CINXE.COM

Search results for: classification size

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: classification size</title> <meta name="description" content="Search results for: classification size"> <meta name="keywords" content="classification size"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="classification size" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="classification size"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 7767</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: classification size</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7767</span> Research on Ultrafine Particles Classification Using Hydrocyclone with Annular Rinse Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tao%20Youjun">Tao Youjun</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhao%20Younan"> Zhao Younan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The separation effect of fine coal can be improved by the process of pre-desliming. It was significantly enhanced when the fine coal was processed using Falcon concentrator with the removal of -45um coal slime. Ultrafine classification tests using Krebs classification cyclone with annular rinse water showed that increasing feeding pressure can effectively avoid the phenomena of heavy particles passing into overflow and light particles slipping into underflow. The increase of rinse water pressure could reduce the content of fine-grained particles while increasing the classification size. The increase in feeding concentration had a negative effect on the efficiency of classification, meanwhile increased the classification size due to the enhanced hindered settling caused by high underflow concentration. As a result of optimization experiments with response indicator of classification efficiency which based on orthogonal design using Design-Expert software indicated that the optimal classification efficiency reached 91.32% with the feeding pressure of 0.03MPa, the rinse water pressure of 0.02MPa and the feeding concentration of 12.5%. Meanwhile, the classification size was 49.99 μm which had a good agreement with the predicted value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrocyclone" title="hydrocyclone">hydrocyclone</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrafine%20classification" title=" ultrafine classification"> ultrafine classification</a>, <a href="https://publications.waset.org/abstracts/search?q=slime" title=" slime"> slime</a>, <a href="https://publications.waset.org/abstracts/search?q=classification%20efficiency" title=" classification efficiency"> classification efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=classification%20size" title=" classification size "> classification size </a> </p> <a href="https://publications.waset.org/abstracts/99752/research-on-ultrafine-particles-classification-using-hydrocyclone-with-annular-rinse-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99752.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7766</span> Evaluating Classification with Efficacy Metrics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guofan%20Shao">Guofan Shao</a>, <a href="https://publications.waset.org/abstracts/search?q=Lina%20Tang"> Lina Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hao%20Zhang"> Hao Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The values of image classification accuracy are affected by class size distributions and classification schemes, making it difficult to compare the performance of classification algorithms across different remote sensing data sources and classification systems. Based on the term efficacy from medicine and pharmacology, we have developed the metrics of image classification efficacy at the map and class levels. The novelty of this approach is that a baseline classification is involved in computing image classification efficacies so that the effects of class statistics are reduced. Furthermore, the image classification efficacies are interpretable and comparable, and thus, strengthen the assessment of image data classification methods. We use real-world and hypothetical examples to explain the use of image classification efficacies. The metrics of image classification efficacy meet the critical need to rectify the strategy for the assessment of image classification performance as image classification methods are becoming more diversified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accuracy%20assessment" title="accuracy assessment">accuracy assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=efficacy" title=" efficacy"> efficacy</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20classification" title=" image classification"> image classification</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty" title=" uncertainty"> uncertainty</a> </p> <a href="https://publications.waset.org/abstracts/142555/evaluating-classification-with-efficacy-metrics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142555.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7765</span> Systematic Evaluation of Convolutional Neural Network on Land Cover Classification from Remotely Sensed Images </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eiman%20Kattan">Eiman Kattan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20Wei"> Hong Wei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In using Convolutional Neural Network (CNN) for classification, there is a set of hyperparameters available for the configuration purpose. This study aims to evaluate the impact of a range of parameters in CNN architecture i.e. AlexNet on land cover classification based on four remotely sensed datasets. The evaluation tests the influence of a set of hyperparameters on the classification performance. The parameters concerned are epoch values, batch size, and convolutional filter size against input image size. Thus, a set of experiments were conducted to specify the effectiveness of the selected parameters using two implementing approaches, named pertained and fine-tuned. We first explore the number of epochs under several selected batch size values (32, 64, 128 and 200). The impact of kernel size of convolutional filters (1, 3, 5, 7, 10, 15, 20, 25 and 30) was evaluated against the image size under testing (64, 96, 128, 180 and 224), which gave us insight of the relationship between the size of convolutional filters and image size. To generalise the validation, four remote sensing datasets, AID, RSD, UCMerced and RSCCN, which have different land covers and are publicly available, were used in the experiments. These datasets have a wide diversity of input data, such as number of classes, amount of labelled data, and texture patterns. A specifically designed interactive deep learning GPU training platform for image classification (Nvidia Digit) was employed in the experiments. It has shown efficiency in both training and testing. The results have shown that increasing the number of epochs leads to a higher accuracy rate, as expected. However, the convergence state is highly related to datasets. For the batch size evaluation, it has shown that a larger batch size slightly decreases the classification accuracy compared to a small batch size. For example, selecting the value 32 as the batch size on the RSCCN dataset achieves the accuracy rate of 90.34 % at the 11th epoch while decreasing the epoch value to one makes the accuracy rate drop to 74%. On the other extreme, setting an increased value of batch size to 200 decreases the accuracy rate at the 11th epoch is 86.5%, and 63% when using one epoch only. On the other hand, selecting the kernel size is loosely related to data set. From a practical point of view, the filter size 20 produces 70.4286%. The last performed image size experiment shows a dependency in the accuracy improvement. However, an expensive performance gain had been noticed. The represented conclusion opens the opportunities toward a better classification performance in various applications such as planetary remote sensing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CNNs" title="CNNs">CNNs</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperparamters" title=" hyperparamters"> hyperparamters</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20cover" title=" land cover"> land cover</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20use" title=" land use"> land use</a> </p> <a href="https://publications.waset.org/abstracts/81055/systematic-evaluation-of-convolutional-neural-network-on-land-cover-classification-from-remotely-sensed-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81055.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7764</span> Air Classification of Dust from Steel Converter Secondary De-dusting for Zinc Enrichment </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Lanzerstorfer">C. Lanzerstorfer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The off-gas from the basic oxygen furnace (BOF), where pig iron is converted into steel, is treated in the primary ventilation system. This system is in full operation only during oxygen-blowing when the BOF converter vessel is in a vertical position. When pig iron and scrap are charged into the BOF and when slag or steel are tapped, the vessel is tilted. The generated emissions during charging and tapping cannot be captured by the primary off-gas system. To capture these emissions, a secondary ventilation system is usually installed. The emissions are captured by a canopy hood installed just above the converter mouth in tilted position. The aim of this study was to investigate the dependence of Zn and other components on the particle size of BOF secondary ventilation dust. Because of the high temperature of the BOF process it can be expected that Zn will be enriched in the fine dust fractions. If Zn is enriched in the fine fractions, classification could be applied to split the dust into two size fractions with a different content of Zn. For this air classification experiments with dust from the secondary ventilation system of a BOF were performed. The results show that Zn and Pb are highly enriched in the finest dust fraction. For Cd, Cu and Sb the enrichment is less. In contrast, the non-volatile metals Al, Fe, Mn and Ti were depleted in the fine fractions. Thus, air classification could be considered for the treatment of dust from secondary BOF off-gas cleaning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20classification" title="air classification">air classification</a>, <a href="https://publications.waset.org/abstracts/search?q=converter%20dust" title=" converter dust"> converter dust</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling" title=" recycling"> recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc" title=" zinc"> zinc</a> </p> <a href="https://publications.waset.org/abstracts/61579/air-classification-of-dust-from-steel-converter-secondary-de-dusting-for-zinc-enrichment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61579.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7763</span> Urban Land Cover from GF-2 Satellite Images Using Object Based and Neural Network Classifications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lamyaa%20Gamal%20El-Deen%20Taha">Lamyaa Gamal El-Deen Taha</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashraf%20Sharawi"> Ashraf Sharawi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> China launched satellite GF-2 in 2014. This study deals with comparing nearest neighbor object-based classification and neural network classification methods for classification of the fused GF-2 image. Firstly, rectification of GF-2 image was performed. Secondly, a comparison between nearest neighbor object-based classification and neural network classification for classification of fused GF-2 was performed. Thirdly, the overall accuracy of classification and kappa index were calculated. Results indicate that nearest neighbor object-based classification is better than neural network classification for urban mapping. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GF-2%20images" title="GF-2 images">GF-2 images</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20extraction-rectification" title=" feature extraction-rectification"> feature extraction-rectification</a>, <a href="https://publications.waset.org/abstracts/search?q=nearest%20neighbour%20object%20based%20classification" title=" nearest neighbour object based classification"> nearest neighbour object based classification</a>, <a href="https://publications.waset.org/abstracts/search?q=segmentation%20algorithms" title=" segmentation algorithms"> segmentation algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network%20classification" title=" neural network classification"> neural network classification</a>, <a href="https://publications.waset.org/abstracts/search?q=multilayer%20perceptron" title=" multilayer perceptron"> multilayer perceptron</a> </p> <a href="https://publications.waset.org/abstracts/84243/urban-land-cover-from-gf-2-satellite-images-using-object-based-and-neural-network-classifications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84243.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7762</span> Arabic Text Representation and Classification Methods: Current State of the Art</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rami%20Ayadi">Rami Ayadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Maraoui"> Mohsen Maraoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Mounir%20Zrigui"> Mounir Zrigui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we have presented a brief current state of the art for Arabic text representation and classification methods. We decomposed Arabic Task Classification into four categories. First we describe some algorithms applied to classification on Arabic text. Secondly, we cite all major works when comparing classification algorithms applied on Arabic text, after this, we mention some authors who proposing new classification methods and finally we investigate the impact of preprocessing on Arabic TC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=text%20classification" title="text classification">text classification</a>, <a href="https://publications.waset.org/abstracts/search?q=Arabic" title=" Arabic"> Arabic</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20of%20preprocessing" title=" impact of preprocessing"> impact of preprocessing</a>, <a href="https://publications.waset.org/abstracts/search?q=classification%20algorithms" title=" classification algorithms"> classification algorithms</a> </p> <a href="https://publications.waset.org/abstracts/10277/arabic-text-representation-and-classification-methods-current-state-of-the-art" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10277.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7761</span> Survey on Big Data Stream Classification by Decision Tree</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mansoureh%20Ghiasabadi%20Farahani">Mansoureh Ghiasabadi Farahani</a>, <a href="https://publications.waset.org/abstracts/search?q=Samira%20Kalantary"> Samira Kalantary</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Taghi-Pour"> Sara Taghi-Pour</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahboubeh%20Shamsi"> Mahboubeh Shamsi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, the development of computers technology and its recent applications provide access to new types of data, which have not been considered by the traditional data analysts. Two particularly interesting characteristics of such data sets include their huge size and streaming nature .Incremental learning techniques have been used extensively to address the data stream classification problem. This paper presents a concise survey on the obstacles and the requirements issues classifying data streams with using decision tree. The most important issue is to maintain a balance between accuracy and efficiency, the algorithm should provide good classification performance with a reasonable time response. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=big%20data" title="big data">big data</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20streams" title=" data streams"> data streams</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20tree" title=" decision tree"> decision tree</a> </p> <a href="https://publications.waset.org/abstracts/31107/survey-on-big-data-stream-classification-by-decision-tree" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31107.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">521</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7760</span> Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mpho%20Mokoatle">Mpho Mokoatle</a>, <a href="https://publications.waset.org/abstracts/search?q=Darlington%20Mapiye"> Darlington Mapiye</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20Mashiyane"> James Mashiyane</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephanie%20Muller"> Stephanie Muller</a>, <a href="https://publications.waset.org/abstracts/search?q=Gciniwe%20Dlamini"> Gciniwe Dlamini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on $k$-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0%, 80.5%, 80.5%, 63.6%, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AWD-LSTM" title="AWD-LSTM">AWD-LSTM</a>, <a href="https://publications.waset.org/abstracts/search?q=bootstrapping" title=" bootstrapping"> bootstrapping</a>, <a href="https://publications.waset.org/abstracts/search?q=k-mers" title=" k-mers"> k-mers</a>, <a href="https://publications.waset.org/abstracts/search?q=next%20generation%20sequencing" title=" next generation sequencing"> next generation sequencing</a> </p> <a href="https://publications.waset.org/abstracts/122679/phenotype-prediction-of-dna-sequence-data-a-machine-and-statistical-learning-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122679.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7759</span> Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Darlington%20Mapiye">Darlington Mapiye</a>, <a href="https://publications.waset.org/abstracts/search?q=Mpho%20Mokoatle"> Mpho Mokoatle</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20Mashiyane"> James Mashiyane</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephanie%20Muller"> Stephanie Muller</a>, <a href="https://publications.waset.org/abstracts/search?q=Gciniwe%20Dlamini"> Gciniwe Dlamini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on k-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0 %, 80.5 %, 80.5 %, 63.6 %, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanisms <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AWD-LSTM" title="AWD-LSTM">AWD-LSTM</a>, <a href="https://publications.waset.org/abstracts/search?q=bootstrapping" title=" bootstrapping"> bootstrapping</a>, <a href="https://publications.waset.org/abstracts/search?q=k-mers" title=" k-mers"> k-mers</a>, <a href="https://publications.waset.org/abstracts/search?q=next%20generation%20sequencing" title=" next generation sequencing"> next generation sequencing</a> </p> <a href="https://publications.waset.org/abstracts/122670/phenotype-prediction-of-dna-sequence-data-a-machine-and-statistical-learning-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122670.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7758</span> Classification of EEG Signals Based on Dynamic Connectivity Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zoran%20%C5%A0verko">Zoran Šverko</a>, <a href="https://publications.waset.org/abstracts/search?q=Sa%C5%A1a%20Vlahini%C4%87"> Saša Vlahinić</a>, <a href="https://publications.waset.org/abstracts/search?q=Nino%20Stojkovi%C4%87"> Nino Stojković</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivan%20Markovinovi%C4%87"> Ivan Markovinović</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article, the classification of target letters is performed using data from the EEG P300 Speller paradigm. Neural networks trained with the results of dynamic connectivity analysis between different brain regions are used for classification. Dynamic connectivity analysis is based on the adaptive window size and the imaginary part of the complex Pearson correlation coefficient. Brain dynamics are analysed using the relative intersection of confidence intervals for the imaginary component of the complex Pearson correlation coefficient method (RICI-imCPCC). The RICI-imCPCC method overcomes the shortcomings of currently used dynamical connectivity analysis methods, such as the low reliability and low temporal precision for short connectivity intervals encountered in constant sliding window analysis with wide window size and the high susceptibility to noise encountered in constant sliding window analysis with narrow window size. This method overcomes these shortcomings by dynamically adjusting the window size using the RICI rule. This method extracts information about brain connections for each time sample. Seventy percent of the extracted brain connectivity information is used for training and thirty percent for validation. Classification of the target word is also done and based on the same analysis method. As far as we know, through this research, we have shown for the first time that dynamic connectivity can be used as a parameter for classifying EEG signals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20connectivity%20analysis" title="dynamic connectivity analysis">dynamic connectivity analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=EEG" title=" EEG"> EEG</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=Pearson%20correlation%20coefficients" title=" Pearson correlation coefficients"> Pearson correlation coefficients</a> </p> <a href="https://publications.waset.org/abstracts/159091/classification-of-eeg-signals-based-on-dynamic-connectivity-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159091.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7757</span> Sensitive Analysis of the ZF Model for ABC Multi Criteria Inventory Classification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Makram%20Ben%20Jeddou">Makram Ben Jeddou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ABC classification is widely used by managers for inventory control. The classical ABC classification is based on the Pareto principle and according to the criterion of the annual use value only. Single criterion classification is often insufficient for a closely inventory control. Multi-criteria inventory classification models have been proposed by researchers in order to take into account other important criteria. From these models, we will consider the ZF model in order to make a sensitive analysis on the composite score calculated for each item. In fact, this score based on a normalized average between a good and a bad optimized index can affect the ABC items classification. We will then focus on the weights assigned to each index and propose a classification compromise. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ABC%20classification" title="ABC classification">ABC classification</a>, <a href="https://publications.waset.org/abstracts/search?q=multi%20criteria%20inventory%20%20classification%20models" title=" multi criteria inventory classification models"> multi criteria inventory classification models</a>, <a href="https://publications.waset.org/abstracts/search?q=ZF-model" title=" ZF-model"> ZF-model</a> </p> <a href="https://publications.waset.org/abstracts/22613/sensitive-analysis-of-the-zf-model-for-abc-multi-criteria-inventory-classification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22613.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">508</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7756</span> A New Approach for Improving Accuracy of Multi Label Stream Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kunal%20Shah">Kunal Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=Swati%20Patel"> Swati Patel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many real world problems involve data which can be considered as multi-label data streams. Efficient methods exist for multi-label classification in non streaming scenarios. However, learning in evolving streaming scenarios is more challenging, as the learners must be able to adapt to change using limited time and memory. Classification is used to predict class of unseen instance as accurate as possible. Multi label classification is a variant of single label classification where set of labels associated with single instance. Multi label classification is used by modern applications, such as text classification, functional genomics, image classification, music categorization etc. This paper introduces the task of multi-label classification, methods for multi-label classification and evolution measure for multi-label classification. Also, comparative analysis of multi label classification methods on the basis of theoretical study, and then on the basis of simulation was done on various data sets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=binary%20relevance" title="binary relevance">binary relevance</a>, <a href="https://publications.waset.org/abstracts/search?q=concept%20drift" title=" concept drift"> concept drift</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20stream%20mining" title=" data stream mining"> data stream mining</a>, <a href="https://publications.waset.org/abstracts/search?q=MLSC" title=" MLSC"> MLSC</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20window%20with%20buffer" title=" multiple window with buffer"> multiple window with buffer</a> </p> <a href="https://publications.waset.org/abstracts/33035/a-new-approach-for-improving-accuracy-of-multi-label-stream-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33035.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">584</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7755</span> Classification of Attacks Over Cloud Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karim%20Abouelmehdi">Karim Abouelmehdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Loubna%20Dali"> Loubna Dali</a>, <a href="https://publications.waset.org/abstracts/search?q=Elmoutaoukkil%20Abdelmajid"> Elmoutaoukkil Abdelmajid</a>, <a href="https://publications.waset.org/abstracts/search?q=Hoda%20Elsayed"> Hoda Elsayed</a>, <a href="https://publications.waset.org/abstracts/search?q=Eladnani%20Fatiha"> Eladnani Fatiha</a>, <a href="https://publications.waset.org/abstracts/search?q=Benihssane%20Abderahim"> Benihssane Abderahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The security of cloud services is the concern of cloud service providers. In this paper, we will mention different classifications of cloud attacks referred by specialized organizations. Each agency has its classification of well-defined properties. The purpose is to present a high-level classification of current research in cloud computing security. This classification is organized around attack strategies and corresponding defenses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cloud%20computing" title="cloud computing">cloud computing</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=risk" title=" risk"> risk</a>, <a href="https://publications.waset.org/abstracts/search?q=security" title=" security"> security</a> </p> <a href="https://publications.waset.org/abstracts/31849/classification-of-attacks-over-cloud-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31849.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">548</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7754</span> Drone Classification Using Classification Methods Using Conventional Model With Embedded Audio-Visual Features</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hrishi%20Rakshit">Hrishi Rakshit</a>, <a href="https://publications.waset.org/abstracts/search?q=Pooneh%20Bagheri%20Zadeh"> Pooneh Bagheri Zadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the performance of drone classification methods using conventional DCNN with different hyperparameters, when additional drone audio data is embedded in the dataset for training and further classification. In this paper, first a custom dataset is created using different images of drones from University of South California (USC) datasets and Leeds Beckett university datasets with embedded drone audio signal. The three well-known DCNN architectures namely, Resnet50, Darknet53 and Shufflenet are employed over the created dataset tuning their hyperparameters such as, learning rates, maximum epochs, Mini Batch size with different optimizers. Precision-Recall curves and F1 Scores-Threshold curves are used to evaluate the performance of the named classification algorithms. Experimental results show that Resnet50 has the highest efficiency compared to other DCNN methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drone%20classifications" title="drone classifications">drone classifications</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20convolutional%20neural%20network" title=" deep convolutional neural network"> deep convolutional neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperparameters" title=" hyperparameters"> hyperparameters</a>, <a href="https://publications.waset.org/abstracts/search?q=drone%20audio%20signal" title=" drone audio signal"> drone audio signal</a> </p> <a href="https://publications.waset.org/abstracts/172929/drone-classification-using-classification-methods-using-conventional-model-with-embedded-audio-visual-features" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172929.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7753</span> Revisiting the Swadesh Wordlist: How Long Should It Be</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Feda%20Negesse">Feda Negesse</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most important indicators of research quality is a good data - collection instrument that can yield reliable and valid data. The Swadesh wordlist has been used for more than half a century for collecting data in comparative and historical linguistics though arbitrariness is observed in its application and size. This research compare s the classification results of the 100 Swadesh wordlist with those of its subsets to determine if reducing the size of the wordlist impact s its effectiveness. In the comparison, the 100, 50 and 40 wordlists were used to compute lexical distances of 29 Cushitic and Semitic languages spoken in Ethiopia and neighbouring countries. Gabmap, a based application, was employed to compute the lexical distances and to divide the languages into related clusters. The study shows that the subsets are not as effective as the 100 wordlist in clustering languages into smaller subgroups but they are equally effective in di viding languages into bigger groups such as subfamilies. It is noted that the subsets may lead to an erroneous classification whereby unrelated languages by chance form a cluster which is not attested by a comparative study. The chance to get a wrong result is higher when the subsets are used to classify languages which are not closely related. Though a further study is still needed to settle the issues around the size of the Swadesh wordlist, this study indicates that the 50 and 40 wordlists cannot be recommended as reliable substitute s for the 100 wordlist under all circumstances. The choice seems to be determined by the objective of a researcher and the degree of affiliation among the languages to be classified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=classification" title="classification">classification</a>, <a href="https://publications.waset.org/abstracts/search?q=Cushitic" title=" Cushitic"> Cushitic</a>, <a href="https://publications.waset.org/abstracts/search?q=Swadesh" title=" Swadesh"> Swadesh</a>, <a href="https://publications.waset.org/abstracts/search?q=wordlist" title=" wordlist"> wordlist</a> </p> <a href="https://publications.waset.org/abstracts/48250/revisiting-the-swadesh-wordlist-how-long-should-it-be" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48250.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7752</span> Land Cover Classification Using Sentinel-2 Image Data and Random Forest Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thanh%20Noi%20Phan">Thanh Noi Phan</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Kappas"> Martin Kappas</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Degener"> Jan Degener</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The currently launched Sentinel 2 (S2) satellite (June, 2015) bring a great potential and opportunities for land use/cover map applications, due to its fine spatial resolution multispectral as well as high temporal resolutions. So far, there are handful studies using S2 real data for land cover classification. Especially in northern Vietnam, to our best knowledge, there exist no studies using S2 data for land cover map application. The aim of this study is to provide the preliminary result of land cover classification using Sentinel -2 data with a rising state – of – art classifier, Random Forest. A case study with heterogeneous land use/cover in the eastern of Hanoi Capital – Vietnam was chosen for this study. All 10 spectral bands of 10 and 20 m pixel size of S2 images were used, the 10 m bands were resampled to 20 m. Among several classified algorithms, supervised Random Forest classifier (RF) was applied because it was reported as one of the most accuracy methods of satellite image classification. The results showed that the red-edge and shortwave infrared (SWIR) bands play an important role in land cover classified results. A very high overall accuracy above 90% of classification results was achieved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=classify%20algorithm" title="classify algorithm">classify algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20cover" title=" land cover"> land cover</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20forest" title=" random forest"> random forest</a>, <a href="https://publications.waset.org/abstracts/search?q=sentinel%202" title=" sentinel 2"> sentinel 2</a>, <a href="https://publications.waset.org/abstracts/search?q=Vietnam" title=" Vietnam"> Vietnam</a> </p> <a href="https://publications.waset.org/abstracts/71532/land-cover-classification-using-sentinel-2-image-data-and-random-forest-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71532.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7751</span> Review and Comparison of Associative Classification Data Mining Approaches</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suzan%20Wedyan">Suzan Wedyan </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Data mining is one of the main phases in the Knowledge Discovery Database (KDD) which is responsible of finding hidden and useful knowledge from databases. There are many different tasks for data mining including regression, pattern recognition, clustering, classification, and association rule. In recent years a promising data mining approach called associative classification (AC) has been proposed, AC integrates classification and association rule discovery to build classification models (classifiers). This paper surveys and critically compares several AC algorithms with reference of the different procedures are used in each algorithm, such as rule learning, rule sorting, rule pruning, classifier building, and class allocation for test cases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=associative%20classification" title="associative classification">associative classification</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title=" data mining"> data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=learning" title=" learning"> learning</a>, <a href="https://publications.waset.org/abstracts/search?q=rule%20ranking" title=" rule ranking"> rule ranking</a>, <a href="https://publications.waset.org/abstracts/search?q=rule%20pruning" title=" rule pruning"> rule pruning</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a> </p> <a href="https://publications.waset.org/abstracts/4191/review-and-comparison-of-associative-classification-data-mining-approaches" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4191.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">537</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7750</span> Meta-Learning for Hierarchical Classification and Applications in Bioinformatics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fabio%20Fabris">Fabio Fabris</a>, <a href="https://publications.waset.org/abstracts/search?q=Alex%20A.%20Freitas"> Alex A. Freitas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hierarchical classification is a special type of classification task where the class labels are organised into a hierarchy, with more generic class labels being ancestors of more specific ones. Meta-learning for classification-algorithm recommendation consists of recommending to the user a classification algorithm, from a pool of candidate algorithms, for a dataset, based on the past performance of the candidate algorithms in other datasets. Meta-learning is normally used in conventional, non-hierarchical classification. By contrast, this paper proposes a meta-learning approach for more challenging task of hierarchical classification, and evaluates it in a large number of bioinformatics datasets. Hierarchical classification is especially relevant for bioinformatics problems, as protein and gene functions tend to be organised into a hierarchy of class labels. This work proposes meta-learning approach for recommending the best hierarchical classification algorithm to a hierarchical classification dataset. This work&rsquo;s contributions are: 1) proposing an algorithm for splitting hierarchical datasets into new datasets to increase the number of meta-instances, 2) proposing meta-features for hierarchical classification, and 3) interpreting decision-tree meta-models for hierarchical classification algorithm recommendation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algorithm%20recommendation" title="algorithm recommendation">algorithm recommendation</a>, <a href="https://publications.waset.org/abstracts/search?q=meta-learning" title=" meta-learning"> meta-learning</a>, <a href="https://publications.waset.org/abstracts/search?q=bioinformatics" title=" bioinformatics"> bioinformatics</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20classification" title=" hierarchical classification"> hierarchical classification</a> </p> <a href="https://publications.waset.org/abstracts/81005/meta-learning-for-hierarchical-classification-and-applications-in-bioinformatics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7749</span> INRAM-3DCNN: Multi-Scale Convolutional Neural Network Based on Residual and Attention Module Combined with Multilayer Perceptron for Hyperspectral Image Classification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jianhong%20Xiang">Jianhong Xiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Rui%20Sun"> Rui Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Linyu%20Wang"> Linyu Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, due to the continuous improvement of deep learning theory, Convolutional Neural Network (CNN) has played a great superior performance in the research of Hyperspectral Image (HSI) classification. Since HSI has rich spatial-spectral information, only utilizing a single dimensional or single size convolutional kernel will limit the detailed feature information received by CNN, which limits the classification accuracy of HSI. In this paper, we design a multi-scale CNN with MLP based on residual and attention modules (INRAM-3DCNN) for the HSI classification task. We propose to use multiple 3D convolutional kernels to extract the packet feature information and fully learn the spatial-spectral features of HSI while designing residual 3D convolutional branches to avoid the decline of classification accuracy due to network degradation. Secondly, we also design the 2D Inception module with a joint channel attention mechanism to quickly extract key spatial feature information at different scales of HSI and reduce the complexity of the 3D model. Due to the high parallel processing capability and nonlinear global action of the Multilayer Perceptron (MLP), we use it in combination with the previous CNN structure for the final classification process. The experimental results on two HSI datasets show that the proposed INRAM-3DCNN method has superior classification performance and can perform the classification task excellently. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=INRAM-3DCNN" title="INRAM-3DCNN">INRAM-3DCNN</a>, <a href="https://publications.waset.org/abstracts/search?q=residual" title=" residual"> residual</a>, <a href="https://publications.waset.org/abstracts/search?q=channel%20attention" title=" channel attention"> channel attention</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperspectral%20image%20classification" title=" hyperspectral image classification"> hyperspectral image classification</a> </p> <a href="https://publications.waset.org/abstracts/177814/inram-3dcnn-multi-scale-convolutional-neural-network-based-on-residual-and-attention-module-combined-with-multilayer-perceptron-for-hyperspectral-image-classification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177814.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7748</span> Review on Effective Texture Classification Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sujata%20S.%20Kulkarni">Sujata S. Kulkarni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effective and efficient texture feature extraction and classification is an important problem in image understanding and recognition. This paper gives a review on effective texture classification method. The objective of the problem of texture representation is to reduce the amount of raw data presented by the image, while preserving the information needed for the task. Texture analysis is important in many applications of computer image analysis for classification include industrial and biomedical surface inspection, for example for defects and disease, ground classification of satellite or aerial imagery and content-based access to image databases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressed%20sensing" title="compressed sensing">compressed sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20extraction" title=" feature extraction"> feature extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20classification" title=" image classification"> image classification</a>, <a href="https://publications.waset.org/abstracts/search?q=texture%20analysis" title=" texture analysis"> texture analysis</a> </p> <a href="https://publications.waset.org/abstracts/24461/review-on-effective-texture-classification-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24461.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7747</span> Radical Web Text Classification Using a Composite-Based Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kolade%20Olawande%20Owoeye">Kolade Olawande Owoeye</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20R.%20S.%20Weir"> George R. S. Weir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The widespread of terrorism and extremism activities on the internet has become a major threat to the government and national securities due to their potential dangers which have necessitated the need for intelligence gathering via web and real-time monitoring of potential websites for extremist activities. However, the manual classification for such contents is practically difficult or time-consuming. In response to this challenge, an automated classification system called composite technique was developed. This is a computational framework that explores the combination of both semantics and syntactic features of textual contents of a web. We implemented the framework on a set of extremist webpages dataset that has been subjected to the manual classification process. Therein, we developed a classification model on the data using J48 decision algorithm, this is to generate a measure of how well each page can be classified into their appropriate classes. The classification result obtained from our method when compared with other states of arts, indicated a 96% success rate in classifying overall webpages when matched against the manual classification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extremist" title="extremist">extremist</a>, <a href="https://publications.waset.org/abstracts/search?q=web%20pages" title=" web pages"> web pages</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=semantics" title=" semantics"> semantics</a>, <a href="https://publications.waset.org/abstracts/search?q=posit" title=" posit"> posit</a> </p> <a href="https://publications.waset.org/abstracts/98432/radical-web-text-classification-using-a-composite-based-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98432.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7746</span> Hyperspectral Image Classification Using Tree Search Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shreya%20Pare">Shreya Pare</a>, <a href="https://publications.waset.org/abstracts/search?q=Parvin%20Akhter"> Parvin Akhter</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Remotely sensing image classification becomes a very challenging task owing to the high dimensionality of hyperspectral images. The pixel-wise classification methods fail to take the spatial structure information of an image. Therefore, to improve the performance of classification, spatial information can be integrated into the classification process. In this paper, the multilevel thresholding algorithm based on a modified fuzzy entropy function is used to perform the segmentation of hyperspectral images. The fuzzy parameters of the MFE function have been optimized by using a new meta-heuristic algorithm based on the Tree-Search algorithm. The segmented image is classified by a large distribution machine (LDM) classifier. Experimental results are shown on a hyperspectral image dataset. The experimental outputs indicate that the proposed technique (MFE-TSA-LDM) achieves much higher classification accuracy for hyperspectral images when compared to state-of-art classification techniques. The proposed algorithm provides accurate segmentation and classification maps, thus becoming more suitable for image classification with large spatial structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=classification" title="classification">classification</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperspectral%20images" title=" hyperspectral images"> hyperspectral images</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20distribution%20margin" title=" large distribution margin"> large distribution margin</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20fuzzy%20entropy%20function" title=" modified fuzzy entropy function"> modified fuzzy entropy function</a>, <a href="https://publications.waset.org/abstracts/search?q=multilevel%20thresholding" title=" multilevel thresholding"> multilevel thresholding</a>, <a href="https://publications.waset.org/abstracts/search?q=tree%20search%20algorithm" title=" tree search algorithm"> tree search algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperspectral%20image%20classification%20using%20tree%20search%20algorithm" title=" hyperspectral image classification using tree search algorithm"> hyperspectral image classification using tree search algorithm</a> </p> <a href="https://publications.waset.org/abstracts/143284/hyperspectral-image-classification-using-tree-search-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143284.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7745</span> Pose Normalization Network for Object Classification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bingquan%20Shen">Bingquan Shen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Convolutional Neural Networks (CNN) have demonstrated their effectiveness in synthesizing 3D views of object instances at various viewpoints. Given the problem where one have limited viewpoints of a particular object for classification, we present a pose normalization architecture to transform the object to existing viewpoints in the training dataset before classification to yield better classification performance. We have demonstrated that this Pose Normalization Network (PNN) can capture the style of the target object and is able to re-render it to a desired viewpoint. Moreover, we have shown that the PNN improves the classification result for the 3D chairs dataset and ShapeNet airplanes dataset when given only images at limited viewpoint, as compared to a CNN baseline. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20networks" title="convolutional neural networks">convolutional neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=object%20classification" title=" object classification"> object classification</a>, <a href="https://publications.waset.org/abstracts/search?q=pose%20normalization" title=" pose normalization"> pose normalization</a>, <a href="https://publications.waset.org/abstracts/search?q=viewpoint%20invariant" title=" viewpoint invariant"> viewpoint invariant</a> </p> <a href="https://publications.waset.org/abstracts/56852/pose-normalization-network-for-object-classification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56852.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7744</span> Satellite Imagery Classification Based on Deep Convolution Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhong%20Ma">Zhong Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhuping%20Wang"> Zhuping Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Congxin%20Liu"> Congxin Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiangzeng%20Liu"> Xiangzeng Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Satellite imagery classification is a challenging problem with many practical applications. In this paper, we designed a deep convolution neural network (DCNN) to classify the satellite imagery. The contributions of this paper are twofold &mdash; First, to cope with the large-scale variance in the satellite image, we introduced the inception module, which has multiple filters with different size at the same level, as the building block to build our DCNN model. Second, we proposed a genetic algorithm based method to efficiently search the best hyper-parameters of the DCNN in a large search space. The proposed method is evaluated on the benchmark database. The results of the proposed hyper-parameters search method show it will guide the search towards better regions of the parameter space. Based on the found hyper-parameters, we built our DCNN models, and evaluated its performance on satellite imagery classification, the results show the classification accuracy of proposed models outperform the state of the art method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=satellite%20imagery%20classification" title="satellite imagery classification">satellite imagery classification</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20convolution%20network" title=" deep convolution network"> deep convolution network</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=hyper-parameter%20optimization" title=" hyper-parameter optimization"> hyper-parameter optimization</a> </p> <a href="https://publications.waset.org/abstracts/44963/satellite-imagery-classification-based-on-deep-convolution-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44963.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7743</span> Lean Models Classification: Towards a Holistic View</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Tiamaz">Y. Tiamaz</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Souissi"> N. Souissi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper is to present a classification of Lean models which aims to capture all the concepts related to this approach and thus facilitate its implementation. This classification allows the identification of the most relevant models according to several dimensions. From this perspective, we present a review and an analysis of Lean models literature and we propose dimensions for the classification of the current proposals while respecting among others the axes of the Lean approach, the maturity of the models as well as their application domains. This classification allowed us to conclude that researchers essentially consider the Lean approach as a toolbox also they design their models to solve problems related to a specific environment. Since Lean approach is no longer intended only for the automotive sector where it was invented, but to all fields (IT, Hospital, ...), we consider that this approach requires a generic model that is capable of being implemented in all areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lean%20approach" title="lean approach">lean approach</a>, <a href="https://publications.waset.org/abstracts/search?q=lean%20models" title=" lean models"> lean models</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=dimensions" title=" dimensions"> dimensions</a>, <a href="https://publications.waset.org/abstracts/search?q=holistic%20view" title=" holistic view"> holistic view</a> </p> <a href="https://publications.waset.org/abstracts/65716/lean-models-classification-towards-a-holistic-view" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7742</span> The Role of Inventory Classification in Supply Chain Responsiveness in a Build-to-Order and Build-To-Forecast Manufacturing Environment: A Comparative Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qamar%20Iqbal">Qamar Iqbal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Companies strive to improve their forecasting methods to predict the fluctuations in customer demand. These fluctuation and variation in demand affect the manufacturing operations and can limit a company’s ability to fulfill customer demand on time. Companies keep the inventory buffer and maintain the stocking levels to reduce the impact of demand variation. A mid-size company deals with thousands of stock keeping units (skus). It is neither easy and nor efficient to control and manage each sku. Inventory classification provides a tool to the management to increase their ability to support customer demand. The paper presents a framework that shows how inventory classification can play a role to increase supply chain responsiveness. A case study will be presented to further elaborate the method both for build-to-order and build-to-forecast manufacturing environments. Results will be compared that will show which manufacturing setting has advantage over another under different circumstances. The outcome of this study is very useful to the management because this will give them an insight on how inventory classification can be used to increase their ability to respond to changing customer needs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inventory%20classification" title="inventory classification">inventory classification</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20responsiveness" title=" supply chain responsiveness"> supply chain responsiveness</a>, <a href="https://publications.waset.org/abstracts/search?q=forecast" title=" forecast"> forecast</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20environment" title=" manufacturing environment"> manufacturing environment</a> </p> <a href="https://publications.waset.org/abstracts/35689/the-role-of-inventory-classification-in-supply-chain-responsiveness-in-a-build-to-order-and-build-to-forecast-manufacturing-environment-a-comparative-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35689.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">595</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7741</span> The Employment of Unmanned Aircraft Systems for Identification and Classification of Helicopter Landing Zones and Airdrop Zones in Calamity Situations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marielcio%20Lacerda">Marielcio Lacerda</a>, <a href="https://publications.waset.org/abstracts/search?q=Angelo%20Paulino"> Angelo Paulino</a>, <a href="https://publications.waset.org/abstracts/search?q=Elcio%20Shiguemori"> Elcio Shiguemori</a>, <a href="https://publications.waset.org/abstracts/search?q=Alvaro%20Damiao"> Alvaro Damiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Lamartine%20Guimaraes"> Lamartine Guimaraes</a>, <a href="https://publications.waset.org/abstracts/search?q=Camila%20Anjos"> Camila Anjos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Accurate information about the terrain is extremely important in disaster management activities or conflict. This paper proposes the use of the Unmanned Aircraft Systems (UAS) at the identification of Airdrop Zones (AZs) and Helicopter Landing Zones (HLZs). In this paper we consider the AZs the zones where troops or supplies are dropped by parachute, and HLZs areas where victims can be rescued. The use of digital image processing enables the automatic generation of an orthorectified mosaic and an actual Digital Surface Model (DSM). This methodology allows obtaining this fundamental information to the terrain’s comprehension post-disaster in a short amount of time and with good accuracy. In order to get the identification and classification of AZs and HLZs images from DJI drone, model Phantom 4 have been used. The images were obtained with the knowledge and authorization of the responsible sectors and were duly registered in the control agencies. The flight was performed on May 24, 2017, and approximately 1,300 images were obtained during approximately 1 hour of flight. Afterward, new attributes were generated by Feature Extraction (FE) from the original images. The use of multispectral images and complementary attributes generated independently from them increases the accuracy of classification. The attributes of this work include the Declivity Map and Principal Component Analysis (PCA). For the classification four distinct classes were considered: HLZ 1 – small size (18m x 18m); HLZ 2 – medium size (23m x 23m); HLZ 3 – large size (28m x 28m); AZ (100m x 100m). The Decision Tree method Random Forest (RF) was used in this work. RF is a classification method that uses a large collection of de-correlated decision trees. Different random sets of samples are used as sampled objects. The results of classification from each tree and for each object is called a class vote. The resulting classification is decided by a majority of class votes. In this case, we used 200 trees for the execution of RF in the software WEKA 3.8. The classification result was visualized on QGIS Desktop 2.12.3. Through the methodology used, it was possible to classify in the study area: 6 areas as HLZ 1, 6 areas as HLZ 2, 4 areas as HLZ 3; and 2 areas as AZ. It should be noted that an area classified as AZ covers the classifications of the other classes, and may be used as AZ, HLZ of large size (HLZ3), medium size (HLZ2) and small size helicopters (HLZ1). Likewise, an area classified as HLZ for large rotary wing aircraft (HLZ3) covers the smaller area classifications, and so on. It was concluded that images obtained through small UAV are of great use in calamity situations since they can provide data with high accuracy, with low cost, low risk and ease and agility in obtaining aerial photographs. This allows the generation, in a short time, of information about the features of the terrain in order to serve as an important decision support tool. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=disaster%20management" title="disaster management">disaster management</a>, <a href="https://publications.waset.org/abstracts/search?q=unmanned%20aircraft%20systems" title=" unmanned aircraft systems"> unmanned aircraft systems</a>, <a href="https://publications.waset.org/abstracts/search?q=helicopter%20landing%20zones" title=" helicopter landing zones"> helicopter landing zones</a>, <a href="https://publications.waset.org/abstracts/search?q=airdrop%20zones" title=" airdrop zones"> airdrop zones</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20forest" title=" random forest"> random forest</a> </p> <a href="https://publications.waset.org/abstracts/91233/the-employment-of-unmanned-aircraft-systems-for-identification-and-classification-of-helicopter-landing-zones-and-airdrop-zones-in-calamity-situations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91233.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7740</span> Terrain Classification for Ground Robots Based on Acoustic Features</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bernd%20Kiefer">Bernd Kiefer</a>, <a href="https://publications.waset.org/abstracts/search?q=Abraham%20Gebru%20Tesfay"> Abraham Gebru Tesfay</a>, <a href="https://publications.waset.org/abstracts/search?q=Dietrich%20Klakow"> Dietrich Klakow</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The motivation of our work is to detect different terrain types traversed by a robot based on acoustic data from the robot-terrain interaction. Different acoustic features and classifiers were investigated, such as Mel-frequency cepstral coefficient and Gamma-tone frequency cepstral coefficient for the feature extraction, and Gaussian mixture model and Feed forward neural network for the classification. We analyze the system&rsquo;s performance by comparing our proposed techniques with some other features surveyed from distinct related works. We achieve precision and recall values between 87% and 100% per class, and an average accuracy at 95.2%. We also study the effect of varying audio chunk size in the application phase of the models and find only a mild impact on performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20features" title="acoustic features">acoustic features</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20robots" title=" autonomous robots"> autonomous robots</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20extraction" title=" feature extraction"> feature extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=terrain%20classification" title=" terrain classification"> terrain classification</a> </p> <a href="https://publications.waset.org/abstracts/71127/terrain-classification-for-ground-robots-based-on-acoustic-features" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71127.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7739</span> A Summary-Based Text Classification Model for Graph Attention Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shuo%20Liu">Shuo Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Chinese text classification tasks, redundant words and phrases can interfere with the formation of extracted and analyzed text information, leading to a decrease in the accuracy of the classification model. To reduce irrelevant elements, extract and utilize text content information more efficiently and improve the accuracy of text classification models. In this paper, the text in the corpus is first extracted using the TextRank algorithm for abstraction, the words in the abstract are used as nodes to construct a text graph, and then the graph attention network (GAT) is used to complete the task of classifying the text. Testing on a Chinese dataset from the network, the classification accuracy was improved over the direct method of generating graph structures using text. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chinese%20natural%20language%20processing" title="Chinese natural language processing">Chinese natural language processing</a>, <a href="https://publications.waset.org/abstracts/search?q=text%20classification" title=" text classification"> text classification</a>, <a href="https://publications.waset.org/abstracts/search?q=abstract%20extraction" title=" abstract extraction"> abstract extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20attention%20network" title=" graph attention network"> graph attention network</a> </p> <a href="https://publications.waset.org/abstracts/158060/a-summary-based-text-classification-model-for-graph-attention-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158060.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7738</span> Real-Time Classification of Marbles with Decision-Tree Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20S.%20Parlak">K. S. Parlak</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Turan"> E. Turan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The separation of marbles according to the pattern quality is a process made according to expert decision. The classification phase is the most critical part in terms of economic value. In this study, a self-learning system is proposed which performs the classification of marbles quickly and with high success. This system performs ten feature extraction by taking ten marble images from the camera. The marbles are classified by decision tree method using the obtained properties. The user forms the training set by training the system at the marble classification stage. The system evolves itself in every marble image that is classified. The aim of the proposed system is to minimize the error caused by the person performing the classification and achieve it quickly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=decision%20tree" title="decision tree">decision tree</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20extraction" title=" feature extraction"> feature extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=k-means%20clustering" title=" k-means clustering"> k-means clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=marble%20classification" title=" marble classification"> marble classification</a> </p> <a href="https://publications.waset.org/abstracts/76038/real-time-classification-of-marbles-with-decision-tree-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76038.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=classification%20size&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=classification%20size&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=classification%20size&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=classification%20size&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=classification%20size&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=classification%20size&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=classification%20size&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=classification%20size&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=classification%20size&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=classification%20size&amp;page=258">258</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=classification%20size&amp;page=259">259</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=classification%20size&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10