75.227-1.603.729-1.603.942 0 .103.323.376.717.606.64.374.916.419 2.574.419 1.021 0 2.082-.064 2.358-.142l.503-.142-.418-.33c-.277-.219-.57-.298-.868-.234-.585.123-1.73-.095-1.536-.293.081-.083.685-.181 1.341-.218.748-.042 1.36-.178 1.637-.363.243-.163.443-.326.443-.362 0-.137-4.662-.03-5.148.117zm5.883-.02c-.6.147-1.748.826-1.748 1.035 0 .379 1.308.78 2.48.759 1.504-.026 1.86-.139 1.569-.497-.138-.17-.52-.256-1.126-.256-.569 0-.878-.066-.813-.172.057-.095.332-.172.612-.172.632 0 1.16-.277 1.16-.609 0-.278-1.155-.325-2.134-.088zm29.475.064c0 .354.512.633 1.16.633.28 0 .555.077.613.172.064.106-.245.172-.814.172-.606 0-.988.087-1.126.256-.291.358.065.47 1.57.497 1.18.02 2.48-.38 2.48-.766 0-.08-.337-.346-.748-.591-.952-.569-3.135-.829-3.135-.373zm2.87-.177c0 .313 1.036.682 2.079.74.656.038 1.26.136 1.342.22.194.198-.952.415-1.537.292-.299-.064-.59.015-.868.234l-.417.33.502.142c.276.078 1.337.142 2.358.142 1.658 0 1.934-.045 2.574-.419.395-.23.718-.507.718-.614 0-.108-.361-.384-.802-.614-.725-.378-1.047-.423-3.376-.476-1.415-.032-2.573-.022-2.573.023zm-19.747 1.41c0 .07.165.426.367.792.253.46.426.615.559.502.16-.135.978.276 1.594.802.04.034-.008.145-.108.247-.13.132-.303.104-.606-.098-.316-.21-.456-.231-.548-.08-.07.116-.004.273.153.363.396.226.347.368-.256.731-.475.286-.503.343-.253.53.154.114.28.257.28.318 0 .24-.655.09-1.075-.247-.404-.323-.445-.466-.445-1.545 0-1.114-.025-1.195-.408-1.293-.85-.218-1.022-.06-1.076.989-.099 1.905.66 2.827 2.204 2.68.486-.047 1.004-.137 1.151-.201.156-.068.43.018.656.204l.387.32-.866.648c-.476.357-.865.7-.863.763.002.063.381.367.844.675.462.308.84.618.84.688-.003.265-1.423 1.054-1.61.895-.127-.106-.313.069-.571.538-.212.383-.35.73-.31.771.04.042.43.026.865-.035.621-.087.773-.17.708-.388-.055-.188.184-.46.741-.847l.824-.57.853.57c.587.392.828.657.77.847-.065.218.085.3.708.388.435.06.82.081.854.045.053-.053-.522-1.188-.749-1.48-.035-.044-.124.021-.2.145-.105.174-.293.114-.828-.263-.38-.269-.694-.54-.698-.603-.003-.063.374-.398.838-.746.465-.348.806-.696.76-.774-.048-.077-.428-.36-.845-.63-.417-.268-.759-.544-.759-.613 0-.069.18-.245.399-.392.307-.205.504-.226.855-.09.665.258 1.823.216 2.238-.08.52-.372.926-1.589.864-2.592L28.98 24h-1.351l-.084 1.263c-.071 1.061-.148 1.315-.483 1.591-.424.35-1.036.443-1.036.157a.17.17 0 0 1 .169-.172c.193 0 .235-.513.042-.522-.07-.003-.273-.118-.45-.255-.309-.238-.31-.266-.032-.58.387-.436.034-.681-.403-.28-.22.204-.398.244-.592.133-.232-.132-.143-.25.53-.696.57-.377.847-.476.933-.335.067.111.15.166.185.121.227-.291.802-1.426.75-1.48-.035-.035-.42-.015-.855.046-.623.087-.773.17-.708.388.058.19-.18.453-.755.837l-.84.56-.838-.56c-.614-.41-.815-.64-.748-.861.064-.215-.003-.301-.238-.301-.18 0-.565-.049-.855-.108-.29-.059-.527-.05-.527.02zm15.733.647c.035.118.517.439 1.069.712.552.273.914.53.804.57-.11.04-.429-.049-.709-.196-.663-.35-.695-.343-.695.14 0 .44.432.698 1.621.971.68.157 1.586.048 1.586-.191 0-.372-1.187-1.459-1.988-1.82-.98-.441-1.792-.531-1.688-.186zm3 .116c-.868.135-.702.21 1.132.51 1.244.203 2.77.841 2.069.865-.373.012-1.082-.15-2.676-.61l-.404-.117.39.538c.75 1.033 4.062 1.797 5.44 1.255.254-.1.463-.248.463-.327 0-.22-.866-.998-1.442-1.293-1.213-.624-3.648-1.025-4.971-.82zm-28.929 2.195c-.236.364-.479.913-.539 1.218-.096.49-.065.557.257.557.955 0 2.619-1.371 2.518-2.076-.054-.374-.094-.358-.869.326-1.077.952-1.282.9-.4-.1.189-.212.26-.387.158-.387-.101 0-.3-.044-.44-.1-.17-.066-.4.122-.685.562zm24.542-.243c0 .704 1.656 2.018 2.544 2.018.324 0 .354-.066.258-.557-.159-.81-.91-1.902-1.224-1.78-.14.056-.339.1-.44.1-.101 0-.03.175.157.387.189.213.4.492.472.62.191.341-.415-.013-.839-.49-.184-.207-.468-.45-.631-.539-.244-.133-.297-.09-.297.24zm-10.962.211c-.013.256-.39.209-.478-.06-.047-.144.03-.208.206-.171.155.033.277.137.272.231zm-18.005.424c-.884.517-2.088 1.778-2.088 2.188 0 .158.258.227.844.227.612 0 .935.093 1.173.335.348.355 2.61 5.897 2.796 6.848.06.307.178.56.264.56.085 0 .155.204.155.453 0 .25.168.796.372 1.213.367.75.367.766.057 1.354-.277.524-.287.653-.084 1.067.273.56 1.271 1.543 1.708 1.684.17.056.31.243.31.418 0 .398.925 1.208 1.379 1.208.306 0 .333-.09.271-.903-.038-.497-.12-1.02-.184-1.162-.083-.185.157-.436.855-.894 1.577-1.034 2.164-1.226 3.789-1.242 1.786-.017 2.015-.172 1.502-1.019-.332-.547-.337-.593-.058-.518.343.091 1.222-.534 1.222-.868 0-.144-.175-.19-.525-.138-.594.09-.818-.145-.822-.86-.003-.568.546-.998 1.274-.998.304 0 .65-.139.818-.328.282-.318.262-.33-.69-.397-.832-.059-1.03-.015-1.29.285l-.306.354.176-.369c.131-.273.113-.498-.072-.875-.202-.413-.364-.512-.882-.539-.349-.018-.78-.05-.96-.071-.205-.025-.468.176-.717.546-.215.322-.392.506-.392.41 0-.096.16-.382.357-.637.347-.45.348-.47.043-.71-.64-.503-1.744.153-2.098 1.245-.3.926-.131 1.123.627.728.873-.453 1.042-.419 1.103.227.08.837.535.815 1.298-.06l.64-.736.108.55c.066.333.21.549.37.549.233 0 .232.044-.009.419-.148.23-.245.637-.215.903.036.315-.044.544-.228.656-3.535 2.149-4.644 2.385-5.283 1.126-.229-.451-.36-.523-.942-.523-.496 0-.7-.08-.767-.302-.133-.438-1.1-2.484-1.275-2.699-.186-.227-1.999-4.03-1.999-4.193 0-.065.337-.3.748-.523.646-.35 1.748-1.473 2.2-2.244.22-.375-.725-.079-1.387.434-.677.526-.712.268-.066-.489.264-.31.52-.78.568-1.044.085-.47.08-.474-.27-.178-.917.773-1.675 1.565-1.986 2.077-.378.62-.57.61-.691-.04-.067-.359.034-.498.613-.844.381-.228 1.149-.78 1.706-1.227l1.013-.813-.652.118c-.359.065-1.093.354-1.632.642-1.22.652-1.722.553-.598-.118.7-.418.775-.511.502-.62-.547-.219-.799-.166-1.693.357zm33.962-.357c-.272.109-.197.202.503.62 1.123.671.622.77-.599.118-.539-.288-1.273-.577-1.631-.641l-.652-.118 1.097.883c1.657 1.334 2.887 1.91 4.077 1.91.704 0 .986-.065.986-.227 0-.41-1.204-1.671-2.087-2.188-.895-.523-1.146-.576-1.694-.357zm-16.736.346c.051.084-.026.2-.173.258-.464.181-.63.119-.407-.154.238-.293.443-.33.58-.104zm1.783.104c.175.215.152.258-.138.258-.37 0-.6-.223-.42-.407.17-.173.331-.13.558.149zm-12.566.47c-.28.686-.335 1.467-.125 1.803.27.435 1.886-1.041 1.889-1.726 0-.218-.733.072-.964.38-.18.242-.207.222-.214-.153-.004-.237-.08-.545-.167-.686-.125-.201-.213-.12-.419.382zm2.12-.158c-.353.915-.204 2.354.245 2.354.243 0 1.087-1.033 1.087-1.33 0-.324-.493-.384-.665-.082-.14.244-.171.206-.185-.222-.01-.284-.08-.671-.156-.86-.128-.32-.151-.31-.325.14zm2.024.213c-.403.697-.438 1.077-.158 1.703.257.576.414.553.822-.12.502-.83.587-1.32.28-1.632-.238-.244-.28-.215-.442.316l-.179.584.067-.731c.037-.402.044-.731.016-.731-.029 0-.211.275-.406.611zm14.091.12l.067.73-.179-.583c-.162-.53-.203-.56-.442-.316a.694.694 0 0 0-.161.67c.14.55.743 1.52.944 1.52.09 0 .255-.31.367-.688.175-.598.16-.768-.12-1.304-.451-.864-.553-.87-.476-.03zm2.035-.356c-.057.22-.108.592-.112.829-.006.369-.031.388-.176.136-.172-.302-.665-.242-.665.081 0 .308.848 1.331 1.103 1.331.32 0 .478-.7.372-1.66-.103-.93-.37-1.296-.522-.717zm2.028-.128a2.39 2.39 0 0 0-.117.67c-.005.33-.03.341-.212.097-.23-.31-.965-.6-.964-.38.002.346.721 1.292 1.218 1.6.485.3.561.308.693.068.186-.338.003-1.64-.288-2.045-.206-.287-.225-.288-.33-.01zm3.228.403c.047.257.302.722.567 1.033.615.722.628 1.102.017.517-.517-.495-1.706-.864-1.466-.455.756 1.29 2.592 2.728 3.482 2.728.94 0-.377-2.428-2.05-3.779l-.634-.512.084.468zm-13.538.058c.05.083-.101.24-.336.348-.33.154-.485.149-.686-.022-.233-.197-.23-.241.024-.431.292-.218.836-.16.997.105zm-12.79.304c-1.026.671-1.99 2.449-1.99 3.67 0 .798.021.84.38.729.652-.202 1.45-.919 1.905-1.709.402-.698.417-.795.193-1.23l-.243-.473-.263.518c-.144.285-.384.621-.532.747-.242.204-.251.178-.091-.25.098-.264.326-.69.507-.95.282-.404.742-1.401.629-1.364-.021.007-.244.147-.495.312zm6.2.463c-.241.59-.238.679.045 1.173.427.744.625.536.625-.656 0-1.216-.29-1.441-.67-.517zM29.3 27.42c-.14.375-.001 2 .175 2.045.088.022.298-.2.466-.494.282-.492.285-.585.05-1.162-.267-.649-.536-.8-.69-.389zm6.514-.015c0 .118.19.5.423.85.431.646.814 1.508.67 1.508-.043 0-.296-.306-.562-.68l-.484-.68-.197.441c-.17.38-.136.549.24 1.204.436.758 1.61 1.78 2.045 1.78.313 0 .3-1.381-.02-2.162-.368-.899-1.243-2.07-1.707-2.286-.313-.146-.408-.14-.408.025zm-21.648.982c-.054.142-.186.547-.292.9-.207.686-.507 1.021-.507.567 0-.15.111-.545.247-.876l.247-.603-.506.304c-.79.476-1.214 2.475-.713 3.367.168.301 1.135-.683 1.526-1.553.36-.803.398-1.04.259-1.65-.1-.435-.2-.613-.261-.456zm1.825.467c-.064.388-.229.848-.366 1.023-.228.29-.24.267-.136-.278.114-.593.113-.594-.287-.324-.463.312-.625 1.468-.319 2.288l.182.487.433-.412c.882-.84 1.27-2.204.858-3.007l-.248-.483-.117.706zm15.621-.167c-.35.863.034 2.136.89 2.951l.432.412.182-.487c.309-.828.145-1.975-.327-2.293l-.409-.276.117.594c.178.908-.207.396-.459-.61l-.207-.828-.219.537zm1.935.13c-.162.876.223 1.96.96 2.712.355.36.707.616.785.567.289-.182.346-1.434.103-2.267-.177-.61-.387-.93-.751-1.15l-.506-.304.247.603c.136.331.245.74.242.909-.005.283-.024.281-.25-.024-.136-.183-.294-.59-.352-.906-.146-.794-.347-.853-.478-.14zm-8.869.023c.37.25.672.48.672.514 0 .033-.304.265-.675.516l-.675.455-.675-.455c-.372-.25-.675-.49-.675-.533 0-.074 1.206-.95 1.308-.95.027 0 .351.204.72.453zm-6.74 1.946c-.116.657-.3 1.27-.41 1.364-.11.093-.502.194-.872.224l-.673.056.573.318c.315.175.92.33 1.343.345l.77.025.052-.645c.041-.51-.007-.645-.23-.645-.262 0-.263-.022-.003-.315.465-.522.294-1.922-.233-1.922-.06 0-.203.538-.318 1.195zm11.496-.988c-.295.3-.248 1.35.077 1.715.26.293.26.315 0 .315-.375 0-.396 1.17-.023 1.315.312.122 1.756-.23 2.09-.51.195-.164.098-.22-.504-.289l-.745-.086-.229-1.333c-.233-1.36-.31-1.49-.666-1.127zm2.034 3.1c-.467.23-.473.34-.042.736.185.172.337.412.337.535 0 .123.361.397.802.61.441.212.859.416.928.452.232.121.13-1.004-.138-1.533-.206-.406-1.174-1.068-1.46-.998a6.313 6.313 0 0 0-.427.198zm6.609.07c.08.213.026.257-.235.187-.273-.073-.34-.007-.34.335 0 .341.064.405.323.32.262-.084.307-.037.234.247-.071.277-.01.352.287.352.296 0 .357-.075.286-.352-.073-.284-.028-.33.234-.246.26.084.323.02.323-.32 0-.343-.066-.409-.34-.336-.261.07-.316.026-.235-.188.078-.205.007-.279-.268-.279-.276 0-.346.074-.27.28zm-8.087.36c-.549.052-.738.168-1.001.615-.179.303-.305.629-.282.724.023.094-.054.075-.172-.043-.24-.241-2.341-.304-2.341-.07 0 .36.723.773 1.375.787.552.01.767.111 1.04.482.294.4.314.534.14.922-.168.377-.289.44-.71.378-.644-.096-.746.069-.352.565.204.257.493.39.843.39.581 0 .65.181.337.882-.108.242-.148.489-.088.55.06.06.622.168 1.25.238 1.997.224 4.315.816 5.43 1.386.96.492 1.136.53 1.615.354.295-.109.707-.198.916-.198.85 0 2.018-.971 2.914-2.426l.28-.454-.871-.107c-1.123-.137-2.498-.137-3.787 0-.93.099-1.007.137-.836.416.295.481-.121.852-.952.847-1.3-.006-3.481-.98-3.481-1.554 0-.135.627-.076 1.06.1.27.11.29.044.194-.63-.058-.413-.24-.945-.402-1.182-.162-.237-.333-.84-.38-1.339-.06-.628-.207-1.039-.477-1.332-.215-.234-.435-.411-.488-.395a9.238 9.238 0 0 1-.774.094zm.93 2.294c0 .076.106.163.236.193.195.046.197.093.016.263-.177.166-.275.093-.487-.363-.146-.314-.372-.661-.502-.771-.192-.162-.262-.108-.365.277-.07.263-.112.788-.095 1.166.033.68.155.858 1.037 1.51.412.304.412.304-.094.046-.897-.458-1.097-.703-1.097-1.347 0-.411-.15-.8-.458-1.185-.366-.457-.38-.504-.074-.235.328.288.407.3.54.086.086-.138.157-.44.158-.672.003-.402.03-.391.594.237.325.361.59.72.59.795zm-6.372-.871c-.301.187-.548.434-.548.547 0 .114-.213 0-.474-.255-.547-.535-1.214-.622-1.214-.158 0 .166.133.544.295.837.41.743 1.393 1.907 1.393 1.651 0-.116.272-.518.606-.895.41-.462.635-.908.697-1.376.104-.787.014-.829-.755-.351zm.97.119c0 .253-.09.718-.203 1.034-.176.497-.163.612.105.872.22.213.33.24.384.09.042-.115.262-.489.49-.83l.412-.62-.383-.494c-.485-.627-.804-.648-.804-.052zm-4.108.025c-.366.412-.356.49.142 1.093.233.281.422.622.422.756 0 .322.242.312.513-.021.179-.219.167-.373-.063-.866-.155-.33-.28-.752-.28-.938 0-.425-.368-.437-.734-.024zm-6.358.179c-.408.222-.614.473-.673.817-.06.35-.198.512-.465.551-.5.073-.479.3.06.66.363.242.529.26.95.097l.51-.196-.097.61c-.084.529-.059.594.19.485.158-.069.579-.143.936-.165.986-.061 1.522-.562 1.662-1.55.078-.555.045-.97-.1-1.251l-.217-.422-.363.52c-.2.285-.434.701-.522.924-.117.298-.162.326-.17.104-.02-.55-.798-.348-1.16.301-.152.274-.192.287-.196.064-.002-.154.11-.376.248-.494.257-.217.361-1.376.124-1.376-.07 0-.394.144-.717.32zm16.981-.195c-.346.353.355 1.96 1.02 2.34.367.21 1.035-.007 1.243-.404.149-.283.127-.342-.13-.342a.719.719 0 0 1-.715-.703c0-.404-1.173-1.141-1.418-.89zm5.026.12c-.565.252-1.298 1.131-1.497 1.798-.122.41-.12.41.933.306.58-.058 1.074-.127 1.096-.153.128-.146.258-2.196.138-2.19-.078.003-.38.111-.67.24zm.949.012c0 .143.15.258.337.258.188 0 .338-.115.338-.258 0-.144-.15-.258-.337-.258-.188 0-.338.114-.338.258zm.881.859c.026.614.123 1.12.216 1.125.093.005.613.052 1.156.105.975.096.986.092.867-.308-.204-.682-.94-1.547-1.534-1.8-.31-.131-.605-.24-.657-.24-.052 0-.073.503-.047 1.118zm-.881.001c0 .143.15.258.337.258.188 0 .338-.115.338-.258 0-.143-.15-.258-.337-.258-.188 0-.338.115-.338.258zm.032.903c.031.166.169.301.306.301.136 0 .274-.135.305-.3.04-.212-.051-.302-.306-.302-.254 0-.345.09-.305.301zm-15.732.307c-.23.24-.564.569-.743.731-.865.787-1.11 1.074-1.11 1.303 0 .21.128.2.795-.058 1.187-.459 1.568-.875 1.568-1.71 0-.386-.02-.702-.046-.702-.025 0-.234.196-.464.436zm2.648-.321c-.23.235-.101 1.058.234 1.492.196.254.655.533 1.055.642.39.107.803.273.92.37.155.13.21.089.21-.156 0-.19-.461-.755-1.078-1.321a121.956 121.956 0 0 1-1.154-1.066c-.04-.042-.125-.024-.187.039zm-1.795.625c-.005.655.388 1.669.648 1.669.331 0 .703-.692.792-1.475l.097-.848-.45.516c-.249.287-.482.431-.523.326a3.04 3.04 0 0 0-.317-.516c-.223-.301-.242-.277-.247.328zm13.096.213a.276.276 0 0 0 .158.365c.33.13.48-.026.353-.364-.128-.34-.383-.341-.511-.001zm.936.02c.071.377.562.43.562.062 0-.14-.14-.283-.31-.317-.226-.044-.295.026-.252.256zm.89-.098c-.174.287.217.616.45.379.195-.199.073-.566-.188-.566-.081 0-.2.084-.262.187zm.853-.015c-.141.233.05.517.348.517.133 0 .243-.155.243-.345 0-.356-.407-.474-.59-.172zm1.041-.057c-.205.21-.116.574.14.574.141 0 .254-.153.254-.345 0-.342-.18-.447-.394-.229zm-4.594.244c-.063.103-.036.267.06.364.213.217.54.034.54-.303 0-.29-.435-.334-.6-.06zm5.354.099c.033.174.173.317.311.317.362 0 .31-.5-.06-.573-.225-.044-.294.026-.25.256zm-18.173.733c-.185.187-.965.612-1.733.946-.768.334-1.752.883-2.186 1.22-.888.692-1.489.744-1.467.127.009-.26-.084-.387-.284-.387-.664 0-1.177 1.053-.833 1.71.157.298.13.446-.154.813-.438.568-.442 1.264-.008 1.825.185.24.337.56.337.712 0 .408.293.33.61-.163l.28-.436.306.511c.168.281.456.594.64.694.407.223 1.199.235 1.525.024.168-.108.38-.01.717.333.561.572 1.258.769 1.875.53.388-.15.513-.099 1.025.423.32.327.652.594.736.594.084 0 .405-.265.713-.59.48-.505.62-.566.978-.428.587.228 1.64-.096 2.053-.632.279-.36.396-.405.673-.254.792.432 1.866-.045 2.254-1 .165-.408.19-.418.259-.107.141.64.715 1.074.715.54 0-.13.151-.432.337-.673.44-.569.442-1.523.006-1.926-.251-.231-.293-.383-.17-.618.381-.724.02-1.745-.683-1.933-.258-.068-.344-.017-.323.194.088.92-.458.968-1.489.132-.395-.32-1.478-.909-2.408-1.308-.929-.4-1.768-.854-1.865-1.008-.136-.218-.197-.23-.268-.055-.051.125-.264.43-.472.677-.414.49-.442.476-1.144-.52-.204-.29-.231-.29-.552.033zm.602 2.714c-.192.644-.438 1.904-.548 2.8-.191 1.554-.21 1.606-.418 1.119-.281-.66-.164-1.408.548-3.484.315-.92.584-1.828.598-2.017.022-.308.032-.305.096.034.04.208-.084.905-.276 1.548zm2.528 2.03c.23.732.2 1.688-.064 2.057-.199.277-.24.149-.333-1.042-.059-.747-.298-2.055-.531-2.907-.234-.851-.422-1.664-.42-1.806.005-.22.82 2.015 1.348 3.698zm-4.029-2.759c-.282.328-.714.947-.962 1.377-.436.76-.758.887-.75.297.005-.379.414-.89 1.32-1.653.923-.776 1.049-.783.392-.02zm5.668.683c.37.343.549.667.549.992 0 .582-.29.634-.493.09-.08-.216-.405-.739-.72-1.161-1.087-1.456-.97-1.442.664.079zM19.78 44.17c0 .12-.07.217-.157.217-.248 0-.7-.528-.596-.698.123-.203.753.2.753.481zm8.86-.018c-.297.22-.59.174-.59-.093 0-.075.171-.214.38-.31.482-.224.64.081.21.403z" fill="currentColor"/></svg> </span><!----></span></li><!--]--></ul></li><li class="_half-width _align-end tw-h-12 tw-mt-3 bre-inline-menu__item"><span><span class="nuxt-icon tw-text-gray-2 tw-text-5xl _no-icon-margin" title="16+"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 48 48" fill="none"><circle cx="24" cy="24" r="23" stroke="currentColor" stroke-width="2"/><path fill="currentColor" d="M10.11 21.188v-1.516c.703-.031 1.195-.078 1.476-.14.448-.1.812-.298 1.094-.595.192-.203.338-.474.437-.812.057-.203.086-.354.086-.453h1.852V29h-2.282v-7.813H10.11Zm10.77 4.226c0 .61.165 1.107.493 1.492a1.57 1.57 0 0 0 1.25.578c.495 0 .883-.185 1.164-.554.286-.375.43-.86.43-1.453 0-.662-.162-1.167-.485-1.516a1.545 1.545 0 0 0-1.187-.531c-.38 0-.717.114-1.008.343-.438.339-.656.886-.656 1.641Zm3.133-4.89c0-.183-.07-.383-.21-.602-.24-.354-.602-.531-1.086-.531-.724 0-1.24.406-1.547 1.218-.167.448-.282 1.11-.344 1.985.276-.328.596-.568.96-.719a3.243 3.243 0 0 1 1.25-.227c1.006 0 1.829.342 2.47 1.024.645.682.968 1.555.968 2.617 0 1.057-.315 1.99-.945 2.797-.63.807-1.61 1.21-2.937 1.21-1.427 0-2.48-.595-3.157-1.788-.526-.932-.789-2.136-.789-3.61 0-.864.037-1.567.11-2.109.13-.963.382-1.766.757-2.406a3.89 3.89 0 0 1 1.266-1.32c.526-.334 1.154-.5 1.883-.5 1.052 0 1.89.27 2.515.812.625.537.977 1.253 1.055 2.148h-2.219Zm3.85 5.257v-2.039h3.203V20.54h2.055v3.203h3.203v2.04H33.12V29h-2.055v-3.219h-3.203Z"/></svg> </span><!----></span></li><!--]--></ul></div><div class="bre-footer-section"><ul class="bre-inline-menu _min-gap-x _no-gap-y"><!--[--><li class="_footer-copyright bre-inline-menu__item"><span><!----><span>&copy;&nbsp;АНО БРЭ, 2022&nbsp;&mdash;&nbsp;2025. Все права защищены.</span></span></li><li class="-hide-on-tablet _stretch-width -text-caption-1 text-decoration-underline tw-text-gray-2 tw-cursor-pointer bre-inline-menu__item"><span data-v-tippy><!--[--><!--[-->Условия использования информации.<!--]--><!--]--><span style="display:none;" class=""><span>Вся информация, размещенная на данном портале, предназначена только для использования в личных целях и не подлежит дальнейшему воспроизведению.<br />Медиаконтент (иллюстрации, фотографии, видео, аудиоматериалы, карты, скан&nbsp;образы) может быть использован только с разрешения правообладателей.</span></span></span></li><li class="-show-on-tablet _stretch-width -text-caption-1 text-decoration-underline tw-text-gray-2 tw-cursor-pointer bre-inline-menu__item"><span data-v-tippy><!--[--><!--[-->Условия использования информации.<!--]--><!--]--><span style="display:none;" class=""><span>Вся информация, размещенная на данном портале, предназначена только для использования в личных целях и не подлежит дальнейшему воспроизведению.<br />Медиаконтент (иллюстрации, фотографии, видео, аудиоматериалы, карты, скан&nbsp;образы) может быть использован только с разрешения правообладателей.</span></span></span></li><!--]--></ul></div><!--]--></div></footer><span></span></div></div><!----><!--]--></div><script type="application/json" id="__NUXT_DATA__" data-ssr="true">[["Reactive",1],{"data":2,"state":3,"once":4,"_errors":5,"serverRendered":6,"path":7,"pinia":8},{},{"$sreferer":-1},["Set"],{},true,"/c/massa-33317f",{"preview":9,"auth-token":11,"search":14,"page-loading":19,"search-suggestions":20,"filters":23,"component-header":25,"collection":26,"article":27,"article-media-slider":1225,"modal":1233,"article-notes":1234,"article-loc":1235,"article-sidebar":1236,"author":1237,"article-metrics":1238,"collection-articles-favorite":1239,"article-collections":1240,"article-versions":1241,"error-form":1250,"text-selection":1251},{"get_":10,"getError":10,"getPending":6},null,{"post_":10,"postError":10,"postPending":6,"savedRoutePath":10,"isAuthorized":12,"firstNameLetter":13,"fullName":13,"userId":13,"processingRefresh":12,"showAuthModal":10},false,"",{"searchQuery":13,"savedList":15,"limit":16,"offset":17,"loading":12,"isSearchOpened":12,"page":18},[],10,0,1,{"loading":12},{"get_":10,"getError":10,"getPending":6,"headerSearchQuery":13,"pageSearchQuery":13,"selectedSuggestionIndex":21,"focusOn":22},-1,"header",{"get_":10,"getError":10,"getPending":6,"loading":12,"isExtendedSearchOpened":12,"chosenFilters":24},{},{"showCategories":12,"isFixed":12},{"get_":10,"getError":10,"getPending":6,"put_":-1,"putError":10,"putPending":6,"delete_":-1,"deleteError":10,"deletePending":6},{"get_":28,"getError":10,"getPending":12,"headers":1222,"timeline":1223,"isFullScreen":12,"getCache":1224},{"article":29,"components":1217},{"content":30,"createdAt":1196,"id":1197,"lastVersionId":1198,"meta":1199,"sections":10,"slug":1211,"tags":1212,"updatedAt":1196},{"article":31,"biblioRecord":1164,"category":1165,"sidebar":1166,"title":1195},[32],{"content":33,"type":1163},[34],{"attrs":35,"content":37,"marks":10,"text":13,"type":1163},{"section_id":36},"cf2ee6bf-bded-4e02-9abb-df57b393d6b8",[38,136,202,217,235,277,324,332,359,372,390,429,452,526,577,606,639,663,840,886,999,1014,1049,1108,1117,1126,1133,1155],{"attrs":39,"content":40,"marks":10,"text":13,"type":135},{"textAlign":10},[41,49,51,64,66,74,76,84,85,93,95,104,106,111,113,123,125,133],{"attrs":10,"content":10,"marks":42,"text":47,"type":48},[43],{"attrs":44,"content":10,"marks":10,"text":13,"type":46},{"version":45},"1","bold","Ма́сса,","text",{"attrs":10,"content":10,"marks":10,"text":50,"type":48}," фундаментальная физическая величина, определяющая ",{"attrs":10,"content":10,"marks":52,"text":63,"type":48},[53],{"attrs":54,"content":10,"marks":10,"text":13,"type":62},{"content_id":55,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":58,"link_type":61,"navigation_value":10,"target":13,"version":45},"abac5253-5899-4582-9f7b-9f28a8dcb1ce","#","2",{"slug":59,"type":60},"inertsiia-abac52","article","106","a","инерционные",{"attrs":10,"content":10,"marks":10,"text":65,"type":48}," и ",{"attrs":10,"content":10,"marks":67,"text":73,"type":48},[68],{"attrs":69,"content":10,"marks":10,"text":13,"type":62},{"content_id":70,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":71,"link_type":61,"navigation_value":10,"target":13,"version":45},"0c9c56f4-3f7a-41c9-a420-ac149f12063f",{"slug":72,"type":60},"gravitatsionnoe-vzaimodeistvie-0c9c56","гравитационные",{"attrs":10,"content":10,"marks":10,"text":75,"type":48}," свойства тел – от макроскопических объектов до ",{"attrs":10,"content":10,"marks":77,"text":83,"type":48},[78],{"attrs":79,"content":10,"marks":10,"text":13,"type":62},{"content_id":80,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":81,"link_type":61,"navigation_value":10,"target":13,"version":45},"8fe711d3-bf5c-4bbc-b057-75153acab1c9",{"slug":82,"type":60},"atom-8fe711","атомов",{"attrs":10,"content":10,"marks":10,"text":65,"type":48},{"attrs":10,"content":10,"marks":86,"text":92,"type":48},[87],{"attrs":88,"content":10,"marks":10,"text":13,"type":62},{"content_id":89,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":90,"link_type":61,"navigation_value":10,"target":13,"version":45},"ce0b781a-6f33-4a33-ae77-4da83071cf8f",{"slug":91,"type":60},"elementarnye-chastitsy-ce0b78","элементарных частиц",{"attrs":10,"content":10,"marks":10,"text":94,"type":48}," – в нерелятивистском приближении, когда их скорости малы по сравнению со ",{"attrs":10,"content":10,"marks":96,"text":103,"type":48},[97],{"attrs":98,"content":10,"marks":10,"text":13,"type":62},{"content_id":99,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":100,"link_type":102,"navigation_value":10,"target":13,"version":45},"a676e296-81a9-425b-b47d-da8c7b9d964a",{"slug":101,"type":60},"skorost-sveta-a676e2","114","скоростью света",{"attrs":10,"content":10,"marks":10,"text":105,"type":48}," ",{"attrs":107,"content":10,"marks":10,"text":13,"type":110},{"display":108,"displayMode":13,"src":109,"title":13},"inline","c","formula",{"attrs":10,"content":10,"marks":10,"text":112,"type":48},". В этом приближении масса тела служит мерой содержащегося в нём вещества и имеют место законы ",{"attrs":10,"content":10,"marks":114,"text":122,"type":48},[115],{"attrs":116,"content":10,"marks":10,"text":13,"type":62},{"content_id":117,"external":12,"graph_link":6,"href":56,"kind_id":118,"link":119,"link_type":121,"navigation_value":10,"target":13,"version":45},"d408e83c-45d6-4230-b259-c9e6e0c3ede3","4",{"slug":120,"type":60},"zakon-sokhraneniia-massy-d408e8","101","сохранения",{"attrs":10,"content":10,"marks":10,"text":124,"type":48}," и аддитивности массы. В релятивистской теории масса ",{"attrs":10,"content":10,"marks":126,"text":132,"type":48},[127],{"attrs":128,"content":10,"marks":10,"text":13,"type":62},{"content_id":129,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":130,"link_type":61,"navigation_value":10,"target":13,"version":45},"a5a38d81-4d11-4b86-b59a-f35924f3dfa7",{"slug":131,"type":60},"izolirovannaia-sistema-a5a38d","изолированной системы",{"attrs":10,"content":10,"marks":10,"text":134,"type":48}," тел также не меняется со временем, но она не равна сумме масс этих тел.","paragraph",{"attrs":137,"content":138,"marks":10,"text":13,"type":135},{"textAlign":10},[139,141,149,151,159,161,170,172,175,177,185,186,189,190,198,199],{"attrs":10,"content":10,"marks":10,"text":140,"type":48},"Массы элементарных частиц материи не произвольны, а фиксированы: все элементарные частицы данного типа имеют строго одинаковые массы. Существуют и безмассовые частицы – например, ",{"attrs":10,"content":10,"marks":142,"text":148,"type":48},[143],{"attrs":144,"content":10,"marks":10,"text":13,"type":62},{"content_id":145,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":146,"link_type":102,"navigation_value":10,"target":13,"version":45},"12c525af-4c0d-4f7e-9abe-e5662406d269",{"slug":147,"type":60},"foton-12c525","фотоны",{"attrs":10,"content":10,"marks":10,"text":150,"type":48},", ",{"attrs":10,"content":10,"marks":152,"text":158,"type":48},[153],{"attrs":154,"content":10,"marks":10,"text":13,"type":62},{"content_id":155,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":156,"link_type":102,"navigation_value":10,"target":13,"version":45},"e31b6ed8-1de5-4364-b7ac-cb80cf5ec247",{"slug":157,"type":60},"gliuony-e31b6e","глюоны",{"attrs":10,"content":10,"marks":10,"text":160,"type":48},". В ",{"attrs":10,"content":10,"marks":162,"text":169,"type":48},[163],{"attrs":164,"content":10,"marks":10,"text":13,"type":62},{"content_id":165,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":166,"link_type":168,"navigation_value":10,"target":13,"version":45},"07d614cc-59a1-442e-a4a5-a0a1fd422a67",{"slug":167,"type":60},"teoriia-otnositel-nosti-07d614","27","теории относительности",{"attrs":10,"content":10,"marks":10,"text":171,"type":48}," масса ",{"attrs":173,"content":10,"marks":10,"text":13,"type":110},{"display":108,"displayMode":13,"src":174,"title":13},"m",{"attrs":10,"content":10,"marks":10,"text":176,"type":48}," частицы определяется через её ",{"attrs":10,"content":10,"marks":178,"text":184,"type":48},[179],{"attrs":180,"content":10,"marks":10,"text":13,"type":62},{"content_id":181,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":182,"link_type":102,"navigation_value":10,"target":13,"version":45},"19e21ce4-0bdd-4531-8cc3-20949dd48c72",{"slug":183,"type":60},"energiia-19e21c","энергию",{"attrs":10,"content":10,"marks":10,"text":105,"type":48},{"attrs":187,"content":10,"marks":10,"text":13,"type":110},{"display":108,"displayMode":13,"src":188,"title":13},"E",{"attrs":10,"content":10,"marks":10,"text":65,"type":48},{"attrs":10,"content":10,"marks":191,"text":197,"type":48},[192],{"attrs":193,"content":10,"marks":10,"text":13,"type":62},{"content_id":194,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":195,"link_type":102,"navigation_value":10,"target":13,"version":45},"c287b244-4cac-4a6e-943d-96246c91d9e2",{"slug":196,"type":60},"impul-s-c287b2","импульс",{"attrs":10,"content":10,"marks":10,"text":105,"type":48},{"attrs":200,"content":10,"marks":10,"text":13,"type":110},{"display":108,"displayMode":13,"src":201,"title":13},"\\boldsymbol {p} \\text{:}",{"attrs":203,"content":204,"marks":10,"text":13,"type":135},{"textAlign":10},[205,210,212,215],{"attrs":206,"content":10,"marks":10,"text":13,"type":110},{"display":207,"displayMode":208,"src":209,"title":13},"block","displayMode","m^2=E^2/c^4-\\boldsymbol p^2/c^2. \\qquad (1)",{"attrs":10,"content":10,"marks":10,"text":211,"type":48},"Импульс частицы и её скорость ",{"attrs":213,"content":10,"marks":10,"text":13,"type":110},{"display":108,"displayMode":13,"src":214,"title":13},"v",{"attrs":10,"content":10,"marks":10,"text":216,"type":48}," связаны соотношением",{"attrs":218,"content":219,"marks":10,"text":13,"type":135},{"textAlign":10},[220,223,225,228,230,233],{"attrs":221,"content":10,"marks":10,"text":13,"type":110},{"display":207,"displayMode":208,"src":222,"title":13},"\\boldsymbol p =Ev/c^2. \\qquad (2)",{"attrs":10,"content":10,"marks":10,"text":224,"type":48},"Как следует из уравнения (1), энергия покоя ",{"attrs":226,"content":10,"marks":10,"text":13,"type":110},{"display":108,"displayMode":13,"src":227,"title":13},"E_0",{"attrs":10,"content":10,"marks":10,"text":229,"type":48}," частицы, для которой ",{"attrs":231,"content":10,"marks":10,"text":13,"type":110},{"display":108,"displayMode":13,"src":232,"title":13},"v=0",{"attrs":10,"content":10,"marks":10,"text":234,"type":48},", связана с её массой формулой Эйнштейна:",{"attrs":236,"content":237,"marks":10,"text":13,"type":135},{"textAlign":10},[238,241,243,251,253,256,258,261,263,265,267,275],{"attrs":239,"content":10,"marks":10,"text":13,"type":110},{"display":207,"displayMode":208,"src":240,"title":13},"E_0=mc^2.\\qquad (3)",{"attrs":10,"content":10,"marks":10,"text":242,"type":48},"Уравнения (1) – (3) в равной степени применимы к массивным частицам, таким как ",{"attrs":10,"content":10,"marks":244,"text":250,"type":48},[245],{"attrs":246,"content":10,"marks":10,"text":13,"type":62},{"content_id":247,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":248,"link_type":61,"navigation_value":10,"target":13,"version":45},"90867090-af1e-412f-a129-acaafc65b5ec",{"slug":249,"type":60},"proton-908670","протоны",{"attrs":10,"content":10,"marks":10,"text":252,"type":48},", и к безмассовым частицам. Из уравнения (1) следует, что для любой безмассовой частицы ",{"attrs":254,"content":10,"marks":10,"text":13,"type":110},{"display":108,"displayMode":13,"src":255,"title":13},"\\boldsymbol p^2=E^2/c^2",{"attrs":10,"content":10,"marks":10,"text":257,"type":48},", и, следовательно, в силу уравнения (2) ",{"attrs":259,"content":10,"marks":10,"text":13,"type":110},{"display":108,"displayMode":13,"src":260,"title":13},"v=c",{"attrs":10,"content":10,"marks":10,"text":262,"type":48},". Это означает, что безмассовые частицы никогда не бывают в состоянии покоя, а всегда движутся со скоростью ",{"attrs":264,"content":10,"marks":10,"text":13,"type":110},{"display":108,"displayMode":13,"src":109,"title":13},{"attrs":10,"content":10,"marks":10,"text":266,"type":48}," (",{"attrs":10,"content":10,"marks":268,"text":274,"type":48},[269],{"attrs":270,"content":10,"marks":10,"text":13,"type":62},{"content_id":271,"external":12,"graph_link":6,"href":56,"kind_id":118,"link":272,"link_type":102,"navigation_value":10,"target":13,"version":45},"347edecb-9cce-407c-b23e-5058bf237ae1",{"slug":273,"type":60},"reliativistskie-chastitsy-347ede","релятивистские частицы",{"attrs":10,"content":10,"marks":10,"text":276,"type":48},").",{"attrs":278,"content":279,"marks":10,"text":13,"type":135},{"textAlign":10},[280,282,290,292,297,299,302,304,307,309,317,319,322],{"attrs":10,"content":10,"marks":10,"text":281,"type":48},"Механика нерелятивистских частиц (т. н. ",{"attrs":10,"content":10,"marks":283,"text":289,"type":48},[284],{"attrs":285,"content":10,"marks":10,"text":13,"type":62},{"content_id":286,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":287,"link_type":168,"navigation_value":10,"target":13,"version":45},"f6fea9f2-cd3d-4c5c-921e-e84a66a39fe1",{"slug":288,"type":60},"klassicheskaia-mekhanika-f6fea9","ньютонова механика",{"attrs":10,"content":10,"marks":10,"text":291,"type":48},") является предельным случаем ",{"attrs":10,"content":10,"marks":293,"text":169,"type":48},[294],{"attrs":295,"content":10,"marks":10,"text":13,"type":62},{"content_id":165,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":296,"link_type":168,"navigation_value":10,"target":13,"version":45},{"slug":167,"type":60},{"attrs":10,"content":10,"marks":10,"text":298,"type":48}," при ",{"attrs":300,"content":10,"marks":10,"text":13,"type":110},{"display":108,"displayMode":13,"src":301,"title":13},"v ≪ с",{"attrs":10,"content":10,"marks":10,"text":303,"type":48},". Как следует из теории относительности, формулы ньютоновой механики справедливы с точностью до членов порядка ",{"attrs":305,"content":10,"marks":10,"text":13,"type":110},{"display":108,"displayMode":13,"src":306,"title":13},"v^2/c^2",{"attrs":10,"content":10,"marks":10,"text":308,"type":48},". В нерелятивистском приближении из уравнений (1) – (3) следует, что ",{"attrs":10,"content":10,"marks":310,"text":316,"type":48},[311],{"attrs":312,"content":10,"marks":10,"text":13,"type":62},{"content_id":313,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":314,"link_type":102,"navigation_value":10,"target":13,"version":45},"06ee5a9c-f63b-4da6-a617-65764cf0dfaf",{"slug":315,"type":60},"kineticheskaia-energiia-06ee5a","кинетическая энергия",{"attrs":10,"content":10,"marks":10,"text":318,"type":48}," тела ",{"attrs":320,"content":10,"marks":10,"text":13,"type":110},{"display":108,"displayMode":13,"src":321,"title":13},"E_{кин}=E-E_0",{"attrs":10,"content":10,"marks":10,"text":323,"type":48}," связана с его импульсом соотношением",{"attrs":325,"content":326,"marks":10,"text":13,"type":135},{"textAlign":10},[327,330],{"attrs":328,"content":10,"marks":10,"text":13,"type":110},{"display":207,"displayMode":208,"src":329,"title":13},"E_{кин}=\\boldsymbol p^2/2m,\\qquad (4)",{"attrs":10,"content":10,"marks":10,"text":331,"type":48},"а импульс со скоростью – соотношением",{"attrs":333,"content":334,"marks":10,"text":13,"type":135},{"textAlign":10},[335,338,340,343,345,347,349,352,354,357],{"attrs":336,"content":10,"marks":10,"text":13,"type":110},{"display":207,"displayMode":208,"src":337,"title":13},"\\boldsymbol p=m \\bold v.\\qquad (5)",{"attrs":10,"content":10,"marks":10,"text":339,"type":48},"[При выводе формул (4) – (5) из формул (1) – (3) надо последовательно пренебрегать ",{"attrs":341,"content":10,"marks":10,"text":13,"type":110},{"display":108,"displayMode":13,"src":342,"title":13},"E_{кин}",{"attrs":10,"content":10,"marks":10,"text":344,"type":48}," по сравнению с ",{"attrs":346,"content":10,"marks":10,"text":13,"type":110},{"display":108,"displayMode":13,"src":227,"title":13},{"attrs":10,"content":10,"marks":10,"text":348,"type":48}," везде, где это возможно, в частности надо заменить ",{"attrs":350,"content":10,"marks":10,"text":13,"type":110},{"display":108,"displayMode":13,"src":351,"title":13},"E+E_0",{"attrs":10,"content":10,"marks":10,"text":353,"type":48}," на ",{"attrs":355,"content":10,"marks":10,"text":13,"type":110},{"display":108,"displayMode":13,"src":356,"title":13},"2E_0.",{"attrs":10,"content":10,"marks":10,"text":358,"type":48},"]",{"attrs":360,"content":361,"marks":10,"text":13,"type":135},{"textAlign":10},[362,364],{"attrs":10,"content":10,"marks":10,"text":363,"type":48},"Из определения ",{"attrs":10,"content":10,"marks":365,"text":371,"type":48},[366],{"attrs":367,"content":10,"marks":10,"text":13,"type":62},{"content_id":368,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":369,"link_type":102,"navigation_value":10,"target":13,"version":45},"77a176db-ea98-45ed-a1c0-cd054fdcdbb7",{"slug":370,"type":60},"sila-77a176","силы",{"attrs":373,"content":374,"marks":10,"text":13,"type":135},{"textAlign":10},[375,378,380,383,385,388],{"attrs":376,"content":10,"marks":10,"text":13,"type":110},{"display":207,"displayMode":208,"src":377,"title":13},"\\boldsymbol F=d\\boldsymbol p/dt \\qquad (6)",{"attrs":10,"content":10,"marks":10,"text":379,"type":48},"следует известная нерелятивистская формула, связывающая силу ",{"attrs":381,"content":10,"marks":10,"text":13,"type":110},{"display":108,"displayMode":13,"src":382,"title":13},"\\boldsymbol F",{"attrs":10,"content":10,"marks":10,"text":384,"type":48}," и ускорение ",{"attrs":386,"content":10,"marks":10,"text":13,"type":110},{"display":108,"displayMode":13,"src":387,"title":13},"\\boldsymbol a",{"attrs":10,"content":10,"marks":10,"text":389,"type":48},":",{"attrs":391,"content":392,"marks":10,"text":13,"type":135},{"textAlign":10},[393,396,398,404,406,408,410,418,420,422,424,427],{"attrs":394,"content":10,"marks":10,"text":13,"type":110},{"display":207,"displayMode":208,"src":395,"title":13},"\\boldsymbol F =m\\boldsymbol a. \\qquad (7)",{"attrs":10,"content":10,"marks":10,"text":397,"type":48},"Из уравнений (5) и/или (7) следует, что в ньютоновой механике мерой ",{"attrs":10,"content":10,"marks":399,"text":403,"type":48},[400],{"attrs":401,"content":10,"marks":10,"text":13,"type":62},{"content_id":55,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":402,"link_type":61,"navigation_value":10,"target":13,"version":45},{"slug":59,"type":60},"инерции",{"attrs":10,"content":10,"marks":10,"text":405,"type":48}," является масса ",{"attrs":407,"content":10,"marks":10,"text":13,"type":110},{"display":108,"displayMode":13,"src":174,"title":13},{"attrs":10,"content":10,"marks":10,"text":409,"type":48},". Именно эта нерелятивистская ипостась массы часто необдуманно переносится и на движения при ",{"attrs":10,"content":10,"marks":411,"text":417,"type":48},[412],{"attrs":413,"content":10,"marks":10,"text":13,"type":62},{"content_id":414,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":415,"link_type":102,"navigation_value":10,"target":13,"version":45},"b4f25edd-f283-4126-b99d-39dcdcbfa119",{"slug":416,"type":60},"reliativistskaia-skorost-b4f25e","релятивистских скоростях",{"attrs":10,"content":10,"marks":10,"text":419,"type":48},", в то время как в теории относительности, как следует из уравнения (2), мерой инерции является не масса ",{"attrs":421,"content":10,"marks":10,"text":13,"type":110},{"display":108,"displayMode":13,"src":174,"title":13},{"attrs":10,"content":10,"marks":10,"text":423,"type":48},", а энергия, более точно ",{"attrs":425,"content":10,"marks":10,"text":13,"type":110},{"display":108,"displayMode":13,"src":426,"title":13},"E/c^2",{"attrs":10,"content":10,"marks":10,"text":428,"type":48},". Чем больше энергия безмассовой или очень лёгкой частицы, тем труднее изменить её импульс. Только для нерелятивистских частиц существенна не кинетическая энергия, а энергия покоя (масса).",{"attrs":430,"content":431,"marks":10,"text":13,"type":135},{"textAlign":10},[432,434,442,444,447,448,450],{"attrs":10,"content":10,"marks":10,"text":433,"type":48},"Аналогично использование понятия массы как источника гравитационного притяжения. Как известно, в ньютоновой физике ",{"attrs":10,"content":10,"marks":435,"text":441,"type":48},[436],{"attrs":437,"content":10,"marks":10,"text":13,"type":62},{"content_id":438,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":439,"link_type":121,"navigation_value":10,"target":13,"version":45},"ac9aa242-a69e-4b3b-9e00-61d5d760e8f7",{"slug":440,"type":60},"zakon-vsemirnogo-tiagoteniia-ac9aa2","сила всемирного тяготения",{"attrs":10,"content":10,"marks":10,"text":443,"type":48}," между телами с массами ",{"attrs":445,"content":10,"marks":10,"text":13,"type":110},{"display":108,"displayMode":13,"src":446,"title":13},"M",{"attrs":10,"content":10,"marks":10,"text":65,"type":48},{"attrs":449,"content":10,"marks":10,"text":13,"type":110},{"display":108,"displayMode":13,"src":174,"title":13},{"attrs":10,"content":10,"marks":10,"text":451,"type":48}," равна",{"attrs":453,"content":454,"marks":10,"text":13,"type":135},{"textAlign":10},[455,458,460,463,465,473,474,477,479,481,483,485,487,495,497,499,501,509,511,517,519,524],{"attrs":456,"content":10,"marks":10,"text":13,"type":110},{"display":207,"displayMode":208,"src":457,"title":13},"F_g=-GMm\\boldsymbol r/r^3, \\qquad (8)",{"attrs":10,"content":10,"marks":10,"text":459,"type":48},"где ",{"attrs":461,"content":10,"marks":10,"text":13,"type":110},{"display":108,"displayMode":13,"src":462,"title":13},"G",{"attrs":10,"content":10,"marks":10,"text":464,"type":48}," – ",{"attrs":10,"content":10,"marks":466,"text":472,"type":48},[467],{"attrs":468,"content":10,"marks":10,"text":13,"type":62},{"content_id":469,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":470,"link_type":102,"navigation_value":10,"target":13,"version":45},"a53d7627-4cfa-4a0e-9990-e2ccf1891a0e",{"slug":471,"type":60},"gravitatsionnaia-postoiannaia-a53d76","гравитационная постоянная",{"attrs":10,"content":10,"marks":10,"text":150,"type":48},{"attrs":475,"content":10,"marks":10,"text":13,"type":110},{"display":108,"displayMode":13,"src":476,"title":13},"\\boldsymbol r",{"attrs":10,"content":10,"marks":10,"text":478,"type":48}," – радиус-вектор, направленный от тела с массой ",{"attrs":480,"content":10,"marks":10,"text":13,"type":110},{"display":108,"displayMode":13,"src":446,"title":13},{"attrs":10,"content":10,"marks":10,"text":482,"type":48}," к телу с массой ",{"attrs":484,"content":10,"marks":10,"text":13,"type":110},{"display":108,"displayMode":13,"src":174,"title":13},{"attrs":10,"content":10,"marks":10,"text":486,"type":48},". Из формул (7) и (8) следует, что ",{"attrs":10,"content":10,"marks":488,"text":494,"type":48},[489],{"attrs":490,"content":10,"marks":10,"text":13,"type":62},{"content_id":491,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":492,"link_type":102,"navigation_value":10,"target":13,"version":45},"152fb3e4-2fcb-48cd-ac4c-674f3054b702",{"slug":493,"type":60},"uskorenie-svobodnogo-padeniia-152fb3","ускорение тел, свободно падающих",{"attrs":10,"content":10,"marks":10,"text":496,"type":48}," в гравитационное поле, не зависит ни от величины ",{"attrs":498,"content":10,"marks":10,"text":13,"type":110},{"display":108,"displayMode":13,"src":174,"title":13},{"attrs":10,"content":10,"marks":10,"text":500,"type":48}," этих тел, ни от свойств вещества, из которого эти тела состоят. Эта закономерность проверена на опыте в ",{"attrs":10,"content":10,"marks":502,"text":508,"type":48},[503],{"attrs":504,"content":10,"marks":10,"text":13,"type":62},{"content_id":505,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":506,"link_type":102,"navigation_value":10,"target":13,"version":45},"0208db27-108d-4899-bc81-2368e00b8df1",{"slug":507,"type":60},"gravitatsionnoe-pole-zemli-0208db","гравитационном поле Земли",{"attrs":10,"content":10,"marks":10,"text":510,"type":48}," с точностью порядка 10",{"attrs":10,"content":10,"marks":512,"text":516,"type":48},[513],{"attrs":514,"content":10,"marks":10,"text":13,"type":515},{"version":45},"sup","–8",{"attrs":10,"content":10,"marks":10,"text":518,"type":48}," и в поле Солнца с точностью порядка 10",{"attrs":10,"content":10,"marks":520,"text":523,"type":48},[521],{"attrs":522,"content":10,"marks":10,"text":13,"type":515},{"version":45},"–12",{"attrs":10,"content":10,"marks":10,"text":525,"type":48},".",{"attrs":527,"content":528,"marks":10,"text":13,"type":135},{"textAlign":10},[529,531,540,541,549,554,556,558,560,568,570,572,574],{"attrs":10,"content":10,"marks":10,"text":530,"type":48},"Часто эту закономерность называют равенством ",{"attrs":10,"content":10,"marks":532,"text":539,"type":48},[533],{"attrs":534,"content":10,"marks":10,"text":13,"type":62},{"content_id":535,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":536,"link_type":538,"navigation_value":10,"target":13,"version":45},"662a937a-3fff-4bea-919c-6198c33e84f4",{"slug":537,"type":60},"inertnaia-massa-662a93","9","инертной",{"attrs":10,"content":10,"marks":10,"text":65,"type":48},{"attrs":10,"content":10,"marks":542,"text":548,"type":48},[543],{"attrs":544,"content":10,"marks":10,"text":13,"type":62},{"content_id":545,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":546,"link_type":538,"navigation_value":10,"target":13,"version":45},"f0dd0006-a904-4698-a782-d8cd67ac08ef",{"slug":547,"type":60},"gravitatsionnaia-massa-f0dd00","гравитационной",{"attrs":10,"content":10,"marks":550,"text":105,"type":48},[551],{"attrs":552,"content":10,"marks":10,"text":13,"type":553},{"version":45},"italic",{"attrs":10,"content":10,"marks":10,"text":555,"type":48},"масс. Однако этих понятий нет ни в исходной механике Ньютона – Галилея, ни в современной теории относительности: оба они использовались в начале 20 в. при построении теории относительности. В ньютоновой механике есть только одна физическая величина – масса, определяющая два различных явления: инерцию и гравитацию. В теории относительности масса ",{"attrs":557,"content":10,"marks":10,"text":13,"type":110},{"display":108,"displayMode":13,"src":174,"title":13},{"attrs":10,"content":10,"marks":10,"text":559,"type":48},", определяемая соотношением (1), не является ни мерой инерции, ни источником гравитации. Мерой инерции служит энергия, а источником гравитации – тензор энергии-импульса (некоторая комбинация энергии и импульса); обе эти величины (энергия и ",{"attrs":10,"content":10,"marks":561,"text":567,"type":48},[562],{"attrs":563,"content":10,"marks":10,"text":13,"type":62},{"content_id":564,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":565,"link_type":102,"navigation_value":10,"target":13,"version":45},"02fd2b9b-dfeb-4193-ab07-085c3a0502c0",{"slug":566,"type":60},"tenzor-02fd2b","тензор",{"attrs":10,"content":10,"marks":10,"text":569,"type":48}," энергии-импульса) переходят в массу ",{"attrs":571,"content":10,"marks":10,"text":13,"type":110},{"display":108,"displayMode":13,"src":174,"title":13},{"attrs":10,"content":10,"marks":10,"text":573,"type":48}," только при ",{"attrs":575,"content":10,"marks":10,"text":13,"type":110},{"display":108,"displayMode":13,"src":576,"title":13},"v/c→0.",{"attrs":578,"content":579,"marks":10,"text":13,"type":135},{"textAlign":10},[580,582,590,592,595,597,599,601,604],{"attrs":10,"content":10,"marks":10,"text":581,"type":48},"В теории относительности энергия и импульс свободных частиц обладают свойством ",{"attrs":10,"content":10,"marks":583,"text":589,"type":48},[584],{"attrs":585,"content":10,"marks":10,"text":13,"type":62},{"content_id":586,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":587,"link_type":102,"navigation_value":10,"target":13,"version":45},"177b72e8-3a94-4ff4-b2e7-c4db2eded183",{"slug":588,"type":60},"additivnost-177b72","аддитивности",{"attrs":10,"content":10,"marks":10,"text":591,"type":48},": суммарная энергия и суммарный импульс совокупности ",{"attrs":593,"content":10,"marks":10,"text":13,"type":110},{"display":108,"displayMode":13,"src":594,"title":13},"n",{"attrs":10,"content":10,"marks":10,"text":596,"type":48}," свободных частиц всегда равны сумме их энергий и сумме импульсов соответственно. В отличие от этого, суммарная масса совокупности свободных частиц равна сумме их масс только в том случае, когда эти частицы покоятся друг относительно друга. Если же они движутся, то их массы в силу уравнения (1) не могут быть аддитивны. Так, например, масса системы двух фотонов с энергией ",{"attrs":598,"content":10,"marks":10,"text":13,"type":110},{"display":108,"displayMode":13,"src":188,"title":13},{"attrs":10,"content":10,"marks":10,"text":600,"type":48}," у каждого, вычисленная по формуле (1), равна нулю, если они летят в одну сторону, и равна ",{"attrs":602,"content":10,"marks":10,"text":13,"type":110},{"display":108,"displayMode":13,"src":603,"title":13},"2E/c^2",{"attrs":10,"content":10,"marks":10,"text":605,"type":48},", если они летят в противоположные стороны.",{"attrs":607,"content":608,"marks":10,"text":13,"type":135},{"textAlign":10},[609,611,619,620,628,630,633,635,637],{"attrs":10,"content":10,"marks":10,"text":610,"type":48},"Поскольку энергия и импульс изолированной системы частиц сохраняются при любых взаимодействиях внутри этой системы, то сохраняется и масса этой системы. Так, например, при аннигиляции покоящихся ",{"attrs":10,"content":10,"marks":612,"text":618,"type":48},[613],{"attrs":614,"content":10,"marks":10,"text":13,"type":62},{"content_id":615,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":616,"link_type":61,"navigation_value":10,"target":13,"version":45},"1c39f0c9-9028-4bd5-9e18-83e32f7766ad",{"slug":617,"type":60},"elektron-1c39f0","электрона",{"attrs":10,"content":10,"marks":10,"text":65,"type":48},{"attrs":10,"content":10,"marks":621,"text":627,"type":48},[622],{"attrs":623,"content":10,"marks":10,"text":13,"type":62},{"content_id":624,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":625,"link_type":61,"navigation_value":10,"target":13,"version":45},"bb990ea2-9f98-4dc9-b1c1-9a9ffa1ae94b",{"slug":626,"type":60},"pozitron-bb990e","позитрона",{"attrs":10,"content":10,"marks":10,"text":629,"type":48}," в два фотона масса двух фотонов равна ",{"attrs":631,"content":10,"marks":10,"text":13,"type":110},{"display":108,"displayMode":13,"src":632,"title":13},"2m,",{"attrs":10,"content":10,"marks":10,"text":634,"type":48}," где ",{"attrs":636,"content":10,"marks":10,"text":13,"type":110},{"display":108,"displayMode":13,"src":174,"title":13},{"attrs":10,"content":10,"marks":10,"text":638,"type":48}," – масса электрона.",{"attrs":640,"content":641,"marks":10,"text":13,"type":135},{"textAlign":10},[642,644,652,653,656,658,661],{"attrs":10,"content":10,"marks":10,"text":643,"type":48},"Из сказанного выше следует, что масса является характеристикой свободной частицы. В ряде случаев, однако, можно считать, что частица, находящаяся во внешнем силовом поле других частиц, имеет то же значение массы, что и свободная частица. Но для этого наряду с энергией покоя и энергией движения приходится вводить ещё и энергию взаимодействия, наиболее известным примером которой является ",{"attrs":10,"content":10,"marks":645,"text":651,"type":48},[646],{"attrs":647,"content":10,"marks":10,"text":13,"type":62},{"content_id":648,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":649,"link_type":102,"navigation_value":10,"target":13,"version":45},"41eb77b2-1e1e-48d1-ab97-565196e24997",{"slug":650,"type":60},"potentsial-naia-energiia-41eb77","потенциальная энергия",{"attrs":10,"content":10,"marks":10,"text":105,"type":48},{"attrs":654,"content":10,"marks":10,"text":13,"type":110},{"display":108,"displayMode":13,"src":655,"title":13},"U",{"attrs":10,"content":10,"marks":10,"text":657,"type":48},". В этом случае полная энергия ",{"attrs":659,"content":10,"marks":10,"text":13,"type":110},{"display":108,"displayMode":13,"src":660,"title":13},"ℰ",{"attrs":10,"content":10,"marks":10,"text":662,"type":48}," представляет собой сумму трёх слагаемых:",{"attrs":664,"content":665,"marks":10,"text":13,"type":135},{"textAlign":10},[666,669,671,680,682,690,692,700,702,706,710,712,715,717,721,725,727,730,732,736,740,742,745,747,750,752,756,760,762,770,772,776,780,782,790,792,797,801,803,811,813,817,821,823,828,830,834,838],{"attrs":667,"content":10,"marks":10,"text":13,"type":110},{"display":207,"displayMode":208,"src":668,"title":13},"ℰ=E_0+E_{кин}+U.",{"attrs":10,"content":10,"marks":10,"text":670,"type":48},"Единицей массы в СИ служит ",{"attrs":10,"content":10,"marks":672,"text":679,"type":48},[673],{"attrs":674,"content":10,"marks":10,"text":13,"type":62},{"content_id":675,"external":12,"graph_link":6,"href":56,"kind_id":118,"link":676,"link_type":678,"navigation_value":10,"target":13,"version":45},"015fbc07-f1fd-414b-9971-e60de66a1d57",{"slug":677,"type":60},"kilogramm-015fbc","69","килограмм",{"attrs":10,"content":10,"marks":10,"text":681,"type":48},", в системе единиц СГС – ",{"attrs":10,"content":10,"marks":683,"text":689,"type":48},[684],{"attrs":685,"content":10,"marks":10,"text":13,"type":62},{"content_id":686,"external":12,"graph_link":6,"href":56,"kind_id":118,"link":687,"link_type":678,"navigation_value":10,"target":13,"version":45},"512b0e93-c4f4-445b-b161-a2b8a825f826",{"slug":688,"type":60},"gramm-edinitsa-izmerenii-512b0e","грамм",{"attrs":10,"content":10,"marks":10,"text":691,"type":48},". Массы атомов и молекул обычно измеряются в ",{"attrs":10,"content":10,"marks":693,"text":699,"type":48},[694],{"attrs":695,"content":10,"marks":10,"text":13,"type":62},{"content_id":696,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":697,"link_type":678,"navigation_value":10,"target":13,"version":45},"b744c9d1-ae62-40d2-8cfd-168e841f1188",{"slug":698,"type":60},"atomnaia-edinitsa-massy-b744c9","атомных единицах массы",{"attrs":10,"content":10,"marks":10,"text":701,"type":48},". Массу элементарных частиц принято измерять в эВ/",{"attrs":10,"content":10,"marks":703,"text":109,"type":48},[704],{"attrs":705,"content":10,"marks":10,"text":13,"type":553},{"version":45},{"attrs":10,"content":10,"marks":707,"text":57,"type":48},[708],{"attrs":709,"content":10,"marks":10,"text":13,"type":515},{"version":45},{"attrs":10,"content":10,"marks":10,"text":711,"type":48},". Например, масса электрона ",{"attrs":713,"content":10,"marks":10,"text":13,"type":110},{"display":108,"displayMode":13,"src":714,"title":13},"m_e",{"attrs":10,"content":10,"marks":10,"text":716,"type":48}," = 0,511 МэВ/",{"attrs":10,"content":10,"marks":718,"text":109,"type":48},[719],{"attrs":720,"content":10,"marks":10,"text":13,"type":553},{"version":45},{"attrs":10,"content":10,"marks":722,"text":57,"type":48},[723],{"attrs":724,"content":10,"marks":10,"text":13,"type":515},{"version":45},{"attrs":10,"content":10,"marks":10,"text":726,"type":48},", масса протона ",{"attrs":728,"content":10,"marks":10,"text":13,"type":110},{"display":108,"displayMode":13,"src":729,"title":13},"m_p",{"attrs":10,"content":10,"marks":10,"text":731,"type":48}," = 938,3 МэВ/",{"attrs":10,"content":10,"marks":733,"text":109,"type":48},[734],{"attrs":735,"content":10,"marks":10,"text":13,"type":553},{"version":45},{"attrs":10,"content":10,"marks":737,"text":57,"type":48},[738],{"attrs":739,"content":10,"marks":10,"text":13,"type":515},{"version":45},{"attrs":10,"content":10,"marks":10,"text":741,"type":48},", масса ",{"attrs":743,"content":10,"marks":10,"text":13,"type":110},{"display":108,"displayMode":13,"src":744,"title":13},"Z",{"attrs":10,"content":10,"marks":10,"text":746,"type":48},"-бозона ",{"attrs":748,"content":10,"marks":10,"text":13,"type":110},{"display":108,"displayMode":13,"src":749,"title":13},"m_Z",{"attrs":10,"content":10,"marks":10,"text":751,"type":48}," = 91,2 ГэВ/",{"attrs":10,"content":10,"marks":753,"text":109,"type":48},[754],{"attrs":755,"content":10,"marks":10,"text":13,"type":553},{"version":45},{"attrs":10,"content":10,"marks":757,"text":57,"type":48},[758],{"attrs":759,"content":10,"marks":10,"text":13,"type":515},{"version":45},{"attrs":10,"content":10,"marks":10,"text":761,"type":48},", масса самой тяжёлой из известных элементарных частиц (",{"attrs":10,"content":10,"marks":763,"text":769,"type":48},[764],{"attrs":765,"content":10,"marks":10,"text":13,"type":62},{"content_id":766,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":767,"link_type":61,"navigation_value":10,"target":13,"version":45},"b6a57bfb-a0a4-4060-813d-e68e0141cb6f",{"slug":768,"type":60},"t-kvark-b6a57b","t-кварка",{"attrs":10,"content":10,"marks":10,"text":771,"type":48},") равна примерно 172 ГэВ/",{"attrs":10,"content":10,"marks":773,"text":109,"type":48},[774],{"attrs":775,"content":10,"marks":10,"text":13,"type":553},{"version":45},{"attrs":10,"content":10,"marks":777,"text":57,"type":48},[778],{"attrs":779,"content":10,"marks":10,"text":13,"type":515},{"version":45},{"attrs":10,"content":10,"marks":10,"text":781,"type":48},". Самые лёгкие частицы с отличными от нуля массами – ",{"attrs":10,"content":10,"marks":783,"text":789,"type":48},[784],{"attrs":785,"content":10,"marks":10,"text":13,"type":62},{"content_id":786,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":787,"link_type":61,"navigation_value":10,"target":13,"version":45},"75575f04-242f-45d6-b315-c6f6440fd94d",{"slug":788,"type":60},"neitrino-75575f","нейтрино",{"attrs":10,"content":10,"marks":10,"text":791,"type":48},"; их массы много меньше 1 эВ/",{"attrs":10,"content":10,"marks":793,"text":796,"type":48},[794],{"attrs":795,"content":10,"marks":10,"text":13,"type":553},{"version":45},"с",{"attrs":10,"content":10,"marks":798,"text":57,"type":48},[799],{"attrs":800,"content":10,"marks":10,"text":13,"type":515},{"version":45},{"attrs":10,"content":10,"marks":10,"text":802,"type":48},". Важную роль в природе играют безмассовые частицы: фотон (переносчик электромагнитного взаимодействия) и ",{"attrs":10,"content":10,"marks":804,"text":810,"type":48},[805],{"attrs":806,"content":10,"marks":10,"text":13,"type":62},{"content_id":807,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":808,"link_type":61,"navigation_value":10,"target":13,"version":45},"5ab454f0-be19-4597-bb75-4a2cfdcfa439",{"slug":809,"type":60},"graviton-5ab454","гравитон",{"attrs":10,"content":10,"marks":10,"text":812,"type":48}," (переносчик гравитационного взаимодействия). Пока не существует теории, которая объясняла бы, почему массы элементарных частиц именно таковы, каковы они есть: от долей эВ/",{"attrs":10,"content":10,"marks":814,"text":796,"type":48},[815],{"attrs":816,"content":10,"marks":10,"text":13,"type":553},{"version":45},{"attrs":10,"content":10,"marks":818,"text":57,"type":48},[819],{"attrs":820,"content":10,"marks":10,"text":13,"type":515},{"version":45},{"attrs":10,"content":10,"marks":10,"text":822,"type":48}," до 10",{"attrs":10,"content":10,"marks":824,"text":827,"type":48},[825],{"attrs":826,"content":10,"marks":10,"text":13,"type":515},{"version":45},"11",{"attrs":10,"content":10,"marks":10,"text":829,"type":48}," эВ/",{"attrs":10,"content":10,"marks":831,"text":796,"type":48},[832],{"attrs":833,"content":10,"marks":10,"text":13,"type":553},{"version":45},{"attrs":10,"content":10,"marks":835,"text":57,"type":48},[836],{"attrs":837,"content":10,"marks":10,"text":13,"type":515},{"version":45},{"attrs":10,"content":10,"marks":10,"text":839,"type":48},". ",{"attrs":841,"content":842,"marks":10,"text":13,"type":135},{"textAlign":10},[843,845,854,856,864,866,874,876,885],{"attrs":10,"content":10,"marks":10,"text":844,"type":48},"Массы всех известных частиц составляют лишь 5 % суммарной массы видимой ",{"attrs":10,"content":10,"marks":846,"text":853,"type":48},[847],{"attrs":848,"content":10,"marks":10,"text":13,"type":62},{"content_id":849,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":850,"link_type":852,"navigation_value":10,"target":13,"version":45},"fc0cdeec-cc0d-4a29-ad58-38c300cd2c6f",{"slug":851,"type":60},"vselennaia-fc0cde","18","Вселенной",{"attrs":10,"content":10,"marks":10,"text":855,"type":48},", о чём свидетельствуют астрономические наблюдения, примерно 25 % составляют частицы т. н. ",{"attrs":10,"content":10,"marks":857,"text":863,"type":48},[858],{"attrs":859,"content":10,"marks":10,"text":13,"type":62},{"content_id":860,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":861,"link_type":102,"navigation_value":10,"target":13,"version":45},"454bd1eb-2775-4fcc-9904-cc7bdd72bddb",{"slug":862,"type":60},"tiomnaia-materiia-454bd1","тёмной материи",{"attrs":10,"content":10,"marks":10,"text":865,"type":48},". Больше 70 % массы Вселенной создаёт т. н. ",{"attrs":10,"content":10,"marks":867,"text":873,"type":48},[868],{"attrs":869,"content":10,"marks":10,"text":13,"type":62},{"content_id":870,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":871,"link_type":102,"navigation_value":10,"target":13,"version":45},"39dd7d99-c9e4-482d-bc7b-1609d844db9d",{"slug":872,"type":60},"tiomnaia-energiia-39dd7d","тёмная энергия",{"attrs":10,"content":10,"marks":10,"text":875,"type":48},", как бы разлитая в пустоте (см. в статье ",{"attrs":10,"content":10,"marks":877,"text":884,"type":48},[878],{"attrs":879,"content":10,"marks":10,"text":13,"type":62},{"content_id":880,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":881,"link_type":883,"navigation_value":10,"target":13,"version":45},"8825bc25-f18e-4904-879b-1f336fa8c95d",{"slug":882,"type":60},"kosmologiia-8825bc","25","Космология",{"attrs":10,"content":10,"marks":10,"text":276,"type":48},{"attrs":887,"content":888,"marks":10,"text":13,"type":135},{"textAlign":10},[889,891,899,901,909,910,918,920,928,930,938,940,948,950,958,960,968,970,973,974,977,979,983,987,989,993,997],{"attrs":10,"content":10,"marks":10,"text":890,"type":48},"Не все известные элементарные частицы в равной степени элементарны (фундаментальны). На современном уровне знания элементарны электроны и другие ",{"attrs":10,"content":10,"marks":892,"text":898,"type":48},[893],{"attrs":894,"content":10,"marks":10,"text":13,"type":62},{"content_id":895,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":896,"link_type":61,"navigation_value":10,"target":13,"version":45},"36bf353f-f756-44b4-8183-d345db12237e",{"slug":897,"type":60},"leptony-36bf35","лептоны",{"attrs":10,"content":10,"marks":10,"text":900,"type":48},", а также фотоны и другие ",{"attrs":10,"content":10,"marks":902,"text":908,"type":48},[903],{"attrs":904,"content":10,"marks":10,"text":13,"type":62},{"content_id":905,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":906,"link_type":61,"navigation_value":10,"target":13,"version":45},"88deb70c-576f-4da3-bb12-ce75cdf3dda8",{"slug":907,"type":60},"kalibrovochnye-bozony-88deb7","калибровочные бозоны",{"attrs":10,"content":10,"marks":10,"text":839,"type":48},{"attrs":10,"content":10,"marks":911,"text":917,"type":48},[912],{"attrs":913,"content":10,"marks":10,"text":13,"type":62},{"content_id":914,"external":12,"graph_link":6,"href":56,"kind_id":118,"link":915,"link_type":61,"navigation_value":10,"target":13,"version":45},"e5b98d42-4459-4bf7-8afc-f30072df8790",{"slug":916,"type":60},"nuklony-e5b98d","Нуклоны",{"attrs":10,"content":10,"marks":10,"text":919,"type":48}," (протоны и нейтроны) и другие многочисленные ",{"attrs":10,"content":10,"marks":921,"text":927,"type":48},[922],{"attrs":923,"content":10,"marks":10,"text":13,"type":62},{"content_id":924,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":925,"link_type":61,"navigation_value":10,"target":13,"version":45},"b5c32ee1-c242-498c-bba4-16f3b07c28f4",{"slug":926,"type":60},"adrony-b5c32e","адроны",{"attrs":10,"content":10,"marks":10,"text":929,"type":48}," относят к элементарным частицам с известными оговорками, поскольку установлено, что хотя их массы строго фиксированы, но сами они состоят из более элементарных (фундаментальных) частиц – ",{"attrs":10,"content":10,"marks":931,"text":937,"type":48},[932],{"attrs":933,"content":10,"marks":10,"text":13,"type":62},{"content_id":934,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":935,"link_type":61,"navigation_value":10,"target":13,"version":45},"421093ba-c084-4455-9287-c93a1af2f6fa",{"slug":936,"type":60},"kvarki-421093","кварков",{"attrs":10,"content":10,"marks":10,"text":939,"type":48}," и глюонов. Согласно ",{"attrs":10,"content":10,"marks":941,"text":947,"type":48},[942],{"attrs":943,"content":10,"marks":10,"text":13,"type":62},{"content_id":944,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":945,"link_type":168,"navigation_value":10,"target":13,"version":45},"038abcd3-1dff-4b0a-8488-caed360b48ca",{"slug":946,"type":60},"kvantovaia-khromodinamika-038abc","квантовой хромодинамике",{"attrs":10,"content":10,"marks":10,"text":949,"type":48}," (теории взаимодействия глюонов и кварков), ни глюоны, ни кварки не бывают в свободном состоянии: они всегда находятся внутри адронов (",{"attrs":10,"content":10,"marks":951,"text":957,"type":48},[952],{"attrs":953,"content":10,"marks":10,"text":13,"type":62},{"content_id":954,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":955,"link_type":102,"navigation_value":10,"target":13,"version":45},"ab22813e-d55b-4e35-aa85-d85e8634bdef",{"slug":956,"type":60},"konfainment-kvarkov-ab2281","конфайнмент",{"attrs":10,"content":10,"marks":10,"text":959,"type":48},") и могут лишь переходить внутри них из одного места в другое. Поэтому о массах этих частиц можно судить по их поведению не на больших, а на малых расстояниях друг от друга, где имеет место ",{"attrs":10,"content":10,"marks":961,"text":967,"type":48},[962],{"attrs":963,"content":10,"marks":10,"text":13,"type":62},{"content_id":964,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":965,"link_type":102,"navigation_value":10,"target":13,"version":45},"2842502b-bdb8-4614-b194-93664f9257bf",{"slug":966,"type":60},"asimptoticheskaia-svoboda-284250","асимптотическая свобода",{"attrs":10,"content":10,"marks":10,"text":969,"type":48},". На малых расстояниях масса глюонов равна нулю, а массы шести кварков ",{"attrs":971,"content":10,"marks":10,"text":13,"type":110},{"display":108,"displayMode":13,"src":972,"title":13},"u, d, s",{"attrs":10,"content":10,"marks":10,"text":65,"type":48},{"attrs":975,"content":10,"marks":10,"text":13,"type":110},{"display":108,"displayMode":13,"src":976,"title":13},"c, b, t",{"attrs":10,"content":10,"marks":10,"text":978,"type":48}," составляют примерно 3; 7; ∼ 100 МэВ/",{"attrs":10,"content":10,"marks":980,"text":109,"type":48},[981],{"attrs":982,"content":10,"marks":10,"text":13,"type":553},{"version":45},{"attrs":10,"content":10,"marks":984,"text":57,"type":48},[985],{"attrs":986,"content":10,"marks":10,"text":13,"type":515},{"version":45},{"attrs":10,"content":10,"marks":10,"text":988,"type":48}," и 1,3; 4,5; 170 ГэВ/",{"attrs":10,"content":10,"marks":990,"text":109,"type":48},[991],{"attrs":992,"content":10,"marks":10,"text":13,"type":553},{"version":45},{"attrs":10,"content":10,"marks":994,"text":57,"type":48},[995],{"attrs":996,"content":10,"marks":10,"text":13,"type":515},{"version":45},{"attrs":10,"content":10,"marks":10,"text":998,"type":48}," соответственно.",{"attrs":1000,"content":1001,"marks":10,"text":13,"type":135},{"textAlign":10},[1002,1004,1007,1009,1012],{"attrs":10,"content":10,"marks":10,"text":1003,"type":48},"Массы адронов, состоящих из лёгких ",{"attrs":1005,"content":10,"marks":10,"text":13,"type":110},{"display":108,"displayMode":13,"src":1006,"title":13},"u",{"attrs":10,"content":10,"marks":10,"text":1008,"type":48},"- и ",{"attrs":1010,"content":10,"marks":10,"text":13,"type":110},{"display":108,"displayMode":13,"src":1011,"title":13},"d",{"attrs":10,"content":10,"marks":10,"text":1013,"type":48},"-кварков, обусловлены не массой кварков, а механизмом конфайнмента, который возникает из-за сильного взаимодействия между глюонами.",{"attrs":1015,"content":1016,"marks":10,"text":13,"type":135},{"textAlign":10},[1017,1019,1028,1030,1033,1035,1043,1044,1047],{"attrs":10,"content":10,"marks":10,"text":1018,"type":48},"Масса составных частиц (примерами которых являются молекулы, состоящие из атомов, атомы, состоящие из электронов и атомных ядер, атомные ядра, состоящие из нуклонов), как правило, меньше, чем сумма масс составляющих их частиц. Соответствующую разность масс называют ",{"attrs":10,"content":10,"marks":1020,"text":1027,"type":48},[1021],{"attrs":1022,"content":10,"marks":10,"text":13,"type":62},{"content_id":1023,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":1024,"link_type":1026,"navigation_value":10,"target":13,"version":45},"54d2c659-2cbd-495e-a3e9-10362659ca04",{"slug":1025,"type":60},"defekt-massy-54d2c6","107","дефектом массы",{"attrs":10,"content":10,"marks":10,"text":1029,"type":48}," и обозначают ",{"attrs":1031,"content":10,"marks":10,"text":13,"type":110},{"display":108,"displayMode":13,"src":1032,"title":13},"Δm",{"attrs":10,"content":10,"marks":10,"text":1034,"type":48},". Чтобы разделить составную частицу на составляющие её частицы, например атом водорода на электрон и протон, надо затратить энергию, равную ",{"attrs":10,"content":10,"marks":1036,"text":1042,"type":48},[1037],{"attrs":1038,"content":10,"marks":10,"text":13,"type":62},{"content_id":1039,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":1040,"link_type":102,"navigation_value":10,"target":13,"version":45},"09082727-8f17-48a7-8ff5-f913a0cf840d",{"slug":1041,"type":60},"energiia-sviazi-090827","энергии связи",{"attrs":10,"content":10,"marks":10,"text":105,"type":48},{"attrs":1045,"content":10,"marks":10,"text":13,"type":110},{"display":108,"displayMode":13,"src":1046,"title":13},"\\Delta E",{"attrs":10,"content":10,"marks":10,"text":1048,"type":48},". В соответствии с соотношением между энергией и массой эта энергия равна",{"attrs":1050,"content":1051,"marks":10,"text":13,"type":135},{"textAlign":10},[1052,1055,1057,1065,1066,1069,1071,1076,1078,1086,1087,1096,1098,1106],{"attrs":1053,"content":10,"marks":10,"text":13,"type":110},{"display":207,"displayMode":208,"src":1054,"title":13},"ΔE=Δmc^2.\\qquad (9)",{"attrs":10,"content":10,"marks":10,"text":1056,"type":48},"Для атома ",{"attrs":10,"content":10,"marks":1058,"text":1064,"type":48},[1059],{"attrs":1060,"content":10,"marks":10,"text":13,"type":62},{"content_id":1061,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":1062,"link_type":61,"navigation_value":10,"target":13,"version":45},"7c381b42-c3c8-4bb3-a449-7ceaa816cc68",{"slug":1063,"type":60},"vodorod-7c381b","водорода",{"attrs":10,"content":10,"marks":10,"text":105,"type":48},{"attrs":1067,"content":10,"marks":10,"text":13,"type":110},{"display":108,"displayMode":13,"src":1068,"title":13},"ΔE",{"attrs":10,"content":10,"marks":10,"text":1070,"type":48}," = 13,6 эВ. Такая же энергия должна выделиться при образовании атома водорода из покоящихся электрона и протона. При делении ядра урана выделяется энергия порядка 200 МэВ. Это означает, что в кинетическую энергию продуктов деления переходит примерно 10",{"attrs":10,"content":10,"marks":1072,"text":1075,"type":48},[1073],{"attrs":1074,"content":10,"marks":10,"text":13,"type":515},{"version":45},"–3",{"attrs":10,"content":10,"marks":10,"text":1077,"type":48}," от величины массы ",{"attrs":10,"content":10,"marks":1079,"text":1085,"type":48},[1080],{"attrs":1081,"content":10,"marks":10,"text":13,"type":62},{"content_id":1082,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":1083,"link_type":61,"navigation_value":10,"target":13,"version":45},"ac6ea215-034f-4dfc-bd69-bd4f5861ce15",{"slug":1084,"type":60},"uran-khimicheskii-element-ac6ea2","урана",{"attrs":10,"content":10,"marks":10,"text":160,"type":48},{"attrs":10,"content":10,"marks":1088,"text":1095,"type":48},[1089],{"attrs":1090,"content":10,"marks":10,"text":13,"type":62},{"content_id":1091,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":1092,"link_type":1094,"navigation_value":10,"target":13,"version":45},"7ac0a5fc-2e4d-42f0-8b58-fa526fda7453",{"slug":1093,"type":60},"termoiadernye-reaktsii-7ac0a5","17","термоядерных реакциях",{"attrs":10,"content":10,"marks":10,"text":1097,"type":48},", идущих в звёздах и водородных бомбах, в кинетическую энергию переходит примерно 1 % суммарной массы водорода, превращающегося в ",{"attrs":10,"content":10,"marks":1099,"text":1105,"type":48},[1100],{"attrs":1101,"content":10,"marks":10,"text":13,"type":62},{"content_id":1102,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":1103,"link_type":61,"navigation_value":10,"target":13,"version":45},"9d40bf89-c0f4-4353-af89-b4d6bb590e10",{"slug":1104,"type":60},"gelii-9d40bf","гелий",{"attrs":10,"content":10,"marks":10,"text":1107,"type":48}," (энергия связи каждого из четырёх нуклонов в ядре гелия примерно 8 МэВ, а масса нуклона примерно 940 МэВ). При аннигиляции электрона и позитрона вся их масса (энергия покоя) превращается в кинетическую энергию фотонов.",{"attrs":1109,"content":1110,"marks":10,"text":13,"type":135},{"textAlign":10},[1111,1113,1115],{"attrs":10,"content":10,"marks":10,"text":1112,"type":48},"О превращении массы в кинетическую энергию часто не вполне точно говорят как о превращении массы в энергию. Неточность заключается в том, что такая формулировка может натолкнуть на неверную мысль, что в физических и химических процессах энергия не сохраняется. На самом же деле она сохраняется во всех вышеупомянутых процессах. Просто в них энергия покоя переходит в кинетическую энергию. Эта терминологическая неточность восходит к абсолютизации ньютоновой физики, в которой понятия энергии покоя ",{"attrs":1114,"content":10,"marks":10,"text":13,"type":110},{"display":108,"displayMode":13,"src":227,"title":13},{"attrs":10,"content":10,"marks":10,"text":1116,"type":48}," не было.",{"attrs":1118,"content":1119,"marks":10,"text":13,"type":135},{"textAlign":10},[1120,1122,1124],{"attrs":10,"content":10,"marks":10,"text":1121,"type":48},"Аналогично на переходе от ньютоновой физике к релятивистской возникло и ложное представление о том, что масса движущегося тела возрастает с увеличением его скорости. Такое представление возникает, если в формуле (3) для энергии покоя ",{"attrs":1123,"content":10,"marks":10,"text":13,"type":110},{"display":108,"displayMode":13,"src":227,"title":13},{"attrs":10,"content":10,"marks":10,"text":1125,"type":48}," опустить для краткости индекс 0 и написать",{"attrs":1127,"content":1129,"marks":10,"text":13,"type":135},{"textAlign":1128},"center",[1130],{"attrs":1131,"content":10,"marks":10,"text":13,"type":110},{"display":108,"displayMode":13,"src":1132,"title":13},"E =mc^2.\\qquad (10)",{"attrs":1134,"content":1135,"marks":10,"text":13,"type":135},{"textAlign":10},[1136,1138,1140,1142,1144,1146,1148,1150,1153],{"attrs":10,"content":10,"marks":10,"text":1137,"type":48},"Именно так поступают авторы многочисленных популярных статей, книг и даже учебников по теории относительности, выдавая уравнение (10) за истинное уравнение Эйнштейна (3). При такой отнюдь не безобидной замене место энергии покоя ",{"attrs":1139,"content":10,"marks":10,"text":13,"type":110},{"display":108,"displayMode":13,"src":227,"title":13},{"attrs":10,"content":10,"marks":10,"text":1141,"type":48}," занимает полная энергия движущегося тела ",{"attrs":1143,"content":10,"marks":10,"text":13,"type":110},{"display":108,"displayMode":13,"src":660,"title":13},{"attrs":10,"content":10,"marks":10,"text":1145,"type":48},", а масса ",{"attrs":1147,"content":10,"marks":10,"text":13,"type":110},{"display":108,"displayMode":13,"src":174,"title":13},{"attrs":10,"content":10,"marks":10,"text":1149,"type":48}," оказывается зависящей от скорости тела. При этом от читателей по существу скрывают основное уравнение теории относительности для свободного тела (1), которое очевидным образом несовместимо с уравнением (10). Более того, обычную массу, удовлетворяющую уравнениям (1) и (3), приходится называть массой покоя и обозначать её ",{"attrs":1151,"content":10,"marks":10,"text":13,"type":110},{"display":108,"displayMode":13,"src":1152,"title":13},"m_0",{"attrs":10,"content":10,"marks":10,"text":1154,"type":48},". Всё это затрудняет понимание сути теории относительности.",{"attrs":1156,"content":10,"marks":10,"text":13,"type":1162},{"list":1157},[1158],{"slug":1159,"type":1160,"value":1161},"lb-okun-0c77ac","portal_author","Окунь Лев Борисович","author","doc","Окунь Л. Б. Масса // Большая российская энциклопедия: научно-образовательный портал – URL: https://bigenc.ru/c/massa-33317f/?v=8666170. – Дата публикации: 12.10.2023","Физические величины",{"descriptionList":1167,"image":1171},[1168],{"kind":48,"label":1169,"value":1170},"Области знаний","Динамика материальной точки и системы точек",{"caption":1172,"element":1175},{"text":1173,"title":1174},"Физика. Научно-образовательный портал «Большая российская энциклопедия»","Физика",{"alt":1174,"areaViews":1176,"height":1191,"placeholder":6,"src":1192,"srcset":1193,"title":1174,"width":1194},[1177,1182,1186],{"alias":1178,"height":1179,"srcset":1180,"width":1181},"16/9",394,"https://i.bigenc.ru/resizer/resize?sign=fbrJL5DBtXzyuD39zuzLng&filename=vault/66a85678c523ad1457cf6ed7f695a7cc.webp&width=120 120w,https://i.bigenc.ru/resizer/resize?sign=QQmcmYSPahUOPaI2cBiJJw&filename=vault/66a85678c523ad1457cf6ed7f695a7cc.webp&width=320 320w,https://i.bigenc.ru/resizer/resize?sign=q6_COIpLGvskzib5PBFlPA&filename=vault/66a85678c523ad1457cf6ed7f695a7cc.webp&width=480 480w,https://i.bigenc.ru/resizer/resize?sign=6LCR5nPbEWe_60e6VQ6jtg&filename=vault/66a85678c523ad1457cf6ed7f695a7cc.webp&width=640 640w,https://i.bigenc.ru/resizer/resize?sign=wCDGPe_MW8FlERMjuk8k8g&filename=vault/66a85678c523ad1457cf6ed7f695a7cc.webp&width=768 768w,https://i.bigenc.ru/resizer/resize?sign=D30keLkS0kJpWcFpPuLaEg&filename=vault/66a85678c523ad1457cf6ed7f695a7cc.webp&width=1024 1024w,https://i.bigenc.ru/resizer/resize?sign=gg19Uiskf4XuV2ps-bnBXA&filename=vault/66a85678c523ad1457cf6ed7f695a7cc.webp&width=1280 1280w,https://i.bigenc.ru/resizer/resize?sign=vDmDJKA_LeVaGTULVBfqDA&filename=vault/66a85678c523ad1457cf6ed7f695a7cc.webp&width=1920 1920w,https://i.bigenc.ru/resizer/resize?sign=7ikIK_fY-di6ts4e41gTrw&filename=vault/66a85678c523ad1457cf6ed7f695a7cc.webp&width=3840 3840w",700,{"alias":1183,"height":1184,"srcset":1185,"width":1184},"1/1",228,"https://i.bigenc.ru/resizer/resize?sign=c9Nd2bcHNIcBGUDDFoB4bw&filename=vault/0b3987180b1d0c81b0cdfb4a1cd52476.webp&width=120 120w,https://i.bigenc.ru/resizer/resize?sign=7096IM8aEKErJTY2j52KIQ&filename=vault/0b3987180b1d0c81b0cdfb4a1cd52476.webp&width=320 320w,https://i.bigenc.ru/resizer/resize?sign=WhtTw6iPRA8XGftLH-N5oQ&filename=vault/0b3987180b1d0c81b0cdfb4a1cd52476.webp&width=480 480w,https://i.bigenc.ru/resizer/resize?sign=IhLiYkKd0wANEWJocBcc4A&filename=vault/0b3987180b1d0c81b0cdfb4a1cd52476.webp&width=640 640w,https://i.bigenc.ru/resizer/resize?sign=Z-77oV4lExygf2LaDfv2Qg&filename=vault/0b3987180b1d0c81b0cdfb4a1cd52476.webp&width=768 768w,https://i.bigenc.ru/resizer/resize?sign=aNcBsUzrP9G51Ce6GUXjrA&filename=vault/0b3987180b1d0c81b0cdfb4a1cd52476.webp&width=1024 1024w,https://i.bigenc.ru/resizer/resize?sign=EE63Vo2oDiWIVVs4KnDydg&filename=vault/0b3987180b1d0c81b0cdfb4a1cd52476.webp&width=1280 1280w,https://i.bigenc.ru/resizer/resize?sign=9pJcSguiuXdEmyNyZwhkyQ&filename=vault/0b3987180b1d0c81b0cdfb4a1cd52476.webp&width=1920 1920w,https://i.bigenc.ru/resizer/resize?sign=ImKWJht9_tEg7ELt976lYw&filename=vault/0b3987180b1d0c81b0cdfb4a1cd52476.webp&width=3840 3840w",{"alias":1187,"height":1188,"srcset":1189,"width":1190},"3/4",752,"https://i.bigenc.ru/resizer/resize?sign=qUoTUBWv7V0zJQsB97HS3g&filename=vault/c5c74a105abaef47ccf99436086e9089.webp&width=120 120w,https://i.bigenc.ru/resizer/resize?sign=eZjwfnRSt4F00M3PgYcLtw&filename=vault/c5c74a105abaef47ccf99436086e9089.webp&width=320 320w,https://i.bigenc.ru/resizer/resize?sign=Kiktsvq6W3Un8eYZ2o3u-A&filename=vault/c5c74a105abaef47ccf99436086e9089.webp&width=480 480w,https://i.bigenc.ru/resizer/resize?sign=82VktcLfheVxqPhoTRbrwg&filename=vault/c5c74a105abaef47ccf99436086e9089.webp&width=640 640w,https://i.bigenc.ru/resizer/resize?sign=_Lu2HKDnjjxdeswxDcWniA&filename=vault/c5c74a105abaef47ccf99436086e9089.webp&width=768 768w,https://i.bigenc.ru/resizer/resize?sign=Ym1FzzUIYehSsuSO5AgL2g&filename=vault/c5c74a105abaef47ccf99436086e9089.webp&width=1024 1024w,https://i.bigenc.ru/resizer/resize?sign=gTr_RmOEaFyDZ_lIL30Zow&filename=vault/c5c74a105abaef47ccf99436086e9089.webp&width=1280 1280w,https://i.bigenc.ru/resizer/resize?sign=qO_kluTGLr79oeniPQaF6A&filename=vault/c5c74a105abaef47ccf99436086e9089.webp&width=1920 1920w,https://i.bigenc.ru/resizer/resize?sign=dZk1Cmo8cXTrnKowfpLcUA&filename=vault/c5c74a105abaef47ccf99436086e9089.webp&width=3840 3840w",564,1008,"https://i.bigenc.ru/resizer/resize?sign=7JK17_fgqWlQEFIk2cRkfA&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=120","https://i.bigenc.ru/resizer/resize?sign=7JK17_fgqWlQEFIk2cRkfA&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=120 120w,https://i.bigenc.ru/resizer/resize?sign=Jf8Ovt6NK1CJRMEXmLmu9w&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=320 320w,https://i.bigenc.ru/resizer/resize?sign=9FmjZNIS1_JG-eBy3nkCow&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=480 480w,https://i.bigenc.ru/resizer/resize?sign=W0YAxakNej-ihBYTmKOUhA&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=640 640w,https://i.bigenc.ru/resizer/resize?sign=bU5vxPnJKBxMhvgLEjl-uA&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=768 768w,https://i.bigenc.ru/resizer/resize?sign=CO7eqX0CglCAJmsuCYDJxQ&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=1024 1024w,https://i.bigenc.ru/resizer/resize?sign=SNrDJXfJeDUaOjs9TGABPA&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=1280 1280w,https://i.bigenc.ru/resizer/resize?sign=A65s2m2zZF6hgTDDppMoDA&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=1920 1920w",1528,"Масса","2023-10-12T15:39:41.000Z","33317ffb-6127-4367-9181-19e809f66f30",8666170,{"article:modified_time":1196,"article:section":1165,"article:tag":1200,"description":1202,"keywords":1201,"og:description":1202,"og:image":1203,"og:image:alt":1204,"og:image:height":1205,"og:image:type":1206,"og:image:width":1207,"og:title":1208,"og:type":60,"og:url":1209,"title":1208,"twitter:card":1210},[1201],"Физические измерения","Ма́сса, фундаментальная физическая величина, определяющая инерционные и гравитационные свойства тел – от макроскопических объектов до атомов и...","https://i.bigenc.ru/resizer/resize?sign=K2mwjNK87zofppSZEffyIw&filename=vault/3cf067030012eb10bb78b0ddf25f3b6b.webp&width=1200","«Большая российская энциклопедия»","792","webp&width=1200","1200","Масса. Большая российская энциклопедия","https://bigenc.ru/c/massa-33317f","summary_large_image","massa-33317f",[1213],{"label":1201,"link":1214},{"slug":1215,"type":1216},"fizicheskie-izmereniia-c71ebc","tag",{"createdAt":1196,"tabs":1218,"title":1195,"updatedAt":1196},[60,1219,1220,1221],"annotation","references","versions",[],{},"/content/articles/massa-33317f",{"get_":1226,"getError":10,"getPending":12,"slideNumber":17,"getCache":1232},{"components":1227,"media":1229,"meta":1230},{"createdAt":1196,"tabs":1228,"title":1195,"updatedAt":1196},[60,1219,1220,1221],{},{"article:modified_time":1196,"article:section":1165,"article:tag":1231,"description":1202,"keywords":1201,"og:description":1202,"og:image":1203,"og:image:alt":1204,"og:image:height":1205,"og:image:type":1206,"og:image:width":1207,"og:title":1208,"og:type":60,"og:url":1209,"title":1208,"twitter:card":1210},[1201],"/content/articles/massa-33317f/media?slider=true",{"isOpened":12},{"get_":10,"getError":10,"getPending":6,"post_":-1,"postError":10,"postPending":6,"count":17,"noteActive":12,"allVersions":12,"rendered":12,"loading":12},{"isOpened":12},{"isOpened":12},{"get_":10,"getError":10,"getPending":6},{"get_":10,"getError":10,"getPending":6},{"get_":10,"getError":10,"getPending":6},{"get_":10,"getError":10,"getPending":6,"post_":-1,"postError":10,"postPending":6},{"get_":1242,"getError":10,"getPending":12,"getCache":1249},{"components":1243,"title":1195,"versions":1245},{"createdAt":1196,"tabs":1244,"title":1195,"updatedAt":1196},[60,1219,1220,1221],[1246],{"createdAt":1196,"id":1247,"isCurrent":6,"title":1248},"8666170","Версия №1 (актуальная)","/content/articles/massa-33317f/versions",{"show":12},{"text":13}]</script> <script>window.__NUXT__={};window.__NUXT__.config={public:{apiPrefix:"https://api.bigenc.ru",sVault:"",iVault:"",apiContentSubPrefix:"c.",apiUserSubPrefix:"u.",domain:"bigenc.ru",sentryDns:"https://be4279c4bfa0caa49440eefadf8abb1c@sentry.bigenc.ru/2",googleAnalytics:{id:"G-B0B7W0RKMV",allowedEnv:"production",url:"https://www.googletagmanager.com/gtag/js?id=G-B0B7W0RKMV"},mailRuCounter:{id:3400444,allowedEnv:"production",url:"https://top-fwz1.mail.ru/js/code.js"},version:"1.40.12",gnezdo:{id:2904018441,allowedEnv:"production",url:"https://news.gnezdo2.ru/gnezdo_news_tracker_new.js"},clickcloud:{id:"https://r.ccsyncuuid.net/match/1000511/",allowedEnv:"production"},yandexMetrika:{id:88885444,allowedEnv:"production",url:"https://mc.yandex.ru/metrika/tag.js",options:{defer:true,webvisor:true,clickmap:true,trackLinks:true,childIframe:true,accurateTrackBounce:true}},device:{enabled:true,defaultUserAgent:"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.39 Safari/537.36",refreshOnResize:false},persistedState:{storage:"cookies",debug:false,cookieOptions:{}}},app:{baseURL:"/",buildAssetsDir:"/_nuxt/",cdnURL:"https://s.bigenc.ru/"}}</script></body></html>

Pages: 1 2 3 4 5 6 7 8 9 10