CINXE.COM
Anello (algebra) - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available" lang="it" dir="ltr"> <head> <meta charset="UTF-8"> <title>Anello (algebra) - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )itwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t."," \t,"],"wgDigitTransformTable":["",""], "wgDefaultDateFormat":"dmy","wgMonthNames":["","gennaio","febbraio","marzo","aprile","maggio","giugno","luglio","agosto","settembre","ottobre","novembre","dicembre"],"wgRequestId":"6685bd8d-4733-419f-bbd6-de223e87f6c5","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Anello_(algebra)","wgTitle":"Anello (algebra)","wgCurRevisionId":138537220,"wgRevisionId":138537220,"wgArticleId":33544,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["P3365 letta da Wikidata","P5844 letta da Wikidata","P6706 letta da Wikidata","P9621 letta da Wikidata","P1417 letta da Wikidata","P3847 letta da Wikidata","P2812 letta da Wikidata","P7554 letta da Wikidata","Voci con codice Thesaurus BNCF","Voci con codice LCCN","Voci con codice GND","Voci con codice BNE","Voci con codice BNF","Voci con codice J9U","Voci non biografiche con codici di controllo di autorità", "Pagine che utilizzano collegamenti magici ISBN","Teoria degli anelli","Strutture algebriche"],"wgPageViewLanguage":"it","wgPageContentLanguage":"it","wgPageContentModel":"wikitext","wgRelevantPageName":"Anello_(algebra)","wgRelevantArticleId":33544,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgRedirectedFrom":"Anello_quoziente","wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"it","pageLanguageDir":"ltr","pageVariantFallbacks":"it"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":20000,"wgInternalRedirectTargetUrl":"/wiki/Anello_(algebra)#Ideali","wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage", "wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q161172","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.gadget.coloriDarkMode-default":"ready","ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init": "ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["mediawiki.action.view.redirect","ext.cite.ux-enhancements","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.MainPageWikiList","ext.gadget.stru-commonsupload","ext.gadget.HiddenCat","ext.gadget.ReferenceTooltips","ext.gadget.TitoloErrato","ext.gadget.NewSection","ext.gadget.RichiediRevisioneBozza","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=it&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=it&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=it&modules=ext.gadget.coloriDarkMode-default&only=styles&skin=vector-2022"> <link rel="stylesheet" href="/w/load.php?lang=it&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.5"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Anello (algebra) - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//it.m.wikipedia.org/wiki/Anello_(algebra)#Ideali"> <link rel="alternate" type="application/x-wiki" title="Modifica" href="/w/index.php?title=Anello_(algebra)&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (it)"> <link rel="EditURI" type="application/rsd+xml" href="//it.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://it.wikipedia.org/wiki/Anello_(algebra)#Ideali"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.it"> <link rel="alternate" type="application/atom+xml" title="Feed Atom di Wikipedia" href="/w/index.php?title=Speciale:UltimeModifiche&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Anello_algebra rootpage-Anello_algebra skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Vai al contenuto</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Sito"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Menu principale" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Menu principale</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Menu principale</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">sposta nella barra laterale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">nascondi</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigazione </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Pagina_principale" title="Visita la pagina principale [z]" accesskey="z"><span>Pagina principale</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Speciale:UltimeModifiche" title="Elenco delle ultime modifiche del sito [r]" accesskey="r"><span>Ultime modifiche</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Speciale:PaginaCasuale" title="Mostra una pagina a caso [x]" accesskey="x"><span>Una voce a caso</span></a></li><li id="n-nearby-pages-title" class="mw-list-item"><a href="/wiki/Speciale:NelleVicinanze"><span>Nelle vicinanze</span></a></li><li id="n-vetrina" class="mw-list-item"><a href="/wiki/Wikipedia:Vetrina"><span>Vetrina</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/Aiuto:Aiuto" title="Pagine di aiuto"><span>Aiuto</span></a></li><li id="n-Sportello-informazioni" class="mw-list-item"><a href="/wiki/Aiuto:Sportello_informazioni"><span>Sportello informazioni</span></a></li> </ul> </div> </div> <div id="p-Comunità" class="vector-menu mw-portlet mw-portlet-Comunità" > <div class="vector-menu-heading"> Comunità </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-portal" class="mw-list-item"><a href="/wiki/Portale:Comunit%C3%A0" title="Descrizione del progetto, cosa puoi fare, dove trovare le cose"><span>Portale Comunità</span></a></li><li id="n-villagepump" class="mw-list-item"><a href="/wiki/Wikipedia:Bar"><span>Bar</span></a></li><li id="n-wikipediano" class="mw-list-item"><a href="/wiki/Wikipedia:Wikipediano"><span>Il Wikipediano</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="/wiki/Wikipedia:Contatti"><span>Contatti</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Pagina_principale" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="L'enciclopedia libera" src="/static/images/mobile/copyright/wikipedia-tagline-it.svg" width="120" height="13" style="width: 7.5em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Speciale:Ricerca" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Cerca in Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Ricerca</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Cerca in Wikipedia" aria-label="Cerca in Wikipedia" autocapitalize="sentences" title="Cerca in Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Speciale:Ricerca"> </div> <button class="cdx-button cdx-search-input__end-button">Ricerca</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Strumenti personali"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Aspetto"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Modifica la dimensione, la larghezza e il colore del testo" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Aspetto" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Aspetto</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_it.wikipedia.org&uselang=it" class=""><span>Fai una donazione</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Speciale:CreaUtenza&returnto=Anello+%28algebra%29" title="Si consiglia di registrarsi e di effettuare l'accesso, anche se non è obbligatorio" class=""><span>registrati</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Speciale:Entra&returnto=Anello+%28algebra%29" title="Si consiglia di effettuare l'accesso, anche se non è obbligatorio [o]" accesskey="o" class=""><span>entra</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Altre opzioni" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Strumenti personali" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Strumenti personali</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="Menu utente" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_it.wikipedia.org&uselang=it"><span>Fai una donazione</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Speciale:CreaUtenza&returnto=Anello+%28algebra%29" title="Si consiglia di registrarsi e di effettuare l'accesso, anche se non è obbligatorio"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>registrati</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Speciale:Entra&returnto=Anello+%28algebra%29" title="Si consiglia di effettuare l'accesso, anche se non è obbligatorio [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>entra</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pagine per utenti anonimi <a href="/wiki/Aiuto:Benvenuto" aria-label="Ulteriori informazioni sulla contribuzione"><span>ulteriori informazioni</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Speciale:MieiContributi" title="Un elenco delle modifiche fatte da questo indirizzo IP [y]" accesskey="y"><span>contributi</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Speciale:MieDiscussioni" title="Discussioni sulle modifiche fatte da questo indirizzo IP [n]" accesskey="n"><span>discussioni</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Sito"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Indice" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Indice</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">sposta nella barra laterale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">nascondi</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">Inizio</div> </a> </li> <li id="toc-Definizione_formale" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Definizione_formale"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Definizione formale</span> </div> </a> <ul id="toc-Definizione_formale-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Esempi" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Esempi"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Esempi</span> </div> </a> <ul id="toc-Esempi-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Teoremi_di_base" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Teoremi_di_base"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Teoremi di base</span> </div> </a> <ul id="toc-Teoremi_di_base-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sottostrutture" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Sottostrutture"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Sottostrutture</span> </div> </a> <button aria-controls="toc-Sottostrutture-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Attiva/disattiva la sottosezione Sottostrutture</span> </button> <ul id="toc-Sottostrutture-sublist" class="vector-toc-list"> <li id="toc-Ideali" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Ideali"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Ideali</span> </div> </a> <ul id="toc-Ideali-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Elementi_invertibili" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Elementi_invertibili"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Elementi invertibili</span> </div> </a> <ul id="toc-Elementi_invertibili-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Omomorfismi" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Omomorfismi"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Omomorfismi</span> </div> </a> <ul id="toc-Omomorfismi-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Prodotto_diretto" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Prodotto_diretto"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Prodotto diretto</span> </div> </a> <ul id="toc-Prodotto_diretto-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Elementi_primi_ed_irriducibili" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Elementi_primi_ed_irriducibili"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Elementi primi ed irriducibili</span> </div> </a> <ul id="toc-Elementi_primi_ed_irriducibili-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Note" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Note"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Note</span> </div> </a> <ul id="toc-Note-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Bibliografia" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Bibliografia"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Bibliografia</span> </div> </a> <ul id="toc-Bibliografia-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Voci_correlate" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Voci_correlate"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>Voci correlate</span> </div> </a> <ul id="toc-Voci_correlate-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Altri_progetti" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Altri_progetti"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>Altri progetti</span> </div> </a> <ul id="toc-Altri_progetti-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Collegamenti_esterni" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Collegamenti_esterni"> <div class="vector-toc-text"> <span class="vector-toc-numb">13</span> <span>Collegamenti esterni</span> </div> </a> <ul id="toc-Collegamenti_esterni-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Indice" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Mostra/Nascondi l'indice" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Mostra/Nascondi l'indice</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Anello (algebra)</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Vai a una voce in un'altra lingua. Disponibile in 66 lingue" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-66" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">66 lingue</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%AD%D9%84%D9%82%D8%A9_(%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A%D8%A7%D8%AA)" title="حلقة (رياضيات) - arabo" lang="ar" hreflang="ar" data-title="حلقة (رياضيات)" data-language-autonym="العربية" data-language-local-name="arabo" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ba mw-list-item"><a href="https://ba.wikipedia.org/wiki/%D2%A0%D1%83%D0%BB%D1%81%D0%B0_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Ҡулса (математика) - baschiro" lang="ba" hreflang="ba" data-title="Ҡулса (математика)" data-language-autonym="Башҡортса" data-language-local-name="baschiro" class="interlanguage-link-target"><span>Башҡортса</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%9A%D0%B0%D0%BB%D1%8C%D1%86%D0%BE_(%D0%B0%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0)" title="Кальцо (алгебра) - bielorusso" lang="be" hreflang="be" data-title="Кальцо (алгебра)" data-language-autonym="Беларуская" data-language-local-name="bielorusso" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%9F%D1%80%D1%8A%D1%81%D1%82%D0%B5%D0%BD_(%D0%B0%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0)" title="Пръстен (алгебра) - bulgaro" lang="bg" hreflang="bg" data-title="Пръстен (алгебра)" data-language-autonym="Български" data-language-local-name="bulgaro" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Prsten_(matematika)" title="Prsten (matematika) - bosniaco" lang="bs" hreflang="bs" data-title="Prsten (matematika)" data-language-autonym="Bosanski" data-language-local-name="bosniaco" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Anell_(matem%C3%A0tiques)" title="Anell (matemàtiques) - catalano" lang="ca" hreflang="ca" data-title="Anell (matemàtiques)" data-language-autonym="Català" data-language-local-name="catalano" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Okruh_(algebra)" title="Okruh (algebra) - ceco" lang="cs" hreflang="cs" data-title="Okruh (algebra)" data-language-autonym="Čeština" data-language-local-name="ceco" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%A3%D0%BD%D0%BA%C4%83_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Ункă (математика) - ciuvascio" lang="cv" hreflang="cv" data-title="Ункă (математика)" data-language-autonym="Чӑвашла" data-language-local-name="ciuvascio" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Modrwy_(mathemateg)" title="Modrwy (mathemateg) - gallese" lang="cy" hreflang="cy" data-title="Modrwy (mathemateg)" data-language-autonym="Cymraeg" data-language-local-name="gallese" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Ring_(matematik)" title="Ring (matematik) - danese" lang="da" hreflang="da" data-title="Ring (matematik)" data-language-autonym="Dansk" data-language-local-name="danese" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Ring_(Algebra)" title="Ring (Algebra) - tedesco" lang="de" hreflang="de" data-title="Ring (Algebra)" data-language-autonym="Deutsch" data-language-local-name="tedesco" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%94%CE%B1%CE%BA%CF%84%CF%8D%CE%BB%CE%B9%CE%BF%CF%82_(%CE%AC%CE%BB%CE%B3%CE%B5%CE%B2%CF%81%CE%B1)" title="Δακτύλιος (άλγεβρα) - greco" lang="el" hreflang="el" data-title="Δακτύλιος (άλγεβρα)" data-language-autonym="Ελληνικά" data-language-local-name="greco" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Ring_(mathematics)" title="Ring (mathematics) - inglese" lang="en" hreflang="en" data-title="Ring (mathematics)" data-language-autonym="English" data-language-local-name="inglese" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Ringo_(algebro)" title="Ringo (algebro) - esperanto" lang="eo" hreflang="eo" data-title="Ringo (algebro)" data-language-autonym="Esperanto" data-language-local-name="esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Anillo_(matem%C3%A1tica)" title="Anillo (matemática) - spagnolo" lang="es" hreflang="es" data-title="Anillo (matemática)" data-language-autonym="Español" data-language-local-name="spagnolo" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Ring_(algebra)" title="Ring (algebra) - estone" lang="et" hreflang="et" data-title="Ring (algebra)" data-language-autonym="Eesti" data-language-local-name="estone" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Eraztun_(matematika)" title="Eraztun (matematika) - basco" lang="eu" hreflang="eu" data-title="Eraztun (matematika)" data-language-autonym="Euskara" data-language-local-name="basco" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%AD%D9%84%D9%82%D9%87_(%D8%B1%DB%8C%D8%A7%D8%B6%DB%8C%D8%A7%D8%AA)" title="حلقه (ریاضیات) - persiano" lang="fa" hreflang="fa" data-title="حلقه (ریاضیات)" data-language-autonym="فارسی" data-language-local-name="persiano" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Rengas_(matematiikka)" title="Rengas (matematiikka) - finlandese" lang="fi" hreflang="fi" data-title="Rengas (matematiikka)" data-language-autonym="Suomi" data-language-local-name="finlandese" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Anneau_(math%C3%A9matiques)" title="Anneau (mathématiques) - francese" lang="fr" hreflang="fr" data-title="Anneau (mathématiques)" data-language-autonym="Français" data-language-local-name="francese" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/F%C3%A1inne_(matamaitic)" title="Fáinne (matamaitic) - irlandese" lang="ga" hreflang="ga" data-title="Fáinne (matamaitic)" data-language-autonym="Gaeilge" data-language-local-name="irlandese" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Anel_(%C3%A1lxebra)" title="Anel (álxebra) - galiziano" lang="gl" hreflang="gl" data-title="Anel (álxebra)" data-language-autonym="Galego" data-language-local-name="galiziano" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%97%D7%95%D7%92_(%D7%9E%D7%91%D7%A0%D7%94_%D7%90%D7%9C%D7%92%D7%91%D7%A8%D7%99)" title="חוג (מבנה אלגברי) - ebraico" lang="he" hreflang="he" data-title="חוג (מבנה אלגברי)" data-language-autonym="עברית" data-language-local-name="ebraico" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Prsten_(matematika)" title="Prsten (matematika) - croato" lang="hr" hreflang="hr" data-title="Prsten (matematika)" data-language-autonym="Hrvatski" data-language-local-name="croato" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Gy%C5%B1r%C5%B1_(matematika)" title="Gyűrű (matematika) - ungherese" lang="hu" hreflang="hu" data-title="Gyűrű (matematika)" data-language-autonym="Magyar" data-language-local-name="ungherese" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D5%95%D5%B2%D5%A1%D5%AF_(%D5%B4%D5%A1%D5%A9%D5%A5%D5%B4%D5%A1%D5%BF%D5%AB%D5%AF%D5%A1)" title="Օղակ (մաթեմատիկա) - armeno" lang="hy" hreflang="hy" data-title="Օղակ (մաթեմատիկա)" data-language-autonym="Հայերեն" data-language-local-name="armeno" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-ia mw-list-item"><a href="https://ia.wikipedia.org/wiki/Anello_(algebra)" title="Anello (algebra) - interlingua" lang="ia" hreflang="ia" data-title="Anello (algebra)" data-language-autonym="Interlingua" data-language-local-name="interlingua" class="interlanguage-link-target"><span>Interlingua</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Gelanggang_(matematika)" title="Gelanggang (matematika) - indonesiano" lang="id" hreflang="id" data-title="Gelanggang (matematika)" data-language-autonym="Bahasa Indonesia" data-language-local-name="indonesiano" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E7%92%B0_(%E6%95%B0%E5%AD%A6)" title="環 (数学) - giapponese" lang="ja" hreflang="ja" data-title="環 (数学)" data-language-autonym="日本語" data-language-local-name="giapponese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%A0%E1%83%92%E1%83%9D%E1%83%9A%E1%83%98_(%E1%83%9B%E1%83%90%E1%83%97%E1%83%94%E1%83%9B%E1%83%90%E1%83%A2%E1%83%98%E1%83%99%E1%83%90)" title="რგოლი (მათემატიკა) - georgiano" lang="ka" hreflang="ka" data-title="რგოლი (მათემატიკა)" data-language-autonym="ქართული" data-language-local-name="georgiano" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-kn mw-list-item"><a href="https://kn.wikipedia.org/wiki/%E0%B2%B0%E0%B2%BF%E0%B2%82%E0%B2%97%E0%B3%8D" title="ರಿಂಗ್ - kannada" lang="kn" hreflang="kn" data-title="ರಿಂಗ್" data-language-autonym="ಕನ್ನಡ" data-language-local-name="kannada" class="interlanguage-link-target"><span>ಕನ್ನಡ</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%ED%99%98_(%EC%88%98%ED%95%99)" title="환 (수학) - coreano" lang="ko" hreflang="ko" data-title="환 (수학)" data-language-autonym="한국어" data-language-local-name="coreano" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Anellus" title="Anellus - latino" lang="la" hreflang="la" data-title="Anellus" data-language-autonym="Latina" data-language-local-name="latino" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-lb mw-list-item"><a href="https://lb.wikipedia.org/wiki/Rank_(Algeber)" title="Rank (Algeber) - lussemburghese" lang="lb" hreflang="lb" data-title="Rank (Algeber)" data-language-autonym="Lëtzebuergesch" data-language-local-name="lussemburghese" class="interlanguage-link-target"><span>Lëtzebuergesch</span></a></li><li class="interlanguage-link interwiki-lmo mw-list-item"><a href="https://lmo.wikipedia.org/wiki/Anell_(matematega)" title="Anell (matematega) - lombardo" lang="lmo" hreflang="lmo" data-title="Anell (matematega)" data-language-autonym="Lombard" data-language-local-name="lombardo" class="interlanguage-link-target"><span>Lombard</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%B5%E0%B4%B2%E0%B4%AF%E0%B4%82_(%E0%B4%97%E0%B4%A3%E0%B4%BF%E0%B4%A4%E0%B4%82)" title="വലയം (ഗണിതം) - malayalam" lang="ml" hreflang="ml" data-title="വലയം (ഗണിതം)" data-language-autonym="മലയാളം" data-language-local-name="malayalam" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-mr mw-list-item"><a href="https://mr.wikipedia.org/wiki/%E0%A4%B0%E0%A4%BF%E0%A4%82%E0%A4%97" title="रिंग - marathi" lang="mr" hreflang="mr" data-title="रिंग" data-language-autonym="मराठी" data-language-local-name="marathi" class="interlanguage-link-target"><span>मराठी</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Gelanggang_(matematik)" title="Gelanggang (matematik) - malese" lang="ms" hreflang="ms" data-title="Gelanggang (matematik)" data-language-autonym="Bahasa Melayu" data-language-local-name="malese" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Ring_(wiskunde)" title="Ring (wiskunde) - olandese" lang="nl" hreflang="nl" data-title="Ring (wiskunde)" data-language-autonym="Nederlands" data-language-local-name="olandese" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Ring_i_matematikk" title="Ring i matematikk - norvegese nynorsk" lang="nn" hreflang="nn" data-title="Ring i matematikk" data-language-autonym="Norsk nynorsk" data-language-local-name="norvegese nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Ring_(matematikk)" title="Ring (matematikk) - norvegese bokmål" lang="nb" hreflang="nb" data-title="Ring (matematikk)" data-language-autonym="Norsk bokmål" data-language-local-name="norvegese bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-nov mw-list-item"><a href="https://nov.wikipedia.org/wiki/Ringe_(matematike)" title="Ringe (matematike) - novial" lang="nov" hreflang="nov" data-title="Ringe (matematike)" data-language-autonym="Novial" data-language-local-name="novial" class="interlanguage-link-target"><span>Novial</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Pier%C5%9Bcie%C5%84_(matematyka)" title="Pierścień (matematyka) - polacco" lang="pl" hreflang="pl" data-title="Pierścień (matematyka)" data-language-autonym="Polski" data-language-local-name="polacco" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pms mw-list-item"><a href="https://pms.wikipedia.org/wiki/Anel" title="Anel - piemontese" lang="pms" hreflang="pms" data-title="Anel" data-language-autonym="Piemontèis" data-language-local-name="piemontese" class="interlanguage-link-target"><span>Piemontèis</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Anel_(matem%C3%A1tica)" title="Anel (matemática) - portoghese" lang="pt" hreflang="pt" data-title="Anel (matemática)" data-language-autonym="Português" data-language-local-name="portoghese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Inel_(matematic%C4%83)" title="Inel (matematică) - rumeno" lang="ro" hreflang="ro" data-title="Inel (matematică)" data-language-autonym="Română" data-language-local-name="rumeno" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BB%D1%8C%D1%86%D0%BE_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Кольцо (математика) - russo" lang="ru" hreflang="ru" data-title="Кольцо (математика)" data-language-autonym="Русский" data-language-local-name="russo" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-scn mw-list-item"><a href="https://scn.wikipedia.org/wiki/Aneddu_(matim%C3%A0tica)" title="Aneddu (matimàtica) - siciliano" lang="scn" hreflang="scn" data-title="Aneddu (matimàtica)" data-language-autonym="Sicilianu" data-language-local-name="siciliano" class="interlanguage-link-target"><span>Sicilianu</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Algebarski_prsten" title="Algebarski prsten - serbo-croato" lang="sh" hreflang="sh" data-title="Algebarski prsten" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="serbo-croato" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Ring_(mathematics)" title="Ring (mathematics) - Simple English" lang="en-simple" hreflang="en-simple" data-title="Ring (mathematics)" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Okruh_(algebra)" title="Okruh (algebra) - slovacco" lang="sk" hreflang="sk" data-title="Okruh (algebra)" data-language-autonym="Slovenčina" data-language-local-name="slovacco" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Kolobar_(algebra)" title="Kolobar (algebra) - sloveno" lang="sl" hreflang="sl" data-title="Kolobar (algebra)" data-language-autonym="Slovenščina" data-language-local-name="sloveno" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%90%D0%BB%D0%B3%D0%B5%D0%B1%D0%B0%D1%80%D1%81%D0%BA%D0%B8_%D0%BF%D1%80%D1%81%D1%82%D0%B5%D0%BD" title="Алгебарски прстен - serbo" lang="sr" hreflang="sr" data-title="Алгебарски прстен" data-language-autonym="Српски / srpski" data-language-local-name="serbo" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Ring_(matematik)" title="Ring (matematik) - svedese" lang="sv" hreflang="sv" data-title="Ring (matematik)" data-language-autonym="Svenska" data-language-local-name="svedese" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%B5%E0%AE%B3%E0%AF%88%E0%AE%AF%E0%AE%AE%E0%AF%8D_(%E0%AE%95%E0%AE%A3%E0%AE%BF%E0%AE%A4%E0%AE%AE%E0%AF%8D)" title="வளையம் (கணிதம்) - tamil" lang="ta" hreflang="ta" data-title="வளையம் (கணிதம்)" data-language-autonym="தமிழ்" data-language-local-name="tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%A3%E0%B8%B4%E0%B8%87_(%E0%B8%84%E0%B8%93%E0%B8%B4%E0%B8%95%E0%B8%A8%E0%B8%B2%E0%B8%AA%E0%B8%95%E0%B8%A3%E0%B9%8C)" title="ริง (คณิตศาสตร์) - thailandese" lang="th" hreflang="th" data-title="ริง (คณิตศาสตร์)" data-language-autonym="ไทย" data-language-local-name="thailandese" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Halka" title="Halka - turco" lang="tr" hreflang="tr" data-title="Halka" data-language-autonym="Türkçe" data-language-local-name="turco" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9A%D1%96%D0%BB%D1%8C%D1%86%D0%B5_(%D0%B0%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0)" title="Кільце (алгебра) - ucraino" lang="uk" hreflang="uk" data-title="Кільце (алгебра)" data-language-autonym="Українська" data-language-local-name="ucraino" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D8%AD%D9%84%D9%82%DB%81_(%D8%B1%DB%8C%D8%A7%D8%B6%DB%8C)" title="حلقہ (ریاضی) - urdu" lang="ur" hreflang="ur" data-title="حلقہ (ریاضی)" data-language-autonym="اردو" data-language-local-name="urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/V%C3%A0nh" title="Vành - vietnamita" lang="vi" hreflang="vi" data-title="Vành" data-language-autonym="Tiếng Việt" data-language-local-name="vietnamita" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-vls mw-list-item"><a href="https://vls.wikipedia.org/wiki/Rienk_(algebra)" title="Rienk (algebra) - fiammingo occidentale" lang="vls" hreflang="vls" data-title="Rienk (algebra)" data-language-autonym="West-Vlams" data-language-local-name="fiammingo occidentale" class="interlanguage-link-target"><span>West-Vlams</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E7%8E%AF%EF%BC%88%E4%BB%A3%E6%95%B0%EF%BC%89" title="环(代数) - wu" lang="wuu" hreflang="wuu" data-title="环(代数)" data-language-autonym="吴语" data-language-local-name="wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E7%8E%AF_(%E4%BB%A3%E6%95%B0)" title="环 (代数) - cinese" lang="zh" hreflang="zh" data-title="环 (代数)" data-language-autonym="中文" data-language-local-name="cinese" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-zh-classical mw-list-item"><a href="https://zh-classical.wikipedia.org/wiki/%E7%92%B0_(%E4%BB%A3%E6%95%B8)" title="環 (代數) - cinese classico" lang="lzh" hreflang="lzh" data-title="環 (代數)" data-language-autonym="文言" data-language-local-name="cinese classico" class="interlanguage-link-target"><span>文言</span></a></li><li class="interlanguage-link interwiki-zh-min-nan mw-list-item"><a href="https://zh-min-nan.wikipedia.org/wiki/Kh%C3%B4an" title="Khôan - min nan" lang="nan" hreflang="nan" data-title="Khôan" data-language-autonym="閩南語 / Bân-lâm-gú" data-language-local-name="min nan" class="interlanguage-link-target"><span>閩南語 / Bân-lâm-gú</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E7%92%B0_(%E4%BB%A3%E6%95%B8)" title="環 (代數) - cantonese" lang="yue" hreflang="yue" data-title="環 (代數)" data-language-autonym="粵語" data-language-local-name="cantonese" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q161172#sitelinks-wikipedia" title="Modifica collegamenti interlinguistici" class="wbc-editpage">Modifica collegamenti</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespace"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Anello_(algebra)" title="Vedi la voce [c]" accesskey="c"><span>Voce</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Discussione:Anello_(algebra)" rel="discussion" title="Vedi le discussioni relative a questa pagina [t]" accesskey="t"><span>Discussione</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Cambia versione linguistica" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">italiano</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Visite"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Anello_(algebra)"><span>Leggi</span></a></li><li id="ca-ve-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Anello_(algebra)&veaction=edit" title="Modifica questa pagina [v]" accesskey="v"><span>Modifica</span></a></li><li id="ca-edit" class="collapsible vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Anello_(algebra)&action=edit" title="Modifica il wikitesto di questa pagina [e]" accesskey="e"><span>Modifica wikitesto</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Anello_(algebra)&action=history" title="Versioni precedenti di questa pagina [h]" accesskey="h"><span>Cronologia</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Strumenti pagine"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Strumenti" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Strumenti</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Strumenti</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">sposta nella barra laterale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">nascondi</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="Altre opzioni" > <div class="vector-menu-heading"> Azioni </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Anello_(algebra)"><span>Leggi</span></a></li><li id="ca-more-ve-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Anello_(algebra)&veaction=edit" title="Modifica questa pagina [v]" accesskey="v"><span>Modifica</span></a></li><li id="ca-more-edit" class="collapsible vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Anello_(algebra)&action=edit" title="Modifica il wikitesto di questa pagina [e]" accesskey="e"><span>Modifica wikitesto</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Anello_(algebra)&action=history"><span>Cronologia</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> Generale </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Speciale:PuntanoQui/Anello_(algebra)" title="Elenco di tutte le pagine che sono collegate a questa [j]" accesskey="j"><span>Puntano qui</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Speciale:ModificheCorrelate/Anello_(algebra)" rel="nofollow" title="Elenco delle ultime modifiche alle pagine collegate a questa [k]" accesskey="k"><span>Modifiche correlate</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Speciale:PagineSpeciali" title="Elenco di tutte le pagine speciali [q]" accesskey="q"><span>Pagine speciali</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Anello_(algebra)&oldid=138537220" title="Collegamento permanente a questa versione di questa pagina"><span>Link permanente</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Anello_(algebra)&action=info" title="Ulteriori informazioni su questa pagina"><span>Informazioni pagina</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Speciale:Cita&page=Anello_%28algebra%29&id=138537220&wpFormIdentifier=titleform" title="Informazioni su come citare questa pagina"><span>Cita questa voce</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Speciale:UrlShortener&url=https%3A%2F%2Fit.wikipedia.org%2Fwiki%2FAnello_%28algebra%29%23Ideali"><span>Ottieni URL breve</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Speciale:QrCode&url=https%3A%2F%2Fit.wikipedia.org%2Fwiki%2FAnello_%28algebra%29%23Ideali"><span>Scarica codice QR</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Stampa/esporta </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=Speciale:Libro&bookcmd=book_creator&referer=Anello+%28algebra%29"><span>Crea un libro</span></a></li><li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Speciale:DownloadAsPdf&page=Anello_%28algebra%29&action=show-download-screen"><span>Scarica come PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Anello_(algebra)&printable=yes" title="Versione stampabile di questa pagina [p]" accesskey="p"><span>Versione stampabile</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In altri progetti </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q161172" title="Collegamento all'elemento connesso dell'archivio dati [g]" accesskey="g"><span>Elemento Wikidata</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Strumenti pagine"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Aspetto"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Aspetto</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">sposta nella barra laterale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">nascondi</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">Da Wikipedia, l'enciclopedia libera.</div> </div> <div id="contentSub"><div id="mw-content-subtitle"><span class="mw-redirectedfrom">(Reindirizzamento da <strong><a href="/w/index.php?title=Anello_quoziente&redirect=no" class="mw-redirect" title="Anello quoziente">Anello quoziente</a></strong>)</span></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="it" dir="ltr"><p>In <a href="/wiki/Matematica" title="Matematica">matematica</a>, in particolare in <a href="/wiki/Algebra_astratta" title="Algebra astratta">algebra astratta</a>, un <b>anello</b> è una <a href="/wiki/Struttura_algebrica" title="Struttura algebrica">struttura algebrica</a> composta da un <a href="/wiki/Insieme" title="Insieme">insieme</a> su cui sono definite due <a href="/wiki/Operazione_binaria" title="Operazione binaria">operazioni binarie</a>, chiamate <i>somma</i> e <i>prodotto</i>, indicate rispettivamente con <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle +}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>+</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle +}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe6ef363cd19902d1a7a71fb1c8b21e8ede52406" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle +}"></span> e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cdot }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>⋅<!-- ⋅ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cdot }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba2c023bad1bd39ed49080f729cbf26bc448c9ba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.439ex; margin-bottom: -0.61ex; width:0.647ex; height:1.176ex;" alt="{\displaystyle \cdot }"></span>, che godono di proprietà simili a quelle verificate dai <a href="/wiki/Numeri_interi" class="mw-redirect" title="Numeri interi">numeri interi</a>. La parte della matematica che li studia è detta <a href="/wiki/Teoria_degli_anelli" title="Teoria degli anelli">teoria degli anelli</a>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Definizione_formale">Definizione formale</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Anello_(algebra)&veaction=edit&section=1" title="Modifica la sezione Definizione formale" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Anello_(algebra)&action=edit&section=1" title="Edit section's source code: Definizione formale"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>L'insieme <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>, dotato di due operazioni binarie <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle +}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>+</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle +}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe6ef363cd19902d1a7a71fb1c8b21e8ede52406" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle +}"></span> e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cdot }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>⋅<!-- ⋅ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cdot }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba2c023bad1bd39ed49080f729cbf26bc448c9ba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.439ex; margin-bottom: -0.61ex; width:0.647ex; height:1.176ex;" alt="{\displaystyle \cdot }"></span>, è un <b>anello</b> se valgono le seguenti proprietà: </p> <div style="float:center; width:85%; padding:15px; background: #f5f8ff; border: 1px solid blue; margin-left:8px; margin-right:8px;margin-bottom:15px; text-align:left"> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (A,+)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>A</mi> <mo>,</mo> <mo>+</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (A,+)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dfc1aea157994289d7d45060934d3815375eab3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.394ex; height:2.843ex;" alt="{\displaystyle (A,+)}"></span> è un <a href="/wiki/Gruppo_abeliano" title="Gruppo abeliano">gruppo abeliano</a> con elemento neutro <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span>: </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a+b)+c=a+(b+c),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>c</mi> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mi>b</mi> <mo>+</mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a+b)+c=a+(b+c),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2d9ef0c0de1b5d2c1f7680a8313854caa5598b11" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.194ex; height:2.843ex;" alt="{\displaystyle (a+b)+c=a+(b+c),}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a+b=b+a,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>=</mo> <mi>b</mi> <mo>+</mo> <mi>a</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a+b=b+a,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7469643daa10de0ce1f4b7e05d7e48073bad55de" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.881ex; height:2.509ex;" alt="{\displaystyle a+b=b+a,}"></span></li> <li>esiste un elemento <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0\in A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>∈<!-- ∈ --></mo> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0\in A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f0a44a271c9cd47d6bc48ccf20be46f9fabb480" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.746ex; height:2.176ex;" alt="{\displaystyle 0\in A}"></span> tale che <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0+a=a+0=a,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>+</mo> <mi>a</mi> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mn>0</mn> <mo>=</mo> <mi>a</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0+a=a+0=a,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb3b283ae50a02256ec7b2596df87f11551f7766" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:18.539ex; height:2.509ex;" alt="{\displaystyle 0+a=a+0=a,}"></span></li> <li>per ogni <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\in A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>∈<!-- ∈ --></mo> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\in A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a97387981adb5d65f74518e20b6785a284d7abd5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.814ex; height:2.176ex;" alt="{\displaystyle a\in A}"></span> esiste un elemento <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -a\in A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>−<!-- − --></mo> <mi>a</mi> <mo>∈<!-- ∈ --></mo> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -a\in A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2d3236fd5c1b775219364d3111af07884c177682" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:7.622ex; height:2.343ex;" alt="{\displaystyle -a\in A}"></span> tale che <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a+(-a)=(-a)+a=0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>a</mi> <mo>=</mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a+(-a)=(-a)+a=0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6972ab779a6de72f5e7083afa6f942113e8e7284" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.841ex; height:2.843ex;" alt="{\displaystyle a+(-a)=(-a)+a=0.}"></span></li></ul> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (A,\cdot )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>A</mi> <mo>,</mo> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (A,\cdot )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6ac43a0ba7d67fce39388e04b490963050f097d5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.233ex; height:2.843ex;" alt="{\displaystyle (A,\cdot )}"></span> è un <a href="/wiki/Semigruppo" title="Semigruppo">semigruppo</a>: </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a\cdot b)\cdot c=a\cdot (b\cdot c).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>⋅<!-- ⋅ --></mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mi>c</mi> <mo>=</mo> <mi>a</mi> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mi>b</mi> <mo>⋅<!-- ⋅ --></mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a\cdot b)\cdot c=a\cdot (b\cdot c).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b5bff37a8d7773bb7a58b4ac9fcee5f127fddd6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.549ex; height:2.843ex;" alt="{\displaystyle (a\cdot b)\cdot c=a\cdot (b\cdot c).}"></span></li></ul> <p>La moltiplicazione è <a href="/wiki/Distributivit%C3%A0" title="Distributività">distributiva</a> rispetto alla somma: </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\cdot (b+c)=(a\cdot b)+(a\cdot c),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mi>b</mi> <mo>+</mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>⋅<!-- ⋅ --></mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>⋅<!-- ⋅ --></mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\cdot (b+c)=(a\cdot b)+(a\cdot c),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9cb27c6df893197ec9e6bedadd571321f8ae8d93" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:27.59ex; height:2.843ex;" alt="{\displaystyle a\cdot (b+c)=(a\cdot b)+(a\cdot c),}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a+b)\cdot c=(a\cdot c)+(b\cdot c).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mi>c</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>⋅<!-- ⋅ --></mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mi>b</mi> <mo>⋅<!-- ⋅ --></mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a+b)\cdot c=(a\cdot c)+(b\cdot c).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8110a1dee44fe7f6c1bac904e27305f3644aa1c7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:27.367ex; height:2.843ex;" alt="{\displaystyle (a+b)\cdot c=(a\cdot c)+(b\cdot c).}"></span></li></ul> <p>Le relazioni devono valere per ogni <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>. </p> </div> <p>Come per i numeri, il simbolo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cdot }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>⋅<!-- ⋅ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cdot }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba2c023bad1bd39ed49080f729cbf26bc448c9ba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.439ex; margin-bottom: -0.61ex; width:0.647ex; height:1.176ex;" alt="{\displaystyle \cdot }"></span> per la moltiplicazione è spesso omesso. </p><p>Spesso vengono studiati anelli che posseggono ulteriori proprietà: se anche la moltiplicazione è commutativa, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> è detto <i><a href="/wiki/Anello_commutativo" title="Anello commutativo">anello commutativo</a></i>, se ammette un <a href="/wiki/Elemento_neutro" title="Elemento neutro">elemento neutro</a> (generalmente indicato con <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"></span>; cioè <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (A,\cdot )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>A</mi> <mo>,</mo> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (A,\cdot )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6ac43a0ba7d67fce39388e04b490963050f097d5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.233ex; height:2.843ex;" alt="{\displaystyle (A,\cdot )}"></span> è un <a href="/wiki/Monoide" title="Monoide">monoide</a>) allora l'anello è <i>unitario</i>; se poi l'anello è commutativo e non esistono divisori dello <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span> (cioè se <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ab=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mi>b</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ab=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1a59b821cbfde052e05d53bf5f013cbb97a6bbd6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.488ex; height:2.176ex;" alt="{\displaystyle ab=0}"></span> allora almeno uno tra <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> è <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span>) si è in presenza di un <a href="/wiki/Dominio_d%27integrit%C3%A0" title="Dominio d'integrità">dominio d'integrità</a>. </p><p>Un <a href="/wiki/Corpo_(matematica)" title="Corpo (matematica)">corpo</a> è un anello con unità i cui elementi non nulli hanno inverso moltiplicativo. Un <a href="/wiki/Campo_(matematica)" title="Campo (matematica)">campo</a> è un anello commutativo con unità i cui elementi non nulli hanno inverso moltiplicativo, ossia un corpo commutativo. L'esempio più importante di corpo non commutativo è il corpo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {H} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">H</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {H} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e050965453c42bcc6bd544546703c836bdafeac9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \mathbb {H} }"></span> dei <a href="/wiki/Quaternioni" class="mw-redirect" title="Quaternioni">quaternioni</a>, mentre gli insiemi <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Q} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Q} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5909f0b54e4718fa24d5fd34d54189d24a66e9a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.808ex; height:2.509ex;" alt="{\displaystyle \mathbb {Q} }"></span> (<a href="/wiki/Numero_razionale" title="Numero razionale">numeri razionali</a>), <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span> (<a href="/wiki/Numero_reale" title="Numero reale">numeri reali</a>) e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9add4085095b9b6d28d045fd9c92c2c09f549a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {C} }"></span> (<a href="/wiki/Numero_complesso" title="Numero complesso">numeri complessi</a>) sono esempi di campi. </p><p>A volte la definizione di anello è lievemente diversa. La più importante di queste differenze è la richiesta che l'anello possegga anche l'unità: tra i matematici che adottano questa definizione vi sono <a href="/wiki/Nicolas_Bourbaki" title="Nicolas Bourbaki">Bourbaki</a><sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> e <a href="/wiki/Serge_Lang" title="Serge Lang">Serge Lang</a><sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup>. In questo caso, per riferirsi alla struttura qui presentata come anello, viene usato il termine <i>pseudoanello</i>. Altri autori non richiedono l'associatività del prodotto <sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup>. </p> <div class="mw-heading mw-heading2"><h2 id="Esempi">Esempi</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Anello_(algebra)&veaction=edit&section=2" title="Modifica la sezione Esempi" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Anello_(algebra)&action=edit&section=2" title="Edit section's source code: Esempi"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>L'esempio più basilare della struttura di anello è l'insieme <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/449494a083e0a1fda2b61c62b2f09b6bee4633dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.176ex;" alt="{\displaystyle \mathbb {Z} }"></span> dei <a href="/wiki/Numeri_interi" class="mw-redirect" title="Numeri interi">numeri interi</a>, dotato delle usuali operazioni di somma e prodotto. Tale anello è commutativo ed è un dominio d'integrità. L'insieme dei <a href="/wiki/Numero_naturale" title="Numero naturale">numeri naturali</a> non è invece un anello, perché non esistono gli inversi rispetto all'addizione. </p><p>Allo stesso modo, l'insieme <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A[x]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo stretchy="false">[</mo> <mi>x</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A[x]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7d5d3b3ae4cfb46d3ef305e5d7dcb130f10e468" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.366ex; height:2.843ex;" alt="{\displaystyle A[x]}"></span> dei <a href="/wiki/Polinomio" title="Polinomio">polinomi</a> con variabile <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>, e coefficienti in un anello <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>, è un anello con le usuali operazioni di somma e prodotto fra polinomi. Tale anello eredita molte proprietà da quelle di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>, quali la <a href="/wiki/Commutativit%C3%A0" title="Commutatività">commutatività</a> e l'assenza di divisori dello 0. Anche l'insieme <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(X,A)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo>,</mo> <mi>A</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(X,A)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b5e51ddad4d910456b33a14cd87f0026b11fa54" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.307ex; height:2.843ex;" alt="{\displaystyle F(X,A)}"></span> delle <a href="/wiki/Funzione_(matematica)" title="Funzione (matematica)">funzioni</a> da un insieme qualsiasi <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> ad un anello <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> forma un altro anello con le usuali operazioni di somma e prodotto fra funzioni punto a punto, definite nel modo seguente: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (f+g)(x)=f(x)+g(x),\quad (f\cdot g)(x)=f(x)\cdot g(x).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>f</mi> <mo>+</mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mspace width="1em" /> <mo stretchy="false">(</mo> <mi>f</mi> <mo>⋅<!-- ⋅ --></mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (f+g)(x)=f(x)+g(x),\quad (f\cdot g)(x)=f(x)\cdot g(x).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c61d234f510712c6bce3cdcd277923912ca5b389" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:51.27ex; height:2.843ex;" alt="{\displaystyle (f+g)(x)=f(x)+g(x),\quad (f\cdot g)(x)=f(x)\cdot g(x).}"></span></dd></dl> <p>Un anello non commutativo è invece l'anello delle matrici <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\times n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>×<!-- × --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\times n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59d2b4cb72e304526cf5b5887147729ea259da78" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.63ex; height:1.676ex;" alt="{\displaystyle n\times n}"></span> (con <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\geq 2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>≥<!-- ≥ --></mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\geq 2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e6bf67f9d06ca3af619657f8d20ee1322da77174" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.656ex; height:2.343ex;" alt="{\displaystyle n\geq 2}"></span>) a valori in un anello <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> (indicato con <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M(n,A)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>A</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M(n,A)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/17b80dc1abaa8a6cc3867de2da7a863cadffe966" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.423ex; height:2.843ex;" alt="{\displaystyle M(n,A)}"></span>), con le operazioni di <a href="/wiki/Somma_fra_matrici" class="mw-redirect" title="Somma fra matrici">somma</a> e <a href="/wiki/Prodotto_fra_matrici" class="mw-redirect" title="Prodotto fra matrici">prodotto fra matrici</a>. Generalmente questo anello possiede anche dei divisori dello zero. Ad esempio, in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M(2,\mathbb {R} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M(2,\mathbb {R} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b4e0e643a78f079d3f4276db8b7697b951c47b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.126ex; height:2.843ex;" alt="{\displaystyle M(2,\mathbb {R} )}"></span> valgono le relazioni: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{pmatrix}1&1\\0&1\\\end{pmatrix}}\cdot {\begin{pmatrix}1&1\\1&0\\\end{pmatrix}}={\begin{pmatrix}2&1\\1&0\\\end{pmatrix}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>2</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{pmatrix}1&1\\0&1\\\end{pmatrix}}\cdot {\begin{pmatrix}1&1\\1&0\\\end{pmatrix}}={\begin{pmatrix}2&1\\1&0\\\end{pmatrix}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e28088ec5e80431b5521e0d4c357023e032fe823" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:31.885ex; height:6.176ex;" alt="{\displaystyle {\begin{pmatrix}1&1\\0&1\\\end{pmatrix}}\cdot {\begin{pmatrix}1&1\\1&0\\\end{pmatrix}}={\begin{pmatrix}2&1\\1&0\\\end{pmatrix}},}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{pmatrix}1&1\\1&0\\\end{pmatrix}}\cdot {\begin{pmatrix}1&1\\0&1\\\end{pmatrix}}={\begin{pmatrix}1&2\\1&1\\\end{pmatrix}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{pmatrix}1&1\\1&0\\\end{pmatrix}}\cdot {\begin{pmatrix}1&1\\0&1\\\end{pmatrix}}={\begin{pmatrix}1&2\\1&1\\\end{pmatrix}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7b466b341f9d7d52c71af41e08e1e32a9b6c8bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:31.885ex; height:6.176ex;" alt="{\displaystyle {\begin{pmatrix}1&1\\1&0\\\end{pmatrix}}\cdot {\begin{pmatrix}1&1\\0&1\\\end{pmatrix}}={\begin{pmatrix}1&2\\1&1\\\end{pmatrix}},}"></span></dd></dl> <p>e </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{pmatrix}1&0\\0&0\end{pmatrix}}\cdot {\begin{pmatrix}0&0\\0&1\end{pmatrix}}={\begin{pmatrix}0&0\\0&0\end{pmatrix}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{pmatrix}1&0\\0&0\end{pmatrix}}\cdot {\begin{pmatrix}0&0\\0&1\end{pmatrix}}={\begin{pmatrix}0&0\\0&0\end{pmatrix}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c881bb61eac739f55a30984c670076abc2dc17e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:31.885ex; height:6.176ex;" alt="{\displaystyle {\begin{pmatrix}1&0\\0&0\end{pmatrix}}\cdot {\begin{pmatrix}0&0\\0&1\end{pmatrix}}={\begin{pmatrix}0&0\\0&0\end{pmatrix}}.}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Teoremi_di_base">Teoremi di base</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Anello_(algebra)&veaction=edit&section=3" title="Modifica la sezione Teoremi di base" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Anello_(algebra)&action=edit&section=3" title="Edit section's source code: Teoremi di base"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A partire dagli assiomi, si può dedurre immediatamente che per ogni <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> in un anello <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>: </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0a=a0=0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mi>a</mi> <mo>=</mo> <mi>a</mi> <mn>0</mn> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0a=a0=0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4e4fd52dadf32ed43f74264a38e5240a89d673ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.791ex; height:2.509ex;" alt="{\displaystyle 0a=a0=0,}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (-a)b=a(-b)=-(ab).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> <mi>b</mi> <mo>=</mo> <mi>a</mi> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>b</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (-a)b=a(-b)=-(ab).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e3562f9447a504c11fcd9791d532646ac0c62136" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.378ex; height:2.843ex;" alt="{\displaystyle (-a)b=a(-b)=-(ab).}"></span></li></ul> <p>Se poi l'anello <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> è unitario, allora </p> <ul><li>l'unità è unica,</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (-1)a=-a,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>a</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mi>a</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (-1)a=-a,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/560b864c528b70d13fff616fed1a3295f81180a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.793ex; height:2.843ex;" alt="{\displaystyle (-1)a=-a,}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (ab)^{-1}=b^{-1}a^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mi>b</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (ab)^{-1}=b^{-1}a^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d2f5c96926b3d8867843b4df0ccc01709d76a45f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.361ex; height:3.176ex;" alt="{\displaystyle (ab)^{-1}=b^{-1}a^{-1}}"></span> se <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> hanno inversi rispetto al prodotto,</li> <li>se <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a2bb1a7bcdbd7e274b7b8581e4357f09dbeee7fa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.423ex; height:2.176ex;" alt="{\displaystyle 0=1}"></span> allora l'anello è formato da un solo elemento,</li></ul> <p>Un altro importante teorema, che non richiede l'esistenza dell'unità, è il <a href="/wiki/Teorema_del_binomio" class="mw-redirect" title="Teorema del binomio">teorema del binomio</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x+y)^{n}=\sum _{k=0}^{n}{n \choose k}x^{k}y^{n-k},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>y</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mi>k</mi> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x+y)^{n}=\sum _{k=0}^{n}{n \choose k}x^{k}y^{n-k},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a373be626cc84c1a74fb0e6df074fe5247a20775" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:27.589ex; height:7.009ex;" alt="{\displaystyle (x+y)^{n}=\sum _{k=0}^{n}{n \choose k}x^{k}y^{n-k},}"></span></dd></dl> <p>valido per ogni coppia di elementi <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> che commutano (cioè tali che <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle xy=yx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mi>y</mi> <mo>=</mo> <mi>y</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle xy=yx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f2b203fa309e89fccdbba22909c8418f6b229779" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.069ex; height:2.009ex;" alt="{\displaystyle xy=yx}"></span>). </p> <div class="mw-heading mw-heading2"><h2 id="Sottostrutture">Sottostrutture</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Anello_(algebra)&veaction=edit&section=4" title="Modifica la sezione Sottostrutture" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Anello_(algebra)&action=edit&section=4" title="Edit section's source code: Sottostrutture"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Un <i>sottoanello</i> di un anello <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> è un <a href="/wiki/Sottogruppo" title="Sottogruppo">sottogruppo</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (A,+)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>A</mi> <mo>,</mo> <mo>+</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (A,+)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dfc1aea157994289d7d45060934d3815375eab3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.394ex; height:2.843ex;" alt="{\displaystyle (A,+)}"></span> che sia chiuso rispetto al prodotto. In altre parole, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> è un sottoinsieme non vuoto di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>, e se <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> sono in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span>, allora anche <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a-b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>−<!-- − --></mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a-b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b80866c2bf2f1bc1f2e4c97e7937f5663150ea6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.068ex; height:2.343ex;" alt="{\displaystyle a-b}"></span> e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ab}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ab}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/49337c5cf256196e2292f7047cb5da68c24ca95d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.227ex; height:2.176ex;" alt="{\displaystyle ab}"></span> sono in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span>. Poiché gli assiomi elencati sopra continuano a valere per <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span>, anch'esso è un anello rispetto alle operazioni <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle +}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>+</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle +}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe6ef363cd19902d1a7a71fb1c8b21e8ede52406" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle +}"></span> e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cdot }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>⋅<!-- ⋅ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cdot }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba2c023bad1bd39ed49080f729cbf26bc448c9ba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.439ex; margin-bottom: -0.61ex; width:0.647ex; height:1.176ex;" alt="{\displaystyle \cdot }"></span> di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>. In questo modo costruiamo facilmente altri esempi: </p> <ul><li>I numeri interi divisibili per <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> sono un sottoanello di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/449494a083e0a1fda2b61c62b2f09b6bee4633dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.176ex;" alt="{\displaystyle \mathbb {Z} }"></span>.</li> <li>I numeri razionali con denominatore dispari sono un sottoanello di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Q} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Q} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5909f0b54e4718fa24d5fd34d54189d24a66e9a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.808ex; height:2.509ex;" alt="{\displaystyle \mathbb {Q} }"></span>.</li> <li>L'insieme di tutti i numeri reali della forma <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a+b{\sqrt {2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a+b{\sqrt {2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/877dd3d823e76cc8a009e06ebf9d95cd4ca9ec9a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.166ex; height:3.009ex;" alt="{\displaystyle a+b{\sqrt {2}}}"></span> con <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> interi è un sottoanello di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span>.</li> <li>Gli <a href="/wiki/Interi_gaussiani" class="mw-redirect" title="Interi gaussiani">interi gaussiani</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a+bi}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a+bi}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a92f853c2c9235c06be640b91b7c75e2a907cbda" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.87ex; height:2.343ex;" alt="{\displaystyle a+bi}"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9add4085095b9b6d28d045fd9c92c2c09f549a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {C} }"></span>, dove <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> sono interi, sono un sottoanello di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9add4085095b9b6d28d045fd9c92c2c09f549a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {C} }"></span>.</li> <li>I polinomi in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A[x]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo stretchy="false">[</mo> <mi>x</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A[x]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7d5d3b3ae4cfb46d3ef305e5d7dcb130f10e468" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.366ex; height:2.843ex;" alt="{\displaystyle A[x]}"></span> del tipo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p(x)=a_{0}+a_{1}x^{2}+a_{2}x^{4}+\dots +a_{n}x^{2n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p(x)=a_{0}+a_{1}x^{2}+a_{2}x^{4}+\dots +a_{n}x^{2n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fca735b23b351483862225989c028a03990b6b16" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:39.02ex; height:3.176ex;" alt="{\displaystyle p(x)=a_{0}+a_{1}x^{2}+a_{2}x^{4}+\dots +a_{n}x^{2n}}"></span> sono un sottoanello di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A[x]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo stretchy="false">[</mo> <mi>x</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A[x]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7d5d3b3ae4cfb46d3ef305e5d7dcb130f10e468" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.366ex; height:2.843ex;" alt="{\displaystyle A[x]}"></span>.</li> <li>L'insieme delle <a href="/wiki/Frazione_diadica" title="Frazione diadica">frazioni diadiche</a> costituisce un sottoanello dei <a href="/wiki/Numeri_razionali" class="mw-redirect" title="Numeri razionali">numeri razionali</a>.</li></ul> <p>Un particolare sottoanello è il <i>centro</i> di un anello <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>: esso comprende tutti gli elementi che commutano (moltiplicativamente) con qualsiasi elemento di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>. Esso coincide con l'intero anello se e solo se <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> è un anello commutativo. </p><p>A partire da un sottoanello <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> e da un sottoinsieme <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span>, si può costruire il più piccolo sottoanello contenente <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> ed <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span>: esso è indicato con <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S[X]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo stretchy="false">[</mo> <mi>X</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S[X]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/60b534fdefb1a6c61550b00f2343c639364b3a19" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.773ex; height:2.843ex;" alt="{\displaystyle S[X]}"></span>, ed è uguale all'insieme delle combinazioni degli elementi di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S\cup X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo>∪<!-- ∪ --></mo> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S\cup X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86e90682ddc77b37b8afb4cd9930dff24ab54366" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.062ex; height:2.176ex;" alt="{\displaystyle S\cup X}"></span> mediante le operazioni di anello. Tale operazione è detta <a href="/wiki/Estensione_di_anelli" title="Estensione di anelli">estensione di anelli</a>, ed è "finitamente generata" se <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> è finito. </p> <div class="mw-heading mw-heading3"><h3 id="Ideali">Ideali</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Anello_(algebra)&veaction=edit&section=5" title="Modifica la sezione Ideali" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Anello_(algebra)&action=edit&section=5" title="Edit section's source code: Ideali"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r130657691">body:not(.skin-minerva) .mw-parser-output .vedi-anche{font-size:95%}</style><style data-mw-deduplicate="TemplateStyles:r139142988">.mw-parser-output .hatnote-content{align-items:center;display:flex}.mw-parser-output .hatnote-icon{flex-shrink:0}.mw-parser-output .hatnote-icon img{display:flex}.mw-parser-output .hatnote-text{font-style:italic}body:not(.skin-minerva) .mw-parser-output .hatnote{border:1px solid #CCC;display:flex;margin:.5em 0;padding:.2em .5em}body:not(.skin-minerva) .mw-parser-output .hatnote-text{padding-left:.5em}body.skin-minerva .mw-parser-output .hatnote-icon{padding-right:8px}body.skin-minerva .mw-parser-output .hatnote-icon img{height:auto;width:16px}body.skin--responsive .mw-parser-output .hatnote a.new{color:#d73333}body.skin--responsive .mw-parser-output .hatnote a.new:visited{color:#a55858}</style> <div class="hatnote noprint vedi-anche"> <div class="hatnote-content"><span class="noviewer hatnote-icon" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/87/Magnifying_glass_icon_mgx2.svg/18px-Magnifying_glass_icon_mgx2.svg.png" decoding="async" width="18" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/87/Magnifying_glass_icon_mgx2.svg/27px-Magnifying_glass_icon_mgx2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/87/Magnifying_glass_icon_mgx2.svg/36px-Magnifying_glass_icon_mgx2.svg.png 2x" data-file-width="286" data-file-height="280" /></span></span> <span class="hatnote-text">Lo stesso argomento in dettaglio: <b><a href="/wiki/Ideale_(matematica)" title="Ideale (matematica)">Ideale (matematica)</a></b>.</span></div> </div> <p>Spesso tuttavia al posto di questa struttura si preferisce usare quella, più forte, di <i><a href="/wiki/Ideale_(matematica)" title="Ideale (matematica)">ideale</a></i>: esso è definito in un anello commutativo come un particolare sottoanello tale che tutti i prodotti <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ai}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ai}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe7a4dfee31e3a8478095dbd51b56b5926133ebb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.032ex; height:2.176ex;" alt="{\displaystyle ai}"></span>, dove <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> è un elemento dell'anello e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span> appartiene all'ideale, sono ancora elementi dell'ideale. Se invece l'anello non è commutativo, è necessario distinguere tra ideali <i>destri</i> e <i>sinistri</i>: i primi sono quelli tali che <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ia}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ia}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d8ce70c0dde9328b262762848c39dc0398a172aa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.032ex; height:2.176ex;" alt="{\displaystyle ia}"></span> appartiene all'ideale per ogni <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span> nell'ideale e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> nell'anello, mentre per i secondi, allo stesso modo, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ai}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ai}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe7a4dfee31e3a8478095dbd51b56b5926133ebb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.032ex; height:2.176ex;" alt="{\displaystyle ai}"></span> appartiene all'ideale. Se un ideale è sia destro che sinistro, viene detto <i>bilatero</i> o <i>bilaterale</i>. </p><p>L'importanza di questa struttura risiede nel fatto che il <a href="/wiki/Nucleo_(matematica)" title="Nucleo (matematica)">nucleo</a> di un <a href="/wiki/Omomorfismo" title="Omomorfismo">omomorfismo</a> tra due anelli è sempre un ideale bilatero di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>, e che a partire da un ideale bilatero <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span> è possibile costruire l'<a href="/wiki/Anello_quoziente" class="mw-redirect" title="Anello quoziente">anello quoziente</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A/I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A/I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d3261596a73cca8546ac8e4d9a6e6f91aa55c5b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.077ex; height:2.843ex;" alt="{\displaystyle A/I}"></span>. Inoltre la presenza di ideali permette di stabilire un'importante proprietà dell'anello: esso è infatti un <a href="/wiki/Campo_(matematica)" title="Campo (matematica)">campo</a> se e solo se è privo di ideali non banali (cioè diversi dall'insieme <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{0\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{0\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ff0df9ef65c0572eb676580ce1c02b8ec40f694" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.487ex; height:2.843ex;" alt="{\displaystyle \{0\}}"></span> e dall'anello stesso). </p><p>A seconda del rapporto di un ideale con il resto dell'anello, sono possibili ulteriori specificazioni: un <i><a href="/wiki/Ideale_primo" title="Ideale primo">ideale primo</a></i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span> è un ideale tale che, per ogni prodotto <i>ab</i> che appartiene ad <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span>, almeno uno tra <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> appartiene ad <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span> (il nome deriva dalla similitudine di questa definizione con il <a href="/wiki/Lemma_di_Euclide" title="Lemma di Euclide">lemma di Euclide</a> riguardante i <a href="/wiki/Numero_primo" title="Numero primo">numeri primi</a>); se invece non esistono ideali "intermedi" tra <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span> ed <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> (cioè se l'unico ideale di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> che contiene <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span> è <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> stesso) si parla di <i><a href="/wiki/Ideale_massimale" title="Ideale massimale">ideale massimale</a></i>. Questi due tipi di ideali sono particolarmente importanti in relazione ai loro quozienti: in un anello commutativo, infatti, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span> è primo se e solo se <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A/I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A/I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d3261596a73cca8546ac8e4d9a6e6f91aa55c5b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.077ex; height:2.843ex;" alt="{\displaystyle A/I}"></span> è un <a href="/wiki/Dominio_d%27integrit%C3%A0" title="Dominio d'integrità">dominio d'integrità</a>, mentre se l'anello è anche unitario <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span> è massimale se e solo se <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A/I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A/I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d3261596a73cca8546ac8e4d9a6e6f91aa55c5b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.077ex; height:2.843ex;" alt="{\displaystyle A/I}"></span> è un <a href="/wiki/Campo_(matematica)" title="Campo (matematica)">campo</a>. Questo implica anche che, in un anello commutativo unitario, ogni ideale massimale è primo. </p><p>Il <a href="/wiki/Lemma_di_Krull" title="Lemma di Krull">lemma di Krull</a> (la cui dimostrazione si basa sul <a href="/wiki/Lemma_di_Zorn" title="Lemma di Zorn">lemma di Zorn</a>) afferma che ogni anello unitario possiede almeno un ideale massimale; se esso è unico, l'anello si dice <a href="/wiki/Anello_locale" title="Anello locale">locale</a>. L'insieme degli ideali primi di un anello commutativo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> forma il cosiddetto <a href="/wiki/Spettro_di_un_anello" title="Spettro di un anello">spettro</a> di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>. </p> <div class="mw-heading mw-heading2"><h2 id="Elementi_invertibili">Elementi invertibili</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Anello_(algebra)&veaction=edit&section=6" title="Modifica la sezione Elementi invertibili" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Anello_(algebra)&action=edit&section=6" title="Edit section's source code: Elementi invertibili"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Un elemento <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> di un anello <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> con unità è <i>invertibile</i> se esiste un <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> tale che <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ab=ba=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mi>b</mi> <mo>=</mo> <mi>b</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ab=ba=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e129af82154ac2388aa6621fda5d0e008b82c3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:11.814ex; height:2.176ex;" alt="{\displaystyle ab=ba=1}"></span>. </p><p>Gli elementi invertibili di un anello sono spesso chiamati <i>unità</i>. Normalmente è il contesto che chiarisce se si parla di unità intesa come l'elemento neutro moltiplicativo, o di unità intesa come elemento invertibile. </p><p>L'insieme degli elementi invertibili in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> è generalmente descritto come <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/44e23745a51c2c2d8d91fd98c1cf721573747ece" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.797ex; height:2.343ex;" alt="{\displaystyle A^{*}}"></span>. L'insieme <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/44e23745a51c2c2d8d91fd98c1cf721573747ece" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.797ex; height:2.343ex;" alt="{\displaystyle A^{*}}"></span> forma un <a href="/wiki/Gruppo_(matematica)" title="Gruppo (matematica)">gruppo</a> con l'operazione prodotto, chiamato <i>gruppo moltiplicativo</i> di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>. </p><p>Ad esempio, nei numeri interi il <a href="/wiki/Gruppo_moltiplicativo" title="Gruppo moltiplicativo">gruppo moltiplicativo</a> è dato dai due elementi <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{-1,1\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mo>−<!-- − --></mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{-1,1\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c0ffb8c7a09dad8456eee3669ee9a7e462fe3c34" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.492ex; height:2.843ex;" alt="{\displaystyle \{-1,1\}}"></span>. In un corpo o in un campo, il gruppo moltiplicativo coincide con tutto l'anello privato dell'elemento neutro. </p> <div class="mw-heading mw-heading2"><h2 id="Omomorfismi">Omomorfismi</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Anello_(algebra)&veaction=edit&section=7" title="Modifica la sezione Omomorfismi" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Anello_(algebra)&action=edit&section=7" title="Edit section's source code: Omomorfismi"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r130657691"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r139142988"> <div class="hatnote noprint vedi-anche"> <div class="hatnote-content"><span class="noviewer hatnote-icon" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/87/Magnifying_glass_icon_mgx2.svg/18px-Magnifying_glass_icon_mgx2.svg.png" decoding="async" width="18" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/87/Magnifying_glass_icon_mgx2.svg/27px-Magnifying_glass_icon_mgx2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/87/Magnifying_glass_icon_mgx2.svg/36px-Magnifying_glass_icon_mgx2.svg.png 2x" data-file-width="286" data-file-height="280" /></span></span> <span class="hatnote-text">Lo stesso argomento in dettaglio: <b><a href="/wiki/Omomorfismo_di_anelli" title="Omomorfismo di anelli">Omomorfismo di anelli</a></b>.</span></div> </div> <p>Un <a href="/wiki/Omomorfismo" title="Omomorfismo">omomorfismo</a> tra due anelli <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> è una <a href="/wiki/Funzione_(matematica)" title="Funzione (matematica)">funzione</a> che preserva le operazioni, cioè una funzione <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> tale che, per ogni coppia di elementi <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>, si ha <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(a+b)=f(a)+f(b)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(a+b)=f(a)+f(b)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/822600027fb446b01dd1902d7d3864d9f0f905ba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.498ex; height:2.843ex;" alt="{\displaystyle f(a+b)=f(a)+f(b)}"></span> e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(ab)=f(a)f(b)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mi>b</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(ab)=f(a)f(b)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c97fe82f34dc168d8db13539e30a3a94d2c45aa2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.817ex; height:2.843ex;" alt="{\displaystyle f(ab)=f(a)f(b)}"></span>. Gli omomorfismi quindi preservano in qualche modo la struttura algebrica; particolarmente importanti tra di essi sono gli <a href="/wiki/Isomorfismo" title="Isomorfismo">isomorfismi</a>, ovvero gli omomorfismi <a href="/wiki/Funzione_biunivoca" class="mw-redirect" title="Funzione biunivoca">biunivoci</a>, che la conservano completamente: due anelli isomorfi possono essere considerati "uguali" per tutte le proprietà algebriche. </p><p>Ogni omomorfismo mappa lo zero di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> nello zero di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span>, mentre questo non avviene per l'unità, nemmeno se entrambi gli anelli sono unitari: condizioni sufficienti perché questo avvenga è che l'omomorfismo sia <a href="/wiki/Funzione_suriettiva" title="Funzione suriettiva">suriettivo</a> oppure che nel codominio non esistano divisori dello zero. Il <a href="/wiki/Nucleo_(matematica)" title="Nucleo (matematica)">nucleo</a> di un omomorfismo è un ideale bilatero di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>, e viceversa ogni ideale è il nucleo di un omomorfismo: invece l'<a href="/wiki/Immagine_(matematica)" title="Immagine (matematica)">immagine</a> di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> è un sottoanello di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span>. Gli omomorfismi preservano in una certa misura anche le sottostrutture: l'immagine di un sottoanello è un sottoanello, mentre l'immagine di un ideale è un ideale nell'immagine di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>, ma non necessariamente in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span>. </p><p>Una relazione molto importante è il <a href="/w/index.php?title=Teorema_fondamentale_di_omomorfismo&action=edit&redlink=1" class="new" title="Teorema fondamentale di omomorfismo (la pagina non esiste)">teorema fondamentale di omomorfismo</a>, che permette di trovare degli isomorfismi a partire dagli omomorfismi: se <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> è un omomorfismo tra <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span> è il suo nucleo, allora il quoziente <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A/I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A/I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d3261596a73cca8546ac8e4d9a6e6f91aa55c5b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.077ex; height:2.843ex;" alt="{\displaystyle A/I}"></span> è isomorfo all'immagine <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(A)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(A)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2711c647e5397c7016ee21bbcea53565480bd5e1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.831ex; height:2.843ex;" alt="{\displaystyle f(A)}"></span>. </p><p>Un omomorfismo suriettivo può essere considerato una proiezione di un anello <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> su un suo quoziente <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A/I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A/I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d3261596a73cca8546ac8e4d9a6e6f91aa55c5b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.077ex; height:2.843ex;" alt="{\displaystyle A/I}"></span> (dove <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span> è il nucleo); un omomorfismo iniettivo, invece, può essere considerato un'inclusione di un anello nell'altro, perché, per il teorema di omomorfismo, esiste nel codominio un'immagine isomorfa ad <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>, che quindi può essere considerata uguale ad <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>. Se <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> è un campo, inoltre, tutti gli omomorfismi non nulli sono iniettivi, in quanto gli unici ideali sono quelli <a href="/wiki/Banale_(matematica)" title="Banale (matematica)">banali</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Prodotto_diretto">Prodotto diretto</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Anello_(algebra)&veaction=edit&section=8" title="Modifica la sezione Prodotto diretto" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Anello_(algebra)&action=edit&section=8" title="Edit section's source code: Prodotto diretto"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Il <i><a href="/wiki/Prodotto_diretto" title="Prodotto diretto">prodotto diretto</a></i> di due anelli <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> è il <a href="/wiki/Prodotto_cartesiano" title="Prodotto cartesiano">prodotto cartesiano</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\times B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>×<!-- × --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\times B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65f31ae45b0098f06b5d22c38d317eb097a88fa9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.348ex; height:2.176ex;" alt="{\displaystyle A\times B}"></span> con le operazioni definite termine a termine: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a_{1},b_{1})+(a_{2},b_{2})=(a_{1}+a_{2},b_{1}+b_{2}),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a_{1},b_{1})+(a_{2},b_{2})=(a_{1}+a_{2},b_{1}+b_{2}),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d015f945fdc453576b125189cf94705c5be79149" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:38.14ex; height:2.843ex;" alt="{\displaystyle (a_{1},b_{1})+(a_{2},b_{2})=(a_{1}+a_{2},b_{1}+b_{2}),}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a_{1},b_{1})(a_{2},b_{2})=(a_{1}a_{2},b_{1}b_{2}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a_{1},b_{1})(a_{2},b_{2})=(a_{1}a_{2},b_{1}b_{2}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c6310238280cb6b043be4d2203560901fe505c0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:29.618ex; height:2.843ex;" alt="{\displaystyle (a_{1},b_{1})(a_{2},b_{2})=(a_{1}a_{2},b_{1}b_{2}).}"></span></dd></dl> <p>Questo nuovo insieme forma un anello, in cui lo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span> è la coppia <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (0_{A},0_{B})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <mo>,</mo> <msub> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (0_{A},0_{B})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d0f008b85acef640c93c539f365ed8b1492388a1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.113ex; height:2.843ex;" alt="{\displaystyle (0_{A},0_{B})}"></span>. Diverse proprietà di questo nuovo anello possono essere dedotte dalle proprietà degli anelli di partenza: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\times B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>×<!-- × --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\times B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65f31ae45b0098f06b5d22c38d317eb097a88fa9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.348ex; height:2.176ex;" alt="{\displaystyle A\times B}"></span> è commutativo se e solo se lo sono entrambi i fattori, mentre se <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> sono unitari allora <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (1_{A},1_{B})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <mo>,</mo> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (1_{A},1_{B})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/18b7f5287b8309645e322c9cc95bd94891aeb0e9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.113ex; height:2.843ex;" alt="{\displaystyle (1_{A},1_{B})}"></span> è l'unità di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\times B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>×<!-- × --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\times B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65f31ae45b0098f06b5d22c38d317eb097a88fa9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.348ex; height:2.176ex;" alt="{\displaystyle A\times B}"></span>. Una proprietà che invece non passa al prodotto è l'assenza di divisori degli zeri: infatti il prodotto <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (0_{A},a)(b,0_{B})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <mo>,</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>b</mi> <mo>,</mo> <msub> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (0_{A},a)(b,0_{B})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac711b33ef8871fcfd298bcb541a34cc6578a646" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.183ex; height:2.843ex;" alt="{\displaystyle (0_{A},a)(b,0_{B})}"></span> è sempre uguale a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (0_{A},0_{B})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <mo>,</mo> <msub> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (0_{A},0_{B})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d0f008b85acef640c93c539f365ed8b1492388a1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.113ex; height:2.843ex;" alt="{\displaystyle (0_{A},0_{B})}"></span>, anche se <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> non sono zeri. Questo implica che il prodotto diretto di campi non è mai un campo, a meno che uno non sia ridotto al solo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span>. </p><p>Questa definizione si può estendere naturalmente al prodotto cartesiano di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> anelli. </p> <div class="mw-heading mw-heading2"><h2 id="Elementi_primi_ed_irriducibili">Elementi primi ed irriducibili</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Anello_(algebra)&veaction=edit&section=9" title="Modifica la sezione Elementi primi ed irriducibili" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Anello_(algebra)&action=edit&section=9" title="Edit section's source code: Elementi primi ed irriducibili"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r130657691"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r139142988"> <div class="hatnote noprint vedi-anche"> <div class="hatnote-content"><span class="noviewer hatnote-icon" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/87/Magnifying_glass_icon_mgx2.svg/18px-Magnifying_glass_icon_mgx2.svg.png" decoding="async" width="18" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/87/Magnifying_glass_icon_mgx2.svg/27px-Magnifying_glass_icon_mgx2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/87/Magnifying_glass_icon_mgx2.svg/36px-Magnifying_glass_icon_mgx2.svg.png 2x" data-file-width="286" data-file-height="280" /></span></span> <span class="hatnote-text">Lo stesso argomento in dettaglio: <b><a href="/wiki/Fattorizzazione_(teoria_degli_anelli)" title="Fattorizzazione (teoria degli anelli)">Fattorizzazione (teoria degli anelli)</a></b>.</span></div> </div> <p>In un dominio d'integrità è possibile come in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/449494a083e0a1fda2b61c62b2f09b6bee4633dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.176ex;" alt="{\displaystyle \mathbb {Z} }"></span> studiare la fattorizzazione di un dato elemento (non invertibile). In questo contesto, la definizione di <a href="/wiki/Divisibilit%C3%A0" class="mw-redirect" title="Divisibilità">divisibilità</a> si estende naturalmente al caso di qualsiasi dominio: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> divide <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> se esiste un elemento <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span> tale che <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ar=b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mi>r</mi> <mo>=</mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ar=b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5d989b16707167108e18f8c05517a84b577cf0b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.374ex; height:2.176ex;" alt="{\displaystyle ar=b}"></span>. Se <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span> è invertibile, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> si dicono <i>associati</i>. </p><p>Due definizioni emergono naturalmente in questo studio: </p> <ul><li>un elemento <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> è <i>irriducibile</i> se, ogniqualvolta che <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a=bc}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>=</mo> <mi>b</mi> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a=bc}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/528e7fd424e3985aa7f0e813a016f0691e9ccd8c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.333ex; height:2.176ex;" alt="{\displaystyle a=bc}"></span>, allora o <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> o <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span> è invertibile;</li> <li>un elemento <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> è <i>primo</i> se, quando <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> divide il prodotto <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle bc}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle bc}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/729e20113e9029b3d860aab123277d8aa0d7a950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.004ex; height:2.176ex;" alt="{\displaystyle bc}"></span>, allora <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> divide almeno uno tra <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span>.</li></ul> <p>In <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/449494a083e0a1fda2b61c62b2f09b6bee4633dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.176ex;" alt="{\displaystyle \mathbb {Z} }"></span>, queste due definizioni sono equivalenti, ma questo non è vero in generale: gli elementi primi sono irriducibili, ma gli irriducibili non sono sempre primi. Ad esempio, nell'anello </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} [{\sqrt {-3}}]=\{a+b{\sqrt {-3}}~|~a,b\in \mathbb {Z} \}=\{a+ib{\sqrt {3}}~|~a,b\in \mathbb {Z} ,~i={\sqrt {-1}}\},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mo stretchy="false">[</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo>−<!-- − --></mo> <mn>3</mn> </msqrt> </mrow> <mo stretchy="false">]</mo> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo>−<!-- − --></mo> <mn>3</mn> </msqrt> </mrow> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mtext> </mtext> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>∈<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mo fence="false" stretchy="false">}</mo> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>a</mi> <mo>+</mo> <mi>i</mi> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mtext> </mtext> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>∈<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mo>,</mo> <mtext> </mtext> <mi>i</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo>−<!-- − --></mo> <mn>1</mn> </msqrt> </mrow> <mo fence="false" stretchy="false">}</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} [{\sqrt {-3}}]=\{a+b{\sqrt {-3}}~|~a,b\in \mathbb {Z} \}=\{a+ib{\sqrt {3}}~|~a,b\in \mathbb {Z} ,~i={\sqrt {-1}}\},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0209362c667a1ccabf507fb78226e085e67cfa4d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:67.53ex; height:3.009ex;" alt="{\displaystyle \mathbb {Z} [{\sqrt {-3}}]=\{a+b{\sqrt {-3}}~|~a,b\in \mathbb {Z} \}=\{a+ib{\sqrt {3}}~|~a,b\in \mathbb {Z} ,~i={\sqrt {-1}}\},}"></span></dd></dl> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/901fc910c19990d0dbaaefe4726ceb1a4e217a0f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 2}"></span> è irriducibile ma non primo, perché divide il prodotto <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (1-i{\sqrt {3}})(1+i{\sqrt {3}})=4}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mn>4</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (1-i{\sqrt {3}})(1+i{\sqrt {3}})=4}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/157643a4a23dd84aff0f0c2754b60e6f84de62f8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.687ex; height:3.009ex;" alt="{\displaystyle (1-i{\sqrt {3}})(1+i{\sqrt {3}})=4}"></span>, ma non divide né un fattore né l'altro. </p><p>Questa seconda implicazione è tuttavia verificata negli <a href="/wiki/Anello_a_fattorizzazione_unica" class="mw-redirect" title="Anello a fattorizzazione unica">anelli a fattorizzazione unica</a>, ovvero in quegli anelli in cui, date due fattorizzazioni in irriducibili </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a=b_{1}b_{2}\cdots b_{n}=c_{1}c_{2}\cdots c_{m}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>=</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>⋯<!-- ⋯ --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>⋯<!-- ⋯ --></mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a=b_{1}b_{2}\cdots b_{n}=c_{1}c_{2}\cdots c_{m}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/efd89c14a1e51967016aea0d0c81446b91bcaccf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:27.545ex; height:2.509ex;" alt="{\displaystyle a=b_{1}b_{2}\cdots b_{n}=c_{1}c_{2}\cdots c_{m}}"></span></dd></dl> <p>allora <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m=n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>=</mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m=n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/69c9d8e54796e7de7d4738510cc10bc3fc55d48e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.534ex; height:1.676ex;" alt="{\displaystyle m=n}"></span>, e ogni <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40a8c2db2990a53c683e75961826167c5adac7c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.797ex; height:2.509ex;" alt="{\displaystyle b_{i}}"></span> è associato ad un <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c_{j}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c_{j}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a844d180d176af828d1636d4e85aa534d0b77baa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:1.917ex; height:2.343ex;" alt="{\displaystyle c_{j}}"></span>. In ogni dominio a fattorizzazione unica esistono il <a href="/wiki/Massimo_comun_divisore" title="Massimo comun divisore">massimo comun divisore</a> e il <a href="/wiki/Minimo_comune_multiplo" title="Minimo comune multiplo">minimo comune multiplo</a> tra ogni coppia di elementi. </p><p>Anelli con ancora maggiori proprietà sono gli <a href="/wiki/Anello_ad_ideali_principali" class="mw-redirect" title="Anello ad ideali principali">anelli ad ideali principali</a> e gli <a href="/wiki/Anello_euclideo" class="mw-redirect" title="Anello euclideo">anelli euclidei</a>, in cui è possibile effettuare la <a href="/wiki/Divisione_euclidea" title="Divisione euclidea">divisione euclidea</a> come negli interi. A quest'ultima classe appartengono anche gli anelli di polinomi <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {K} [X]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">K</mi> </mrow> <mo stretchy="false">[</mo> <mi>X</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {K} [X]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a049dae45f6e8d0399188d2d3934b7c0cded5bae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.082ex; height:2.843ex;" alt="{\displaystyle \mathbb {K} [X]}"></span>, dove <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {K} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">K</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {K} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1848c435e64864e9ad4efa7e46bd6bc900c35c99" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \mathbb {K} }"></span> è un <a href="/wiki/Campo_(matematica)" title="Campo (matematica)">campo</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Note">Note</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Anello_(algebra)&veaction=edit&section=10" title="Modifica la sezione Note" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Anello_(algebra)&action=edit&section=10" title="Edit section's source code: Note"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><a href="#cite_ref-1"><b>^</b></a> <span class="reference-text">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) Elements of Mathematics, Vol. II Algebra, Ch. 1, Springer</span> </li> <li id="cite_note-2"><a href="#cite_ref-2"><b>^</b></a> <span class="reference-text">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) Algebra, 3rd edition, Springer, ch. II</span> </li> <li id="cite_note-3"><a href="#cite_ref-3"><b>^</b></a> <span class="reference-text">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) <a rel="nofollow" class="external free" href="https://www.encyclopediaofmath.org/index.php/Non-associative_rings_and_algebras">https://www.encyclopediaofmath.org/index.php/Non-associative_rings_and_algebras</a> </span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="Bibliografia">Bibliografia</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Anello_(algebra)&veaction=edit&section=11" title="Modifica la sezione Bibliografia" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Anello_(algebra)&action=edit&section=11" title="Edit section's source code: Bibliografia"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Luca Barbieri Viale, <i>Che cos'è un numero?</i> Una introduzione all'algebra, Raffaello Cortina, 2013, <a href="/wiki/Speciale:RicercaISBN/9788860306043" class="internal mw-magiclink-isbn">ISBN 978-88-6030-604-3</a></li> <li><a href="/w/index.php?title=Dikran_Dikranjan&action=edit&redlink=1" class="new" title="Dikran Dikranjan (la pagina non esiste)">Dikran Dikranjan</a> e <a href="/w/index.php?title=Maria_Silvia_Lucido&action=edit&redlink=1" class="new" title="Maria Silvia Lucido (la pagina non esiste)">Maria Silvia Lucido</a>, <i>Aritmetica e algebra</i>, <a href="/wiki/Liguori" class="mw-redirect" title="Liguori">Liguori</a>, 2007, <a href="/wiki/Speciale:RicercaISBN/9788820740986" class="internal mw-magiclink-isbn">ISBN 978-8-8207-4098-6</a></li> <li>Giulia Maria Piacentini Cattaneo, <i>Algebra - un approccio algoritmico</i>. Decibel-Zanichelli, Padova 1996, <a href="/wiki/Speciale:RicercaISBN/9788808162700" class="internal mw-magiclink-isbn">ISBN 978-88-08-16270-0</a></li> <li><a href="/wiki/Israel_Nathan_Herstein" title="Israel Nathan Herstein">Israel Nathan Herstein</a>, <i>Algebra</i>, Editori Riuniti University Press, 2010, <a href="/wiki/Speciale:RicercaISBN/9788864732107" class="internal mw-magiclink-isbn">ISBN 978-88-6473-210-7</a></li> <li><a href="/wiki/Michael_Artin" title="Michael Artin">Michael Artin</a> (1997): <i>Algebra</i>, Bollati Boringhieri, <a href="/wiki/Speciale:RicercaISBN/8833955869" class="internal mw-magiclink-isbn">ISBN 8833955869</a></li> <li><a href="/wiki/Serge_Lang" title="Serge Lang">Serge Lang</a>, <i>Algebra</i>, (EN) Springer, 2002, <a href="/wiki/Speciale:RicercaISBN/9780387953854" class="internal mw-magiclink-isbn">ISBN 978-0-387-95385-4</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Voci_correlate">Voci correlate</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Anello_(algebra)&veaction=edit&section=12" title="Modifica la sezione Voci correlate" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Anello_(algebra)&action=edit&section=12" title="Edit section's source code: Voci correlate"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Storia_della_teoria_degli_anelli" title="Storia della teoria degli anelli">Storia della teoria degli anelli</a></li> <li><a href="/wiki/Teoria_degli_anelli" title="Teoria degli anelli">Teoria degli anelli</a></li> <li><a href="/wiki/Ideale_(matematica)" title="Ideale (matematica)">Ideale (matematica)</a></li> <li><a href="/wiki/Anello_commutativo" title="Anello commutativo">Anello commutativo</a></li> <li><a href="/wiki/Semianello" title="Semianello">Semianello</a></li> <li><a href="/wiki/Dominio_di_integrit%C3%A0" class="mw-redirect" title="Dominio di integrità">Dominio di integrità</a></li> <li><a href="/wiki/Campo_(matematica)" title="Campo (matematica)">Campo (matematica)</a></li> <li><a href="/wiki/Struttura_algebrica" title="Struttura algebrica">Struttura algebrica</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Altri_progetti">Altri progetti</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Anello_(algebra)&veaction=edit&section=13" title="Modifica la sezione Altri progetti" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Anello_(algebra)&action=edit&section=13" title="Edit section's source code: Altri progetti"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <div id="interProject" class="toccolours" style="display: none; clear: both; margin-top: 2em"><p id="sisterProjects" style="background-color: #efefef; color: black; font-weight: bold; margin: 0"><span>Altri progetti</span></p><ul title="Collegamenti verso gli altri progetti Wikimedia"> <li class="" title=""><a href="https://it.wiktionary.org/wiki/anello" class="extiw" title="wikt:anello">Wikizionario</a></li></ul></div> <ul><li><span typeof="mw:File"><a href="https://it.wiktionary.org/wiki/" title="Collabora a Wikizionario"><img alt="Collabora a Wikizionario" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f9/Wiktionary_small.svg/18px-Wiktionary_small.svg.png" decoding="async" width="18" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f9/Wiktionary_small.svg/27px-Wiktionary_small.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f9/Wiktionary_small.svg/36px-Wiktionary_small.svg.png 2x" data-file-width="350" data-file-height="350" /></a></span> <a href="https://it.wiktionary.org/wiki/" class="extiw" title="wikt:">Wikizionario</a> contiene il lemma di dizionario «<b><a href="https://it.wiktionary.org/wiki/anello" class="extiw" title="wikt:anello">anello</a></b>»</li></ul> <div class="mw-heading mw-heading2"><h2 id="Collegamenti_esterni">Collegamenti esterni</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Anello_(algebra)&veaction=edit&section=14" title="Modifica la sezione Collegamenti esterni" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Anello_(algebra)&action=edit&section=14" title="Edit section's source code: Collegamenti esterni"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li class="mw-empty-elt"></li> <li><cite id="CITEREFTreccani.it" class="citation web" style="font-style:normal"> <a rel="nofollow" class="external text" href="https://www.treccani.it/enciclopedia/anello"><span style="font-style:italic;">anello</span></a>, su <span style="font-style:italic;">Treccani.it – Enciclopedie on line</span>, <a href="/wiki/Istituto_dell%27Enciclopedia_Italiana" title="Istituto dell'Enciclopedia Italiana">Istituto dell'Enciclopedia Italiana</a>.</cite> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q161172#P3365" title="Modifica su Wikidata"><img alt="Modifica su Wikidata" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/10px-Blue_pencil.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/15px-Blue_pencil.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/20px-Blue_pencil.svg.png 2x" data-file-width="600" data-file-height="600" /></a></span></li> <li><cite id="CITEREFVocabolario_Treccani" class="citation web" style="font-style:normal"> <a rel="nofollow" class="external text" href="https://www.treccani.it/vocabolario/anello"><span style="font-style:italic;">anèllo</span></a>, su <span style="font-style:italic;"><a href="/wiki/Vocabolario_Treccani" title="Vocabolario Treccani">Vocabolario Treccani</a></span>, <a href="/wiki/Istituto_dell%27Enciclopedia_Italiana" title="Istituto dell'Enciclopedia Italiana">Istituto dell'Enciclopedia Italiana</a>.</cite> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q161172#P5844" title="Modifica su Wikidata"><img alt="Modifica su Wikidata" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/10px-Blue_pencil.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/15px-Blue_pencil.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/20px-Blue_pencil.svg.png 2x" data-file-width="600" data-file-height="600" /></a></span></li> <li><cite id="CITEREFSapere.it" class="citation web" style="font-style:normal"> <a rel="nofollow" class="external text" href="https://www.sapere.it/enciclopedia/anèllo+(algebra).html"><span style="font-style:italic;">anèllo</span></a>, su <span style="font-style:italic;">sapere.it</span>, <a href="/wiki/De_Agostini" title="De Agostini">De Agostini</a>.</cite> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q161172#P6706" title="Modifica su Wikidata"><img alt="Modifica su Wikidata" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/10px-Blue_pencil.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/15px-Blue_pencil.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/20px-Blue_pencil.svg.png 2x" data-file-width="600" data-file-height="600" /></a></span></li> <li><cite id="CITEREFEnciclopedia_della_Matematica" class="citation libro" style="font-style:normal"> <a rel="nofollow" class="external text" href="https://www.treccani.it/enciclopedia/anello_(Enciclopedia-della-Matematica)/"><span style="font-style:italic;">anello</span></a>, in <span style="font-style:italic;">Enciclopedia della Matematica</span>, <a href="/wiki/Istituto_dell%27Enciclopedia_Italiana" title="Istituto dell'Enciclopedia Italiana">Istituto dell'Enciclopedia Italiana</a>, 2013.</cite> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q161172#P9621" title="Modifica su Wikidata"><img alt="Modifica su Wikidata" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/10px-Blue_pencil.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/15px-Blue_pencil.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/20px-Blue_pencil.svg.png 2x" data-file-width="600" data-file-height="600" /></a></span></li> <li><cite id="CITEREFBritannica.com" class="citation web" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) <a rel="nofollow" class="external text" href="https://www.britannica.com/topic/ring-mathematics"><span style="font-style:italic;">ring</span></a> / <a rel="nofollow" class="external text" href="https://www.britannica.com/topic/ring-with-unity"><span style="font-style:italic;">ring with unity</span></a>, su <span style="font-style:italic;"><a href="/wiki/Enciclopedia_Britannica" title="Enciclopedia Britannica">Enciclopedia Britannica</a></span>, Encyclopædia Britannica, Inc.</cite> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q161172#P1417" title="Modifica su Wikidata"><img alt="Modifica su Wikidata" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/10px-Blue_pencil.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/15px-Blue_pencil.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/20px-Blue_pencil.svg.png 2x" data-file-width="600" data-file-height="600" /></a></span></li> <li><cite id="CITEREFOpen_Library" class="citation web" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) <a rel="nofollow" class="external text" href="https://openlibrary.org/subjects/rings_(algebra)"><span style="font-style:italic;">Opere riguardanti Rings (Algebra)</span></a>, su <span style="font-style:italic;"><a href="/wiki/Open_Library" class="mw-redirect" title="Open Library">Open Library</a></span>, <a href="/wiki/Internet_Archive" title="Internet Archive">Internet Archive</a>.</cite> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q161172#P3847" title="Modifica su Wikidata"><img alt="Modifica su Wikidata" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/10px-Blue_pencil.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/15px-Blue_pencil.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/20px-Blue_pencil.svg.png 2x" data-file-width="600" data-file-height="600" /></a></span></li> <li><cite id="CITEREFMathWorld" class="citation web" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) Eric W. Weisstein, <a rel="nofollow" class="external text" href="http://mathworld.wolfram.com/Ring.html"><span style="font-style:italic;">Ring</span></a>, su <span style="font-style:italic;"><a href="/wiki/MathWorld" title="MathWorld">MathWorld</a></span>, Wolfram Research.</cite> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q161172#P2812" title="Modifica su Wikidata"><img alt="Modifica su Wikidata" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/10px-Blue_pencil.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/15px-Blue_pencil.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/20px-Blue_pencil.svg.png 2x" data-file-width="600" data-file-height="600" /></a></span></li> <li><cite id="CITEREFSpringerEOM" class="citation web" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) <a rel="nofollow" class="external text" href="https://encyclopediaofmath.org/wiki/Ring"><span style="font-style:italic;">Ring</span></a>, su <span style="font-style:italic;"><a href="/wiki/Encyclopaedia_of_Mathematics" title="Encyclopaedia of Mathematics">Encyclopaedia of Mathematics</a></span>, Springer e European Mathematical Society.</cite> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q161172#P7554" title="Modifica su Wikidata"><img alt="Modifica su Wikidata" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/10px-Blue_pencil.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/15px-Blue_pencil.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/20px-Blue_pencil.svg.png 2x" data-file-width="600" data-file-height="600" /></a></span></li></ul> <style data-mw-deduplicate="TemplateStyles:r141815314">.mw-parser-output .navbox{border:1px solid #aaa;clear:both;margin:auto;padding:2px;width:100%}.mw-parser-output .navbox th{padding-left:1em;padding-right:1em;text-align:center}.mw-parser-output .navbox>tbody>tr:first-child>th{background:#ccf;font-size:90%;width:100%;color:var(--color-base,black)}.mw-parser-output .navbox_navbar{float:left;margin:0;padding:0 10px 0 0;text-align:left;width:6em}.mw-parser-output .navbox_title{font-size:110%}.mw-parser-output .navbox_abovebelow{background:#ddf;font-size:90%;font-weight:normal}.mw-parser-output .navbox_group{background:#ddf;font-size:90%;padding:0 10px;white-space:nowrap}.mw-parser-output .navbox_list{font-size:90%;width:100%}.mw-parser-output .navbox_list a{white-space:nowrap}html:not(.vector-feature-night-mode-enabled) .mw-parser-output .navbox_odd{background:#fdfdfd;color:var(--color-base,black)}html:not(.vector-feature-night-mode-enabled) .mw-parser-output .navbox_even{background:#f7f7f7;color:var(--color-base,black)}.mw-parser-output .navbox a.mw-selflink{color:var(--color-base,black)}.mw-parser-output .navbox_center{text-align:center}.mw-parser-output .navbox .navbox_image{padding-left:7px;vertical-align:middle;width:0}.mw-parser-output .navbox+.navbox{margin-top:-1px}.mw-parser-output .navbox .mw-collapsible-toggle{font-weight:normal;text-align:right;width:7em}body.skin--responsive .mw-parser-output .navbox_image img{max-width:none!important}.mw-parser-output .subnavbox{margin:-3px;width:100%}.mw-parser-output .subnavbox_group{background:#e6e6ff;padding:0 10px}@media screen{html.skin-theme-clientpref-night .mw-parser-output .navbox>tbody>tr:first-child>th{background:var(--background-color-interactive)!important}html.skin-theme-clientpref-night .mw-parser-output .navbox th{color:var(--color-base)!important}html.skin-theme-clientpref-night .mw-parser-output .navbox_abovebelow,html.skin-theme-clientpref-night .mw-parser-output .navbox_group{background:var(--background-color-interactive-subtle)!important}html.skin-theme-clientpref-night .mw-parser-output .subnavbox_group{background:var(--background-color-neutral-subtle)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbox>tbody>tr:first-child>th{background:var(--background-color-interactive)!important}html.skin-theme-clientpref-os .mw-parser-output .navbox th{color:var(--color-base)!important}html.skin-theme-clientpref-os .mw-parser-output .navbox_abovebelow,html.skin-theme-clientpref-os .mw-parser-output .navbox_group{background:var(--background-color-interactive-subtle)!important}html.skin-theme-clientpref-os .mw-parser-output .subnavbox_group{background:var(--background-color-neutral-subtle)!important}}</style><table class="navbox mw-collapsible mw-collapsed noprint metadata" id="navbox-Algebra"><tbody><tr><th colspan="3" style="background:#ffc0cb;"><div class="navbox_navbar"><div class="noprint plainlinks" style="background-color:transparent; padding:0; font-size:xx-small; color:var(--color-base, #000000); white-space:nowrap;"><a href="/wiki/Template:Algebra" title="Template:Algebra"><span title="Vai alla pagina del template">V</span></a> · <a href="/w/index.php?title=Discussioni_template:Algebra&action=edit&redlink=1" class="new" title="Discussioni template:Algebra (la pagina non esiste)"><span title="Discuti del template">D</span></a> · <a class="external text" href="https://it.wikipedia.org/w/index.php?title=Template:Algebra&action=edit"><span title="Modifica il template. Usa l'anteprima prima di salvare">M</span></a></div></div><span class="navbox_title"><a href="/wiki/Algebra" title="Algebra">Algebra</a></span></th></tr><tr><th colspan="1" class="navbox_group" style="background:#FFE0E0; text-align:right;"><a href="/wiki/Numero" title="Numero">Numeri</a></th><td colspan="1" class="navbox_list navbox_odd" style="text-align:left;"><a href="/wiki/Numero_naturale" title="Numero naturale">Naturali</a><b> ·</b> <a href="/wiki/Numero_intero" title="Numero intero">Interi</a><b> ·</b> <a href="/wiki/Numero_razionale" title="Numero razionale">Razionali</a><b> ·</b> <a href="/wiki/Numero_irrazionale" title="Numero irrazionale">Irrazionali</a><b> ·</b> <a href="/wiki/Numero_algebrico" title="Numero algebrico">Algebrici</a><b> ·</b> <a href="/wiki/Numero_trascendente" title="Numero trascendente">Trascendenti</a><b> ·</b> <a href="/wiki/Numero_reale" title="Numero reale">Reali</a><b> ·</b> <a href="/wiki/Numero_complesso" title="Numero complesso">Complessi</a><b> ·</b> <a href="/wiki/Numero_ipercomplesso" title="Numero ipercomplesso">Numero ipercomplesso</a><b> ·</b> <a href="/wiki/Numero_p-adico" title="Numero p-adico">Numero p-adico</a><b> ·</b> <a href="/wiki/Numero_duale" title="Numero duale">Duali</a><b> ·</b> <a href="/wiki/Numero_complesso_iperbolico" title="Numero complesso iperbolico">Complessi iperbolici</a></td><td rowspan="10" class="navbox_image"><figure class="mw-halign-right" typeof="mw:File"><a href="/wiki/File:Nuvola_apps_edu_mathematics-p.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c2/Nuvola_apps_edu_mathematics-p.svg/58px-Nuvola_apps_edu_mathematics-p.svg.png" decoding="async" width="58" height="58" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c2/Nuvola_apps_edu_mathematics-p.svg/87px-Nuvola_apps_edu_mathematics-p.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c2/Nuvola_apps_edu_mathematics-p.svg/116px-Nuvola_apps_edu_mathematics-p.svg.png 2x" data-file-width="128" data-file-height="128" /></a><figcaption></figcaption></figure></td></tr><tr><th colspan="1" class="navbox_group" style="background:#FFE0E0; text-align:right;">Principi fondamentali</th><td colspan="1" class="navbox_list navbox_even" style="text-align:left;"><a href="/wiki/Principio_d%27induzione" title="Principio d'induzione">Principio d'induzione</a><b> ·</b> <a href="/wiki/Principio_del_buon_ordinamento" title="Principio del buon ordinamento">Principio del buon ordinamento</a><b> ·</b> <a href="/wiki/Relazione_di_equivalenza" title="Relazione di equivalenza">Relazione di equivalenza</a><b> ·</b> <a href="/wiki/Relazione_d%27ordine" title="Relazione d'ordine">Relazione d'ordine</a><b> ·</b> <a href="/wiki/Associativit%C3%A0_della_potenza" title="Associatività della potenza">Associatività della potenza</a></td></tr><tr><th colspan="1" class="navbox_group" style="background:#FFE0E0; text-align:right;"><a href="/wiki/Algebra_elementare" title="Algebra elementare">Algebra elementare</a></th><td colspan="1" class="navbox_list navbox_odd" style="text-align:left;"><a href="/wiki/Equazione" title="Equazione">Equazione</a><b> ·</b> <a href="/wiki/Disequazione" title="Disequazione">Disequazione</a><b> ·</b> <a href="/wiki/Polinomio" title="Polinomio">Polinomio</a><b> ·</b> <a href="/wiki/Triangolo_di_Tartaglia" title="Triangolo di Tartaglia">Triangolo di Tartaglia</a><b> ·</b> <a href="/wiki/Teorema_binomiale" title="Teorema binomiale">Teorema binomiale</a><b> ·</b> <a href="/wiki/Teorema_del_resto" title="Teorema del resto">Teorema del resto</a><b> ·</b> <a href="/wiki/Lemma_di_Gauss_(polinomi)" title="Lemma di Gauss (polinomi)">Lemma di Gauss</a><b> ·</b> <a href="/wiki/Teorema_delle_radici_razionali" title="Teorema delle radici razionali">Teorema delle radici razionali</a><b> ·</b> <a href="/wiki/Regola_di_Ruffini" title="Regola di Ruffini">Regola di Ruffini</a><b> ·</b> <a href="/wiki/Criterio_di_Eisenstein" title="Criterio di Eisenstein">Criterio di Eisenstein</a><b> ·</b> <a href="/wiki/Criterio_di_Cartesio" title="Criterio di Cartesio">Criterio di Cartesio</a><b> ·</b> <a href="/wiki/Disequazione_con_il_valore_assoluto" title="Disequazione con il valore assoluto">Disequazione con il valore assoluto</a><b> ·</b> <a href="/wiki/Segno_(matematica)" title="Segno (matematica)">Segno</a><b> ·</b> <a href="/wiki/Metodo_di_Gauss-Seidel" title="Metodo di Gauss-Seidel">Metodo di Gauss-Seidel</a><b> ·</b> <a href="/wiki/Polinomio_simmetrico" title="Polinomio simmetrico">Polinomio simmetrico</a><b> ·</b> <a href="/wiki/Funzione_simmetrica" title="Funzione simmetrica">Funzione simmetrica</a></td></tr><tr><th colspan="1" class="navbox_group" style="background:#FFE0E0; text-align:right;">Elementi di <a href="/wiki/Calcolo_combinatorio" title="Calcolo combinatorio">Calcolo combinatorio</a></th><td colspan="1" class="navbox_list navbox_even" style="text-align:left;"><a href="/wiki/Fattoriale" title="Fattoriale">Fattoriale</a><b> ·</b> <a href="/wiki/Permutazione" title="Permutazione">Permutazione</a><b> ·</b> <a href="/wiki/Disposizione" title="Disposizione">Disposizione</a><b> ·</b> <a href="/wiki/Combinazione" title="Combinazione">Combinazione</a><b> ·</b> <a href="/wiki/Dismutazione_(matematica)" title="Dismutazione (matematica)">Dismutazione</a><b> ·</b> <a href="/wiki/Principio_di_inclusione-esclusione" title="Principio di inclusione-esclusione">Principio di inclusione-esclusione</a></td></tr><tr><th colspan="1" class="navbox_group" style="background:#FFE0E0; text-align:right;">Concetti fondamentali di <a href="/wiki/Teoria_dei_numeri" title="Teoria dei numeri">Teoria dei numeri</a></th><td colspan="1" class="navbox_list navbox_odd" style="text-align:left;"><table class="subnavbox"><tbody><tr><th class="subnavbox_group">Primi</th><td colspan="1"><a href="/wiki/Numero_primo" title="Numero primo">Numero primo</a><b> ·</b> <a href="/wiki/Teorema_dell%27infinit%C3%A0_dei_numeri_primi" title="Teorema dell'infinità dei numeri primi">Teorema dell'infinità dei numeri primi</a><b> ·</b> <a href="/wiki/Crivello_di_Eratostene" title="Crivello di Eratostene">Crivello di Eratostene</a><b> ·</b> <a href="/wiki/Crivello_di_Atkin" title="Crivello di Atkin">Crivello di Atkin</a><b> ·</b> <a href="/wiki/Test_di_primalit%C3%A0" title="Test di primalità">Test di primalità</a><b> ·</b> <a href="/wiki/Teorema_fondamentale_dell%27aritmetica" title="Teorema fondamentale dell'aritmetica">Teorema fondamentale dell'aritmetica</a></td></tr><tr><th class="subnavbox_group">Divisori</th><td colspan="1"><a href="/wiki/Interi_coprimi" title="Interi coprimi">Interi coprimi</a><b> ·</b> <a href="/wiki/Identit%C3%A0_di_B%C3%A9zout" title="Identità di Bézout">Identità di Bézout</a><b> ·</b> <a href="/wiki/Massimo_comun_divisore" title="Massimo comun divisore">MCD</a><b> ·</b> <a href="/wiki/Minimo_comune_multiplo" title="Minimo comune multiplo">mcm</a><b> ·</b> <a href="/wiki/Algoritmo_di_Euclide" title="Algoritmo di Euclide">Algoritmo di Euclide</a><b> ·</b> <a href="/wiki/Algoritmo_esteso_di_Euclide" title="Algoritmo esteso di Euclide">Algoritmo esteso di Euclide</a><b> ·</b> <a href="/wiki/Criteri_di_divisibilit%C3%A0" title="Criteri di divisibilità">Criteri di divisibilità</a><b> ·</b> <a href="/wiki/Divisore" title="Divisore">Divisore</a></td></tr><tr><th class="subnavbox_group"><a href="/wiki/Aritmetica_modulare" title="Aritmetica modulare">Aritmetica modulare</a></th><td colspan="1"><a href="/wiki/Teorema_cinese_del_resto" title="Teorema cinese del resto">Teorema cinese del resto</a><b> ·</b> <a href="/wiki/Piccolo_teorema_di_Fermat" title="Piccolo teorema di Fermat">Piccolo teorema di Fermat</a><b> ·</b> <a href="/wiki/Teorema_di_Eulero_(aritmetica_modulare)" title="Teorema di Eulero (aritmetica modulare)">Teorema di Eulero</a><b> ·</b> <a href="/wiki/Funzione_%CF%86_di_Eulero" title="Funzione φ di Eulero">Funzione φ di Eulero</a><b> ·</b> <a href="/wiki/Teorema_di_Wilson" title="Teorema di Wilson">Teorema di Wilson</a><b> ·</b> <a href="/wiki/Reciprocit%C3%A0_quadratica" title="Reciprocità quadratica">Reciprocità quadratica</a></td></tr></tbody></table></td></tr><tr><th colspan="1" class="navbox_group" style="background:#FFE0E0; text-align:right;"><a href="/wiki/Teoria_dei_gruppi" title="Teoria dei gruppi">Teoria dei gruppi</a></th><td colspan="1" class="navbox_list navbox_even" style="text-align:left;"><table class="subnavbox"><tbody><tr><th class="subnavbox_group">Gruppi</th><td colspan="1"><a href="/wiki/Gruppo_(matematica)" title="Gruppo (matematica)">Gruppo</a> (<a href="/wiki/Gruppo_finito" title="Gruppo finito">finito</a><b> ·</b> <a href="/wiki/Gruppo_ciclico" title="Gruppo ciclico">ciclico</a><b> ·</b> <a href="/wiki/Gruppo_abeliano" title="Gruppo abeliano">abeliano</a>)<b> ·</b> <a href="/wiki/Gruppo_primario" title="Gruppo primario">Gruppo primario</a><b> ·</b> <a href="/wiki/Gruppo_quoziente" title="Gruppo quoziente">Gruppo quoziente</a><b> ·</b> <a href="/wiki/Gruppo_nilpotente" title="Gruppo nilpotente">Gruppo nilpotente</a><b> ·</b> <a href="/wiki/Gruppo_risolubile" title="Gruppo risolubile">Gruppo risolubile</a><b> ·</b> <a href="/wiki/Gruppo_simmetrico" title="Gruppo simmetrico">Gruppo simmetrico</a><b> ·</b> <a href="/wiki/Gruppo_diedrale" title="Gruppo diedrale">Gruppo diedrale</a><b> ·</b> <a href="/wiki/Gruppo_semplice" title="Gruppo semplice">Gruppo semplice</a><b> ·</b> <a href="/wiki/Gruppo_sporadico" title="Gruppo sporadico">Gruppo sporadico</a><b> ·</b> <a href="/wiki/Gruppo_mostro" title="Gruppo mostro">Gruppo mostro</a><b> ·</b> <a href="/wiki/Gruppo_di_Klein" title="Gruppo di Klein">Gruppo di Klein</a><b> ·</b> <a href="/wiki/Gruppo_dei_quaternioni" title="Gruppo dei quaternioni">Gruppo dei quaternioni</a><b> ·</b> <a href="/wiki/Gruppo_generale_lineare" title="Gruppo generale lineare">Gruppo generale lineare</a><b> ·</b> <a href="/wiki/Gruppo_ortogonale" title="Gruppo ortogonale">Gruppo ortogonale</a><b> ·</b> <a href="/wiki/Gruppo_unitario" title="Gruppo unitario">Gruppo unitario</a><b> ·</b> <a href="/wiki/Gruppo_unitario_speciale" title="Gruppo unitario speciale">Gruppo unitario speciale</a><b> ·</b> <a href="/wiki/Gruppo_residualmente_finito" title="Gruppo residualmente finito">Gruppo residualmente finito</a><b> ·</b> <a href="/wiki/Gruppo_spaziale" title="Gruppo spaziale">Gruppo spaziale</a><b> ·</b> <a href="/wiki/Gruppo_profinito" title="Gruppo profinito">Gruppo profinito</a><b> ·</b> <a href="/wiki/Out(Fn)" title="Out(Fn)">Out(F<sub>n</sub>)</a><b> ·</b> <a href="/wiki/Parola_(teoria_dei_gruppi)" title="Parola (teoria dei gruppi)">Parola</a><b> ·</b> <a href="/wiki/Prodotto_diretto" title="Prodotto diretto">Prodotto diretto</a><b> ·</b> <a href="/wiki/Prodotto_semidiretto" title="Prodotto semidiretto">Prodotto semidiretto</a><b> ·</b> <a href="/wiki/Prodotto_intrecciato" title="Prodotto intrecciato">Prodotto intrecciato</a></td></tr><tr><th class="subnavbox_group">Teoremi</th><td colspan="1"><a href="/wiki/Alternativa_di_Tits" title="Alternativa di Tits">Alternativa di Tits</a><b> ·</b> <a href="/wiki/Teorema_di_isomorfismo" title="Teorema di isomorfismo">Teorema di isomorfismo</a><b> ·</b> <a href="/wiki/Teorema_di_Lagrange_(teoria_dei_gruppi)" title="Teorema di Lagrange (teoria dei gruppi)">Teorema di Lagrange</a><b> ·</b> <a href="/wiki/Teorema_di_Cauchy_(teoria_dei_gruppi)" title="Teorema di Cauchy (teoria dei gruppi)">Teorema di Cauchy</a><b> ·</b> <a href="/wiki/Teoremi_di_Sylow" title="Teoremi di Sylow">Teoremi di Sylow</a><b> ·</b> <a href="/wiki/Teorema_di_Cayley" title="Teorema di Cayley">Teorema di Cayley</a><b> ·</b> <a href="/wiki/Gruppo_abeliano#Classificazione" title="Gruppo abeliano">Teorema di struttura dei gruppi abeliani finiti</a><b> ·</b> <a href="/wiki/Lemma_della_farfalla" title="Lemma della farfalla">Lemma della farfalla</a><b> ·</b> <a href="/wiki/Lemma_del_ping-pong" title="Lemma del ping-pong">Lemma del ping-pong</a><b> ·</b> <a href="/wiki/Classificazione_dei_gruppi_semplici_finiti" title="Classificazione dei gruppi semplici finiti">Classificazione dei gruppi semplici finiti</a></td></tr><tr><th class="subnavbox_group">Sottoinsiemi</th><td colspan="1"><a href="/wiki/Sottogruppo" title="Sottogruppo">Sottogruppo</a><b> ·</b> <a href="/wiki/Sottogruppo_normale" title="Sottogruppo normale">Sottogruppo normale</a><b> ·</b> <a href="/wiki/Sottogruppo_caratteristico" title="Sottogruppo caratteristico">Sottogruppo caratteristico</a><b> ·</b> <a href="/wiki/Sottogruppo_di_Frattini" title="Sottogruppo di Frattini">Sottogruppo di Frattini</a><b> ·</b> <a href="/wiki/Sottogruppo_di_torsione" title="Sottogruppo di torsione">Sottogruppo di torsione</a><b> ·</b> <a href="/wiki/Classe_laterale" title="Classe laterale">Classe laterale</a><b> ·</b> <a href="/wiki/Classe_di_coniugio" title="Classe di coniugio">Classe di coniugio</a><b> ·</b> <a href="/wiki/Serie_di_composizione" title="Serie di composizione">Serie di composizione</a></td></tr><tr><td colspan="2" class="navbox_center"><a href="/wiki/Omomorfismo_di_gruppi" title="Omomorfismo di gruppi">Omomorfismo</a><b> ·</b> <a href="/wiki/Isomorfismo_tra_gruppi" title="Isomorfismo tra gruppi">Isomorfismo</a><b> ·</b> <a href="/wiki/Automorfismo_interno" title="Automorfismo interno">Automorfismo interno</a><b> ·</b> <a href="/wiki/Automorfismo_esterno" title="Automorfismo esterno">Automorfismo esterno</a><b> ·</b> <a href="/wiki/Permutazione" title="Permutazione">Permutazione</a><b> ·</b> <a href="/wiki/Presentazione_di_un_gruppo" title="Presentazione di un gruppo">Presentazione di un gruppo</a><b> ·</b> <a href="/wiki/Azione_di_gruppo" title="Azione di gruppo">Azione di gruppo</a></td></tr></tbody></table></td></tr><tr><th colspan="1" class="navbox_group" style="background:#FFE0E0; text-align:right;"><a href="/wiki/Teoria_degli_anelli" title="Teoria degli anelli">Teoria degli anelli</a></th><td colspan="1" class="navbox_list navbox_odd" style="text-align:left;"><a class="mw-selflink selflink">Anello</a> (<a href="/wiki/Anello_artiniano" title="Anello artiniano">artiniano</a><b> ·</b> <a href="/wiki/Anello_noetheriano" title="Anello noetheriano">noetheriano</a><b> ·</b> <a href="/wiki/Anello_locale" title="Anello locale">locale</a>)<b> ·</b> <a href="/wiki/Caratteristica_(algebra)" title="Caratteristica (algebra)">Caratteristica</a><b> ·</b> <a href="/wiki/Ideale_(matematica)" title="Ideale (matematica)">Ideale</a> (<a href="/wiki/Ideale_primo" title="Ideale primo">primo</a><b> ·</b> <a href="/wiki/Ideale_massimale" title="Ideale massimale">massimale</a>)<b> ·</b> <a href="/wiki/Dominio_d%27integrit%C3%A0" title="Dominio d'integrità">Dominio</a> (<a href="/wiki/Dominio_a_fattorizzazione_unica" title="Dominio a fattorizzazione unica">a fattorizzazione unica</a><b> ·</b> <a href="/wiki/Dominio_ad_ideali_principali" title="Dominio ad ideali principali">a ideali principali</a><b> ·</b> <a href="/wiki/Dominio_euclideo" title="Dominio euclideo">euclideo</a>)<b> ·</b> <a href="/wiki/Matrice" title="Matrice">Matrice</a><b> ·</b> <a href="/wiki/Anello_semplice" title="Anello semplice">Anello semplice</a><b> ·</b> <a href="/wiki/Anello_degli_endomorfismi" title="Anello degli endomorfismi">Anello degli endomorfismi</a><b> ·</b> <a href="/wiki/Teorema_di_Artin-Wedderburn" title="Teorema di Artin-Wedderburn">Teorema di Artin-Wedderburn</a><b> ·</b> <a href="/wiki/Modulo_(algebra)" title="Modulo (algebra)">Modulo</a><b> ·</b> <a href="/wiki/Dominio_di_Dedekind" title="Dominio di Dedekind">Dominio di Dedekind</a><b> ·</b> <a href="/wiki/Estensione_di_anelli" title="Estensione di anelli">Estensione di anelli</a><b> ·</b> <a href="/wiki/Teorema_della_base_di_Hilbert" title="Teorema della base di Hilbert">Teorema della base di Hilbert</a><b> ·</b> <a href="/wiki/Anello_di_Gorenstein" title="Anello di Gorenstein">Anello di Gorenstein</a><b> ·</b> <a href="/wiki/Base_di_Gr%C3%B6bner" title="Base di Gröbner">Base di Gröbner</a><b> ·</b> <a href="/wiki/Prodotto_tensoriale" title="Prodotto tensoriale">Prodotto tensoriale</a><b> ·</b> <a href="/wiki/Primo_associato" title="Primo associato">Primo associato</a></td></tr><tr><th colspan="1" class="navbox_group" style="background:#FFE0E0; text-align:right;"><a href="/wiki/Teoria_dei_campi_(matematica)" class="mw-redirect" title="Teoria dei campi (matematica)">Teoria dei campi</a></th><td colspan="1" class="navbox_list navbox_even" style="text-align:left;"><table class="subnavbox"><tbody><tr><td colspan="2" class="navbox_center"><a href="/wiki/Campo_(matematica)" title="Campo (matematica)">Campo</a><b> ·</b> <a href="/wiki/Polinomio_irriducibile" title="Polinomio irriducibile">Polinomio irriducibile</a><b> ·</b> <a href="/wiki/Polinomio_ciclotomico" title="Polinomio ciclotomico">Polinomio ciclotomico</a><b> ·</b> <a href="/wiki/Teorema_fondamentale_dell%27algebra" title="Teorema fondamentale dell'algebra">Teorema fondamentale dell'algebra</a><b> ·</b> <a href="/wiki/Campo_finito" title="Campo finito">Campo finito</a><b> ·</b> <a href="/wiki/Automorfismo" title="Automorfismo">Automorfismo</a><b> ·</b> <a href="/wiki/Endomorfismo_di_Frobenius" title="Endomorfismo di Frobenius">Endomorfismo di Frobenius</a></td></tr><tr><th class="subnavbox_group">Estensioni</th><td colspan="1"><a href="/wiki/Campo_di_spezzamento" title="Campo di spezzamento">Campo di spezzamento</a><b> ·</b> <a href="/wiki/Estensione_di_campi" title="Estensione di campi">Estensione di campi</a><b> ·</b> <a href="/wiki/Estensione_algebrica" title="Estensione algebrica">Estensione algebrica</a><b> ·</b> <a href="/wiki/Estensione_separabile" title="Estensione separabile">Estensione separabile</a><b> ·</b> <a href="/wiki/Chiusura_algebrica" title="Chiusura algebrica">Chiusura algebrica</a><b> ·</b> <a href="/wiki/Campo_di_numeri" title="Campo di numeri">Campo di numeri</a><b> ·</b> <a href="/wiki/Estensione_normale" title="Estensione normale">Estensione normale</a><b> ·</b> <a href="/wiki/Estensione_di_Galois" title="Estensione di Galois">Estensione di Galois</a><b> ·</b> <a href="/wiki/Estensione_abeliana" title="Estensione abeliana">Estensione abeliana</a><b> ·</b> <a href="/wiki/Estensione_ciclotomica" title="Estensione ciclotomica">Estensione ciclotomica</a><b> ·</b> <a href="/wiki/Teoria_di_Kummer" title="Teoria di Kummer">Teoria di Kummer</a></td></tr><tr><th class="subnavbox_group">Teoria di Galois</th><td colspan="1"><a href="/wiki/Gruppo_di_Galois" title="Gruppo di Galois">Gruppo di Galois</a><b> ·</b> <a href="/wiki/Teoria_di_Galois" title="Teoria di Galois">Teoria di Galois</a><b> ·</b> <a href="/wiki/Teorema_fondamentale_della_teoria_di_Galois" title="Teorema fondamentale della teoria di Galois">Teorema fondamentale della teoria di Galois</a><b> ·</b> <a href="/wiki/Teorema_di_Abel-Ruffini" title="Teorema di Abel-Ruffini">Teorema di Abel-Ruffini</a><b> ·</b> <a href="/wiki/Costruzioni_con_riga_e_compasso" title="Costruzioni con riga e compasso">Costruzioni con riga e compasso</a></td></tr></tbody></table></td></tr><tr><th colspan="1" class="navbox_group" style="background:#FFE0E0; text-align:right;">Altre <a href="/wiki/Struttura_algebrica" title="Struttura algebrica">strutture algebriche</a></th><td colspan="1" class="navbox_list navbox_odd" style="text-align:left;"><a href="/wiki/Magma_(matematica)" title="Magma (matematica)">Magma</a><b> ·</b> <a href="/wiki/Semigruppo" title="Semigruppo">Semigruppo</a><b> ·</b> <a href="/wiki/Corpo_(matematica)" title="Corpo (matematica)">Corpo</a><b> ·</b> <a href="/wiki/Spazio_vettoriale" title="Spazio vettoriale">Spazio vettoriale</a><b> ·</b> <a href="/wiki/Algebra_su_campo" title="Algebra su campo">Algebra su campo</a><b> ·</b> <a href="/wiki/Algebra_di_Lie" title="Algebra di Lie">Algebra di Lie</a><b> ·</b> <a href="/wiki/Algebra_differenziale" title="Algebra differenziale">Algebra differenziale</a><b> ·</b> <a href="/wiki/Algebra_di_Clifford" title="Algebra di Clifford">Algebra di Clifford</a><b> ·</b> <a href="/wiki/Gruppo_topologico" title="Gruppo topologico">Gruppo topologico</a><b> ·</b> <a href="/wiki/Gruppo_ordinato" title="Gruppo ordinato">Gruppo ordinato</a><b> ·</b> <a href="/wiki/Quasi-anello" title="Quasi-anello">Quasi-anello</a><b> ·</b> <a href="/wiki/Algebra_di_Boole" title="Algebra di Boole">Algebra di Boole</a></td></tr><tr><th colspan="1" class="navbox_group" style="background:#FFE0E0; text-align:right;">argomenti</th><td colspan="1" class="navbox_list navbox_even" style="text-align:left;"><a href="/wiki/Teoria_delle_categorie" title="Teoria delle categorie">Teoria delle categorie</a><b> ·</b> <a href="/wiki/Algebra_lineare" title="Algebra lineare">Algebra lineare</a><b> ·</b> <a href="/wiki/Algebra_commutativa" title="Algebra commutativa">Algebra commutativa</a><b> ·</b> <a href="/wiki/Algebra_omologica" title="Algebra omologica">Algebra omologica</a><b> ·</b> <a href="/wiki/Algebra_astratta" title="Algebra astratta">Algebra astratta</a><b> ·</b> <a href="/wiki/Algebra_computazionale" class="mw-redirect" title="Algebra computazionale">Algebra computazionale</a><b> ·</b> <a href="/wiki/Algebra_differenziale" title="Algebra differenziale">Algebra differenziale</a><b> ·</b> <a href="/wiki/Algebra_universale" title="Algebra universale">Algebra universale</a></td></tr></tbody></table> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r141815314"><table class="navbox mw-collapsible mw-collapsed noprint metadata" id="navbox-Algebra_commutativa"><tbody><tr><th colspan="2"><div class="navbox_navbar"><div class="noprint plainlinks" style="background-color:transparent; padding:0; font-size:xx-small; color:var(--color-base, #000000); white-space:nowrap;"><a href="/wiki/Template:Algebra_commutativa" title="Template:Algebra commutativa"><span title="Vai alla pagina del template">V</span></a> · <a href="/w/index.php?title=Discussioni_template:Algebra_commutativa&action=edit&redlink=1" class="new" title="Discussioni template:Algebra commutativa (la pagina non esiste)"><span title="Discuti del template">D</span></a> · <a class="external text" href="https://it.wikipedia.org/w/index.php?title=Template:Algebra_commutativa&action=edit"><span title="Modifica il template. Usa l'anteprima prima di salvare">M</span></a></div></div><span class="navbox_title"><a href="/wiki/Algebra_commutativa" title="Algebra commutativa">Algebra commutativa</a></span></th></tr><tr><th colspan="1" class="navbox_group">Concetti generali</th><td colspan="1" class="navbox_list navbox_odd"><a class="mw-selflink selflink">Anello</a><b> ·</b> <a href="/wiki/Campo_(matematica)" title="Campo (matematica)">Campo</a><b> ·</b> <a href="/wiki/Dominio_d%27integrit%C3%A0" title="Dominio d'integrità">Dominio d'integrità</a><b> ·</b> <a href="/wiki/Anello_locale" title="Anello locale">Anello locale</a><b> ·</b> <a href="/wiki/Ideale_(matematica)" title="Ideale (matematica)">Ideale</a> <small>(<a href="/wiki/Ideale_massimale" title="Ideale massimale">Massimale</a><b> ·</b> <a href="/wiki/Ideale_primo" title="Ideale primo">Primo</a><b> ·</b> <a href="/wiki/Radicale_di_un_ideale" title="Radicale di un ideale">Radicale</a><b> ·</b> <a href="/wiki/Radicale_di_Jacobson" title="Radicale di Jacobson">Radicale di Jacobson</a>)</small><b> ·</b> <a href="/wiki/Decomposizione_primaria" title="Decomposizione primaria">Decomposizione primaria</a><b> ·</b> <a href="/wiki/Primo_associato" title="Primo associato">Primo associato</a><b> ·</b> <a href="/wiki/Spettro_di_un_anello" title="Spettro di un anello">Spettro</a><b> ·</b> <a href="/wiki/Dimensione_di_Krull" title="Dimensione di Krull">Dimensione di Krull</a><b> ·</b> <a href="/wiki/Profondit%C3%A0_(algebra)" title="Profondità (algebra)">Profondità</a></td></tr><tr><th colspan="1" class="navbox_group">Estensioni</th><td colspan="1" class="navbox_list navbox_even"><a href="/wiki/Localizzazione_(algebra)" title="Localizzazione (algebra)">Localizzazione</a> <small>(<a href="/wiki/Campo_dei_quozienti" title="Campo dei quozienti">Campo dei quozienti</a>)</small><b> ·</b> <a href="/wiki/Estensione_intera" title="Estensione intera">Estensione intera</a><b> ·</b> <a href="/wiki/Chiusura_integrale" title="Chiusura integrale">Chiusura integrale</a><b> ·</b> <a href="/wiki/Completamento_di_un_anello" title="Completamento di un anello">Completamento</a><b> ·</b> <a href="/wiki/Anello_dei_polinomi" title="Anello dei polinomi">Anello dei polinomi</a><b> ·</b> <a href="/wiki/Anello_delle_serie_formali" class="mw-redirect" title="Anello delle serie formali">Anello delle serie formali</a></td></tr><tr><th colspan="1" class="navbox_group"><a href="/wiki/Anello_noetheriano" title="Anello noetheriano">Anelli noetheriani</a></th><td colspan="1" class="navbox_list navbox_odd"><table class="subnavbox"><tbody><tr><th class="subnavbox_group">Classi</th><td colspan="1"><a href="/wiki/Anello_artiniano" title="Anello artiniano">Anello artiniano</a><b> ·</b> <a href="/wiki/Anello_locale_regolare" title="Anello locale regolare">Anello regolare</a><b> ·</b> <a href="/wiki/Anello_di_Gorenstein" title="Anello di Gorenstein">Anello di Gorenstein</a><b> ·</b> <a href="/wiki/Anello_di_Cohen-Macaulay" title="Anello di Cohen-Macaulay">Anello di Cohen-Macaulay</a><b> ·</b> <a href="/wiki/Anello_eccellente" title="Anello eccellente">Anello eccellente</a></td></tr><tr><th class="subnavbox_group">Teoremi</th><td colspan="1"><a href="/wiki/Teorema_dell%27ideale_principale" title="Teorema dell'ideale principale">Teorema dell'ideale principale</a><b> ·</b> <a href="/wiki/Teorema_della_base_di_Hilbert" title="Teorema della base di Hilbert">Teorema della base di Hilbert</a><b> ·</b> <a href="/wiki/Teorema_degli_zeri_di_Hilbert" title="Teorema degli zeri di Hilbert">Teorema degli zeri di Hilbert</a><b> ·</b> <a href="/wiki/Lemma_di_normalizzazione_di_Noether" title="Lemma di normalizzazione di Noether">Lemma di normalizzazione di Noether</a></td></tr></tbody></table></td></tr><tr><th colspan="1" class="navbox_group">Valutazioni</th><td colspan="1" class="navbox_list navbox_even"><a href="/wiki/Anello_di_valutazione" title="Anello di valutazione">Anello di valutazione</a><b> ·</b> <a href="/wiki/Anello_a_valutazione_discreta" title="Anello a valutazione discreta">Anello a valutazione discreta</a><b> ·</b> <a href="/wiki/Dominio_di_Pr%C3%BCfer" title="Dominio di Prüfer">Dominio di Prüfer</a><b> ·</b> <a href="/wiki/Dominio_di_B%C3%A9zout" title="Dominio di Bézout">Dominio di Bézout</a></td></tr><tr><th colspan="1" class="navbox_group"><a href="/wiki/Fattorizzazione_(teoria_degli_anelli)" title="Fattorizzazione (teoria degli anelli)">Fattorizzazione</a></th><td colspan="1" class="navbox_list navbox_odd"><a href="/wiki/Dominio_a_fattorizzazione_unica" title="Dominio a fattorizzazione unica">Dominio a fattorizzazione unica</a><b> ·</b> <a href="/wiki/Dominio_ad_ideali_principali" title="Dominio ad ideali principali">Dominio ad ideali principali</a><b> ·</b> <a href="/wiki/Dominio_euclideo" title="Dominio euclideo">Dominio euclideo</a><b> ·</b> <a href="/wiki/Dominio_di_Dedekind" title="Dominio di Dedekind">Dominio di Dedekind</a><b> ·</b> <a href="/wiki/Dominio_di_Krull" title="Dominio di Krull">Dominio di Krull</a></td></tr><tr><th colspan="1" class="navbox_group"><a href="/wiki/Modulo_(algebra)" title="Modulo (algebra)">Teoria dei moduli</a></th><td colspan="1" class="navbox_list navbox_even"><a href="/wiki/Modulo_libero" title="Modulo libero">Modulo libero</a><b> ·</b> <a href="/wiki/Modulo_proiettivo" title="Modulo proiettivo">Modulo proiettivo</a><b> ·</b> <a href="/wiki/Modulo_iniettivo" title="Modulo iniettivo">Modulo iniettivo</a><b> ·</b> <a href="/wiki/Prodotto_tensoriale" title="Prodotto tensoriale">Prodotto tensoriale</a><b> ·</b> <a href="/wiki/Modulo_piatto" title="Modulo piatto">Modulo piatto</a><b> ·</b> <a href="/wiki/Lemma_di_Nakayama" title="Lemma di Nakayama">Lemma di Nakayama</a><b> ·</b> <a href="/wiki/Lunghezza_di_un_modulo" title="Lunghezza di un modulo">Lunghezza</a></td></tr><tr><th colspan="1" class="navbox_group">Argomenti correlati</th><td colspan="1" class="navbox_list navbox_odd"><a href="/wiki/Algebra_omologica" title="Algebra omologica">Algebra omologica</a><b> ·</b> <a href="/wiki/Geometria_algebrica" title="Geometria algebrica">Geometria algebrica</a><b> ·</b> <a href="/wiki/Teoria_algebrica_dei_numeri" title="Teoria algebrica dei numeri">Teoria algebrica dei numeri</a><b> ·</b> <a href="/wiki/Teoria_delle_categorie" title="Teoria delle categorie">Teoria delle categorie</a></td></tr></tbody></table> <style data-mw-deduplicate="TemplateStyles:r140554510">.mw-parser-output .CdA{border:1px solid #aaa;width:100%;margin:auto;font-size:90%;padding:2px}.mw-parser-output .CdA th{background-color:#f2f2f2;font-weight:bold;width:20%}@media screen{html.skin-theme-clientpref-night .mw-parser-output .CdA{border-color:#54595D}html.skin-theme-clientpref-night .mw-parser-output .CdA th{background-color:#202122}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .CdA{border-color:#54595D}html.skin-theme-clientpref-os .mw-parser-output .CdA th{background-color:#202122}}</style><table class="CdA"><tbody><tr><th><a href="/wiki/Aiuto:Controllo_di_autorit%C3%A0" title="Aiuto:Controllo di autorità">Controllo di autorità</a></th><td><a href="/wiki/Nuovo_soggettario" title="Nuovo soggettario">Thesaurus BNCF</a> <span class="uid"><a rel="nofollow" class="external text" href="https://thes.bncf.firenze.sbn.it/termine.php?id=18029">18029</a></span><span style="font-weight:bold;"> ·</span> <a href="/wiki/Library_of_Congress_Control_Number" title="Library of Congress Control Number">LCCN</a> <span class="uid">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) <a rel="nofollow" class="external text" href="http://id.loc.gov/authorities/subjects/sh85114140">sh85114140</a></span><span style="font-weight:bold;"> ·</span> <a href="/wiki/Gemeinsame_Normdatei" title="Gemeinsame Normdatei">GND</a> <span class="uid">(<span style="font-weight:bolder; font-size:80%"><abbr title="tedesco">DE</abbr></span>) <a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4128084-2">4128084-2</a></span><span style="font-weight:bold;"> ·</span> <a href="/wiki/Biblioteca_nazionale_di_Spagna" title="Biblioteca nazionale di Spagna">BNE</a> <span class="uid">(<span style="font-weight:bolder; font-size:80%"><abbr title="spagnolo">ES</abbr></span>) <a rel="nofollow" class="external text" href="http://catalogo.bne.es/uhtbin/authoritybrowse.cgi?action=display&authority_id=XX531097">XX531097</a> <a rel="nofollow" class="external text" href="http://datos.bne.es/resource/XX531097">(data)</a></span><span style="font-weight:bold;"> ·</span> <a href="/wiki/Biblioteca_nazionale_di_Francia" title="Biblioteca nazionale di Francia">BNF</a> <span class="uid">(<span style="font-weight:bolder; font-size:80%"><abbr title="francese">FR</abbr></span>) <a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb131630283">cb131630283</a> <a rel="nofollow" class="external text" href="https://data.bnf.fr/ark:/12148/cb131630283">(data)</a></span><span style="font-weight:bold;"> ·</span> <a href="/wiki/Biblioteca_nazionale_di_Israele" title="Biblioteca nazionale di Israele">J9U</a> <span class="uid">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr>, <abbr title="ebraico">HE</abbr></span>) <a rel="nofollow" class="external text" href="http://olduli.nli.org.il/F/?func=find-b&local_base=NLX10&find_code=UID&request=987007538867405171">987007538867405171</a></span></td></tr></tbody></table> <div class="noprint" style="width:100%; padding: 3px 0; display: flex; flex-wrap: wrap; row-gap: 4px; column-gap: 8px; box-sizing: border-box;"><div style="flex-grow: 1"><style data-mw-deduplicate="TemplateStyles:r140555418">.mw-parser-output .itwiki-template-occhiello{width:100%;line-height:25px;border:1px solid #CCF;background-color:#F0EEFF;box-sizing:border-box}.mw-parser-output .itwiki-template-occhiello-progetto{background-color:#FAFAFA}@media screen{html.skin-theme-clientpref-night .mw-parser-output .itwiki-template-occhiello{background-color:#202122;border-color:#54595D}html.skin-theme-clientpref-night .mw-parser-output .itwiki-template-occhiello-progetto{background-color:#282929}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .itwiki-template-occhiello{background-color:#202122;border-color:#54595D}html.skin-theme-clientpref-os .mw-parser-output .itwiki-template-occhiello-progetto{background-color:#282929}}</style><div class="itwiki-template-occhiello"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Crystal128-kmplot.svg" class="mw-file-description" title="Matematica"><img alt=" " src="//upload.wikimedia.org/wikipedia/commons/thumb/a/af/Crystal128-kmplot.svg/25px-Crystal128-kmplot.svg.png" decoding="async" width="25" height="25" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/af/Crystal128-kmplot.svg/38px-Crystal128-kmplot.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/af/Crystal128-kmplot.svg/50px-Crystal128-kmplot.svg.png 2x" data-file-width="245" data-file-height="244" /></a></span> <b><a href="/wiki/Portale:Matematica" title="Portale:Matematica">Portale Matematica</a></b>: accedi alle voci di Wikipedia che trattano di matematica</div></div></div> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐864bbfd546‐pgkrc Cached time: 20241130084429 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.451 seconds Real time usage: 0.751 seconds Preprocessor visited node count: 3184/1000000 Post‐expand include size: 77023/2097152 bytes Template argument size: 739/2097152 bytes Highest expansion depth: 9/100 Expensive parser function count: 2/500 Unstrip recursion depth: 0/20 Unstrip post‐expand size: 19265/5000000 bytes Lua time usage: 0.202/10.000 seconds Lua memory usage: 6549954/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 350.960 1 -total 39.73% 139.431 1 Template:Collegamenti_esterni 17.33% 60.810 2 Template:Navbox 16.17% 56.763 1 Template:Algebra 14.69% 51.556 3 Template:Vedi_anche 9.28% 32.582 1 Template:Interprogetto 7.14% 25.055 1 Template:Portale 4.39% 15.408 1 Template:Controllo_di_autorità 4.08% 14.305 3 Template:En 3.96% 13.909 4 Template:Navbox_subgroup --> <!-- Saved in parser cache with key itwiki:pcache:33544:|#|:idhash:canonical and timestamp 20241130084429 and revision id 138537220. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&useformat=desktop" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Estratto da "<a dir="ltr" href="https://it.wikipedia.org/w/index.php?title=Anello_(algebra)&oldid=138537220#Ideali">https://it.wikipedia.org/w/index.php?title=Anello_(algebra)&oldid=138537220#Ideali</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Categoria:Categorie" title="Categoria:Categorie">Categorie</a>: <ul><li><a href="/wiki/Categoria:Teoria_degli_anelli" title="Categoria:Teoria degli anelli">Teoria degli anelli</a></li><li><a href="/wiki/Categoria:Strutture_algebriche" title="Categoria:Strutture algebriche">Strutture algebriche</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Categorie nascoste: <ul><li><a href="/wiki/Categoria:P3365_letta_da_Wikidata" title="Categoria:P3365 letta da Wikidata">P3365 letta da Wikidata</a></li><li><a href="/wiki/Categoria:P5844_letta_da_Wikidata" title="Categoria:P5844 letta da Wikidata">P5844 letta da Wikidata</a></li><li><a href="/wiki/Categoria:P6706_letta_da_Wikidata" title="Categoria:P6706 letta da Wikidata">P6706 letta da Wikidata</a></li><li><a href="/wiki/Categoria:P9621_letta_da_Wikidata" title="Categoria:P9621 letta da Wikidata">P9621 letta da Wikidata</a></li><li><a href="/wiki/Categoria:P1417_letta_da_Wikidata" title="Categoria:P1417 letta da Wikidata">P1417 letta da Wikidata</a></li><li><a href="/wiki/Categoria:P3847_letta_da_Wikidata" title="Categoria:P3847 letta da Wikidata">P3847 letta da Wikidata</a></li><li><a href="/wiki/Categoria:P2812_letta_da_Wikidata" title="Categoria:P2812 letta da Wikidata">P2812 letta da Wikidata</a></li><li><a href="/wiki/Categoria:P7554_letta_da_Wikidata" title="Categoria:P7554 letta da Wikidata">P7554 letta da Wikidata</a></li><li><a href="/wiki/Categoria:Voci_con_codice_Thesaurus_BNCF" title="Categoria:Voci con codice Thesaurus BNCF">Voci con codice Thesaurus BNCF</a></li><li><a href="/wiki/Categoria:Voci_con_codice_LCCN" title="Categoria:Voci con codice LCCN">Voci con codice LCCN</a></li><li><a href="/wiki/Categoria:Voci_con_codice_GND" title="Categoria:Voci con codice GND">Voci con codice GND</a></li><li><a href="/wiki/Categoria:Voci_con_codice_BNE" title="Categoria:Voci con codice BNE">Voci con codice BNE</a></li><li><a href="/wiki/Categoria:Voci_con_codice_BNF" title="Categoria:Voci con codice BNF">Voci con codice BNF</a></li><li><a href="/wiki/Categoria:Voci_con_codice_J9U" title="Categoria:Voci con codice J9U">Voci con codice J9U</a></li><li><a href="/wiki/Categoria:Voci_non_biografiche_con_codici_di_controllo_di_autorit%C3%A0" title="Categoria:Voci non biografiche con codici di controllo di autorità">Voci non biografiche con codici di controllo di autorità</a></li><li><a href="/wiki/Categoria:Pagine_che_utilizzano_collegamenti_magici_ISBN" title="Categoria:Pagine che utilizzano collegamenti magici ISBN">Pagine che utilizzano collegamenti magici ISBN</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> Questa pagina è stata modificata per l'ultima volta il 28 mar 2024 alle 14:04.</li> <li id="footer-info-copyright">Il testo è disponibile secondo la <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by-sa/4.0/deed.it">licenza Creative Commons Attribuzione-Condividi allo stesso modo</a>; possono applicarsi condizioni ulteriori. Vedi le <a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use/it">condizioni d'uso</a> per i dettagli.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy/it">Informativa sulla privacy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:Sala_stampa/Wikipedia">Informazioni su Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:Avvertenze_generali">Avvertenze</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Codice di condotta</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Sviluppatori</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/it.wikipedia.org">Statistiche</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Dichiarazione sui cookie</a></li> <li id="footer-places-mobileview"><a href="//it.m.wikipedia.org/w/index.php?title=Anello_(algebra)&mobileaction=toggle_view_mobile#Ideali" class="noprint stopMobileRedirectToggle">Versione mobile</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-5c59558b9d-ck7sp","wgBackendResponseTime":150,"wgPageParseReport":{"limitreport":{"cputime":"0.451","walltime":"0.751","ppvisitednodes":{"value":3184,"limit":1000000},"postexpandincludesize":{"value":77023,"limit":2097152},"templateargumentsize":{"value":739,"limit":2097152},"expansiondepth":{"value":9,"limit":100},"expensivefunctioncount":{"value":2,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":19265,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 350.960 1 -total"," 39.73% 139.431 1 Template:Collegamenti_esterni"," 17.33% 60.810 2 Template:Navbox"," 16.17% 56.763 1 Template:Algebra"," 14.69% 51.556 3 Template:Vedi_anche"," 9.28% 32.582 1 Template:Interprogetto"," 7.14% 25.055 1 Template:Portale"," 4.39% 15.408 1 Template:Controllo_di_autorità"," 4.08% 14.305 3 Template:En"," 3.96% 13.909 4 Template:Navbox_subgroup"]},"scribunto":{"limitreport-timeusage":{"value":"0.202","limit":"10.000"},"limitreport-memusage":{"value":6549954,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-864bbfd546-pgkrc","timestamp":"20241130084429","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Anello (algebra)","url":"https:\/\/it.wikipedia.org\/wiki\/Anello_(algebra)#Ideali","sameAs":"http:\/\/www.wikidata.org\/entity\/Q161172","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q161172","author":{"@type":"Organization","name":"Contributori ai progetti Wikimedia"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2004-07-17T20:45:05Z","dateModified":"2024-03-28T13:04:20Z","headline":"struttura algebrica"}</script> </body> </html>