CINXE.COM

Search results for: epiphytic neem leaves

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: epiphytic neem leaves</title> <meta name="description" content="Search results for: epiphytic neem leaves"> <meta name="keywords" content="epiphytic neem leaves"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="epiphytic neem leaves" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="epiphytic neem leaves"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 971</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: epiphytic neem leaves</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">971</span> Phytochemical Screening and Antibacterial Activities of Tapinanthus dodoneifolius Leaves Extracts against Some Selected Clinical Isolates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isa%20Usman%20Balan">Isa Usman Balan</a>, <a href="https://publications.waset.org/abstracts/search?q=Umar%20Aliyu"> Umar Aliyu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Tijjani%20Muhammed"> Ahmad Tijjani Muhammed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The laboratory scale experiment was conducted to determine the phytochemical constituents and antibacterial activities of epiphytic neem leaves (Tapinanthusdodoneifolius) extracts on some selected clinical isolates. The samples were collected using polythene bags to avoid unnecessary contamination of the plants, and they were collected from the old site garden of the BUK. The phytochemical screening and antibacterial test were carried out in the Chemistry and Biology laboratory, respectively at Bayero University Kano (BUK). The result obtained showed that carbohydrates, glycosides, steroids, alkaloids, phenol, saponins and flavonoids are present in the ethanolic extract. However, chloroform extract showed only glycosides, phenols, and carbohydrates. Furthermore, there was no significant difference between the ethanolic extracts and bacterial isolates (p<0.05). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phytochemical%20screening" title="phytochemical screening">phytochemical screening</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial" title=" antibacterial"> antibacterial</a>, <a href="https://publications.waset.org/abstracts/search?q=clinical%20isolates" title=" clinical isolates"> clinical isolates</a>, <a href="https://publications.waset.org/abstracts/search?q=epiphytic%20neem%20leaves" title=" epiphytic neem leaves"> epiphytic neem leaves</a>, <a href="https://publications.waset.org/abstracts/search?q=Tapinanthus%20dodoneifolius" title=" Tapinanthus dodoneifolius"> Tapinanthus dodoneifolius</a> </p> <a href="https://publications.waset.org/abstracts/183330/phytochemical-screening-and-antibacterial-activities-of-tapinanthus-dodoneifolius-leaves-extracts-against-some-selected-clinical-isolates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183330.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">970</span> Effect of Neem Leaves Extract (Azadirachta Indica) on Blood Glucose Level and Lipid Profile in Normal and Alloxan-Diabetic Rabbits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khalil%20Abdullah%20Ahmed%20Khalil">Khalil Abdullah Ahmed Khalil</a>, <a href="https://publications.waset.org/abstracts/search?q=Elsadig%20Mohamed%20Ahmed"> Elsadig Mohamed Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Extracts of various plants material capable of decreasing blood sugar have been tested in experimental animal models, and their effects confirmed. Neem or Margose (AzadirachtaIndica) is an indigenous plant believed to have antiviral, antifungal, antidiabetic, and many other properties. In this paper deals with a comparative study of effect of aqueous Neem leaves extract alone or in combination with glibenclamide on alloxan diabetic rabbits. Administration of crude aqueous Neem extract (CANE) alone (1.5 ml/kg/day) as well as the combination of CANE (1.5 ml/kg/day) with glibenclamide (0.25 mg/kg/day) significantly decreased (P<0.05) the concentrations of serum lipids, blood glucose and lipoprotein VLDL and LDL but significantly increased (P<0.05) the concentration of HDL. The change was observed significantly greater when the treatment was given in combination of CANE and glibenclamid than with CANE alone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aqueos%20neem%20leaves%20extract" title="aqueos neem leaves extract">aqueos neem leaves extract</a>, <a href="https://publications.waset.org/abstracts/search?q=hypoglycemic" title=" hypoglycemic"> hypoglycemic</a>, <a href="https://publications.waset.org/abstracts/search?q=hypolipidemic" title=" hypolipidemic"> hypolipidemic</a>, <a href="https://publications.waset.org/abstracts/search?q=cholesterol" title=" cholesterol"> cholesterol</a> </p> <a href="https://publications.waset.org/abstracts/143561/effect-of-neem-leaves-extract-azadirachta-indica-on-blood-glucose-level-and-lipid-profile-in-normal-and-alloxan-diabetic-rabbits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143561.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">969</span> Comparative Isotherms Studies on Adsorptive Removal of Methyl Orange from Wastewater by Watermelon Rinds and Neem-Tree Leaves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sadiq%20Sani">Sadiq Sani</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20B.%20Ibrahim"> Muhammad B. Ibrahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Watermelon rinds powder (WRP) and neem-tree leaves powder (NLP) were used as adsorbents for equilibrium adsorption isotherms studies for detoxification of methyl orange dye (MO) from simulated wastewater. The applicability of the process to various isotherm models was tested. All isotherms from the experimental data showed excellent linear reliability (R2: 0.9487-0.9992) but adsorptions onto WRP were more reliable (R2: 0.9724-0.9992) than onto NLP (R2: 0.9487-0.9989) except for Temkin’s Isotherm where reliability was better onto NLP (R2: 0.9937) than onto WRP (R2: 0.9935). Dubinin-Radushkevich’s monolayer adsorption capacities for both WRP and NLP (qD: 20.72 mg/g, 23.09 mg/g) were better than Langmuir’s (qm: 18.62 mg/g, 21.23 mg/g) with both capacities higher for adsorption onto NLP (qD: 23.09 mg/g; qm: 21.23 mg/g) than onto WRP (qD: 20.72 mg/g; qm: 18.62 mg/g). While values for Langmuir’s separation factor (RL) for both adsorbents suggested unfavourable adsorption processes (RL: -0.0461, -0.0250), Freundlich constant (nF) indicated favourable process onto both WRP (nF: 3.78) and NLP (nF: 5.47). Adsorption onto NLP had higher Dubinin-Radushkevich’s mean free energy of adsorption (E: 0.13 kJ/mol) than WRP (E: 0.08 kJ/mol) and Temkin’s heat of adsorption (bT) was better onto NLP (bT: -0.54 kJ/mol) than onto WRP (bT: -0.95 kJ/mol) all of which suggested physical adsorption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption%20isotherms" title="adsorption isotherms">adsorption isotherms</a>, <a href="https://publications.waset.org/abstracts/search?q=methyl%20orange" title=" methyl orange"> methyl orange</a>, <a href="https://publications.waset.org/abstracts/search?q=neem%20leaves" title=" neem leaves"> neem leaves</a>, <a href="https://publications.waset.org/abstracts/search?q=watermelon%20rinds" title=" watermelon rinds"> watermelon rinds</a> </p> <a href="https://publications.waset.org/abstracts/51688/comparative-isotherms-studies-on-adsorptive-removal-of-methyl-orange-from-wastewater-by-watermelon-rinds-and-neem-tree-leaves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51688.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">968</span> Distribution of Epiphytic Lichen Biodiversity and Comparision with Their Preferred Tree Species around the Şeker Canyon, Karabük, Turkey </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hatice%20Esra%20%20Akg%C3%BCl">Hatice Esra Akgül</a>, <a href="https://publications.waset.org/abstracts/search?q=Celaleddin%20%20%C3%96zt%C3%BCrk"> Celaleddin Öztürk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lichen biodiversity in forests is controlled by environmental conditions. Epiphytic lichens have some degree of substrate specificity. Diversity and distribution of epiphytic lichens are affected by humidity, light, altitude, temperature, bark pH of the trees.This study describes the epiphytic lichen communities with comparing their preferred tree species. 34 epiphytic lichen taxa are reported on Pinus sp. L., Quercus sp. L., Fagus sp. L., Carpinus sp. L., Abies sp. Mill., Fraxinus sp. Tourn. ex L. from different altitudes around the Şeker Canyon (Karabük, Turkey). 11 of these taxa are growing on Quercus sp., 10 of them are growing on Fagus sp., 7 of them are growing on Pinus sp., 4 of them are on Carpinus sp., 2 of them are on Abies sp. and one of them is on Fraxinus sp. Evernia prunastri (L.) Ach. is growing on both of Fagus sp. and Quercus sp. Lecanora pulicaris (Pers.) Ach. is growing on both of Abies sp. and Quercus sp. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiversity" title="biodiversity">biodiversity</a>, <a href="https://publications.waset.org/abstracts/search?q=epiphytic%20lichen" title=" epiphytic lichen"> epiphytic lichen</a>, <a href="https://publications.waset.org/abstracts/search?q=forest" title=" forest"> forest</a>, <a href="https://publications.waset.org/abstracts/search?q=Turkey" title=" Turkey"> Turkey</a> </p> <a href="https://publications.waset.org/abstracts/52213/distribution-of-epiphytic-lichen-biodiversity-and-comparision-with-their-preferred-tree-species-around-the-seker-canyon-karabuk-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52213.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">967</span> Antidiabetic and Antihyperlipaemic Effects of Aqueous Neem (Azadirachta Indica) Extract on Alloxan Diabetic Rabbits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khalil%20Abdullah%20Ahmed%20Khalil">Khalil Abdullah Ahmed Khalil</a>, <a href="https://publications.waset.org/abstracts/search?q=Elsadig%20Mohamed%20Ahmed"> Elsadig Mohamed Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Extracts of various plants material capable of decreasing blood sugar have been tested in experimental animal models and their effects confirmed. Neem or Margose (Azadirachta Indica) is an indigenous plant believed to have antiviral, antifungal, antidiabetic and many other properties. This paper deals with a comparative study of the effect of aqueous Neem leaves extract alone or in combination with glibenclamide on alloxan diabetic rabbits. Administration of crude aqueous Neem extract (CANE) alone (1.5 ml/kg/day), as well as the combination of CANE (1.5 ml/kg/day) with glibenclamide (0.25 mg/kg/day) significantly, decreased (P<0.05) the concentrations of serum lipids, blood glucose and lipoprotein VLDL(very low-density lipoproteins) and LDL(low-density lipoproteins) but significantly increased (P<0.05) the concentration of HDL(high-density lipoprotein). The change was observed significantly greater when the treatment was given in combination of CANE and glibenclamid than with CANE alone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neem" title="neem">neem</a>, <a href="https://publications.waset.org/abstracts/search?q=hypoglycemic" title=" hypoglycemic"> hypoglycemic</a>, <a href="https://publications.waset.org/abstracts/search?q=hypolipidemic" title=" hypolipidemic"> hypolipidemic</a>, <a href="https://publications.waset.org/abstracts/search?q=cholesterol" title=" cholesterol"> cholesterol</a> </p> <a href="https://publications.waset.org/abstracts/143289/antidiabetic-and-antihyperlipaemic-effects-of-aqueous-neem-azadirachta-indica-extract-on-alloxan-diabetic-rabbits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143289.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">966</span> Eco-Friendly Control of Bacterial Speck on Solanum lycopersicum by Azadirachta indica Extract</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Navodit%20Goel">Navodit Goel</a>, <a href="https://publications.waset.org/abstracts/search?q=Prabir%20K.%20Paul"> Prabir K. Paul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tomato (Solanum lycopersicum) is attacked by Pseudomonas syringae pv. tomato causing speck lesions on the leaves leading to severe economic casualty. In the present study, aqueous fruit extracts of Azadirachta indica (neem) were sprayed on a single node of tomato plants grown under controlled contamination-free conditions. The treatment of plants was performed with neem fruit extract either alone or along with the pathogen. The parameters of observation were activities of polyphenol oxidase (PPO) and lysozyme, and isoform analysis of PPO; both at the treated leaves as well as untreated leaves away from the site of extract application. Polyphenol oxidase initiates phenylpropanoid pathway resulting in the synthesis of quinines from cytoplasmic phenols and production of reactive oxygen species toxic to broad spectrum microbes. Lysozyme is responsible for the breakdown of bacterial cell wall. The results indicate the upregulation of PPO and lysozyme activities in both the treated and untreated leaves along with de novo expression of newer PPO isoenzymes (which were absent in control samples). The appearance of additional PPO isoenzymes in bioelicitor-treated plants indicates that either the isoenzymes were expressed after bioelicitor application or the already expressed but inactive isoenzymes were activated by it. Lysozyme activity was significantly increased in the plants when treated with the bioelicitor or the pathogen alone. However, no new isoenzymes of lysozyme were expressed upon application of the extract. Induction of resistance by neem fruit extract could be a potent weapon in eco-friendly plant protection strategies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azadirachta%20indica" title="Azadirachta indica">Azadirachta indica</a>, <a href="https://publications.waset.org/abstracts/search?q=lysozyme" title=" lysozyme"> lysozyme</a>, <a href="https://publications.waset.org/abstracts/search?q=polyphenol%20oxidase" title=" polyphenol oxidase"> polyphenol oxidase</a>, <a href="https://publications.waset.org/abstracts/search?q=Solanum%20lycopersicum" title=" Solanum lycopersicum"> Solanum lycopersicum</a> </p> <a href="https://publications.waset.org/abstracts/58191/eco-friendly-control-of-bacterial-speck-on-solanum-lycopersicum-by-azadirachta-indica-extract" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58191.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">965</span> Growth, Yield and Pest Infestation Response of Maize (Zea mays Linn.) to Biopesticide </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Udomporn%20Pangnakorn">Udomporn Pangnakorn</a>, <a href="https://publications.waset.org/abstracts/search?q=Settawut%20Prasatporn"> Settawut Prasatporn</a>, <a href="https://publications.waset.org/abstracts/search?q=Sombat%20Chuenchooklin"> Sombat Chuenchooklin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of biopesticide on growth, yield and pest infestation of maize (Zea mays Linn.) (variety DK 6818) was evaluated during the drought season. The experimental plots were located at research station of Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok, Thailand. The extracted substance from plants was evaluated in the plots in 4 treatments: 1) water as control; 2) bitter bush (Chromolaena odorata L.); 3) neem (Azadirachta indica A. Juss), 4) golden shower (Cassia fistula Linn.). The experiment was followed a Randomized Complete Block Design (RCBD) with 4 treatments and 4 replications per treatment. The results showed that golden shower gave the highest growth of maize in term of height (203.29 cm), followed by neem and bitter bush with average height of 202.66 cm and 191.66 cm respectively with significance different. But neem treatment given significantly higher average of yield component in term of length, width, and weight of pod corn with 18.89 cm 13.91 cm and 166.46 g respectively. Also, treatment of neem showed the highest harvested yield at 284.06 kg/ha followed by the golden shower and bitter bush with harvested yield at 245.86 kg/ha and 235.52 kg/ha respectively. Additionally, treatment of neem and golden shower were the highest effectiveness for reducing insects pest infestation of maize: corn leaf aphid Rhopalosiphum maidis Fitch, corn borer Ostrinia fumacalis Guenee and corn armyworm Mythimna separata Walker. The treatment of neem, golden shower, and bitter bush given reduction insect infestation on maize with leaves area were infested at 5,412 mm², 6,827 mm² and 8,910 mm² respectively with significance different when compared to control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=maize" title="maize">maize</a>, <a href="https://publications.waset.org/abstracts/search?q=Zea%20mays%20Linn." title=" Zea mays Linn."> Zea mays Linn.</a>, <a href="https://publications.waset.org/abstracts/search?q=biopesticide" title=" biopesticide"> biopesticide</a>, <a href="https://publications.waset.org/abstracts/search?q=bitter%20bush" title=" bitter bush"> bitter bush</a>, <a href="https://publications.waset.org/abstracts/search?q=Chromolaena%20odorata%20L.%29" title=" Chromolaena odorata L.)"> Chromolaena odorata L.)</a>, <a href="https://publications.waset.org/abstracts/search?q=neem" title=" neem"> neem</a>, <a href="https://publications.waset.org/abstracts/search?q=Azadirachta%20indica%20A.%20Juss" title=" Azadirachta indica A. Juss"> Azadirachta indica A. Juss</a>, <a href="https://publications.waset.org/abstracts/search?q=golden%20shower" title=" golden shower"> golden shower</a>, <a href="https://publications.waset.org/abstracts/search?q=Cassia%20fistula%20Linn." title=" Cassia fistula Linn. "> Cassia fistula Linn. </a> </p> <a href="https://publications.waset.org/abstracts/65223/growth-yield-and-pest-infestation-response-of-maize-zea-mays-linn-to-biopesticide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65223.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">964</span> Assessment of Adsorption Properties of Neem Leaves Wastes for the Removal of Congo Red and Methyl Orange</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20B.%20Ibrahim">Muhammad B. Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20S.%20Sulaiman"> Muhammad S. Sulaiman</a>, <a href="https://publications.waset.org/abstracts/search?q=Sadiq%20Sani"> Sadiq Sani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Neem leaves were studied as plant wastes derived adsorbents for detoxification of Congo Red (CR) and Methyl Orange (MO) from aqueous solutions using batch adsorption technique. The objectives involved determining the effects of the basic adsorption parameters are namely, agitation time, adsorbent dosage, adsorbents particle size, adsorbate loading concentrations and initial pH, on the adsorption process as well as characterizing the adsorbents by determining their physicochemical properties, functional groups responsible for the adsorption process using Fourier Transform Infrared (FTIR) spectroscopy and surface morphology using scanning electron microscopy (SEM) coupled with energy dispersion X – ray spectroscopy (EDS). The adsorption behaviours of the materials were tested against Langmuir, Freundlich, etc. isotherm models. Percent adsorption increased with increase in agitation time (5 – 240 minutes), adsorbent dosage (100-500mg), initial concentration (100-300mg/L), and with decrease in particle size (≥75μm to ≤300μm) of the adsorbents. Both processes are dye pH-dependent, increasing or decreasing percent adsorption in acidic (2-6) or alkaline (8-12) range over the studied pH (2-12) range. From the experimental data the Langmuir’s separation factor (RL) suggests unfavourable adsorption for all processes, Freundlich constant (nF) indicates unfavourable process for CR and MO adsorption; while the mean free energy of adsorption <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=congo%20red" title=" congo red"> congo red</a>, <a href="https://publications.waset.org/abstracts/search?q=methyl%20orange" title=" methyl orange"> methyl orange</a>, <a href="https://publications.waset.org/abstracts/search?q=neem%20leave" title=" neem leave"> neem leave</a> </p> <a href="https://publications.waset.org/abstracts/39887/assessment-of-adsorption-properties-of-neem-leaves-wastes-for-the-removal-of-congo-red-and-methyl-orange" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39887.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">963</span> Azaridachta Indica (Neem) Seed Oil Effect in Experimental Arthritis – Biochemical Parameters Assessment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sasan%20Khademnematolahi">Sasan Khademnematolahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kevine%20Kamga%20Silihe"> Kevine Kamga Silihe</a>, <a href="https://publications.waset.org/abstracts/search?q=Katar%C3%ADna%20Pru%C5%BEinsk%C3%A1"> Katarína Pružinská</a>, <a href="https://publications.waset.org/abstracts/search?q=Martina%20Chrastina"> Martina Chrastina</a>, <a href="https://publications.waset.org/abstracts/search?q=Elisabeth%20Louise%20Ndjengue%20Mindang"> Elisabeth Louise Ndjengue Mindang</a>, <a href="https://publications.waset.org/abstracts/search?q=Franti%C5%A1ek%20Dr%C3%A1fi"> František Dráfi</a>, <a href="https://publications.waset.org/abstracts/search?q=Katar%C3%ADna%20Bauerov%C3%A1"> Katarína Bauerová</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: In ethnomedicine, plant parts and compounds are traditionally utilized to treat many disorders. Azadirachta indica, known as Neem, has been traditionally used in medicinal practices. Neem has various pharmaceutical activities, such as antioxidant and anti-inflammatory, due to the content of bioactive compounds like nimbolide, azadirachtin, and gedunin.Through its effect on pathological inflammatory processes, supplementation with it could alleviate the symptoms of rheumatoid arthritis (RA). Methods: This research aimed to assess Neem seed oil's impact on rats with adjuvant arthritis. Three doses in monotherapy and two in combination with methotrexate (MTX) have been studied and their effect was compared. Neem p.o. doses of 100, 200, and 300 mg/kg and MTX p.o. doses of 0.3 mg/kg were examined. After clinical parameters assessment, biochemical analysis was performed in plasma. Results: During the acute phase of the experimental arthritis (Day21), levels of MMP-9, MCP-1 and cytokines IL-1beta and IL-17A were measured. The positive results of inflammatory mediators evaluation in plasma encourage additional analysis also in related tissues to prove if Neem seed oil can be used as an adjuvant therapy for RA. Conclusion: In this study, the combination therapy of Neem with MTX was most effective from all therapies investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adjuvant" title="adjuvant">adjuvant</a>, <a href="https://publications.waset.org/abstracts/search?q=neem" title=" neem"> neem</a>, <a href="https://publications.waset.org/abstracts/search?q=methotrexate" title=" methotrexate"> methotrexate</a>, <a href="https://publications.waset.org/abstracts/search?q=arthritis" title=" arthritis"> arthritis</a> </p> <a href="https://publications.waset.org/abstracts/186176/azaridachta-indica-neem-seed-oil-effect-in-experimental-arthritis-biochemical-parameters-assessment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186176.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">46</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">962</span> Comparative Analysis of Petroleum Ether and Aqueous Extraction Solvents on Different Stages of Anopheles Gambiae Using Neem Leaf and Neem Stem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tochukwu%20Ezechi%20Ebe">Tochukwu Ezechi Ebe</a>, <a href="https://publications.waset.org/abstracts/search?q=Fechi%20Njoku-Tony"> Fechi Njoku-Tony</a>, <a href="https://publications.waset.org/abstracts/search?q=Ifeyinwa%20Mgbenena"> Ifeyinwa Mgbenena</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Comparative analysis of petroleum ether and aqueous extraction solvents on different stages of Anopheles gambiae was carried out using neem leaf and neem stem. Soxhlet apparatus was used to extract each pulverized plant part. Each plant part extract from both solvents were separately used to test their effects on the developmental stages of Anopheles gambiae. The result showed that the mean mortality of extracts from petroleum ether extraction solvent was higher than that of aqueous extract. It was also observed that mean mortality decreases with increase in developmental stage. Furthermore, extracts from neem leaf was found to be more susceptible than extracts from neem stem using same extraction solvent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=petroleum%20ether" title="petroleum ether">petroleum ether</a>, <a href="https://publications.waset.org/abstracts/search?q=aqueous" title=" aqueous"> aqueous</a>, <a href="https://publications.waset.org/abstracts/search?q=developmental" title=" developmental"> developmental</a>, <a href="https://publications.waset.org/abstracts/search?q=stages" title=" stages"> stages</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=Anopheles%20gambiae" title=" Anopheles gambiae"> Anopheles gambiae</a> </p> <a href="https://publications.waset.org/abstracts/16040/comparative-analysis-of-petroleum-ether-and-aqueous-extraction-solvents-on-different-stages-of-anopheles-gambiae-using-neem-leaf-and-neem-stem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16040.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">510</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">961</span> Investigation of the Bioactivity and Efficacy of Personal Care Products Formulated Using Extracts of Azadirachta indica A. Juss</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ade%20O.%20Oyewole">Ade O. Oyewole</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunday%20O.%20Okoh"> Sunday O. Okoh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruth%20O.%20Ishola"> Ruth O. Ishola</a>, <a href="https://publications.waset.org/abstracts/search?q=Adenike%20D.%20Odusote"> Adenike D. Odusote</a>, <a href="https://publications.waset.org/abstracts/search?q=Chima%20C.%20Igwe"> Chima C. Igwe</a>, <a href="https://publications.waset.org/abstracts/search?q=Gloria%20N.%20Elemo"> Gloria N. Elemo</a>, <a href="https://publications.waset.org/abstracts/search?q=Anthony%20I.%20Okoh"> Anthony I. Okoh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Azadirachta indica (Neem tree) also referred to as an all-purpose tree is used in a wide range of medical preparations in tropical and subtropical countries for prevention and management of various livestock, crops products and human diseases. In Nigeria however, the potentials of this plant have not been fully exploited thus it causes an environmental nuisance during the fruiting season. With a rise in the demand for herbal personal care products globally extracts from different parts of the neem plant were used as the bio-active ingredients in the formulation of personal care products. In this study, formulated neem soap, body cream, lotion, toothpaste and shampoo are analyzed to determine their antibacterial, antifungal, and toxicity properties. The efficacies of these products for management of infectious diseases, both oral and dermal, were also investigated in vitro. Oil from the neem seeds obtained using a mechanical press and acetone extracts of both the neem bark and leaves obtained by the maceration method were used in the formulation and production of the neem personal care products. The antimicrobial and toxicity properties of these products were investigated by agar diffusion, and haemolytic methods respectively. The five neem products (NPs) exhibited strong antibacterial activities against four multi–drug resistant pathogenic and three none pathogenic bacterial strains (Escherichia coli (180), Listeria ivanovii, Staphylococcus aureus, Enterobacter cloacae, Vibro spp., Streptococcus uberis, Mycobacterium smegmatis), except the neem lotion with insignificant activity against E. coli and S. aureus. The minimum inhibitory concentration (MIC) range was between 0.20-0.40 mg/ mL. The 5 NPs demonstrated moderate activity against three clinical dermatophytes isolates (Tinea corporis, Tinea capitis, and Tinea cruiz) as well as one fungal strain (Candida albican) with the MIC ranging between 0.30 - 0.50 mg/ mL and 0.550 mg/mL respectively. The soap and shampoo were the most active against test bacteria and fungi. The haemolytic analysis results on the 5 NPs indicated none toxicity at 0.50 mg/ mL in sheep red blood cells (SRBC). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial" title="antimicrobial">antimicrobial</a>, <a href="https://publications.waset.org/abstracts/search?q=Azadirachta%20indica" title=" Azadirachta indica"> Azadirachta indica</a>, <a href="https://publications.waset.org/abstracts/search?q=multi%E2%80%93drug%20resistant%20pathogenic%20bacteria" title=" multi–drug resistant pathogenic bacteria"> multi–drug resistant pathogenic bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=personal%20care%20products" title=" personal care products"> personal care products</a> </p> <a href="https://publications.waset.org/abstracts/69315/investigation-of-the-bioactivity-and-efficacy-of-personal-care-products-formulated-using-extracts-of-azadirachta-indica-a-juss" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69315.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">960</span> Antagonistic Potential of Epiphytic Bacteria Isolated in Kazakhstan against Erwinia amylovora, the Causal Agent of Fire Blight</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Assel%20E.%20Molzhigitova">Assel E. Molzhigitova</a>, <a href="https://publications.waset.org/abstracts/search?q=Amankeldi%20K.%20Sadanov"> Amankeldi K. Sadanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Elvira%20T.%20Ismailova"> Elvira T. Ismailova</a>, <a href="https://publications.waset.org/abstracts/search?q=Kulyash%20A.%20Iskandarova"> Kulyash A. Iskandarova</a>, <a href="https://publications.waset.org/abstracts/search?q=Olga%20N.%20Shemshura"> Olga N. Shemshura</a>, <a href="https://publications.waset.org/abstracts/search?q=Ainur%20I.%20Seitbattalova"> Ainur I. Seitbattalova </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fire blight is a very harmful for commercial apple and pear production quarantine bacterial disease. To date, several different methods have been proposed for disease control, including the use of copperbased preparations and antibiotics, which are not always reliable or effective. The use of bacteria as biocontrol agents is one of the most promising and eco-friendly alternative methods. Bacteria with protective activity against the causal agent of fire blight are often present among the epiphytic microorganisms of the phyllosphere of host plants. Therefore, the main objective of our study was screening of local epiphytic bacteria as possible antagonists against Erwinia amylovora, the causal agent of fire blight. Samples of infected organs of apple and pear trees (shoots, leaves, fruits) were collected from the industrial horticulture areas in various agro-ecological zones of Kazakhstan. Epiphytic microorganisms were isolated by standard and modified methods on specific nutrient media. The primary screening of selected microorganisms under laboratory conditions to determine the ability to suppress the growth of Erwinia amylovora was performed by agar-diffusion-test. Among 142 bacteria isolated from the fire blight host plants, 5 isolates, belonging to the genera Bacillus, Lactobacillus, Pseudomonas, Paenibacillus and Pantoea showed higher antagonistic activity against the pathogen. The diameters of inhibition zone have been depended on the species and ranged from 10 mm to 48 mm. The maximum diameter of inhibition zone (48 mm) was exhibited by B. amyloliquefaciens. Less inhibitory effect was showed by Pantoea agglomerans PA1 (19 mm). The study of inhibitory effect of Lactobacillus species against E. amylovora showed that among 7 isolates tested only one (Lactobacillus plantarum 17M) demonstrated inhibitory zone (30 mm). In summary, this study was devoted to detect the beneficial epiphytic bacteria from plants organs of pear and apple trees due to fire blight control in Kazakhstan. Results obtained from the in vitro experiments showed that the most efficient bacterial isolates are Lactobacillus plantarum 17M, Bacillus amyloliquefaciens MB40, and Pantoea agglomerans PA1. These antagonists are suitable for development as biocontrol agents for fire blight control. Their efficacies will be evaluated additionally, in biological tests under in vitro and field conditions during our further study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antagonists" title="antagonists">antagonists</a>, <a href="https://publications.waset.org/abstracts/search?q=epiphytic%20bacteria" title=" epiphytic bacteria"> epiphytic bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=Erwinia%20amylovora" title=" Erwinia amylovora"> Erwinia amylovora</a>, <a href="https://publications.waset.org/abstracts/search?q=fire%20blight" title=" fire blight"> fire blight</a> </p> <a href="https://publications.waset.org/abstracts/100116/antagonistic-potential-of-epiphytic-bacteria-isolated-in-kazakhstan-against-erwinia-amylovora-the-causal-agent-of-fire-blight" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100116.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">959</span> Severe Infestation of Laspeyresia Koenigana Fab. and Alternaria Leaf Spot on Azadirachta Indica (Neem)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shiwani%20Bhatnagar">Shiwani Bhatnagar</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20K.%20Srivastava"> K. K. Srivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=Sangeeta%20Singh"> Sangeeta Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ameen%20Ullah%20Khan"> Ameen Ullah Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Bundesh%20Kumar"> Bundesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Lokendra%20Singh%20Rathore"> Lokendra Singh Rathore</a> </p> <p class="card-text"><strong>Abstract:</strong></p> From the instigation of the world medicinal plants are treated as part and parcel of human society to fight against diseases. Azadirachta indica (Neem) a herbal plant has been used as an Indian traditional medicine since ages and its products are acknowledged to solve agricultural, forestry and public health related problems, owing to its beneficial medicinal properties. Each part of the neem tree is known for its medicinal property. Bark & leaf extracts of neem have been used to control leprosy, respiratory disorders, constipation and also as blood purifier and a general health tonic. Neem is still regarded as ' rural community dispensary' in India or a tree for solving medical problems. Use of Neem as pesticides for the management of insect pest of agriculture crops and forestry has been seen as a shift in the use of synthetic pesticides to ecofriendly botanicals. Neem oil and seed extracts possess germicidal and anti-bacterial properties which when sprayed on the plant helps in protecting them from foliage pests. Azadirachtin, the main active ingredient found in neem tree, acts as an insect repellent and antifeedant. However the young plants are susceptible to many insect pest and foliar diseases. Recently, in the avenue plantation, planted by Arid Forest Research Institute, Jodhpur, around the premises of IIT Jodhpur, two years old neem plants were found to be severely infested with tip borer Laspeyresia koenigana (Family: Eucosmidae). The adult moth of L. koenigana lays eggs on the tender shoots and the young larvae tunnel into the shoot and feed inside. A small pinhole can be seen at the entrance point, from where the larva enters in to the stem. The severely attached apical shoots exhibit profuse gum exudation resulting in development of a callus structure. The internal feeding causes the stem to wilt and the leaves to dry up from the tips resulting in growth retardation. Alternaria Leaf spot and blight symptoms were also recorded on these neem plants. For the management of tip borer and Alternaria Leaf spot, foliar spray of monocrotophos @0.05% and Dithane M-45 @ 0.15% and powermin @ 2ml/lit were found efficient in managing the insect pest and foliar disease problem. No Further incidence of pest/diseases was noticed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=azadirachta%20indica" title="azadirachta indica">azadirachta indica</a>, <a href="https://publications.waset.org/abstracts/search?q=alternaria%20leaf%20spot" title=" alternaria leaf spot"> alternaria leaf spot</a>, <a href="https://publications.waset.org/abstracts/search?q=laspeyresia%20koenigana" title=" laspeyresia koenigana"> laspeyresia koenigana</a>, <a href="https://publications.waset.org/abstracts/search?q=management" title=" management"> management</a> </p> <a href="https://publications.waset.org/abstracts/20829/severe-infestation-of-laspeyresia-koenigana-fab-and-alternaria-leaf-spot-on-azadirachta-indica-neem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20829.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">477</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">958</span> Azaridachta indica (Neem) Seed Oil Effect in Experimental Arthritis: Biochemical Parameters Assessment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sasan%20Khademnematolahi">Sasan Khademnematolahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kevine%20Kamga%20Silihe"> Kevine Kamga Silihe</a>, <a href="https://publications.waset.org/abstracts/search?q=Katar%C3%ADna%20Pru%C5%BEinsk%C3%A1"> Katarína Pružinská</a>, <a href="https://publications.waset.org/abstracts/search?q=Martina%20Chrastina"> Martina Chrastina</a>, <a href="https://publications.waset.org/abstracts/search?q=Elisabeth%20Louise%20Ndjengue%20Mindang"> Elisabeth Louise Ndjengue Mindang</a>, <a href="https://publications.waset.org/abstracts/search?q=Franti%C5%A1ek%20Dr%C3%A1fi"> František Dráfi</a>, <a href="https://publications.waset.org/abstracts/search?q=Katar%C3%ADna%20Bauerov%C3%A1"> Katarína Bauerová</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: In ethnomedicine, plant parts and compounds are traditionally utilized to treat many disorders. Azadirachta indica, known as Neem, has been traditionally used in medicinal practices. Due to the presence of bioactive substances such as nimbolide, azadirachtin, and gedunin, Neem offers a variety of medicinal properties, including anti-inflammatory and antioxidant properties. Through its effect on pathological inflammatory processes, supplementation with it could alleviate the symptoms of rheumatoid arthritis (RA). Methods: This research aimed to assess Neem seed oil's impact on rats with adjuvant arthritis. Three doses in monotherapy and two in combination with methotrexate (MTX) have been studied, and their effect was compared. Neem p.o. doses of 100, 200, and 300 mg/kg and MTX p.o. doses of 0.3 mg/kg were examined. After clinical parameters assessment, biochemical analysis was performed in plasma. Results: During the acute phase of the experimental arthritis (Day21), levels of MMP-9, MCP-1, and cytokines IL-1beta and IL-17A were measured. The positive results of inflammatory mediators evaluation in plasma encourage additional analysis also in related tissues to prove if Neem seed oil can be used as an adjuvant therapy for RA. Conclusion: In this study, the combination therapy of Neem with MTX was the most effective of all therapies investigated. Acknowledgement: SAIA PROJECT of Kevine Kamga Silihe, Slovakia-Cameroon 2023: “The effect of Crocus sativus L (Saffron), Azadirachta indica (Neem) and their main bioactives compounds in combinatory treatment with methotrexate on experimental arthritis”, VEGA 2/0079/24, VEGA 2/0136/20, VEGA 2/0126/23 and VEGA 2/0091/23. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adjuvant" title="adjuvant">adjuvant</a>, <a href="https://publications.waset.org/abstracts/search?q=Neem" title=" Neem"> Neem</a>, <a href="https://publications.waset.org/abstracts/search?q=methotrexate" title=" methotrexate"> methotrexate</a>, <a href="https://publications.waset.org/abstracts/search?q=arthritis" title=" arthritis"> arthritis</a> </p> <a href="https://publications.waset.org/abstracts/186053/azaridachta-indica-neem-seed-oil-effect-in-experimental-arthritis-biochemical-parameters-assessment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186053.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">44</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">957</span> Effects of Neem (Azadirachta indica A. Juss) Kernel Inclusion in Broiler Diet on Growth Performance, Organ Weight and Gut Morphometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olatundun%20Bukola%20Ezekiel">Olatundun Bukola Ezekiel</a>, <a href="https://publications.waset.org/abstracts/search?q=Adejumo%20Olusoji"> Adejumo Olusoji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A feeding trial was conducted with 100 two-weeks old broiler chicken to evaluate the influence of inclusion in broiler diets at 0, 2.5, 5, 7.5 and 10% neem kernel (used to replace equal quantity of maize) on their performance, organ weight and gut morphometry. The birds were randomly allotted to five dietary treatments, each treatment having four replicates consisting of five broilers in a completely randomized design. The diets were formulated to be iso-nitrogenous (23% CP). Weekly feed intake and changes in body weight were calculated and feed efficiency determined. At the end of the 28-day feeding trial, four broilers per treatment were selected and sacrificed for carcass evaluation. Results were subjected to statistical analysis using the analysis of variance procedures of Statistical Analysis Software The treatment means were presented with group standard errors of means and where significant, were compared using the Duncan multiple range test of the same software. The results showed that broilers fed 2.5% neem kernel inclusion diets had growth performance statistically comparable to those fed the control diet. Birds on 5, 7.5 and 10% neem kernel diets showed significant (P<0.05) increase in relative weight of liver. The absolute weight of spleen also increased significantly (P<0.05) in birds on 10 % neem kernel diet. More than 5 % neem kernel diets gave significant (P<0.05) increase in the relative weight of the kidney. The length of the small intestine significantly increased in birds fed 7.5 and 10% neem kernel diets. Significant differences (P<0.05) did not occur in the length of the large intestine, right and left caeca. It is recommended that neem kernel can be included up to 2.5% in broiler chicken diet without any deleterious effects on the performance and physiological status of the birds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=broiler%20chicken" title="broiler chicken">broiler chicken</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20performance" title=" growth performance"> growth performance</a>, <a href="https://publications.waset.org/abstracts/search?q=gut%20morphometry" title=" gut morphometry"> gut morphometry</a>, <a href="https://publications.waset.org/abstracts/search?q=neem%20kernel" title=" neem kernel"> neem kernel</a>, <a href="https://publications.waset.org/abstracts/search?q=organ%20weight" title=" organ weight"> organ weight</a> </p> <a href="https://publications.waset.org/abstracts/18353/effects-of-neem-azadirachta-indica-a-juss-kernel-inclusion-in-broiler-diet-on-growth-performance-organ-weight-and-gut-morphometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18353.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">763</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">956</span> Cytotoxic Effect of Neem Seed Extract (Azadirachta indica) in Comparison with Artificial Insecticide Novastar on Haemocytes (THC and DHC) of Musca domestica</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Zaheer%20Awan">Muhammad Zaheer Awan</a>, <a href="https://publications.waset.org/abstracts/search?q=Adnan%20Qadir"> Adnan Qadir</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeeshan%20Anjum"> Zeeshan Anjum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Housefly, Musca domestica Linnaeus is ubiquitous and hazardous for Homo sapiens and livestock in sundry venerations. Musca domestica cart 100 different pathogens, such as typhoid, salmonella, bacillary dysentery, tuberculosis, anthrax and parasitic worms. The flies in rural areas usually carry more pathogens. Houseflies feed on liquid or semi-liquid substances besides solid materials which are softened by saliva. Neem botanically known as Azadirachta indica belongs to the family Meliaceae and is an indigenous tree to Pakistan. The neem tree is also one such tree which has been revered by the Pakistanis and Kashmiris for its medicinal properties. Present study showed neem seed extract has potentially toxic ability that affect Total Haemocyte Count (THC) and Differential Haemocytes Count (DHC) in insect’s blood cells, of the housefly. A significant variation in haemolymph density was observed just after application, 30 minutes and 60 minutes post treatment in term of THC and DHC in comparison with novastar. The study strappingly acclaim use of neem seed extract as insecticide as compare to artificial insecticides. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neem" title="neem">neem</a>, <a href="https://publications.waset.org/abstracts/search?q=Azadirachta%20indica" title=" Azadirachta indica"> Azadirachta indica</a>, <a href="https://publications.waset.org/abstracts/search?q=Musca%20domestica" title=" Musca domestica"> Musca domestica</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20haemocyte%20count%20%28DHC%29" title=" differential haemocyte count (DHC)"> differential haemocyte count (DHC)</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20haemocytes%20count%20%28DHC%29" title=" total haemocytes count (DHC)"> total haemocytes count (DHC)</a>, <a href="https://publications.waset.org/abstracts/search?q=novastar" title=" novastar"> novastar</a> </p> <a href="https://publications.waset.org/abstracts/73328/cytotoxic-effect-of-neem-seed-extract-azadirachta-indica-in-comparison-with-artificial-insecticide-novastar-on-haemocytes-thc-and-dhc-of-musca-domestica" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73328.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">955</span> Physico-Chemical and Antibacterial Properties of Neem Extracts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20C.%20Igwe">C. C. Igwe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Several parts of Neem tree (Azadirachta indica) are used in traditional medicine in many West African countries for the treatment of various human diseases. The leaf, stem - bark and seed were air dried for 8, 5 and 7 days, respectively. The shells were carfully separated from the seeds, each powdered sample obtained with mechanical miller and 250 mm sieve. The neem samples were individually subjected to extraction with acetone, n-hexane for 48hr and 72 hr, respectively. Physico-chemical and antibacterial evaluation were carried out using standard methods. Results of physico - chemical analyses of the extracted oil from the seed shows that it has a brownish colour, with a smell similar to garlic while the moisture content, refractive index are 0.76% and 1.47 respectively. Other vital chemical results obtained from the neem oil such as saponification value (234.62), acid value (10.84 %), free fatty acid (5.84 %) and peroxide value (10.52%) indicated the oil extracted satisfied standard oils parameters for quality soap and cosmetics production. The antibacterial screening by disc diffusion revealed the oil demonstrated high activity against Staphylococcus aureus. Both the physio-chemical and antibacterial of samples have been certified by National Agency for Food and Drugs Administration and Control. The preliminary results of this study may validate the medicinal value of the plant. Further studies are in progress to clarify the in vivo potentials of neem extracts in the management of human communicable diseases and this is a subject of investigation in our group. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-bacterial" title="anti-bacterial">anti-bacterial</a>, <a href="https://publications.waset.org/abstracts/search?q=neem%20extract" title=" neem extract"> neem extract</a>, <a href="https://publications.waset.org/abstracts/search?q=physico-chemical%20analyses" title=" physico-chemical analyses"> physico-chemical analyses</a>, <a href="https://publications.waset.org/abstracts/search?q=staphylococcus%20aureus" title=" staphylococcus aureus"> staphylococcus aureus</a> </p> <a href="https://publications.waset.org/abstracts/167975/physico-chemical-and-antibacterial-properties-of-neem-extracts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">954</span> Effect of Microwave Radiations on Natural Dyes’ Application on Cotton</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rafia%20Asghar">Rafia Asghar</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Hafeez"> Abdul Hafeez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current research was related with natural dyes’ extraction from the powder of Neem (Azadirachta indica) bark and studied characterization of this dye under microwave radiation’s influence. Both cotton fabric and dyeing powder were exposed to microwave rays for different time intervals (2minutes, 4 minutes, 6 minutes, 8 minutes and 10 minutes) using conventional oven. Aqueous, 60% Methanol and Ethyl Acetate solubilized extracts obtained from Neem (Azadirachta indica) bark were also exposed to different time intervals (2minutes, 4 minutes, 6 minutes, 8 minutes and 10 minutes) of microwave rays exposure. Pre, meta and post mordanting with Alum (2%, 4%, 6%, 8%, and 10%) was done to improve color strength of the extracted dye. Exposure of Neem (Azadirachta indica) bark extract and cotton to microwave rays enhanced the extraction process and dyeing process by reducing extraction time, dyeing time and dyeing temperature. Microwave rays treatment had a very strong influence on color fastness and color strength properties of cotton that was dyes using Neem (Azadirachta indica) bark for 30 minutes and dyeing cotton with that Neem bark extract for 75 minutes at 30°C. Among pre, meta and post mordanting, results indicated that 5% concentration of Alum in meta mordanting exhibited maximum color strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dyes" title="dyes">dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20dyeing" title=" natural dyeing"> natural dyeing</a>, <a href="https://publications.waset.org/abstracts/search?q=ecofriendly%20dyes" title=" ecofriendly dyes"> ecofriendly dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20treatment" title=" microwave treatment"> microwave treatment</a> </p> <a href="https://publications.waset.org/abstracts/20346/effect-of-microwave-radiations-on-natural-dyes-application-on-cotton" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">690</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">953</span> Numerical Investigation of Natural Convection of Pine, Olive and Orange Leaves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Reza%20Tahavvor">Ali Reza Tahavvor</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Hosseini"> Saeed Hosseini</a>, <a href="https://publications.waset.org/abstracts/search?q=Nazli%20Jowkar"> Nazli Jowkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Behnam%20Amiri"> Behnam Amiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heat transfer of leaves is a crucial factor in optimal operation of metabolic functions in plants. In order to quantify this phenomenon in different leaves and investigate the influence of leaf shape on heat transfer, natural convection for pine, orange and olive leaves was simulated as representatives of different groups of leaf shapes. CFD techniques were used in this simulation with the purpose to calculate heat transfer of leaves in similar environmental conditions. The problem was simulated for steady state and three-dimensional conditions. From obtained results, it was concluded that heat fluxes of all three different leaves are almost identical, however, total rate of heat transfer have highest and lowest values for orange leaves and pine leaves, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamic" title="computational fluid dynamic">computational fluid dynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20flux" title=" heat flux"> heat flux</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title=" natural convection"> natural convection</a> </p> <a href="https://publications.waset.org/abstracts/30133/numerical-investigation-of-natural-convection-of-pine-olive-and-orange-leaves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30133.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">952</span> Anti-cancer Activity of Cassava Leaves (Manihot esculenta Crantz.) Against Colon Cancer (WiDr) Cells in vitro</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatma%20Zuhrotun%20Nisa">Fatma Zuhrotun Nisa</a>, <a href="https://publications.waset.org/abstracts/search?q=Aprilina%20Ratriany"> Aprilina Ratriany</a>, <a href="https://publications.waset.org/abstracts/search?q=Agus%20Wijanarka"> Agus Wijanarka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Cassava leaves are widely used by the people of Indonesia as a vegetable and treat various diseases, including anticancer believed as food. However, not much research on the anticancer activity of cassava leaves, especially in colon cancer. Objectives: the aim of this study is to investigate anti-cancer activity of cassava leaves (Manihot esculanta C.) against colon cancer (WiDr) cells in vitro. Methods: effect of crude aqueous extract of leaves of cassava and cassava leaves boiled tested in colon cancer cells widr. Determination of Anticancer uses the MTT method with parameters such as the percentage of deaths. Results: raw cassava leaf water extract gave IC50 of 63.1 mg / ml. While the water extract of boiled cassava leaves gave IC50 of 79.4 mg/ml. However, there is no difference anticancer activity of raw cassava leaves or cancer (p> 0.05). Conclusion: Cassava leaves contain a variety of compounds that have previously been reported to have anticancer activity. Linamarin, β-carotene, vitamin C, and fiber were thought to affect the IC50 cassava leaf extract against colon cancer cells WiDr. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boiled%20cassava%20leaves" title="boiled cassava leaves">boiled cassava leaves</a>, <a href="https://publications.waset.org/abstracts/search?q=cassava%20leaves%20raw" title=" cassava leaves raw"> cassava leaves raw</a>, <a href="https://publications.waset.org/abstracts/search?q=anticancer%20activity" title=" anticancer activity"> anticancer activity</a>, <a href="https://publications.waset.org/abstracts/search?q=colon%20cancer" title=" colon cancer"> colon cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=IC50" title=" IC50 "> IC50 </a> </p> <a href="https://publications.waset.org/abstracts/19756/anti-cancer-activity-of-cassava-leaves-manihot-esculenta-crantz-against-colon-cancer-widr-cells-in-vitro" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19756.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">551</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">951</span> In Vitro Effects of Azadirachta indica Leaves Extract Against Albugo Candida, the Causative Agent of White Blisters Disease of Brassica Oleraceae L., Var. Italica</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Affiah%20D.%20U.">Affiah D. U.</a>, <a href="https://publications.waset.org/abstracts/search?q=Katuri%20I.%20P."> Katuri I. P.</a>, <a href="https://publications.waset.org/abstracts/search?q=Emefiene%20M.%20E."> Emefiene M. E.</a>, <a href="https://publications.waset.org/abstracts/search?q=Amienyo%20C.%20A."> Amienyo C. A.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Broccoli (Brassica oleraceae L., var. italica) is one of the most important vegetables that is high in nutrients and bioactive compounds. It easily grown on a wide range of soil types and is adaptable to many different climatic conditions. This study was carried out within Jos North and environs in vitro to evaluate Neem (Azadirachta indica) leaves extract against Albugo candida, the causative agent of white blisters disease of broccoli. Through the survey, prevalence and incidence were accessed and a fluffy white growth symptom on the underside of leaves was also observed on the field. Infected leaves samples were collected from three different farms namely: Farin Gada, Naraguta, and Juth and the organism associated with the disease was isolated. Pathogenicity test carried out revealed the fungal isolate Albugo candida to be responsible for the disease. Antimicrobial susceptibility test was performed using agar well diffusion method to determine the minimum inhibitory concentrations of two extract of Azadirachta indica leaves against the organism. Ethanolic extract had the highest antifungal activities of 3.30±0.21 - 17.61± 0.11 while aqueous extract had the least antifungal activities of 0.00±0.00 - 13.23±0.12. The minimum inhibitory concentration of aqueous was 100 mg/ml while its minimum fungicidal concentration was at 200 mg/ml. For ethanol, the minimum inhibitory concentration was 50 mg/ml while its minimum fungicidal concentration was 100 mg/ml. Plants being less toxic in usage over synthetic or inorganic chemicals makes them easy to handle, easily accessible and renewable. Due to the biosafety of plant extracts and its availability since the plant-based extracts of the two different solvents were found to be effective against the test organism hence, it is recommended for in-depth research to make it readily available for control of other pathogens and pests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antifungal" title="antifungal">antifungal</a>, <a href="https://publications.waset.org/abstracts/search?q=biocontrol" title=" biocontrol"> biocontrol</a>, <a href="https://publications.waset.org/abstracts/search?q=broccoli" title=" broccoli"> broccoli</a>, <a href="https://publications.waset.org/abstracts/search?q=fungi" title=" fungi"> fungi</a> </p> <a href="https://publications.waset.org/abstracts/175662/in-vitro-effects-of-azadirachta-indica-leaves-extract-against-albugo-candida-the-causative-agent-of-white-blisters-disease-of-brassica-oleraceae-l-var-italica" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175662.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">950</span> Epiphytic Growth on Filamentous Bacteria Found in Activated Sludge: A Morphological Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thobela%20Conco">Thobela Conco</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheena%20Kumari"> Sheena Kumari</a>, <a href="https://publications.waset.org/abstracts/search?q=Thor%20Stenstrom"> Thor Stenstrom</a>, <a href="https://publications.waset.org/abstracts/search?q=Simona%20Rosetti"> Simona Rosetti</a>, <a href="https://publications.waset.org/abstracts/search?q=Valter%20Tandoi"> Valter Tandoi</a>, <a href="https://publications.waset.org/abstracts/search?q=Faizal%20Bux"> Faizal Bux</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Filamentous bacteria are well documented as causative agents of bulking and foaming in the biological wastewater treatment process. These filamentous bacteria are however closely associated with other non-filamentous organism forming a micro-niche. Among these specific epiphytic bacteria attach to filaments in the consortium of organisms that make up the floc. Neither the eco-physiological role of the epiphytes nor the nature of the interaction between the epiphytic bacteria and the filament hosts they colonize is well understood and in need of in-depth investigations. The focus of this presentation is on the interaction between the epiphytic bacteria and the filament host. Samples from the activated sludge treatment have been repeatedly collected from several wastewater treatment plants in KwaZulu Natal. Extensive investigations have been performed with SEM and TEM electron microscopy, Polarized Light Microscopy with Congo red staining, and Thioflavin T staining to document the interaction. SEM was used to document the morphology of both the filament host and their epiphytes counterparts with the focus on the interface/point of contact between the two, while the main focus of the TEM investigations with the higher magnification aimed to document the ultra-structure features of two organisms relating to the interaction. The interaction of the perpendicular attachment partly seems to be governed by the physiological status of the filaments. The attachment further seems to trigger a response in the filaments with distinct internal visible structures at the attachment sites. It is postulated that these structures most likely are amyloid fibrils. Amyloid fibrils may play an overarching role in different types of attachments and has earlier been noted to play a significant role in biofilm formation in activated sludge. They also play a medical role in degenerative diseases such as Alzheimer’s and Diabetes. Further studies aims to define the eco-physiological role of amyloid fibrils in filamentous bacteria, based on their observed presence at interaction sites in this study. This will also relate to additional findings where selectivity within the species of epiphytes attaching to the selected filaments has been noted. The practical implications of the research findings is still to be determined, but the ecophysiological interaction between two closely associated species or groups may have significant impact in the future understanding of wastewater treatment processes and broaden existing knowledge on population dynamics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20sludge" title="activated sludge">activated sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=amyloid%20proteins" title=" amyloid proteins"> amyloid proteins</a>, <a href="https://publications.waset.org/abstracts/search?q=epiphytic%20bacteria" title=" epiphytic bacteria"> epiphytic bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=filamentous%20bacteria" title=" filamentous bacteria"> filamentous bacteria</a> </p> <a href="https://publications.waset.org/abstracts/35469/epiphytic-growth-on-filamentous-bacteria-found-in-activated-sludge-a-morphological-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">949</span> Effect of Palm Bunch Ash and Neem (Azardirachta indica A. Juss) Leaf Powder on Termite Infestation in Groundnut Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20O.%20Ogbedeh">K. O. Ogbedeh</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20P.%20Ekwe"> C. P. Ekwe</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20O.%20Ihejirika"> G. O. Ihejirika</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Dialoke"> S. A. Dialoke</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20P.%20Onyewuchi"> O. P. Onyewuchi</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20P.%20Anyanwu"> C. P. Anyanwu</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20E.%20Kalu"> I. E. Kalu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As one of the major pests of field crops, termites attack groundnut at all stages of its development, especially during prolonged dry spell. Effect of palm bunch ash and neem(Azardirachta indica A. Juss) leaf powder on termite infestation in groundnut field in Owerri, Nigeria was investigated in this study. The field trial was carried out in 2016 at the Teaching and Research Farm of the Federal University of Technology, Owerri, Nigeria. The experiment was laid out in a 3x3 Factorial fitted into a Randomized Complete Block Design (RCBD) with three replications. The treatments include three rates of palm bunch ash at 0.0 (control), 1.0 and 2.0tons/ha and three rates of neem leaf powder at 0.0(control), 1.0, 2.0 tons/ha respectively. Data were collected on percentage emergence, termite incidence and termite severity. These were subjected to analysis of variance (ANOVA), and means were separated using least significant difference at 5% level of probability. The result shows that there were no significant (P= 0.05) differences in percentage emergence amongst treatment means due to palm bunch ash and neem leaf powder applications. Contrarily, palm bunch ash at 2.0 tons/ha recorded the least termite incidence especially at twelve weeks after planting (12WAP) with a value of 22.20% while control plot maintained highest values at 6WAP (48.70%) and 12WAP (48.30%) respectively. Also palm bunch ash at 2.0tons/ha depressed termite severity more than other treatments especially at 2 and 4 WAP (0.56) respectively. Control plots on the other hand consistently maintained highest termite severity throughout the trial with the highest value at 2 and 12WAP (1.56). Conclusively, palm bunch ash exhibited highest depressive action against termite on groundnut especially at higher application value (2.0tons/ha). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundnut" title="groundnut">groundnut</a>, <a href="https://publications.waset.org/abstracts/search?q=incidence" title=" incidence"> incidence</a>, <a href="https://publications.waset.org/abstracts/search?q=neem" title=" neem"> neem</a>, <a href="https://publications.waset.org/abstracts/search?q=palm" title=" palm"> palm</a>, <a href="https://publications.waset.org/abstracts/search?q=severity" title=" severity"> severity</a>, <a href="https://publications.waset.org/abstracts/search?q=termites" title=" termites"> termites</a> </p> <a href="https://publications.waset.org/abstracts/73286/effect-of-palm-bunch-ash-and-neem-azardirachta-indica-a-juss-leaf-powder-on-termite-infestation-in-groundnut-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73286.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">948</span> Humic Acid and Azadirachtin Derivatives for the Management of Crop Pests</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20S.%20Giraddi">R. S. Giraddi</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20M.%20Poleshi"> C. M. Poleshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Organic cultivation of crops is gaining importance consumer awareness towards pesticide residue free foodstuffs is increasing globally. This is also because of high costs of synthetic fertilizers and pesticides, making the conventional farming non-remunerative. In India, organic manures (such as vermicompost) are an important input in organic agriculture.&nbsp; Though vermicompost obtained through earthworm and microbe-mediated processes is known to comprise most of the crop nutrients, but they are in small amounts thus necessitating enrichment of nutrients so that crop nourishment is complete. Another characteristic of organic manures is that the pest infestations are kept under check due to induced resistance put up by the crop plants. In the present investigation, deoiled neem cake containing azadirachtin, copper ore tailings (COT), a source of micro-nutrients and microbial consortia were added for enrichment of vermicompost. Neem cake is a by-product obtained during the process of oil extraction from neem plant seeds. Three enriched vermicompost blends were prepared using vermicompost (at 70, 65 and 60%), deoiled neem cake (25, 30 and 35%), microbial consortia and COTwastes (5%). Enriched vermicompost was thoroughly mixed, moistened (25+5%), packed and incubated for 15 days at room temperature. In the crop response studies, the field trials on chili (<em>Capsicum annum</em> var. longum) and soybean, (<em>Glycine max </em>cv JS 335) were conducted during <em>Kharif</em> 2015 at the Main Agricultural Research Station, UAS, Dharwad-Karnataka, India. The vermicompost blend enriched with neem cake (known to possess higher amounts of nutrients) and vermicompost were applied to the crops and at two dosages and at two intervals of crop cycle (at sowing and 30 days after sowing) as per the treatment plan along with 50% recommended dose of fertilizer (RDF). 10 plants selected randomly in each plot were studied for pest density and plant damage. At maturity, crops were harvested, and the yields were recorded as per the treatments, and the data were analyzed using appropriate statistical tools and procedures. In the crops, chili and soybean, crop nourishment with neem enriched vermicompost reduced insect density and plant damage significantly compared to other treatments. These treatments registered as much yield (16.7 to 19.9 q/ha) as that realized in conventional chemical control (18.2 q/ha) in soybean, while 72 to 77 q/ha of green chili was harvested in the same treatments, being comparable to the chemical control (74 q/ha). The yield superiority of the treatments was of the order neem enriched vermicompost&gt;conventional chemical control&gt;neem cake&gt;vermicompost&gt;untreated control.&nbsp; The significant features of the result are that it reduces use of inorganic manures by 50% and synthetic chemical insecticides by 100%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=humic%20acid" title="humic acid">humic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=azadirachtin" title=" azadirachtin"> azadirachtin</a>, <a href="https://publications.waset.org/abstracts/search?q=vermicompost" title=" vermicompost"> vermicompost</a>, <a href="https://publications.waset.org/abstracts/search?q=insect-pest" title=" insect-pest"> insect-pest</a> </p> <a href="https://publications.waset.org/abstracts/79931/humic-acid-and-azadirachtin-derivatives-for-the-management-of-crop-pests" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79931.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">947</span> Efficiency of Wood Vinegar Mixed with Some Plants Extract against the Housefly (Musca domestica L.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=U.%20Pangnakorn">U. Pangnakorn</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Kanlaya"> S. Kanlaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The efficiency of wood vinegar mixed with each individual of three plants extract such as: citronella grass (Cymbopogon nardus), neem seed (Azadirachta indica A. Juss), and yam bean seed (Pachyrhizus erosus Urb.) were tested against the second instar larvae of housefly (Musca domestica L.). Steam distillation was used for extraction of the citronella grass while neem and yam bean were simple extracted by fermentation with ethyl alcohol. Toxicity test was evaluated in laboratory based on two methods of larvicidal bioassay: topical application method (contact poison) and feeding method (stomach poison). Larval mortality was observed daily and larval survivability was recorded until the survived larvae developed to pupae and adults. The study resulted that treatment of wood vinegar mixed with citronella grass showed the highest larval mortality by topical application method (50.0%) and by feeding method (80.0%). However, treatment of mixed wood vinegar and neem seed showed the longest pupal duration to 25 day and 32 days for topical application method and feeding method respectively. Additional, larval duration on treated M. domestica larvae was extended to 13 days for topical application method and 11 days for feeding method. Thus, the feeding method gave higher efficiency compared with the topical application method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=housefly%20%28Musca%20domestica%20L.%29" title="housefly (Musca domestica L.)">housefly (Musca domestica L.)</a>, <a href="https://publications.waset.org/abstracts/search?q=neem%20seed%20%28Azadirachta%20indica%29" title=" neem seed (Azadirachta indica)"> neem seed (Azadirachta indica)</a>, <a href="https://publications.waset.org/abstracts/search?q=citronella%20grass%20%28Cymbopogon%20nardus%29" title=" citronella grass (Cymbopogon nardus)"> citronella grass (Cymbopogon nardus)</a>, <a href="https://publications.waset.org/abstracts/search?q=yam%20bean%20seed%20%28Pachyrhizus%20erosus%29" title=" yam bean seed (Pachyrhizus erosus)"> yam bean seed (Pachyrhizus erosus)</a>, <a href="https://publications.waset.org/abstracts/search?q=mortality" title=" mortality"> mortality</a> </p> <a href="https://publications.waset.org/abstracts/12886/efficiency-of-wood-vinegar-mixed-with-some-plants-extract-against-the-housefly-musca-domestica-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12886.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">946</span> An Evaluation of the Impact of Epoxidized Neem Seed Azadirachta indica Oil on the Mechanical Properties of Polystyrene</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salihu%20Takuma">Salihu Takuma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Neem seed oil has high contents of unsaturated fatty acids which can be converted to epoxy fatty acids. The vegetable oil – based epoxy material are sustainable, renewable and biodegradable materials replacing petrochemical – based epoxy materials in some applications. Polystyrene is highly brittle with limited mechanical applications. Raw neem seed oil was obtained from National Research Institute for Chemical Technology (NARICT), Zaria, Nigeria. The oil was epoxidized at 60 0C for three (3) hours using formic acid generated in situ. The epoxidized oil was characterized using Fourier Transform Infrared spectroscopy (FTIR). The disappearance of C = C stretching peak around 3011.7 cm-1and formation of a new absorption peak around 943 cm-1 indicate the success of epoxidation. The epoxidized oil was blended with pure polystyrene in different weight percent compositions using solution casting in chloroform. The tensile properties of the blends demonstrated that the addition of 5 wt % ENO to PS led to an increase in elongation at break, but a decrease in tensile strength and modulus. This is in accordance with the common rule that plasticizers can decrease the tensile strength of the polymer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodegradable" title="biodegradable">biodegradable</a>, <a href="https://publications.waset.org/abstracts/search?q=elongation%20at%20break" title=" elongation at break"> elongation at break</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxidation" title=" epoxidation"> epoxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy%20fatty%20acids" title=" epoxy fatty acids"> epoxy fatty acids</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable" title=" sustainable"> sustainable</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20strength%20and%20modulus" title=" tensile strength and modulus"> tensile strength and modulus</a> </p> <a href="https://publications.waset.org/abstracts/70061/an-evaluation-of-the-impact-of-epoxidized-neem-seed-azadirachta-indica-oil-on-the-mechanical-properties-of-polystyrene" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70061.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">945</span> Productivity and Nutrient Uptake of Cotton as Influenced by Application of Organic Nitrification Inhibitors and Fertilizer Level</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hemlata%20Chitte">Hemlata Chitte</a>, <a href="https://publications.waset.org/abstracts/search?q=Anita%20Chorey"> Anita Chorey</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20M.%20Bhale"> V. M. Bhale</a>, <a href="https://publications.waset.org/abstracts/search?q=Bharti%20Tijare"> Bharti Tijare</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A field experiment was conducted during kharif season of 2013-14 at Agronomy research farm, Dr. PDKV, Akola, to study the productivity and nitrogen use efficiency in cotton using organic nitrification inhibitors. The experiment was laid out in factorial randomized block design with three replications each having nine treatment combinations comprising three fertilizer levels viz., 75% RDF (F1), 100% RDF (F2) and 125% RDF (F3) and three nitrification inhibitors viz., neem cake @ 300 kgha-1 (N1), karanj cake @ 300 kgha-1 (N2) and control (N3). The result showed that various growth attributes viz., plant height, number of functional leaves plant-1, monopodial and sympodial branches and leaf area plant-1(dm2) were maximum in fertilizer level 125% RDF over fertilizer level 75% RDF and which at par with 100% RDF. In case of yield attributes and yield, number of bolls per plant, Seed cotton yield and stalk yield kg ha-1 significantly higher in fertilizer level 125% RDF over 100% RDF and 75% RDF. Uptake of NPK kg ha-1 after harvest of cotton crop was significantly higher in fertilizer level 125% RDF over 100% RDF and 75% RDF. Significantly highest nitrogen use efficiency was recorded with fertilizer level 75 % RDF as compared to 100 % RDF and lowest nitrogen use efficiency was recorded with 125% RDF level. Amongst nitrification inhibitors, karanj cake @ 300 kg ha-1 increases potentiality of growth characters, yield attributes, uptake of NPK and NUE as compared to control and at par with neem cake @ 300 kgha-1. Interaction effect between fertilizer level and nitrification inhibitors were found to be non significant at all growth attributes and uptake of nutrient but was significant in respect of seed cotton yield. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cotton" title="cotton">cotton</a>, <a href="https://publications.waset.org/abstracts/search?q=fertilizer%20level" title=" fertilizer level"> fertilizer level</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrification%20inhibitor%20and%20nitrogen%20use%20efficiency" title=" nitrification inhibitor and nitrogen use efficiency"> nitrification inhibitor and nitrogen use efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrient%20uptake" title=" nutrient uptake "> nutrient uptake </a> </p> <a href="https://publications.waset.org/abstracts/19136/productivity-and-nutrient-uptake-of-cotton-as-influenced-by-application-of-organic-nitrification-inhibitors-and-fertilizer-level" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19136.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">621</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">944</span> Studies on Efficacy of Some Acaricidal Molecules against Mites in Polyhouse Capsicum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20N.%20Guru">P. N. Guru</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20S.%20Patil"> C. S. Patil </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The experiment was conducted during Kharif 2016 at Hingoni, Ahmednagar (dist.), Maharashtra (India) to evaluate the novel molecules of acaricides against mites in polyhouse capsicum. The study was planned with randomized block design (RBD) and included nine treatments replicated thrice with 30 m² each plot size. The crop (var. Bachata) was raised according to the standard package of practices except plant protection measures. The molecules viz., spiromesifen 22.9SC (95 gm a.i. ha⁻¹), fenpyroximate 5EC (15 gm a.i. ha⁻¹), hexythiazox 5.45EC (15 gm a.i. ha⁻¹), diafenthiuron 50WP (300 gm a.i. ha⁻¹), chlorfenapyr 10SC (75 gm a.i. ha⁻¹) were compared with a standard acaricide, dicofol 18.5EC (500 gm a.i. ha⁻¹) and biopesticides like Verticillium lecanii (2 g/l), Metarhizium anisopliae (2 g/l) and Neem oil 10,000ppm (2ml/l). In total three sprays were given after 30, 50 and 70 days after transplanting (DAT) at an interval of 20 days. The insecticidal solutions were prepared in water by diluting required concentration of chemical and applied using knapsack sprayer with hollow cone nozzle @ 500L of solution per hectare. The mites were counted per 4 cm² in three leaves from randomly selected five plants in each plot at 1 day before treatment (precount) and 1, 3, 5, 7, 10 and 15 days after treatment. The results revealed that fenpyroximate 5EC found best by recording significantly least mite population (2.72/4 cm² leaf area) followed by hexythiazox 5.45EC and spiromesifen 22.9SC (3.78 and 3.82 per 4 cm² leaf area, respectively) and followed by remaining treatments chlorfenapyr 10SC (4.13/4 cm² leaf area), diafenthiuron 50WP (4.32/4 cm² leaf area), and dicofol 18.5EC (4.48/4 cm² leaf area). Among the biopesticides tested Neem oil and Verticillium lecanii were found to be superior to Metarhizium anisopliae. Overall, newer molecules like fenpyroximate, hexythiazox, spiromesifen, diafenthiuron, and Chlorfenapyr can be used for the effective management of mites under polyhouse capsicum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acaricides" title="acaricides">acaricides</a>, <a href="https://publications.waset.org/abstracts/search?q=capsicum" title=" capsicum"> capsicum</a>, <a href="https://publications.waset.org/abstracts/search?q=mites" title=" mites"> mites</a>, <a href="https://publications.waset.org/abstracts/search?q=spiromesifen" title=" spiromesifen"> spiromesifen</a> </p> <a href="https://publications.waset.org/abstracts/78211/studies-on-efficacy-of-some-acaricidal-molecules-against-mites-in-polyhouse-capsicum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78211.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">943</span> Effect of Neem (Aziradicta Indica) Leaf Meal on Growth Performance, Haematology and Serum Biochemistry Indices of Broilers Not Administered Vaccines and Antibiotics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ugwuowo%20Leonard%20Chidi">Ugwuowo Leonard Chidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Oparaji%20Chetachukwu%20Jecinta."> Oparaji Chetachukwu Jecinta.</a>, <a href="https://publications.waset.org/abstracts/search?q=Ogidi%20Chibuzor%20Agafenachukwu"> Ogidi Chibuzor Agafenachukwu</a>, <a href="https://publications.waset.org/abstracts/search?q=Onuoha%20Rebecca%20Obianuju"> Onuoha Rebecca Obianuju</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This experiment was conducted to investigate the growth performance, haematology and serum biochemistry indices of broiler birds fed diets containing Neem leaf meal. A total of 96 unsexed day-old broiler birds were allocated to four treatments of T1, T2, T3 and T4 and replicated three times with eight birds per replicate in a Completely Randomized Design. The treatments were diets containing 2.0, 4.0, 6.0 and 8.0% Neem leaf meal respectively. Growth performances, packed cell volume, red blood cell count, haemoglobin, white blood cell count, lymphocytes, mean corpuscular volume, mean corpuscular haemoglobin concentration, platelet count, aspartate amino transaminase, alanine amino transaminase, alkaline phosphate, cholesterol, albumin, globulin, urea, glucose, total protein and creatinine were evaluated. Results showed that there were no significant differences (P>0.05) in all the growth performance parameters among the treatments. The results of the experiment showed that there were significant differences (P<0.05) in all the heamatological and serum biochemistry parameters at finisher phases. Mean corpuscular volume, white blood cell count, lymphocytes, red blood cell count, haemoglobin, platelet count, creatinine and triglyceride increased and were highest in treatment two while treatment four had the least values in mean corpuscular volume, urea, white blood cell, haemoglobin and triglyceride. This implies that the levels of inclusion of Neem leaf meal in this experiment did not affect the growth performance of the broiler chicks but the haematological and serum biochemistry indices were affected. Treatment two with a 4% inclusion level of Neem leaf meal has shown the capacity to replace vaccines and antibiotics in broilers due to the positive effects it had on both the haematological and serum biochemistry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=leaf%20meal" title="leaf meal">leaf meal</a>, <a href="https://publications.waset.org/abstracts/search?q=broiler" title=" broiler"> broiler</a>, <a href="https://publications.waset.org/abstracts/search?q=Aziradicta%20indica" title=" Aziradicta indica"> Aziradicta indica</a>, <a href="https://publications.waset.org/abstracts/search?q=serum%20biochemistry" title=" serum biochemistry"> serum biochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=haematology" title=" haematology"> haematology</a> </p> <a href="https://publications.waset.org/abstracts/172817/effect-of-neem-aziradicta-indica-leaf-meal-on-growth-performance-haematology-and-serum-biochemistry-indices-of-broilers-not-administered-vaccines-and-antibiotics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172817.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">942</span> Influence of Dietary Herbal Blend on Crop Filling, Growth Performance and Nutrient Digestibility in Broiler Chickens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Ahmad">S. Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Rizwan"> M. Rizwan</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Ayub"> B. Ayub</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Mehmood"> S. Mehmood</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Akhtar"> P. Akhtar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This experiment was conducted to investigate the effect of supplementation of pure herbal blend on growth performance of boilers. One hundred and twenty birds were randomly distributed into 4 experimental units of 3 replicates (10 birds/replicate) as: negative control (basal diet), positive control (Lincomycin at the rate of 5g/bag), pure herbal blend at the rate of 150g/bag and pure herbal blend at the rate of 300g/bag. The data regarding weekly feed intake, body weight gain and feed conversion ratio were recorded, and fecal samples were collected at the end of starter and finisher phase for nutrient digestibility trial. The results of feed intake showed significant (P < 0.05) results in 1st (305g), 2nd (696.88g), 3rd (1046.9g) and 4th (1173.2g) week and feed conversion ratio indicated significant (P < 0.05) variations in 1st (2.54) and 4th (2.28) week of age. Also, both starter and finisher phase indicated significant (P < 0.05) differences among all treatment groups in feed intake (2023.4g) and (2302.6g) respectively. The statistical analysis indicated significant (P < 0.05) results in crop filling percentage (86.6%) after 2 hours of first feed supplementation. In case of nutrient digestibility trial, results showed significant (P < 0.05) values of crude protein and crude fat in starter phase as 69.65% and 56.62% respectively, and 69.57% and 48.55% respectively, in finisher phase. Based on overall results, it was concluded that the dietary inclusion of pure herbal blend containing neem tree leaves powder, garlic powder, ginger powder and turmeric powder increase the production performance of broilers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neem%20tree%20leave" title="neem tree leave">neem tree leave</a>, <a href="https://publications.waset.org/abstracts/search?q=garlic" title=" garlic"> garlic</a>, <a href="https://publications.waset.org/abstracts/search?q=ginger" title=" ginger"> ginger</a>, <a href="https://publications.waset.org/abstracts/search?q=herbal%20blend" title=" herbal blend"> herbal blend</a>, <a href="https://publications.waset.org/abstracts/search?q=broiler" title=" broiler"> broiler</a> </p> <a href="https://publications.waset.org/abstracts/77244/influence-of-dietary-herbal-blend-on-crop-filling-growth-performance-and-nutrient-digestibility-in-broiler-chickens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=epiphytic%20neem%20leaves&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=epiphytic%20neem%20leaves&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=epiphytic%20neem%20leaves&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=epiphytic%20neem%20leaves&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=epiphytic%20neem%20leaves&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=epiphytic%20neem%20leaves&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=epiphytic%20neem%20leaves&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=epiphytic%20neem%20leaves&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=epiphytic%20neem%20leaves&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=epiphytic%20neem%20leaves&amp;page=32">32</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=epiphytic%20neem%20leaves&amp;page=33">33</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=epiphytic%20neem%20leaves&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10