CINXE.COM
Search results for: edge zone
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: edge zone</title> <meta name="description" content="Search results for: edge zone"> <meta name="keywords" content="edge zone"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="edge zone" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="edge zone"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2425</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: edge zone</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2425</span> Generous Edge – Inviting the Spontaneous</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ofri%20Earon">Ofri Earon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article is about a growing focus in the city of Copenhagen – the edge zone between the private space inside the residential building and the public space out at the residential street. A slow transition between the private living room and the public urban space creates a mutual benefit. The urban space benefits from an insertion of a homey atmosphere by the extended performance of living rooms to the exterior. The dwelling benefits from belonging to a liveable neighborliness, which means an extension of the private home to a collective home (= the neighborhood). Grounded by this reciprocal value of the edge zone, through the article, it is argued that a wide generosity of the edge zones is of interest among both planners and residents. The article introduces the idea of the edge zone and its possible implications in the development of the liveable residential city. Three examples of ongoing projects at Arkitema Architects are bought to illustrate the challenges and potentials of a generous edge zone. Every example represents a specific dwelling typology in a particular urban context: (1) multi-family residential building in a previous industrial area in the city (2) new courtyard building in the city’s outskirt (3) low and dense residential area out in the suburbia. Throughout these examples, the article seeks to discuss the significance of the edge zone in forthcoming residential areas in Denmark. The analysis of the Danish examples raises the question of why a social behavior that happens spontaneously in the south of Europe has to be carefully implemented in the architecture of north of Europe. In this light, the article ends with a discussion on how to create edge zones that are not designed for a particular usage, but rather as an architectural invitation for varied social behaviors that spontaneously occur in different moments of time by different people. Finally, the article ends with a list of recommendations for the development of the generous edge zone as an open invitation for diverse usage over time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dwelling" title="dwelling">dwelling</a>, <a href="https://publications.waset.org/abstracts/search?q=edge%20zone" title=" edge zone"> edge zone</a>, <a href="https://publications.waset.org/abstracts/search?q=generosity" title=" generosity"> generosity</a>, <a href="https://publications.waset.org/abstracts/search?q=livability" title=" livability"> livability</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20space" title=" urban space "> urban space </a> </p> <a href="https://publications.waset.org/abstracts/40291/generous-edge-inviting-the-spontaneous" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40291.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2424</span> The Need for Multi-Edge Strategies and Solutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hugh%20Taylor">Hugh Taylor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Industry analysts project that edge computing will be generating tens of billions in revenue in coming years. It’s not clear, however, if this will actually happen, and who, if anyone, will make it happen. Edge computing is seen as a critical success factor in industries ranging from telecom, enterprise IT and co-location. However, will any of these industries actually step up to make edge computing into a viable technology business? This paper looks at why the edge seems to be in a chasm, on the edge of realization, so to speak, but failing to coalesce into a coherent technology category like the cloud—and how the segment’s divergent industry players can come together to build a viable business at the edge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=edge%20computing" title="edge computing">edge computing</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-edge%20strategies" title=" multi-edge strategies"> multi-edge strategies</a>, <a href="https://publications.waset.org/abstracts/search?q=edge%20data%20centers" title=" edge data centers"> edge data centers</a>, <a href="https://publications.waset.org/abstracts/search?q=edge%20cloud" title=" edge cloud"> edge cloud</a> </p> <a href="https://publications.waset.org/abstracts/154144/the-need-for-multi-edge-strategies-and-solutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154144.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2423</span> An investigation of Leading Edge and Trailing Edge Corrugation for Low Reynolds Number Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syed%20Hassan%20Raza%20Shah">Syed Hassan Raza Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Mohammad%20Ali"> Mohammad Mohammad Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The flow over a smoothly profiled airfoil at a low Reynolds number is highly susceptible to separate even at a very low angle of attack. An investigation was made to study the effect of leading-edge and trailing-edge corrugation with the spanwise change in the ridges resulted due to the change in the chord length for an infinite wing. The wind tunnel results using NACA0018 wings revealed that leading and trailing edge corrugation did not have any benefit in terms of aerodynamic efficiency or delayed stall. The leading edge and trailing edge corrugation didn't change the lift curve slope, with the leading edge corrugation wing stalling first in the range of Reynolds number of 50,000 to 125,000. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=leading%20and%20trailing%20edge%20corrugations" title="leading and trailing edge corrugations">leading and trailing edge corrugations</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20reynolds%20number" title=" low reynolds number"> low reynolds number</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel%20testing" title=" wind tunnel testing"> wind tunnel testing</a>, <a href="https://publications.waset.org/abstracts/search?q=NACA0018" title=" NACA0018"> NACA0018</a> </p> <a href="https://publications.waset.org/abstracts/141121/an-investigation-of-leading-edge-and-trailing-edge-corrugation-for-low-reynolds-number-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141121.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2422</span> Measurement of VIP Edge Conduction Using Vacuum Guarded Hot Plate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bongsu%20Choi">Bongsu Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae-Ho%20Song"> Tae-Ho Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vacuum insulation panel (VIP) is a promising thermal insulator for buildings, refrigerator, LNG carrier and so on. In general, it has the thermal conductivity of 2~4 mW/m•K. However, this thermal conductivity is that measured at the center of VIP. The total effective thermal conductivity of VIP is larger than this value due to the edge conduction through the envelope. In this paper, the edge conduction of VIP is examined theoretically, numerically and experimentally. To confirm the existence of the edge conduction, numerical analysis is performed for simple two-dimensional VIP model and a theoretical model is proposed to calculate the edge conductivity. Also, the edge conductivity is measured using the vacuum guarded hot plate and the experiment is validated against numerical analysis. The results show that the edge conductivity is dependent on the width of panel and thickness of Al-foil. To reduce the edge conduction, it is recommended that the VIP should be made as big as possible or made of thin Al film envelope. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=envelope" title="envelope">envelope</a>, <a href="https://publications.waset.org/abstracts/search?q=edge%20conduction" title=" edge conduction"> edge conduction</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=vacuum%20insulation%20panel" title=" vacuum insulation panel"> vacuum insulation panel</a> </p> <a href="https://publications.waset.org/abstracts/19366/measurement-of-vip-edge-conduction-using-vacuum-guarded-hot-plate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19366.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2421</span> Effect of Machining Induced Microstructure Changes on the Edge Formability of Titanium Alloys at Room Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=James%20S.%20Kwame">James S. Kwame</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Yakushina"> E. Yakushina</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Blackwell"> P. Blackwell</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The challenges in forming titanium alloys at room temperature are well researched and are linked both to the limitations imposed by the basic crystal structure and their ability to form texture during plastic deformation. One major issue of concern for the sheet forming of titanium alloys is their high sensitivity to surface inhomogeneity. Various machining processes are utilised in preparing sheet hole edges for edge flanging applications. However, the response of edge forming tendencies of titanium to different edge surface finishes is not well investigated. The hole expansion test is used in this project to elucidate the impact of abrasive water jet (AWJ) and electro-discharge machining (EDM) cutting techniques on the edge formability of CP-Ti (Grade 2) and Ti-3Al-2.5V alloys at room temperature. The results show that the quality of the edge surface finish has a major effect on the edge formability of the materials. The work also found that the variations in the edge forming performance are mainly the result of the influence of machining induced edge surface defects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=titanium%20alloys" title="titanium alloys">titanium alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=hole%20expansion%20test" title=" hole expansion test"> hole expansion test</a>, <a href="https://publications.waset.org/abstracts/search?q=edge%20formability" title=" edge formability"> edge formability</a>, <a href="https://publications.waset.org/abstracts/search?q=non-conventional%20machining" title=" non-conventional machining"> non-conventional machining</a> </p> <a href="https://publications.waset.org/abstracts/110917/effect-of-machining-induced-microstructure-changes-on-the-edge-formability-of-titanium-alloys-at-room-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110917.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2420</span> An Algorithm to Find Fractional Edge Domination Number and Upper Fractional Edge Domination Number of an Intuitionistic Fuzzy Graph</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karunambigai%20Mevani%20Govindasamy">Karunambigai Mevani Govindasamy</a>, <a href="https://publications.waset.org/abstracts/search?q=Sathishkumar%20Ayyappan"> Sathishkumar Ayyappan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we formulate the algorithm to find out the dominating function parameters of Intuitionistic Fuzzy Graphs(IFG). The methodology we adopted here is converting any physical problem into an IFG, and that has been transformed into Intuitionistic Fuzzy Matrix. Using Linear Program Solver software (LiPS), we found the defined parameters for the given IFG. We obtained these parameters for a path and cycle IFG. This study can be extended to other varieties of IFG. In particular, we obtain the definition of edge dominating function, minimal edge dominating function, fractional edge domination number (γ_if^') and upper fractional edge domination number (Γ_if^') of an intuitionistic fuzzy graph. Also, we formulated an algorithm which is appropriate to work on LiPS to find fractional edge domination number and upper fractional edge domination number of an IFG. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fractional%20edge%20domination%20number" title="fractional edge domination number">fractional edge domination number</a>, <a href="https://publications.waset.org/abstracts/search?q=intuitionistic%20fuzzy%20cycle" title=" intuitionistic fuzzy cycle"> intuitionistic fuzzy cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=intuitionistic%20fuzzy%20graph" title=" intuitionistic fuzzy graph"> intuitionistic fuzzy graph</a>, <a href="https://publications.waset.org/abstracts/search?q=intuitionistic%20fuzzy%20path" title=" intuitionistic fuzzy path"> intuitionistic fuzzy path</a> </p> <a href="https://publications.waset.org/abstracts/112004/an-algorithm-to-find-fractional-edge-domination-number-and-upper-fractional-edge-domination-number-of-an-intuitionistic-fuzzy-graph" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112004.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2419</span> Investigation Edge Coverage of Automotive Electrocoats Filled by Nano Silica Particles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marzieh%20Bakhtiary%20Noodeh">Marzieh Bakhtiary Noodeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahla%20Zabet"> Mahla Zabet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Attempts have been carried out to enhance the anticorrosion properties as well as edge coverage of an automotive electrocoating using the nano silica particles. To this end, the automotive electrocoating was reinforced with the nano silica particles at various weight fractions. The electrocoats were applied on the surface of punched edge followed by curing at 160⁰C for 20 min. The effects of nano silica particles on the rheological properties, influencing edge coverage were studied by a RMS (Rheometric Mechanical Spectrometer) technique. The anticorrosion properties were studied by a salt-spray test. The results obtained revealed that nano silica particles can significantly enhance the edge coverage by increasing minimum melt viscosity of electrocoats. It was shown that using 4 wt% nano silica particles, both anticorrosion properties and edge coverage of the electrocoats were significantly improved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nano%20silica" title="nano silica">nano silica</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocoat" title=" electrocoat"> electrocoat</a>, <a href="https://publications.waset.org/abstracts/search?q=edge%20coverage" title=" edge coverage"> edge coverage</a>, <a href="https://publications.waset.org/abstracts/search?q=anticorrosion" title=" anticorrosion"> anticorrosion</a> </p> <a href="https://publications.waset.org/abstracts/24511/investigation-edge-coverage-of-automotive-electrocoats-filled-by-nano-silica-particles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24511.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2418</span> Institutional Superposition, over Management and Coastal Economic Development: Coastal Areas in China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mingbao%20Chen">Mingbao Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Mingli%20Zhao"> Mingli Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The coastal zone is the intersection of land and sea system, and also is the connecting zone of the two economic systems of land and sea. In the world, all countries attach great importance to the coastal zone management and the coastal zone economy. In China, the government has developed a number of related coastal management policies and institutional, such as marine functional zoning, main function zoning, integrated coastal zone management, to ensure the sustainable utilization of the coastal zone and promote the development of coastal economic. However, in practice, the effect is not satisfactory. This paper analyses the coastal areas of coastal zone management on coastal economic growth contribution based on coastal areas economic development data with the 2007-2015 in China, which uses the method of the evaluation index system of coastal zone management institutional efficiency. The results show that the coastal zone management institutional objectives are not clear, and the institutional has high repeatability. At the same time, over management of coastal zone leads to low economic efficiency because the government management boundary is blurred. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=institutional%20overlap" title="institutional overlap">institutional overlap</a>, <a href="https://publications.waset.org/abstracts/search?q=over%20management" title=" over management"> over management</a>, <a href="https://publications.waset.org/abstracts/search?q=coastal%20zone%20management" title=" coastal zone management"> coastal zone management</a>, <a href="https://publications.waset.org/abstracts/search?q=coastal%20zone%20economy" title=" coastal zone economy"> coastal zone economy</a> </p> <a href="https://publications.waset.org/abstracts/74771/institutional-superposition-over-management-and-coastal-economic-development-coastal-areas-in-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74771.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2417</span> Multiscale Edge Detection Based on Nonsubsampled Contourlet Transform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Enqing%20Chen">Enqing Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianbo%20Wang"> Jianbo Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is well known that the wavelet transform provides a very effective framework for multiscale edges analysis. However, wavelets are not very effective in representing images containing distributed discontinuities such as edges. In this paper, we propose a novel multiscale edge detection method in nonsubsampled contourlet transform (NSCT) domain, which is based on the dominant multiscale, multidirection edge expression and outstanding edge location of NSCT. Through real images experiments, simulation results demonstrate that the proposed method is better than other edge detection methods based on Canny operator, wavelet and contourlet. Additionally, the proposed method also works well for noisy images. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=edge%20detection" title="edge detection">edge detection</a>, <a href="https://publications.waset.org/abstracts/search?q=NSCT" title=" NSCT"> NSCT</a>, <a href="https://publications.waset.org/abstracts/search?q=shift%20invariant" title=" shift invariant"> shift invariant</a>, <a href="https://publications.waset.org/abstracts/search?q=modulus%20maxima" title=" modulus maxima"> modulus maxima</a> </p> <a href="https://publications.waset.org/abstracts/9528/multiscale-edge-detection-based-on-nonsubsampled-contourlet-transform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9528.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">490</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2416</span> Detecting the Edge of Multiple Images in Parallel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prakash%20K.%20Aithal">Prakash K. Aithal</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20Dinesh%20Acharya"> U. Dinesh Acharya</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20Gopakumar"> Rajesh Gopakumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Edge is variation of brightness in an image. Edge detection is useful in many application areas such as finding forests, rivers from a satellite image, detecting broken bone in a medical image etc. The paper discusses about finding edge of multiple aerial images in parallel .The proposed work tested on 38 images 37 colored and one monochrome image. The time taken to process N images in parallel is equivalent to time taken to process 1 image in sequential. The proposed method achieves pixel level parallelism as well as image level parallelism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=edge%20detection" title="edge detection">edge detection</a>, <a href="https://publications.waset.org/abstracts/search?q=multicore" title=" multicore"> multicore</a>, <a href="https://publications.waset.org/abstracts/search?q=gpu" title=" gpu"> gpu</a>, <a href="https://publications.waset.org/abstracts/search?q=opencl" title=" opencl"> opencl</a>, <a href="https://publications.waset.org/abstracts/search?q=mpi" title=" mpi"> mpi</a> </p> <a href="https://publications.waset.org/abstracts/30818/detecting-the-edge-of-multiple-images-in-parallel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30818.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">480</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2415</span> Generator Subgraphs of the Wheel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neil%20M.%20Mame">Neil M. Mame</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We consider only finite graphs without loops nor multiple edges. Let G be a graph with E(G) = {e1, e2, …., em}. The edge space of G, denoted by ε(G), is a vector space over the field Z2. The elements of ε(G) are all the subsets of E(G). Vector addition is defined as X+Y = X Δ Y, the symmetric difference of sets X and Y, for X, Y ∈ ε(G). Scalar multiplication is defined as 1.X =X and 0.X = Ø for X ∈ ε(G). The set S ⊆ ε(G) is called a generating set if every element ε(G) is a linear combination of the elements of S. For a non-empty set X ∈ ε(G), the smallest subgraph with edge set X is called edge-induced subgraph of G, denoted by G[X]. The set EH(G) = { A ∈ ε(G) : G[A] ≅ H } denotes the uniform set of H with respect to G and εH(G) denotes the subspace of ε(G) generated by EH(G). If εH(G) is generating set, then we call H a generator subgraph of G. This paper gives the characterization for the generator subgraphs of the wheel that contain cycles and gives the necessary conditions for the acyclic generator subgraphs of the wheel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=edge%20space" title="edge space">edge space</a>, <a href="https://publications.waset.org/abstracts/search?q=edge-induced%20subgraph" title=" edge-induced subgraph"> edge-induced subgraph</a>, <a href="https://publications.waset.org/abstracts/search?q=generator%20subgraph" title=" generator subgraph"> generator subgraph</a>, <a href="https://publications.waset.org/abstracts/search?q=wheel" title=" wheel"> wheel</a> </p> <a href="https://publications.waset.org/abstracts/28953/generator-subgraphs-of-the-wheel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28953.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">464</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2414</span> Method and Experiment of Fabricating and Cutting the Burr for Y Shape Nanochannel </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zone-Ching%20Lin">Zone-Ching Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Hao-Yuan%20Jheng"> Hao-Yuan Jheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Shih-Hung%20Ma"> Shih-Hung Ma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present paper proposes using atomic force microscopy (AFM) and the concept of specific down force energy (SDFE) to establish a method for fabricating and cutting the burr for Y shape nanochannel on silicon (Si) substrate. For fabricating Y shape nanochannel, it first makes the experimental cutting path planning for fabricating Y shape nanochannel until the fifth cutting layer. Using the constant down force by AFM and SDFE theory and following the experimental cutting path planning, the cutting depth and width of each pass of Y shape nanochannel can be predicted by simulation. The paper plans the path for cutting the burr at the edge of Y shape nanochannel. Then, it carries out cutting the burr along the Y nanochannel edge by using a smaller down force. The height of standing burr at the edge is required to be below the set value of 0.54 nm. The results of simulation and experiment of fabricating and cutting the burr for Y shape nanochannel is further compared. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atomic%20force%20microscopy%20%28AFM%29" title="atomic force microscopy (AFM)">atomic force microscopy (AFM)</a>, <a href="https://publications.waset.org/abstracts/search?q=nanochannel" title=" nanochannel"> nanochannel</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20down%20force%20energy%20%28SDFE%29" title=" specific down force energy (SDFE)"> specific down force energy (SDFE)</a>, <a href="https://publications.waset.org/abstracts/search?q=Y%20shape" title=" Y shape"> Y shape</a>, <a href="https://publications.waset.org/abstracts/search?q=burr" title=" burr"> burr</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon" title=" silicon"> silicon</a> </p> <a href="https://publications.waset.org/abstracts/50887/method-and-experiment-of-fabricating-and-cutting-the-burr-for-y-shape-nanochannel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50887.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2413</span> An Empirical Investigation of the Challenges of Secure Edge Computing Adoption in Organizations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hailye%20Tekleselassie">Hailye Tekleselassie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Edge computing is a spread computing outline that transports initiative applications closer to data sources such as IoT devices or local edge servers, and possible happenstances would skull the action of new technologies. However, this investigation was attained to investigation the consciousness of technology and communications organization workers and computer users who support the service cloud. Surveys were used to achieve these objectives. Surveys were intended to attain these aims, and it is the functional using survey. Enquiries about confidence are also a key question. Problems like data privacy, integrity, and availability are the factors affecting the company’s acceptance of the service cloud. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IoT" title="IoT">IoT</a>, <a href="https://publications.waset.org/abstracts/search?q=data" title=" data"> data</a>, <a href="https://publications.waset.org/abstracts/search?q=security" title=" security"> security</a>, <a href="https://publications.waset.org/abstracts/search?q=edge%20computing" title=" edge computing"> edge computing</a> </p> <a href="https://publications.waset.org/abstracts/143031/an-empirical-investigation-of-the-challenges-of-secure-edge-computing-adoption-in-organizations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143031.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2412</span> Using Machine Learning to Monitor the Condition of the Cutting Edge during Milling Hardened Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pawel%20Twardowski">Pawel Twardowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Maciej%20Tabaszewski"> Maciej Tabaszewski</a>, <a href="https://publications.waset.org/abstracts/search?q=Jakub%20Czy%C5%BCycki"> Jakub Czyżycki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main goal of the work was to use machine learning to predict cutting-edge wear. The research was carried out while milling hardened steel with sintered carbide cutters at various cutting speeds. During the tests, cutting-edge wear was measured, and vibration acceleration signals were also measured. Appropriate measures were determined from the vibration signals and served as input data in the machine-learning process. Two approaches were used in this work. The first one involved a two-state classification of the cutting edge - suitable and unfit for further work. In the second approach, prediction of the cutting-edge state based on vibration signals was used. The obtained research results show that the appropriate use of machine learning algorithms gives excellent results related to monitoring cutting edge during the process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=milling%20of%20hardened%20steel" title="milling of hardened steel">milling of hardened steel</a>, <a href="https://publications.waset.org/abstracts/search?q=tool%20wear" title=" tool wear"> tool wear</a>, <a href="https://publications.waset.org/abstracts/search?q=vibrations" title=" vibrations"> vibrations</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a> </p> <a href="https://publications.waset.org/abstracts/185240/using-machine-learning-to-monitor-the-condition-of-the-cutting-edge-during-milling-hardened-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185240.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">60</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2411</span> Subjective Evaluation of Mathematical Morphology Edge Detection on Computed Tomography (CT) Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emhimed%20Saffor">Emhimed Saffor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the problem of edge detection in digital images is considered. Three methods of edge detection based on mathematical morphology algorithm were applied on two sets (Brain and Chest) CT images. 3x3 filter for first method, 5x5 filter for second method and 7x7 filter for third method under MATLAB programming environment. The results of the above-mentioned methods are subjectively evaluated. The results show these methods are more efficient and satiable for medical images, and they can be used for different other applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CT%20images" title="CT images">CT images</a>, <a href="https://publications.waset.org/abstracts/search?q=Matlab" title=" Matlab"> Matlab</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20images" title=" medical images"> medical images</a>, <a href="https://publications.waset.org/abstracts/search?q=edge%20detection" title=" edge detection "> edge detection </a> </p> <a href="https://publications.waset.org/abstracts/44926/subjective-evaluation-of-mathematical-morphology-edge-detection-on-computed-tomography-ct-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44926.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2410</span> Extracting Plowing Forces for Aluminum 6061-T6 Using a Small Number of Drilling Experiments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ilige%20S.%20Hage">Ilige S. Hage</a>, <a href="https://publications.waset.org/abstracts/search?q=Charbel%20Y.%20Seif"> Charbel Y. Seif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Forces measured during cutting operations are generated by the cutting process and include parasitic forces, known as edge forces. A fraction of these measured forces arises from the tertiary cutting zone, such as flank or edge forces. Most machining models are designed for sharp tools; where edge forces represent the portion of the measured forces associated with deviations of the tool from an ideal sharp geometry. Flank forces are challenging to isolate. The most common method involves plotting the force at a constant cutting speed against uncut chip thickness and then extrapolating to zero feed. The resulting positive intercept on the vertical axis is identified as the edge or plowing force. The aim of this research is to identify the effect of tool rake angle and cutting speeds on flank forces and to develop a force model as a function of tool rake angle and cutting speed for predicting plowing forces. Edge forces were identified based on a limited number of drilling experiments using a 10 mm twist drill, where lip edge cutting forces were collected from 2.5 mm pre-cored samples. Cutting lip forces were measured with feed rates varying from 0.04 to 0.64 mm/rev and spindle speeds ranging from 796 to 9868 rpm, at a sampling rate of 200 Hz. By using real-time force measurements as the drill enters the workpiece, this study provides an economical method for analyzing the effect of tool geometry and cutting conditions on generated cutting forces, reducing the number of required experimental setups. As a result, an empirical model predicting parasitic edge forces was developed function of the cutting velocity, tool rake angle, and clearance angle along the lip of the tool, demonstrating strong agreement with edge forces reported in the literature for Aluminum 6061-T6. The model achieved an R2 value of 0.92 and a mean square error of 4%, validating the accuracy of the proposed methodology. The presented methodology leverages variations in machining parameters. This approach contrasts with traditional machining experiments, where the turning process typically serves as the basis for force measurements and each experimental setup is characterized by a single cutting velocity, tool rake angle, and clearance angle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drilling" title="drilling">drilling</a>, <a href="https://publications.waset.org/abstracts/search?q=plowing" title=" plowing"> plowing</a>, <a href="https://publications.waset.org/abstracts/search?q=edge%20forces" title=" edge forces"> edge forces</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20force" title=" cutting force"> cutting force</a>, <a href="https://publications.waset.org/abstracts/search?q=torque" title=" torque"> torque</a> </p> <a href="https://publications.waset.org/abstracts/196303/extracting-plowing-forces-for-aluminum-6061-t6-using-a-small-number-of-drilling-experiments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/196303.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2409</span> Rock Property Calculation for Determine Hydrocarbon Zone Based on Petrophysical Principal and Sequence Stratigraphic Correlation in Blok M</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Tarmidzi">Muhammad Tarmidzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20M.%20G.%20Gani"> Reza M. G. Gani</a>, <a href="https://publications.waset.org/abstracts/search?q=Andri%20Luthfi"> Andri Luthfi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to identify rock zone containing hydrocarbons with calculating rock property includes volume shale, total porosity, effective porosity and water saturation. Identification method rock property based on GR log, resistivity log, neutron log and density rock. Zoning is based on sequence stratigraphic markers that are sequence boundary (SB), transgressive surface (TS) and flooding surface (FS) which correlating ten well log in blok “M”. The results of sequence stratigraphic correlation consist of eight zone that are two LST zone, three TST zone and three HST zone. The result of rock property calculation in each zone is showing two LST zone containing hydrocarbons. LST-1 zone has average volume shale (Vsh) 25%, average total porosity (PHIT) 14%, average effective porosity (PHIE) 11% and average water saturation 0,83. LST-2 zone has average volume shale (Vsh) 19%, average total porosity (PHIT) 21%, average effective porosity (PHIE) 17% and average water saturation 0,82. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrocarbons%20zone" title="hydrocarbons zone">hydrocarbons zone</a>, <a href="https://publications.waset.org/abstracts/search?q=petrophysic" title=" petrophysic"> petrophysic</a>, <a href="https://publications.waset.org/abstracts/search?q=rock%20property" title=" rock property"> rock property</a>, <a href="https://publications.waset.org/abstracts/search?q=sequence%20stratigraphic" title=" sequence stratigraphic"> sequence stratigraphic</a> </p> <a href="https://publications.waset.org/abstracts/60898/rock-property-calculation-for-determine-hydrocarbon-zone-based-on-petrophysical-principal-and-sequence-stratigraphic-correlation-in-blok-m" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60898.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2408</span> Designing Directed Network with Optimal Controllability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liang%20Bai">Liang Bai</a>, <a href="https://publications.waset.org/abstracts/search?q=Yandong%20Xiao"> Yandong Xiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Haorang%20Wang"> Haorang Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Songyang%20Lao"> Songyang Lao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The directedness of links is crucial to determine the controllability in complex networks. Even the edge directions can determine the controllability of complex networks. Obviously, for a given network, we wish to design its edge directions that make this network approach the optimal controllability. In this work, we firstly introduce two methods to enhance network by assigning edge directions. However, these two methods could not completely mitigate the negative effects of inaccessibility and dilations. Thus, to approach the optimal network controllability, the edge directions must mitigate the negative effects of inaccessibility and dilations as much as possible. Finally, we propose the edge direction for optimal controllability. The optimal method has been found to be successfully useful on real-world and synthetic networks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complex%20network" title="complex network">complex network</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamics" title=" dynamics"> dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20control" title=" network control"> network control</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/103008/designing-directed-network-with-optimal-controllability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103008.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2407</span> Dynamic Stability of Axially Moving Viscoelastic Plates under Nonuniform in-Plane Edge Excitations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20H.%20Young">T. H. Young</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20J.%20Huang"> S. J. Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20S.%20Chiu"> Y. S. Chiu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the parametric stability of an axially moving web subjected to nonuniform in-plane edge excitations on two opposite, simply-supported edges. The web is modeled as a viscoelastic plate whose constitutive relation obeys the Kelvin-Voigt model, and the in-plane edge excitations are expressed as the sum of a static tension and a periodical perturbation. Due to the in-plane edge excitations, the moving plate may bring about parametric instability under certain situations. First, the in-plane stresses of the plate due to the nonuniform edge excitations are determined by solving the in-plane forced vibration problem. Then, the dependence on the spatial coordinates in the equation of transverse motion is eliminated by the generalized Galerkin method, which results in a set of discretized system equations in time. Finally, the method of multiple scales is utilized to solve the set of system equations analytically if the periodical perturbation of the in-plane edge excitations is much smaller as compared with the static tension of the plate, from which the stability boundaries of the moving plate are obtained. Numerical results reveal that only combination resonances of the summed-type appear under the in-plane edge excitations considered in this work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=axially%20moving%20viscoelastic%20plate" title="axially moving viscoelastic plate">axially moving viscoelastic plate</a>, <a href="https://publications.waset.org/abstracts/search?q=in-plane%20periodic%20excitation" title=" in-plane periodic excitation"> in-plane periodic excitation</a>, <a href="https://publications.waset.org/abstracts/search?q=nonuniformly%20distributed%20edge%20tension" title=" nonuniformly distributed edge tension"> nonuniformly distributed edge tension</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20stability" title=" dynamic stability"> dynamic stability</a> </p> <a href="https://publications.waset.org/abstracts/26548/dynamic-stability-of-axially-moving-viscoelastic-plates-under-nonuniform-in-plane-edge-excitations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26548.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2406</span> Manufacturing of Vacuum Glazing with Metal Edge Seal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Won%20Kyeong%20Kang">Won Kyeong Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae-Ho%20Song"> Tae-Ho Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vacuum glazing (VG) is a super insulator, which is able to greatly improve the energy efficiency of building. However, a significant amount of heat loss occurs through the welded edge of conventional VG. The joining method should be improved for further application and commercialization. For this purpose VG with metal edge seal is conceived. In this paper, the feasibility of joining stainless steel and soda lime glass using glass solder is assessed numerically and experimentally. In the case of very thin stainless steel, partial joining with glass is identified, which need further improvement for practical application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=VG" title="VG">VG</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20edge%20seal" title=" metal edge seal"> metal edge seal</a>, <a href="https://publications.waset.org/abstracts/search?q=vacuum%20glazing" title=" vacuum glazing"> vacuum glazing</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=" title=""></a> </p> <a href="https://publications.waset.org/abstracts/19368/manufacturing-of-vacuum-glazing-with-metal-edge-seal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19368.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">606</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2405</span> LaPEA: Language for Preprocessing of Edge Applications in Smart Factory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masaki%20Sakai">Masaki Sakai</a>, <a href="https://publications.waset.org/abstracts/search?q=Tsuyoshi%20Nakajima"> Tsuyoshi Nakajima</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazuya%20Takahashi"> Kazuya Takahashi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to improve the productivity of a factory, it is often the case to create an inference model by collecting and analyzing operational data off-line and then to develop an edge application (EAP) that evaluates the quality of the products or diagnoses machine faults in real-time. To accelerate this development cycle, an edge application framework for the smart factory is proposed, which enables to create and modify EAPs based on prepared inference models. In the framework, the preprocessing component is the key part to make it work. This paper proposes a language for preprocessing of edge applications, called LaPEA, which can flexibly process several sensor data from machines into explanatory variables for an inference model, and proves that it meets the requirements for the preprocessing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=edge%20application%20framework" title="edge application framework">edge application framework</a>, <a href="https://publications.waset.org/abstracts/search?q=edgecross" title=" edgecross"> edgecross</a>, <a href="https://publications.waset.org/abstracts/search?q=preprocessing%20language" title=" preprocessing language"> preprocessing language</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20factory" title=" smart factory"> smart factory</a> </p> <a href="https://publications.waset.org/abstracts/142882/lapea-language-for-preprocessing-of-edge-applications-in-smart-factory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142882.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2404</span> Experimental Investigation on Noise from Rod-Airfoil with Leading Edge Serrations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siti%20Ruhliah%20Lizarose%20Samion">Siti Ruhliah Lizarose Samion</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Sukri%20Mat%20Ali"> Mohamed Sukri Mat Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Con%20Doolan"> Con Doolan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work is an experimental investigation of adapting a passive treatment leading edge serrations over a rod-airfoil flow-induced noise generation. The leading edge serrations are bio-inspired from a barn-owl silent flight. The rod-airfoil configuration is a benchmark configuration taken to investigate airfoil-turbulence interaction noise (ATIN). Location of serrations placed and the wideness of serrations are the two parameters taken in this study. The ATIN is reduced up to 3.5 dB for a wide leading serrations case. A correlation is found between the wideness of serrations and the noise reduction mechanism of the airfoil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamic%20noise" title="aerodynamic noise">aerodynamic noise</a>, <a href="https://publications.waset.org/abstracts/search?q=leading%20edge%20serrations" title=" leading edge serrations"> leading edge serrations</a>, <a href="https://publications.waset.org/abstracts/search?q=rod-airfoil" title=" rod-airfoil"> rod-airfoil</a>, <a href="https://publications.waset.org/abstracts/search?q=experiment" title=" experiment"> experiment</a> </p> <a href="https://publications.waset.org/abstracts/84951/experimental-investigation-on-noise-from-rod-airfoil-with-leading-edge-serrations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84951.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2403</span> The Conceptual Exploration of Comfort Zone by Using Content Analysis </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lilla%20Szab%C3%B3%20Hangya">Lilla Szabó Hangya</a>, <a href="https://publications.waset.org/abstracts/search?q=Szilvia%20Jambori"> Szilvia Jambori</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The comfort zone is less studied area in the field of psychology. One of the most important definitions is that comfort zone is a psychological state in which things feel familiar to a person with low level of anxiety and stress. But the validity of comfort zone does not confirm till now. The aim of our pilot research is to test which psychological factors could determine how young adults behave during their decision process to stay in one’s comfort zone or to leave it. Every person has a number of comfort zones, so we are not able to measure it directly, only those personality traits which predict if someone leaves his comfort zone easier or harder. In our study at first we wanted to clarify the meaning of comfort zone. 110 young adults (male: 37, female: 73; ages from 18 to 70, average age: 26,6) took part in the study. Beside their demographic datas we asked them what does the comfort zone mean for them. The results showed that the meaning of the comfort zone can be grouped in five dimensions: comfort (49,6 %), leaving it-change (8,1%), ambivalent feelings (10,6%), related to other people (10,6%), pursuit of self-realization (16,8%). Our results demonstrated age related characteristics. For young people at the age of 19 the comfort zone is related to other people, because during adolescents peer relationships become more important. Subjects at the age 20-30 answered that the comfort zone means comfort and stability for them. Their life becomes stable for a while, they are studying or working. But at the age of 25, when they finish university, most of them answered comfort zone means a changing process for them. On the other hand for subjects at the age of 27 the means of the comfort zone is pursuit of self-realization. After that period at the age of 31 when they have families and stable job the stability will also dominant. We saw that the comfort zone has much more meaning besides a pleasant psychological trait. Further we would like to determine which psychological factors relate to comfort zone, and what kind of personality traits could predict leaving or staying in one’s comfort zone. We want to observe the relationship between comfort zone and subjective well-being, life satisfaction self-efficacy or self-esteem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=comfort%20zone" title="comfort zone">comfort zone</a>, <a href="https://publications.waset.org/abstracts/search?q=development" title=" development"> development</a>, <a href="https://publications.waset.org/abstracts/search?q=personality%20trait" title=" personality trait"> personality trait</a>, <a href="https://publications.waset.org/abstracts/search?q=young%20adults" title=" young adults"> young adults</a> </p> <a href="https://publications.waset.org/abstracts/71275/the-conceptual-exploration-of-comfort-zone-by-using-content-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71275.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2402</span> Comparative Analysis of Edge Detection Techniques for Extracting Characters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rana%20Gill">Rana Gill</a>, <a href="https://publications.waset.org/abstracts/search?q=Chandandeep%20Kaur"> Chandandeep Kaur </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Segmentation of images can be implemented using different fundamental algorithms like edge detection (discontinuity based segmentation), region growing (similarity based segmentation), iterative thresholding method. A comprehensive literature review relevant to the study gives description of different techniques for vehicle number plate detection and edge detection techniques widely used on different types of images. This research work is based on edge detection techniques and calculating threshold on the basis of five edge operators. Five operators used are Prewitt, Roberts, Sobel, LoG and Canny. Segmentation of characters present in different type of images like vehicle number plate, name plate of house and characters on different sign boards are selected as a case study in this work. The proposed methodology has seven stages. The proposed system has been implemented using MATLAB R2010a. Comparison of all the five operators has been done on the basis of their performance. From the results it is found that Canny operators produce best results among the used operators and performance of different edge operators in decreasing order is: Canny>Log>Sobel>Prewitt>Roberts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=segmentation" title="segmentation">segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=edge%20detection" title=" edge detection"> edge detection</a>, <a href="https://publications.waset.org/abstracts/search?q=text" title=" text"> text</a>, <a href="https://publications.waset.org/abstracts/search?q=extracting%20characters" title=" extracting characters"> extracting characters</a> </p> <a href="https://publications.waset.org/abstracts/9054/comparative-analysis-of-edge-detection-techniques-for-extracting-characters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9054.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2401</span> Energy-Efficient Contact Selection Method for CARD in Wireless Ad-Hoc Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Assefi">Mehdi Assefi</a>, <a href="https://publications.waset.org/abstracts/search?q=Keihan%20Hataminezhad"> Keihan Hataminezhad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the efficient architectures for exploring the resources in wireless ad-hoc networks is contact-based architecture. In this architecture, each node assigns a unique zone for itself and each node keeps all information from inside the zone, as well as some from outside the zone, which is called contact. Reducing the overlap between different zones of a node and its contacts increases its performance, therefore Edge Method (EM) is designed for this purpose. Contacts selected by EM do not have any overlap with their sources, but for choosing the contact a vast amount of information must be transmitted. In this article, we will offer a new protocol for contact selection, which is called PEM. The objective would be reducing the volume of transmitted information, using Non-Uniform Dissemination Probabilistic Protocols. Consumed energy for contact selection is a function of the size of transmitted information between nodes. Therefore, by reducing the content of contact selection message using the PEM will decrease the consumed energy. For evaluation of the PEM we applied the simulation method. Results indicated that PEM consumes less energy compared to EM, and by increasing the number of nodes (level of nodes), performance of PEM will improve in comparison with EM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wireless%20ad-hoc%20networks" title="wireless ad-hoc networks">wireless ad-hoc networks</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20selection" title=" contact selection"> contact selection</a>, <a href="https://publications.waset.org/abstracts/search?q=method%20for%20CARD" title=" method for CARD"> method for CARD</a>, <a href="https://publications.waset.org/abstracts/search?q=energy-efficient" title=" energy-efficient"> energy-efficient</a> </p> <a href="https://publications.waset.org/abstracts/4374/energy-efficient-contact-selection-method-for-card-in-wireless-ad-hoc-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4374.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2400</span> Prediction of Trailing-Edge Noise under Adverse-Pressure Gradient Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li%20Chen">Li Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For an aerofoil or hydrofoil in high Reynolds number flows, broadband noise is generated efficiently as the result of the turbulence convecting over the trailing edge. This noise can be related to the surface pressure fluctuations, which can be predicted by either CFD or empirical models. However, in reality, the aerofoil or hydrofoil often operates at an angle of attack. Under this situation, the flow is subjected to an Adverse-Pressure-Gradient (APG), and as a result, a flow separation may occur. This study is to assess trailing-edge noise models for such flows. In the present work, the trailing-edge noise from a 2D airfoil at 6 degree of angle of attach is investigated. Under this condition, the flow is experiencing a strong APG, and the flow separation occurs. The flow over the airfoil with a chord of 300 mm, equivalent to a Reynold Number 4x10⁵, is simulated using RANS with the SST k-ɛ turbulent model. The predicted surface pressure fluctuations are compared with the published experimental data and empirical models, and show a good agreement with the experimental data. The effect of the APG on the trailing edge noise is discussed, and the associated trailing edge noise is calculated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aero-acoustics" title="aero-acoustics">aero-acoustics</a>, <a href="https://publications.waset.org/abstracts/search?q=adverse-pressure%20gradient" title=" adverse-pressure gradient"> adverse-pressure gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=trailing-edge%20noise" title=" trailing-edge noise"> trailing-edge noise</a> </p> <a href="https://publications.waset.org/abstracts/65472/prediction-of-trailing-edge-noise-under-adverse-pressure-gradient-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65472.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2399</span> Communication Development for Development Communication: Prospects and Challenges of New Media Technologies in South East Zone, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20I.%20Ekwueme">O. I. Ekwueme</a> </p> <p class="card-text"><strong>Abstract:</strong></p> New media technologies are noted for their immense contributions in various sectors of the economy which are believed to have resulted in the development of European countries. There is an assumption that we cannot have development communication without communication development, but we are not sure if new media technologies contribute to development in the South-East zone, Nigeria. The study employed mixed method and discovered that new media technologies have a very minimal relationship to development in the South-East zone, Nigeria. It was discovered that the media report on development news is basically informative instead of interactive. The South-East zone is scarcely covered unlike other zones. It argued that the communication technologies introduced in Nigeria was as a result of their struggle for independence. It was recommended that media organisations in the South-East zone should give adequate coverage to the zone, and be more interactive. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=communication" title="communication">communication</a>, <a href="https://publications.waset.org/abstracts/search?q=development" title=" development"> development</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20media" title=" new media"> new media</a>, <a href="https://publications.waset.org/abstracts/search?q=technologies" title=" technologies"> technologies</a> </p> <a href="https://publications.waset.org/abstracts/7966/communication-development-for-development-communication-prospects-and-challenges-of-new-media-technologies-in-south-east-zone-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7966.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2398</span> A Machining Method of Cross-Shape Nano Channel and Experiments for Silicon Substrate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zone-Ching%20Lin">Zone-Ching Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Hao-Yuan%20Jheng"> Hao-Yuan Jheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Zih-Wun%20Jhang"> Zih-Wun Jhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper innovatively proposes using the concept of specific down force energy (SDFE) and AFM machine to establish a machining method of cross-shape nanochannel on single-crystal silicon substrate. As for machining a cross-shape nanochannel by AFM machine, the paper develop a method of machining cross-shape nanochannel groove at a fixed down force by using SDFE theory and combining the planned cutting path of cross-shape nanochannel up to 5th machining layer it finally achieves a cross-shape nanochannel at a cutting depth of around 20nm. Since there may be standing burr at the machined cross-shape nanochannel edge, the paper uses a smaller down force to cut the edge of the cross-shape nanochannel in order to lower the height of standing burr and converge the height of standing burr at the edge to below 0.54nm as set by the paper. Finally, the paper conducts experiments of machining cross-shape nanochannel groove on single-crystal silicon by AFM probe, and compares the simulation and experimental results. It is proved that this proposed machining method of cross-shape nanochannel is feasible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atomic%20force%20microscopy%20%28AFM%29" title="atomic force microscopy (AFM)">atomic force microscopy (AFM)</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-shape%20nanochannel" title=" cross-shape nanochannel"> cross-shape nanochannel</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon%20substrate" title=" silicon substrate"> silicon substrate</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20down%20force%20energy%20%28SDFE%29" title=" specific down force energy (SDFE)"> specific down force energy (SDFE)</a> </p> <a href="https://publications.waset.org/abstracts/26057/a-machining-method-of-cross-shape-nano-channel-and-experiments-for-silicon-substrate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26057.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2397</span> Solution to Riemann Hypothesis Critical Strip Zone Using Non-Linear Complex Variable Functions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manojkumar%20Sabanayagam">Manojkumar Sabanayagam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Riemann hypothesis is an unsolved millennium problem and the search for a solution to the Riemann hypothesis is to study the pattern of prime number distribution. The scope of this paper is to identify the solution for the critical strip and the critical line axis, which has the non-trivial zero solutions using complex plane functions. The Riemann graphical plot is constructed using a linear complex variable function (X+iY) and is applicable only when X>1. But the investigation shows that complex variable behavior has two zones. The first zone is the transformation zone, where the definition of the complex plane should be a non-linear variable which is the critical strip zone in the graph (X=0 to 1). The second zone is the transformed zone (X>1) defined using linear variables conventionally. This paper deals with the Non-linear function in the transformation zone derived using cosine and sinusoidal time lag w.r.t imaginary number ‘i’. The alternate complex variable (Cosθ+i Sinθ) is used to understand the variables in the critical strip zone. It is concluded that the non-trivial zeros present in the Real part 0.5 are because the linear function is not the correct approach in the critical strip. This paper provides the solution to Reimann's hypothesis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reimann%20hypothesis" title="Reimann hypothesis">Reimann hypothesis</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20strip" title=" critical strip"> critical strip</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20plane" title=" complex plane"> complex plane</a>, <a href="https://publications.waset.org/abstracts/search?q=transformation%20zone" title=" transformation zone"> transformation zone</a> </p> <a href="https://publications.waset.org/abstracts/137947/solution-to-riemann-hypothesis-critical-strip-zone-using-non-linear-complex-variable-functions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137947.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2396</span> The Effect of Bottom Shape and Baffle Length on the Flow Field in Stirred Tanks in Turbulent and Transitional Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jie%20Dong">Jie Dong</a>, <a href="https://publications.waset.org/abstracts/search?q=Binjie%20Hu"> Binjie Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrzej%20W%20Pacek"> Andrzej W Pacek</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaogang%20Yang"> Xiaogang Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicholas%20J.%20Miles"> Nicholas J. Miles</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of the shape of the vessel bottom and the length of baffles on the velocity distributions in a turbulent and in a transitional flow has been simulated. The turbulent flow was simulated using standard <em>k</em>-<em>ε</em> model and simulation was verified using LES whereas transitional flow was simulated using only LES. It has been found that both the shape of tank bottom and the baffles’ length has significant effect on the flow pattern and velocity distribution below the impeller. In the dished bottom tank with baffles reaching the edge of the dish, the large rotating volume of liquid was formed below the impeller. Liquid in this rotating region was not fully mixing. A dead zone was formed here. The size and the intensity of circulation within this zone calculated by <em>k</em>-<em>ε</em> model and LES were practically identical what reinforces the accuracy of the numerical simulations. Both types of simulations also show that employing full-length baffles can reduce the size of dead zone formed below the impeller. The LES was also used to simulate the velocity distribution below the impeller in transitional flow and it has been found that secondary circulation loops were formed near the tank bottom in all investigated geometries. However, in this case the length of baffles has smaller effect on the volume of rotating liquid than in the turbulent flow. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=baffles%20length" title="baffles length">baffles length</a>, <a href="https://publications.waset.org/abstracts/search?q=dished%20bottom" title=" dished bottom"> dished bottom</a>, <a href="https://publications.waset.org/abstracts/search?q=dead%20zone" title=" dead zone"> dead zone</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20field" title=" flow field"> flow field</a> </p> <a href="https://publications.waset.org/abstracts/46690/the-effect-of-bottom-shape-and-baffle-length-on-the-flow-field-in-stirred-tanks-in-turbulent-and-transitional-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46690.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=edge%20zone&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=edge%20zone&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=edge%20zone&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=edge%20zone&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=edge%20zone&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=edge%20zone&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=edge%20zone&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=edge%20zone&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=edge%20zone&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=edge%20zone&page=80">80</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=edge%20zone&page=81">81</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=edge%20zone&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>