CINXE.COM

Search results for: degrees of aggregation

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: degrees of aggregation</title> <meta name="description" content="Search results for: degrees of aggregation"> <meta name="keywords" content="degrees of aggregation"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="degrees of aggregation" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="degrees of aggregation"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1122</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: degrees of aggregation</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1122</span> Efficient Positioning of Data Aggregation Point for Wireless Sensor Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sifat%20Rahman%20Ahona">Sifat Rahman Ahona</a>, <a href="https://publications.waset.org/abstracts/search?q=Rifat%20Tasnim"> Rifat Tasnim</a>, <a href="https://publications.waset.org/abstracts/search?q=Naima%20Hassan"> Naima Hassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Data aggregation is a helpful technique for reducing the data communication overhead in wireless sensor network. One of the important tasks of data aggregation is positioning of the aggregator points. There are a lot of works done on data aggregation. But, efficient positioning of the aggregators points is not focused so much. In this paper, authors are focusing on the positioning or the placement of the aggregation points in wireless sensor network. Authors proposed an algorithm to select the aggregators positions for a scenario where aggregator nodes are more powerful than sensor nodes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aggregation%20point" title="aggregation point">aggregation point</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20communication" title=" data communication"> data communication</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20aggregation" title=" data aggregation"> data aggregation</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20sensor%20network" title=" wireless sensor network "> wireless sensor network </a> </p> <a href="https://publications.waset.org/abstracts/126967/efficient-positioning-of-data-aggregation-point-for-wireless-sensor-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126967.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1121</span> Modeling Aggregation of Insoluble Phase in Reactors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Brener">A. Brener</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Ismailov"> B. Ismailov</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Berdalieva"> G. Berdalieva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the paper we submit the modification of kinetic Smoluchowski equation for binary aggregation applying to systems with chemical reactions of first and second orders in which the main product is insoluble. The goal of this work is to create theoretical foundation and engineering procedures for calculating the chemical apparatuses in the conditions of joint course of chemical reactions and processes of aggregation of insoluble dispersed phases which are formed in working zones of the reactor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=binary%20aggregation" title="binary aggregation">binary aggregation</a>, <a href="https://publications.waset.org/abstracts/search?q=clusters" title=" clusters"> clusters</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20reactions" title=" chemical reactions"> chemical reactions</a>, <a href="https://publications.waset.org/abstracts/search?q=insoluble%20phases" title=" insoluble phases"> insoluble phases</a> </p> <a href="https://publications.waset.org/abstracts/4173/modeling-aggregation-of-insoluble-phase-in-reactors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1120</span> DNAJB6 Chaperone Prevents the Aggregation of Intracellular but not Extracellular Aβ Peptides Associated with Alzheimer’s Disease</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rasha%20M.%20Hussein">Rasha M. Hussein</a>, <a href="https://publications.waset.org/abstracts/search?q=Reem%20M.%20Hashem"> Reem M. Hashem</a>, <a href="https://publications.waset.org/abstracts/search?q=Laila%20A.%20Rashed"> Laila A. Rashed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alzheimer’s disease is the most common dementia disease in the elderly. It is characterized by the accumulation of extracellular amyloid β (Aβ) peptides and intracellular hyper-phosphorylated tau protein. In addition, recent evidence indicates that accumulation of intracellular amyloid β peptides may play a role in Alzheimer’s disease pathogenesis. This suggests that intracellular Heat Shock Proteins (HSP) that maintain the protein quality control in the cell might be potential candidates for disease amelioration. DNAJB6, a member of DNAJ family of HSP, effectively prevented the aggregation of poly glutamines stretches associated with Huntington’s disease both in vitro and in cells. In addition, DNAJB6 was found recently to delay the aggregation of Aβ42 peptides in vitro. In the present study, we investigated the ability of DNAJB6 to prevent the aggregation of both intracellular and extracellular Aβ peptides using transfection of HEK293 cells with Aβ-GFP and recombinant Aβ42 peptides respectively. We performed western blotting and immunofluorescence techniques. We found that DNAJB6 can prevent Aβ-GFP aggregation, but not the seeded aggregation initiated by extracellular Aβ peptides. Moreover, DNAJB6 required interaction with HSP70 to prevent the aggregation of Aβ-GFP protein and its J-domain was essential for this anti-aggregation activity. Interestingly, overexpression of other DNAJ proteins as well as HSPB1 suppressed Aβ-GFP aggregation efficiently. Our findings suggest that DNAJB6 is a promising candidate for the inhibition of Aβ-GFP mediated aggregation through a canonical HSP70 dependent mechanism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=A%CE%B2" title="Aβ">Aβ</a>, <a href="https://publications.waset.org/abstracts/search?q=Alzheimer%E2%80%99s%20disease" title=" Alzheimer’s disease"> Alzheimer’s disease</a>, <a href="https://publications.waset.org/abstracts/search?q=chaperone" title=" chaperone"> chaperone</a>, <a href="https://publications.waset.org/abstracts/search?q=DNAJB6" title=" DNAJB6"> DNAJB6</a>, <a href="https://publications.waset.org/abstracts/search?q=aggregation" title=" aggregation"> aggregation</a> </p> <a href="https://publications.waset.org/abstracts/35650/dnajb6-chaperone-prevents-the-aggregation-of-intracellular-but-not-extracellular-av-peptides-associated-with-alzheimers-disease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35650.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1119</span> Analytical Study of Applying the Account Aggregation Approach in E-Banking Services</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Al%20Drees">A. Al Drees</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Alahmari"> A. Alahmari</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Almuwayshir"> R. Almuwayshir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The advanced information technology is becoming an important factor in the development of financial services industry, especially the banking industry. It has introduced new ways of delivering banking to the customer, such as Internet Banking. Banks began to look at electronic banking (e-banking) as a means to replace some of their traditional branch functions using the Internet as a new distribution channel. Some consumers have at least more than one account, and across banks, and access these accounts using e-banking services. To look at the current net worth position, customers have to login to each of their accounts and get the details and work on consolidation. This not only takes ample time but it is a repetitive activity at a specified frequency. To address this point, an account aggregation concept is added as a solution. E-banking account aggregation, as one of the e-banking types, appeared to build a stronger relationship with customers. Account Aggregation Service generally refers to a service that allows customers to manage their bank accounts maintained in different institutions through a common Internet banking operating a platform, with a high concern to security and privacy. This paper presents an overview of an e-banking account aggregation approach as a new service in the e-banking field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=e-banking" title="e-banking">e-banking</a>, <a href="https://publications.waset.org/abstracts/search?q=account%20aggregation" title=" account aggregation"> account aggregation</a>, <a href="https://publications.waset.org/abstracts/search?q=security" title=" security"> security</a>, <a href="https://publications.waset.org/abstracts/search?q=enterprise%20development" title=" enterprise development"> enterprise development</a> </p> <a href="https://publications.waset.org/abstracts/37974/analytical-study-of-applying-the-account-aggregation-approach-in-e-banking-services" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37974.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1118</span> PDDA: Priority-Based, Dynamic Data Aggregation Approach for Sensor-Based Big Data Framework</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lutful%20Karim">Lutful Karim</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20S.%20Al-kahtani"> Mohammed S. Al-kahtani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sensors are being used in various applications such as agriculture, health monitoring, air and water pollution monitoring, traffic monitoring and control and hence, play the vital role in the growth of big data. However, sensors collect redundant data. Thus, aggregating and filtering sensors data are significantly important to design an efficient big data framework. Current researches do not focus on aggregating and filtering data at multiple layers of sensor-based big data framework. Thus, this paper introduces (i) three layers data aggregation and framework for big data and (ii) a priority-based, dynamic data aggregation scheme (PDDA) for the lowest layer at sensors. Simulation results show that the PDDA outperforms existing tree and cluster-based data aggregation scheme in terms of overall network energy consumptions and end-to-end data transmission delay. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=big%20data" title="big data">big data</a>, <a href="https://publications.waset.org/abstracts/search?q=clustering" title=" clustering"> clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=tree%20topology" title=" tree topology"> tree topology</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20aggregation" title=" data aggregation"> data aggregation</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor%20networks" title=" sensor networks"> sensor networks</a> </p> <a href="https://publications.waset.org/abstracts/47419/pdda-priority-based-dynamic-data-aggregation-approach-for-sensor-based-big-data-framework" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47419.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1117</span> Computer Simulation to Investigate Magnetic and Wave-Absorbing Properties of Iron Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chuan-Wen%20Liu">Chuan-Wen Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Min-Hsien%20Liu"> Min-Hsien Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chung-Chieh%20Tai"> Chung-Chieh Tai</a>, <a href="https://publications.waset.org/abstracts/search?q=Bing-Cheng%20Kuo"> Bing-Cheng Kuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng-Lung%20Chen"> Cheng-Lung Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Huazhen%20Shen"> Huazhen Shen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A recent surge in research on magnetic radar absorbing materials (RAMs) has presented researchers with new opportunities and challenges. This study was performed to gain a better understanding of the wave-absorbing phenomenon of magnetic RAMs. First, we hypothesized that the absorbing phenomenon is dependent on the particle shape. Using the Material Studio program and the micro-dot magnetic dipoles (MDMD) method, we obtained results from magnetic RAMs to support this hypothesis. The total MDMD energy of disk-like iron particles was greater than that of spherical iron particles. In addition, the particulate aggregation phenomenon decreases the wave-absorbance, according to both experiments and computational data. To conclude, this study may be of importance in terms of explaining the wave- absorbing characteristic of magnetic RAMs. Combining molecular dynamics simulation results and the theory of magnetization of magnetic dots, we investigated the magnetic properties of iron materials with different particle shapes and degrees of aggregation under external magnetic fields. The MDMD of the materials under magnetic fields of various strengths were simulated. Our results suggested that disk-like iron particles had a better magnetization than spherical iron particles. This result could be correlated with the magnetic wave- absorbing property of iron material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wave-absorbing%20property" title="wave-absorbing property">wave-absorbing property</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20material" title=" magnetic material"> magnetic material</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-dot%20magnetic%20dipole" title=" micro-dot magnetic dipole"> micro-dot magnetic dipole</a>, <a href="https://publications.waset.org/abstracts/search?q=particulate%20aggregation" title=" particulate aggregation"> particulate aggregation</a> </p> <a href="https://publications.waset.org/abstracts/78242/computer-simulation-to-investigate-magnetic-and-wave-absorbing-properties-of-iron-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78242.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">490</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1116</span> Solvent Extraction in Ionic Liquids: Structuration and Aggregation Effects on Extraction Mechanisms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sandrine%20Dourdain">Sandrine Dourdain</a>, <a href="https://publications.waset.org/abstracts/search?q=Cesar%20Lopez"> Cesar Lopez</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamir%20Sukhbaatar"> Tamir Sukhbaatar</a>, <a href="https://publications.waset.org/abstracts/search?q=Guilhem%20Arrachart"> Guilhem Arrachart</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephane%20Pellet-Rostaing"> Stephane Pellet-Rostaing</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A promising challenge in solvent extraction is to replace the conventional organic solvents, with ionic liquids (IL). Depending on the extraction systems, these new solvents show better efficiency than the conventional ones. Although some assumptions based on ions exchanges have been proposed in the literature, these properties are not predictable because the involved mechanisms are still poorly understood. It is well established that the mechanisms underlying solvent extraction processes are based not only on the molecular chelation of the extractant molecules but also on their ability to form supra-molecular aggregates due to their amphiphilic nature. It is therefore essential to evaluate how IL affects the aggregation properties of the extractant molecules. Our aim is to evaluate the influence of IL structure and polarity on solvent extraction mechanisms, by looking at the aggregation of the extractant molecules in IL. We compare extractant systems that are well characterized in common solvents and show thanks to SAXS and SANS measurements, that in the absence of IL ion exchange mechanisms, extraction properties are related to aggregation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solvent%20extraction%20in%20Ionic%20liquid" title="solvent extraction in Ionic liquid">solvent extraction in Ionic liquid</a>, <a href="https://publications.waset.org/abstracts/search?q=aggregation" title=" aggregation"> aggregation</a>, <a href="https://publications.waset.org/abstracts/search?q=Ionic%20liquids%20structure" title=" Ionic liquids structure"> Ionic liquids structure</a>, <a href="https://publications.waset.org/abstracts/search?q=SAXS" title=" SAXS"> SAXS</a>, <a href="https://publications.waset.org/abstracts/search?q=SANS" title=" SANS"> SANS</a> </p> <a href="https://publications.waset.org/abstracts/107612/solvent-extraction-in-ionic-liquids-structuration-and-aggregation-effects-on-extraction-mechanisms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107612.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1115</span> Event Driven Dynamic Clustering and Data Aggregation in Wireless Sensor Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashok%20V.%20Sutagundar">Ashok V. Sutagundar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunilkumar%20S.%20Manvi"> Sunilkumar S. Manvi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Energy, delay and bandwidth are the prime issues of wireless sensor network (WSN). Energy usage optimization and efficient bandwidth utilization are important issues in WSN. Event triggered data aggregation facilitates such optimal tasks for event affected area in WSN. Reliable delivery of the critical information to sink node is also a major challenge of WSN. To tackle these issues, we propose an event driven dynamic clustering and data aggregation scheme for WSN that enhances the life time of the network by minimizing redundant data transmission. The proposed scheme operates as follows: (1) Whenever the event is triggered, event triggered node selects the cluster head. (2) Cluster head gathers data from sensor nodes within the cluster. (3) Cluster head node identifies and classifies the events out of the collected data using Bayesian classifier. (4) Aggregation of data is done using statistical method. (5) Cluster head discovers the paths to the sink node using residual energy, path distance and bandwidth. (6) If the aggregated data is critical, cluster head sends the aggregated data over the multipath for reliable data communication. (7) Otherwise aggregated data is transmitted towards sink node over the single path which is having the more bandwidth and residual energy. The performance of the scheme is validated for various WSN scenarios to evaluate the effectiveness of the proposed approach in terms of aggregation time, cluster formation time and energy consumed for aggregation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wireless%20sensor%20network" title="wireless sensor network">wireless sensor network</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20clustering" title=" dynamic clustering"> dynamic clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20aggregation" title=" data aggregation"> data aggregation</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20communication" title=" wireless communication"> wireless communication</a> </p> <a href="https://publications.waset.org/abstracts/2596/event-driven-dynamic-clustering-and-data-aggregation-in-wireless-sensor-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2596.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">450</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1114</span> Experimental Correlation for Erythrocyte Aggregation Rate in Population Balance Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Erfan%20Niazi">Erfan Niazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Marianne%20Fenech"> Marianne Fenech</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Red Blood Cells (RBCs) or erythrocytes tend to form chain-like aggregates under low shear rate called rouleaux. This is a reversible process and rouleaux disaggregate in high shear rates. Therefore, RBCs aggregation occurs in the microcirculation where low shear rates are present but does not occur under normal physiological conditions in large arteries. Numerical modeling of RBCs interactions is fundamental in analytical models of a blood flow in microcirculation. Population Balance Modeling (PBM) is particularly useful for studying problems where particles agglomerate and break in a two phase flow systems to find flow characteristics. In this method, the elementary particles lose their individual identity due to continuous destructions and recreations by break-up and agglomeration. The aim of this study is to find RBCs aggregation in a dynamic situation. Simplified PBM was used previously to find the aggregation rate on a static observation of the RBCs aggregation in a drop of blood under the microscope. To find aggregation rate in a dynamic situation we propose an experimental set up testing RBCs sedimentation. In this test, RBCs interact and aggregate to form rouleaux. In this configuration, disaggregation can be neglected due to low shear stress. A high-speed camera is used to acquire video-microscopic pictures of the process. The sizes of the aggregates and velocity of sedimentation are extracted using an image processing techniques. Based on the data collection from 5 healthy human blood samples, the aggregation rate was estimated as <em>2.7</em><em>x</em><em>10<sup>3</sup>(&plusmn;0.3</em><em> x</em><em>10<sup>3</sup>) 1/s</em>. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=red%20blood%20cell" title="red blood cell">red blood cell</a>, <a href="https://publications.waset.org/abstracts/search?q=rouleaux" title=" rouleaux"> rouleaux</a>, <a href="https://publications.waset.org/abstracts/search?q=microfluidics" title=" microfluidics"> microfluidics</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=population%20balance%20modeling" title=" population balance modeling"> population balance modeling</a> </p> <a href="https://publications.waset.org/abstracts/40278/experimental-correlation-for-erythrocyte-aggregation-rate-in-population-balance-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40278.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1113</span> A New Aggregation Operator for Trapezoidal Fuzzy Numbers Based On the Geometric Means of the Left and Right Line Slopes </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manju%20Pandey">Manju Pandey</a>, <a href="https://publications.waset.org/abstracts/search?q=Nilay%20Khare"> Nilay Khare</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20C.%20Shrivastava"> S. C. Shrivastava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is the final in a series, which has defined two new classes of aggregation operators for triangular and trapezoidal fuzzy numbers based on the geometrical characteristics of their fuzzy membership functions. In the present paper, a new aggregation operator for trapezoidal fuzzy numbers has been defined. The new operator is based on the geometric mean of the membership lines to the left and right of the maximum possibility interval. The operator is defined and the analytical relationships have been derived. Computation of the aggregate is demonstrated with a numerical example. Corresponding arithmetic and geometric aggregates as well as results from the recent work of the authors on TrFN aggregates have also been computed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LR%20fuzzy%20number" title="LR fuzzy number">LR fuzzy number</a>, <a href="https://publications.waset.org/abstracts/search?q=interval%20fuzzy%20number" title=" interval fuzzy number"> interval fuzzy number</a>, <a href="https://publications.waset.org/abstracts/search?q=triangular%20fuzzy%20number" title=" triangular fuzzy number"> triangular fuzzy number</a>, <a href="https://publications.waset.org/abstracts/search?q=trapezoidal%20fuzzy%20number" title=" trapezoidal fuzzy number"> trapezoidal fuzzy number</a>, <a href="https://publications.waset.org/abstracts/search?q=apex%20angle" title=" apex angle"> apex angle</a>, <a href="https://publications.waset.org/abstracts/search?q=left%20apex%20angle" title=" left apex angle"> left apex angle</a>, <a href="https://publications.waset.org/abstracts/search?q=right%20apex%20angle" title=" right apex angle"> right apex angle</a>, <a href="https://publications.waset.org/abstracts/search?q=aggregation%20operator" title=" aggregation operator"> aggregation operator</a>, <a href="https://publications.waset.org/abstracts/search?q=arithmetic%20and%20geometric%20mean" title=" arithmetic and geometric mean"> arithmetic and geometric mean</a> </p> <a href="https://publications.waset.org/abstracts/18890/a-new-aggregation-operator-for-trapezoidal-fuzzy-numbers-based-on-the-geometric-means-of-the-left-and-right-line-slopes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18890.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">472</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1112</span> FLEX: A Backdoor Detection and Elimination Method in Federated Scenario</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shuqi%20Zhang">Shuqi Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Federated learning allows users to participate in collaborative model training without sending data to third-party servers, reducing the risk of user data privacy leakage, and is widely used in smart finance and smart healthcare. However, the distributed architecture design of federation learning itself and the existence of secure aggregation protocols make it inherently vulnerable to backdoor attacks. To solve this problem, the federated learning backdoor defense framework FLEX based on group aggregation, cluster analysis, and neuron pruning is proposed, and inter-compatibility with secure aggregation protocols is achieved. The good performance of FLEX is verified by building a horizontal federated learning framework on the CIFAR-10 dataset for experiments, which achieves 98% success rate of backdoor detection and reduces the success rate of backdoor tasks to 0% ~ 10%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=federated%20learning" title="federated learning">federated learning</a>, <a href="https://publications.waset.org/abstracts/search?q=secure%20aggregation" title=" secure aggregation"> secure aggregation</a>, <a href="https://publications.waset.org/abstracts/search?q=backdoor%20attack" title=" backdoor attack"> backdoor attack</a>, <a href="https://publications.waset.org/abstracts/search?q=cluster%20analysis" title=" cluster analysis"> cluster analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=neuron%20pruning" title=" neuron pruning"> neuron pruning</a> </p> <a href="https://publications.waset.org/abstracts/158139/flex-a-backdoor-detection-and-elimination-method-in-federated-scenario" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158139.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1111</span> Banking and Accounting Analysis Researches Effect on Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20Saad%20Thabet%20Azrek">Michael Saad Thabet Azrek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The advanced facts era is becoming a vital element within the improvement of financial offerings enterprise, in particular, the banking enterprise. It has introduced new approaches to delivering banking to the patron, including Internet Banking. Banks started to observe digital banking (e-banking) as a means to update a number of their conventional branch features using the net as a brand-new distribution channel. A few purchasers have, as a minimum, a couple of accounts across banks and get the right of entry to these accounts using e-banking offerings. To study the contemporary net really worth role, clients ought to log in to each of their debts and get the info and paintings on consolidation. This not simplest takes enough time, but it's also a repetitive hobby at a specific frequency. To cope with this point, an account aggregation idea is introduced as an answer. E-banking account aggregation, as one of the e-banking types, appeared to construct a more potent dating with clients. Account Aggregation provider usually refers to a provider that permits clients to manage their financial institution debts maintained in distinct establishments through a not unusual net banking operating a platform, with an excessive situation to protection and privateness. This paper gives an outline of an e-banking account aggregation method as a new provider in the e-banking field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compatibility" title="compatibility">compatibility</a>, <a href="https://publications.waset.org/abstracts/search?q=complexity" title=" complexity"> complexity</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20banking" title=" mobile banking"> mobile banking</a>, <a href="https://publications.waset.org/abstracts/search?q=observation" title=" observation"> observation</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20banking%20technology" title=" risk banking technology"> risk banking technology</a>, <a href="https://publications.waset.org/abstracts/search?q=internet%20banks" title=" internet banks"> internet banks</a>, <a href="https://publications.waset.org/abstracts/search?q=modernization%20of%20banks" title=" modernization of banks"> modernization of banks</a>, <a href="https://publications.waset.org/abstracts/search?q=banks" title=" banks"> banks</a>, <a href="https://publications.waset.org/abstracts/search?q=account%20aggregation" title=" account aggregation"> account aggregation</a>, <a href="https://publications.waset.org/abstracts/search?q=security" title=" security"> security</a>, <a href="https://publications.waset.org/abstracts/search?q=enterprise%20development" title=" enterprise development"> enterprise development</a> </p> <a href="https://publications.waset.org/abstracts/188939/banking-and-accounting-analysis-researches-effect-on-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188939.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">36</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1110</span> Visual Detection of Escherichia coli (E. coli) through Formation of Beads Aggregation in Capillary Tube by Rolling Circle Amplification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bo%20Ram%20Choi">Bo Ram Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji%20Su%20Kim"> Ji Su Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Juyeon%20Cho"> Juyeon Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyukjin%20Lee"> Hyukjin Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Food contaminated by bacteria (E.coli), causes food poisoning, which occurs to many patients worldwide annually. We have introduced an application of rolling circle amplification (RCA) as a versatile biosensor and developed a diagnostic platform composed of capillary tube and microbeads for rapid and easy detection of Escherichia coli (E. coli). When specific mRNA of E.coli is extracted from cell lysis, rolling circle amplification (RCA) of DNA template can be achieved and can be visualized by beads aggregation in capillary tube. In contrast, if there is no bacterial pathogen in sample, no beads aggregation can be seen. This assay is possible to detect visually target gene without specific equipment. It is likely to the development of a genetic kit for point of care testing (POCT) that can detect target gene using microbeads. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rolling%20circle%20amplification%20%28RCA%29" title="rolling circle amplification (RCA)">rolling circle amplification (RCA)</a>, <a href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli%20%28E.%20coli%29" title=" Escherichia coli (E. coli)"> Escherichia coli (E. coli)</a>, <a href="https://publications.waset.org/abstracts/search?q=point%20of%20care%20testing%20%28POCT%29" title=" point of care testing (POCT)"> point of care testing (POCT)</a>, <a href="https://publications.waset.org/abstracts/search?q=beads%20aggregation" title=" beads aggregation"> beads aggregation</a>, <a href="https://publications.waset.org/abstracts/search?q=capillary%20tube" title=" capillary tube"> capillary tube</a> </p> <a href="https://publications.waset.org/abstracts/72639/visual-detection-of-escherichia-coli-e-coli-through-formation-of-beads-aggregation-in-capillary-tube-by-rolling-circle-amplification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72639.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1109</span> SA-SPKC: Secure and Efficient Aggregation Scheme for Wireless Sensor Networks Using Stateful Public Key Cryptography </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Merad%20Boudia%20Omar%20Rafik">Merad Boudia Omar Rafik</a>, <a href="https://publications.waset.org/abstracts/search?q=Feham%20Mohammed"> Feham Mohammed </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Data aggregation in wireless sensor networks (WSNs) provides a great reduction of energy consumption. The limited resources of sensor nodes make the choice of an encryption algorithm very important for providing security for data aggregation. Asymmetric cryptography involves large ciphertexts and heavy computations but solves, on the other hand, the problem of key distribution of symmetric one. The latter provides smaller ciphertexts and speed computations. Also, the recent researches have shown that achieving the end-to-end confidentiality and the end-to-end integrity at the same is a challenging task. In this paper, we propose (SA-SPKC), a novel security protocol which addresses both security services for WSNs, and where only the base station can verify the individual data and identify the malicious node. Our scheme is based on stateful public key encryption (StPKE). The latter combines the best features of both kinds of encryption along with state in order to reduce the computation overhead. Our analysis <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=secure%20data%20aggregation" title="secure data aggregation">secure data aggregation</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20sensor%20networks" title=" wireless sensor networks"> wireless sensor networks</a>, <a href="https://publications.waset.org/abstracts/search?q=elliptic%20curve%20cryptography" title=" elliptic curve cryptography"> elliptic curve cryptography</a>, <a href="https://publications.waset.org/abstracts/search?q=homomorphic%20encryption" title=" homomorphic encryption "> homomorphic encryption </a> </p> <a href="https://publications.waset.org/abstracts/23097/sa-spkc-secure-and-efficient-aggregation-scheme-for-wireless-sensor-networks-using-stateful-public-key-cryptography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23097.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1108</span> Rethinking News Aggregation to Achieve Depolarization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kushagra%20Khandelwal">Kushagra Khandelwal</a>, <a href="https://publications.waset.org/abstracts/search?q=Chinmay%20Anand"> Chinmay Anand</a>, <a href="https://publications.waset.org/abstracts/search?q=Sharmistha%20Banerjee"> Sharmistha Banerjee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an approach to news aggregation that is aimed at solving the issues centered on depolarization and manipulation of news information and stories. Largest democracies across the globe face numerous issues related to news democratization. With the advancements in technology and increasing outreach, web has become an important information source which is inclusive of news. Research was focused on the current millennial population consisting of modern day internet users. The study involved literature review, an online survey, an expert interview with a journalist and a focus group discussion with the user groups. The study was aimed at investigating problems associated with the current news system from both the consumer as well as distributor point of view. The research findings helped in producing five key potential opportunity areas which were explored for design intervention. Upon ideation, we identified five design features which include opinion aggregation. Categorized opinions, news tracking, online discussion and ability to take actions that support news democratization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=citizen%20journalism" title="citizen journalism">citizen journalism</a>, <a href="https://publications.waset.org/abstracts/search?q=democratization" title=" democratization"> democratization</a>, <a href="https://publications.waset.org/abstracts/search?q=depolarized%20news" title=" depolarized news"> depolarized news</a>, <a href="https://publications.waset.org/abstracts/search?q=napsterization" title=" napsterization"> napsterization</a>, <a href="https://publications.waset.org/abstracts/search?q=news%20aggregation" title=" news aggregation"> news aggregation</a>, <a href="https://publications.waset.org/abstracts/search?q=opinions" title=" opinions"> opinions</a> </p> <a href="https://publications.waset.org/abstracts/70101/rethinking-news-aggregation-to-achieve-depolarization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70101.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1107</span> Preparation of Wireless Networks and Security; Challenges in Efficient Accession of Encrypted Data in Healthcare</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Zayoud">M. Zayoud</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Oueida"> S. Oueida</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Ionescu"> S. Ionescu</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20AbiChar"> P. AbiChar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Wireless sensor network is encompassed of diversified tools of information technology, which is widely applied in a range of domains, including military surveillance, weather forecasting, and earthquake forecasting. Strengthened grounds are always developed for wireless sensor networks, which usually emerges security issues during professional application. Thus, essential technological tools are necessary to be assessed for secure aggregation of data. Moreover, such practices have to be incorporated in the healthcare practices that shall be serving in the best of the mutual interest Objective: Aggregation of encrypted data has been assessed through homomorphic stream cipher to assure its effectiveness along with providing the optimum solutions to the field of healthcare. Methods: An experimental design has been incorporated, which utilized newly developed cipher along with CPU-constrained devices. Modular additions have also been employed to evaluate the nature of aggregated data. The processes of homomorphic stream cipher have been highlighted through different sensors and modular additions. Results: Homomorphic stream cipher has been recognized as simple and secure process, which has allowed efficient aggregation of encrypted data. In addition, the application has led its way to the improvisation of the healthcare practices. Statistical values can be easily computed through the aggregation on the basis of selected cipher. Sensed data in accordance with variance, mean, and standard deviation has also been computed through the selected tool. Conclusion: It can be concluded that homomorphic stream cipher can be an ideal tool for appropriate aggregation of data. Alongside, it shall also provide the best solutions to the healthcare sector. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aggregation" title="aggregation">aggregation</a>, <a href="https://publications.waset.org/abstracts/search?q=cipher" title=" cipher"> cipher</a>, <a href="https://publications.waset.org/abstracts/search?q=homomorphic%20stream" title=" homomorphic stream"> homomorphic stream</a>, <a href="https://publications.waset.org/abstracts/search?q=encryption" title=" encryption"> encryption</a> </p> <a href="https://publications.waset.org/abstracts/52690/preparation-of-wireless-networks-and-security-challenges-in-efficient-accession-of-encrypted-data-in-healthcare" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52690.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1106</span> Aggregation Scheduling Algorithms in Wireless Sensor Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Min%20Kyung%20An">Min Kyung An</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Wireless Sensor Networks which consist of tiny wireless sensor nodes with limited battery power, one of the most fundamental applications is data aggregation which collects nearby environmental conditions and aggregates the data to a designated destination, called a sink node. Important issues concerning the data aggregation are time efficiency and energy consumption due to its limited energy, and therefore, the related problem, named Minimum Latency Aggregation Scheduling (MLAS), has been the focus of many researchers. Its objective is to compute the minimum latency schedule, that is, to compute a schedule with the minimum number of timeslots, such that the sink node can receive the aggregated data from all the other nodes without any collision or interference. For the problem, the two interference models, the graph model and the more realistic physical interference model known as Signal-to-Interference-Noise-Ratio (SINR), have been adopted with different power models, uniform-power and non-uniform power (with power control or without power control), and different antenna models, omni-directional antenna and directional antenna models. In this survey article, as the problem has proven to be NP-hard, we present and compare several state-of-the-art approximation algorithms in various models on the basis of latency as its performance measure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20aggregation" title="data aggregation">data aggregation</a>, <a href="https://publications.waset.org/abstracts/search?q=convergecast" title=" convergecast"> convergecast</a>, <a href="https://publications.waset.org/abstracts/search?q=gathering" title=" gathering"> gathering</a>, <a href="https://publications.waset.org/abstracts/search?q=approximation" title=" approximation"> approximation</a>, <a href="https://publications.waset.org/abstracts/search?q=interference" title=" interference"> interference</a>, <a href="https://publications.waset.org/abstracts/search?q=omni-directional" title=" omni-directional"> omni-directional</a>, <a href="https://publications.waset.org/abstracts/search?q=directional" title=" directional"> directional</a> </p> <a href="https://publications.waset.org/abstracts/71859/aggregation-scheduling-algorithms-in-wireless-sensor-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71859.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1105</span> Wind Speed Prediction Using Passive Aggregation Artificial Intelligence Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tarek%20Aboueldahab">Tarek Aboueldahab</a>, <a href="https://publications.waset.org/abstracts/search?q=Amin%20Mohamed%20Nassar"> Amin Mohamed Nassar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wind energy is a fluctuating energy source unlike conventional power plants, thus, it is necessary to accurately predict short term wind speed to integrate wind energy in the electricity supply structure. To do so, we present a hybrid artificial intelligence model of short term wind speed prediction based on passive aggregation of the particle swarm optimization and neural networks. As a result, improvement of the prediction accuracy is obviously obtained compared to the standard artificial intelligence method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title="artificial intelligence">artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20swarm%20optimization" title=" particle swarm optimization"> particle swarm optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20aggregation" title=" passive aggregation"> passive aggregation</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20speed%20prediction" title=" wind speed prediction"> wind speed prediction</a> </p> <a href="https://publications.waset.org/abstracts/45705/wind-speed-prediction-using-passive-aggregation-artificial-intelligence-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45705.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">450</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1104</span> Investigations of Protein Aggregation Using Sequence and Structure Based Features</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Michael%20Gromiha">M. Michael Gromiha</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mary%20Thangakani"> A. Mary Thangakani</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandeep%20Kumar"> Sandeep Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Velmurugan"> D. Velmurugan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main cause of several neurodegenerative diseases such as Alzhemier, Parkinson, and spongiform encephalopathies is formation of amyloid fibrils and plaques in proteins. We have analyzed different sets of proteins and peptides to understand the influence of sequence-based features on protein aggregation process. The comparison of 373 pairs of homologous mesophilic and thermophilic proteins showed that aggregation-prone regions (APRs) are present in both. But, the thermophilic protein monomers show greater ability to ‘stow away’ the APRs in their hydrophobic cores and protect them from solvent exposure. The comparison of amyloid forming and amorphous b-aggregating hexapeptides suggested distinct preferences for specific residues at the six positions as well as all possible combinations of nine residue pairs. The compositions of residues at different positions and residue pairs have been converted into energy potentials and utilized for distinguishing between amyloid forming and amorphous b-aggregating peptides. Our method could correctly identify the amyloid forming peptides at an accuracy of 95-100% in different datasets of peptides. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aggregation" title="aggregation">aggregation</a>, <a href="https://publications.waset.org/abstracts/search?q=amyloids" title=" amyloids"> amyloids</a>, <a href="https://publications.waset.org/abstracts/search?q=thermophilic%20proteins" title=" thermophilic proteins"> thermophilic proteins</a>, <a href="https://publications.waset.org/abstracts/search?q=amino%20acid%20residues" title=" amino acid residues"> amino acid residues</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning%20techniques" title=" machine learning techniques"> machine learning techniques</a> </p> <a href="https://publications.waset.org/abstracts/20424/investigations-of-protein-aggregation-using-sequence-and-structure-based-features" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20424.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">614</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1103</span> Aggregation of Butanediyl-1,4-Bis(Tetradecyldimethylammonium Bromide) (14–4–14) Gemini Surfactants in Presence of Ethylene Glycol and Propylene Glycol</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Ajmal%20Koya">P. Ajmal Koya</a>, <a href="https://publications.waset.org/abstracts/search?q=Tariq%20Ahmad%20Wagay"> Tariq Ahmad Wagay</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Ismail"> K. Ismail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the fundamental property of surfactant molecules are their ability to aggregate in water or binary mixtures of water and organic solvents as an effort to minimize their unfavourable interaction with the medium. In this work, influence two co-solvents (ethylene glycol (EG) and propylene glycol (PG)) on the aggregation properties of a cationic gemini surfactant, butanediyl-1,4-bis(tetradecyldimethylammonium bromide) (14–4–14), has been studied by conductance and steady state fluorescence at 298 K. The weight percentage of two co-solvents varied in between 0 and 50 % at an interval of 5 % up to 20 % and then 10 % up to 50 %. It was found that micellization process is delayed by the inclusion of both the co-solvents; consequently, a progressive increase was observed in critical micelle concentration (cmc) and Gibbs free energy of micellization (∆G0m), whereas a rough increase was observed in the values of degree of counter ion dissociation (α) and a decrease was obtained in values of average aggregation number (Nagg) and Stern-Volmer constant (KSV). At low weight percentage (up to 15 %) of co-solvents, 14–4–14 geminis were found to be almost equally prone to micellization both in EG–water (EG–WR) and in PG–water (PG–WR) mixed media while at high weight percentages they are more prone to micellization in EG–WR than in PG–WR mixed media. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aggregation%20number" title="aggregation number">aggregation number</a>, <a href="https://publications.waset.org/abstracts/search?q=gemini%20surfactant" title=" gemini surfactant"> gemini surfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=micellization" title=" micellization"> micellization</a>, <a href="https://publications.waset.org/abstracts/search?q=non%20aqueous%20solvent" title=" non aqueous solvent"> non aqueous solvent</a> </p> <a href="https://publications.waset.org/abstracts/38405/aggregation-of-butanediyl-14-bistetradecyldimethylammonium-bromide-14-4-14-gemini-surfactants-in-presence-of-ethylene-glycol-and-propylene-glycol" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38405.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1102</span> Gas Aggregation and Nanobubbles Stability on Substrates Influenced by Surface Wettability: A Molecular Dynamics Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tsu-Hsu%20Yen">Tsu-Hsu Yen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The interfacial gas adsorption presents a frequent challenge and opportunity for micro-/nano-fluidic operation. In this study, we investigate the wettability, gas accumulation, and nanobubble formation on various homogeneous surface conditions by using MD simulation, including a series of 3D and quasi-2D argon-water-solid systems simulation. To precisely determine the wettability on various substrates, several indicators were calculated. Among these wettability indicators, the water PMF (potential of mean force) has the most correlation tendency with interfacial water molecular orientation than depletion layer width and droplet contact angle. The results reveal that the aggregation of argon molecules on substrates not only depending on the level of hydrophobicity but also determined by the competition between gas-solid and water-solid interaction as well as water molecular structure near the surface. In addition, the surface nanobubble is always observed coexisted with the gas enrichment layer. The water structure adjacent to water-gas and water-solid interfaces also plays an important factor in gas out-flux and gas aggregation, respectively. The quasi-2D simulation shows that only a slight difference in the curved argon-water interface from the plane interface which suggests no noticeable obstructing effect on gas outflux from the gas-water interfacial water networks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20aggregation" title="gas aggregation">gas aggregation</a>, <a href="https://publications.waset.org/abstracts/search?q=interfacial%20nanobubble" title=" interfacial nanobubble"> interfacial nanobubble</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics%20simulation" title=" molecular dynamics simulation"> molecular dynamics simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=wettability" title=" wettability"> wettability</a> </p> <a href="https://publications.waset.org/abstracts/120507/gas-aggregation-and-nanobubbles-stability-on-substrates-influenced-by-surface-wettability-a-molecular-dynamics-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1101</span> A Deep Explanation for the Formation of Force as a Foundational Law of Physics by Incorporating Unknown Degrees of Freedom into Space</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Farshad">Mohsen Farshad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Information and force definition has been intertwined with the concept of entropy for many years. The displacement information of degrees of freedom with Brownian motions at a given temperature in space emerges as an entropic force between species. Here, we use this concept of entropy to understand the underlying physics behind the formation of attractive and repulsive forces by imagining that space is filled with free Brownian degrees of freedom. We incorporate the radius of bodies and the distance between them into entropic force relation systematically. Using this modified gravitational entropic force, we derive the attractive entropic force between bodies without considering their spin. We further hypothesize a possible mechanism for the formation of the repulsive force between two bodies. We visually elaborate that the repulsive entropic force will be manifested through the rotation of degrees of freedom around the spinning particles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=entropy" title="entropy">entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=information" title=" information"> information</a>, <a href="https://publications.waset.org/abstracts/search?q=force" title=" force"> force</a>, <a href="https://publications.waset.org/abstracts/search?q=Brownian%20Motions" title=" Brownian Motions"> Brownian Motions</a> </p> <a href="https://publications.waset.org/abstracts/150175/a-deep-explanation-for-the-formation-of-force-as-a-foundational-law-of-physics-by-incorporating-unknown-degrees-of-freedom-into-space" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150175.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1100</span> Banking and Accounting Analysis Researches Effect on Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marina%20Magdy%20Naguib%20Karas">Marina Magdy Naguib Karas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> New methods of providing banking services to the customer have been introduced, such as online banking. Banks have begun to consider electronic banking (e-banking) as a way to replace some traditional branch functions by using the Internet as a new distribution channel. Some consumers have at least one account at multiple banks and access these accounts through online banking. To check their current net worth, clients need to log into each of their accounts, get detailed information, and work toward consolidation. Not only is it time-consuming, but it is also a repeatable activity with a certain frequency. To solve this problem, the concept of account aggregation was added as a solution. Account consolidation in e-banking as a form of electronic banking appears to build a stronger relationship with customers. An account linking service is generally referred to as a service that allows customers to manage their bank accounts held at different institutions via a common online banking platform that places a high priority on security and data protection. The article provides an overview of the account aggregation approach in e-banking as a new service in the area of e-banking. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compatibility" title="compatibility">compatibility</a>, <a href="https://publications.waset.org/abstracts/search?q=complexity" title=" complexity"> complexity</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20banking" title=" mobile banking"> mobile banking</a>, <a href="https://publications.waset.org/abstracts/search?q=observation" title=" observation"> observation</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20banking%20technology" title=" risk banking technology"> risk banking technology</a>, <a href="https://publications.waset.org/abstracts/search?q=Internet%20banks" title=" Internet banks"> Internet banks</a>, <a href="https://publications.waset.org/abstracts/search?q=modernization%20of%20banks" title=" modernization of banks"> modernization of banks</a>, <a href="https://publications.waset.org/abstracts/search?q=banks" title=" banks"> banks</a>, <a href="https://publications.waset.org/abstracts/search?q=account%20aggregation" title=" account aggregation"> account aggregation</a>, <a href="https://publications.waset.org/abstracts/search?q=security" title=" security"> security</a>, <a href="https://publications.waset.org/abstracts/search?q=enterprise%20development" title=" enterprise development"> enterprise development</a> </p> <a href="https://publications.waset.org/abstracts/185124/banking-and-accounting-analysis-researches-effect-on-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185124.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">50</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1099</span> Banking and Accounting Analysis Researches Effect on Environment and Income</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gerges%20Samaan%20Henin%20Abdalla">Gerges Samaan Henin Abdalla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> New methods of providing banking services to the customer have been introduced, such as online banking. Banks have begun to consider electronic banking (e-banking) as a way to replace some traditional branch functions by using the Internet as a new distribution channel. Some consumers have at least one account at multiple banks and access these accounts through online banking. To check their current net worth, clients need to log into each of their accounts, get detailed information, and work toward consolidation. Not only is it time consuming, but it is also a repeatable activity with a certain frequency. To solve this problem, the concept of account aggregation was added as a solution. Account consolidation in e-banking as a form of electronic banking appears to build a stronger relationship with customers. An account linking service is generally referred to as a service that allows customers to manage their bank accounts held at different institutions via a common online banking platform that places a high priority on security and data protection. The article provides an overview of the account aggregation approach in e-banking as a new service in the area of e-banking. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compatibility" title="compatibility">compatibility</a>, <a href="https://publications.waset.org/abstracts/search?q=complexity" title=" complexity"> complexity</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20banking" title=" mobile banking"> mobile banking</a>, <a href="https://publications.waset.org/abstracts/search?q=observation" title=" observation"> observation</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20banking%20technology" title=" risk banking technology"> risk banking technology</a>, <a href="https://publications.waset.org/abstracts/search?q=Internet%20banks" title=" Internet banks"> Internet banks</a>, <a href="https://publications.waset.org/abstracts/search?q=modernization%20of%20banks" title=" modernization of banks"> modernization of banks</a>, <a href="https://publications.waset.org/abstracts/search?q=banks" title=" banks"> banks</a>, <a href="https://publications.waset.org/abstracts/search?q=account%20aggregation" title=" account aggregation"> account aggregation</a>, <a href="https://publications.waset.org/abstracts/search?q=security" title=" security"> security</a>, <a href="https://publications.waset.org/abstracts/search?q=enterprise%20development" title=" enterprise development"> enterprise development</a> </p> <a href="https://publications.waset.org/abstracts/184411/banking-and-accounting-analysis-researches-effect-on-environment-and-income" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184411.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">57</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1098</span> Automatic Aggregation and Embedding of Microservices for Optimized Deployments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pablo%20Chico%20De%20Guzman">Pablo Chico De Guzman</a>, <a href="https://publications.waset.org/abstracts/search?q=Cesar%20Sanchez"> Cesar Sanchez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microservices are a software development methodology in which applications are built by composing a set of independently deploy-able, small, modular services. Each service runs a unique process and it gets instantiated and deployed in one or more machines (we assume that different microservices are deployed into different machines). Microservices are becoming the de facto standard for developing distributed cloud applications due to their reduced release cycles. In principle, the responsibility of a microservice can be as simple as implementing a single function, which can lead to the following issues: - Resource fragmentation due to the virtual machine boundary. - Poor communication performance between microservices. Two composition techniques can be used to optimize resource fragmentation and communication performance: aggregation and embedding of microservices. Aggregation allows the deployment of a set of microservices on the same machine using a proxy server. Aggregation helps to reduce resource fragmentation, and is particularly useful when the aggregated services have a similar scalability behavior. Embedding deals with communication performance by deploying on the same virtual machine those microservices that require a communication channel (localhost bandwidth is reported to be about 40 times faster than cloud vendor local networks and it offers better reliability). Embedding can also reduce dependencies on load balancer services since the communication takes place on a single virtual machine. For example, assume that microservice A has two instances, a1 and a2, and it communicates with microservice B, which also has two instances, b1 and b2. One embedding can deploy a1 and b1 on machine m1, and a2 and b2 are deployed on a different machine m2. This deployment configuration allows each pair (a1-b1), (a2-b2) to communicate using the localhost interface without the need of a load balancer between microservices A and B. Aggregation and embedding techniques are complex since different microservices might have incompatible runtime dependencies which forbid them from being installed on the same machine. There is also a security concern since the attack surface between microservices can be larger. Luckily, container technology allows to run several processes on the same machine in an isolated manner, solving the incompatibility of running dependencies and the previous security concern, thus greatly simplifying aggregation/embedding implementations by just deploying a microservice container on the same machine as the aggregated/embedded microservice container. Therefore, a wide variety of deployment configurations can be described by combining aggregation and embedding to create an efficient and robust microservice architecture. This paper presents a formal method that receives a declarative definition of a microservice architecture and proposes different optimized deployment configurations by aggregating/embedding microservices. The first prototype is based on i2kit, a deployment tool also submitted to ICWS 2018. The proposed prototype optimizes the following parameters: network/system performance, resource usage, resource costs and failure tolerance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aggregation" title="aggregation">aggregation</a>, <a href="https://publications.waset.org/abstracts/search?q=deployment" title=" deployment"> deployment</a>, <a href="https://publications.waset.org/abstracts/search?q=embedding" title=" embedding"> embedding</a>, <a href="https://publications.waset.org/abstracts/search?q=resource%20allocation" title=" resource allocation"> resource allocation</a> </p> <a href="https://publications.waset.org/abstracts/78224/automatic-aggregation-and-embedding-of-microservices-for-optimized-deployments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78224.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1097</span> Bioarm, a Prothesis without Surgery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Sagouis">J. Sagouis</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Chamel"> A. Chamel</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Carre"> E. Carre</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Casasreales"> C. Casasreales</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Rudnik"> G. Rudnik</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Cerdan"> M. Cerdan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Robotics provides answers to amputees. The most expensive solutions surgically connect the prosthesis to nerve endings. There are also several types of non-invasive technologies that recover nerve messages passing through the muscles. After analyzing these messages, myoelectric prostheses perform the desired movement. The main goal is to avoid all surgeries, which can be heavy and offer cheaper alternatives. For an amputee, we use valid muscles to recover the electrical signal involved in a muscle movement. EMG sensors placed on the muscle allows us to measure a potential difference, which our program transforms into control for a robotic arm with two degrees of freedom. We have shown the feasibility of non-invasive prostheses with two degrees of freedom. Signal analysis and an increase in degrees of freedom is still being improved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=prosthesis" title="prosthesis">prosthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=electromyography%20%28EMG%29" title=" electromyography (EMG)"> electromyography (EMG)</a>, <a href="https://publications.waset.org/abstracts/search?q=robotic%20arm" title=" robotic arm"> robotic arm</a>, <a href="https://publications.waset.org/abstracts/search?q=nerve%20message" title=" nerve message"> nerve message</a> </p> <a href="https://publications.waset.org/abstracts/15441/bioarm-a-prothesis-without-surgery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15441.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1096</span> Strategy Research for the Development of Thematic Commercial Streets - Based On the Survey of Eight Typical Thematic Commercial Streets in Harbin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wang%20Zhenzhen">Wang Zhenzhen</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang%20Xu"> Wang Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20Liangping"> Hong Liangping</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The construction of thematic commercial streets has been on the hotspot with the rapid development of cities. In order to improve the image and competitiveness of cities, many cities are building or rebuilding thematic commercial streets. However, many contradictions and problems have emerged during this process. Therefore, it is significant, for both the practice and the research, to analyse the development of thematic commercial streets and provide some useful suggestions. Through the deep research and comparative study of the eight typical thematic commercial streets in Harbin, this paper summarize the current situations, laws and influencing factors of the development of these streets, and then put forward some suggestions about the plan, constructions and developments of the thematic commercial streets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thematic%20commercial%20streets" title="thematic commercial streets">thematic commercial streets</a>, <a href="https://publications.waset.org/abstracts/search?q=laws%20of%20the%20development" title=" laws of the development"> laws of the development</a>, <a href="https://publications.waset.org/abstracts/search?q=influence%20factors" title=" influence factors"> influence factors</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20constructions%20and%20developments" title=" the constructions and developments"> the constructions and developments</a>, <a href="https://publications.waset.org/abstracts/search?q=degrees%20of%20aggregation" title=" degrees of aggregation"> degrees of aggregation</a> </p> <a href="https://publications.waset.org/abstracts/7064/strategy-research-for-the-development-of-thematic-commercial-streets-based-on-the-survey-of-eight-typical-thematic-commercial-streets-in-harbin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7064.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1095</span> Deployment of Beyond 4G Wireless Communication Networks with Carrier Aggregation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bahram%20Khan">Bahram Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Anderson%20Rocha%20Ramos"> Anderson Rocha Ramos</a>, <a href="https://publications.waset.org/abstracts/search?q=Rui%20R.%20Paulo"> Rui R. Paulo</a>, <a href="https://publications.waset.org/abstracts/search?q=Fernando%20J.%20Velez"> Fernando J. Velez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the growing demand for a new blend of applications, the users dependency on the internet is increasing day by day. Mobile internet users are giving more attention to their own experiences, especially in terms of communication reliability, high data rates and service stability on move. This increase in the demand is causing saturation of existing radio frequency bands. To address these challenges, researchers are investigating the best approaches, Carrier Aggregation (CA) is one of the newest innovations, which seems to fulfill the demands of the future spectrum, also CA is one the most important feature for Long Term Evolution - Advanced (LTE-Advanced). For this purpose to get the upcoming International Mobile Telecommunication Advanced (IMT-Advanced) mobile requirements (1 Gb/s peak data rate), the CA scheme is presented by 3GPP, which would sustain a high data rate using widespread frequency bandwidth up to 100 MHz. Technical issues such as aggregation structure, its implementations, deployment scenarios, control signal techniques, and challenges for CA technique in LTE-Advanced, with consideration of backward compatibility, are highlighted in this paper. Also, performance evaluation in macro-cellular scenarios through a simulation approach is presented, which shows the benefits of applying CA, low-complexity multi-band schedulers in service quality, system capacity enhancement and concluded that enhanced multi-band scheduler is less complex than the general multi-band scheduler, which performs better for a cell radius longer than 1800 m (and a PLR threshold of 2%). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=component%20carrier" title="component carrier">component carrier</a>, <a href="https://publications.waset.org/abstracts/search?q=carrier%20aggregation" title=" carrier aggregation"> carrier aggregation</a>, <a href="https://publications.waset.org/abstracts/search?q=LTE-advanced" title=" LTE-advanced"> LTE-advanced</a>, <a href="https://publications.waset.org/abstracts/search?q=scheduling" title=" scheduling"> scheduling</a> </p> <a href="https://publications.waset.org/abstracts/125299/deployment-of-beyond-4g-wireless-communication-networks-with-carrier-aggregation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125299.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1094</span> SiamMask++: More Accurate Object Tracking through Layer Wise Aggregation in Visual Object Tracking</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyunbin%20Choi">Hyunbin Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jihyeon%20Noh"> Jihyeon Noh</a>, <a href="https://publications.waset.org/abstracts/search?q=Changwon%20Lim"> Changwon Lim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose SiamMask++, an architecture that performs layer-wise aggregation and depth-wise cross-correlation and introduce multi-RPN module and multi-MASK module to improve EAO (Expected Average Overlap), a representative performance evaluation metric for Visual Object Tracking (VOT) challenge. The proposed architecture, SiamMask++, has two versions, namely, bi_SiamMask++, which satisfies the real time (56fps) on systems equipped with GPUs (Titan XP), and rf_SiamMask++, which combines mask refinement modules for EAO improvements. Tests are performed on VOT2016, VOT2018 and VOT2019, the representative datasets of Visual Object Tracking tasks labeled as rotated bounding boxes. SiamMask++ perform better than SiamMask on all the three datasets tested. SiamMask++ is achieved performance of 62.6% accuracy, 26.2% robustness and 39.8% EAO, especially on the VOT2018 dataset. Compared to SiamMask, this is an improvement of 4.18%, 37.17%, 23.99%, respectively. In addition, we do an experimental in-depth analysis of how much the introduction of features and multi modules extracted from the backbone affects the performance of our model in the VOT task. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=visual%20object%20tracking" title="visual object tracking">visual object tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=video" title=" video"> video</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=layer%20wise%20aggregation" title=" layer wise aggregation"> layer wise aggregation</a>, <a href="https://publications.waset.org/abstracts/search?q=Siamese%20network" title=" Siamese network"> Siamese network</a> </p> <a href="https://publications.waset.org/abstracts/151563/siammask-more-accurate-object-tracking-through-layer-wise-aggregation-in-visual-object-tracking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151563.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1093</span> Mitigating the Aggregation of Human Islet Amyloid Polypeptide with Nanomaterials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ava%20Faridi">Ava Faridi</a>, <a href="https://publications.waset.org/abstracts/search?q=Pouya%20Faridi"> Pouya Faridi</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksandr%20Kakinen"> Aleksandr Kakinen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Javed"> Ibrahim Javed</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20P.%20Davis"> Thomas P. Davis</a>, <a href="https://publications.waset.org/abstracts/search?q=Pu%20Chun%20Ke"> Pu Chun Ke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human islet amyloid polypeptide (IAPP) is a hormone associated with glycemic control and type 2 diabetes. Biophysically, the chirality of IAPP fibrils has been little explored with respect to the aggregation and toxicity of the peptide. Biochemically, it remains unclear as for how protein expression in pancreatic beta cells may be altered by cell exposure to the peptide, and how such changes may be mitigated by nanoparticle inhibitors for IAPP aggregation. In this study, we first demonstrated the elimination of the IAPP nucleation phase and shortening of its elongation phase by silica nanoribbons. This accelerated IAPP fibrillization translated to reduced toxicity, especially for the right-handed silica nanoribbons, as revealed by cell viability, helium ion microscopy, as well as zebrafish embryo survival, developmental and behavioral assays. We then examined the proteomes of βTC6 pancreatic beta cells exposed to the three main aggregation states of monomeric, oligomeric and amyloid fibrillar IAPP, and compared that with cellular protein expression modulated by graphene quantum dots (GQDs). A total of 29 proteins were significantly regulated by different forms of IAPP, and the majority of these proteins were nucleotide-binding proteins. A regulatory capacity of GQDs against aberrant protein expression was confirmed. These studies have demonstrated the great potential of employing nanomaterials targeting the mesoscopic enantioselectivity and protein expression dysregulation in pancreatic beta cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene%20quantum%20dots" title="graphene quantum dots">graphene quantum dots</a>, <a href="https://publications.waset.org/abstracts/search?q=IAPP" title=" IAPP"> IAPP</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20nanoribbons" title=" silica nanoribbons"> silica nanoribbons</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20expression" title=" protein expression"> protein expression</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity" title=" toxicity"> toxicity</a> </p> <a href="https://publications.waset.org/abstracts/107515/mitigating-the-aggregation-of-human-islet-amyloid-polypeptide-with-nanomaterials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107515.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=degrees%20of%20aggregation&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=degrees%20of%20aggregation&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=degrees%20of%20aggregation&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=degrees%20of%20aggregation&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=degrees%20of%20aggregation&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=degrees%20of%20aggregation&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=degrees%20of%20aggregation&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=degrees%20of%20aggregation&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=degrees%20of%20aggregation&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=degrees%20of%20aggregation&amp;page=37">37</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=degrees%20of%20aggregation&amp;page=38">38</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=degrees%20of%20aggregation&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10