CINXE.COM
Search results for: petrography Bafq
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: petrography Bafq</title> <meta name="description" content="Search results for: petrography Bafq"> <meta name="keywords" content="petrography Bafq"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="petrography Bafq" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="petrography Bafq"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 33</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: petrography Bafq</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> Mineralogy and Classification of Altered Host Rocks in the Zaghia Iron Oxide Deposit, East of Bafq, Central Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azat%20Eslamizadeh">Azat Eslamizadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Neda%20Akbarian"> Neda Akbarian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Zaghia Iron ore, in 15 km east of a town named Bafq, is located in Precambrian formation of Central Iran in form of a small local deposit. The Volcano-sedimentary rocks of Precambrian-Cambrian age, belonging to Rizu series have spread through the region. Substantial portion of the deposit is covered by alluvial deposits. The rocks hosting the Zaghia iron ore have a main combination of rhyolitic tuffs along with clastic sediments, carbonate include sandstone, limestone, dolomite, conglomerate and is somewhat metamorphed causing them to have appeared as slate and phyllite. Moreover, carbonate rocks are in existence as skarn compound of marble bearing tremolite with mineralization of magnetite-hematite. The basic igneous rocks have dramatically altered into green rocks consist of actinolite-tremolite and chlorite along with amount of iron (magnetite + Martite). The youngest units of ore-bearing rocks in the area are found as dolerite - diabase dikes. The dikes are cutting the rhyolitic tuffs and carbonate rocks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zaghia" title="Zaghia">Zaghia</a>, <a href="https://publications.waset.org/abstracts/search?q=iron%20ore%20deposite" title=" iron ore deposite"> iron ore deposite</a>, <a href="https://publications.waset.org/abstracts/search?q=mineralogy" title=" mineralogy"> mineralogy</a>, <a href="https://publications.waset.org/abstracts/search?q=petrography%20%20Bafq" title=" petrography Bafq"> petrography Bafq</a>, <a href="https://publications.waset.org/abstracts/search?q=Iran" title=" Iran "> Iran </a> </p> <a href="https://publications.waset.org/abstracts/28000/mineralogy-and-classification-of-altered-host-rocks-in-the-zaghia-iron-oxide-deposit-east-of-bafq-central-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28000.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">524</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Petrography and Geochemistry of Basic Dokhan Volcanics from the Eastern Desert of Egypt and their Use as Aggregates in Concrete Mixes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Khalil">Ahmed Khalil</a>, <a href="https://publications.waset.org/abstracts/search?q=Hatem%20M.%20El-Desoky"> Hatem M. El-Desoky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present paper deals with the petrography and geochemistry of the Basic Dokhan Volcanics, Eastern Desert, Egypt. The basalts from Gabal Wassif, Atalla volcanics and Gabal Esh Mellaha were tested for use as aggregates in concrete mixes. The representative twelve samples were collected from areas. These samples were examined by using a petrographic microscope to evaluate sample texture, degree of alteration and the presence of volcanic glass in the matrix. The results obtained indicate that basalt can be used successfully for preparing concrete, but some attention should be paid to the choice of the suitable types of basalt. A general improvement in concrete mix properties has been found by using basalt aggregates in the mix. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=basic%20Dokhan%20volcanics" title="basic Dokhan volcanics">basic Dokhan volcanics</a>, <a href="https://publications.waset.org/abstracts/search?q=petrography" title=" petrography"> petrography</a>, <a href="https://publications.waset.org/abstracts/search?q=geochemistry" title=" geochemistry"> geochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=petrogenesis%20and%20concrete%0D%0Aaggregates" title=" petrogenesis and concrete aggregates"> petrogenesis and concrete aggregates</a> </p> <a href="https://publications.waset.org/abstracts/35942/petrography-and-geochemistry-of-basic-dokhan-volcanics-from-the-eastern-desert-of-egypt-and-their-use-as-aggregates-in-concrete-mixes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35942.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">517</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Behavior of Clay effect on Electrical Parameter of Reservoir Rock Using Global Hydraulic Elements (GHEs) Approach </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noreddin%20Mousa">Noreddin Mousa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this study is to estimate which type of clay minerals that more effect on saturation exponent using Global Hydraulic Elements (GHEs) approach to estimating the distribution of saturation exponent factor. Two wells and seven core samples have been selected from various (GHEs) for detailed study. There are many factors affecting saturation exponent such as wettability, grain pattern pressure of certain authigenic clays, which may promote oil wet characteristics of history of fluid displacement. The saturation exponent is related to the texture and affected by wettability and clay minerals. Capillary pressure (mercury injection) has been used to confirm GHEs which are selected to define rock types; the porous plate method is used to derive the saturation exponent in the laboratory. The petrography is very important in order to study the mineralogy and texture. In this study the results showing excellent relation between saturation exponent and the type of clay minerals which was observed that the Global Hydraulic Elements GHE-2 and GHE-5 which are containing Chlorite is more affect on saturation exponent comparing with the other GHE’s. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GHEs" title="GHEs">GHEs</a>, <a href="https://publications.waset.org/abstracts/search?q=wettability" title=" wettability"> wettability</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20hydraulic%20elements" title=" global hydraulic elements"> global hydraulic elements</a>, <a href="https://publications.waset.org/abstracts/search?q=petrography" title=" petrography "> petrography </a> </p> <a href="https://publications.waset.org/abstracts/3162/behavior-of-clay-effect-on-electrical-parameter-of-reservoir-rock-using-global-hydraulic-elements-ghes-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3162.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Carbonate Microfacies and Diagenesis of Klapanunggal Formation in Cileungsi District, Bogor Regency, West Java Province, Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reghina%20Karyadi">Reghina Karyadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdurrokhim"> Abdurrokhim</a>, <a href="https://publications.waset.org/abstracts/search?q=Lili%20Fauzielly"> Lili Fauzielly</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Administratively, the research area is located in Cileungsi District, Bogor Regency, West Java Province, Indonesia. Geographically, it located at 106° 56’ 1,9392” - 107° 1’ 27,8112” East Longitude and 6° 32’ 29,3712” - 6° 27’ 5,6124” South Latitude. This research is being held as a purpose to observe microfacies and limestone diagenesis that happened in the study area. Dominantly, the area fulfills of various hills that formed by carbonate and sediment stones which folded and faulted. The method that using in this research is analysis the outcrop data and petrography by using red alizarin for differentiating of minerals type. Microfacies type and diagenesis processes can be known from petrography analysis results like rock texture, rock structure, porosity, type of grain and fossils. The result of research shows that carbonate rocks in the study area can be divided into 3 types microfasies, which is Reef Microfacies (SMF 7), Shallow Water Microfacies (SMF 9), and Textural Inversion Microfacies (SMF 10). Whereas diagenesis process that happened is microbial micritization, compaction, neomorphism, cementation and dissolution process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbonate" title="carbonate">carbonate</a>, <a href="https://publications.waset.org/abstracts/search?q=limestone" title=" limestone"> limestone</a>, <a href="https://publications.waset.org/abstracts/search?q=microfacies" title=" microfacies"> microfacies</a>, <a href="https://publications.waset.org/abstracts/search?q=diagenesis" title=" diagenesis"> diagenesis</a> </p> <a href="https://publications.waset.org/abstracts/46179/carbonate-microfacies-and-diagenesis-of-klapanunggal-formation-in-cileungsi-district-bogor-regency-west-java-province-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46179.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Reconstructing the Trace of Mesozoic Subduction and Its Implication on Stratigraphy Correlation between Deep Marine Sediment and Granite: Case Study of Garba Complex, South Sumatera</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fadlan%20Atmaja%20Nursiwan">Fadlan Atmaja Nursiwan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ugi%20Kurnia%20Gusti"> Ugi Kurnia Gusti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Garba Hill, located in Tekana Village, South Sumatera Province is comprised to South Sumatra Basin and classified as back arc basin. This area is entered as an active margin of Sundaland which experiences subduction several times since Mesozoic to recent time. The traces of Mesozoic subduction in the southern part of Sumatra island are exposed in Garba Hill area. The aim of this investigation is to study the tectonic changes in the first phase in Mesozoic era at the active margin of Sundaland which causes the rocks assemblage in Garba hill consist of continental and oceanic plate rocks which the correlation between those rocks show indistinct relation. This investigation is conducted by field observation in Tekana village and Lubar Village, Muara Dua, South Sumatra along with laboratory analysis included fossil and geochemistry analysis of radiolarian chert, petrography analysis of granite and basalt, and structural modelling. Fossil and geochemistry analysis of radiolarian chert and geochemistry of granite rocks shown the relation between the two rocks and Mesozoic subduction of Woyla terrane on western margin of Sundaland. Petrography analysis from granite and basalt depict the tectonic affinity of rocks. Moreover, structural analysis showed the changes of lineation direction from N-S to WNW-ESE. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=granite" title="granite">granite</a>, <a href="https://publications.waset.org/abstracts/search?q=mesozoic" title=" mesozoic"> mesozoic</a>, <a href="https://publications.waset.org/abstracts/search?q=radiolarian" title=" radiolarian"> radiolarian</a>, <a href="https://publications.waset.org/abstracts/search?q=subduction%20traces" title=" subduction traces"> subduction traces</a> </p> <a href="https://publications.waset.org/abstracts/64736/reconstructing-the-trace-of-mesozoic-subduction-and-its-implication-on-stratigraphy-correlation-between-deep-marine-sediment-and-granite-case-study-of-garba-complex-south-sumatera" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64736.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> The Influences of Diagenetic Process on the Resistivity Values of Oil Sandstone Reservoirs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20M.%20A.%20Rahoma">Mohamed M. A. Rahoma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A better understanding of the factors that control the resistivity values of Sandstone reservoirs is very important for petroleum exploration and production. This study is an attempt to find out the factors that could be the reason for the decrease in resistivity values of the Lower Akakus Sandstones, which are the main reservoir in the area in an onshore field located in the northern part of Ghadames Basin - Northwest of Libya in the contracted area 47, block 2 The study achieved is based on: 30 core chip samples taken from two wells (A3-47/02 and J1-47/02) and Routine Core Analysis (RCA). The results of petrography analysis (thin section, X-ray diffraction and SEM) demonstrated that the depth sits (intervals) which illustrated low resistivity values have a relatively high content of diagenetic clay and cement minerals, hence we can conclude that diagenetic events have a more significant impact on the resistivity values of studied interval for possibly two following reasons: The first essential reason, the extensive micro pores that mostly exist within clay minerals (Chlorite and Kaolinite where, about 30-50 % of their composition considered micro pores), resistivity log read low as noticed through the study. The highest value of micro pores recorded in core1 of J1-47/02 well due to most likely the kaolinite amount which was a slightly higher than the chlorite amount in this well (the bond water porosity for chlorite clay considered relatively the lowest porosity compared to other clay minerals). The second reason, the presence of diagenetic cement minerals (Siderite and Hematite, which contain an iron element as one of their components) within the studied interval as remarked from my study may cause decreasing in resistivity of the formation of the reservoir. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diagenetic%20cement" title="diagenetic cement">diagenetic cement</a>, <a href="https://publications.waset.org/abstracts/search?q=diagenetic%20clay" title=" diagenetic clay"> diagenetic clay</a>, <a href="https://publications.waset.org/abstracts/search?q=resistivity" title=" resistivity"> resistivity</a>, <a href="https://publications.waset.org/abstracts/search?q=petrography%20analysis" title=" petrography analysis"> petrography analysis</a> </p> <a href="https://publications.waset.org/abstracts/193430/the-influences-of-diagenetic-process-on-the-resistivity-values-of-oil-sandstone-reservoirs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193430.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">12</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Characteristics of Pyroclastic and Igenous Rocks Mineralogy of Lahat Regency, South Sumatra</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ridho%20Widyantama%20Putra">Ridho Widyantama Putra</a>, <a href="https://publications.waset.org/abstracts/search?q=Endang%20Wiwik%20Dyah%20Hastuti"> Endang Wiwik Dyah Hastuti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study area is located in Lahat Regency, South Sumatra and is part of a 500 m – 2000 m elevated perbukitan barisan zone controlled by the main fault of Sumatra (Semangko Fault), administratively located on S4.08197 - E103.01403 and S4.16786 - E103.07700, the product of Semangko Fault in the form of normal fault flight trending north-southeast, composed of lithologic is a pyroclastic rock, volcanic rock and plutonic rock intrusion. On the Manna and Enggano sheets of volcanic quartenary products are located along perbukitan barisan zone. Petrology types of pyroclastic rocks encountered in the form of welded tuff, tuff lapilli, agglomerate, pyroclastic sandstone, pyroclastic claystone, and lava. Some pyroclastic material containing sulfide minerals (pyrite), the type of sedimentation flow with different grain size from ash to lapilli. The present of tuff lapilli covers almost 50% of the total research area, through observation petrography encountered minerals in the form of glass, quartz, palgioklas, and biotite. Lava in this area has been altered characterized by the presence of minerals such as chlorite and secondary biotite, this change is caused by the structure that develops in the hilly zone and is proved by the presence of secondary structures in the form of stocky and normal faults as well as the primary structure of columnar joint, From medial facies to distal facies, the division of facies is divided based on geomorphological observations and dominant types of lithology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tuff%20lapili" title="tuff lapili">tuff lapili</a>, <a href="https://publications.waset.org/abstracts/search?q=pyroclastic" title=" pyroclastic"> pyroclastic</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral" title=" mineral"> mineral</a>, <a href="https://publications.waset.org/abstracts/search?q=petrography" title=" petrography"> petrography</a>, <a href="https://publications.waset.org/abstracts/search?q=volcanic" title=" volcanic"> volcanic</a>, <a href="https://publications.waset.org/abstracts/search?q=lava" title=" lava"> lava</a> </p> <a href="https://publications.waset.org/abstracts/74795/characteristics-of-pyroclastic-and-igenous-rocks-mineralogy-of-lahat-regency-south-sumatra" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74795.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Modal Composition and Tectonic Provenance of the Sandstones of Ecca Group, Karoo Supergroup in the Eastern Cape Province, South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christopher%20Baiyegunhi">Christopher Baiyegunhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuiwu%20Liu"> Kuiwu Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Oswald%20Gwavava"> Oswald Gwavava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Petrography of the sandstones of Ecca Group, Karoo Supergroup in the Eastern Cape Province of South Africa have been investigated on composition, provenance and influence of weathering conditions. Petrographic studies based on quantitative analysis of the detrital minerals revealed that the sandstones are composed mostly of quartz, feldspar and lithic fragments of metamorphic and sedimentary rocks. The sandstones have an average framework composition of 24.3% quartz, 19.3% feldspar, 26.1% rock fragments, and 81.33% of the quartz grains are monocrystalline. These sandstones are generally very fine to fine grained, moderate to well sorted, and subangular to subrounded in shape. In addition, they are compositionally immature and can be classified as feldspathic wacke and lithic wacke. The absence of major petrographically distinctive compositional variations in the sandstones perhaps indicate homogeneity of their source. As a result of this, it is inferred that the transportation distance from the source area was quite short and the main mechanism of transportation was by river systems to the basin. The QFL ternary diagrams revealed dissected and transitional arc provenance pointing to an active margin and uplifted basement preserving the signature of a recycled provenance. This is an indication that the sandstones were derived from a magmatic arc provenance. Since magmatic provenance includes transitional arc and dissected arc, it also shows that the source area of the Ecca sediments had a secondary sedimentary and metasedimentary rocks from a marginal belt that developed as a result of rifting. The weathering diagrams and semi-quantitative weathering index indicate that the Ecca sandstones are mostly from a plutonic source area, with climatic conditions ranging from arid to humid. The compositional immaturity of the sandstones is suggested to be due to weathering or recycling and low relief or short transport from the source area. The detrital modal compositions of these sandstones are related to back arc to island and continental margin arc. The origin and deposition of the Ecca sandstones are due to low-moderate weathering, recycling of pre-existing rocks, erosion and transportation of debris from the orogeny of the Cape Fold Belt. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=petrography" title="petrography">petrography</a>, <a href="https://publications.waset.org/abstracts/search?q=tectonic%20setting" title=" tectonic setting"> tectonic setting</a>, <a href="https://publications.waset.org/abstracts/search?q=provenance" title=" provenance"> provenance</a>, <a href="https://publications.waset.org/abstracts/search?q=Ecca%20Group" title=" Ecca Group"> Ecca Group</a>, <a href="https://publications.waset.org/abstracts/search?q=Karoo%20Basin" title=" Karoo Basin"> Karoo Basin</a> </p> <a href="https://publications.waset.org/abstracts/66142/modal-composition-and-tectonic-provenance-of-the-sandstones-of-ecca-group-karoo-supergroup-in-the-eastern-cape-province-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66142.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Mineralogical Characterization and Petrographic Classification of the Soil of Casablanca City</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Fahi">I. Fahi</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Remmal"> T. Remmal</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20El%20Kamel"> F. El Kamel</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Ayoub"> B. Ayoub</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The treatment of the geotechnical database of the region of Casablanca was difficult to achieve due to the heterogeneity of the nomenclature of the lithological formations composing its soil. It appears necessary to harmonize the nomenclature of the facies and to produce cartographic documents useful for construction projects and studies before any investment program. To achieve this, more than 600 surveys made by the Public Laboratory for Testing and Studies (LPEE) in the agglomeration of Casablanca, were studied. Moreover, some local observations were made in different places of the metropolis. Each survey was the subject of a sheet containing lithological succession, macro and microscopic description of petrographic facies with photographic illustration, as well as measurements of geomechanical tests. In addition, an X-ray diffraction analysis was made in order to characterize the surficial formations of the region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Casablanca" title="Casablanca">Casablanca</a>, <a href="https://publications.waset.org/abstracts/search?q=guidebook" title=" guidebook"> guidebook</a>, <a href="https://publications.waset.org/abstracts/search?q=petrography" title=" petrography"> petrography</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a> </p> <a href="https://publications.waset.org/abstracts/64065/mineralogical-characterization-and-petrographic-classification-of-the-soil-of-casablanca-city" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64065.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> On Strengthening Program of Sixty Years Old Dome Using Carbon Fiber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Humayun%20R.%20H.%20Kabir">Humayun R. H. Kabir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A reinforced concrete dome-built 60 years ago- of circular shape of diameter of 30 m was in distressed conditions due to adverse weathering effects, such as high temperature, wind, and poor maintenance. It was decided to restore the dome to its full strength for future use. A full material strength and durability check including petrography test were conducted. It was observed that the concrete strength was in acceptable range, while bars were corroded more than 40% to their original configurations. Widespread cracks were almost in every meter square. A strengthening program with filling the cracks by injection method, and carbon fiber layup and wrap was considered. Ultra Sound Pulse Velocity (UPV) test was conducted to observe crack depth. Ground Penetration Radar (GPR) test was conducted to observe internal bar conditions and internal cracks. Finally, a load test was conducted to certify the carbon fiber effectiveness, injection method procedure and overall behavior of dome. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dome" title="dome">dome</a>, <a href="https://publications.waset.org/abstracts/search?q=strengthening%20program" title=" strengthening program"> strengthening program</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20fiber" title=" carbon fiber"> carbon fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20test" title=" load test"> load test</a> </p> <a href="https://publications.waset.org/abstracts/76188/on-strengthening-program-of-sixty-years-old-dome-using-carbon-fiber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76188.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Recent Findings of Late Bronze Age Mining and Archaeometallurgy Activities in the Mountain Region of Colchis (Southern Lechkhumi, Georgia)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rusudan%20Chagelishvili">Rusudan Chagelishvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Nino%20Sulava"> Nino Sulava</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamar%20Beridze"> Tamar Beridze</a>, <a href="https://publications.waset.org/abstracts/search?q=Nana%20Rezesidze"> Nana Rezesidze</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikoloz%20Tatuashvili"> Nikoloz Tatuashvili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The South Caucasus is one of the most important centers of prehistoric metallurgy, known for its Colchian bronze culture. Modern Lechkhumi – historical Mountainous Colchis where the existence of prehistoric metallurgy is confirmed by the discovery of many artifacts is a part of this area. Studies focused on prehistoric smelting sites, related artefacts, and ore deposits have been conducted during last ten years in Lechkhumi. More than 20 prehistoric smelting sites and artefacts associated with metallurgical activities (ore roasting furnaces, slags, crucible, and tuyères fragments) have been identified so far. Within the framework of integrated studies was established that these sites were operating in 13-9 centuries B.C. and used for copper smelting. Palynological studies of slags revealed that chestnut (Castanea sativa) and hornbeam (Carpinus sp.) wood were used as smelting fuel. Geological exploration-analytical studies revealed that copper ore mining, processing, and smelting sites were distributed close to each other. Despite recent complex data, the signs of prehistoric mines (trenches) haven’t been found in this part of the study area so far. Since 2018 the archaeological-geological exploration has been focused on the southern part of Lechkhumi and covered the areas of villages Okureshi and Opitara. Several copper smelting sites (Okureshi 1 and 2, Opitara 1), as well as a Colchian Bronze culture settlement, have been identified here. Three mine workings have been found in the narrow gorge of the river Rtkhmelebisgele in the vicinities of the village Opitara. In order to establish a link between the Opitara-Okureshi archaeometallurgical sites, Late Bronze Age settlements, and mines, various scientific analytical methods -mineralized rock and slags petrography and atomic absorption spectrophotometry (AAS) analysis have been applied. The careful examination of Opitara mine workings revealed that there is a striking difference between the mine #1 on the right bank of the river and mines #2 and #3 on the left bank. The first one has all characteristic features of the Soviet period mine working (e. g. high portal with angular ribs and roof showing signs of blasting). In contrast, mines #2 and #3, which are located very close to each other, have round-shaped portals/entrances, low roofs, and fairly smooth ribs and are filled with thick layers of river sediments and collapsed weathered rock mass. A thorough review of the publications related to prehistoric mine workings revealed some striking similarities between mines #2 and #3 with their worldwide analogues. Apparently, the ore extraction from these mines was conducted by fire-setting applying primitive tools. It was also established that mines are cut in Jurassic mineralized volcanic rocks. Ore minerals (chalcopyrite, pyrite, galena) are related to calcite and quartz veins. The results obtained through the petrochemical and petrography studies of mineralized rock samples from Opitara mines and prehistoric slags are in complete correlation with each other, establishing the direct link between copper mining and smelting within the study area. Acknowledgment: This work was supported by the Shota Rustaveli National Science Foundation of Georgia (grant # FR-19-13022). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=archaeometallurgy" title="archaeometallurgy">archaeometallurgy</a>, <a href="https://publications.waset.org/abstracts/search?q=Mountainous%20Colchis" title=" Mountainous Colchis"> Mountainous Colchis</a>, <a href="https://publications.waset.org/abstracts/search?q=mining" title=" mining"> mining</a>, <a href="https://publications.waset.org/abstracts/search?q=ore%20minerals" title=" ore minerals"> ore minerals</a> </p> <a href="https://publications.waset.org/abstracts/145189/recent-findings-of-late-bronze-age-mining-and-archaeometallurgy-activities-in-the-mountain-region-of-colchis-southern-lechkhumi-georgia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145189.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Sedimentological Study of Bivalve Fossils Site Locality in Hong Hoi Formation in Lampang, Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kritsada%20Moonpa">Kritsada Moonpa</a>, <a href="https://publications.waset.org/abstracts/search?q=Kannipa%20Motanated"> Kannipa Motanated</a>, <a href="https://publications.waset.org/abstracts/search?q=Weerapan%20Srichan"> Weerapan Srichan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hong Hoi Formation is a Middle Triassic deep marine succession presented in outcrops throughout the Lampang Basin of northern Thailand. The primary goal of this research is to diagnose the paleoenvironment, petrographic compositions, and sedimentary sources of the Hong Hoi Formation in Ban Huat, Ngao District. The Triassic Hong Hoi Formation is chosen because the outcrops are continuous and fossils are greatly exposed and abundant. Depositional environment is reconstructed through sedimentological studies along with facies analysis. The Hong Hoi Formation is petrographically divided into two major facies, they are: sandstones with mudstone interbeds, and mudstones or shale with sandstone interbeds. Sandstone beds are lithic arenite and lithic greywacke, volcanic lithic fragments are dominated. Sedimentary structures, paleocurrent data and lithofacies arrangement indicate that the formation deposited in a part of deep marine abyssal plain environment. The sedimentological and petrographic features suggest that during the deposition the Hong Hoi Formation received sediment supply from nearby volcanic arc. This suggested that the intensive volcanic activity within the Sukhothai Arc during the Middle Triassic is the main sediment source. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sukhothai%20zone" title="Sukhothai zone">Sukhothai zone</a>, <a href="https://publications.waset.org/abstracts/search?q=petrography" title=" petrography"> petrography</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20Hoi%20formation" title=" Hong Hoi formation"> Hong Hoi formation</a>, <a href="https://publications.waset.org/abstracts/search?q=Lampang" title=" Lampang"> Lampang</a>, <a href="https://publications.waset.org/abstracts/search?q=Triassic" title=" Triassic"> Triassic</a> </p> <a href="https://publications.waset.org/abstracts/111476/sedimentological-study-of-bivalve-fossils-site-locality-in-hong-hoi-formation-in-lampang-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111476.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Carbonate Crusts in Jordan: Records of Groundwater Flow, Carbon Fluxes, Tectonic Movement and Climate Change</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nizar%20Abu-Jaber">Nizar Abu-Jaber</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Late Pleistocene and Holocene carbonate crusts in the south of Jordan were studied using a combination of field documentation, petrography, geochemical and isotopic techniques. These surficial crusts and vein deposits appear to have formed as a result of interaction between near-surface groundwater, surficial soil and sediments and rising carbon dioxide. Rising mantle CO2 dissolves in the water to create carbonic acid, which in turn dissolves the calcite in the soil in the sediments. When the pH rises later due to degassing, the carbonate crusts are left in the places where the water was flowing in veins, channels and interfaces between high and low permeability materials. The crusts have the potential for being important records of natural and human agencies on the landscape of the area. They reflect the isotopic composition of the waters in which they precipitated in, and also contain isotopic information about the aeolian calcium fluxes affecting the area (using strontium isotopes). Moreover, changing stream valley base levels can be identified and measured, which can help quantify the rates of tectonic movement. Finally, human activities such and channel construction and terrace building can be identified and traced temporally and spatially using these deposits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anthropogenic%20change" title="anthropogenic change">anthropogenic change</a>, <a href="https://publications.waset.org/abstracts/search?q=carbonate%20crusts" title=" carbonate crusts"> carbonate crusts</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20change" title=" environmental change"> environmental change</a>, <a href="https://publications.waset.org/abstracts/search?q=Jordan" title=" Jordan"> Jordan</a> </p> <a href="https://publications.waset.org/abstracts/60842/carbonate-crusts-in-jordan-records-of-groundwater-flow-carbon-fluxes-tectonic-movement-and-climate-change" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60842.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Petrography and Mineral Chemical Study of Younger Quartzofeldspathic Bodies in Chakdara Granite Gneiss, Northwest Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Natasha%20Khan">Natasha Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Arif"> Muhammad Arif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Chakdara granite gneiss is an extension of Swat granite gneisses. It is characterized by biotite bands and the occurrence of fluorite and blue beryl. Younger phases (quartzofeldspathic veins) occur within gneisses are characterized by various mineral phases that include beryl, biotite, phlogopite, annite, muscovite, ilmenite-pyrophanite, monazite, zircon, apatite, magnetite and minor amounts of sphene, rutile, and ulvöspinel. The present paper is an attempt to address the detailed mineral chemistry and genesis of minerals occurring in these younger phases. These quartzofeldspathic veins are assumed to be of hydrothermal origin on the basis of Th2O content in monazite, Zr/Hf ratio in zircon, REE enrichment, and Ce/Y ratio of allanite. Biotite in the present study is characterized by high F content. Muscovite is phengitic and contains very high amounts of Fe as compared to the normal muscovites. The Th2O content for monazite is low (0.81-1.56 wt. %) like those of hydrothermal origin. The Zr/Hf ratio in zircon is variable for different analyses but mostly falls in the range of ~ 41 and above. Allanite is generally unaltered and characterized by LREE enrichment. The properties of beryl and columbite in the present study show pegmatitic features. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Beryl" title="Beryl">Beryl</a>, <a href="https://publications.waset.org/abstracts/search?q=Chakdarra%20granite%20gneiss" title=" Chakdarra granite gneiss"> Chakdarra granite gneiss</a>, <a href="https://publications.waset.org/abstracts/search?q=micas" title=" micas"> micas</a>, <a href="https://publications.waset.org/abstracts/search?q=quartzofeldspathic%20veins" title=" quartzofeldspathic veins"> quartzofeldspathic veins</a> </p> <a href="https://publications.waset.org/abstracts/54153/petrography-and-mineral-chemical-study-of-younger-quartzofeldspathic-bodies-in-chakdara-granite-gneiss-northwest-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54153.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Depositional Facies, High Resolution Sequence Stratigraphy, Reservoir Characterization of Early Oligocene Carbonates (Mukta Formation) Of North & Northwest of Heera, Mumbai Offshore</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Almas%20Rajguru">Almas Rajguru</a>, <a href="https://publications.waset.org/abstracts/search?q=Archana%20Kamath"> Archana Kamath</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachana%20Singh"> Rachana Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study aims to determine the depositional facies, high-resolution sequence stratigraphy, and diagenetic processes of Early Oligocene carbonates in N & N-W of Heera, Mumbai Offshore. Foraminiferal assemblage and microfacies from cores of Well A, B, C, D and E are indicative of facies association related to four depositional environments, i.e., restricted inner lagoons-tidal flats, shallow open lagoons, high energy carbonate bars-shoal complex and deeper mid-ramps of a westerly dipping homoclinal carbonate ramp. Two high-frequency (4th Order) depositional sequences bounded by sequence boundary, DS1 and DS2, displaying hierarchical stacking patterns, are identified and correlated across wells. Vadose zone diagenesis effect during short diastem/ subaerial exposure has rendered good porosity due to dissolution in HST carbonates and occasionally affected underlying TST sediments (Well D, C and E). On mapping and correlating the sequences, the presence of thin carbonate bars that can be potential reservoirs are envisaged along NW-SE direction, towards north and south of Wells E, D and C. A more pronounced development of these bars in the same orientation can be anticipated towards the west of the study area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sequence%20stratigraphy" title="sequence stratigraphy">sequence stratigraphy</a>, <a href="https://publications.waset.org/abstracts/search?q=depositional%20facies" title=" depositional facies"> depositional facies</a>, <a href="https://publications.waset.org/abstracts/search?q=diagenesis%20petrography" title=" diagenesis petrography"> diagenesis petrography</a>, <a href="https://publications.waset.org/abstracts/search?q=early%20Oligocene" title=" early Oligocene"> early Oligocene</a>, <a href="https://publications.waset.org/abstracts/search?q=Mumbai%20offshore" title=" Mumbai offshore"> Mumbai offshore</a> </p> <a href="https://publications.waset.org/abstracts/175119/depositional-facies-high-resolution-sequence-stratigraphy-reservoir-characterization-of-early-oligocene-carbonates-mukta-formation-of-north-northwest-of-heera-mumbai-offshore" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175119.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Sedimentology and Geochemistry of Carbonate Bearing-Argillites on the Southeastern Flank of Mount Cameroon, Likomba</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chongwain%20G.%20Mbzighaa">Chongwain G. Mbzighaa</a>, <a href="https://publications.waset.org/abstracts/search?q=Christopher%20M.%20Agyingi"> Christopher M. Agyingi</a>, <a href="https://publications.waset.org/abstracts/search?q=Josepha-Forba-Tendo"> Josepha-Forba-Tendo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and aim: Sedimentological, geochemical and petrographic studies were carried out on carbonate-bearing argillites outcropping at the southeastern flank of Mount Cameroon (Likomba) to determine the lithofacies and their associations, major element geochemistry and mineralogy. Methods: Major elements of the rocks were analyzed using XRF technique. Thermal analysis and thin section studies were carried out accompanied with the determination of insoluble components of the carbonates. Results: The carbonates are classed as biomicrites with siderite being the major carbonate mineral. Clay, quartz and pyrite constitute the major insoluble components of these rocks. Geochemical results depict a broad variation in their concentrations with silica and iron showing the highest concentrations and sodium and manganese with the least concentrations. Two factors were revealed with the following elemental associations, Fe2O3-MgO-Mn2O3 (72.56 %) and TiO2-SiO2-Al2O3-K2O (23.20%) indicating both Fe-enrichment, the subsequent formation of the siderite and the contribution of the sediments to the formation of these rocks. Conclusion: The rocks consist of cyclic iron-rich carbonates alternating with sideritic-shales and might have been formed as a result of variations in the sea conditions as well as variation in sediment influx resulting from transgression and regression sequences occurring in a shallow to slightly deep marine environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sedimentology" title="sedimentology">sedimentology</a>, <a href="https://publications.waset.org/abstracts/search?q=geochemistry" title=" geochemistry"> geochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=petrography" title=" petrography"> petrography</a>, <a href="https://publications.waset.org/abstracts/search?q=iron%20carbonates" title=" iron carbonates"> iron carbonates</a>, <a href="https://publications.waset.org/abstracts/search?q=Likomba" title=" Likomba"> Likomba</a> </p> <a href="https://publications.waset.org/abstracts/22237/sedimentology-and-geochemistry-of-carbonate-bearing-argillites-on-the-southeastern-flank-of-mount-cameroon-likomba" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22237.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Characterization of the Pore System and Gas Storage Potential in Unconventional Reservoirs: A Case of Study of the Cretaceous la Luna Formation, Middle Magdalena Valley Basin, Colombia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Alberto%20R%C3%ADos-Reyes">Carlos Alberto Ríos-Reyes</a>, <a href="https://publications.waset.org/abstracts/search?q=Efra%C3%ADn%20Casadiego-Quintero"> Efraín Casadiego-Quintero</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We propose a generalized workflow for mineralogy investigation of unconventional reservoirs using multi-scale imaging and pore-scale analyses. This workflow can be used for the integral evaluation of these resources. The Cretaceous La Luna Formation´s mudstones in the Middle Magdalena Valley Basin (Colombia) inherently show a heterogeneous pore system with organic and inorganic pores. For this reason, it is necessary to carry out the integration of high resolution 2D images of mapping by conventional petrography, scanning electron microscopy and quantitative evaluation of minerals by scanning electron microscopy to describe their organic and inorganic porosity to understand the transport mechanism through pores. The analyzed rocks show several pore types, including interparticle pores, organoporosity, intraparticle pores, intraparticle pores, and microchannels and/or microfractures. The existence of interconnected pores in pore system of these rocks promotes effective pathways for primary gas migration and storage space for residual hydrocarbons in mudstones, which is very useful in this type of gas reservoirs. It is crucial to understand not only the porous system of these rocks and their mineralogy but also to project the gas flow in order to design the appropriate strategies for the stimulation of unconventional reservoirs. Keywords: mudstones; La Luna Formation; gas storage; migration; hydrocarbon. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mudstones" title="mudstones">mudstones</a>, <a href="https://publications.waset.org/abstracts/search?q=La%20luna%20formation" title=" La luna formation"> La luna formation</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20storage" title=" gas storage"> gas storage</a>, <a href="https://publications.waset.org/abstracts/search?q=migration" title=" migration"> migration</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocarbon" title=" hydrocarbon"> hydrocarbon</a> </p> <a href="https://publications.waset.org/abstracts/165556/characterization-of-the-pore-system-and-gas-storage-potential-in-unconventional-reservoirs-a-case-of-study-of-the-cretaceous-la-luna-formation-middle-magdalena-valley-basin-colombia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165556.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> The Paleoenvironment and Paleoclimatological Variations during Aptian in North Central Tunisia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Houda%20Khaled">Houda Khaled</a>, <a href="https://publications.waset.org/abstracts/search?q=Frederic%20Boulvain"> Frederic Boulvain</a>, <a href="https://publications.waset.org/abstracts/search?q=Fredj%20Chaabani"> Fredj Chaabani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper focuses on the sedimentological and mineralogical studies of Aptian series outcrops in the Serdj and Bellouta Mountain situated in north-central Tunisia. In the Serdj Mountain, the Aptian series is about 590 meters thick and it is defined by tow formations corresponding respectively to the Sidi Hamada formation (Barremian-Gragasian) and the Serdj formation (Middle Gragasian-Late Clansaysian). This later is consisting of five limestones sequences separated by marly levels limestones associated to some siltstones bed. The Bellouta section is especially composed of carbonate rocks and it is attributed to the Middle Gragasian - Late Clansaysian. These sections are studied in detail regarding lithology, micropaleontology, microfacies, magnetic susceptibility and mineralogical composition in order to provide new insights into the paleoenvironmental evolution and paleoclimatological implications during Aptian. The following facies associations representing different ramp palaeoenvironments have been identified: mudstone-wackestone outer ramp facies; skeletal grainstone-packstone mid-ramp facies, packstone-grainstone inner-ramp facies which include a variety of organisms such as ooliths, rudists ostracods associated to athor bioclats. The coastal facies is especially defined by a mudstone -wackestone texture coastal rich with miliolidea and orbitolines. The magnetic susceptibility (Xin) of all samples was compared with the lithological and microfacies variation. The MS curves show that the high values are correlated with the distal facies and the low values are registred in the coastal environment. The X-ray diffractometer analysis show the presence of kaolinite and illite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aptian" title="Aptian">Aptian</a>, <a href="https://publications.waset.org/abstracts/search?q=Serdj%20formation" title=" Serdj formation"> Serdj formation</a>, <a href="https://publications.waset.org/abstracts/search?q=mineralogy" title=" mineralogy"> mineralogy</a>, <a href="https://publications.waset.org/abstracts/search?q=petrography" title=" petrography"> petrography</a> </p> <a href="https://publications.waset.org/abstracts/91210/the-paleoenvironment-and-paleoclimatological-variations-during-aptian-in-north-central-tunisia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91210.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Identification of Clay Mineral for Determining Reservoir Maturity Levels Based on Petrographic Analysis, X-Ray Diffraction and Porosity Test on Penosogan Formation Karangsambung Sub-District Kebumen Regency Central Java</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayu%20Dwi%20Hardiyanti">Ayu Dwi Hardiyanti</a>, <a href="https://publications.waset.org/abstracts/search?q=Bernardus%20Anggit%20Winahyu"> Bernardus Anggit Winahyu</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Gusti%20Agung%20Ayu%20Sugita%20Sari"> I. Gusti Agung Ayu Sugita Sari</a>, <a href="https://publications.waset.org/abstracts/search?q=Lestari%20Sutra%20Simamora"> Lestari Sutra Simamora</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Wayan%20Warmada"> I. Wayan Warmada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Penosogan Formation sandstone, that has Middle Miosen age, has been deemed as a reservoir potential based on sample data from sandstone outcrop in Kebakalan and Kedawung villages, Karangsambung sub-district, Kebumen Regency, Central Java. This research employs the following analytical methods; petrography, X-ray diffraction (XRD), and porosity test. Based on the presence of micritic sandstone, muddy micrite, and muddy sandstone, the Penosogan Formation sandstone has a fine-coarse granular size and middle-to-fine sorting. The composition of the sandstone is mostly made up of plagioclase, skeletal grain, and traces of micrite. The percentage of clay minerals based on petrographic analysis is 10% and appears to envelop grain, resulting enveloping grain which reduces the porosity of rocks. The porosity types as follows: interparticle, vuggy, channel, and shelter, with an equant form of cement. Moreover, the diagenesis process involves compaction, cementation, authigenic mineral growth, and dissolving due to feldspar alteration. The maturity of the reservoir can be seen through the X-ray diffraction analysis results, using ethylene glycol solution for clay minerals fraction transformed from smectite–illite. Porosity test analysis showed that the Penosogan Formation sandstones has a porosity value of 22% based on the Koeseomadinata classification, 1980. That shows high maturity is very influential for the quality of reservoirs sandstone of the Penosogan Formation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sandstone%20reservoir" title="sandstone reservoir">sandstone reservoir</a>, <a href="https://publications.waset.org/abstracts/search?q=Penosogan%20Formation" title=" Penosogan Formation"> Penosogan Formation</a>, <a href="https://publications.waset.org/abstracts/search?q=smectite" title=" smectite"> smectite</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a> </p> <a href="https://publications.waset.org/abstracts/105891/identification-of-clay-mineral-for-determining-reservoir-maturity-levels-based-on-petrographic-analysis-x-ray-diffraction-and-porosity-test-on-penosogan-formation-karangsambung-sub-district-kebumen-regency-central-java" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105891.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Geological Mapping of Gabel Humr Akarim Area, Southern Eastern Desert, Egypt: Constrain from Remote Sensing Data, Petrographic Description and Field Investigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Doaa%20Hamdi">Doaa Hamdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Hashem"> Ahmed Hashem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study aims at integrating the ASTER data and Landsat 8 data to discriminate and map alteration and/or mineralization zones in addition to delineating different lithological units of Humr Akarim Granites area. The study area is located at 24º9' to 24º13' N and 34º1' to 34º2'45"E., covering a total exposed surface area of about 17 km². The area is characterized by rugged topography with low to moderate relief. Geologic fieldwork and petrographic investigations revealed that the basement complex of the study area is composed of metasediments, mafic dikes, older granitoids, and alkali-feldspar granites. Petrographic investigations revealed that the secondary minerals in the study area are mainly represented by chlorite, epidote, clay minerals and iron oxides. These minerals have specific spectral signatures in the region of visible near-infrared and short-wave infrared (0.4 to 2.5 µm). So that the ASTER imagery processing was concentrated on VNIR-SWIR spectrometric data in order to achieve the purposes of this study (geologic mapping of hydrothermal alteration zones and delineate possible radioactive potentialities). Mapping of hydrothermal alterations zones in addition to discriminating the lithological units in the study area are achieved through the utilization of some different image processing, including color band composites (CBC) and data transformation techniques such as band ratios (BR), band ratio codes (BRCs), principal component analysis(PCA), Crosta Technique and minimum noise fraction (MNF). The field verification and petrographic investigation confirm the results of ASTER imagery and Landsat 8 data, proposing a geological map (scale 1:50000). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title="remote sensing">remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=petrography" title=" petrography"> petrography</a>, <a href="https://publications.waset.org/abstracts/search?q=mineralization" title=" mineralization"> mineralization</a>, <a href="https://publications.waset.org/abstracts/search?q=alteration%20detection" title=" alteration detection"> alteration detection</a> </p> <a href="https://publications.waset.org/abstracts/144329/geological-mapping-of-gabel-humr-akarim-area-southern-eastern-desert-egypt-constrain-from-remote-sensing-data-petrographic-description-and-field-investigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144329.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Genesis of Talc Bodies in Relation to the Mafic-Ultramafic Rocks around Wonu, Ibadan-Apomu Area, Southwestern Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Morenike%20Abimbola%20Adeleye">Morenike Abimbola Adeleye</a>, <a href="https://publications.waset.org/abstracts/search?q=Anthony%20Temidayo%20Bolarinwa"> Anthony Temidayo Bolarinwa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The genesis of talc bodies around Wonu, Ibadan-Apomu area, southwestern Nigeria, has been speculative due to inadequate compositional data on the talc and the mafic-ultramafic protoliths. Petrography, morphology, using scanning electron microscope, mineral chemistry, X-ray diffraction, and major, trace and rare-earth element compositions of the talc and the mafic-ultramafic in the area were undertaken with a view to determine the genesis of the talc bodies. Fine-grained amphibolite and lherzolite are the major mafic-ultramafic rocks in the study area. The amphibolite is fine-grained, composed of amphiboles, pyroxenes plagioclase, K-feldspar, ilmenite, magnetite, and garnet. The lherzolite and talc are composed of olivines, pyroxenes, amphiboles, and plagioclase. Alteration minerals include serpentine, amesite, talc, Cr-bearing clinochlore, and ferritchromite. Cr-spinel, pyrite, and magnetite are the accessory minerals present. Alteration of olivines, pyroxenes, and amphiboles to talc and chlinochlore; and spinel to ferritchchromite by hydrothermal (H₂O-CO₂-Cl-HF) fluids, provided by the granitic intrusions in the area, showed retrograde metasomatism of amphibolites to greenschist facies at 500-550ºC. This led to the formation of talc, amesite, anthophyllite, actinolite, and tremolite. The Al₂O₃-Fe₂O₃+TiO₂-MgO discrimination diagram suggests tholeiitic protolith for the amphibolite and komatitic protolith for the lherzolite. The lherzolite has flat rare-earth element patterns typical of komatiites and dunites. The Al₂O₃/TiO₂ ratios, Ce/Nb vs. Th/Nb, Cr-TiO₂, TiO₂ vs. Al₂O₃, and Nd vs. Nb discrimination diagrams indicated that the talcs are from two-parent sources: altered metacarbonates and tholeiitic basalts (amphibolites) to komatitic basalts (lherzolites). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amphibolites" title="amphibolites">amphibolites</a>, <a href="https://publications.waset.org/abstracts/search?q=lherzolites" title=" lherzolites"> lherzolites</a>, <a href="https://publications.waset.org/abstracts/search?q=talc" title=" talc"> talc</a>, <a href="https://publications.waset.org/abstracts/search?q=komatiite" title=" komatiite"> komatiite</a> </p> <a href="https://publications.waset.org/abstracts/121689/genesis-of-talc-bodies-in-relation-to-the-mafic-ultramafic-rocks-around-wonu-ibadan-apomu-area-southwestern-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121689.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Characterization of a Newfound Manganese Tungstate Mineral of Hübnerite in Turquoise Gemstone from Miduk Mine, Kerman, Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Soleimani%20Rad">Zahra Soleimani Rad</a>, <a href="https://publications.waset.org/abstracts/search?q=Fariborz%20Masoudi"> Fariborz Masoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shirin%20Tondkar"> Shirin Tondkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Turquoise is one of the most well-known gemstones in Iran. The mineralogy, crystallography, and gemology of Shahr-e-Babak turquoise in Kerman were investigated and the results are presented in this research. The Miduk porphyry copper deposit is positioned in the Shahr-Babak area in Kerman province, Iran. This deposit is located 85 km NW of the Sar-Cheshmeh porphyry copper deposit. Preliminary mineral exploration was carried out from 1967 to 1970. So far, more than fifty diamond drill holes, each reaching a maximum depth of 1013 meters, have provided evidence supporting the presence of significant and promising porphyry copper mineralization at the Miduk deposit. The mineral deposit harbors a quantity of 170 million metric tons of ore, characterized by a mean composition of 0.86% copper (Cu), 0.007% molybdenum (Mo), 82 parts-per-billion gold (Au), and 1.8 parts-per-million silver (Ag). The Supergene enrichment layer, which constitutes the predominant source of copper ore, exhibits an approximate thickness of 50 meters. Petrography shows that the texture is homogeneous. In terms of a gemstone, greasy luster and blue color are seen, and samples are similar to what is commonly known as turquoise. The geometric minerals were detected in XRD analysis by analyzing the data using the x-pert software. From the mineralogical point of view; the turquoise gemstones of Miduk of Kerman consist of turquoise, quartz, mica, and hübnerite. In this article, to our best knowledge, we are stating the hübnerite mineral identified and seen in the Persian turquoise. Based on the obtained spectra, the main mineral of the Miduk samples from the six members of the turquoise family is the turquoise type with identical peaks that can be used as a reference for identification of the Miduk turquoise. This mineral is structurally composed of phosphate units, units of Al, Cu, water, and hydroxyl units, and does not include a Fe unit. In terms of gemology, the quality of a gemstone depends on the quantity of the turquoise phase and the amount of Cu in it according to SEM and XRD analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=turquoise" title="turquoise">turquoise</a>, <a href="https://publications.waset.org/abstracts/search?q=h%C3%BCbnerite" title=" hübnerite"> hübnerite</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD%20analysis" title=" XRD analysis"> XRD analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Miduk" title=" Miduk"> Miduk</a>, <a href="https://publications.waset.org/abstracts/search?q=Kerman" title=" Kerman"> Kerman</a>, <a href="https://publications.waset.org/abstracts/search?q=Iran" title=" Iran"> Iran</a> </p> <a href="https://publications.waset.org/abstracts/162005/characterization-of-a-newfound-manganese-tungstate-mineral-of-hubnerite-in-turquoise-gemstone-from-miduk-mine-kerman-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Physico-Mechanical Properties of Dir-Volcanics and Its Use as a Dimension Stone from Kohistan Island Arc, North Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Nawaz">Muhammad Nawaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Waqas%20Ahmad"> Waqas Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dimension stone is used in construction since prehistoric time; however, its use in the construction has gained significant attention for the last few decades. The present study is designed to investigate the physical and strength properties of volcanic rocks from the Kohistan Island Arc to assess their use as dimension stone. On the basis of the composition, color and texture, five varieties of andesites (MMA, PMA-1, PMA-2, CMA and FMA) and two varieties of agglomerates (AG-1 and AG-2) were identified. These were characterized in terms of their petrography (compositional and textural), physical properties (specific gravity, water absorption, porosity) and strength properties (Unconfined compressive strength and Unconfined tensile strength). Two non-destructive tests (Ultrasonic pulse velocity test and Schmidt Hammer) were conducted and the degree of polishing was evaluated. In addition, correlation analyses were carried out to establish possible relationships among these parameters. The presence of chlorite, epidote, sericite and recrystallized quartz showed the signs of low-grade metamorphism in andesites. The results showed feldspar, amphibole and quartz imparted good physical and strength properties to the samples MMA, CMA, FMA, AG1 and AG2. Whereas, the abundance of alteration products such as chlorite, sericite and epidote in PMA-1 and PMA-2 reduced the physical and strength properties. The unconfined compressive strength showed a strong correlation with ultrasonic pulse velocity, dry density, porosity and water absorption. The values of ultrasonic pulse velocity and Schmidt hammer were considerably affected by the weathering grade. The samples PMA-1 and PMA-2, due to their high water absorption and low strength values, were not recommended for use in load-bearing masonry units and outdoor applications. Whereas, the excellent properties, i.e. high strength and good polishing, the samples, FMA and MMA suggested their use as a decorative and facing stone, in the external pavement, ashlar, rubbles and load-bearing masonry units etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Physico-mechanical%20properties" title="Physico-mechanical properties">Physico-mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=Volcanic%20rocks" title=" Volcanic rocks"> Volcanic rocks</a>, <a href="https://publications.waset.org/abstracts/search?q=Kohistan%20Island%20Arc" title=" Kohistan Island Arc"> Kohistan Island Arc</a>, <a href="https://publications.waset.org/abstracts/search?q=Pakistan" title=" Pakistan"> Pakistan</a> </p> <a href="https://publications.waset.org/abstracts/169657/physico-mechanical-properties-of-dir-volcanics-and-its-use-as-a-dimension-stone-from-kohistan-island-arc-north-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169657.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Mineralogy and Fluid Inclusion Study of the Kebbouch South Pb-Zn Deposit, Northwest Tunisia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Imen%20Salhi">Imen Salhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Salah%20Bouhlel"> Salah Bouhlel</a>, <a href="https://publications.waset.org/abstracts/search?q=Bernrd%20Lehmann"> Bernrd Lehmann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Kebbouch South Pb-Zn deposit is located 20 km to the east of El Kef (NW) in the southeastern part of the Triassic diapir belt in the Tunisian Atlas. The deposit is composed of sulfide and non-sulfide zinc-lead ore bodies. The aim of this study is to provide petrographic results, mineralogy, as well as fluid inclusion data of the carbonate-hosted Pb-Zn Kebbouch South deposit. Mineralization forms two major ore types: (1) lenticular dolostones and clay breccias in the contact zone between Triassic and Upper Cretaceous strata;, it consists of small-scale lenticular, strata-or fault-controlled mineralization mainly composed of marcasite, galena, sphalerite, pyrite, and (2) stratiform mineralization in the Bahloul Formation (Upper Cenomanian-Lower Turonian) consisting of framboidal and cubic pyrite, disseminated sphalerite and galena. Non-metalliferous and/or gangue minerals are represented by dolomite, calcite, celestite and quartz. Fluid inclusion petrography study has been carried out on calcite and celestite. Fluid inclusions hosted in celestite are less than 20 µm large and show two types of aqueous inclusions: monophase liquid aqueous inclusions (L), abundant and very small, generally less than 15 µm and liquid-rich two phase inclusions (L+V). The gas phase forms a mobile vapor bubble. Microthermometric analyses of (L+V) fluid inclusions for celestite indicate that the homogenization temperature ranges from 121 to 156°C, and final ice melting temperatures are in the range of – 19 to -9°C corresponding to salinities of 12 to 21 wt% NaCl eq. (L+V) fluid inclusions from calcite are frequently localized along the growth zones; their homogenization temperature ranges from 96 to 164°C with final ice melting temperatures between -16 and -7°C corresponding to salinities of 9 to 19 wt% NaCl eq. According to mineralogical and fluid inclusion studies, mineralization in the Pb – Zn Kebbouch South deposit formed between 96 to 164°C with salinities ranging from 9 to 21 wt% NaCl eq. A contribution of basinal brines in the ore formation of the kebbouch South Pb–Zn deposit is likely. The deposit is part of the family of MVT deposits associated with the salt diapir environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluid%20inclusion" title="fluid inclusion">fluid inclusion</a>, <a href="https://publications.waset.org/abstracts/search?q=Kebbouch%20South" title=" Kebbouch South"> Kebbouch South</a>, <a href="https://publications.waset.org/abstracts/search?q=mineralogy" title=" mineralogy"> mineralogy</a>, <a href="https://publications.waset.org/abstracts/search?q=MVT%20deposits" title=" MVT deposits"> MVT deposits</a>, <a href="https://publications.waset.org/abstracts/search?q=Pb-Zn" title=" Pb-Zn"> Pb-Zn</a> </p> <a href="https://publications.waset.org/abstracts/68088/mineralogy-and-fluid-inclusion-study-of-the-kebbouch-south-pb-zn-deposit-northwest-tunisia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68088.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Marzuq Basin Palaeozoic Petroleum System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Dieb">M. Dieb</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Hodairi">T. Hodairi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the Southwest Libya area, the Palaeozoic deposits are an important petroleum system, with Silurian shale considered a hydrocarbon source rock and Cambro-Ordovician recognized as a good reservoir. The Palaeozoic petroleum system has the greatest potential for conventional and is thought to represent the significant prospect of unconventional petroleum resources in Southwest Libya. Until now, the lateral and vertical heterogeneity of the source rock was not well evaluated, and oil-source correlation is still a matter of debate. One source rock, which is considered the main source potential in Marzuq Basin, was investigated for its uranium contents using gamma-ray logs, rock-eval pyrolysis, and organic petrography for their bulk kinetic characteristics to determine the petroleum potential qualitatively and quantitatively. Thirty source rock samples and fifteen oil samples from the Tannezzuft source rock were analyzed by Rock-Eval Pyrolysis, microscopely investigation, GC, and GC-MS to detect acyclic isoprenoids and aliphatic, aromatic, and NSO biomarkers. Geochemistry tools were applied to screen source and age-significant biomarkers to high-spot genetic relationships. A grating heterogeneity exists among source rock zones from different levels of depth with varying uranium contents according to gamma-ray logs, rock-eval pyrolysis results, and kinetic features. The uranium-rich Tannezzuft Formations (Hot Shales) produce oils and oil-to-gas hydrocarbons based on their richness, kerogen type, and thermal maturity. Biomarker results such as C₂₇, C₂₈, and C₂₉ steranes concentrations and C₂₄ tetracyclic terpane/C₂₉ tricyclic terpane ratios, with sterane and hopane ratios, are considered the most promising biomarker information in differentiating within the Silurian Shale Tannezzuft Formation and in correlating with its expelled oils. The Tannezzuft Hot Shale is considered the main source rock for oil and gas accumulations in the Cambro-Ordovician reservoirs within the Marzuq Basin. Migration of the generated and expelled oil and gas from the Tannezzuft source rock to the reservoirs of the Cambro-Ordovician petroleum system was interpreted to have occurred along vertical and lateral pathways along the faults in the Palaeozoic Strata. The Upper Tannezzuft Formation (cold shale) is considered the primary seal in the Marzuq Basin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heterogeneity" title="heterogeneity">heterogeneity</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20shale" title=" hot shale"> hot shale</a>, <a href="https://publications.waset.org/abstracts/search?q=kerogen" title=" kerogen"> kerogen</a>, <a href="https://publications.waset.org/abstracts/search?q=Silurian" title=" Silurian"> Silurian</a>, <a href="https://publications.waset.org/abstracts/search?q=uranium" title=" uranium"> uranium</a> </p> <a href="https://publications.waset.org/abstracts/182006/marzuq-basin-palaeozoic-petroleum-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182006.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Petrology and Petrochemistry of Basement Rocks in Ila Orangun Area, Southwestern Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jayeola%20A.%20O.">Jayeola A. O.</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayodele%20O.%20S."> Ayodele O. S.</a>, <a href="https://publications.waset.org/abstracts/search?q=Olususi%20J.%20I."> Olususi J. I.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> From field studies, six (6) lithological units were identified to be common around the study area, which includes quartzites, granites, granite gneiss, porphyritic granites, amphibolite and pegmatites. Petrographical analysis was done to establish the major mineral assemblages and accessory minerals present in selected rock samples, which represents the major rock types in the area. For the purpose of this study, twenty (20) pulverized rock samples were taken to the laboratory for geochemical analysis with their results used in the classification, as well as suggest the geochemical attributes of the rocks. Results from petrographical studies of the rocks under both plane and cross polarized lights revealed the major minerals identified under thin sections to include quartz, feldspar, biotite, hornblende, plagioclase and muscovite with opaque other accessory minerals, which include actinolite, spinel and myrmekite. Geochemical results obtained and interpreted using various geochemical plots or discrimination plots all classified the rocks in the area as belonging to both the peralkaline metaluminous and peraluminous types. Results for the major oxides ratios produced for Na₂O/K₂O, Al₂O₃/Na₂O + CaO + K₂O and Na₂O + CaO + K₂O/Al₂O₃ show the excess of alumina, Al₂O₃ over the alkaline Na₂O +CaO +K₂O thus suggesting peraluminous rocks. While the excess of the alkali over the alumina suggests the peralkaline metaluminous rock type. The results of correlation coefficient show a perfect strong positive correlation, which shows that they are of same geogenic sources, while negative correlation coefficient values indicate a perfect weak negative correlation, suggesting that they are of heterogeneous geogenic sources. From factor analysis, five component groups were identified as Group 1 consists of Ag-Cr-Ni elemental associations suggesting Ag, Cr, and Ni mineralization, predicting the possibility of sulphide mineralization. in the study area. Group ll and lll consist of As-Ni-Hg-Fe-Sn-Co-Pb-Hg element association, which are pathfinder elements to the mineralization of gold. Group 1V and V consist of Cd-Cu-Ag-Co-Zn, which concentrations are significant to elemental associations and mineralization. In conclusion, from the potassium radiometric anomaly map produced, the eastern section (northeastern and southeastern) is observed to be the hot spot and mineralization zone for the study area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=petrography" title="petrography">petrography</a>, <a href="https://publications.waset.org/abstracts/search?q=Ila%20Orangun" title=" Ila Orangun"> Ila Orangun</a>, <a href="https://publications.waset.org/abstracts/search?q=petrochemistry" title=" petrochemistry"> petrochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=pegmatites" title=" pegmatites"> pegmatites</a>, <a href="https://publications.waset.org/abstracts/search?q=peraluminous" title=" peraluminous"> peraluminous</a> </p> <a href="https://publications.waset.org/abstracts/173497/petrology-and-petrochemistry-of-basement-rocks-in-ila-orangun-area-southwestern-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173497.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">62</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Sedimentary, Diagenesis and Evaluation of High Quality Reservoir of Coarse Clastic Rocks in Nearshore Deep Waters in the Dongying Sag; Bohai Bay Basin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kouassi%20Louis%20Kra">Kouassi Louis Kra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The nearshore deep-water gravity flow deposits in the Northern steep slope of Dongying depression, Bohai Bay basin, have been acknowledged as important reservoirs in the rift lacustrine basin. These deep strata term as coarse clastic sediment, deposit at the root of the slope have complex depositional processes and involve wide diagenetic events which made high-quality reservoir prediction to be complex. Based on the integrated study of seismic interpretation, sedimentary analysis, petrography, cores samples, wireline logging data, 3D seismic and lithological data, the reservoir formation mechanism deciphered. The Geoframe software was used to analyze 3-D seismic data to interpret the stratigraphy and build a sequence stratigraphic framework. Thin section identification, point counts were performed to assess the reservoir characteristics. The software PetroMod 1D of Schlumberger was utilized for the simulation of burial history. CL and SEM analysis were performed to reveal diagenesis sequences. Backscattered electron (BSE) images were recorded for definition of the textural relationships between diagenetic phases. The result showed that the nearshore steep slope deposits mainly consist of conglomerate, gravel sandstone, pebbly sandstone and fine sandstone interbedded with mudstone. The reservoir is characterized by low-porosity and ultra-low permeability. The diagenesis reactions include compaction, precipitation of calcite, dolomite, kaolinite, quartz cement and dissolution of feldspars and rock fragment. The main types of reservoir space are primary intergranular pores, residual intergranular pores, intergranular dissolved pores, intergranular dissolved pores, and fractures. There are three obvious anomalous high-porosity zones in the reservoir. Overpressure and early hydrocarbon filling are the main reason for abnormal secondary pores development. Sedimentary facies control the formation of high-quality reservoir, oil and gas filling preserves secondary pores from late carbonate cementation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bohai%20Bay" title="Bohai Bay">Bohai Bay</a>, <a href="https://publications.waset.org/abstracts/search?q=Dongying%20Sag" title=" Dongying Sag"> Dongying Sag</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20strata" title=" deep strata"> deep strata</a>, <a href="https://publications.waset.org/abstracts/search?q=formation%20mechanism" title=" formation mechanism"> formation mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=high-quality%20reservoir" title=" high-quality reservoir"> high-quality reservoir</a> </p> <a href="https://publications.waset.org/abstracts/108121/sedimentary-diagenesis-and-evaluation-of-high-quality-reservoir-of-coarse-clastic-rocks-in-nearshore-deep-waters-in-the-dongying-sag-bohai-bay-basin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108121.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Petrographic Properties of Sedimentary-Exhalative Type Ores of Filizchay Polymetallic Deposit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samir%20Verdiyev">Samir Verdiyev</a>, <a href="https://publications.waset.org/abstracts/search?q=Fuad%20Huseynov"> Fuad Huseynov</a>, <a href="https://publications.waset.org/abstracts/search?q=Islam%20Guliyev"> Islam Guliyev</a>, <a href="https://publications.waset.org/abstracts/search?q=Co%C5%9Fqun%20%C4%B0smay%C4%B1l"> Coşqun İsmayıl</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Filizchay polymetallic deposit is located on the southern slope of the Greater Caucasus Mountain Range, northwest of Azerbaijan in the Balaken district. Filizchay is the largest polymetallic deposit in the region and the second-largest polymetallic deposit in Europe. The mineral deposits in the region are associated with two different geodynamic evolutions that began with the Mesozoic collision along the Eurasian continent and the formation of a magmatic arc after the collision and continued with subduction in the Cenozoic. The bedrocks associated with Filizchay mineralization are Early Jurassic aged. The stratigraphic sequence of the deposit is consisting of black metamorphic clay shales, sandstones, and ore layers. Shales, sandstones, and siltstones are encountered in the upper and middle sections of the ore body, while only shales are observed at the lowest ranges. The ore body is mainly layered by the geometric structure of the bedrock; folding can be observed in the ore layers along with the bedrock foliation, and just in few points indirect laying due to the metamorphism. This suggests that the Filizchay ore mineralization is syngenetic, which is proved by the mineralization by the bedrock. To determine the ore petrography properties of the Filizchay deposit, samples were collected from the region where the ore is concentrated, and a polished section was prepared. These collected samples were examined under the mineralogical microscope to reveal the paragenesis of the mineralization and to explain the relation of ore minerals to each other. In this study, macroscopically observed minerals and textures of these minerals were used in the cores revealed during drilling exploration made by AzerGold CJS company. As a result of all these studies, it has been determined that there are three main mineralization types in the Filizchay deposit: banded, massive, and veinlet ores. The mineralization is in the massive pyrite; furthermore, the basis of the ore-mass contains pyrite, chalcopyrite, sphalerite, and galena. The pyrite in some parts of the ore body transformed to pyrrhotite as a result of metamorphism. Pyrite-chalcopyrite, pyrite-sphalerite-galena, pyrite-pyrrhotite mineral assemblages were determined during microscopic studies of mineralization. The replacement texture is more developed in Filizchay ores. The banded polymetallic type mineralization and near bedrocks are cut by quartz-carbonate veins. The geotectonic position and lithological conditions of the Filizchay deposit, the texture, and interrelationship of the sulfide mineralization indicate that it is a sedimentary-exhalative type of Au-Cu-Ag-Zn-Pb polymetallic deposit that is genetically related to the massive sulfide deposits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Balaken" title="Balaken">Balaken</a>, <a href="https://publications.waset.org/abstracts/search?q=Filizchay" title=" Filizchay"> Filizchay</a>, <a href="https://publications.waset.org/abstracts/search?q=metamorphism" title=" metamorphism"> metamorphism</a>, <a href="https://publications.waset.org/abstracts/search?q=polymetallic%20mineralization" title=" polymetallic mineralization"> polymetallic mineralization</a> </p> <a href="https://publications.waset.org/abstracts/134980/petrographic-properties-of-sedimentary-exhalative-type-ores-of-filizchay-polymetallic-deposit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134980.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Preliminary Study of the Hydrothermal Polymetallic Ore Deposit at the Karancs Mountain, North-East Hungary</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eszter%20Kulcsar">Eszter Kulcsar</a>, <a href="https://publications.waset.org/abstracts/search?q=Agnes%20Takacs"> Agnes Takacs</a>, <a href="https://publications.waset.org/abstracts/search?q=Gabriella%20B.%20Kiss"> Gabriella B. Kiss</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Prakfalvi"> Peter Prakfalvi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Karancs Mountain is part of the Miocene Inner Carpathian Volcanic Belt and is located in N-NE Hungary, along the Hungarian-Slovakian border. The 14 Ma old andesitic-dacitic units are surrounded by Oligocene sedimentary units (sandstone, siltstone). The host rocks of the mineralisation are siliceous and/or argillaceous volcanic units, quartz veins, hydrothermal breccia, and strongly silicified vuggy rocks, found in the various altered volcanic units. The hydrothermal breccia consists of highly silicified vuggy quartz clasts in quartz matrix. The hydrothermal alteration of the host units shows structural control at the deeper levels. The main ore minerals are galena, pyrite, marcasite, sphalerite, hematite, magnetite, arsenopyrite, anglesite and argentite The mineralisation was first mentioned in 1944 and the first exploration took place between 1961 and 1962 in the area. The first ore geological studies were performed between 1984-1985. The exploration programme was limited only to surface sampling; no drilling programme was performed. Petrographical and preliminary fluid inclusion studies were performed on calcite samples from a galena-bearing vein. Despite the early discovery of the mineralisation, no detailed description is available, thus its size, characteristics, and origin have remained unknown. The aim of this study is to examine the mineralisation, describe the characteristics in detail and to test the possible gold content of the various quartz veins and breccias. Finally, we also investigate the potential relation of the hydrothermal mineralisation to the surrounding similar mineralisations with similar ages (e.g. W-Mátra Mountains in Hungary, Banska Bystrica, Banska Stiavnica in Slovakia) in order to place the mineralisation within the volcanic-hydrothermal evolution of the Miocene Inner Carpathian Belt. As first steps, the study includes field mapping, traditional petrological and ore microscopy; X-ray diffraction analysis; SEM-EDS and EMPA studies on ore minerals, to obtain mineral chemical information. Fluid inclusion petrography and microthermometry and micro-Raman-spectroscopy studies are also planned on quartz-hosted inclusions to investigate the physical and chemical properties of the ore-forming fluid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epithermal" title="epithermal">epithermal</a>, <a href="https://publications.waset.org/abstracts/search?q=Karancs%20Mountain" title=" Karancs Mountain"> Karancs Mountain</a>, <a href="https://publications.waset.org/abstracts/search?q=Hungary" title=" Hungary"> Hungary</a>, <a href="https://publications.waset.org/abstracts/search?q=Miocene%20Inner%20Carpathian%20volcanic%20belt" title=" Miocene Inner Carpathian volcanic belt"> Miocene Inner Carpathian volcanic belt</a>, <a href="https://publications.waset.org/abstracts/search?q=polimetallic%20ore%20deposit" title=" polimetallic ore deposit"> polimetallic ore deposit</a> </p> <a href="https://publications.waset.org/abstracts/99791/preliminary-study-of-the-hydrothermal-polymetallic-ore-deposit-at-the-karancs-mountain-north-east-hungary" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99791.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Study of Palung Granite in Central Nepal with Special Reference to Field Occurrence, Petrography and Mineralization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Narayan%20Bhattarai">Narayan Bhattarai</a>, <a href="https://publications.waset.org/abstracts/search?q=Arjun%20Bhattarai"> Arjun Bhattarai</a>, <a href="https://publications.waset.org/abstracts/search?q=Kabi%20Raj%20Paudyal"> Kabi Raj Paudyal</a>, <a href="https://publications.waset.org/abstracts/search?q=Lalu%20Paudel"> Lalu Paudel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Palung granite is leucocratic, alkali feldspar granite, which is one of the six major granite bodies of the Lesser Himalaya of Nepal. The Cambro-Ordovician granite body has intruded on the Palaeozoic metasedimentary rock of the Kathmandu Complex in Central Nepal. The granite crystallized from magma that was mainly generated by anatexis of the Precambrian continental crust. The magma is heterogeneous with respect to the primary ages and/or metamorphic histories of the magma source rocks. This indicates either a derivation from (meta-) sediments or an intense mixing of different crustally derived magmas. The genesis of the Palung granite is possibly related to an orogeny which affected the Indian shield in lower Paleozoic times. The granite body has been mapped into different zones with visual inspection and petrographical study: i. Quartz rich granite: Quartz is smokey to grayish, euhedral to subherdal, 0.2 to 0.7 cm, and constitutes 30 to 40%. Feldspar is white to brownish, subhedral to euhedral, more than 3 cm, and constitutes 20–30%. Tourmaline is black, 0.1 to 0.2 cm in size, and consists of 10 to 20%. Biotite is black flakes up to o.2 cm, representing 5-8%. ii. Feldspar rich granite: white to grayish, medium to coarse-grained, containing feldspar, quartz, biotite, muscovite and tourmaline. Feldspar porphyritic crystals up to 2.5 cm subherdral represent 50–60%, quartz is smokey transparent and represents 30–40%, biotite is dark brown to black, crystals are irregular, 0.5 cm and represent 8–20%, tourmaline is black fractured, small needles represent 5–10%, and muscovite is white to brown and represents 1-4%. iii. Biotite granite: grey to white, medium to coarse-grained, containing quartz, feldspar, biotite and tourmaline. Feldspar crystals up to 2.5 cm represent 40–50%, quartz is smokey, representing 30–40%, biotite is dark brown to black, crystal size 0.5cm, representing 10–20%, tourmaline is black, small needle, 5–10%, and muscovite is white to brown, representing 3-5%. and iv. Muscovite granite: medium-coarse-grained, brown and gray, containing quartz, feldspar, muscovite and tourmaline. Feldspar is white to brown; crystal sizes 0.2–0.4 cm represents 40–50%; quartz is brown and white, transparent, crystals up to 1 cm represent 35–50%; tourmaline is black, opaque, needle shaped; size up to 7–20%; and muscovite is brownish to white, with flakes up to 0.3 cm representing 5–10%. The xenoliths are very common and are not genetically related. Xenoliths are composed mostly of fine-grained, grayish quartz biotite (muscovite) schist and garnetiferous quartz mica schist. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=leucocratic%20granite" title="leucocratic granite">leucocratic granite</a>, <a href="https://publications.waset.org/abstracts/search?q=cambro-ordovician%20granite" title=" cambro-ordovician granite"> cambro-ordovician granite</a>, <a href="https://publications.waset.org/abstracts/search?q=lesser%20himalayan%20granite" title=" lesser himalayan granite"> lesser himalayan granite</a>, <a href="https://publications.waset.org/abstracts/search?q=pegmatite" title=" pegmatite"> pegmatite</a> </p> <a href="https://publications.waset.org/abstracts/172349/study-of-palung-granite-in-central-nepal-with-special-reference-to-field-occurrence-petrography-and-mineralization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172349.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=petrography%20%20Bafq&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=petrography%20%20Bafq&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>