CINXE.COM

Search results for: Mathematical Modelling

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Mathematical Modelling</title> <meta name="description" content="Search results for: Mathematical Modelling"> <meta name="keywords" content="Mathematical Modelling"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Mathematical Modelling" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Mathematical Modelling"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3356</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Mathematical Modelling</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3356</span> On Mathematical Modelling and Optimization of Emerging Trends Processes in Advanced Manufacturing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Agarana%20Michael%20C.">Agarana Michael C.</a>, <a href="https://publications.waset.org/abstracts/search?q=Akinlabi%20Esther%20T."> Akinlabi Esther T.</a>, <a href="https://publications.waset.org/abstracts/search?q=Pule%20Kholopane"> Pule Kholopane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Innovation in manufacturing process technologies and associated product design affects the prospects for manufacturing today and in near future. In this study some theoretical methods, useful as tools in advanced manufacturing, are considered. In particular, some basic Mathematical, Operational Research, Heuristic, and Statistical techniques are discussed. These techniques/methods are very handy in many areas of advanced manufacturing processes, including process planning optimization, modelling and analysis. Generally the production rate requires the application of Mathematical methods. The Emerging Trends Processes in Advanced Manufacturing can be enhanced by using Mathematical Modelling and Optimization techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modelling" title="mathematical modelling">mathematical modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=emerging%20trends" title=" emerging trends"> emerging trends</a>, <a href="https://publications.waset.org/abstracts/search?q=advanced%20manufacturing" title=" advanced manufacturing"> advanced manufacturing</a> </p> <a href="https://publications.waset.org/abstracts/158822/on-mathematical-modelling-and-optimization-of-emerging-trends-processes-in-advanced-manufacturing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158822.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3355</span> Engineering Academics’ Strategies of Modelling Mathematical Concepts into Their Teaching of an Antenna Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vojo%20George%20Fasinu">Vojo George Fasinu</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadaraj%20Govender"> Nadaraj Govender</a>, <a href="https://publications.waset.org/abstracts/search?q=Predeep%20Kumar"> Predeep Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An Antenna, which remains the hub of technological development in Africa had been found to be a course that is been taught and designed in an abstract manner in some universities. One of the reasons attached to this is that the appropriate approach of teaching antenna design is not yet understood by many engineering academics in some universities in South Africa. Also, another problem reported is the main difficulty encountered when interpreting and applying some of the mathematical concepts learned into their practical antenna design course. As a result of this, some engineering experts classified antenna as a mysterious technology that could not be described by anybody using mathematical concepts. In view of this, this paper takes it as its point of departure in explaining what an antenna is all about with a strong emphasis on its mathematical modelling. It also argues that the place of modelling mathematical concepts into the teaching of engineering design cannot be overemphasized. Therefore, it explains the mathematical concepts adopted during the teaching of an antenna design course, the Strategies of modelling those mathematics concepts, the behavior of antennas, and their mathematics usage were equally discussed. More so, the paper also sheds more light on mathematical modelling in South Africa context, and also comparative analysis of mathematics concepts taught in mathematics class and mathematics concepts taught in engineering courses. This paper focuses on engineering academics teaching selected topics in electronic engineering (Antenna design), with special attention on the mathematical concepts they teach and how they teach them when teaching the course. A qualitative approach was adopted as a means of collecting data in order to report the naturalistic views of the engineering academics teaching Antenna design. The findings of the study confirmed that some mathematical concepts are being modeled into the teaching of an antenna design with the adoption of some teaching approaches. Furthermore, the paper reports a didactical-realistic mathematical model as a conceptual framework used by the researchers in describing how academics teach mathematical concepts during their teaching of antenna design. Finally, the paper concludes with the importance of mathematical modelling to the engineering academics and recommendations for further researchers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modelling" title="modelling">modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20concepts" title=" mathematical concepts"> mathematical concepts</a>, <a href="https://publications.waset.org/abstracts/search?q=engineering" title=" engineering"> engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=didactical" title=" didactical"> didactical</a>, <a href="https://publications.waset.org/abstracts/search?q=realistic%20model" title=" realistic model"> realistic model</a> </p> <a href="https://publications.waset.org/abstracts/114354/engineering-academics-strategies-of-modelling-mathematical-concepts-into-their-teaching-of-an-antenna-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114354.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3354</span> All-or-None Principle and Weakness of Hodgkin-Huxley Mathematical Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Sadegh%20Zadeh">S. A. Sadegh Zadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Kambhampati"> C. Kambhampati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mathematical and computational modellings are the necessary tools for reviewing, analysing, and predicting processes and events in the wide spectrum range of scientific fields. Therefore, in a field as rapidly developing as neuroscience, the combination of these two modellings can have a significant role in helping to guide the direction the field takes. The paper combined mathematical and computational modelling to prove a weakness in a very precious model in neuroscience. This paper is intended to analyse all-or-none principle in Hodgkin-Huxley mathematical model. By implementation the computational model of Hodgkin-Huxley model and applying the concept of all-or-none principle, an investigation on this mathematical model has been performed. The results clearly showed that the mathematical model of Hodgkin-Huxley does not observe this fundamental law in neurophysiology to generating action potentials. This study shows that further mathematical studies on the Hodgkin-Huxley model are needed in order to create a model without this weakness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=all-or-none" title="all-or-none">all-or-none</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20modelling" title=" computational modelling"> computational modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20model" title=" mathematical model"> mathematical model</a>, <a href="https://publications.waset.org/abstracts/search?q=transmembrane%20voltage" title=" transmembrane voltage"> transmembrane voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=action%20potential" title=" action potential"> action potential</a> </p> <a href="https://publications.waset.org/abstracts/80739/all-or-none-principle-and-weakness-of-hodgkin-huxley-mathematical-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80739.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">617</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3353</span> Multiscale Modelling of Citrus Black Spot Transmission Dynamics along the Pre-Harvest Supply Chain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muleya%20Nqobile">Muleya Nqobile</a>, <a href="https://publications.waset.org/abstracts/search?q=Winston%20Garira"> Winston Garira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We presented a compartmental deterministic multi-scale model which encompass internal plant defensive mechanism and pathogen interaction, then we consider nesting the model into the epidemiological model. The objective was to improve our understanding of the transmission dynamics of within host and between host of Guignardia citricapa Kiely. The inflow of infected class was scaled down to individual level while the outflow was scaled up to average population level. Conceptual model and mathematical model were constructed to display a theoretical framework which can be used for predicting or identify disease pattern. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epidemiological%20model" title="epidemiological model">epidemiological model</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modelling" title=" mathematical modelling"> mathematical modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-scale%20modelling" title=" multi-scale modelling"> multi-scale modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=immunological%20model" title=" immunological model"> immunological model</a> </p> <a href="https://publications.waset.org/abstracts/52713/multiscale-modelling-of-citrus-black-spot-transmission-dynamics-along-the-pre-harvest-supply-chain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52713.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3352</span> Induction Motor Analysis Using LabVIEW</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Ramprasath">E. Ramprasath</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Manojkumar"> P. Manojkumar</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Veena"> P. Veena</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Proposed paper dealt with the modelling and analysis of induction motor based on the mathematical expression using the graphical programming environment of Laboratory Virtual Instrument Engineering Workbench (LabVIEW). Induction motor modelling with the mathematical expression enables the motor to be simulated with the various required parameters. Owing to the invention of variable speed drives study about the induction motor characteristics became complex.In this simulation motor internal parameter such as stator resistance and reactance, rotor resistance and reactance, phase voltage, frequency and losses will be given as input. By varying the speed of motor corresponding parameters can be obtained they are input power, output power, efficiency, torque induced, slip and current. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=induction%20motor" title="induction motor">induction motor</a>, <a href="https://publications.waset.org/abstracts/search?q=LabVIEW%20software" title=" LabVIEW software"> LabVIEW software</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling%20and%20analysi" title=" modelling and analysi"> modelling and analysi</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20and%20mechanical%20characteristics%20of%20motor" title=" electrical and mechanical characteristics of motor"> electrical and mechanical characteristics of motor</a> </p> <a href="https://publications.waset.org/abstracts/31481/induction-motor-analysis-using-labview" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31481.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">555</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3351</span> Thermal Barrier Coated Diesel Engine With Neural Networks Mathematical Modelling </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanbey%20Hazar">Hanbey Hazar</a>, <a href="https://publications.waset.org/abstracts/search?q=Hakan%20Gul"> Hakan Gul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study; piston, exhaust, and suction valves of a diesel engine were coated in 300 mm thickness with Tungsten Carbide (WC) by using the HVOF coating method. Mathematical modeling of a coated and uncoated (standardized) engine was performed by using ANN (Artificial Neural Networks). The purpose was to decrease the number of repetitions of tests and reduce the test cost through mathematical modeling of engines by using ANN. The results obtained from the tests were entered in ANN and therefore engines' values at all speeds were estimated. Results obtained from the tests were compared with those obtained from ANN and they were observed to be compatible. It was also observed that, with thermal barrier coating, hydrocarbon (HC), carbon monoxide (CO), and smoke density values of the diesel engine decreased; but nitrogen oxides (NOx) increased. Furthermore, it was determined that results obtained through mathematical modeling by means of ANN reduced the number of test repetitions. Therefore, it was understood that time, fuel and labor could be saved in this way. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Artificial%20Neural%20Network" title="Artificial Neural Network">Artificial Neural Network</a>, <a href="https://publications.waset.org/abstracts/search?q=Diesel%20Engine" title=" Diesel Engine"> Diesel Engine</a>, <a href="https://publications.waset.org/abstracts/search?q=Mathematical%20Modelling" title=" Mathematical Modelling"> Mathematical Modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=Thermal%20Barrier%20Coating" title=" Thermal Barrier Coating"> Thermal Barrier Coating</a> </p> <a href="https://publications.waset.org/abstracts/21703/thermal-barrier-coated-diesel-engine-with-neural-networks-mathematical-modelling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21703.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">528</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3350</span> A Biomechanical Model for the Idiopathic Scoliosis Using the Antalgic-Trak Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joao%20Fialho">Joao Fialho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The mathematical modelling of idiopathic scoliosis has been studied throughout the years. The models presented on those papers are based on the orthotic stabilization of the idiopathic scoliosis, which are based on a transversal force being applied to the human spine on a continuous form. When considering the ATT (Antalgic-Trak Technology) device, the existent models cannot be used, as the type of forces applied are no longer transversal nor applied in a continuous manner. In this device, vertical traction is applied. In this study we propose to model the idiopathic scoliosis, using the ATT (Antalgic-Trak Technology) device, and with the parameters obtained from the mathematical modeling, set up a case-by-case individualized therapy plan, for each patient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=idiopathic%20scoliosis" title="idiopathic scoliosis">idiopathic scoliosis</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modelling" title=" mathematical modelling"> mathematical modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20spine" title=" human spine"> human spine</a>, <a href="https://publications.waset.org/abstracts/search?q=Antalgic-Trak%20technology" title=" Antalgic-Trak technology"> Antalgic-Trak technology</a> </p> <a href="https://publications.waset.org/abstracts/59942/a-biomechanical-model-for-the-idiopathic-scoliosis-using-the-antalgic-trak-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59942.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3349</span> Experimental Study and Numerical Modelling of Failure of Rocks Typical for Kuzbass Coal Basin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mikhail%20O.%20Eremin">Mikhail O. Eremin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Present work is devoted to experimental study and numerical modelling of failure of rocks typical for Kuzbass coal basin (Russia). The main goal was to define strength and deformation characteristics of rocks on the base of uniaxial compression and three-point bending loadings and then to build a mathematical model of failure process for both types of loading. Depending on particular physical-mechanical characteristics typical rocks of Kuzbass coal basin (sandstones, siltstones, mudstones, etc. of different series – Kolchuginsk, Tarbagansk, Balohonsk) manifest brittle and quasi-brittle character of failure. The strength characteristics for both tension and compression are found. Other characteristics are also found from the experiment or taken from literature reviews. On the base of obtained characteristics and structure (obtained from microscopy) the mathematical and structural models are built and numerical modelling of failure under different types of loading is carried out. Effective characteristics obtained from modelling and character of failure correspond to experiment and thus, the mathematical model was verified. An Instron 1185 machine was used to carry out the experiments. Mathematical model includes fundamental conservation laws of solid mechanics – mass, impulse, energy. Each rock has a sufficiently anisotropic structure, however, each crystallite might be considered as isotropic and then a whole rock model has a quasi-isotropic structure. This idea gives an opportunity to use the Hooke’s law inside of each crystallite and thus explicitly accounting for the anisotropy of rocks and the stress-strain state at loading. Inelastic behavior is described in frameworks of two different models: von Mises yield criterion and modified Drucker-Prager yield criterion. The damage accumulation theory is also implemented in order to describe a failure process. Obtained effective characteristics of rocks are used then for modelling of rock mass evolution when mining is carried out both by an open-pit or underground opening. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damage%20accumulation" title="damage accumulation">damage accumulation</a>, <a href="https://publications.waset.org/abstracts/search?q=Drucker-Prager%20yield%20criterion" title=" Drucker-Prager yield criterion"> Drucker-Prager yield criterion</a>, <a href="https://publications.waset.org/abstracts/search?q=failure" title=" failure"> failure</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modelling" title=" mathematical modelling"> mathematical modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=three-point%20bending" title=" three-point bending"> three-point bending</a>, <a href="https://publications.waset.org/abstracts/search?q=uniaxial%20compression" title=" uniaxial compression"> uniaxial compression</a> </p> <a href="https://publications.waset.org/abstracts/86478/experimental-study-and-numerical-modelling-of-failure-of-rocks-typical-for-kuzbass-coal-basin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86478.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3348</span> Mathematical Modelling of Ultrasound Pre-Treatment in Microwave Dried Strawberry (Fragaria L.) Slices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hilal%20Uslu">Hilal Uslu</a>, <a href="https://publications.waset.org/abstracts/search?q=Salih%20Eroglu"> Salih Eroglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Betul%20Ozkan"> Betul Ozkan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ozcan%20Bulantekin"> Ozcan Bulantekin</a>, <a href="https://publications.waset.org/abstracts/search?q=Alper%20Kuscu"> Alper Kuscu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the strawberry (Fragaria L.) fruits, which were pretreated with ultrasound (US), were worked on in the microwave by using 90W power. Then mathematical modelling was applied to dried fruits by using different experimental thin layer models. The sliced fruits were subjected to ultrasound treatment at a frequency of 40 kHz for 10, 20, and 30 minutes, in an ultrasonic water bath, with a ratio of 1:4 to fruit/water. They are then dried in the microwave (90W). The drying process continued until the product moisture was below 10%. By analyzing the moisture change of the products at a certain time, eight different thin-layer drying models, (Newton, page, modified page, Midilli, Henderson and Pabis, logarithmic, two-term, Wang and Singh) were tested for verification of experimental data. MATLAB R2015a statistical program was used for the modelling, and the best suitable model was determined with R²adj (coefficient of determination of compatibility), and root mean square error (RMSE) values. According to analysis, the drying model that best describes the drying behavior for both drying conditions was determined as the Midilli model by high R²adj and low RMSE values. Control, 10, 20, and 30 min US for groups R²adj and RMSE values was established as respectively; 0,9997- 0,005298; 0,9998- 0,004735; 0,9995- 0,007031; 0,9917-0,02773. In addition, effective diffusion coefficients were calculated for each group and were determined as 3,80x 10⁻⁸, 3,71 x 10⁻⁸, 3,26 x10⁻⁸ ve 3,5 x 10⁻⁸ m/s, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modelling" title="mathematical modelling">mathematical modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20drying" title=" microwave drying"> microwave drying</a>, <a href="https://publications.waset.org/abstracts/search?q=strawberry" title=" strawberry"> strawberry</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a> </p> <a href="https://publications.waset.org/abstracts/122549/mathematical-modelling-of-ultrasound-pre-treatment-in-microwave-dried-strawberry-fragaria-l-slices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122549.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3347</span> River Offtake Management Using Mathematical Modelling Tool: A Case Study of the Gorai River, Bangladesh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarwat%20Jahan">Sarwat Jahan</a>, <a href="https://publications.waset.org/abstracts/search?q=Asker%20Rajin%20Rahman"> Asker Rajin Rahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Management of offtake of any fluvial river is very sensitive in terms of long-term sustainability where the variation of water flow and sediment transport range are wide enough throughout a hydrological year. The Gorai River is a major distributary of the Ganges River in Bangladesh and is termed as a primary source of fresh water for the South-West part of the country. Every year, significant siltation of the Gorai offtake disconnects it from the Ganges during the dry season. As a result, the socio-economic and environmental condition of the downstream areas has been deteriorating for a few decades. To improve the overall situation of the Gorai offtake and its dependent areas, a study has been conducted by the Institute of Water Modelling, Bangladesh, in 2022. Using the mathematical morphological modeling tool MIKE 21C of DHI Water & Environment, Denmark, simulated results revealed the need for dredging/river training structures for offtake management at the Gorai offtake to ensure significant dry season flow towards the downstream. The dry season flow is found to increase significantly with the proposed river interventions, which also improves the environmental conditions in terms of salinity of the South-West zone of the country. This paper summarizes the primary findings of the analyzed results of the developed mathematical model for improving the existing condition of the Gorai River. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gorai%20river" title="Gorai river">Gorai river</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modelling" title=" mathematical modelling"> mathematical modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=offtake" title=" offtake"> offtake</a>, <a href="https://publications.waset.org/abstracts/search?q=siltation" title=" siltation"> siltation</a>, <a href="https://publications.waset.org/abstracts/search?q=salinity" title=" salinity"> salinity</a> </p> <a href="https://publications.waset.org/abstracts/162573/river-offtake-management-using-mathematical-modelling-tool-a-case-study-of-the-gorai-river-bangladesh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162573.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3346</span> Mathematical Modelling of Wastewater Collection System in Cha-Am Municipality Using PCSWMM</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thawtar%20Htun">Thawtar Htun</a>, <a href="https://publications.waset.org/abstracts/search?q=Kim%20N.%20Irvine"> Kim N. Irvine</a>, <a href="https://publications.waset.org/abstracts/search?q=Ranjna%20Jindal"> Ranjna Jindal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed at modelling the wastewater collection system in Cha-Am Municipality using PCSWMM to investigate the quantity of combined sewage delivered to the aeration lagoon treatment system (ALTS). Cha-Am is a small sea resort town in Petchaburi Province located about 175 km southwest of Bangkok and is facing increasing development so it is important to understand current system performance and plan for future build out. PCSWMM was calibrated using observed ALTS inflow data for the period 15 June to 20 July 2015. The model was validated using observed ALTS inflow data for the periods 19 July to 20 October 2015 and 1 October to 31 December 2015, respectively. The 1:1 lines between modeled and observed peak flow and event volume for the calibration events qualitatively showed good correspondence. The r2 values between modeled and observed peak flow (99%) and event volume (89%) also were strong. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combined%20sewer%20system" title="combined sewer system">combined sewer system</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modelling" title=" mathematical modelling"> mathematical modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=PCSWMM" title=" PCSWMM"> PCSWMM</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20collection%20system" title=" wastewater collection system"> wastewater collection system</a> </p> <a href="https://publications.waset.org/abstracts/57481/mathematical-modelling-of-wastewater-collection-system-in-cha-am-municipality-using-pcswmm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57481.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3345</span> Modelling Vehicle Fuel Consumption Utilising Artificial Neural Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aydin%20Azizi">Aydin Azizi</a>, <a href="https://publications.waset.org/abstracts/search?q=Aburrahman%20Tanira"> Aburrahman Tanira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main source of energy used in this modern age is fossil fuels. There is a myriad of problems that come with the use of fossil fuels, out of which the issues with the greatest impact are its scarcity and the cost it imposes on the planet. Fossil fuels are the only plausible option for many vital functions and processes; the most important of these is transportation. Thus, using this source of energy wisely and as efficiently as possible is a must. The aim of this work was to explore utilising mathematical modelling and artificial intelligence techniques to enhance fuel consumption in passenger cars by focusing on the speed at which cars are driven. An artificial neural network with an error less than 0.05 was developed to be applied practically as to predict the rate of fuel consumption in vehicles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modeling" title="mathematical modeling">mathematical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20consumption" title=" fuel consumption"> fuel consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=fossil%20fuel" title=" fossil fuel"> fossil fuel</a> </p> <a href="https://publications.waset.org/abstracts/44068/modelling-vehicle-fuel-consumption-utilising-artificial-neural-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44068.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3344</span> A New Study on Mathematical Modelling of COVID-19 with Caputo Fractional Derivative</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sadia%20Arshad">Sadia Arshad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The new coronavirus disease or COVID-19 still poses an alarming situation around the world. Modeling based on the derivative of fractional order is relatively important to capture real-world problems and to analyze the realistic situation of the proposed model. Weproposed a mathematical model for the investigation of COVID-19 dynamics in a generalized fractional framework. The new model is formulated in the Caputo sense and employs a nonlinear time-varying transmission rate. The existence and uniqueness solutions of the fractional order derivative have been studied using the fixed-point theory. The associated dynamical behaviors are discussed in terms of equilibrium, stability, and basic reproduction number. For the purpose of numerical implementation, an effcient approximation scheme is also employed to solve the fractional COVID-19 model. Numerical simulations are reported for various fractional orders, and simulation results are compared with a real case of COVID-19 pandemic. According to the comparative results with real data, we find the best value of fractional orderand justify the use of the fractional concept in the mathematical modelling, for the new fractional modelsimulates the reality more accurately than the other classical frameworks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fractional%20calculus" title="fractional calculus">fractional calculus</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20solution" title=" numerical solution"> numerical solution</a> </p> <a href="https://publications.waset.org/abstracts/151862/a-new-study-on-mathematical-modelling-of-covid-19-with-caputo-fractional-derivative" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151862.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3343</span> GAC Adsorption Modelling of Metsulfuron Methyl from Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nathaporn%20Areerachakul">Nathaporn Areerachakul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the adsorption capacity of GAC with metsulfuron methyl was evaluated by using adsorption equilibrium and a fixed bed. Mathematical modelling was also used to simulate the GAC adsorption behavior. Adsorption equilibrium experiment of GAC was conducted using a constant concentration of metsulfuron methyl of 10 mg/L. The purpose of this study was to find the single component equilibrium concentration of herbicide. The adsorption behavior was simulated using the Langmuir, Freundlich, and Sips isotherm. The Sips isotherm fitted the experimental data reasonably well with an error of 6.6 % compared with 15.72 % and 7.07% for the Langmuir isotherm and Freudrich isotherm. Modelling using GAC adsorption theory could not replicate the experimental results in fixed bed column of 10 and 15 cm bed depths after a period more than 10 days of operation. This phenomenon is attributed to the formation of micro-organism (BAC) on the surface of GAC in addition to GAC alone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=isotherm" title="isotherm">isotherm</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption%20equilibrium" title=" adsorption equilibrium"> adsorption equilibrium</a>, <a href="https://publications.waset.org/abstracts/search?q=GAC" title=" GAC"> GAC</a>, <a href="https://publications.waset.org/abstracts/search?q=metsulfuron%20methyl" title=" metsulfuron methyl"> metsulfuron methyl</a> </p> <a href="https://publications.waset.org/abstracts/8935/gac-adsorption-modelling-of-metsulfuron-methyl-from-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8935.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3342</span> Crude Oil Electrostatic Mathematical Modelling on an Existing Industrial Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Yazdanmehr">Fatemeh Yazdanmehr</a>, <a href="https://publications.waset.org/abstracts/search?q=Iulian%20Nistor"> Iulian Nistor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The scope of the current study is the prediction of water separation in a two-stage industrial crude oil desalting plant. This research study was focused on developing a desalting operation in an existing production unit of one Iranian heavy oil field with 75 MBPD capacity. Because of some operational issues, such as oil dehydration at high temperatures, the optimization of the desalter operational parameters was essential. The mathematical desalting is modeled based on the population balance method. The existing operational data is used for tuning and validation of the accuracy of the modeling. The inlet oil temperature to desalter used was decreased from 110°C to 80°C, and the desalted electrical field was increased from 0.75 kv to 2.5 kv. The proposed condition for the desalter also meets the water oil specification. Based on these conditions of desalter, the oil recovery is increased by 574 BBL/D, and the gas flaring decrease by 2.8 MMSCF/D. Depending on the oil price, the additional production of oil can increase the annual income by about $15 MM and reduces greenhouse gas production caused by gas flaring. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=desalter" title="desalter">desalter</a>, <a href="https://publications.waset.org/abstracts/search?q=demulsification" title=" demulsification"> demulsification</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=water-oil%20separation" title=" water-oil separation"> water-oil separation</a>, <a href="https://publications.waset.org/abstracts/search?q=crude%20oil%20emulsion" title=" crude oil emulsion"> crude oil emulsion</a> </p> <a href="https://publications.waset.org/abstracts/151406/crude-oil-electrostatic-mathematical-modelling-on-an-existing-industrial-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151406.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3341</span> Numerical Solution of a Mathematical Model of Vortex Using Projection Method: Applications to Tornado Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jagdish%20Prasad%20Maurya">Jagdish Prasad Maurya</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20Kumar%20Pandey"> Sanjay Kumar Pandey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inadequate understanding of the complex nature of flow features in tornado vortex is a major problem in modelling tornadoes. Tornadoes are violent atmospheric phenomenon that appear all over the world. Modelling tornadoes aim to reduce the loss of the human lives and material damage caused by the tornadoes. Dynamics of tornado is investigated by a numerical technique, the improved version of the projection method. In this paper, authors solve the problem for axisymmetric tornado vortex by the said method that uses a finite difference approach for getting an accurate and stable solution. The conclusions drawn are that large radial inflow velocity occurs near the ground that leads to increase the tangential velocity. The increased velocity phenomenon occurs close to the boundary and absolute maximum wind is obtained near the vortex core. The results validate previous numerical and theoretical models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title="computational fluid dynamics">computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20model" title=" mathematical model"> mathematical model</a>, <a href="https://publications.waset.org/abstracts/search?q=Navier-Stokes%20equations" title=" Navier-Stokes equations"> Navier-Stokes equations</a>, <a href="https://publications.waset.org/abstracts/search?q=tornado" title=" tornado"> tornado</a> </p> <a href="https://publications.waset.org/abstracts/67257/numerical-solution-of-a-mathematical-model-of-vortex-using-projection-method-applications-to-tornado-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67257.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3340</span> Mathematical Modelling of Drying Kinetics of Cantaloupe in a Solar Assisted Dryer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Melike%20Sultan%20Karasu%20Asnaz">Melike Sultan Karasu Asnaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayse%20Ozdogan%20Dolcek"> Ayse Ozdogan Dolcek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Crop drying, which aims to reduce the moisture content to a certain level, is a method used to extend the shelf life and prevent it from spoiling. One of the oldest food preservation techniques is open sunor shade drying. Even though this technique is the most affordable of all drying methods, there are some drawbacks such as contamination by insects, environmental pollution, windborne dust, and direct expose to weather conditions such as wind, rain, hail. However, solar dryers that provide a hygienic and controllable environment to preserve food and extend its shelf life have been developed and used to dry agricultural products. Thus, foods can be dried quickly without being affected by weather variables, and quality products can be obtained. This research is mainly devoted to investigating the modelling of drying kinetics of cantaloupe in a forced convection solar dryer. Mathematical models for the drying process should be defined to simulate the drying behavior of the foodstuff, which will greatly contribute to the development of solar dryer designs. Thus, drying experiments were conducted and replicated five times, and various data such as temperature, relative humidity, solar irradiation, drying air speed, and weight were instantly monitored and recorded. Moisture content of sliced and pretreated cantaloupe were converted into moisture ratio and then fitted against drying time for constructing drying curves. Then, 10 quasi-theoretical and empirical drying models were applied to find the best drying curve equation according to the Levenberg-Marquardt nonlinear optimization method. The best fitted mathematical drying model was selected according to the highest coefficient of determination (R²), and the mean square of the deviations (χ^²) and root mean square error (RMSE) criterial. The best fitted model was utilized to simulate a thin layer solar drying of cantaloupe, and the simulation results were compared with the experimental data for validation purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20dryer" title="solar dryer">solar dryer</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modelling" title=" mathematical modelling"> mathematical modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=drying%20kinetics" title=" drying kinetics"> drying kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=cantaloupe%20drying" title=" cantaloupe drying"> cantaloupe drying</a> </p> <a href="https://publications.waset.org/abstracts/150488/mathematical-modelling-of-drying-kinetics-of-cantaloupe-in-a-solar-assisted-dryer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150488.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3339</span> Piezoelectric Approach on Harvesting Acoustic Energy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khin%20Fai%20Chen">Khin Fai Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jee-Hou%20Ho"> Jee-Hou Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=Eng%20Hwa%20Yap"> Eng Hwa Yap</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An acoustic micro-energy harvester (AMEH) is developed to convert wasted acoustical energy into useful electrical energy. AMEH is mathematically modeled using lumped element modelling (LEM) and Euler-Bernoulli beam (EBB) modelling. An experiment is designed to validate the mathematical model and assess the feasibility of AMEH. Comparison of theoretical and experimental data on critical parameter value such as Mm, Cms, dm and Ceb showed the variances are within 1% to 6%, which is reasonably acceptable. Hence, AMEH mathematical model is validated. Then, AMEH undergoes bandwidth tuning for performance optimization for further experimental work. The AMEH successfully produces 0.9 V⁄(m⁄s^2) and 1.79 μW⁄(m^2⁄s^4) at 60Hz and 400kΩ resistive load which only show variances about 7% compared to theoretical data. By integrating a capacitive load of 200µF, the discharge cycle time of AMEH is 1.8s and the usable energy bandwidth is available as low as 0.25g. At 1g and 60Hz resonance frequency, the averaged power output is about 2.2mW which fulfilled a range of wireless sensors and communication peripherals power requirements. Finally, the design for AMEH is assessed, validated and deemed as a feasible design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=piezoelectric" title="piezoelectric">piezoelectric</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustic" title=" acoustic"> acoustic</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20harvester" title=" energy harvester"> energy harvester</a> </p> <a href="https://publications.waset.org/abstracts/29247/piezoelectric-approach-on-harvesting-acoustic-energy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29247.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3338</span> Deterministic Modelling to Estimate Economic Impact from Implementation and Management of Large Infrastructure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dimitrios%20J.%20Dimitriou">Dimitrios J. Dimitriou </a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is widely recognised that the assets portfolio development is helping to enhance economic growth, productivity and competitiveness. While numerous studies and reports certify the positive effect of investments in large infrastructure investments on the local economy, still, the methodology to estimate the contribution in economic development is a challenging issue for researchers and economists. The key question is how to estimate those economic impacts in each economic system. This paper provides a compact and applicable methodological framework providing quantitative results in terms of the overall jobs and income generated into the project life cycle. According to a deterministic mathematical approach, the key variables and the modelling framework are presented. The numerical case study highlights key results for a new motorway project in Greece, which is experienced economic stress for many years, providing the opportunity for comparisons with similar cases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantitative%20modelling" title="quantitative modelling">quantitative modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20impact" title=" economic impact"> economic impact</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20transport%20infrastructure" title=" large transport infrastructure"> large transport infrastructure</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20assessment" title=" economic assessment"> economic assessment</a> </p> <a href="https://publications.waset.org/abstracts/80752/deterministic-modelling-to-estimate-economic-impact-from-implementation-and-management-of-large-infrastructure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80752.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3337</span> Mathematical Modelling of Different Types of Body Support Surface for Pressure Ulcer Prevention</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahbub%20C.%20Mishu">Mahbub C. Mishu</a>, <a href="https://publications.waset.org/abstracts/search?q=Venktesh%20N.%20Dubey"> Venktesh N. Dubey</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamas%20Hickish"> Tamas Hickish</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonathan%20Cole"> Jonathan Cole</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pressure ulcer is a common problem for today's healthcare industry. It occurs due to external load applied to the skin. Also when the subject is immobile for a longer period of time and there is continuous load applied to a particular area of human body,blood flow gets reduced and as a result pressure ulcer develops. Body support surface has a significant role in preventing ulceration so it is important to know the characteristics of support surface under loading conditions. In this paper we have presented mathematical models of different types of viscoelastic materials and also we have shown the validation of our simulation results with experiments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pressure%20ulcer" title="pressure ulcer">pressure ulcer</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelastic%20material" title=" viscoelastic material"> viscoelastic material</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20model" title=" mathematical model"> mathematical model</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20validation" title=" experimental validation"> experimental validation</a> </p> <a href="https://publications.waset.org/abstracts/8575/mathematical-modelling-of-different-types-of-body-support-surface-for-pressure-ulcer-prevention" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8575.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3336</span> On the Mathematical Modelling of Aggregative Stability of Disperse Systems </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arnold%20M.%20Brener">Arnold M. Brener</a>, <a href="https://publications.waset.org/abstracts/search?q=Lesbek%20Tashimov"> Lesbek Tashimov</a>, <a href="https://publications.waset.org/abstracts/search?q=Ablakim%20S.%20Muratov"> Ablakim S. Muratov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper deals with the special model for coagulation kernels which represents new control parameters in the Smoluchowski equation for binary aggregation. On the base of the model the new approach to evaluating aggregative stability of disperse systems has been submitted. With the help of this approach the simple estimates for aggregative stability of various types of hydrophilic nano-suspensions have been obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aggregative%20stability" title="aggregative stability">aggregative stability</a>, <a href="https://publications.waset.org/abstracts/search?q=coagulation%20kernels" title=" coagulation kernels"> coagulation kernels</a>, <a href="https://publications.waset.org/abstracts/search?q=disperse%20systems" title=" disperse systems"> disperse systems</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20model" title=" mathematical model"> mathematical model</a> </p> <a href="https://publications.waset.org/abstracts/10336/on-the-mathematical-modelling-of-aggregative-stability-of-disperse-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10336.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3335</span> [Keynote Talk]: Determination of the Quality of the Machined Surface Using Fuzzy Logic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dejan%20Taniki%C4%87">Dejan Tanikić</a>, <a href="https://publications.waset.org/abstracts/search?q=Jelena%20%C4%90okovi%C4%87"> Jelena Đoković</a>, <a href="https://publications.waset.org/abstracts/search?q=Sa%C5%A1a%20Kalinovi%C4%87"> Saša Kalinović</a>, <a href="https://publications.waset.org/abstracts/search?q=Miodrag%20Mani%C4%87"> Miodrag Manić</a>, <a href="https://publications.waset.org/abstracts/search?q=Sa%C5%A1a%20Ran%C4%91elovi%C4%87"> Saša Ranđelović</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with measuring and modelling of the quality of the machined surface of the metal machining process. The average surface roughness (<em>R<sub>a</sub></em>) which represents the quality of the machined part was measured during the dry turning of the AISI 4140 steel. A large number of factors with the unknown relations among them influences this parameter, and that is why mathematical modelling is extremely complicated. Different values of cutting speed, feed rate, depth of cut (cutting regime) and workpiece hardness causes different surface roughness values. Modelling with soft computing techniques may be very useful in such cases. This paper presents the usage of the fuzzy logic-based system for determining metal machining process parameter in order to find the proper values of cutting regimes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic" title="fuzzy logic">fuzzy logic</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20machining" title=" metal machining"> metal machining</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20modeling" title=" process modeling"> process modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a> </p> <a href="https://publications.waset.org/abstracts/98126/keynote-talk-determination-of-the-quality-of-the-machined-surface-using-fuzzy-logic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98126.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3334</span> Schedule a New Production Plan by Heuristic Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanife%20Merve%20%C3%96zt%C3%BCrk">Hanife Merve Öztürk</a>, <a href="https://publications.waset.org/abstracts/search?q=S%C4%B1d%C4%B1ka%20Dalgan"> Sıdıka Dalgan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this project, a capacity analysis study is done at TAT A. Ş. Maret Plant. Production capacity of products which generate 80% of sales amount are determined. Obtained data entered the LEKIN Scheduling Program and we get production schedules by using heuristic methods. Besides heuristic methods, as mathematical model, disjunctive programming formulation is adapted to flexible job shop problems by adding a new constraint to find optimal schedule solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=scheduling" title="scheduling">scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20job%20shop%20problem" title=" flexible job shop problem"> flexible job shop problem</a>, <a href="https://publications.waset.org/abstracts/search?q=shifting%20bottleneck%20heuristic" title=" shifting bottleneck heuristic"> shifting bottleneck heuristic</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modelling" title=" mathematical modelling"> mathematical modelling</a> </p> <a href="https://publications.waset.org/abstracts/13135/schedule-a-new-production-plan-by-heuristic-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13135.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3333</span> Investigating the Dynamics of Knowledge Acquisition in Learning Using Differential Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gilbert%20Makanda">Gilbert Makanda</a>, <a href="https://publications.waset.org/abstracts/search?q=Roelf%20Sypkens"> Roelf Sypkens</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A mathematical model for knowledge acquisition in teaching and learning is proposed. In this study we adopt the mathematical model that is normally used for disease modelling into teaching and learning. We derive mathematical conditions which facilitate knowledge acquisition. This study compares the effects of dropping out of the course at early stages with later stages of learning. The study also investigates effect of individual interaction and learning from other sources to facilitate learning. The study fits actual data to a general mathematical model using Matlab ODE45 and lsqnonlin to obtain a unique mathematical model that can be used to predict knowledge acquisition. The data used in this study was obtained from the tutorial test results for mathematics 2 students from the Central University of Technology, Free State, South Africa in the department of Mathematical and Physical Sciences. The study confirms already known results that increasing dropout rates and forgetting taught concepts reduce the population of knowledgeable students. Increasing teaching contacts and access to other learning materials facilitate knowledge acquisition. The effect of increasing dropout rates is more enhanced in the later stages of learning than earlier stages. The study opens up a new direction in further investigations in teaching and learning using differential equations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=differential%20equations" title="differential equations">differential equations</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge%20acquisition" title=" knowledge acquisition"> knowledge acquisition</a>, <a href="https://publications.waset.org/abstracts/search?q=least%20squares%20nonlinear" title=" least squares nonlinear"> least squares nonlinear</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamical%20systems" title=" dynamical systems"> dynamical systems</a> </p> <a href="https://publications.waset.org/abstracts/74529/investigating-the-dynamics-of-knowledge-acquisition-in-learning-using-differential-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74529.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3332</span> Modelling Railway Noise Over Large Areas, Assisted by GIS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Conrad%20Weber">Conrad Weber</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The modelling of railway noise over large projects areas can be very time consuming in terms of preparing the noise models and calculation time. An open-source GIS program has been utilised to assist with the modelling of operational noise levels for 675km of railway corridor. A range of GIS algorithms were utilised to break up the noise model area into manageable calculation sizes. GIS was utilised to prepare and filter a range of noise modelling inputs, including building files, land uses and ground terrain. A spreadsheet was utilised to manage the accuracy of key input parameters, including train speeds, train types, curve corrections, bridge corrections and engine notch settings. GIS was utilised to present the final noise modelling results. This paper explains the noise modelling process and how the spreadsheet and GIS were utilised to accurately model this massive project efficiently. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=noise" title="noise">noise</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=rail" title=" rail"> rail</a> </p> <a href="https://publications.waset.org/abstracts/154298/modelling-railway-noise-over-large-areas-assisted-by-gis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154298.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3331</span> Mathematical Modelling and Parametric Study of Water Based Loop Heat Pipe for Ground Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shail%20N.%20Shah">Shail N. Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20K.%20Baraya"> K. K. Baraya</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Madhusudan%20Achari"> A. Madhusudan Achari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Loop Heat Pipe is a passive two-phase heat transfer device which can be used without any external power source to transfer heat from source to sink. The main aim of this paper is to have modelling of water-based LHP at varying heat loads. Through figures, how the fluid flow occurs within the loop has been explained. Energy Balance has been done in each section. IC (Iterative Convergence) scheme to find out the SSOT (Steady State Operating Temperature) has been developed. It is developed using Dev C++. To best of the author’s knowledge, hardly any detail is available in the open literature about how temperature distribution along the loop is to be evaluated. Results for water-based loop heat pipe is obtained and compared with open literature and error is found within 4%. Parametric study has been done to see the effect of different parameters on pressure drop and SSOT at varying heat loads. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=loop%20heat%20pipe" title="loop heat pipe">loop heat pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling%20of%20loop%20heat%20pipe" title=" modelling of loop heat pipe"> modelling of loop heat pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=parametric%20study%20of%20loop%20heat%20pipe" title=" parametric study of loop heat pipe"> parametric study of loop heat pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=functioning%20of%20loop%20heat%20pipe" title=" functioning of loop heat pipe"> functioning of loop heat pipe</a> </p> <a href="https://publications.waset.org/abstracts/88235/mathematical-modelling-and-parametric-study-of-water-based-loop-heat-pipe-for-ground-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88235.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3330</span> A Mathematical Model of Power System State Estimation for Power Flow Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Benhamida">F. Benhamida</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Graa"> A. Graa</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Benameur"> L. Benameur</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Ziane"> I. Ziane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The state estimation of the electrical power system operation state is very important for supervising task. With the nonlinearity of the AC power flow model, the state estimation problem (SEP) is a nonlinear mathematical problem with many local optima. This paper treat the mathematical model for the SEP and the monitoring of the nonlinear systems of great dimensions with an application on power electrical system, the modelling, the analysis and state estimation synthesis in order to supervise the power system behavior. in fact, it is very difficult, to see impossible, (for reasons of accessibility, techniques and/or of cost) to measure the excessive number of the variables of state in a large-sized system. It is thus important to develop software sensors being able to produce a reliable estimate of the variables necessary for the diagnosis and also for the control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=power%20system" title="power system">power system</a>, <a href="https://publications.waset.org/abstracts/search?q=state%20estimation" title=" state estimation"> state estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=robustness" title=" robustness"> robustness</a>, <a href="https://publications.waset.org/abstracts/search?q=observability" title=" observability"> observability</a> </p> <a href="https://publications.waset.org/abstracts/36293/a-mathematical-model-of-power-system-state-estimation-for-power-flow-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36293.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">523</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3329</span> Rim Size Optimization Using Mathematical Modelling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Tan">M. Tan</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20N.%20Wan"> N. N. Wan</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Ramli"> N. Ramli</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20H.%20Hassan"> N. H. Hassan </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Car drivers would always like to have custom wheel on their car for two reasons; to improve their car's aesthetic beauty and to improve their car handling. As the size of the rims or wheels played an important role in influencing the way of car handles around turns, this paper aims to present the optimality of rim size that drivers should have known while changing their rim. There are three factors that drivers should have considered while changing their rim: rim size, its weight and material of which they are made. Using mathematical analysis, this paper will focus on only one factor, which is rim size. Factors that are considered in calculating the optimum rim size are the vehicle rim radius, tire height and weight, and aspect ratio. This paper has found that there are limitations in percentage change in rim size from the original tire size. Failure to have the right offset size may cause problems in maneuvering the vehicle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mathematical%20analysis" title="mathematical analysis">mathematical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=optimum%20wheel%20size" title=" optimum wheel size"> optimum wheel size</a>, <a href="https://publications.waset.org/abstracts/search?q=percentage%20change" title=" percentage change"> percentage change</a>, <a href="https://publications.waset.org/abstracts/search?q=custom%20wheel" title=" custom wheel"> custom wheel</a> </p> <a href="https://publications.waset.org/abstracts/8523/rim-size-optimization-using-mathematical-modelling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8523.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">492</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3328</span> Modelling and Control of Electrohydraulic System Using Fuzzy Logic Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hajara%20Abdulkarim%20Aliyu">Hajara Abdulkarim Aliyu</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulbasid%20Ismail%20Isa"> Abdulbasid Ismail Isa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research paper studies electrohydraulic system for its role in position and motion control system and develops as mathematical model describing the behaviour of the system. The research further proposes Fuzzy logic and conventional PID controllers in order to achieve both accurate positioning of the payload and overall improvement of the system performance. The simulation result shows Fuzzy logic controller has a superior tracking performance and high disturbance rejection efficiency for its shorter settling time, less overshoot, smaller values of integral of absolute and deviation errors over the conventional PID controller at all the testing conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrohydraulic" title="electrohydraulic">electrohydraulic</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic" title=" fuzzy logic"> fuzzy logic</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=NZ-PID" title=" NZ-PID"> NZ-PID</a> </p> <a href="https://publications.waset.org/abstracts/46295/modelling-and-control-of-electrohydraulic-system-using-fuzzy-logic-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46295.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3327</span> Kinetics of Growth Rate of Microalga: The Effect of Carbon Dioxide Concentration </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Retno%20Ambarwati%20Sigit%20Lestari">Retno Ambarwati Sigit Lestari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microalga is one of the organisms that can be considered ideal and potential for raw material of bioenergy production, because the content of lipids in microalga is relatively high. Microalga is an aquatic organism that produces complex organic compounds from inorganic molecules using carbon dioxide as a carbon source, and sunlight for energy supply. Microalga-CO₂ fixation has potential advantages over other carbon captures and storage approaches, such as wide distribution, high photosynthetic rate, good environmental adaptability, and ease of operation. The rates of growth and CO₂ capture of microalga are influenced by CO₂ concentration and light intensity. This study quantitatively investigates the effects of CO₂ concentration on the rates of growth and CO₂ capture of a type of microalga, cultivated in bioreactors. The works include laboratory experiments as well as mathematical modelling. The mathematical models were solved numerically and the accuracy of the model was tested by the experimental data. It turned out that the mathematical model proposed can well quantitatively describe the growth and CO₂ capture of microalga, in which the effects of CO₂ concentration can be observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Microalga" title="Microalga">Microalga</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2%20concentration" title=" CO2 concentration"> CO2 concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=photobioreactor" title=" photobioreactor"> photobioreactor</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20model" title=" mathematical model "> mathematical model </a> </p> <a href="https://publications.waset.org/abstracts/106192/kinetics-of-growth-rate-of-microalga-the-effect-of-carbon-dioxide-concentration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106192.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Mathematical%20Modelling&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Mathematical%20Modelling&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Mathematical%20Modelling&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Mathematical%20Modelling&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Mathematical%20Modelling&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Mathematical%20Modelling&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Mathematical%20Modelling&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Mathematical%20Modelling&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Mathematical%20Modelling&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Mathematical%20Modelling&amp;page=111">111</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Mathematical%20Modelling&amp;page=112">112</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Mathematical%20Modelling&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10