CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 196 results for author: <span class="mathjax">Xia, L</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&query=Xia%2C+L">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Xia, L"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Xia%2C+L&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Xia, L"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Xia%2C+L&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Xia%2C+L&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Xia%2C+L&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Xia%2C+L&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Xia%2C+L&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.00082">arXiv:2502.00082</a> <span> [<a href="https://arxiv.org/pdf/2502.00082">pdf</a>, <a href="https://arxiv.org/format/2502.00082">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Physics">physics.gen-ph</span> </div> </div> <p class="title is-5 mathjax"> A model of mass generation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Xia%2C+L">Li-Gang Xia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.00082v1-abstract-short" style="display: inline;"> In this work, we build a model to combine the mass generated from the Higgs mechanism and that from the dynamical chiral symmetry breaking mechanism. This is motivated by the fermion mass hierarchy that the neutrino mass is smaller than the charged lepton mass and the charged lepton mass is smaller than the quark mass. Since they participate different interactions, it is natural to conjecture that… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.00082v1-abstract-full').style.display = 'inline'; document.getElementById('2502.00082v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.00082v1-abstract-full" style="display: none;"> In this work, we build a model to combine the mass generated from the Higgs mechanism and that from the dynamical chiral symmetry breaking mechanism. This is motivated by the fermion mass hierarchy that the neutrino mass is smaller than the charged lepton mass and the charged lepton mass is smaller than the quark mass. Since they participate different interactions, it is natural to conjecture that interactions contribute to the fermion mass. This conjecture could be explained via the dynamical chiral symmetry breaking mechanism with assuming the existence of a non-perturbative regime. In addition, this model predicts a different ratio of fermion Yukawa coupling to the Higgs self coupling, which could be verified in the near future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.00082v1-abstract-full').style.display = 'none'; document.getElementById('2502.00082v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures, comments are welcome!</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.00728">arXiv:2412.00728</a> <span> [<a href="https://arxiv.org/pdf/2412.00728">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> Integrated simulation of cavity design and radiation transport codes (ACE3P + Geant4) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ge%2C+L">Lixin Ge</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Z">Zenghai Li</a>, <a href="/search/physics?searchtype=author&query=Ng%2C+C">Cho-Kuen Ng</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+L">Liling Xiao</a>, <a href="/search/physics?searchtype=author&query=Ego%2C+H">Hiroyasu Ego</a>, <a href="/search/physics?searchtype=author&query=Enomoto%2C+Y">Yoshinori Enomoto</a>, <a href="/search/physics?searchtype=author&query=Iwase%2C+H">Hiroshi Iwase</a>, <a href="/search/physics?searchtype=author&query=Morikawa%2C+Y">Yu Morikawa</a>, <a href="/search/physics?searchtype=author&query=Yoshimoto%2C+T">Takashi Yoshimoto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.00728v1-abstract-short" style="display: inline;"> A simulation workflow has been developed to study dark current (DC) radiation effects using ACE3P and Geant4. The integrated workflow interfaces particle data transfer and geometry between the electromagnetic (EM) cavity simulation code ACE3P and the radiation code Geant4, targeting large-scale problems using high-performance computing. The process begins by calculating the operating mode in the v… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.00728v1-abstract-full').style.display = 'inline'; document.getElementById('2412.00728v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.00728v1-abstract-full" style="display: none;"> A simulation workflow has been developed to study dark current (DC) radiation effects using ACE3P and Geant4. The integrated workflow interfaces particle data transfer and geometry between the electromagnetic (EM) cavity simulation code ACE3P and the radiation code Geant4, targeting large-scale problems using high-performance computing. The process begins by calculating the operating mode in the vacuum region of an accelerator structure and tracking field-emitted electrons influenced by the EM fields of the mode calculated by ACE3P. It then transfers particle data at the vacuum-wall interface for subsequent radiation calculations within the wall enclosure materials through Geant4 calculation. The whole integrated simulation workflow will be demonstrated through large-scale dark current radiation calculations for the KEK 56-cell traveling-wave structure, and the efficiency of performing these simulations on the NERSC supercomputer Perlmutter will be presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.00728v1-abstract-full').style.display = 'none'; document.getElementById('2412.00728v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 13 figures. Appears in the proceedings of the 14th International Computational Accelerator Physics Conference, 2-5 October 2024, Germany</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.24073">arXiv:2410.24073</a> <span> [<a href="https://arxiv.org/pdf/2410.24073">pdf</a>, <a href="https://arxiv.org/format/2410.24073">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Physical mode analysis of multimode cascaded nonlinear processes in strongly-coupled waveguides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Xia%2C+L">Lisi Xia</a>, <a href="/search/physics?searchtype=author&query=van+der+Slot%2C+P+J+M">Peter J. M. van der Slot</a>, <a href="/search/physics?searchtype=author&query=Toebes%2C+C">Chris Toebes</a>, <a href="/search/physics?searchtype=author&query=Boller%2C+K+-">Klaus -J. Boller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.24073v2-abstract-short" style="display: inline;"> We experimentally investigate on-chip control and analysis of spatially multimode nonlinear interactions in silicon nitride waveguide circuits. Using widely different dispersion of transverse supermodes in a strongly-coupled dual-core waveguide section, and using integrated pairs of input and output single-mode waveguides, we enable controlled excitation of nonlinear processes in multiple supermod… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.24073v2-abstract-full').style.display = 'inline'; document.getElementById('2410.24073v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.24073v2-abstract-full" style="display: none;"> We experimentally investigate on-chip control and analysis of spatially multimode nonlinear interactions in silicon nitride waveguide circuits. Using widely different dispersion of transverse supermodes in a strongly-coupled dual-core waveguide section, and using integrated pairs of input and output single-mode waveguides, we enable controlled excitation of nonlinear processes in multiple supermodes, while a basic physical mode decomposition aids the identification of parallel and cascaded processes. Pumping with ultrashort pulses at 1.5-$渭$m wavelength (around 195-THz light frequency), we observe simultaneous dual-supermode, near-infrared supercontinuum generation having different spectral widths, in parallel with third-harmonic generation at around 515 nm (582 THz). Cascaded four-wave mixing with supercontinuum components upconverts the third-harmonic radiation toward a set of four shorter blue wavelengths emitted in the range between 485 and 450 nm (617 to 661 THz). The approach taken here, i.e., using chip-integrated spatial multiplexing and demultiplexing for excitation and analysis of broadband transverse nonlinear conversion, can be an advanced tool for better understanding and control in multimode nonlinear optics, such as for extending frequency conversion to wider spectral ranges via extra phase matching paths. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.24073v2-abstract-full').style.display = 'none'; document.getElementById('2410.24073v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.15529">arXiv:2410.15529</a> <span> [<a href="https://arxiv.org/pdf/2410.15529">pdf</a>, <a href="https://arxiv.org/format/2410.15529">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Measurement of gas properties for the ion-TPC of N$谓$DEx experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liang%2C+T">Tianyu Liang</a>, <a href="/search/physics?searchtype=author&query=Zhan%2C+M">Meiqiang Zhan</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+H">Hulin Wang</a>, <a href="/search/physics?searchtype=author&query=Wei%2C+X">Xianglun Wei</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+D">Dongliang Zhang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jun Liu</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+C">Chengui Lu</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+Q">Qiang Hu</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+Y">Yichen Yang</a>, <a href="/search/physics?searchtype=author&query=Gao%2C+C">Chaosong Gao</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+L">Le Xiao</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+X">Xiangming Sun</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+F">Feng Liu</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+C">Chengxin Zhao</a>, <a href="/search/physics?searchtype=author&query=Qiu%2C+H">Hao Qiu</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+K">Kai Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.15529v1-abstract-short" style="display: inline;"> In the N$谓$DEx collaboration, a high-pressure gas TPC is being developed to search for the neutrinoless double beta decay. The use of electronegative $\mathrm{^{82}SeF_{6}}$ gas mandates an ion-TPC. The reconstruction of $z$ coordinate is to be realized exploiting the feature of multiple species of charge carriers. As the initial stage of the development, we studied the properties of the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15529v1-abstract-full').style.display = 'inline'; document.getElementById('2410.15529v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.15529v1-abstract-full" style="display: none;"> In the N$谓$DEx collaboration, a high-pressure gas TPC is being developed to search for the neutrinoless double beta decay. The use of electronegative $\mathrm{^{82}SeF_{6}}$ gas mandates an ion-TPC. The reconstruction of $z$ coordinate is to be realized exploiting the feature of multiple species of charge carriers. As the initial stage of the development, we studied the properties of the $\mathrm{SF_{6}}$ gas, which is non-toxic and has similar molecular structure to $\mathrm{SeF_{6}}$. In the paper we present the measurement of drift velocities and mobilities of the majority and minority negative charge carriers found in $\mathrm{SF_{6}}$ at a pressure of 750 Torr, slightly higher than the local atmospheric pressure. The reduced fields range between 3.0 and 5.5 Td. It was performed using a laser beam to ionize the gas inside a small TPC, with a drift length of 3.7 cm. A customized charge sensitive amplifier was developed to read out the anode signals induced by the slowly drifting ions. The reconstruction of $z$ coordinate using the difference in the velocities of the two carriers was also demonstrated. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15529v1-abstract-full').style.display = 'none'; document.getElementById('2410.15529v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.09142">arXiv:2410.09142</a> <span> [<a href="https://arxiv.org/pdf/2410.09142">pdf</a>, <a href="https://arxiv.org/format/2410.09142">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> </div> <p class="title is-5 mathjax"> JWST/MIRI Observations of Newly Formed Dust in the Cold, Dense Shell of the Type IIn SN 2005ip </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Shahbandeh%2C+M">Melissa Shahbandeh</a>, <a href="/search/physics?searchtype=author&query=Fox%2C+O+D">Ori D. Fox</a>, <a href="/search/physics?searchtype=author&query=Temim%2C+T">Tea Temim</a>, <a href="/search/physics?searchtype=author&query=Dwek%2C+E">Eli Dwek</a>, <a href="/search/physics?searchtype=author&query=Sarangi%2C+A">Arkaprabha Sarangi</a>, <a href="/search/physics?searchtype=author&query=Smith%2C+N">Nathan Smith</a>, <a href="/search/physics?searchtype=author&query=Dessart%2C+L">Luc Dessart</a>, <a href="/search/physics?searchtype=author&query=Nickson%2C+B">Bryony Nickson</a>, <a href="/search/physics?searchtype=author&query=Engesser%2C+M">Michael Engesser</a>, <a href="/search/physics?searchtype=author&query=Filippenko%2C+A+V">Alexei V. Filippenko</a>, <a href="/search/physics?searchtype=author&query=Brink%2C+T+G">Thomas G. Brink</a>, <a href="/search/physics?searchtype=author&query=Zheng%2C+W">Weikang Zheng</a>, <a href="/search/physics?searchtype=author&query=Szalai%2C+T">Tam谩s Szalai</a>, <a href="/search/physics?searchtype=author&query=Johansson%2C+J">Joel Johansson</a>, <a href="/search/physics?searchtype=author&query=Rest%2C+A">Armin Rest</a>, <a href="/search/physics?searchtype=author&query=Van+Dyk%2C+S+D">Schuyler D. Van Dyk</a>, <a href="/search/physics?searchtype=author&query=Andrews%2C+J">Jennifer Andrews</a>, <a href="/search/physics?searchtype=author&query=Ashall%2C+C">Chris Ashall</a>, <a href="/search/physics?searchtype=author&query=Clayton%2C+G+C">Geoffrey C. Clayton</a>, <a href="/search/physics?searchtype=author&query=De+Looze%2C+I">Ilse De Looze</a>, <a href="/search/physics?searchtype=author&query=Derkacy%2C+J+M">James M. Derkacy</a>, <a href="/search/physics?searchtype=author&query=Dulude%2C+M">Michael Dulude</a>, <a href="/search/physics?searchtype=author&query=Foley%2C+R+J">Ryan J. Foley</a>, <a href="/search/physics?searchtype=author&query=Gezari%2C+S">Suvi Gezari</a>, <a href="/search/physics?searchtype=author&query=Gomez%2C+S">Sebastian Gomez</a> , et al. (20 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.09142v1-abstract-short" style="display: inline;"> Dust from core-collapse supernovae (CCSNe), specifically Type IIP SNe, has been suggested to be a significant source of the dust observed in high-redshift galaxies. CCSNe eject large amounts of newly formed heavy elements, which can condense into dust grains in the cooling ejecta. However, infrared (IR) observations of typical CCSNe generally measure dust masses that are too small to account for t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09142v1-abstract-full').style.display = 'inline'; document.getElementById('2410.09142v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.09142v1-abstract-full" style="display: none;"> Dust from core-collapse supernovae (CCSNe), specifically Type IIP SNe, has been suggested to be a significant source of the dust observed in high-redshift galaxies. CCSNe eject large amounts of newly formed heavy elements, which can condense into dust grains in the cooling ejecta. However, infrared (IR) observations of typical CCSNe generally measure dust masses that are too small to account for the dust production needed at high redshifts. Type IIn SNe, classified by their dense circumstellar medium (CSM), are also known to exhibit strong IR emission from warm dust, but the dust origin and heating mechanism have generally remained unconstrained because of limited observational capabilities in the mid-IR. Here, we present a JWST/MIRI Medium Resolution Spectrograph (MRS) spectrum of the Type IIn SN 2005ip nearly 17 years post-explosion. The Type IIn SN 2005ip is one of the longest-lasting and most well-studied SNe observed to date. Combined with a Spitzer mid-IR spectrum of SN 2005ip obtained in 2008, this data set provides a rare 15-year baseline, allowing for a unique investigation of the evolution of dust. The JWST spectrum shows a new high-mass dust component ($\gtrsim0.08$ M$_{\odot}$) that is not present in the earlier Spitzer spectrum. Our analysis shows dust likely formed over the past 15 years in the cold, dense shell (CDS), between the forward and reverse shocks. There is also a smaller mass of carbonaceous dust ($\gtrsim0.005$ M$_{\odot}$) in the ejecta. These observations provide new insights into the role of SN dust production, particularly within the CDS, and its potential contribution to the rapid dust enrichment of the early Universe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09142v1-abstract-full').style.display = 'none'; document.getElementById('2410.09142v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.05419">arXiv:2409.05419</a> <span> [<a href="https://arxiv.org/pdf/2409.05419">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Super-bunching light with giant high-order correlations and extreme multi-photon events </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Qin%2C+C">Chengbing Qin</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yuanyuan Li</a>, <a href="/search/physics?searchtype=author&query=Yan%2C+Y">Yu Yan</a>, <a href="/search/physics?searchtype=author&query=Li%2C+J">Jiamin Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+X">Xiangdong Li</a>, <a href="/search/physics?searchtype=author&query=Song%2C+Y">Yunrui Song</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+X">Xuedong Zhang</a>, <a href="/search/physics?searchtype=author&query=Han%2C+S">Shuangping Han</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Zihua Liu</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+Y">Yanqiang Guo</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+G">Guofeng Zhang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+R">Ruiyun Chen</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+J">Jianyong Hu</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+Z">Zhichun Yang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+X">Xinhui Liu</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+L">Liantuan Xiao</a>, <a href="/search/physics?searchtype=author&query=Jia%2C+S">Suotang Jia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.05419v3-abstract-short" style="display: inline;"> Non-classical light sources emitting bundles of N-photons with strong correlation represent versatile resources of interdisciplinary importance with applications ranging from fundamental tests of quantum mechanics to quantum information processing. Yet, high-order correlations, gN(0),quantifying photon correlation, are still limited to hundreds. Here, we report the generation of a super-bunching l… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.05419v3-abstract-full').style.display = 'inline'; document.getElementById('2409.05419v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.05419v3-abstract-full" style="display: none;"> Non-classical light sources emitting bundles of N-photons with strong correlation represent versatile resources of interdisciplinary importance with applications ranging from fundamental tests of quantum mechanics to quantum information processing. Yet, high-order correlations, gN(0),quantifying photon correlation, are still limited to hundreds. Here, we report the generation of a super-bunching light source in photonic crystal fiber with g2(0) reaching 5.86*104 and g5(0) up to 2.72*108, through measuring its photon number probability distributions. under giant g2(0) values, the super-bunching light source presents upturned-tail photon distributions and ubiquitous extreme multi-photon events, where 31 photons from a single light pulse at a mean of 1.99*10-4 photons per pulse have been determined. The probability of this extreme event has been enhanced by 10139 folds compared to a coherent laser with Poissonian distribution. By varying the power of the pumping laser, both photon number distributions and corresponding high-order correlations of this light source can be substantially tailored from Poissonian to super-bunching distributions. These phenomena are attributed to the synchronized nonlinear interactions in photonic crystal fibers pumping by bright squeezed light, and the theoretical simulations agree well with the experimental results. Our research showcases the ability to achieve non-classical light sources with giant high-order correlations and extreme multi-photon events, paving the way for high-order correlation imaging, extreme nonlinear optical effects, quantum information processing, and exploring light-matter interactions with multi-photon physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.05419v3-abstract-full').style.display = 'none'; document.getElementById('2409.05419v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.14665">arXiv:2407.14665</a> <span> [<a href="https://arxiv.org/pdf/2407.14665">pdf</a>, <a href="https://arxiv.org/format/2407.14665">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> </div> <p class="title is-5 mathjax"> Magnetic Reconnection on a Klein Bottle </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Xia%2C+L">Luke Xia</a>, <a href="/search/physics?searchtype=author&query=Swisdak%2C+M">M. Swisdak</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.14665v1-abstract-short" style="display: inline;"> We present a new boundary condition for simulations of magnetic reconnection based on the topology of a Klein bottle. When applicable, the new condition is computationally cheaper than fully periodic boundary conditions, reconnects more flux than systems with conducting boundaries, and does not require assumptions about regions external to the simulation as is necessary for open boundaries. The ne… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.14665v1-abstract-full').style.display = 'inline'; document.getElementById('2407.14665v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.14665v1-abstract-full" style="display: none;"> We present a new boundary condition for simulations of magnetic reconnection based on the topology of a Klein bottle. When applicable, the new condition is computationally cheaper than fully periodic boundary conditions, reconnects more flux than systems with conducting boundaries, and does not require assumptions about regions external to the simulation as is necessary for open boundaries. The new condition reproduces the expected features of reconnection, but cannot be straightforwardly applied in systems with asymmetric upstream plasmas. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.14665v1-abstract-full').style.display = 'none'; document.getElementById('2407.14665v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 8 figures, submitted to Physics of Plasmas</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.07651">arXiv:2407.07651</a> <span> [<a href="https://arxiv.org/pdf/2407.07651">pdf</a>, <a href="https://arxiv.org/format/2407.07651">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Study of the decay and production properties of $D_{s1}(2536)$ and $D_{s2}^*(2573)$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/physics?searchtype=author&query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/physics?searchtype=author&query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/physics?searchtype=author&query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/physics?searchtype=author&query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/physics?searchtype=author&query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/physics?searchtype=author&query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/physics?searchtype=author&query=An%2C+Q">Q. An</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+Y">Y. Bai</a>, <a href="/search/physics?searchtype=author&query=Bakina%2C+O">O. Bakina</a>, <a href="/search/physics?searchtype=author&query=Balossino%2C+I">I. Balossino</a>, <a href="/search/physics?searchtype=author&query=Ban%2C+Y">Y. Ban</a>, <a href="/search/physics?searchtype=author&query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/physics?searchtype=author&query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/physics?searchtype=author&query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/physics?searchtype=author&query=Berger%2C+N">N. Berger</a>, <a href="/search/physics?searchtype=author&query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/physics?searchtype=author&query=Bertani%2C+M">M. Bertani</a>, <a href="/search/physics?searchtype=author&query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/physics?searchtype=author&query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/physics?searchtype=author&query=Bianco%2C+E">E. Bianco</a>, <a href="/search/physics?searchtype=author&query=Bortone%2C+A">A. Bortone</a>, <a href="/search/physics?searchtype=author&query=Boyko%2C+I">I. Boyko</a>, <a href="/search/physics?searchtype=author&query=Briere%2C+R+A">R. A. Briere</a>, <a href="/search/physics?searchtype=author&query=Brueggemann%2C+A">A. Brueggemann</a> , et al. (645 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.07651v1-abstract-short" style="display: inline;"> The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ processes are studied using data samples collected with the BESIII detector at center-of-mass energies from 4.530 to 4.946~GeV. The absolute branching fractions of $D_{s1}(2536)^- \rightarrow \bar{D}^{*0}K^-$ and $D_{s2}^*(2573)^- \rightarrow \bar{D}^0K^-$ are measured for the first time to be… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07651v1-abstract-full').style.display = 'inline'; document.getElementById('2407.07651v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.07651v1-abstract-full" style="display: none;"> The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ processes are studied using data samples collected with the BESIII detector at center-of-mass energies from 4.530 to 4.946~GeV. The absolute branching fractions of $D_{s1}(2536)^- \rightarrow \bar{D}^{*0}K^-$ and $D_{s2}^*(2573)^- \rightarrow \bar{D}^0K^-$ are measured for the first time to be $(35.9\pm 4.8\pm 3.5)\%$ and $(37.4\pm 3.1\pm 4.6)\%$, respectively. The measurements are in tension with predictions based on the assumption that the $D_{s1}(2536)$ and $D_{s2}^*(2573)$ are dominated by a bare $c\bar{s}$ component. The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ cross sections are measured, and a resonant structure at around 4.6~GeV with a width of 50~MeV is observed for the first time with a statistical significance of $15蟽$ in the $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ process. It could be the $Y(4626)$ found by the Belle collaboration in the $D_s^+D_{s1}(2536)^{-}$ final state, since they have similar masses and widths. There is also evidence for a structure at around 4.75~GeV in both processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07651v1-abstract-full').style.display = 'none'; document.getElementById('2407.07651v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.00915">arXiv:2407.00915</a> <span> [<a href="https://arxiv.org/pdf/2407.00915">pdf</a>, <a href="https://arxiv.org/ps/2407.00915">ps</a>, <a href="https://arxiv.org/format/2407.00915">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> </div> <p class="title is-5 mathjax"> The differences in the origination and properties of the near-Earth solar wind between solar cycles 23 and 24 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Shi%2C+X">Xinzheng Shi</a>, <a href="/search/physics?searchtype=author&query=Fu%2C+H">Hui Fu</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+Z">Zhenghua Huang</a>, <a href="/search/physics?searchtype=author&query=Yan%2C+L">Limei Yan</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+C">Chi Ma</a>, <a href="/search/physics?searchtype=author&query=Huangfu%2C+C">Chenxi Huangfu</a>, <a href="/search/physics?searchtype=author&query=Song%2C+H">Hongqiang Song</a>, <a href="/search/physics?searchtype=author&query=Xia%2C+L">Lidong Xia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.00915v1-abstract-short" style="display: inline;"> The dependence of the sources and properties of the near-Earth solar wind on solar cycle activity is an important issue in solar and space physics. We use the improved two-step mapping procedure that takes into account the initial acceleration processes to trace the near-Earth solar winds back to their source regions from 1999 to 2020, covering solar cycles (SCs) 23 and 24. Then the solar wind is… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.00915v1-abstract-full').style.display = 'inline'; document.getElementById('2407.00915v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.00915v1-abstract-full" style="display: none;"> The dependence of the sources and properties of the near-Earth solar wind on solar cycle activity is an important issue in solar and space physics. We use the improved two-step mapping procedure that takes into account the initial acceleration processes to trace the near-Earth solar winds back to their source regions from 1999 to 2020, covering solar cycles (SCs) 23 and 24. Then the solar wind is categorized into coronal hole (CH), active region (AR), and quiet Sun (QS) solar wind based on the source region types. We find that the proportions of CH and AR (QS) wind during SC 23 are higher (lower) than those during SC 24. During solar maximum and declining phases, the magnetic field strength, speed, helium abundance (AHe), and charge states of all three types of solar wind during SC 23 are generally higher than those during SC 24. During solar minimum, these parameters of solar wind are generally lower during SC 23 than those during SC 24. There is a significant decrease in the charge states of all three types of solar wind during the solar minimum of SC 23. The present statistical results demonstrate that the sources and properties of the solar wind are both influenced by solar cycle amplitude. The temperatures of AR, QS, and CH regions exhibit significant difference at low altitudes, whereas they are almost uniform at high altitudes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.00915v1-abstract-full').style.display = 'none'; document.getElementById('2407.00915v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.11185">arXiv:2406.11185</a> <span> [<a href="https://arxiv.org/pdf/2406.11185">pdf</a>, <a href="https://arxiv.org/format/2406.11185">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Acceleration without Disruption: DFT Software as a Service </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ju%2C+F">Fusong Ju</a>, <a href="/search/physics?searchtype=author&query=Wei%2C+X">Xinran Wei</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+L">Lin Huang</a>, <a href="/search/physics?searchtype=author&query=Jenkins%2C+A+J">Andrew J. Jenkins</a>, <a href="/search/physics?searchtype=author&query=Xia%2C+L">Leo Xia</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jia Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+J">Jianwei Zhu</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+H">Han Yang</a>, <a href="/search/physics?searchtype=author&query=Shao%2C+B">Bin Shao</a>, <a href="/search/physics?searchtype=author&query=Dai%2C+P">Peggy Dai</a>, <a href="/search/physics?searchtype=author&query=Mayya%2C+A">Ashwin Mayya</a>, <a href="/search/physics?searchtype=author&query=Hooshmand%2C+Z">Zahra Hooshmand</a>, <a href="/search/physics?searchtype=author&query=Efimovskaya%2C+A">Alexandra Efimovskaya</a>, <a href="/search/physics?searchtype=author&query=Baker%2C+N+A">Nathan A. Baker</a>, <a href="/search/physics?searchtype=author&query=Troyer%2C+M">Matthias Troyer</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">Hongbin Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.11185v1-abstract-short" style="display: inline;"> Density functional theory (DFT) has been a cornerstone in computational chemistry, physics, and materials science for decades, benefiting from advancements in computational power and theoretical methods. This paper introduces a novel, cloud-native application, Accelerated DFT, which offers an order of magnitude acceleration in DFT simulations. By integrating state-of-the-art cloud infrastructure a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.11185v1-abstract-full').style.display = 'inline'; document.getElementById('2406.11185v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.11185v1-abstract-full" style="display: none;"> Density functional theory (DFT) has been a cornerstone in computational chemistry, physics, and materials science for decades, benefiting from advancements in computational power and theoretical methods. This paper introduces a novel, cloud-native application, Accelerated DFT, which offers an order of magnitude acceleration in DFT simulations. By integrating state-of-the-art cloud infrastructure and redesigning algorithms for graphic processing units (GPUs), Accelerated DFT achieves high-speed calculations without sacrificing accuracy. It provides an accessible and scalable solution for the increasing demands of DFT calculations in scientific communities. The implementation details, examples, and benchmark results illustrate how Accelerated DFT can significantly expedite scientific discovery across various domains. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.11185v1-abstract-full').style.display = 'none'; document.getElementById('2406.11185v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.04763">arXiv:2406.04763</a> <span> [<a href="https://arxiv.org/pdf/2406.04763">pdf</a>, <a href="https://arxiv.org/format/2406.04763">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Observation of higher-order time-dislocation topological modes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jia-Hui Zhang</a>, <a href="/search/physics?searchtype=author&query=Mei%2C+F">Feng Mei</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yi Li</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+C+H">Ching Hua Lee</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+J">Jie Ma</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+L">Liantuan Xiao</a>, <a href="/search/physics?searchtype=author&query=Jia%2C+S">Suotang Jia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.04763v1-abstract-short" style="display: inline;"> Topological dislocation modes resulting from the interplay between spatial dislocations and momentum-space topology have recently attracted significant interest. Here, we theoretically and experimentally demonstrate time-dislocation topological modes which are induced by the interplay between temporal dislocations and Floquet-band topology. By utilizing an extra physical dimension to represent the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.04763v1-abstract-full').style.display = 'inline'; document.getElementById('2406.04763v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.04763v1-abstract-full" style="display: none;"> Topological dislocation modes resulting from the interplay between spatial dislocations and momentum-space topology have recently attracted significant interest. Here, we theoretically and experimentally demonstrate time-dislocation topological modes which are induced by the interplay between temporal dislocations and Floquet-band topology. By utilizing an extra physical dimension to represent the frequency-space lattice, we implement a two-dimensional Floquet higher-order topological phase and observe time-dislocation induced $蟺$-mode topological corner modes in a three-dimensional circuit metamaterial. Intriguingly, the realized time-dislocation topological modes exhibit spatial localization at the temporal dislocation, despite homogeneous in-plane lattice couplings across it. Our study opens a new avenue to explore the topological phenomena enabled by the interplay between real-space, time-space and momentum-space topology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.04763v1-abstract-full').style.display = 'none'; document.getElementById('2406.04763v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.06863">arXiv:2405.06863</a> <span> [<a href="https://arxiv.org/pdf/2405.06863">pdf</a>, <a href="https://arxiv.org/format/2405.06863">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Ultraprecise time-difference measurement via enhanced dual pointers with multiple weak interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Guo%2C+Y">Yanqiang Guo</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jianchao Zhang</a>, <a href="/search/physics?searchtype=author&query=Hou%2C+J">Jiahui Hou</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+X">Xiaomin Guo</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+L">Liantuan Xiao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.06863v1-abstract-short" style="display: inline;"> Standard weak measurement with an assistant pointer and single weak interaction constrains measurement precision and quantity of interaction parameters, and a compelling characterization of quantum effect featuring weak-value amplification (WVA) remains elusive. Here, we theoretically and experimentally demonstrate an enhanced dual-pointer WVA scheme based on multiple weak interactions and variabl… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.06863v1-abstract-full').style.display = 'inline'; document.getElementById('2405.06863v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.06863v1-abstract-full" style="display: none;"> Standard weak measurement with an assistant pointer and single weak interaction constrains measurement precision and quantity of interaction parameters, and a compelling characterization of quantum effect featuring weak-value amplification (WVA) remains elusive. Here, we theoretically and experimentally demonstrate an enhanced dual-pointer WVA scheme based on multiple weak interactions and variable spectrum sources. Developing triple weak interactions, momentum P pointer reaches an optimal time-difference precision of $3.34 \times {10^{-5}}$ as at 6 nm spectral width, and intensity I pointer achieves a displacement resolution of 148.8 fm within 400 kHz linewidth. A quantum effect associated with an anomalous weak value is revealed by an observable violation of a Leggett-Garg inequality. The I-pointer weak value is measured to be 1478 using multiple weak interactions and high signal-to-noise detection, achieving a two-order-of-magnitude WVA enhancement compared to standard weak measurement. Our work opens up a practical avenue for minuscule quantumness measurements in challenging environments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.06863v1-abstract-full').style.display = 'none'; document.getElementById('2405.06863v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text: 6 pages, 6 figures; Supplementary material: 5 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.12405">arXiv:2403.12405</a> <span> [<a href="https://arxiv.org/pdf/2403.12405">pdf</a>, <a href="https://arxiv.org/format/2403.12405">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Practical ultra-low frequency noise laser system for quantum sensors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Xue%2C+S">Shiyu Xue</a>, <a href="/search/physics?searchtype=author&query=Jing%2C+M">Mingyong Jing</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+H">Hao Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+L">Linjie Zhang</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+L">Liantuan Xiao</a>, <a href="/search/physics?searchtype=author&query=Jia%2C+S">Suotang Jia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.12405v1-abstract-short" style="display: inline;"> The laser's frequency noise is crucial to the sensitivity of quantum sensors. Two commonly used methods to suppress the laser's frequency noise are locking the laser to an atomic transition by the lock-in technique or to an ultra-low thermal expansion (ULE) glass cavity by the PDH technique. The former cannot suppress rapidly changing frequency noise and hardly meets the needs; the latter has powe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.12405v1-abstract-full').style.display = 'inline'; document.getElementById('2403.12405v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.12405v1-abstract-full" style="display: none;"> The laser's frequency noise is crucial to the sensitivity of quantum sensors. Two commonly used methods to suppress the laser's frequency noise are locking the laser to an atomic transition by the lock-in technique or to an ultra-low thermal expansion (ULE) glass cavity by the PDH technique. The former cannot suppress rapidly changing frequency noise and hardly meets the needs; the latter has powerful performance but a heightened cost. The lack of high-performance and low-cost laser noise suppression methods dramatically limits the practical application of quantum sensors. This work demonstrates that, in many quantum sensing applications such as the Rydberg atomic superheterodyne receiver, by cascade locking the laser to both the atomic transition and a low-cost (LC) cavity, the same performance as locking to the ULE cavity can be achieved. This work is significant in promoting the practical application of quantum sensors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.12405v1-abstract-full').style.display = 'none'; document.getElementById('2403.12405v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.07599">arXiv:2403.07599</a> <span> [<a href="https://arxiv.org/pdf/2403.07599">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Gas pressure manipulation of exciton states in monolayer WS2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Han%2C+S">Shuangping Han</a>, <a href="/search/physics?searchtype=author&query=Zan%2C+P">Pengyu Zan</a>, <a href="/search/physics?searchtype=author&query=Yan%2C+Y">Yu Yan</a>, <a href="/search/physics?searchtype=author&query=Bian%2C+Y">Yaoxing Bian</a>, <a href="/search/physics?searchtype=author&query=Qin%2C+C">Chengbing Qin</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+L">Liantuan Xiao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.07599v1-abstract-short" style="display: inline;"> Over the past few decades, thin film optoelectronic devices based on transition metal dichalcogenides (TMDs) have made significant progress. However, the sensitivity of the exciton states to environmental change presents challenges for device applications. This work reports on the evolution of photo-induced exciton states in monolayer WS2 in a chamber with low gas pressure. It elucidates the physi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.07599v1-abstract-full').style.display = 'inline'; document.getElementById('2403.07599v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.07599v1-abstract-full" style="display: none;"> Over the past few decades, thin film optoelectronic devices based on transition metal dichalcogenides (TMDs) have made significant progress. However, the sensitivity of the exciton states to environmental change presents challenges for device applications. This work reports on the evolution of photo-induced exciton states in monolayer WS2 in a chamber with low gas pressure. It elucidates the physical mechanism of the transition between neutral and charged excitons. At 222 mTorr, the transition rate between excitons includes two components, 0.09 s-1 and 1.68 s-1, respectively. Based on this phenomenon, we have developed a pressure-tuning method for exciton manipulation, allowing a tuning range of approximately 40% in exciton weight. We also demonstrate that the intensity of neutral exciton emission from monolayer WS2 follows a power-law distribution concerning gas pressure, indicating a highly sensitive pressure dependence. This work presents a non-destructive and highly sensitive method for exciton conversion through in-situ manipulation. It highlights the potential development of monolayer WS2 in pressure sensing and explains the impact of environmental factors on product quality in photovoltaic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.07599v1-abstract-full').style.display = 'none'; document.getElementById('2403.07599v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.02375">arXiv:2402.02375</a> <span> [<a href="https://arxiv.org/pdf/2402.02375">pdf</a>, <a href="https://arxiv.org/format/2402.02375">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> </div> <p class="title is-5 mathjax"> Formation of a streamer blob via the merger of multiple plasma clumps below 2Rs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+H">Haiyi Li</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+Z">Zhenghua Huang</a>, <a href="/search/physics?searchtype=author&query=Deng%2C+K">Kaiwen Deng</a>, <a href="/search/physics?searchtype=author&query=Fu%2C+H">Hui Fu</a>, <a href="/search/physics?searchtype=author&query=Xia%2C+L">Lidong Xia</a>, <a href="/search/physics?searchtype=author&query=Song%2C+H">Hongqiang Song</a>, <a href="/search/physics?searchtype=author&query=Xiong%2C+M">Ming Xiong</a>, <a href="/search/physics?searchtype=author&query=Wei%2C+H">Hengyuan Wei</a>, <a href="/search/physics?searchtype=author&query=Qi%2C+Y">Youqian Qi</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Chao Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.02375v1-abstract-short" style="display: inline;"> Context. Propagating streamer blobs could be an important source of disturbances in the solar wind. Direct observations on formation of streamer blobs could be a proxy for understanding the formation of small-scale structures and disturbances in the solar wind. Aims. We aim to investigate how a streamer blob is formed before it is observed in the outer corona. Methods. Usingspecialcoordinated-… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.02375v1-abstract-full').style.display = 'inline'; document.getElementById('2402.02375v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.02375v1-abstract-full" style="display: none;"> Context. Propagating streamer blobs could be an important source of disturbances in the solar wind. Direct observations on formation of streamer blobs could be a proxy for understanding the formation of small-scale structures and disturbances in the solar wind. Aims. We aim to investigate how a streamer blob is formed before it is observed in the outer corona. Methods. Usingspecialcoordinated-observationsfromSOHO/LASCO,GOES/SUVIandSDO/AIA, we study the precursors of a streamer blob as seen in the corona below 2.0 solar radii (Rs). Results. We found that the streamer blob was formed due to the gradual merging of three clumps of brightenings initiated from the lower corona at about 1.8Rs, which is likely driven by expansion of the loop system at the base of the streamer. The acceleration of the blob starts from 1.9Rs or lower. It propagates along the south flank of the streamer where an expanding elongated brightening occurs coincidently. Conclusions. Our observations demonstrate that formation of a streamer blob is a complex process. We suggest that the expansion of the loop results in a pinching-off flux-rope-like blob at the loop apex below 2Rs. When the blob moves outward, it can be transferred across the overlying loops through interchange/component magnetic reconnection and then is released into the open field system. When the blob moves toward open field lines, interchange magnetic reconnections might also occur, and that can accelerate the plasma blob intermittently whilst allow it to transfer across the open field lines. Such dynamics in a streamer blob might further trigger small-scale disturbances in the solar wind such as switchbacks in the inner heliosphere. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.02375v1-abstract-full').style.display = 'none'; document.getElementById('2402.02375v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.01663">arXiv:2401.01663</a> <span> [<a href="https://arxiv.org/pdf/2401.01663">pdf</a>, <a href="https://arxiv.org/ps/2401.01663">ps</a>, <a href="https://arxiv.org/format/2401.01663">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> RF E-field enhanced sensing based on Rydberg-atom-based superheterodyne receiver </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Yang%2C+W">Wenguang Yang</a>, <a href="/search/physics?searchtype=author&query=Jing%2C+M">Minyong Jing</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+H">Hao Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+L">Linjie Zhang</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+L">Liantuan Xiao</a>, <a href="/search/physics?searchtype=author&query=Jia%2C+S">Suotang Jia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.01663v1-abstract-short" style="display: inline;"> We present enhanced sensing of radio frequency (RF) electric fields (E-fields) by the combined polarizability of Rydberg atoms and the optimized local oscillator (LO) fields of supergheterodyne receiving. Our modified theoretical model reveals the dependencies of sensitivity of E-field amplitude measurement on the polarizability of Rydberg states and the strength of the LO RF field. The enhanced s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01663v1-abstract-full').style.display = 'inline'; document.getElementById('2401.01663v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.01663v1-abstract-full" style="display: none;"> We present enhanced sensing of radio frequency (RF) electric fields (E-fields) by the combined polarizability of Rydberg atoms and the optimized local oscillator (LO) fields of supergheterodyne receiving. Our modified theoretical model reveals the dependencies of sensitivity of E-field amplitude measurement on the polarizability of Rydberg states and the strength of the LO RF field. The enhanced sensitivity of megahertz(MHz) E-field are demonstrated at an optimal LO field for three different Rydberg states $\rm 43D_{5/2}$, $\rm 60S_{1/2}$, and $\rm 90S_{1/2}$. The sensitivity of 63 MHz for the $\rm 90S_{1/2}$ state reaches 0.96 $渭\rm V/cm/\sqrt{Hz}$ that is about an order of magnitude higher than those already published. This result closely approaches the theoretical sensitivity limit of RF dipole antennas, and indicates the potential for breaking the limit in measuring sub-MHz E-fields. This atomic sensor based on Rydberg Stark effect with heterodyne technique is expected to boost an alternative solution to electric dipole antennas. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01663v1-abstract-full').style.display = 'none'; document.getElementById('2401.01663v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.01655">arXiv:2401.01655</a> <span> [<a href="https://arxiv.org/pdf/2401.01655">pdf</a>, <a href="https://arxiv.org/format/2401.01655">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6633/acf22f">10.1088/1361-6633/acf22f <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum sensing of microwave electric fields based on Rydberg atoms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Yuan%2C+J">Jinpeng Yuan</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+W">Wenguang Yang</a>, <a href="/search/physics?searchtype=author&query=Jing%2C+M">Mingyong Jing</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+H">Hao Zhang</a>, <a href="/search/physics?searchtype=author&query=Jiao%2C+Y">Yuechun Jiao</a>, <a href="/search/physics?searchtype=author&query=Li%2C+W">Weibin Li</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+L">Linjie Zhang</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+L">Liantuan Xiao</a>, <a href="/search/physics?searchtype=author&query=Jia%2C+S">Suotang Jia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.01655v1-abstract-short" style="display: inline;"> Microwave electric field sensing is of importance for a wide range of applications in areas of remote sensing, radar astronomy and communications. Over the past decade, Rydberg atoms, owing to their exaggerated response to microwave electric fields, plentiful optional energy levels and integratable preparation methods, have been used in ultra-sensitive, wide broadband, traceable, stealthy microwav… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01655v1-abstract-full').style.display = 'inline'; document.getElementById('2401.01655v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.01655v1-abstract-full" style="display: none;"> Microwave electric field sensing is of importance for a wide range of applications in areas of remote sensing, radar astronomy and communications. Over the past decade, Rydberg atoms, owing to their exaggerated response to microwave electric fields, plentiful optional energy levels and integratable preparation methods, have been used in ultra-sensitive, wide broadband, traceable, stealthy microwave electric field sensing. This review first introduces the basic concept of quantum sensing, properties of Rydberg atoms and principles of quantum sensing of microwave electric fields with Rydberg atoms. Then an overview of this very active research direction is gradually expanded, covering progresses of sensitivity and bandwidth in Rydberg atoms based icrowavesensing,uperheterodyne quantum sensing with microwave-dressed Rydberg atoms, quantum-enhanced sensing of microwave electric field, recent advanced quantum measurement systems and approaches to further improve the performance of microwave electric field sensing. Finally, a brief outlook on future development directions is discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01655v1-abstract-full').style.display = 'none'; document.getElementById('2401.01655v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> 2401.01655 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Rep. Prog. Phys. 86 (2023) 106001 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.16869">arXiv:2310.16869</a> <span> [<a href="https://arxiv.org/pdf/2310.16869">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Single-pixel imaging based on deep learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Song%2C+K">Kai Song</a>, <a href="/search/physics?searchtype=author&query=Bian%2C+Y">Yaoxing Bian</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+K">Ku Wu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">Hongrui Liu</a>, <a href="/search/physics?searchtype=author&query=Han%2C+S">Shuangping Han</a>, <a href="/search/physics?searchtype=author&query=Li%2C+J">Jiaming Li</a>, <a href="/search/physics?searchtype=author&query=Tian%2C+J">Jiazhao Tian</a>, <a href="/search/physics?searchtype=author&query=Qin%2C+C">Chengbin Qin</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+J">Jianyong Hu</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+L">Liantuan Xiao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.16869v2-abstract-short" style="display: inline;"> Single-pixel imaging can collect images at the wavelengths outside the reach of conventional focal plane array detectors. However, the limited image quality and lengthy computational times for iterative reconstruction still impede the practical application of single-pixel imaging. Recently, deep learning has been introduced into single-pixel imaging, which has attracted a lot of attention due to i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.16869v2-abstract-full').style.display = 'inline'; document.getElementById('2310.16869v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.16869v2-abstract-full" style="display: none;"> Single-pixel imaging can collect images at the wavelengths outside the reach of conventional focal plane array detectors. However, the limited image quality and lengthy computational times for iterative reconstruction still impede the practical application of single-pixel imaging. Recently, deep learning has been introduced into single-pixel imaging, which has attracted a lot of attention due to its exceptional reconstruction quality, fast reconstruction speed, and the potential to complete advanced sensing tasks without reconstructing images. Here, this advance is discussed and some opinions are offered. Firstly, based on the fundamental principles of single-pixel imaging and deep learning, the principles and algorithms of single-pixel imaging based on deep learning are described and analyzed. Subsequently, the implementation technologies of single-pixel imaging based on deep learning are reviewed. They are divided into super-resolution single-pixel imaging, single-pixel imaging through scattering media, photon-level single-pixel imaging, optical encryption based on single-pixel imaging, color single-pixel imaging, and image-free sensing according to diverse application fields. Finally, major challenges and corresponding feasible approaches are discussed, as well as more possible applications in the future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.16869v2-abstract-full').style.display = 'none'; document.getElementById('2310.16869v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.08076">arXiv:2310.08076</a> <span> [<a href="https://arxiv.org/pdf/2310.08076">pdf</a>, <a href="https://arxiv.org/format/2310.08076">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-48815-y">10.1038/s41467-024-48815-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Self acceleration from spectral geometry in dissipative quantum-walk dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Xue%2C+P">Peng Xue</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+Q">Quan Lin</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+K">Kunkun Wang</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+L">Lei Xiao</a>, <a href="/search/physics?searchtype=author&query=Longhi%2C+S">Stefano Longhi</a>, <a href="/search/physics?searchtype=author&query=Yi%2C+W">Wei Yi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.08076v1-abstract-short" style="display: inline;"> Dynamic behaviors of a physical system often originate from its spectral properties. In open systems, where the effective non-Hermitian description enables a wealth of spectral structures on the complex plane, the concomitant dynamics is significantly enriched, whereas the identification and comprehension of the underlying connections are challenging. Here we experimentally demonstrate the corresp… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.08076v1-abstract-full').style.display = 'inline'; document.getElementById('2310.08076v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.08076v1-abstract-full" style="display: none;"> Dynamic behaviors of a physical system often originate from its spectral properties. In open systems, where the effective non-Hermitian description enables a wealth of spectral structures on the complex plane, the concomitant dynamics is significantly enriched, whereas the identification and comprehension of the underlying connections are challenging. Here we experimentally demonstrate the correspondence between the transient self acceleration of local excitations and the non-Hermitian spectral topology using lossy photonic quantum walks. Focusing first on one-dimensional quantum walks, we show that the measured short-time acceleration of the wave function is proportional to the area enclosed by the eigenspectrum. We then reveal similar correspondence in two-dimension quantum walks, where the self acceleration is proportional to the volume enclosed by the eigenspectrum in the complex parameter space. In both dimensions, the transient self acceleration crosses over to a long-time behavior dominated by a constant flow at the drift velocity. Our results unveil the universal correspondence between spectral topology and transient dynamics, and offer a sensitive probe for phenomena in non-Hermitian systems that originate from spectral geometry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.08076v1-abstract-full').style.display = 'none'; document.getElementById('2310.08076v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat Commun 15, 4381 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.05008">arXiv:2310.05008</a> <span> [<a href="https://arxiv.org/pdf/2310.05008">pdf</a>, <a href="https://arxiv.org/format/2310.05008">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.21.L031003">10.1103/PhysRevApplied.21.L031003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-Sensitive Microwave Electrometry with Enhanced Instantaneous Bandwidth </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Yang%2C+B">Bowen Yang</a>, <a href="/search/physics?searchtype=author&query=Yan%2C+Y">Yuhan Yan</a>, <a href="/search/physics?searchtype=author&query=Li%2C+X">Xuejie Li</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+L">Ling Xiao</a>, <a href="/search/physics?searchtype=author&query=Li%2C+X">Xiaolin Li</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+L+Q">L. Q. Chen</a>, <a href="/search/physics?searchtype=author&query=Deng%2C+J">Jianliao Deng</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+H">Huadong Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.05008v1-abstract-short" style="display: inline;"> Rydberg microwave (MW) sensors are superior to conventional antenna-based techniques because of their wide operating frequency range and outstanding potential sensitivity. Here, we demonstrate a Rydberg microwave receiver with a high sensitivity of $62\,\mathrm{nV} \mathrm{cm}^{-1} \mathrm{Hz}^{-1/2}$ and broad instantaneous bandwidth of up to $10.2\,\mathrm{MHz}$. Such excellent performance was a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.05008v1-abstract-full').style.display = 'inline'; document.getElementById('2310.05008v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.05008v1-abstract-full" style="display: none;"> Rydberg microwave (MW) sensors are superior to conventional antenna-based techniques because of their wide operating frequency range and outstanding potential sensitivity. Here, we demonstrate a Rydberg microwave receiver with a high sensitivity of $62\,\mathrm{nV} \mathrm{cm}^{-1} \mathrm{Hz}^{-1/2}$ and broad instantaneous bandwidth of up to $10.2\,\mathrm{MHz}$. Such excellent performance was achieved by the amplification of one generated sideband wave induced by the strong coupling field in the six-wave mixing process of the Rydberg superheterodyne receiver, which was well predicted by our theory. Our system, which possesses a uniquely enhanced instantaneous bandwidth and high-sensitivity features that can be improved further, will promote the application of Rydberg microwave electrometry in radar and communication. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.05008v1-abstract-full').style.display = 'none'; document.getElementById('2310.05008v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 21, L031003 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.09023">arXiv:2309.09023</a> <span> [<a href="https://arxiv.org/pdf/2309.09023">pdf</a>, <a href="https://arxiv.org/format/2309.09023">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.517149">10.1364/OE.517149 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An isotropic antenna based on Rydberg atoms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Yuan%2C+S">Shaoxin Yuan</a>, <a href="/search/physics?searchtype=author&query=Jing%2C+M">Mingyong Jing</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+H">Hao Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+L">Linjie Zhang</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+L">Liantuan Xiao</a>, <a href="/search/physics?searchtype=author&query=Jia%2C+S">Suotang Jia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.09023v1-abstract-short" style="display: inline;"> Governed by the hairy ball theorem, classical antennas with isotropic responses to linearly polarized radio waves are unrealizable. This work shows that the antenna based on Rydberg atoms can theoretically achieve an ideal isotropic response to linearly polarized radio waves; that is, it has zero isotropic deviation. Experimental results of isotropic deviation within 5 dB, and 0.3 dB achievable af… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.09023v1-abstract-full').style.display = 'inline'; document.getElementById('2309.09023v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.09023v1-abstract-full" style="display: none;"> Governed by the hairy ball theorem, classical antennas with isotropic responses to linearly polarized radio waves are unrealizable. This work shows that the antenna based on Rydberg atoms can theoretically achieve an ideal isotropic response to linearly polarized radio waves; that is, it has zero isotropic deviation. Experimental results of isotropic deviation within 5 dB, and 0.3 dB achievable after optimization, in microwave and terahertz wave measurements support the theory and are at least 15 dB improvement than the classical omnidirectional antenna. Combined with the SI traceable and ultrawideband property, the ideal isotropic response will make radio wave measurement based on atomic antenna much more accurate and reliable than the traditional method. This isotropic atomic antenna is an excellent example of what a tailored quantum sensor can realize, but a classical sensor cannot. It has crucial applications in fields such as radio wave electrometry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.09023v1-abstract-full').style.display = 'none'; document.getElementById('2309.09023v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Optics Express 32, 8379-8388 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.04490">arXiv:2309.04490</a> <span> [<a href="https://arxiv.org/pdf/2309.04490">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Efficient synthesis of Vitamin D3 in a 3D ultraviolet photochemical microreactor fabricated using an ultrafast laser </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+A">Aodong Zhang</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+J">Jian Xu</a>, <a href="/search/physics?searchtype=author&query=Xia%2C+L">Lingling Xia</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+M">Ming Hu</a>, <a href="/search/physics?searchtype=author&query=Song%2C+Y">Yunpeng Song</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+M">Miao Wu</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+Y">Ya Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.04490v1-abstract-short" style="display: inline;"> Large-scale, high-precision, and high-transparency microchannels hold great potential for developing high-performance continuous-flow photochemical reactions. We demonstrate ultrafast laser-enabled fabrication of 3D microchannel reactors in ultraviolet (UV) grade fused silica which exhibit high transparency under the illumination of UV light sources of wavelengths well below 300 nm with excellent… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.04490v1-abstract-full').style.display = 'inline'; document.getElementById('2309.04490v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.04490v1-abstract-full" style="display: none;"> Large-scale, high-precision, and high-transparency microchannels hold great potential for developing high-performance continuous-flow photochemical reactions. We demonstrate ultrafast laser-enabled fabrication of 3D microchannel reactors in ultraviolet (UV) grade fused silica which exhibit high transparency under the illumination of UV light sources of wavelengths well below 300 nm with excellent mixing efficiency. With the fabricated glass microchannel reactors, we demonstrate continuous-flow UV photochemical synthesis of vitamin D3 with low power consumption of the UV light sources. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.04490v1-abstract-full').style.display = 'none'; document.getElementById('2309.04490v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.09792">arXiv:2308.09792</a> <span> [<a href="https://arxiv.org/pdf/2308.09792">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> An Integrated Simulation Tool for Dark Current Radiation Effects Using ACE3P and Geant4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ge%2C+L">Lixin Ge</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Z">Zenghai Li</a>, <a href="/search/physics?searchtype=author&query=Ng%2C+C">Cho-Kuen Ng</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+L">Liling Xiao</a>, <a href="/search/physics?searchtype=author&query=Ego%2C+H">Hiroyasu Ego</a>, <a href="/search/physics?searchtype=author&query=Enomoto%2C+Y">Yoshinori Enomoto</a>, <a href="/search/physics?searchtype=author&query=Iwase%2C+H">Hiroshi Iwase</a>, <a href="/search/physics?searchtype=author&query=Morikawa%2C+Y">Yu Morikawa</a>, <a href="/search/physics?searchtype=author&query=Yoshimoto%2C+T">Takashi Yoshimoto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.09792v1-abstract-short" style="display: inline;"> A simulation workflow is under development to interface particle data transfer and matching of geometry between the electromagnetic (EM) cavity simulation code ACE3P and radiation code Geant4. The target is to simulate dark current (DC) radiation effects for the KEK 56-cell S-band accelerating structure using ACE3P and Geant4, and benchmark against KEK experiment data. As a first step, ACE3P DC si… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.09792v1-abstract-full').style.display = 'inline'; document.getElementById('2308.09792v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.09792v1-abstract-full" style="display: none;"> A simulation workflow is under development to interface particle data transfer and matching of geometry between the electromagnetic (EM) cavity simulation code ACE3P and radiation code Geant4. The target is to simulate dark current (DC) radiation effects for the KEK 56-cell S-band accelerating structure using ACE3P and Geant4, and benchmark against KEK experiment data. As a first step, ACE3P DC simulations using a 7-cell structure have been performed by first calculating the operating mode in the structure and then tracking field-emitted electrons under the influence of the EM fields of the mode. The ACE3P simulation results agree well with the EM software CST for an accelerating gradient of 21.8 MV/m. The reader/writer I/O in ACE3P and the transfer of particle data from Track3P to Geant4 for DC radiation effects studies have been implemented. The simulation workflow between the two codes will be demonstrated with the goal of performing large-scale simulations for the KEK 56-cell structure. In addition to modeling DC effects in linacs, the integrated simulation workflow will be applicable to studying positron source and capture structure for future lepton colliders. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.09792v1-abstract-full').style.display = 'none'; document.getElementById('2308.09792v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 8 figures. Talk presented at the International Workshop on Future Linear Colliders (LCWS 2023), 15-19 May 2023. C23-05-15.3</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.15492">arXiv:2307.15492</a> <span> [<a href="https://arxiv.org/pdf/2307.15492">pdf</a>, <a href="https://arxiv.org/format/2307.15492">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjqt/s40507-023-00198-7">10.1140/epjqt/s40507-023-00198-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum scaling atomic superheterodyne receiver </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+P">Peng Zhang</a>, <a href="/search/physics?searchtype=author&query=Jing%2C+M">Mingyong Jing</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zheng Wang</a>, <a href="/search/physics?searchtype=author&query=Peng%2C+Y">Yan Peng</a>, <a href="/search/physics?searchtype=author&query=Yuan%2C+S">Shaoxin Yuan</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+H">Hao Zhang</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+L">Liantuan Xiao</a>, <a href="/search/physics?searchtype=author&query=Jia%2C+S">Suotang Jia</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+L">Linjie Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.15492v1-abstract-short" style="display: inline;"> Measurement sensitivity is one of the critical indicators for Rydberg atomic radio receivers. This work quantitatively studies the relationship between the atomic superheterodyne receiver's sensitivity and the number of atoms involved in the measurement. The atom number is changed by adjusting the length of the interaction area. The results show that for the ideal case, the sensitivity of the atom… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.15492v1-abstract-full').style.display = 'inline'; document.getElementById('2307.15492v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.15492v1-abstract-full" style="display: none;"> Measurement sensitivity is one of the critical indicators for Rydberg atomic radio receivers. This work quantitatively studies the relationship between the atomic superheterodyne receiver's sensitivity and the number of atoms involved in the measurement. The atom number is changed by adjusting the length of the interaction area. The results show that for the ideal case, the sensitivity of the atomic superheterodyne receiver exhibits a quantum scaling: the amplitude of its output signal is proportional to the atom number, and the amplitude of its read-out noise is proportional to the square root of the atom number. Hence, its sensitivity is inversely proportional to the square root of the atom number. This work also gives a detailed discussion of the properties of transit noise in atomic receivers and the influence of some non-ideal factors on sensitivity scaling. This work is significant in the field of atom-based quantum precision measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.15492v1-abstract-full').style.display = 'none'; document.getElementById('2307.15492v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> EPJ Quantum Technol. 10, 39 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.08848">arXiv:2307.08848</a> <span> [<a href="https://arxiv.org/pdf/2307.08848">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> </div> </div> <p class="title is-5 mathjax"> Microbiome-derived bile acids contribute to elevated antigenic response and bone erosion in rheumatoid arthritis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Su%2C+X">Xiuli Su</a>, <a href="/search/physics?searchtype=author&query=Li%2C+X">Xiaona Li</a>, <a href="/search/physics?searchtype=author&query=Bian%2C+Y">Yanqin Bian</a>, <a href="/search/physics?searchtype=author&query=Ren%2C+Q">Qing Ren</a>, <a href="/search/physics?searchtype=author&query=Li%2C+L">Leiguang Li</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+X">Xiaohao Wu</a>, <a href="/search/physics?searchtype=author&query=Luan%2C+H">Hemi Luan</a>, <a href="/search/physics?searchtype=author&query=He%2C+B">Bing He</a>, <a href="/search/physics?searchtype=author&query=He%2C+X">Xiaojuan He</a>, <a href="/search/physics?searchtype=author&query=Feng%2C+H">Hui Feng</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+X">Xingye Cheng</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+P">Pan-Jun Kim</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+L">Leihan Tang</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+A">Aiping Lu</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+L">Lianbo Xiao</a>, <a href="/search/physics?searchtype=author&query=Tian%2C+L">Liang Tian</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+Z">Zhu Yang</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+Z">Zongwei Cai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.08848v1-abstract-short" style="display: inline;"> Rheumatoid arthritis (RA) is a chronic, disabling and incurable autoimmune disease. It has been widely recognized that gut microbial dysbiosis is an important contributor to the pathogenesis of RA, although distinct alterations in microbiota have been associated with this disease. Yet, the metabolites that mediate the impacts of the gut microbiome on RA are less well understood. Here, with microbi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.08848v1-abstract-full').style.display = 'inline'; document.getElementById('2307.08848v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.08848v1-abstract-full" style="display: none;"> Rheumatoid arthritis (RA) is a chronic, disabling and incurable autoimmune disease. It has been widely recognized that gut microbial dysbiosis is an important contributor to the pathogenesis of RA, although distinct alterations in microbiota have been associated with this disease. Yet, the metabolites that mediate the impacts of the gut microbiome on RA are less well understood. Here, with microbial profiling and non-targeted metabolomics, we revealed profound yet diverse perturbation of the gut microbiome and metabolome in RA patients in a discovery set. In the Bacteroides-dominated RA patients, differentiation of gut microbiome resulted in distinct bile acid profiles compared to healthy subjects. Predominated Bacteroides species expressing BSH and 7a-HSDH increased, leading to elevated secondary bile acid production in this subgroup of RA patients. Reduced serum fibroblast growth factor-19 and dysregulated bile acids were evidence of impaired farnesoid X receptor-mediated signaling in the patients. This gut microbiota-bile acid axis was correlated to ACPA. The patients from the validation sets demonstrated that ACPA-positive patients have more abundant bacteria expressing BSH and 7a-HSDH but less Clostridium scindens expressing 7a-dehydroxylation enzymes, together with dysregulated microbial bile acid metabolism and more severe bone erosion than ACPA-negative ones. Mediation analyses revealed putative causal relationships between the gut microbiome, bile acids, and ACPA-positive RA, supporting a potential causal effect of Bacteroides species in increasing levels of ACPA and bone erosion mediated via disturbing bile acid metabolism. These results provide insights into the role of gut dysbiosis in RA in a manifestation-specific manner, as well as the functions of bile acids in this gut-joint axis, which may be a potential intervention target for precisely controlling RA conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.08848v1-abstract-full').style.display = 'none'; document.getElementById('2307.08848v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">38 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.03939">arXiv:2307.03939</a> <span> [<a href="https://arxiv.org/pdf/2307.03939">pdf</a>, <a href="https://arxiv.org/format/2307.03939">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> On-Chip Phase-Shift Induced Control of Supercontinuum Generation in a Dual-Core Si$\mathbf{_{3}}$N$\mathbf{_{4}}$ Waveguide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Xia%2C+L">Lisi Xia</a>, <a href="/search/physics?searchtype=author&query=van+der+Slot%2C+P+J+M">Peter J. M. van der Slot</a>, <a href="/search/physics?searchtype=author&query=Timmerkamp%2C+M">Maximilian Timmerkamp</a>, <a href="/search/physics?searchtype=author&query=Bastiaens%2C+B">Bert Bastiaens</a>, <a href="/search/physics?searchtype=author&query=Fallnich%2C+C">Carsten Fallnich</a>, <a href="/search/physics?searchtype=author&query=Boller%2C+K+J">Klaus J. Boller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.03939v1-abstract-short" style="display: inline;"> We investigate on-chip spectral control of supercontinuum generation, taking advantage of the additional spatial degree of freedom in strongly-coupled dual-core waveguides. Using numerical integration of the multi-mode generalized nonlinear Schr枚dinger equation, we show that, with proper waveguide cross-section design, selective excitation of supermodes can vary the dispersion to its extremes, i.e… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.03939v1-abstract-full').style.display = 'inline'; document.getElementById('2307.03939v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.03939v1-abstract-full" style="display: none;"> We investigate on-chip spectral control of supercontinuum generation, taking advantage of the additional spatial degree of freedom in strongly-coupled dual-core waveguides. Using numerical integration of the multi-mode generalized nonlinear Schr枚dinger equation, we show that, with proper waveguide cross-section design, selective excitation of supermodes can vary the dispersion to its extremes, i.e., all-normal or anomalous dispersion can be selected via phase shifting in a Mach-Zehnder input circuit. The resulting control allows to provide vastly different supercontinuum spectra with the same waveguide circuit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.03939v1-abstract-full').style.display = 'none'; document.getElementById('2307.03939v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.01398">arXiv:2307.01398</a> <span> [<a href="https://arxiv.org/pdf/2307.01398">pdf</a>, <a href="https://arxiv.org/ps/2307.01398">ps</a>, <a href="https://arxiv.org/format/2307.01398">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/ace422">10.3847/2041-8213/ace422 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Structure of Coronal Mass Ejections Recorded by the K-Coronagraph at Mauna Loa Solar Observatory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Song%2C+H">Hongqiang Song</a>, <a href="/search/physics?searchtype=author&query=Li%2C+L">Leping Li</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+Z">Zhenjun Zhou</a>, <a href="/search/physics?searchtype=author&query=Xia%2C+L">Lidong Xia</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+X">Xin Cheng</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y">Yao Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.01398v1-abstract-short" style="display: inline;"> Previous survey studies reported that coronal mass ejections (CMEs) can exhibit various structures in white-light coronagraphs, and $\sim$30\% of them have the typical three-part feature in the high corona (e.g., 2--6 $R_\odot$), which has been taken as the prototypical structure of CMEs. It is widely accepted that CMEs result from eruption of magnetic flux ropes (MFRs), and the three-part structu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.01398v1-abstract-full').style.display = 'inline'; document.getElementById('2307.01398v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.01398v1-abstract-full" style="display: none;"> Previous survey studies reported that coronal mass ejections (CMEs) can exhibit various structures in white-light coronagraphs, and $\sim$30\% of them have the typical three-part feature in the high corona (e.g., 2--6 $R_\odot$), which has been taken as the prototypical structure of CMEs. It is widely accepted that CMEs result from eruption of magnetic flux ropes (MFRs), and the three-part structure can be understood easily by means of the MFR eruption. It is interesting and significant to answer why only $\sim$30\% of CMEs have the three-part feature in previous studies. Here we conduct a synthesis of the CME structure in the field of view (FOV) of K-Coronagraph (1.05--3 $R_\odot$). In total, 369 CMEs are observed from 2013 September to 2022 November. After inspecting the CMEs one by one through joint observations of the AIA, K-Coronagraph and LASCO/C2, we find 71 events according to the criteria: 1) limb event; 2) normal CME, i.e., angular width $\geq$ 30$^{\circ}$; 3) K-Coronagraph caught the early eruption stage. All (or more than 90\% considering several ambiguous events) of the 71 CMEs exhibit the three-part feature in the FOV of K-Coronagraph, while only 30--40\% have the feature in the C2 FOV (2--6 $R_\odot$). For the first time, our studies show that 90--100\% and 30--40\% of normal CMEs possess the three-part structure in the low and high corona, respectively, which demonstrates that many CMEs can lose the three-part feature during their early evolutions, and strongly supports that most (if not all) CMEs have the MFR structures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.01398v1-abstract-full').style.display = 'none'; document.getElementById('2307.01398v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures, accepted for publication in ApJL</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.16651">arXiv:2306.16651</a> <span> [<a href="https://arxiv.org/pdf/2306.16651">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> A Res-FCN for Electromagnetic Inversion of High Contrast Scatterers at an Arbitrary Frequency Within a Wide Frequency Band </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Hu%2C+H">Hao-Jie Hu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+J">Jiawen Li</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+L">Li-Ye Xiao</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+Y">Yu Cheng</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Q+H">Qing Huo Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.16651v2-abstract-short" style="display: inline;"> Many successful machine learning methods have been developed for microwave inversion problems. However, so far, their inversion has been performed only at the specifically trained frequencies. To make the machine-learning-based inversion method more generalizability for realistic engineering applications, this work proposes a residual fully convolutional network (Res-FCN) to perform microwave inve… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.16651v2-abstract-full').style.display = 'inline'; document.getElementById('2306.16651v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.16651v2-abstract-full" style="display: none;"> Many successful machine learning methods have been developed for microwave inversion problems. However, so far, their inversion has been performed only at the specifically trained frequencies. To make the machine-learning-based inversion method more generalizability for realistic engineering applications, this work proposes a residual fully convolutional network (Res-FCN) to perform microwave inversion of high contrast scatterers at an arbitrary frequency within a wide frequency band. The proposed Res-FCN combines the advantages of the Res-Net and the fully convolutional network (FCN). Res-FCN consists of an encoder and a decoder: the encoder is employed to extract high-dimensional features from the measured scattered field through the residual frameworks, while the decoder is employed to map from the high-dimensional features extracted by the encoder to the electrical parameter distribution in the inversion region by the up-sample layer and the residual frameworks. Five numerical examples verify that the proposed Res-FCN can achieve good performance in the 2-D microwave inversion problem for high contrast scatterers with anti-noise ability at an arbitrary frequency point within a wide frequency band. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.16651v2-abstract-full').style.display = 'none'; document.getElementById('2306.16651v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.06556">arXiv:2306.06556</a> <span> [<a href="https://arxiv.org/pdf/2306.06556">pdf</a>, <a href="https://arxiv.org/format/2306.06556">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/ace98d">10.1088/1367-2630/ace98d <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Noise-induced dynamics and photon statistics in bimodal quantum-dot micropillar lasers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Guo%2C+Y">Yanqiang Guo</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jianfei Zhang</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+X">Xiaomin Guo</a>, <a href="/search/physics?searchtype=author&query=Reitzenstein%2C+S">Stephan Reitzenstein</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+L">Liantuan Xiao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.06556v2-abstract-short" style="display: inline;"> Emission characteristics of quantum-dot micropillar lasers (QDMLs) are located at the intersection of nanophotonics and nonlinear dynamics, which provides an ideal platform for studying the optical interface between classical and quantum systems. In this work, a noise-induced bimodal QDML with orthogonal dual-mode outputs is modeled, and nonlinear dynamics, stochastic mode jumping and quantum stat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.06556v2-abstract-full').style.display = 'inline'; document.getElementById('2306.06556v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.06556v2-abstract-full" style="display: none;"> Emission characteristics of quantum-dot micropillar lasers (QDMLs) are located at the intersection of nanophotonics and nonlinear dynamics, which provides an ideal platform for studying the optical interface between classical and quantum systems. In this work, a noise-induced bimodal QDML with orthogonal dual-mode outputs is modeled, and nonlinear dynamics, stochastic mode jumping and quantum statistics with the variation of stochastic noise intensity are investigated. Noise-induced effects lead to the emergence of two intensity bifurcation points for the strong and the weak mode, and the maximum output power of the strong mode becomes larger as the noise intensity increases. The anti-correlation of the two modes reaches the maximum at the second intensity bifurcation point. The dual-mode stochastic jumping frequency and effective bandwidth can exceed 100 GHz and 30 GHz under the noise-induced effect. Moreover, the noise-induced photon correlations of both modes simultaneously exhibit super-thermal bunching effects ($g^{(2)}(0)>2$) in the low injection current region. The $g^{(2)}(0)$-value of the strong mode can reach over 6 in the high injection current region. Photon bunching ($g^{(2)}(0)>1$) of both modes is observed over a wide range of noise intensities and injection currents. In the presence of the noise-induced effect, the photon number distribution of the strong or the weak mode is a mixture of Bose-Einstein and Poisson distributions. As the noise intensity increases, the photon number distribution of the strong mode is dominated by the Bose-Einstein distribution, and the proportion of the Poisson distribution is increased in the high injection current region, while that of the weak mode is reduced. Our results contribute to the development preparation of super-bunching quantum integrated light sources for improving the spatiotemporal resolution of quantum sensing measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.06556v2-abstract-full').style.display = 'none'; document.getElementById('2306.06556v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.11930">arXiv:2304.11930</a> <span> [<a href="https://arxiv.org/pdf/2304.11930">pdf</a>, <a href="https://arxiv.org/format/2304.11930">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/2632-2153/acfd09">10.1088/2632-2153/acfd09 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Label-free timing analysis of SiPM-based modularized detectors with physics-constrained deep learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ai%2C+P">Pengcheng Ai</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+L">Le Xiao</a>, <a href="/search/physics?searchtype=author&query=Deng%2C+Z">Zhi Deng</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yi Wang</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+X">Xiangming Sun</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+G">Guangming Huang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+D">Dong Wang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yulei Li</a>, <a href="/search/physics?searchtype=author&query=Ran%2C+X">Xinchi Ran</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.11930v3-abstract-short" style="display: inline;"> Pulse timing is an important topic in nuclear instrumentation, with far-reaching applications from high energy physics to radiation imaging. While high-speed analog-to-digital converters become more and more developed and accessible, their potential uses and merits in nuclear detector signal processing are still uncertain, partially due to associated timing algorithms which are not fully understoo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.11930v3-abstract-full').style.display = 'inline'; document.getElementById('2304.11930v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.11930v3-abstract-full" style="display: none;"> Pulse timing is an important topic in nuclear instrumentation, with far-reaching applications from high energy physics to radiation imaging. While high-speed analog-to-digital converters become more and more developed and accessible, their potential uses and merits in nuclear detector signal processing are still uncertain, partially due to associated timing algorithms which are not fully understood and utilized. In this paper, we propose a novel method based on deep learning for timing analysis of modularized detectors without explicit needs of labelling event data. By taking advantage of the intrinsic time correlations, a label-free loss function with a specially designed regularizer is formed to supervise the training of neural networks towards a meaningful and accurate mapping function. We mathematically demonstrate the existence of the optimal function desired by the method, and give a systematic algorithm for training and calibration of the model. The proposed method is validated on two experimental datasets based on silicon photomultipliers (SiPM) as main transducers. In the toy experiment, the neural network model achieves the single-channel time resolution of 8.8 ps and exhibits robustness against concept drift in the dataset. In the electromagnetic calorimeter experiment, several neural network models (FC, CNN and LSTM) are tested to show their conformance to the underlying physical constraint and to judge their performance against traditional methods. In total, the proposed method works well in either ideal or noisy experimental condition and recovers the time information from waveform samples successfully and precisely. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.11930v3-abstract-full').style.display = 'none'; document.getElementById('2304.11930v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.11802">arXiv:2304.11802</a> <span> [<a href="https://arxiv.org/pdf/2304.11802">pdf</a>, <a href="https://arxiv.org/ps/2304.11802">ps</a>, <a href="https://arxiv.org/format/2304.11802">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/accf9a">10.3847/1538-4357/accf9a <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The properties of small magnetic flux ropes inside the solar wind come from coronal holes, active regions, and quiet Sun </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhai%2C+C">Changhao Zhai</a>, <a href="/search/physics?searchtype=author&query=Fu%2C+H">Hui Fu</a>, <a href="/search/physics?searchtype=author&query=Si%2C+J">Jiachen Si</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+Z">Zhenghua Huang</a>, <a href="/search/physics?searchtype=author&query=Xia%2C+L">Lidong Xia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.11802v1-abstract-short" style="display: inline;"> The origination and generation mechanisms of small magnetic flux ropes (SFRs), which are important structures in solar wind, are not clearly known. In present study, 1993 SFRs immersed in coronal holes, active regions, and quiet Sun solar wind are analyzed and compared. We find that the properties of SFRs immersed in three types of solar wind are signicantly different. The SFRs are further classif… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.11802v1-abstract-full').style.display = 'inline'; document.getElementById('2304.11802v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.11802v1-abstract-full" style="display: none;"> The origination and generation mechanisms of small magnetic flux ropes (SFRs), which are important structures in solar wind, are not clearly known. In present study, 1993 SFRs immersed in coronal holes, active regions, and quiet Sun solar wind are analyzed and compared. We find that the properties of SFRs immersed in three types of solar wind are signicantly different. The SFRs are further classifed into hot-SFRs, cold-SFRs, and normal-SFRs, according to whether the O7+/O6+ is 30% elevated or dropped inside SFRs as compared with background solar wind. Our studies show that the parameters of normal-SFRs are similar to background in all three types of solar wind. The properties of hot-SFRs and cold-SFRs seem to be lying in two extremes. Statistically, the hot-SFRs (cold-SFRs) are associated with longer (shorter) duration, lower (higher) speeds and proton temperatures, higher (lower) charge states, helium abundance, and FIP bias as compared with normal-SFRs and background solar wind. The anti-correlations between speed and O7+/O6+ inside hot-SFRs (normal-SFRs) are different from (similar to) those in background solar wind. Most of hot-SFRs and cold-SFRs should come from the Sun. Hot-SFRs may come from streamers associated with plasma blobs and/or small-scale activities on the Sun. Cold-SFRs may be accompanied by small-scale eruptions with lower-temperature materials. Both hot-SFRs and cold-SFRs could also be formed by magnetic erosions of ICMEs that do not contain or contain cold-filament materials. The characteristics of normal-SFRs can be explained reasonably by the two originations, from the Sun and generated in the heliosphere both. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.11802v1-abstract-full').style.display = 'none'; document.getElementById('2304.11802v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.08362">arXiv:2304.08362</a> <span> [<a href="https://arxiv.org/pdf/2304.08362">pdf</a>, <a href="https://arxiv.org/format/2304.08362">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s41365-023-01360-7">10.1007/s41365-023-01360-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> NvDEx-100 Conceptual Design Report </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Cao%2C+X">X. Cao</a>, <a href="/search/physics?searchtype=author&query=Chang%2C+Y">Y. Chang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+K">K. Chen</a>, <a href="/search/physics?searchtype=author&query=Ciuffoli%2C+E">E. Ciuffoli</a>, <a href="/search/physics?searchtype=author&query=Duan%2C+L">L. Duan</a>, <a href="/search/physics?searchtype=author&query=Fang%2C+D">D. Fang</a>, <a href="/search/physics?searchtype=author&query=Gao%2C+C">C. Gao</a>, <a href="/search/physics?searchtype=author&query=Ghorui%2C+S+K">S. K. Ghorui</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+P">P. Hu</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+Q">Q. Hu</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+S">S. Huang</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+Z">Z. Huang</a>, <a href="/search/physics?searchtype=author&query=Lang%2C+L">L. Lang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Y. Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Z">Z. Li</a>, <a href="/search/physics?searchtype=author&query=Liang%2C+T">T. Liang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">J. Liu</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+C">C. Lu</a>, <a href="/search/physics?searchtype=author&query=Mai%2C+F">F. Mai</a>, <a href="/search/physics?searchtype=author&query=Mei%2C+Y">Y. Mei</a>, <a href="/search/physics?searchtype=author&query=Qiu%2C+H">H. Qiu</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+X">X. Sun</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+X">X. Tang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+H">H. Wang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Q">Q. Wang</a> , et al. (12 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.08362v2-abstract-short" style="display: inline;"> Observing nuclear neutrinoless double beta (0vbb) decay would be a revolutionary result in particle physics. Observing such a decay would prove that the neutrinos are their own antiparticles, help to study the absolute mass of neutrinos, explore the origin of their mass, and may explain the matter-antimatter asymmetry in our universe by lepton number violation. We propose developing a time proje… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.08362v2-abstract-full').style.display = 'inline'; document.getElementById('2304.08362v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.08362v2-abstract-full" style="display: none;"> Observing nuclear neutrinoless double beta (0vbb) decay would be a revolutionary result in particle physics. Observing such a decay would prove that the neutrinos are their own antiparticles, help to study the absolute mass of neutrinos, explore the origin of their mass, and may explain the matter-antimatter asymmetry in our universe by lepton number violation. We propose developing a time projection chamber (TPC) using high-pressure 82SeF6 gas and top-metal silicon sensors for read-out in the China Jinping Underground Laboratory (CJPL) to search for neutrinoless double beta decay of 82Se, called the NvDEx experiment. Besides being located at CJPL with the world's thickest rock shielding, NvDEx combines the advantages of the high Qbb (2.996 MeV) of 82Se and the TPC's ability to distinguish signal and background events using their different topological characteristics. This makes NvDEx unique, with great potential for low-background and high-sensitivity 0vbb searches. NvDEx-100, a NvDEx experiment phase with 100 kg of SeF6 gas, is being built, with plans to complete installation at CJPL by 2025. This report introduces 0vbb physics, the NvDEx concept and its advantages, and the schematic design of NvDEx-100, its subsystems, and background and sensitivity estimation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.08362v2-abstract-full').style.display = 'none'; document.getElementById('2304.08362v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nuclear Science and Techniques (2024) 35:3 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.05607">arXiv:2304.05607</a> <span> [<a href="https://arxiv.org/pdf/2304.05607">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> Photoacoustic digital tooth and image reconstruction of tooth root </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Shen%2C+Y">Yuting Shen</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yiyun Wang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+C">Chengxiao Liu</a>, <a href="/search/physics?searchtype=author&query=Ye%2C+N">Niansong Ye</a>, <a href="/search/physics?searchtype=author&query=Gao%2C+F">Feng Gao</a>, <a href="/search/physics?searchtype=author&query=Xia%2C+L">Lunguo Xia</a>, <a href="/search/physics?searchtype=author&query=Fang%2C+B">Bing Fang</a>, <a href="/search/physics?searchtype=author&query=Gao%2C+F">Fei Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.05607v1-abstract-short" style="display: inline;"> Imaging of teeth is very important to doctors in the diagnosis and treatment of dental diseases. The main imaging modality currently used is Cone-Beam Computed Tomography (CBCT), which however suffers from ionizing radiation causing potential damage to human body. In this work, photoacoustic imaging is proposed for the imaging of tooth, specifically the tooth root. A photoacoustic digital phantom… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05607v1-abstract-full').style.display = 'inline'; document.getElementById('2304.05607v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.05607v1-abstract-full" style="display: none;"> Imaging of teeth is very important to doctors in the diagnosis and treatment of dental diseases. The main imaging modality currently used is Cone-Beam Computed Tomography (CBCT), which however suffers from ionizing radiation causing potential damage to human body. In this work, photoacoustic imaging is proposed for the imaging of tooth, specifically the tooth root. A photoacoustic digital phantom of the tooth is generated based on clinical CBCT data. The roots encased by alveolar bone are imaged by using the realistic photoacoustic digital phantom in the simulation study. Several image reconstruction algorithms are used and compared to remove the artifacts caused by heterogeneous acoustic velocity distribution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05607v1-abstract-full').style.display = 'none'; document.getElementById('2304.05607v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.15790">arXiv:2303.15790</a> <span> [<a href="https://arxiv.org/pdf/2303.15790">pdf</a>, <a href="https://arxiv.org/format/2303.15790">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11467-023-1333-z">10.1007/s11467-023-1333-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> STCF Conceptual Design Report: Volume 1 -- Physics & Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Achasov%2C+M">M. Achasov</a>, <a href="/search/physics?searchtype=author&query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/physics?searchtype=author&query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/physics?searchtype=author&query=An%2C+L+P">L. P. An</a>, <a href="/search/physics?searchtype=author&query=An%2C+Q">Q. An</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+X+Z">X. Z. Bai</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+Y">Y. Bai</a>, <a href="/search/physics?searchtype=author&query=Bakina%2C+O">O. Bakina</a>, <a href="/search/physics?searchtype=author&query=Barnyakov%2C+A">A. Barnyakov</a>, <a href="/search/physics?searchtype=author&query=Blinov%2C+V">V. Blinov</a>, <a href="/search/physics?searchtype=author&query=Bobrovnikov%2C+V">V. Bobrovnikov</a>, <a href="/search/physics?searchtype=author&query=Bodrov%2C+D">D. Bodrov</a>, <a href="/search/physics?searchtype=author&query=Bogomyagkov%2C+A">A. Bogomyagkov</a>, <a href="/search/physics?searchtype=author&query=Bondar%2C+A">A. Bondar</a>, <a href="/search/physics?searchtype=author&query=Boyko%2C+I">I. Boyko</a>, <a href="/search/physics?searchtype=author&query=Bu%2C+Z+H">Z. H. Bu</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+F+M">F. M. Cai</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+H">H. Cai</a>, <a href="/search/physics?searchtype=author&query=Cao%2C+J+J">J. J. Cao</a>, <a href="/search/physics?searchtype=author&query=Cao%2C+Q+H">Q. H. Cao</a>, <a href="/search/physics?searchtype=author&query=Cao%2C+Z">Z. Cao</a>, <a href="/search/physics?searchtype=author&query=Chang%2C+Q">Q. Chang</a>, <a href="/search/physics?searchtype=author&query=Chao%2C+K+T">K. T. Chao</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+D+Y">D. Y. Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+H">H. Chen</a> , et al. (413 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.15790v3-abstract-short" style="display: inline;"> The Super $蟿$-Charm facility (STCF) is an electron-positron collider proposed by the Chinese particle physics community. It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of $0.5\times 10^{35}{\rm cm}^{-2}{\rm s}^{-1}$ or higher. The STCF will produce a data sample about a factor of 100 larger than that by the present $蟿$-Charm factory -- the BEPCII,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.15790v3-abstract-full').style.display = 'inline'; document.getElementById('2303.15790v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.15790v3-abstract-full" style="display: none;"> The Super $蟿$-Charm facility (STCF) is an electron-positron collider proposed by the Chinese particle physics community. It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of $0.5\times 10^{35}{\rm cm}^{-2}{\rm s}^{-1}$ or higher. The STCF will produce a data sample about a factor of 100 larger than that by the present $蟿$-Charm factory -- the BEPCII, providing a unique platform for exploring the asymmetry of matter-antimatter (charge-parity violation), in-depth studies of the internal structure of hadrons and the nature of non-perturbative strong interactions, as well as searching for exotic hadrons and physics beyond the Standard Model. The STCF project in China is under development with an extensive R\&D program. This document presents the physics opportunities at the STCF, describes conceptual designs of the STCF detector system, and discusses future plans for detector R\&D and physics case studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.15790v3-abstract-full').style.display = 'none'; document.getElementById('2303.15790v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Front. Phys. 19(1), 14701 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.12831">arXiv:2303.12831</a> <span> [<a href="https://arxiv.org/pdf/2303.12831">pdf</a>, <a href="https://arxiv.org/format/2303.12831">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.070801">10.1103/PhysRevLett.133.070801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of non-Hermitian edge burst in quantum dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Xiao%2C+L">Lei Xiao</a>, <a href="/search/physics?searchtype=author&query=Xue%2C+W">Wen-Tan Xue</a>, <a href="/search/physics?searchtype=author&query=Song%2C+F">Fei Song</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+Y">Yu-Min Hu</a>, <a href="/search/physics?searchtype=author&query=Yi%2C+W">Wei Yi</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zhong Wang</a>, <a href="/search/physics?searchtype=author&query=Xue%2C+P">Peng Xue</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.12831v1-abstract-short" style="display: inline;"> The non-Hermitian skin effect, by which the eigenstates of Hamiltonian are predominantly localized at the boundary, has revealed a strong sensitivity of non-Hermitian systems to the boundary condition. Here we experimentally observe a striking boundary-induced dynamical phenomenon known as the non-Hermitian edge burst, which is characterized by a sharp boundary accumulation of loss in non-Hermitia… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.12831v1-abstract-full').style.display = 'inline'; document.getElementById('2303.12831v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.12831v1-abstract-full" style="display: none;"> The non-Hermitian skin effect, by which the eigenstates of Hamiltonian are predominantly localized at the boundary, has revealed a strong sensitivity of non-Hermitian systems to the boundary condition. Here we experimentally observe a striking boundary-induced dynamical phenomenon known as the non-Hermitian edge burst, which is characterized by a sharp boundary accumulation of loss in non-Hermitian time evolutions. In contrast to the eigenstate localization, the edge burst represents a generic non-Hermitian dynamical phenomenon that occurs in real time. Our experiment, based on photonic quantum walks, not only confirms the prediction of the phenomenon, but also unveils its complete space-time dynamics. Our observation of edge burst paves the way for studying the rich real-time dynamics in non-Hermitian topological systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.12831v1-abstract-full').style.display = 'none'; document.getElementById('2303.12831v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 133, 070801 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.11834">arXiv:2303.11834</a> <span> [<a href="https://arxiv.org/pdf/2303.11834">pdf</a>, <a href="https://arxiv.org/format/2303.11834">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/sciadv.adi0732">10.1126/sciadv.adi0732 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental Simulation of Symmetry-Protected Higher-Order Exceptional Points with Single Photons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+K">Kunkun Wang</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+L">Lei Xiao</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+H">Haiqing Lin</a>, <a href="/search/physics?searchtype=author&query=Yi%2C+W">Wei Yi</a>, <a href="/search/physics?searchtype=author&query=Bergholtz%2C+E+J">Emil J. Bergholtz</a>, <a href="/search/physics?searchtype=author&query=Xue%2C+P">Peng Xue</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.11834v2-abstract-short" style="display: inline;"> Exceptional points (EPs) of non-Hermitian (NH) systems have recently attracted increasing attention due to their rich phenomenology and intriguing applications. Compared to the predominantly studied second-order EPs, higher-order EPs have been assumed to play a much less prominent role because they generically require the tuning of more parameters. Here we experimentally simulate two-dimensional t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.11834v2-abstract-full').style.display = 'inline'; document.getElementById('2303.11834v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.11834v2-abstract-full" style="display: none;"> Exceptional points (EPs) of non-Hermitian (NH) systems have recently attracted increasing attention due to their rich phenomenology and intriguing applications. Compared to the predominantly studied second-order EPs, higher-order EPs have been assumed to play a much less prominent role because they generically require the tuning of more parameters. Here we experimentally simulate two-dimensional topological NH band structures using single-photon interferometry, and observe topologically stable third-order EPs obtained by tuning only two real parameters in the presence of symmetry. In particular, we explore how different symmetries stabilize qualitatively different third-order EPs: the parity-time symmetry leads to a generic cube-root dispersion, while a generalized chiral symmetry implies a square-root dispersion coexisting with a flat band. Additionally, we simulate fourfold degeneracies, composed of the non-defective twofold degeneracies and second-order EPs. Our work reveals the abundant and conceptually richer higher-order EPs protected by symmetries and offers a versatile platform for further research on topological NH systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.11834v2-abstract-full').style.display = 'none'; document.getElementById('2303.11834v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci. Adv. 9, eadi0732 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.06421">arXiv:2303.06421</a> <span> [<a href="https://arxiv.org/pdf/2303.06421">pdf</a>, <a href="https://arxiv.org/format/2303.06421">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.491718">10.1364/OE.491718 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Noise analysis of the atomic superheterodyne receiver based on flat-top laser beams </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zheng Wang</a>, <a href="/search/physics?searchtype=author&query=Jing%2C+M">Mingyong Jing</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+P">Peng Zhang</a>, <a href="/search/physics?searchtype=author&query=Yuan%2C+S">Shaoxin Yuan</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+H">Hao Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+L">Linjie Zhang</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+L">Liantuan Xiao</a>, <a href="/search/physics?searchtype=author&query=Jia%2C+S">Suotang Jia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.06421v2-abstract-short" style="display: inline;"> Since its theoretical sensitivity is limited by quantum noise, radio wave sensing based on Rydberg atoms has the potential to replace its traditional counterparts with higher sensitivity and has developed rapidly in recent years. However, as the most sensitive atomic radio wave sensor, the atomic superheterodyne receiver lacks a detailed noise analysis to pave its way to achieve theoretical sensit… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.06421v2-abstract-full').style.display = 'inline'; document.getElementById('2303.06421v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.06421v2-abstract-full" style="display: none;"> Since its theoretical sensitivity is limited by quantum noise, radio wave sensing based on Rydberg atoms has the potential to replace its traditional counterparts with higher sensitivity and has developed rapidly in recent years. However, as the most sensitive atomic radio wave sensor, the atomic superheterodyne receiver lacks a detailed noise analysis to pave its way to achieve theoretical sensitivity. In this work, we quantitatively study the noise power spectrum of the atomic receiver versus the number of atoms, where the number of atoms is precisely controlled by changing the diameters of flat-top excitation laser beams. The results show that under the experimental conditions that the diameters of excitation beams are less than or equal to 2 mm and the read-out frequency is larger than 70 kHz, the sensitivity of the atomic receiver is limited only by the quantum noise and, in the other conditions, limited by classical noises. However, the experimental quantum-projection-noise-limited sensitivity this atomic receiver reaches is far from the theoretical sensitivity. This is because all atoms involved in light-atom interaction will contribute to noise, but only a fraction of them participating in the radio wave transition can provide valuable signals. At the same time, the calculation of the theoretical sensitivity considers both the noise and signal are contributed by the same amount of atoms. This work is essential in making the sensitivity of the atomic receiver reach its ultimate limit and is significant in quantum precision measurement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.06421v2-abstract-full').style.display = 'none'; document.getElementById('2303.06421v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Optics Express 31, 19909-19917 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.05707">arXiv:2301.05707</a> <span> [<a href="https://arxiv.org/pdf/2301.05707">pdf</a>, <a href="https://arxiv.org/format/2301.05707">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Machine Learning Assisted Vector Atomic Magnetometry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Meng%2C+X">Xin Meng</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Youwei Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+X">Xichang Zhang</a>, <a href="/search/physics?searchtype=author&query=Jin%2C+S">Shenchao Jin</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+T">Tingran Wang</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+L">Liang Jiang</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+L">Liantuan Xiao</a>, <a href="/search/physics?searchtype=author&query=Jia%2C+S">Suotang Jia</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+Y">Yanhong Xiao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.05707v2-abstract-short" style="display: inline;"> We propose a novel paradigm to vector magnetometry based on machine learning. Unlike conventional schemes where one measured signal explicitly connects to one parameter, here we encode the three-dimensional magnetic-field information in the set of four simultaneously acquired signals, i.e., the oscillating optical rotation signal's harmonics of a frequency modulated laser beam traversing the atomi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.05707v2-abstract-full').style.display = 'inline'; document.getElementById('2301.05707v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.05707v2-abstract-full" style="display: none;"> We propose a novel paradigm to vector magnetometry based on machine learning. Unlike conventional schemes where one measured signal explicitly connects to one parameter, here we encode the three-dimensional magnetic-field information in the set of four simultaneously acquired signals, i.e., the oscillating optical rotation signal's harmonics of a frequency modulated laser beam traversing the atomic sample. The map between the recorded signals and the vectorial field information is established through a pre-trained deep neural network. We demonstrate experimentally a single-shot all optical vector atomic magnetometer, with a simple scalar-magnetometer design employing only one elliptically-polarized laser beam and no additional coils. Magnetic field amplitude sensitivities of about 100 $\textrm{fT}/\sqrt{\textrm{Hz}}$ and angular sensitivities of about 100 $渭rad/\sqrt{\textrm{Hz}}$ (for a magnetic field of about 140 nT) are derived from the neural network. Our approach can reduce the complexity of the architecture of vector magnetometers, and may shed light on the general design of multiparameter sensing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.05707v2-abstract-full').style.display = 'none'; document.getElementById('2301.05707v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages,4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.04013">arXiv:2212.04013</a> <span> [<a href="https://arxiv.org/pdf/2212.04013">pdf</a>, <a href="https://arxiv.org/ps/2212.04013">ps</a>, <a href="https://arxiv.org/format/2212.04013">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/aca6e0">10.3847/1538-4357/aca6e0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On the Nature of the Three-part Structure of Solar Coronal Mass Ejections </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Song%2C+H">Hongqiang Song</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jie Zhang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+L">Leping Li</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+Z">Zihao Yang</a>, <a href="/search/physics?searchtype=author&query=Xia%2C+L">Lidong Xia</a>, <a href="/search/physics?searchtype=author&query=Zheng%2C+R">Ruisheng Zheng</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y">Yao Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.04013v1-abstract-short" style="display: inline;"> Coronal mass ejections (CMEs) result from eruptions of magnetic flux ropes (MFRs) and can possess a three-part structure in white-light coronagraphs, including a bright front, dark cavity and bright core. In the traditional opinion, the bright front forms due to the plasma pileup along the MFR border, the cavity represents the cross section of the MFR, and the bright core corresponds to the erupte… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.04013v1-abstract-full').style.display = 'inline'; document.getElementById('2212.04013v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.04013v1-abstract-full" style="display: none;"> Coronal mass ejections (CMEs) result from eruptions of magnetic flux ropes (MFRs) and can possess a three-part structure in white-light coronagraphs, including a bright front, dark cavity and bright core. In the traditional opinion, the bright front forms due to the plasma pileup along the MFR border, the cavity represents the cross section of the MFR, and the bright core corresponds to the erupted prominence. However, this explanation on the nature of the three-part structure is being challenged. In this paper, we report an intriguing event occurred on 2014 June 14 that was recorded by multiple space- and ground-based instruments seamlessly, clearly showing that the CME front originates from the plasma pileup along the magnetic arcades overlying the MFR, and the core corresponds to a hot-channel MFR. Thus the dark cavity is not an MFR, instead it is a low-density zone between the CME front and a trailing MFR. These observations are consistent with a new explanation on the CME structure. If the new explanation is correct, most (if not all) CMEs should exhibit the three-part appearance in their early eruption stage. To examine this prediction, we make a survey study of all CMEs in 2011 and find that all limb events have the three-part feature in the low corona, regardless of their appearances in the high corona. Our studies suggest that the three-part structure is the intrinsic structure of CMEs, which has fundamental importance for understanding CMEs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.04013v1-abstract-full').style.display = 'none'; document.getElementById('2212.04013v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures, accepted by ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.15367">arXiv:2211.15367</a> <span> [<a href="https://arxiv.org/pdf/2211.15367">pdf</a>, <a href="https://arxiv.org/format/2211.15367">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Few-shot Non-line-of-sight Imaging with Signal-surface Collaborative Regularization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+X">Xintong Liu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+J">Jianyu Wang</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+L">Leping Xiao</a>, <a href="/search/physics?searchtype=author&query=Fu%2C+X">Xing Fu</a>, <a href="/search/physics?searchtype=author&query=Qiu%2C+L">Lingyun Qiu</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+Z">Zuoqiang Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.15367v1-abstract-short" style="display: inline;"> The non-line-of-sight imaging technique aims to reconstruct targets from multiply reflected light. For most existing methods, dense points on the relay surface are raster scanned to obtain high-quality reconstructions, which requires a long acquisition time. In this work, we propose a signal-surface collaborative regularization (SSCR) framework that provides noise-robust reconstructions with a min… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.15367v1-abstract-full').style.display = 'inline'; document.getElementById('2211.15367v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.15367v1-abstract-full" style="display: none;"> The non-line-of-sight imaging technique aims to reconstruct targets from multiply reflected light. For most existing methods, dense points on the relay surface are raster scanned to obtain high-quality reconstructions, which requires a long acquisition time. In this work, we propose a signal-surface collaborative regularization (SSCR) framework that provides noise-robust reconstructions with a minimal number of measurements. Using Bayesian inference, we design joint regularizations of the estimated signal, the 3D voxel-based representation of the objects, and the 2D surface-based description of the targets. To our best knowledge, this is the first work that combines regularizations in mixed dimensions for hidden targets. Experiments on synthetic and experimental datasets illustrated the efficiency and robustness of the proposed method under both confocal and non-confocal settings. We report the reconstruction of the hidden targets with complex geometric structures with only $5 \times 5$ confocal measurements from public datasets, indicating an acceleration of the conventional measurement process by a factor of 10000. Besides, the proposed method enjoys low time and memory complexities with sparse measurements. Our approach has great potential in real-time non-line-of-sight imaging applications such as rescue operations and autonomous driving. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.15367v1-abstract-full').style.display = 'none'; document.getElementById('2211.15367v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">main article: 10 pages, 7 figures supplement: 11 pages, 24 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.14999">arXiv:2211.14999</a> <span> [<a href="https://arxiv.org/pdf/2211.14999">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Artificial gauge field enabled low-crosstalk, broadband, half-wavelength-pitched waveguide arrays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhou%2C+P">Peiji Zhou</a>, <a href="/search/physics?searchtype=author&query=Li%2C+T">Ting Li</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+Y">Yucheng Lin</a>, <a href="/search/physics?searchtype=author&query=Xia%2C+L">Lipeng Xia</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+L">Li Shen</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+X">Xiaochuan Xu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+T">Tao Li</a>, <a href="/search/physics?searchtype=author&query=Zou%2C+Y">Yi Zou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.14999v1-abstract-short" style="display: inline;"> Dense waveguide arrays with half-wavelength-pitch, low-crosstalk, broadband, and flexible routing capability are essential for integrated photonics. However, achieving such performance is challenging due to the relatively weaker confinement of dielectric waveguides and the increased interactions among densely packed waveguides. Here, leveraging the artificial gauge field mechanism, we demonstrate… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.14999v1-abstract-full').style.display = 'inline'; document.getElementById('2211.14999v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.14999v1-abstract-full" style="display: none;"> Dense waveguide arrays with half-wavelength-pitch, low-crosstalk, broadband, and flexible routing capability are essential for integrated photonics. However, achieving such performance is challenging due to the relatively weaker confinement of dielectric waveguides and the increased interactions among densely packed waveguides. Here, leveraging the artificial gauge field mechanism, we demonstrate half-wavelength-pitched dense waveguide arrays, consisting of 64 waveguides, in silicon with -30dB crosstalk suppression from 1480nm to 1550nm. The waveguide array features negligible insertion loss for 90-degree bending. Our approach enables flexibly routing a large-scale dense waveguide array that significantly reduces on-chip estate, leading to a high-density photonic integrated circuit, and may open up opportunities for important device performance improvement, such as half-wavelength-pitch OPA and ultra-dense space-division multiplexing <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.14999v1-abstract-full').style.display = 'none'; document.getElementById('2211.14999v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.00648">arXiv:2211.00648</a> <span> [<a href="https://arxiv.org/pdf/2211.00648">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-38898-4">10.1038/s41467-023-38898-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Non-line-of-sight imaging with arbitrary illumination and detection pattern </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+X">Xintong Liu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+J">Jianyu Wang</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+L">Leping Xiao</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+Z">Zuoqiang Shi</a>, <a href="/search/physics?searchtype=author&query=Fu%2C+X">Xing Fu</a>, <a href="/search/physics?searchtype=author&query=Qiu%2C+L">Lingyun Qiu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.00648v1-abstract-short" style="display: inline;"> Non-line-of-sight (NLOS) imaging aims at reconstructing targets obscured from the direct line of sight. Existing NLOS imaging algorithms require dense measurements at rectangular grid points in a large area of the relay surface, which severely hinders their availability to variable relay scenarios in practical applications such as robotic vision, autonomous driving, rescue operations and remote se… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.00648v1-abstract-full').style.display = 'inline'; document.getElementById('2211.00648v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.00648v1-abstract-full" style="display: none;"> Non-line-of-sight (NLOS) imaging aims at reconstructing targets obscured from the direct line of sight. Existing NLOS imaging algorithms require dense measurements at rectangular grid points in a large area of the relay surface, which severely hinders their availability to variable relay scenarios in practical applications such as robotic vision, autonomous driving, rescue operations and remote sensing. In this work, we propose a Bayesian framework for NLOS imaging with no specific requirements on the spatial pattern of illumination and detection points. By introducing virtual confocal signals, we design a confocal complemented signal-object collaborative regularization (CC-SOCR) algorithm for high quality reconstructions. Our approach is capable of reconstructing both albedo and surface normal of the hidden objects with fine details under the most general relay setting. Moreover, with a regular relay surface, coarse rather than dense measurements are enough for our approach such that the acquisition time can be reduced significantly. As demonstrated in multiple experiments, the new framework substantially enhances the applicability of NLOS imaging. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.00648v1-abstract-full').style.display = 'none'; document.getElementById('2211.00648v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">main article: 32 pages with 8 figures; supplementary information: 49 pages with 26 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.10402">arXiv:2210.10402</a> <span> [<a href="https://arxiv.org/pdf/2210.10402">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.asr.2022.10.045">10.1016/j.asr.2022.10.045 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Solar Ring Mission: Building a Panorama of the Sun and Inner-heliosphere </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yuming Wang</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+X">Xianyong Bai</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+C">Changyong Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+L">Linjie Chen</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+X">Xin Cheng</a>, <a href="/search/physics?searchtype=author&query=Deng%2C+L">Lei Deng</a>, <a href="/search/physics?searchtype=author&query=Deng%2C+L">Linhua Deng</a>, <a href="/search/physics?searchtype=author&query=Deng%2C+Y">Yuanyong Deng</a>, <a href="/search/physics?searchtype=author&query=Feng%2C+L">Li Feng</a>, <a href="/search/physics?searchtype=author&query=Gou%2C+T">Tingyu Gou</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+J">Jingnan Guo</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+Y">Yang Guo</a>, <a href="/search/physics?searchtype=author&query=Hao%2C+X">Xinjun Hao</a>, <a href="/search/physics?searchtype=author&query=He%2C+J">Jiansen He</a>, <a href="/search/physics?searchtype=author&query=Hou%2C+J">Junfeng Hou</a>, <a href="/search/physics?searchtype=author&query=Jiangjiang%2C+H">Huang Jiangjiang</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+Z">Zhenghua Huang</a>, <a href="/search/physics?searchtype=author&query=Ji%2C+H">Haisheng Ji</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+C">Chaowei Jiang</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+J">Jie Jiang</a>, <a href="/search/physics?searchtype=author&query=Jin%2C+C">Chunlan Jin</a>, <a href="/search/physics?searchtype=author&query=Li%2C+X">Xiaolei Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yiren Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jiajia Liu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+K">Kai Liu</a> , et al. (29 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.10402v2-abstract-short" style="display: inline;"> Solar Ring (SOR) is a proposed space science mission to monitor and study the Sun and inner heliosphere from a full 360掳 perspective in the ecliptic plane. It will deploy three 120掳-separated spacecraft on the 1-AU orbit. The first spacecraft, S1, locates 30掳 upstream of the Earth, the second, S2, 90掳 downstream, and the third, S3, completes the configuration. This design with necessary science in… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.10402v2-abstract-full').style.display = 'inline'; document.getElementById('2210.10402v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.10402v2-abstract-full" style="display: none;"> Solar Ring (SOR) is a proposed space science mission to monitor and study the Sun and inner heliosphere from a full 360掳 perspective in the ecliptic plane. It will deploy three 120掳-separated spacecraft on the 1-AU orbit. The first spacecraft, S1, locates 30掳 upstream of the Earth, the second, S2, 90掳 downstream, and the third, S3, completes the configuration. This design with necessary science instruments, e.g., the Doppler-velocity and vector magnetic field imager, wide-angle coronagraph, and in-situ instruments, will allow us to establish many unprecedented capabilities: (1) provide simultaneous Doppler-velocity observations of the whole solar surface to understand the deep interior, (2) provide vector magnetograms of the whole photosphere - the inner boundary of the solar atmosphere and heliosphere, (3) provide the information of the whole lifetime evolution of solar featured structures, and (4) provide the whole view of solar transients and space weather in the inner heliosphere. With these capabilities, Solar Ring mission aims to address outstanding questions about the origin of solar cycle, the origin of solar eruptions and the origin of extreme space weather events. The successful accomplishment of the mission will construct a panorama of the Sun and inner-heliosphere, and therefore advance our understanding of the star and the space environment that holds our life. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.10402v2-abstract-full').style.display = 'none'; document.getElementById('2210.10402v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">41 pages, 6 figures, 1 table, to be published in Advances in Space Research</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.06730">arXiv:2210.06730</a> <span> [<a href="https://arxiv.org/pdf/2210.06730">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Robust Electromagnetic Interference (EMI) Elimination via Simultaneous Sensing and Deep Learning Prediction for RF Shielding-free MRI </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhao%2C+Y">Yujiao Zhao</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+L">Linfang Xiao</a>, <a href="/search/physics?searchtype=author&query=Lau%2C+V">Vick Lau</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yilong Liu</a>, <a href="/search/physics?searchtype=author&query=Leong%2C+A+T">Alex T. Leong</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+E+X">Ed X. Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.06730v2-abstract-short" style="display: inline;"> At present, MRI scans are performed inside a fully-enclosed RF shielding room, posing stringent installation requirement and unnecessary patient discomfort. We aim to develop an electromagnetic interference (EMI) cancellation strategy for MRI with no or incomplete RF shielding. In this study, a simultaneous sensing and deep learning driven EMI cancellation strategy is presented to model, predict a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.06730v2-abstract-full').style.display = 'inline'; document.getElementById('2210.06730v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.06730v2-abstract-full" style="display: none;"> At present, MRI scans are performed inside a fully-enclosed RF shielding room, posing stringent installation requirement and unnecessary patient discomfort. We aim to develop an electromagnetic interference (EMI) cancellation strategy for MRI with no or incomplete RF shielding. In this study, a simultaneous sensing and deep learning driven EMI cancellation strategy is presented to model, predict and remove EMI signals from acquired MRI signals. Specifically, during each MRI scan, separate EMI sensing coils placed in various spatial locations are utilized to simultaneously sample environmental and internal EMI signals within two windows (for both conventional MRI signal acquisition and EMI characterization acquisition). Then a CNN model is trained using the EMI characterization data to relate EMI signals detected by EMI sensing coils to EMI signals in MRI receive coil. This model is utilized to retrospectively predict and remove EMI signals components detected by MRI receive coil during the MRI signal acquisition window. We implemented and demonstrated this strategy for various EMI sources on a mobile ultra-low-field 0.055 T permanent magnet MRI scanner and a 1.5 T superconducting magnet MRI scanner with no or incomplete RF shielding. Our experimental results demonstrate that the method is highly effective and robust in predicting and removing various EMI sources from both external environments and internal scanner electronics at both 0.055 T (2.3 MHz) and 1.5 T (64 MHz), producing final image signal-to-noise ratios that are comparable to those obtained using a fully enclosed RF shielding. Our proposed strategy enables MRI operation with no or incomplete RF shielding, alleviating MRI installation and operational requirements. It is also potentially applicable to other scenarios of accurate RF signal detection or discrimination in presence of external and internal EMI or RF sources. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.06730v2-abstract-full').style.display = 'none'; document.getElementById('2210.06730v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to NMR in Biomedicine</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.08358">arXiv:2209.08358</a> <span> [<a href="https://arxiv.org/pdf/2209.08358">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> High-performance chiral all-optical logic gate based on topological edge states of valley photonic crystal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xiaorong Wang</a>, <a href="/search/physics?searchtype=author&query=Fei%2C+H">Hongming Fei</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+H">Han Lin</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+M">Min Wu</a>, <a href="/search/physics?searchtype=author&query=Kang%2C+L">Lijuan Kang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+M">Mingda Zhang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+X">Xin Liu</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+Y">Yibiao Yang</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+L">Liantuan Xiao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.08358v1-abstract-short" style="display: inline;"> For all-optical communication and information processing, it is necessary to develop all-optical logic gates based on photonic structures that can directly perform logic operations. All-optical logic gates have been demonstrated based on conventional waveguides and interferometry, as well as photonic crystal structures. Nonetheless, any defects in those structures will introduce high scattering lo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.08358v1-abstract-full').style.display = 'inline'; document.getElementById('2209.08358v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.08358v1-abstract-full" style="display: none;"> For all-optical communication and information processing, it is necessary to develop all-optical logic gates based on photonic structures that can directly perform logic operations. All-optical logic gates have been demonstrated based on conventional waveguides and interferometry, as well as photonic crystal structures. Nonetheless, any defects in those structures will introduce high scattering loss, which compromises the fidelity and contrast ratio of the information process. Based on the spin-valley locking effect that can achieve defect-immune unidirectional transmission of topological edge states in valley photonic crystals (VPCs), we propose a high-performance all-optical logic OR gate based on a VPC structure. By tuning the working bandwidth of the two input channels, we prevent interference between the two channels to achieve a stable and high-fidelity output. The transmittance of both channels is higher than 0.8, and a high contrast ratio of 28.8 dB is achieved. Moreover, the chirality of the logic gate originated from the spin-valley locking effect allows using different circularly polarized light as inputs, representing "1" or "0", which is highly desired in quantum computing. The device's footprint is small, allowing high-density on-chip integration. In addition, this design can be experimentally fabricated using current nanofabrication techniques and will have potential applications in optical communication, information processing, and quantum computing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.08358v1-abstract-full').style.display = 'none'; document.getElementById('2209.08358v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.12952">arXiv:2208.12952</a> <span> [<a href="https://arxiv.org/pdf/2208.12952">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/ac8a67">10.1088/1367-2630/ac8a67 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental optimal verification of three-dimensional entanglement on a silicon chip </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Xia%2C+L">Lijun Xia</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+L">Liangliang Lu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+K">Kun Wang</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+X">Xinhe Jiang</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+S">Shining Zhu</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+X">Xiaosong Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.12952v1-abstract-short" style="display: inline;"> High-dimensional entanglement is significant for the fundamental studies of quantum physics and offers unique advantages in various quantum information processing (QIP) tasks. Integrated quantum devices have recently emerged as a promising platform for creating, processing, and detecting complex high-dimensional entangled states. A crucial step towards practical quantum technologies is to verify t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.12952v1-abstract-full').style.display = 'inline'; document.getElementById('2208.12952v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.12952v1-abstract-full" style="display: none;"> High-dimensional entanglement is significant for the fundamental studies of quantum physics and offers unique advantages in various quantum information processing (QIP) tasks. Integrated quantum devices have recently emerged as a promising platform for creating, processing, and detecting complex high-dimensional entangled states. A crucial step towards practical quantum technologies is to verify that these devices work reliably with an optimal strategy. In this work, we experimentally implement an optimal quantum verification strategy on a three-dimensional maximally entangled state using local projective measurements on a silicon photonic chip. A 95% confidence is achieved from 1190 copies to verify the target quantum state. The obtained scaling of infidelity as a function of the number of copies is -0.5497+-0.0002, exceeding the standard quantum limit of -0.5 with 248 standard deviations. Our results indicate that quantum state verification could serve as an efficient tool for complex quantum measurement tasks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.12952v1-abstract-full').style.display = 'none'; document.getElementById('2208.12952v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.00112">arXiv:2208.00112</a> <span> [<a href="https://arxiv.org/pdf/2208.00112">pdf</a>, <a href="https://arxiv.org/format/2208.00112">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac85bf">10.3847/1538-4357/ac85bf <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An EUV jet driven by a series of transition region micro-jets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wei%2C+H">Hengyuan Wei</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+Z">Zhenghua Huang</a>, <a href="/search/physics?searchtype=author&query=Fu%2C+H">Hui Fu</a>, <a href="/search/physics?searchtype=author&query=Xiong%2C+M">Ming Xiong</a>, <a href="/search/physics?searchtype=author&query=Xia%2C+L">Lidong Xia</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Chao Zhang</a>, <a href="/search/physics?searchtype=author&query=Deng%2C+K">Kaiwen Deng</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Haiyi Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.00112v1-abstract-short" style="display: inline;"> Jets are one of the most common eruptive events in the solar atmosphere, and they are believed to be important in the context of coronal heating and solar wind acceleration. We present an observational study on a sequence of jets with the data acquired with the Solar Dynamics Observatory (SDO) and the Interface Region Imaging Spectrograph (IRIS). This sequence is peculiar in that an EUV jet,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.00112v1-abstract-full').style.display = 'inline'; document.getElementById('2208.00112v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.00112v1-abstract-full" style="display: none;"> Jets are one of the most common eruptive events in the solar atmosphere, and they are believed to be important in the context of coronal heating and solar wind acceleration. We present an observational study on a sequence of jets with the data acquired with the Solar Dynamics Observatory (SDO) and the Interface Region Imaging Spectrograph (IRIS). This sequence is peculiar in that an EUV jet, $\sim29\arcsec$ long and with a dome-like base, appears to be a consequence of a series of transition region (TR) micro-jets that are a few arcsecs in length.We find that the occurrence of any TR micro-jets is always associated with the change of geometry of micro-loops at the footpoints of the microjets. A bundle of TR flux ropes is seen to link a TR micro-jet to the dome-like structure at the base of the EUV jet. This bundle rises as a response to the TR micro-jets, with the rising motion eventually triggering the EUV jet. We propose a scenario involving a set of magnetic reconnections, in which the series of TR micro-jets are associated with the processes to remove the constraints to the TR flux ropes and thus allow them to rise and trigger the EUV jet. Our study demonstrates that small-scale dynamics in the lower solar atmosphere are crucial in understanding the energy and mass connection between the corona and the solar lower atmosphere, even though many of them might not pump mass and energy to the corona directly. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.00112v1-abstract-full').style.display = 'none'; document.getElementById('2208.00112v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.04367">arXiv:2204.04367</a> <span> [<a href="https://arxiv.org/pdf/2204.04367">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Design of wavelength division multiplexing devices based on tunable edge states of valley photonic crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Han%2C+Y">YuHui Han</a>, <a href="/search/physics?searchtype=author&query=Fei%2C+H">HongMing Fei</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+H">Han Lin</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+M">MingDa Zhang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+X">Xin Liu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">XiaoRong Wang</a>, <a href="/search/physics?searchtype=author&query=Cao%2C+B">BinZhao Cao</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+Y">YiBiao Yang</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+L">LianTuan Xiao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.04367v1-abstract-short" style="display: inline;"> Wavelength division multiplexing (WDM) devices are key elements of Photonic integrated circuits (PICs). Conventional WDM devices based on silicon waveguides and photonic crystals have limited transmittance due to high loss introduced by the strong backward scattering from defects. In addition, it is challenging to reduce the footprint of those devices. Here we theoretically demonstrate a WDM devic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.04367v1-abstract-full').style.display = 'inline'; document.getElementById('2204.04367v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.04367v1-abstract-full" style="display: none;"> Wavelength division multiplexing (WDM) devices are key elements of Photonic integrated circuits (PICs). Conventional WDM devices based on silicon waveguides and photonic crystals have limited transmittance due to high loss introduced by the strong backward scattering from defects. In addition, it is challenging to reduce the footprint of those devices. Here we theoretically demonstrate a WDM device in the telecommunication range based on all-dielectric silicon topological valley photonic crystal (VPC) structures. We tune its effective refractive index by tuning the physical parameters of the lattice in the silicon substrate, which can continuously tune the working wavelength range of the topological edge states, which allows designing WDM devices with different channels. The WDM device has two channels (1470 nm-1523 nm and 1548 nm-1609 nm), with contrast ratios of 22.4 dB and 24.9 dB, respectively. The principle of manipulating the working bandwidth of the topological edge states can be generally applied in designing different integratable photonic devices, thus it will find broad applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.04367v1-abstract-full').style.display = 'none'; document.getElementById('2204.04367v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.13583">arXiv:2202.13583</a> <span> [<a href="https://arxiv.org/pdf/2202.13583">pdf</a>, <a href="https://arxiv.org/format/2202.13583">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> A nanodiamonds-engineered optical-fiber plasmonic interface for sensitivity-enhanced biosensing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chen%2C+Y">Yaofei Chen</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+L">Lu Xiao</a>, <a href="/search/physics?searchtype=author&query=Ni%2C+L">Longqun Ni</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+L">Lei Chen</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+G">Gui-shi Liu</a>, <a href="/search/physics?searchtype=author&query=Yin%2C+J">Jinde Yin</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+P">Peili Zhao</a>, <a href="/search/physics?searchtype=author&query=Luo%2C+Y">Yunhan Luo</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Z">Zhe Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.13583v1-abstract-short" style="display: inline;"> Benefitting from the excellent characteristics such as low cytotoxicity, functionalization versatility, and tunable fluorescence, nanodiamonds (NDs) have shown enormous application potentials in the biomedical field. Herein, we proposed, for the first time to our best knowledge, to integrate NDs on a plasmonic interface constructed on a side-polished fiber using drop-casting method. The added NDs… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.13583v1-abstract-full').style.display = 'inline'; document.getElementById('2202.13583v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.13583v1-abstract-full" style="display: none;"> Benefitting from the excellent characteristics such as low cytotoxicity, functionalization versatility, and tunable fluorescence, nanodiamonds (NDs) have shown enormous application potentials in the biomedical field. Herein, we proposed, for the first time to our best knowledge, to integrate NDs on a plasmonic interface constructed on a side-polished fiber using drop-casting method. The added NDs engineers the plasmonic interface towards improving the sensing field, thus enhancing the sensitivity, which, moreover, is significantly dependent on the number of drop-casting cycles (DCs) and the used concentration of NDs dispersion solution. Experimental results suggest that properly increasing the NDs dispersion concentration is beneficial to obtain a higher sensitivity while using a fewer number of DCs, but the excessive concentration extremely deteriorates the resonance dip. Experimentally, using the optimal 0.2 mg/mL concentration and 3 DCs, we achieve the highest RI sensitivity of 3582 nm/RIU, which shows an enhancement of 73.8% compared to the case without NDs modification. The sensitivity enhancement in biosensing is also proved by employing bovine serum albumin as a demo. The behind mechanism is explored via characterizations and simulations. This work opens up a new application form for NDs, i.e. integrating NDs with a plasmonic interface towards high-performance biosensing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.13583v1-abstract-full').style.display = 'none'; document.getElementById('2202.13583v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.10952">arXiv:2201.10952</a> <span> [<a href="https://arxiv.org/pdf/2201.10952">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2020.164557">10.1016/j.nima.2020.164557 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topmetal-M: a novel pixel sensor for compact tracking applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ren%2C+W">Weiping Ren</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+W">Wei Zhou</a>, <a href="/search/physics?searchtype=author&query=You%2C+B">Bihui You</a>, <a href="/search/physics?searchtype=author&query=Fang%2C+N">Ni Fang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yan Wang</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+H">Haibo Yang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+H">Honglin Zhang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yao Wang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jun Liu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+X">Xianqin Li</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+P">Ping Yang</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+L">Le Xiao</a>, <a href="/search/physics?searchtype=author&query=YuezhaoZhang"> YuezhaoZhang</a>, <a href="/search/physics?searchtype=author&query=Qu%2C+X">Xiangru Qu</a>, <a href="/search/physics?searchtype=author&query=Zou%2C+S">Shuguang Zou</a>, <a href="/search/physics?searchtype=author&query=GuangmingHuang"> GuangmingHuang</a>, <a href="/search/physics?searchtype=author&query=Pei%2C+H">Hua Pei</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+F">Fan Shen</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+D">Dong Wang</a>, <a href="/search/physics?searchtype=author&query=Niu%2C+X">Xiaoyang Niu</a>, <a href="/search/physics?searchtype=author&query=Mei%2C+Y">Yuan Mei</a>, <a href="/search/physics?searchtype=author&query=Han%2C+Y">Yubo Han</a>, <a href="/search/physics?searchtype=author&query=ChaosongGao"> ChaosongGao</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+X">Xiangming Sun</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+C">Chengxin Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.10952v1-abstract-short" style="display: inline;"> The Topmetal-M is a large area pixel sensor (18 mm * 23 mm) prototype fabricated in a new 130 nm high-resistivity CMOS process in 2019. It contains 400 rows * 512 columns square pixels with the pitch of 40 渭m. In Topmetal-M, a novel charge collection method combing the Monolithic Active Pixel Sensor (MAPS) and the Topmetal sensor has been proposed for the first time. Both the ionized charge deposi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.10952v1-abstract-full').style.display = 'inline'; document.getElementById('2201.10952v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.10952v1-abstract-full" style="display: none;"> The Topmetal-M is a large area pixel sensor (18 mm * 23 mm) prototype fabricated in a new 130 nm high-resistivity CMOS process in 2019. It contains 400 rows * 512 columns square pixels with the pitch of 40 渭m. In Topmetal-M, a novel charge collection method combing the Monolithic Active Pixel Sensor (MAPS) and the Topmetal sensor has been proposed for the first time. Both the ionized charge deposited by the particle in the sensor and along the track over the sensor can be collected. The in-pixel circuit mainly consists of a low-noise charge sensitive amplifier to establish the signal for the energy reconstruction, and a discriminator with a Time-to-Amplitude Converter (TAC) for the Time of Arrival (TOA) measurement. With this mechanism, the trajectory, particle hit position, energy and arrival time of the particle can be measured. The analog signal from each pixel is accessible through time-shared multiplexing over the entire pixel array. This paper will discuss the design and preliminary test results of the Topmetal-M sensor. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.10952v1-abstract-full').style.display = 'none'; document.getElementById('2201.10952v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Xia%2C+L&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Xia%2C+L&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Xia%2C+L&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Xia%2C+L&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Xia%2C+L&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>