CINXE.COM

Search results for: rhizobia

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: rhizobia</title> <meta name="description" content="Search results for: rhizobia"> <meta name="keywords" content="rhizobia"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="rhizobia" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="rhizobia"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 21</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: rhizobia</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Isolation and Characterization of Salt-Tolerance of Rhizobia under the Effects of Salinity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarra%20Sobti">Sarra Sobti</a>, <a href="https://publications.waset.org/abstracts/search?q=Baelhadj%20Hamdi-A%C3%AFssa"> Baelhadj Hamdi-Aïssa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The bacteria of the soil, usually called rhizobium, have a considerable importance in agriculture because of their capacity to fix the atmospheric nitrogen in symbiosis with the plants of the family of legumes. The present work was to study the effect of the salinity on growth and nodulation of alfalfa-rhizobia symbiosis at different agricultural experimental sites in Ouargla. The experiment was conducted in 3 steps. The first one was the isolation and characterization of the Rhizobia; next, the evolution of the isolates tolerance to salinity at three levels of NaCl (6, 8,12 and 16 g/L); and the last step was the evolution of the tolerance on symbiotic characteristics. The results showed that the phenotypic characterizations behave practically as Rhizobia spp, and the effects of salinity affect the symbiotic process. The tolerance to high levels of salinity and the survival and persistence in severe and harsh desert conditions make these rhizobia highly valuable inoculums to improve productivity of the leguminous plants cultivated under extreme environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rhizobia" title="rhizobia">rhizobia</a>, <a href="https://publications.waset.org/abstracts/search?q=symbiosis" title=" symbiosis"> symbiosis</a>, <a href="https://publications.waset.org/abstracts/search?q=salinity" title=" salinity"> salinity</a>, <a href="https://publications.waset.org/abstracts/search?q=tolerance" title=" tolerance"> tolerance</a>, <a href="https://publications.waset.org/abstracts/search?q=nodulation" title=" nodulation"> nodulation</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a>, <a href="https://publications.waset.org/abstracts/search?q=Medicago%20sativa%20L." title=" Medicago sativa L."> Medicago sativa L.</a> </p> <a href="https://publications.waset.org/abstracts/8701/isolation-and-characterization-of-salt-tolerance-of-rhizobia-under-the-effects-of-salinity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8701.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Which Mechanisms are Involved by Legume-Rhizobia Symbiosis to Increase Its Phosphorus Use Efficiency under Low Phosphorus Level?</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Makoudi">B. Makoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Ghanimi"> R. Ghanimi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bargaz"> A. Bargaz</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mouradi"> M. Mouradi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Farissi"> M. Farissi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kabbaj"> A. Kabbaj</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20J.%20Drevon"> J. J. Drevon</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Ghoulam"> C. Ghoulam </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Legume species are able to establish a nitrogen fixing symbiosis with soil rhizobia that allows them, when it operates normally, to ensure their necessary nitrogen nutrition. This biological process needs high phosphorus (P) supply and consequently it is limited under low phosphorus availability. To overcome this constraint, legume-rhizobia symbiosis develops many mechanisms to increase P availability in the rhizosphere and also the efficiency of P fertilizers. The objectives of our research works are to understand the physiological and biochemical mechanisms implemented by legume-rhizobia symbiosis to increase its P use efficiency (PUE) in order to select legume genotypes-rhizobia strains combination more performing for BNF under P deficiency. Our studies were carried out on two grain legume species, common bean (Phaseolus vulgaris) and faba bean (Vicia faba) tested in farmers’ fields and in experimental station fewer than two soil phosphorus levels. Under field conditions, the P deficiency caused a significant decrease of Plant and nodule biomasses in all of the tested varieties with a difference between them. This P limitation increased the contents of available P in the rhizospheric soils that was positively correlated with the increase of phosphatases activities in the nodules and the rhizospheric soil. Some legume genotypes showed a significant increase of their P use efficiency under P deficiency. The P solubilization test showed that some rhizobia strains isolated from Haouz region presented an important capacity to grow on solid and liquid media with tricalcium phosphate as the only P source and their P solubilizing activity was confirmed by the assay of the released P in the liquid medium. Also, this P solubilizing activity was correlated with medium acidification and the excretion of acid phosphatases and phytases in the medium. Thus, we concluded that medium acidification and excretion of phosphatases in the rhizosphere are the prominent reactions for legume-rhizobia symbiosis to improve its P nutrition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=legume" title="legume">legume</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphorus%20deficiency" title=" phosphorus deficiency"> phosphorus deficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=rhizobia" title=" rhizobia"> rhizobia</a>, <a href="https://publications.waset.org/abstracts/search?q=rhizospheric%20soil" title=" rhizospheric soil"> rhizospheric soil</a> </p> <a href="https://publications.waset.org/abstracts/29833/which-mechanisms-are-involved-by-legume-rhizobia-symbiosis-to-increase-its-phosphorus-use-efficiency-under-low-phosphorus-level" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29833.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Rhizobia-Containing Rhizobacterial Consortia and Intercropping Improved Faba Bean and Wheat Performances Under Stress Combining Drought and Phosphorus Deficiency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Said%20Cheto">Said Cheto</a>, <a href="https://publications.waset.org/abstracts/search?q=Khawla%20Oukaltouma"> Khawla Oukaltouma</a>, <a href="https://publications.waset.org/abstracts/search?q=Imane%20Chamkhi"> Imane Chamkhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ammar%20Ibn%20Yasser"> Ammar Ibn Yasser</a>, <a href="https://publications.waset.org/abstracts/search?q=Bouchra%20Benmrid"> Bouchra Benmrid</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Qaddoury"> Ahmed Qaddoury</a>, <a href="https://publications.waset.org/abstracts/search?q=Lamfeddal%20Kouisni"> Lamfeddal Kouisni</a>, <a href="https://publications.waset.org/abstracts/search?q=Joerg%20Geistlinger"> Joerg Geistlinger</a>, <a href="https://publications.waset.org/abstracts/search?q=Youssef%20Zeroual"> Youssef Zeroual</a>, <a href="https://publications.waset.org/abstracts/search?q=Adnane%20Bargaz"> Adnane Bargaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Cherki%20Ghoulam"> Cherki Ghoulam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Our study aimed to assess, the role of inoculation of faba bean/wheat intercrops with selected rhizobacteria consortia gathering one rhizobia and two phosphate solubilizing bacteria “PSB” to alleviate the effects of combined water deficit and P limitation on Faba bean/ wheat intercrops versus monocrops under greenhouse conditions. One Vicia faba L variety (Aguadulce “Ag”), and one Triticum durum L. variety (Karim “K”) were grown as sole crops or intercrop in pots containing sterilized substrate (sand: peat 4:1v/v) added either with rock phosphate (RP) as the alone P source (P limitation) or with KH₂PO₄ in nutrient solution (P sufficient control). Plant inoculation was done using rhizobacterial consortia composed; C1(Rhizobium laguerreae, Kocuria sp, and Pseudomonas sp) and C2 (R. laguerreae, Rahnella sp, and Kocuria sp). Two weeks after inoculation, the plants were submitted to water deficit consisting of 40% of substrate water holding Capacity (WHC) versus 80% WHC for well-watered plants. At the flowering stage, the trial was assessed, and the results showed that inoculation with both consortia (C1 and C2) improved faba bean biomass in terms of shoots, roots, and nodules compared to inoculation with rhizobia alone, particularly C2 improved these parametres by 19.03, 78.99, and 72.73%, respectively. Leaf relative water content decreased under combined stress, particularly in response to C1 with a significant improvement of this parameter in wheat intercrops. For faba bean under P limitation, inoculation with C2 increased stomatal conductance (gs) by 35.73% compared to plants inoculated with rhizobia alone. Furthermore, the same inoculum C2 improved membrane stability by 44,33% versus 16,16% for C1 compared to inoculation with rhizobia alone under P deficit. For sole cropped faba bean plants, inoculation with both consortia improved N accumulation compared to inoculation with rhizobia alone with an increase of 70.75% under P limitation. Moreover, under the combined stress, intercropping inoculation with C2 improved plant biomass and N content (112.98%) in wheat plants, compared to the sole crop. Our finding revealed that consortium C2 might offer an agronomic advantage under water and P deficit and could be used as inoculum for enhancing faba bean and wheat production under both monocropping and intercropping systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drought" title="drought">drought</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphorus" title=" phosphorus"> phosphorus</a>, <a href="https://publications.waset.org/abstracts/search?q=intercropping" title=" intercropping"> intercropping</a>, <a href="https://publications.waset.org/abstracts/search?q=PSB" title=" PSB"> PSB</a>, <a href="https://publications.waset.org/abstracts/search?q=rhizobia" title=" rhizobia"> rhizobia</a>, <a href="https://publications.waset.org/abstracts/search?q=vicia%20faba" title=" vicia faba"> vicia faba</a>, <a href="https://publications.waset.org/abstracts/search?q=Triticum%20durum" title=" Triticum durum"> Triticum durum</a> </p> <a href="https://publications.waset.org/abstracts/163616/rhizobia-containing-rhizobacterial-consortia-and-intercropping-improved-faba-bean-and-wheat-performances-under-stress-combining-drought-and-phosphorus-deficiency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163616.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Evaluation of Rhizobia for Nodulation, Shoot and Root Biomass from Host Range Studies Using Soybean, Common Bean, Bambara Groundnut and Mung Bean</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sharon%20K.%20Mahlangu">Sharon K. Mahlangu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustapha%20Mohammed"> Mustapha Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Felix%20D.%20Dakora"> Felix D. Dakora</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rural households in Africa depend largely on legumes as a source of high-protein food due to N₂-fixation by rhizobia when they infect plant roots. However, the legume/rhizobia symbiosis can exhibit some level of specificity such that some legumes may be selectively nodulated by only a particular group of rhizobia. In contrast, some legumes are highly promiscuous and are nodulated by a wide range of rhizobia. Little is known about the nodulation promiscuity of bacterial symbionts from wild legumes such as Aspalathus linearis, especially if they can nodulate cultivated grain legumes such as cowpea and Kersting’s groundnut. Determining the host range of the symbionts of wild legumes can potentially reveal novel rhizobial strains that can be used to increase nitrogen fixation in cultivated legumes. In this study, bacteria were isolated and tested for their ability to induce root nodules on their homologous hosts. Seeds were surface-sterilized with alcohol and sodium hypochlorite and planted in sterile sand contained in plastic pots. The pot surface was covered with sterile non-absorbent cotton wool to avoid contamination. The plants were watered with nitrogen-free nutrient solution and sterile water in alternation. Three replicate pots were used per isolate. The plants were grown for 90 days in a naturally-lit glasshouse and assessed for nodulation (nodule number and nodule biomass) and shoot biomass. Seven isolates from each of Kersting’s groundnut and cowpea and two from Rooibos tea plants were tested for their ability to nodulate soybean, mung bean, common bean and Bambara groundnut. The results showed that of the isolates from cowpea, where VUSA55 and VUSA42 could nodulate all test host plants, followed by VUSA48 which nodulated cowpea, Bambara groundnut and soybean. The two isolates from Rooibos tea plants nodulated Bambara groundnut, soybean and common bean. However, isolate L1R3.3.1 also nodulated mung bean. There was a greater accumulation of shoot biomass when cowpea isolate VUSA55 nodulated common bean. Isolate VUSA55 produced the highest shoot biomass, followed by VUSA42 and VUSA48. The two Kersting’s groundnut isolates, MGSA131 and MGSA110, accumulated average shoot biomass. In contrast, the two Rooibos tea isolates induced a higher accumulation of biomass in Bambara groundnut, followed by common bean. The results suggest that inoculating these agriculturally important grain legumes with cowpea isolates can contribute to improved soil fertility, especially soil nitrogen levels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=legumes" title="legumes">legumes</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20fixation" title=" nitrogen fixation"> nitrogen fixation</a>, <a href="https://publications.waset.org/abstracts/search?q=nodulation" title=" nodulation"> nodulation</a>, <a href="https://publications.waset.org/abstracts/search?q=rhizobia" title=" rhizobia"> rhizobia</a> </p> <a href="https://publications.waset.org/abstracts/140582/evaluation-of-rhizobia-for-nodulation-shoot-and-root-biomass-from-host-range-studies-using-soybean-common-bean-bambara-groundnut-and-mung-bean" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140582.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> The Impact of Different Rhizobium leguminosarum Strains on the Protein Content of Peas and Broad Beans</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alise%20Senberga">Alise Senberga</a>, <a href="https://publications.waset.org/abstracts/search?q=Laila%20Dubova"> Laila Dubova</a>, <a href="https://publications.waset.org/abstracts/search?q=Liene%20Strauta"> Liene Strauta</a>, <a href="https://publications.waset.org/abstracts/search?q=Ina%20Alsina"> Ina Alsina</a>, <a href="https://publications.waset.org/abstracts/search?q=Ieva%20Erdberga"> Ieva Erdberga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Legume symbiotic relationship with nitrogen fixating bacteria Rhizobim leguminosarum is an important factor used to improve the productivity of legumes, due to the fact that rhizobia can supply plant with the necessary amount of nitrogen. R. leguminosarum strains have shown different activity in fixing nitrogen. Depending on the chosen R. leguminosarum strain, host plant biochemical content can be altered. In this study we focused particularly on the changes in protein content in beans (using two different varieties) and peas (five different varieties) due to the use of several different R. leguminosarum strains (four strains for both beans and peas). Overall, the protein content increase was observed after seed inoculation with R. leguminosarum. Strain and plant cultivar interaction specification was observed. The effect of R. leguminosarum inoculation on the content of protein was dependent on the R. leguminosarum strain used. Plant cultivar also appeared to have a decisive role in protein content formation with the help of R. leguminosaru. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=legumes" title="legumes">legumes</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20content" title=" protein content"> protein content</a>, <a href="https://publications.waset.org/abstracts/search?q=rhizobia%20strains" title=" rhizobia strains"> rhizobia strains</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a> </p> <a href="https://publications.waset.org/abstracts/27686/the-impact-of-different-rhizobium-leguminosarum-strains-on-the-protein-content-of-peas-and-broad-beans" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27686.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">521</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Effects of Microbial Biofertilization on Nodulation, Nitrogen Fixation, and Yield of Lablab purpureus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benselama%20Amel">Benselama Amel</a>, <a href="https://publications.waset.org/abstracts/search?q=Ounane%20S.%20Mohamed"> Ounane S. Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Bekki%20Abdelkader"> Bekki Abdelkader</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A collection of 20 isolates from fresh Nodules of the legume plant Lablab purpureus was isolated. These isolates have been authenticated by seedling inoculation grown in jars containing sand. The results obtained after two months of culture have revealed that the 20 isolates (100% of the isolates) are able to nodulate their host plants. The results obtained were analyzed statistically by ANOVA using the software statistica and had shown that the effect of the inoculation has significantly improved all the growth parameters (the height of the plant and the dry weight of the aerial parts and roots, and the number of nodules). We have evaluated the tolerance of all strains of the collection to the major stress factors as the salinity, pH and extreme temperature. The osmotolerance reached a concentration up to 1710mm of NaCl. The strains were also able to grow on a wide range of pH, ranging from 4.5 to 9.5, and temperature, between 4°C and 40°C. Also, we tested the effect of the acidity, aluminum and ferric deficit on the Lablab-rhizobia symbiosis. Lablab purpureus has not been affected by the presence of high concentrations of aluminum. On the other hand, iron deficiency has caused a net decrease in the dry biomass of the aerial part. The results of all the phenotypic characters have been treated by the statistical Minitab software, the numerical analysis had shown that these bacterial strains are divided into two distinct groups at a level of similarity of 86 %. The SDS-PAGE was carried out to determine the profile of the total protein of the strains. The coefficients of similarity of polypeptide bands between the isolates and strains reference (Bradyrhizobium, Mesorizobium sp.) confirm that our strain belongs to the groups of rhizobia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SDS-PAGE" title="SDS-PAGE">SDS-PAGE</a>, <a href="https://publications.waset.org/abstracts/search?q=rhizobia" title=" rhizobia"> rhizobia</a>, <a href="https://publications.waset.org/abstracts/search?q=symbiosis" title=" symbiosis"> symbiosis</a>, <a href="https://publications.waset.org/abstracts/search?q=phenotypic%20characterization" title=" phenotypic characterization"> phenotypic characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=Lablab%20purpureus" title=" Lablab purpureus"> Lablab purpureus</a> </p> <a href="https://publications.waset.org/abstracts/17118/effects-of-microbial-biofertilization-on-nodulation-nitrogen-fixation-and-yield-of-lablab-purpureus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17118.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Metabolic and Phylogenetic Profiling of Rhizobium leguminosarum Strains Isolated from NZ Soils of Varying pH</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anish%20Shah">Anish Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=Steve%20A.%20Wakelin"> Steve A. Wakelin</a>, <a href="https://publications.waset.org/abstracts/search?q=Derrick%20Moot"> Derrick Moot</a>, <a href="https://publications.waset.org/abstracts/search?q=Aur%C3%A9lie%20Laugraud"> Aurélie Laugraud</a>, <a href="https://publications.waset.org/abstracts/search?q=Hayley%20J.%20Ridgway"> Hayley J. Ridgway</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A mixed pasture system of ryegrass-clover is used in New Zealand, where clovers are generally inoculated with commercially available strains of rhizobia. The community of rhizobia living in the soil and the way in which they interact with the plant are affected by different biotic and abiotic factors. In general, bacterial richness and diversity in soil varies by soil pH. pH also affects cell physiology and acts as a master variable that controls the wider soil physiochemical conditions such as P availability, Al release and micronutrient availability. As such, pH can have both primary and secondary effects on soil biology and processes. The aim of this work was to investigate the effect of soil pH on the genetic diversity and metabolic profile of Rhizobium leguminosarum strains nodulating clover. Soils were collected from 12 farms across New Zealand which had a pH(water) range of between 4.9 and 7.5, with four acidic (pH 4.9 – 5.5), four ‘neutral’ (5.8 – 6.1) and four alkaline (6.5 – 7.5) soils. Bacteria were recovered from nodules of Trifolium repens (white clover) and T. subterraneum (subterranean clover) grown in the soils. The strains were cultured and screened against a range of pH-amended media to demonstrate whether they were adapted to pH levels similar to their native soils. The strains which showed high relative growth at a given pH (~20% of those isolated) were selected for metabolic and taxonomic profiling. The Omnilog (Biolog Inc., Hayward, CA) phenotype array was used to perform assays on carbon (C) utilisation for selected strains. DNA was extracted from the strains which had differing C utilisation profiles and PCR products for both forward and reverse primers were sequenced for the following genes: 16S rRNA, recA, nodC, nodD and nifH (symbiotic). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacterial%20diversity" title="bacterial diversity">bacterial diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=clover" title=" clover"> clover</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolic%20and%20taxonomic%20profiling" title=" metabolic and taxonomic profiling"> metabolic and taxonomic profiling</a>, <a href="https://publications.waset.org/abstracts/search?q=pH%20adaptation" title=" pH adaptation"> pH adaptation</a>, <a href="https://publications.waset.org/abstracts/search?q=rhizobia" title=" rhizobia"> rhizobia</a> </p> <a href="https://publications.waset.org/abstracts/70399/metabolic-and-phylogenetic-profiling-of-rhizobium-leguminosarum-strains-isolated-from-nz-soils-of-varying-ph" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70399.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> How Does Vicia faba-rhizobia Symbiosis Improve Its Performance under Low Phosphorus Availability?</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Makoudi">B. Makoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Ghanimi"> R. Ghanimi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mouradi"> M. Mouradi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kabbadj"> A. Kabbadj</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Farissi"> M. Farissi</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20J.%20Drevon"> J. J. Drevon</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20%20Ghoulam"> C. Ghoulam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work focuses on the responses of Vicia fabarhizobia symbiosis to phosphorus deficiency and their contribution to tolerate this constraint. The study was carried out on four faba bean varieties, Aguadulce, Alfia, Luz Otono, and Reina Mora submitted to two phosphorus treatments, deficient and sufficient and cultivated under field and greenhouse hydroaeroponic culture. Plants were harvested at flowering stage for growth, nodulation and phosphorus content assessment. Phosphatases in nodules and rhizospheric soil were analyzed. The impact of phosphorus deficiency on yield component was assessed at maturity stage. Under field conditions, phosphorus deficiency affected negatively nodule biomass and nodule phosphorus content with Alfia and Reina Mora showing the highest biomass reduction. The phosphatase activities in nodules and rhizospheric soil were increased under phosphorus deficiency. At maturity stage, under soil low available phosphorus, the pods number and 100 seeds weight were reduced. The genotypic variation was evident for almost all tested parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=faba%20bean" title="faba bean">faba bean</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphorus" title=" phosphorus"> phosphorus</a>, <a href="https://publications.waset.org/abstracts/search?q=rhizobia" title=" rhizobia"> rhizobia</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a> </p> <a href="https://publications.waset.org/abstracts/16301/how-does-vicia-faba-rhizobia-symbiosis-improve-its-performance-under-low-phosphorus-availability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16301.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">450</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Rhizobium leguminosarum: Selecting Strain and Exploring Delivery Systems for White Clover</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laura%20Villamizar">Laura Villamizar</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Wright"> David Wright</a>, <a href="https://publications.waset.org/abstracts/search?q=Claudia%20Baena"> Claudia Baena</a>, <a href="https://publications.waset.org/abstracts/search?q=Marie%20Foxwell"> Marie Foxwell</a>, <a href="https://publications.waset.org/abstracts/search?q=Maureen%20O%27Callaghan"> Maureen O&#039;Callaghan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Leguminous crops can be self-sufficient for their nitrogen requirements when their roots are nodulated with an effective Rhizobium strain and for this reason seed or soil inoculation is practiced worldwide to ensure nodulation and nitrogen fixation in grain and forage legumes. The most widely used method of applying commercially available inoculants is using peat cultures which are coated onto seeds prior to sowing. In general, rhizobia survive well in peat, but some species die rapidly after inoculation onto seeds. The development of improved formulation methodology is essential to achieve extended persistence of rhizobia on seeds, and improved efficacy. Formulations could be solid or liquid. Most popular solid formulations or delivery systems are: wettable powders (WP), water dispersible granules (WG), and granules (DG). Liquid formulation generally are: suspension concentrates (SC) or emulsifiable concentrates (EC). In New Zealand, R. leguminosarum bv. trifolii strain TA1 has been used as a commercial inoculant for white clover over wide areas for many years. Seeds inoculation is carried out by mixing the seeds with inoculated peat, some adherents and lime, but rhizobial populations on stored seeds decline over several weeks due to a number of factors including desiccation and antibacterial compounds produced by the seeds. In order to develop a more stable and suitable delivery system to incorporate rhizobia in pastures, two strains of R. leguminosarum (TA1 and CC275e) and several formulations and processes were explored (peat granules, self-sticky peat for seed coating, emulsions and a powder containing spray dried microcapsules). Emulsions prepared with fresh broth of strain TA1 were very unstable under storage and after seed inoculation. Formulations where inoculated peat was used as the active ingredient were significantly more stable than those prepared with fresh broth. The strain CC275e was more tolerant to stress conditions generated during formulation and seed storage. Peat granules and peat inoculated seeds using strain CC275e maintained an acceptable loading of 108 CFU/g of granules or 105 CFU/g of seeds respectively, during six months of storage at room temperature. Strain CC275e inoculated on peat was also microencapsulated with a natural biopolymer by spray drying and after optimizing operational conditions, microparticles containing 107 CFU/g and a mean particle size between 10 and 30 micrometers were obtained. Survival of rhizobia during storage of the microcapsules is being assessed. The development of a stable product depends on selecting an active ingredient (microorganism), robust enough to tolerate some adverse conditions generated during formulation, storage, and commercialization and after its use in the field. However, the design and development of an adequate formulation, using compatible ingredients, optimization of the formulation process and selecting the appropriate delivery system, is possibly the best tool to overcome the poor survival of rhizobia and provide farmers with better quality inoculants to use. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=formulation" title="formulation">formulation</a>, <a href="https://publications.waset.org/abstracts/search?q=Rhizobium%20leguminosarum" title=" Rhizobium leguminosarum"> Rhizobium leguminosarum</a>, <a href="https://publications.waset.org/abstracts/search?q=storage%20stability" title=" storage stability"> storage stability</a>, <a href="https://publications.waset.org/abstracts/search?q=white%20clover" title=" white clover"> white clover</a> </p> <a href="https://publications.waset.org/abstracts/80462/rhizobium-leguminosarum-selecting-strain-and-exploring-delivery-systems-for-white-clover" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80462.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> An Assessment of Nodulation and Nitrogen Fixation of Lessertia Frutescens Plants Inoculated with Rhizobial Isolates from the Cape Fynbos</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mokgadi%20Miranda%20Hlongwane">Mokgadi Miranda Hlongwane</a>, <a href="https://publications.waset.org/abstracts/search?q=Ntebogeng%20Sharon%20Mokgalaka"> Ntebogeng Sharon Mokgalaka</a>, <a href="https://publications.waset.org/abstracts/search?q=Felix%20Dapare%20Dakora"> Felix Dapare Dakora</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lessertia (L.) frutescens (syn. Sutherlandia frutescens) is a leguminous medicinal plant indigenous to South Africa. Traditionally, L. frutescens has been used to treat cancer, diabetes, epilepsy, fever, HIV, stomach problems, wounds and other ailments. This legume is endemic to the Cape fynbos, with large populations occurring wild and cultivated in the Cape Florist Region. Its widespread distribution in the Western Cape, Northern Cape, Eastern Cape and Kwazulu-Natal is linked to its increased use as a phytomedicine in the treatment of various diseases by traditional healers. The frequent harvesting of field plants for use as a medicine has made it necessary to undertake studies towards the conservation of Lessertia frutescens. As a legume, this species can form root nodules and fix atmospheric N₂ when in symbiosis with soil bacteria called rhizobia. So far, however, few studies (if any) have been done on the efficacy and diversity of native bacterial symbionts nodulating L. frutescens in South Africa. The aim of this project was to isolate and characterize L. frutescens-nodulating bacteria from five different locations in the Western Cape Province. This was done by trapping soil rhizobia using rhizosphere soil suspension to inoculate L. frutescens seedlings growing in sterilized sand and receiving sterile N-free Hoagland nutrient solution under glasshouse conditions. At 60 days after planting, root nodules were harvested from L. frutescens plants, surface-sterilized, macerated, and streaked on yeast mannitol agar (YMA) plates and incubated at 28 ˚C for observation of bacterial growth. The majority of isolates were slow-growers that took 6-14 days to appear on YMA plates. However, seven isolates were fast-growers, taking 2-4 days to appear on YMA plates. Single-colony cultures of the isolates were assessed for their ability to nodulate L. frutescens as a homologous host under glasshouse conditions. Of the 92 bacterial isolates tested, 63 elicited nodule formation on L. frutescens. Symbiotic effectiveness varied markedly between and among test isolates. There were also significant (p≤0.005) differences in nodulation, shoot biomass, photosynthetic rates, leaf transpiration and stomatal conductance of L. frutescens plants inoculated with the test isolates, which is an indication of their functional diversity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lessertia%20frutescens" title="lessertia frutescens">lessertia frutescens</a>, <a href="https://publications.waset.org/abstracts/search?q=nodulating" title=" nodulating"> nodulating</a>, <a href="https://publications.waset.org/abstracts/search?q=rhizobia" title=" rhizobia"> rhizobia</a>, <a href="https://publications.waset.org/abstracts/search?q=symbiotic%20effectiveness" title=" symbiotic effectiveness"> symbiotic effectiveness</a> </p> <a href="https://publications.waset.org/abstracts/140388/an-assessment-of-nodulation-and-nitrogen-fixation-of-lessertia-frutescens-plants-inoculated-with-rhizobial-isolates-from-the-cape-fynbos" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140388.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Symbiotic Functioning, Photosynthetic Induction and Characterisation of Rhizobia Associated with Groundnut, Jack Bean and Soybean from Eswatini</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zanele%20D.%20Ngwenya">Zanele D. Ngwenya</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustapha%20Mohammed"> Mustapha Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Felix%20D.%20Dakora"> Felix D. Dakora</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Legumes are a major source of biological nitrogen, and therefore play a crucial role in maintaining soil productivity in smallholder agriculture in southern Africa. Through their ability to fix atmospheric nitrogen in root nodules, legumes are a better option for sustainable nitrogen supply in cropping systems than chemical fertilisers. For decades, farmers have been highly receptive to the use of rhizobial inoculants as a source of nitrogen due mainly to the availability of elite rhizobial strains at a much lower compared to chemical fertilisers. To improve the efficiency of the legume-rhizobia symbiosis in African soils would require the use of highly effective rhizobia capable of nodulating a wide range of host plants. This study assessed the morphogenetic diversity, photosynthetic functioning and relative symbiotic effectiveness (RSE) of groundnut, jack bean and soybean microsymbionts in Eswatini soils as a first step to identifying superior isolates for inoculant production. According to the manufacturer's instructions, rhizobial isolates were cultured in yeast-mannitol (YM) broth until the late log phase and the bacterial genomic DNA was extracted using GenElute bacterial genomic DNA kit. The extracted DNA was subjected to enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR) and a dendrogram constructed from the band patterns to assess rhizobial diversity. To assess the N2-fixing efficiency of the authenticated rhizobia, photosynthetic rates (A), stomatal conductance (gs), and transpiration rates (E) were measured at flowering for plants inoculated with the test isolates. The plants were then harvested for nodulation assessment and measurement of plant growth as shoot biomass. The results of ERIC-PCR fingerprinting revealed the presence of high genetic diversity among the microsymbionts nodulating each of the three test legumes, with many of them showing less than 70% ERIC-PCR relatedness. The dendrogram generated from ERIC-PCR profiles grouped the groundnut isolates into 5 major clusters, while the jack bean and soybean isolates were grouped into 6 and 7 major clusters, respectively. Furthermore, the isolates also elicited variable nodule number per plant, nodule dry matter, shoot biomass and photosynthetic rates in their respective host plants under glasshouse conditions. Of the groundnut isolates tested, 38% recorded high relative symbiotic effectiveness (RSE >80), while 55% of the jack bean isolates and 93% of the soybean isolates recorded high RSE (>80) compared to the commercial Bradyrhizobium strains. About 13%, 27% and 83% of the top N₂-fixing groundnut, jack bean and soybean isolates, respectively, elicited much higher relative symbiotic efficiency (RSE) than the commercial strain, suggesting their potential for use in inoculant production after field testing. There was a tendency for both low and high N₂-fixing isolates to group together in the dendrogram from ERIC-PCR profiles, which suggests that RSE can differ significantly among closely related microsymbionts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetic%20diversity" title="genetic diversity">genetic diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20symbiotic%20effectiveness" title=" relative symbiotic effectiveness"> relative symbiotic effectiveness</a>, <a href="https://publications.waset.org/abstracts/search?q=inoculant" title=" inoculant"> inoculant</a>, <a href="https://publications.waset.org/abstracts/search?q=N%E2%82%82-fixing" title=" N₂-fixing"> N₂-fixing</a> </p> <a href="https://publications.waset.org/abstracts/140470/symbiotic-functioning-photosynthetic-induction-and-characterisation-of-rhizobia-associated-with-groundnut-jack-bean-and-soybean-from-eswatini" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140470.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Phenotypic and Symbiotic Characterization of Rhizobia Isolated from Faba Bean (Vicia faba L.) in Moroccan Soils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Hajjam">Y. Hajjam</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20T.%20Alami"> I. T. Alami</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Udupa"> S. M. Udupa</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Cherkaoui"> S. Cherkaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Faba bean (Vicia faba L.) is an important food legume crop in Morocco. It is mainly used as human food and feed for animals. Faba bean also plays an important role in cereal-based cropping systems, when rotated with cereals it improves soil fertility by fixing N2 in root nodules mediated by Rhizobium. Both faba bean and its biological nitrogen fixation symbiotic bacterium Rhizobium are affected by different stresses such as: salinity, drought, pH, heavy metal, and the uptake of inorganic phosphate compounds. Therefore, the aim of the present study was to evaluate the phenotypic diversity among the faba bean rhizobial isolates and to select the tolerant strains that can fix N2 under environmental constraints for inoculation particularly for affected soils, in order to enhance the productivity of faba bean and to improve soil fertility. Result have shown that 62% of isolates were fast growing with the ability of producing acids compounds , while 38% of isolates are slow growing with production of alkalins. Moreover, 42.5% of these isolates were able to solubilize inorganic phosphate Ca3(PO4)2 and the index of solubilization was ranged from 2.1 to 3.0. The resistance to extreme pH, temperature, water stress heavy metals and antibiotics lead us to classify rhizobial isolates into different clusters. Finally, the authentication test under greenhouse conditions showed that 55% of the rhizobial isolates could induce nodule formation on faba bean (Vicia faba L.) under greenhouse experiment. This phenotypic characterization may contribute to improve legumes and non legumes crops especially in affected soils and also to increase agronomic yield in the dry areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rhizobia" title="rhizobia">rhizobia</a>, <a href="https://publications.waset.org/abstracts/search?q=vicia%20faba" title=" vicia faba"> vicia faba</a>, <a href="https://publications.waset.org/abstracts/search?q=phenotypic%20characterization" title=" phenotypic characterization"> phenotypic characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=nodule%20formation" title=" nodule formation"> nodule formation</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20constraints" title=" environmental constraints"> environmental constraints</a> </p> <a href="https://publications.waset.org/abstracts/42612/phenotypic-and-symbiotic-characterization-of-rhizobia-isolated-from-faba-bean-vicia-faba-l-in-moroccan-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42612.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Plant Growth, Symbiotic Performance and Grain Yield of 63 Common Bean Genotypes Grown Under Field Conditions at Malkerns Eswatini</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rotondwa%20P.%20Gunununu">Rotondwa P. Gunununu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustapha%20Mohammed"> Mustapha Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Felix%20D.%20Dakora"> Felix D. Dakora</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Common bean is the most importantly high protein grain legume grown in Southern Africa for human consumption and income generation. Although common bean can associate with rhizobia to fix N₂ for bacterial use and plant growth, it is reported to be a poor nitrogen fixer when compared to other legumes. N₂ fixation can vary with legume species, genotype and rhizobial strain. Therefore, screening legume germplasm can reveal rhizobia/genotype combinations with high N₂-fixing efficiency for use by farmers. This study assessed symbiotic performance and N₂ fixation in 63 common bean genotypes under field conditions at Malkerns Station in Eswatini, using the ¹⁵N natural abundance technique. The shoots of common bean genotypes were sampled at a pod-filling stage, oven-dried (65oC for 72h), weighed, ground into a fine powder (0.50 mm sieve), and subjected to ¹⁵N/¹⁴N isotopic analysis using mass spectrometry. At maturity, plants from the inner rows were harvested for the determination of grain yield. The results revealed significantly higher modulation (p≤0.05) in genotypes MCA98 and CIM-RM01-97-8 relative to the other genotypes. Shoot N concentration was highest in genotype MCA 98, followed by KAB 10 F2.8-84, with most genotypes showing shoot N concentrations below 2%. Percent N derived from atmospheric N₂ fixation (%Ndfa) differed markedly among genotypes, with CIM-RM01-92-3 and DAB 174, respectively, recording the highest values of 66.65% and 66.22 % N derived from fixation. There were also significant differences in grain yield, with CIM-RM02-79-1 producing the highest yield (3618.75 kg/ha). These results represent an important contribution in the profiling of symbiotic functioning of common bean germplasm for improved N₂ fixation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20fixation" title="nitrogen fixation">nitrogen fixation</a>, <a href="https://publications.waset.org/abstracts/search?q=%25Ndfa" title=" %Ndfa"> %Ndfa</a>, <a href="https://publications.waset.org/abstracts/search?q=%C2%B9%E2%81%B5N%20natural%20abundance" title="¹⁵N natural abundance">¹⁵N natural abundance</a>, <a href="https://publications.waset.org/abstracts/search?q=grain%20yield" title=" grain yield"> grain yield</a> </p> <a href="https://publications.waset.org/abstracts/140469/plant-growth-symbiotic-performance-and-grain-yield-of-63-common-bean-genotypes-grown-under-field-conditions-at-malkerns-eswatini" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Co-Limitation of Iron Deficiency in Stem Allantoin and Amino-N Formation of Peanut Plants Intercropped with Cassava</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hong%20Li">Hong Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Tingxian%20Li"> Tingxian Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Xudong%20Wang"> Xudong Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Weibo%20Yang"> Weibo Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Co-limitation of iron (Fe) deficiency in legume nitrogen fixation process is not well understood. Our objectives were to examine how peanut plants cope with Fe deficiency with the rhizobial inoculants and N-nutrient treatments. The study was conducted in the tropical Hainan Island during 2012-2013. The soil was strongly acidic (pH 4.6±0.7) and deficient in Fe (9.2±2.3 mg/kg). Peanut plants were intercropped with cassava. The inoculants and N treatments were arranged in a split-plot design with three blocks. Peanut root nodulation, stem allantoin, amino acids and plant N derived from fixation (P) reduced with declining soil Fe concentrations. The treatment interactions were significant on relative ureide % and peanut yields (P<0.05). Residual fixed N from peanut plants was beneficial to cassava plants. It was concluded that co-variance of Fe deficiency could influence peanut N fixation efficiency and rhizobia and N inputs could help improving peanut tolerance to Fe deficiency stress. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amino%20acids" title="amino acids">amino acids</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20N%20derived%20from%20N%20fixation" title=" plant N derived from N fixation"> plant N derived from N fixation</a>, <a href="https://publications.waset.org/abstracts/search?q=root%20nodulation" title=" root nodulation"> root nodulation</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20Fe%20co-variance" title=" soil Fe co-variance"> soil Fe co-variance</a>, <a href="https://publications.waset.org/abstracts/search?q=stem%20ureide" title=" stem ureide"> stem ureide</a>, <a href="https://publications.waset.org/abstracts/search?q=peanuts" title=" peanuts"> peanuts</a>, <a href="https://publications.waset.org/abstracts/search?q=cassava" title=" cassava"> cassava</a> </p> <a href="https://publications.waset.org/abstracts/10291/co-limitation-of-iron-deficiency-in-stem-allantoin-and-amino-n-formation-of-peanut-plants-intercropped-with-cassava" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10291.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> The Effect of Salinity on Symbiotic Nitrogen Fixation in Alfalfa and Faba Bean</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mouffok%20Ahlem">Mouffok Ahlem</a>, <a href="https://publications.waset.org/abstracts/search?q=Belhamra%20Mohamed"> Belhamra Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mouffok%20Sihem"> Mouffok Sihem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of nitrogen fertilizers inevitable consequence, the increase in the nitrate content of water, which may contribute to the production of nitrite and the formation of carcinogenic nitrosamines. The nitrogen fertilizer may also affect the structure and function of the microbial community. And the fight against eutrophication of aquatic environments represents a cost to the student statements. The agronomic, ecological and economic legumes such as faba beans and alfalfa are not demonstrated, especially in the case of semi-arid and arid areas. Osmotic stress due to drought and / or salinity deficit, nutritional deficiencies is the major factors limiting symbiotic nitrogen fixation and productivity of pulses. To study the symbiotic nitrogen fixation in faba bean (Vicia faba L.) and alfalfa (Medicago sativa L.) in the region of Biskra, we used soil samples collected from 30 locations. This work has identified several issues of ecological and agronomic interest. Evaluation of symbiotic potential of soils in the region of Biskra; by trapping technique, show different levels of susceptibility to rhizobial microflora. The effectiveness of the rhizobial symbiosis in both legumes indicates that air dry biomass and the amount of nitrogen accumulated in the aerial part, depends mainly on the rate of nodulation and regardless of the species and locality. The correlation between symbiotic nitrogen fixation and some physico-chemical properties of soils shows that symbiotic nitrogen fixation in both legumes is strongly related to soil conditions of the soil. Salinity disrupts the physiological process of growth, development and more particularly that of the symbiotic fixation of atmospheric nitrogen. Against by phosphorus promotes rhizobial symbiosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rhizobia" title="rhizobia">rhizobia</a>, <a href="https://publications.waset.org/abstracts/search?q=faba%20bean" title=" faba bean"> faba bean</a>, <a href="https://publications.waset.org/abstracts/search?q=alfalfa" title=" alfalfa"> alfalfa</a>, <a href="https://publications.waset.org/abstracts/search?q=salinity" title=" salinity"> salinity</a> </p> <a href="https://publications.waset.org/abstracts/16934/the-effect-of-salinity-on-symbiotic-nitrogen-fixation-in-alfalfa-and-faba-bean" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16934.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Plant Growth and Yield Enhancement of Soybean by Inoculation with Symbiotic and Nonsymbiotic Bacteria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Timea%20I.%20Hajnal-Jafari">Timea I. Hajnal-Jafari</a>, <a href="https://publications.waset.org/abstracts/search?q=Simonida%20S.%20%C4%90uri%C4%87"> Simonida S. Đurić</a>, <a href="https://publications.waset.org/abstracts/search?q=Dragana%20R.%20Stamenov"> Dragana R. Stamenov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microbial inoculants from the group of symbiotic-nitrogen-fixing rhizobia are well known and widely used in production of legumes. On the other hand, nonsymbiotic plant growth promoting rhizobacteria (PGPR) are not commonly used in practice. The objective of this study was to examine the effects of soybean inoculation with symbiotic and nonsymbiotic bacteria on plant growth and seed yield of soybean. Microbiological activity in rhizospheric soil was also determined. The experiment was set up using a randomized block system in filed conditions with the following treatments: control-no inoculation; treatment 1-Bradyrhizobium japonicum; treatment 2-Azotobacter sp.; treatment 3-Bacillus sp..In the flowering stage of growth (FS) the number of nodules per plant (NPP), root length (RL), plant height (PH) and weight (PW) were measured. The number of pod per plant (PPP), number of seeds per pod (SPP) and seed weight per plant (SWP) were recorded at the end of vegetation period (EV). Microbiological analyses of soil included the determination of total number of bacteria (TNB), number of fungi (FNG), actinomycetes (ACT) and azotobacters (AZB) as well as the activity of the dehydrogenase enzyme (DHA). The results showed that bacterial inoculation led to the formation of root nodules regardless of the treatments with statistically no significant difference. Strong nodulation was also present in control treatment. RL and PH were positively influenced by inoculation with Azotobacter sp. and Bacillus sp., respectively. Statistical analyses of the number of PPP, SPP, and SWP showed no significant differences among investigated treatments. High average number of microorganisms were determined in all treatments. Most abundant were TNB (log No 8,010) and ACT (log No 6,055) than FNG and AZB with log No 4,867 and log No 4,025, respectively. The highest DHA activity was measured in the FS of soybean in treatment 3. The application of nonsymbiotic bacteria in soybean production can alleviate initial plant growth and help the plant to better overcome different stress conditions caused by abiotic and biotic factors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacteria" title="bacteria">bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=inoculation" title=" inoculation"> inoculation</a>, <a href="https://publications.waset.org/abstracts/search?q=soybean" title=" soybean"> soybean</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20activity" title=" microbial activity"> microbial activity</a> </p> <a href="https://publications.waset.org/abstracts/80297/plant-growth-and-yield-enhancement-of-soybean-by-inoculation-with-symbiotic-and-nonsymbiotic-bacteria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80297.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Leaf Photosynthesis and Water-Use Efficiency of Diverse Legume Species Nodulated by Native Rhizobial Isolates in the Glasshouse</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lebogang%20Jane%20Msiza">Lebogang Jane Msiza</a>, <a href="https://publications.waset.org/abstracts/search?q=Felix%20Dapare%20Dakora"> Felix Dapare Dakora</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Photosynthesis is a process by which plants convert light energy to chemical energy for metabolic processes. Plants are known for converting inorganic CO₂ in the atmosphere to organic C by photosynthesis. A decrease in stomatal conductance causes a decrease in the transpiration rate of leaves, thus increasing the water-use efficiency of plants. Water-use efficiency in plants is conditioned by soil moisture availability and is enhanced under conditions of water deficit. This study evaluated leaf photosynthesis and water-use efficiency in 12 legume species inoculated with 26 rhizobial isolates from soybean, 15 from common bean, 10 from cowpea, 15 from Bambara groundnut, 7 from lessertia and 10 from Kersting bean. Gas-exchange studies were used to measure photosynthesis and water-use efficiency. The results revealed a much higher photosynthetic rate (20.95µmol CO₂ m-2s-1) induced by isolated tutpres to a lower rate (7.06 µmol CO₂ m-2s-1) by isolate mgsa 88. Stomatal conductance ranged from to 0.01 mmol m-2.s-1 by mgsa 88 to 0.12 mmol m-2.s-1 by isolate da-pua 128. Transpiration rate also ranged from 0.09 mmol m-2.s-1 induced by da-pua B2 to 3.28 mmol m-2.s-1 by da-pua 3, while water-use efficiency ranged from 91.32 µmol CO₂ m-1 H₂O elicited by mgsa 106 to 4655.50 µmol CO₂ m-1 H₂O by isolate tutswz 13. The results revealed the highest photosynthetic rate in soybean and the lowest in common bean, and also with higher stomatal conductance and transpiration rates in jack bean and Bambara groundnut. Pigeonpea exhibited much higher water-use efficiency than all the tested legumes. The findings showed significant differences between and among the test legume/rhizobia combinations. Leaf photosynthetic rates are reported to be higher in legumes with high stomatal conductance, which suggests that legume productivity can be improved by manipulating leaf stomatal conductance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=legumes" title="legumes">legumes</a>, <a href="https://publications.waset.org/abstracts/search?q=photosynthetic%20rate" title=" photosynthetic rate"> photosynthetic rate</a>, <a href="https://publications.waset.org/abstracts/search?q=stomatal%20conductance" title=" stomatal conductance"> stomatal conductance</a>, <a href="https://publications.waset.org/abstracts/search?q=water-use%20efficiency" title=" water-use efficiency"> water-use efficiency</a> </p> <a href="https://publications.waset.org/abstracts/140474/leaf-photosynthesis-and-water-use-efficiency-of-diverse-legume-species-nodulated-by-native-rhizobial-isolates-in-the-glasshouse" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140474.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Elucidating the Genetic Determinism of Seed Protein Plasticity in Response to the Environment Using Medicago truncatula</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Cartelier">K. Cartelier</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Aime"> D. Aime</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Vernoud"> V. Vernoud</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Buitink"> J. Buitink</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Prosperi"> J. M. Prosperi</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Gallardo"> K. Gallardo</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Le%20Signor"> C. Le Signor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Legumes can produce protein-rich seeds without nitrogen fertilizer through root symbiosis with nitrogen-fixing rhizobia. Rich in lysine, these proteins are used for human nutrition and animal feed. However, the instability of seed protein yield and quality due to environmental fluctuations limits the wider use of legumes such as pea. Breeding efforts are needed to optimize and stabilize seed nutritional value, which requires to identify the genetic determinism of seed protein plasticity in response to the environment. Towards this goal, we have studied the plasticity of protein content and composition of seeds from a collection of 200 Medicago truncatula ecotypes grown under four controlled conditions (optimal, drought, and winter/spring sowing). A quantitative analysis of one-dimensional protein profiles of these mature seeds was performed and plasticity indices were calculated from each abundant protein band. Genome-Wide Association Studies (GWAS) from these data identified major GWAS hotspots, from which a list of candidate genes was obtained. A Gene Ontology Enrichment Analysis revealed an over-representation of genes involved in several amino acid metabolic pathways. This led us to propose that environmental variations are likely to modulate amino acid balance, thus impacting seed protein composition. The selection of candidate genes for controlling the plasticity of seed protein composition was refined using transcriptomics data from developing Medicago truncatula seeds. The pea orthologs of key genes were identified for functional studies by mean of TILLING (Targeting Induced Local Lesions in Genomes) lines in this crop. We will present how this study highlighted mechanisms that could govern seed protein plasticity, providing new cues towards the stabilization of legume seed quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GWAS" title="GWAS">GWAS</a>, <a href="https://publications.waset.org/abstracts/search?q=Medicago%20truncatula" title=" Medicago truncatula"> Medicago truncatula</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticity" title=" plasticity"> plasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=seed" title=" seed"> seed</a>, <a href="https://publications.waset.org/abstracts/search?q=storage%20proteins" title=" storage proteins"> storage proteins</a> </p> <a href="https://publications.waset.org/abstracts/114311/elucidating-the-genetic-determinism-of-seed-protein-plasticity-in-response-to-the-environment-using-medicago-truncatula" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114311.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Molecular Interactions between Vicia Faba L. Cultivars and Plant Growth Promoting Rhizobacteria (PGPR), Utilized as Yield Enhancing &#039;Plant Probiotics&#039;</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eleni%20Stefanidou">Eleni Stefanidou</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikolaos%20Katsenios"> Nikolaos Katsenios</a>, <a href="https://publications.waset.org/abstracts/search?q=Ioanna%20Karamichali"> Ioanna Karamichali</a>, <a href="https://publications.waset.org/abstracts/search?q=Aspasia%20Efthimiadou"> Aspasia Efthimiadou</a>, <a href="https://publications.waset.org/abstracts/search?q=Panagiotis%20Madesis"> Panagiotis Madesis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The excessive use of pesticides and fertilizers has significant environmental and human health-related negative effects. In the frame of the development of sustainable agriculture practices, especially in the context of extreme environmental changes (climate change), it is important to develop alternative practices to increase productivity and biotic and abiotic stress tolerance. Beneficial bacteria, such as symbiotic bacteria in legumes (rhizobia) and symbiotic or free-living Plant Growth Promoting Rhizobacteria (PGPR), which could act as "plant probiotics", can promote plant growth and significantly increase the resistance of crops under adverse environmental conditions. In this study, we explored the symbiotic relationships between Faba bean (Vicia faba L.) cultivars with different PGPR bacteria, aiming to identify the possible influence on yield and biotic-abiotic phytoprotection benefits. Transcriptomic analysis of root and whole plant samples was executed for two Vicia faba L. cultivars (Polikarpi and Solon) treated with selected PGPR bacteria (6 treatments: B. subtilis + Rhizobium-mixture, A. chroococcum + Rhizobium-mixture, B. subtilis, A. chroococcum and Rhizobium-mixture). Preliminary results indicate a significant yield (Seed weight and Total number of pods) increase in both varieties, ranging around 25%, in comparison to the control, especially for the Solon cultivar. The increase was observed for all treatments, with the B. subtilis + Rhizobium-mixture treatment being the highest performing. The correlation of the physiological and morphological data with the transcriptome analysis revealed molecular mechanisms and molecular targets underlying the observed yield increase, opening perspectives for the use of nitrogen-fixing bacteria as a natural, more ecological enhancer of legume crop productivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plant%20probiotics" title="plant probiotics">plant probiotics</a>, <a href="https://publications.waset.org/abstracts/search?q=PGPR" title=" PGPR"> PGPR</a>, <a href="https://publications.waset.org/abstracts/search?q=legumes" title=" legumes"> legumes</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20agriculture" title=" sustainable agriculture"> sustainable agriculture</a> </p> <a href="https://publications.waset.org/abstracts/175741/molecular-interactions-between-vicia-faba-l-cultivars-and-plant-growth-promoting-rhizobacteria-pgpr-utilized-as-yield-enhancing-plant-probiotics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175741.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Variation in N₂ Fixation and N Contribution by 30 Groundnut (Arachis hypogaea L.) Varieties Grown in Blesbokfontein Mpumalanga Province, South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Titus%20Y.%20Ngmenzuma">Titus Y. Ngmenzuma</a>, <a href="https://publications.waset.org/abstracts/search?q=Cherian.%20Mathews"> Cherian. Mathews</a>, <a href="https://publications.waset.org/abstracts/search?q=Feilx%20D.%20Dakora"> Feilx D. Dakora</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Africa, poor nutrient availability, particularly N and P, coupled with low soil moisture due to erratic rainfall, constitutes the major crop production constraints. Although inorganic fertilizers are an option for meeting crop nutrient requirements for increased grain yield, the high cost and scarcity of inorganic inputs make them inaccessible to resource-poor farmers in Africa. Because crops grown on such nutrient-poor soils are micronutrient deficient, incorporating N₂-fixing legumes into cropping systems can sustainably improve crop yield and nutrient accumulation in the grain. In Africa, groundnut can easily form an effective symbiosis with native soil rhizobia, leading to marked N contribution in cropping systems. In this study, field experiments were conducted at Blesbokfontein in Mpumalanga Province to assess N₂ fixation and N contribution by 30 groundnut varieties during the 2018/2019 planting season using the ¹⁵N natural abundance technique. The results revealed marked differences in shoot dry matter yield, symbiotic N contribution, soil N uptake and grain yield among the groundnut varieties. The percent N derived from fixation ranged from 37 to 44% for varieties ICGV131051 and ICGV13984. The amount of N-fixed ranged from 21 to 58 kg/ha for varieties Chinese and IS-07273, soil N uptake from 31 to 80 kg/ha for varieties IS-07947 and IS-07273, and grain yield from 193 to 393 kg/ha for varieties ICGV15033 and ICGV131096, respectively. Compared to earlier studies on groundnut in South Africa, this study has shown low N₂ fixation and N contribution to the cropping systems, possibly due to environmental factors such as low soil moisture. Because the groundnut varieties differed in their growth, symbiotic performance and grain yield, more field testing is required over a range of differing agro-ecologies to identify genotypes suitable for different cropping environments <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C2%B9%E2%81%B5N%20natural%20abundance" title="¹⁵N natural abundance">¹⁵N natural abundance</a>, <a href="https://publications.waset.org/abstracts/search?q=percent%20N%20derived%20from%20fixation" title=" percent N derived from fixation"> percent N derived from fixation</a>, <a href="https://publications.waset.org/abstracts/search?q=amount%20of%20N-fixed" title=" amount of N-fixed"> amount of N-fixed</a>, <a href="https://publications.waset.org/abstracts/search?q=grain%20yield" title=" grain yield"> grain yield</a> </p> <a href="https://publications.waset.org/abstracts/140599/variation-in-n2-fixation-and-n-contribution-by-30-groundnut-arachis-hypogaea-l-varieties-grown-in-blesbokfontein-mpumalanga-province-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140599.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> The Role of Microbes in Organic Sustainable Agriculture and Plant Protection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Koppula%20Prawan">Koppula Prawan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kehinde%20D.%20Oyeyemi"> Kehinde D. Oyeyemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kushal%20P.%20Singh"> Kushal P. Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As people become more conscious of the detrimental consequences of conventional agricultural practices on the environment and human health, organic, sustainable agriculture and plant protection employing microorganisms have grown in importance. Although the use of microorganisms in agriculture is a centuries-old tradition, it has recently attracted renewed interest as a sustainable alternative to chemical-based plant protection and fertilization. Healthy soil is the cornerstone of sustainable agriculture, and microbes are essential to this process. Synthetic fertilizers and pesticides can destroy the beneficial microorganisms in the soil, upsetting the ecosystem's equilibrium. By utilizing organic farming's natural practices, such as the usage of microbes, it aims to maintain and improve the health of the soil. Microbes have several functions in agriculture, including nitrogen fixation, phosphorus solubilization, and disease suppression. Nitrogen fixation is the process by which certain microbes, such as rhizobia and Azotobacter, convert atmospheric nitrogen into a form that plants can use. Phosphorus solubilization involves the conversion of insoluble phosphorus into a soluble form that plants can absorb. Disease suppression involves the use of microbes to control plant diseases by competing with pathogenic organisms for resources or by producing antimicrobial compounds. Microbes can be applied to plants through seed coatings, foliar sprays, or soil inoculants. Seed coatings involve applying a mixture of microbes and nutrients to the surface of seeds before planting. Foliar sprays involve applying microbes and nutrients to the leaves of plants during the growing season. Soil inoculants involve adding microbes to the soil before planting. The use of microbes in plant protection and fertilization has several advantages over conventional methods. Firstly, microbes are natural and non-toxic, making them safe for human health and the environment. Secondly, microbes have the ability to adapt to changing environmental conditions, making them more resilient to drought and other stressors. Finally, the use of microbes can reduce the need for synthetic fertilizers and pesticides, reducing costs and minimizing environmental impact. In conclusion, organic, sustainable agriculture and plant protection using microbes are an effective and sustainable alternatives to conventional farming practices. The use of microbes can help to preserve and enhance soil health, increase plant productivity, and reduce the need for synthetic fertilizers and pesticides. As the demand for organic and sustainable agriculture continues to grow, the use of microbes is likely to become more widespread, providing a more environmentally friendly and sustainable future for agriculture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microbes" title="microbes">microbes</a>, <a href="https://publications.waset.org/abstracts/search?q=inoculants" title=" inoculants"> inoculants</a>, <a href="https://publications.waset.org/abstracts/search?q=fertilization" title=" fertilization"> fertilization</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20health" title=" soil health"> soil health</a>, <a href="https://publications.waset.org/abstracts/search?q=conventional." title=" conventional."> conventional.</a> </p> <a href="https://publications.waset.org/abstracts/164485/the-role-of-microbes-in-organic-sustainable-agriculture-and-plant-protection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164485.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10