CINXE.COM

Hilbert space - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Hilbert space - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"dccda238-d79f-42e7-8c3a-d565d5e6e9b8","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Hilbert_space","wgTitle":"Hilbert space","wgCurRevisionId":1255844830,"wgRevisionId":1255844830,"wgArticleId":20598932,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description is different from Wikidata","Pages displaying wikidata descriptions as a fallback via Module:Annotated link","Commons category link from Wikidata","Good articles","Hilbert spaces","Functional analysis","Linear algebra","Operator theory","David Hilbert"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Hilbert_space","wgRelevantArticleId":20598932,"wgIsProbablyEditable": true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":100000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q190056","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"], "GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips", "ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/5/5c/Standing_waves_on_a_string.gif"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1130"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/5/5c/Standing_waves_on_a_string.gif"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="753"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="603"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Hilbert space - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Hilbert_space"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Hilbert_space&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Hilbert_space"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Hilbert_space rootpage-Hilbert_space skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Hilbert+space" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Hilbert+space" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Hilbert+space" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Hilbert+space" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Definition_and_illustration" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Definition_and_illustration"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Definition and illustration</span> </div> </a> <button aria-controls="toc-Definition_and_illustration-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Definition and illustration subsection</span> </button> <ul id="toc-Definition_and_illustration-sublist" class="vector-toc-list"> <li id="toc-Motivating_example:_Euclidean_vector_space" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Motivating_example:_Euclidean_vector_space"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Motivating example: Euclidean vector space</span> </div> </a> <ul id="toc-Motivating_example:_Euclidean_vector_space-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Definition" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Definition"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>Definition</span> </div> </a> <ul id="toc-Definition-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Second_example:_sequence_spaces" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Second_example:_sequence_spaces"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.3</span> <span>Second example: sequence spaces</span> </div> </a> <ul id="toc-Second_example:_sequence_spaces-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>History</span> </div> </a> <ul id="toc-History-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Examples" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Examples"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Examples</span> </div> </a> <button aria-controls="toc-Examples-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Examples subsection</span> </button> <ul id="toc-Examples-sublist" class="vector-toc-list"> <li id="toc-Lebesgue_spaces" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Lebesgue_spaces"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Lebesgue spaces</span> </div> </a> <ul id="toc-Lebesgue_spaces-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sobolev_spaces" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Sobolev_spaces"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Sobolev spaces</span> </div> </a> <ul id="toc-Sobolev_spaces-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Spaces_of_holomorphic_functions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Spaces_of_holomorphic_functions"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Spaces of holomorphic functions</span> </div> </a> <ul id="toc-Spaces_of_holomorphic_functions-sublist" class="vector-toc-list"> <li id="toc-Hardy_spaces" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Hardy_spaces"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3.1</span> <span>Hardy spaces</span> </div> </a> <ul id="toc-Hardy_spaces-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Bergman_spaces" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Bergman_spaces"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3.2</span> <span>Bergman spaces</span> </div> </a> <ul id="toc-Bergman_spaces-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-Applications" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Applications"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Applications</span> </div> </a> <button aria-controls="toc-Applications-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Applications subsection</span> </button> <ul id="toc-Applications-sublist" class="vector-toc-list"> <li id="toc-Sturm–Liouville_theory" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Sturm–Liouville_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Sturm–Liouville theory</span> </div> </a> <ul id="toc-Sturm–Liouville_theory-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Partial_differential_equations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Partial_differential_equations"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Partial differential equations</span> </div> </a> <ul id="toc-Partial_differential_equations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Ergodic_theory" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Ergodic_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Ergodic theory</span> </div> </a> <ul id="toc-Ergodic_theory-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Fourier_analysis" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Fourier_analysis"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4</span> <span>Fourier analysis</span> </div> </a> <ul id="toc-Fourier_analysis-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Quantum_mechanics" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Quantum_mechanics"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.5</span> <span>Quantum mechanics</span> </div> </a> <ul id="toc-Quantum_mechanics-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Probability_theory" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Probability_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.6</span> <span>Probability theory</span> </div> </a> <ul id="toc-Probability_theory-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Color_perception" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Color_perception"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.7</span> <span>Color perception</span> </div> </a> <ul id="toc-Color_perception-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Properties" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Properties</span> </div> </a> <button aria-controls="toc-Properties-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Properties subsection</span> </button> <ul id="toc-Properties-sublist" class="vector-toc-list"> <li id="toc-Pythagorean_identity" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Pythagorean_identity"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Pythagorean identity</span> </div> </a> <ul id="toc-Pythagorean_identity-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Parallelogram_identity_and_polarization" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Parallelogram_identity_and_polarization"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Parallelogram identity and polarization</span> </div> </a> <ul id="toc-Parallelogram_identity_and_polarization-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Best_approximation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Best_approximation"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3</span> <span>Best approximation</span> </div> </a> <ul id="toc-Best_approximation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Duality" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Duality"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.4</span> <span>Duality</span> </div> </a> <ul id="toc-Duality-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Weakly-convergent_sequences" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Weakly-convergent_sequences"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.5</span> <span>Weakly-convergent sequences</span> </div> </a> <ul id="toc-Weakly-convergent_sequences-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Banach_space_properties" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Banach_space_properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.6</span> <span>Banach space properties</span> </div> </a> <ul id="toc-Banach_space_properties-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Operators_on_Hilbert_spaces" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Operators_on_Hilbert_spaces"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Operators on Hilbert spaces</span> </div> </a> <button aria-controls="toc-Operators_on_Hilbert_spaces-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Operators on Hilbert spaces subsection</span> </button> <ul id="toc-Operators_on_Hilbert_spaces-sublist" class="vector-toc-list"> <li id="toc-Bounded_operators" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Bounded_operators"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Bounded operators</span> </div> </a> <ul id="toc-Bounded_operators-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Unbounded_operators" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Unbounded_operators"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Unbounded operators</span> </div> </a> <ul id="toc-Unbounded_operators-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Constructions" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Constructions"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Constructions</span> </div> </a> <button aria-controls="toc-Constructions-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Constructions subsection</span> </button> <ul id="toc-Constructions-sublist" class="vector-toc-list"> <li id="toc-Direct_sums" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Direct_sums"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1</span> <span>Direct sums</span> </div> </a> <ul id="toc-Direct_sums-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Tensor_products" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Tensor_products"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2</span> <span>Tensor products</span> </div> </a> <ul id="toc-Tensor_products-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Orthonormal_bases" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Orthonormal_bases"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Orthonormal bases</span> </div> </a> <button aria-controls="toc-Orthonormal_bases-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Orthonormal bases subsection</span> </button> <ul id="toc-Orthonormal_bases-sublist" class="vector-toc-list"> <li id="toc-Sequence_spaces" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Sequence_spaces"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.1</span> <span>Sequence spaces</span> </div> </a> <ul id="toc-Sequence_spaces-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Bessel&#039;s_inequality_and_Parseval&#039;s_formula" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Bessel&#039;s_inequality_and_Parseval&#039;s_formula"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.2</span> <span>Bessel's inequality and Parseval's formula</span> </div> </a> <ul id="toc-Bessel&#039;s_inequality_and_Parseval&#039;s_formula-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Hilbert_dimension" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Hilbert_dimension"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.3</span> <span>Hilbert dimension</span> </div> </a> <ul id="toc-Hilbert_dimension-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Separable_spaces" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Separable_spaces"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.4</span> <span>Separable spaces</span> </div> </a> <ul id="toc-Separable_spaces-sublist" class="vector-toc-list"> <li id="toc-In_quantum_field_theory" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#In_quantum_field_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.4.1</span> <span>In quantum field theory</span> </div> </a> <ul id="toc-In_quantum_field_theory-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-Orthogonal_complements_and_projections" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Orthogonal_complements_and_projections"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Orthogonal complements and projections</span> </div> </a> <ul id="toc-Orthogonal_complements_and_projections-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Spectral_theory" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Spectral_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Spectral theory</span> </div> </a> <ul id="toc-Spectral_theory-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-In_popular_culture" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#In_popular_culture"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>In popular culture</span> </div> </a> <ul id="toc-In_popular_culture-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Remarks" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Remarks"> <div class="vector-toc-text"> <span class="vector-toc-numb">13</span> <span>Remarks</span> </div> </a> <ul id="toc-Remarks-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">14</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">15</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">16</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Hilbert space</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 59 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-59" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">59 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Hilbert-ruimte" title="Hilbert-ruimte – Afrikaans" lang="af" hreflang="af" data-title="Hilbert-ruimte" data-language-autonym="Afrikaans" data-language-local-name="Afrikaans" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%81%D8%B6%D8%A7%D8%A1_%D9%87%D9%8A%D9%84%D8%A8%D8%B1%D8%AA" title="فضاء هيلبرت – Arabic" lang="ar" hreflang="ar" data-title="فضاء هيلبرت" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Espaciu_de_Hilbert" title="Espaciu de Hilbert – Asturian" lang="ast" hreflang="ast" data-title="Espaciu de Hilbert" data-language-autonym="Asturianu" data-language-local-name="Asturian" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Hilbert_f%C9%99zas%C4%B1" title="Hilbert fəzası – Azerbaijani" lang="az" hreflang="az" data-title="Hilbert fəzası" data-language-autonym="Azərbaycanca" data-language-local-name="Azerbaijani" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%B9%E0%A6%BF%E0%A6%B2%E0%A6%AC%E0%A6%BE%E0%A6%B0%E0%A7%8D%E0%A6%9F_%E0%A6%9C%E0%A6%97%E0%A7%8E" title="হিলবার্ট জগৎ – Bangla" lang="bn" hreflang="bn" data-title="হিলবার্ট জগৎ" data-language-autonym="বাংলা" data-language-local-name="Bangla" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-ba mw-list-item"><a href="https://ba.wikipedia.org/wiki/%D0%93%D0%B8%D0%BB%D1%8C%D0%B1%D0%B5%D1%80%D1%82_%D0%B0%D1%80%D0%B0%D1%83%D1%8B%D2%93%D1%8B" title="Гильберт арауығы – Bashkir" lang="ba" hreflang="ba" data-title="Гильберт арауығы" data-language-autonym="Башҡортса" data-language-local-name="Bashkir" class="interlanguage-link-target"><span>Башҡортса</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%A5%D0%B8%D0%BB%D0%B1%D0%B5%D1%80%D1%82%D0%BE%D0%B2%D0%BE_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D1%80%D0%B0%D0%BD%D1%81%D1%82%D0%B2%D0%BE" title="Хилбертово пространство – Bulgarian" lang="bg" hreflang="bg" data-title="Хилбертово пространство" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Espai_de_Hilbert" title="Espai de Hilbert – Catalan" lang="ca" hreflang="ca" data-title="Espai de Hilbert" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Hilbert%C5%AFv_prostor" title="Hilbertův prostor – Czech" lang="cs" hreflang="cs" data-title="Hilbertův prostor" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Hilbertrum" title="Hilbertrum – Danish" lang="da" hreflang="da" data-title="Hilbertrum" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Hilbertraum" title="Hilbertraum – German" lang="de" hreflang="de" data-title="Hilbertraum" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Hilberti_ruum" title="Hilberti ruum – Estonian" lang="et" hreflang="et" data-title="Hilberti ruum" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%A7%CF%8E%CF%81%CE%BF%CF%82_%CE%A7%CE%AF%CE%BB%CE%BC%CF%80%CE%B5%CF%81%CF%84" title="Χώρος Χίλμπερτ – Greek" lang="el" hreflang="el" data-title="Χώρος Χίλμπερτ" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Espacio_de_Hilbert" title="Espacio de Hilbert – Spanish" lang="es" hreflang="es" data-title="Espacio de Hilbert" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Hilberta_spaco" title="Hilberta spaco – Esperanto" lang="eo" hreflang="eo" data-title="Hilberta spaco" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Hilberten_espazio" title="Hilberten espazio – Basque" lang="eu" hreflang="eu" data-title="Hilberten espazio" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%81%D8%B6%D8%A7%DB%8C_%D9%87%DB%8C%D9%84%D8%A8%D8%B1%D8%AA" title="فضای هیلبرت – Persian" lang="fa" hreflang="fa" data-title="فضای هیلبرت" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Espace_de_Hilbert" title="Espace de Hilbert – French" lang="fr" hreflang="fr" data-title="Espace de Hilbert" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Espazo_de_Hilbert" title="Espazo de Hilbert – Galician" lang="gl" hreflang="gl" data-title="Espazo de Hilbert" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%ED%9E%90%EB%B2%A0%EB%A5%B4%ED%8A%B8_%EA%B3%B5%EA%B0%84" title="힐베르트 공간 – Korean" lang="ko" hreflang="ko" data-title="힐베르트 공간" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D5%80%D5%AB%D5%AC%D5%A2%D5%A5%D6%80%D5%BF%D5%B5%D5%A1%D5%B6_%D5%BF%D5%A1%D6%80%D5%A1%D5%AE%D5%B8%D6%82%D5%A9%D5%B5%D5%B8%D6%82%D5%B6" title="Հիլբերտյան տարածություն – Armenian" lang="hy" hreflang="hy" data-title="Հիլբերտյան տարածություն" data-language-autonym="Հայերեն" data-language-local-name="Armenian" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Ruang_Hilbert" title="Ruang Hilbert – Indonesian" lang="id" hreflang="id" data-title="Ruang Hilbert" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Hilbert-r%C3%BAm" title="Hilbert-rúm – Icelandic" lang="is" hreflang="is" data-title="Hilbert-rúm" data-language-autonym="Íslenska" data-language-local-name="Icelandic" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Spazio_di_Hilbert" title="Spazio di Hilbert – Italian" lang="it" hreflang="it" data-title="Spazio di Hilbert" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%9E%D7%A8%D7%97%D7%91_%D7%94%D7%99%D7%9C%D7%91%D7%A8%D7%98" title="מרחב הילברט – Hebrew" lang="he" hreflang="he" data-title="מרחב הילברט" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-ky mw-list-item"><a href="https://ky.wikipedia.org/wiki/%D0%93%D0%B8%D0%BB%D1%8C%D0%B1%D0%B5%D1%80%D1%82_%D0%BC%D0%B5%D0%B9%D0%BA%D0%B8%D0%BD%D0%B4%D0%B8%D0%B3%D0%B8" title="Гильберт мейкиндиги – Kyrgyz" lang="ky" hreflang="ky" data-title="Гильберт мейкиндиги" data-language-autonym="Кыргызча" data-language-local-name="Kyrgyz" class="interlanguage-link-target"><span>Кыргызча</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Hilberto_erdv%C4%97" title="Hilberto erdvė – Lithuanian" lang="lt" hreflang="lt" data-title="Hilberto erdvė" data-language-autonym="Lietuvių" data-language-local-name="Lithuanian" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Hilbert-t%C3%A9r" title="Hilbert-tér – Hungarian" lang="hu" hreflang="hu" data-title="Hilbert-tér" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Ruang_Hilbert" title="Ruang Hilbert – Malay" lang="ms" hreflang="ms" data-title="Ruang Hilbert" data-language-autonym="Bahasa Melayu" data-language-local-name="Malay" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-mn mw-list-item"><a href="https://mn.wikipedia.org/wiki/%D0%A5%D0%B8%D0%BB%D0%B1%D0%B5%D1%80%D1%82%D0%B8%D0%B9%D0%BD_%D0%BE%D1%80%D0%BE%D0%BD_%D0%B7%D0%B0%D0%B9" title="Хилбертийн орон зай – Mongolian" lang="mn" hreflang="mn" data-title="Хилбертийн орон зай" data-language-autonym="Монгол" data-language-local-name="Mongolian" class="interlanguage-link-target"><span>Монгол</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Hilbertruimte" title="Hilbertruimte – Dutch" lang="nl" hreflang="nl" data-title="Hilbertruimte" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%83%92%E3%83%AB%E3%83%99%E3%83%AB%E3%83%88%E7%A9%BA%E9%96%93" title="ヒルベルト空間 – Japanese" lang="ja" hreflang="ja" data-title="ヒルベルト空間" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Hilbert-rom" title="Hilbert-rom – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Hilbert-rom" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Hilbertrom" title="Hilbertrom – Norwegian Nynorsk" lang="nn" hreflang="nn" data-title="Hilbertrom" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegian Nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Gilbert_fazosi" title="Gilbert fazosi – Uzbek" lang="uz" hreflang="uz" data-title="Gilbert fazosi" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="Uzbek" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%B9%E0%A8%BF%E0%A8%B2%E0%A8%AC%E0%A8%B0%E0%A8%9F_%E0%A8%B8%E0%A8%AA%E0%A9%87%E0%A8%B8" title="ਹਿਲਬਰਟ ਸਪੇਸ – Punjabi" lang="pa" hreflang="pa" data-title="ਹਿਲਬਰਟ ਸਪੇਸ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="Punjabi" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-pnb mw-list-item"><a href="https://pnb.wikipedia.org/wiki/%DB%81%D9%84%D8%A8%D8%B1%D9%B9_%D8%B3%D9%BE%DB%8C%D8%B3" title="ہلبرٹ سپیس – Western Punjabi" lang="pnb" hreflang="pnb" data-title="ہلبرٹ سپیس" data-language-autonym="پنجابی" data-language-local-name="Western Punjabi" class="interlanguage-link-target"><span>پنجابی</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Przestrze%C5%84_Hilberta" title="Przestrzeń Hilberta – Polish" lang="pl" hreflang="pl" data-title="Przestrzeń Hilberta" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Espa%C3%A7o_de_Hilbert" title="Espaço de Hilbert – Portuguese" lang="pt" hreflang="pt" data-title="Espaço de Hilbert" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Spa%C8%9Biu_Hilbert" title="Spațiu Hilbert – Romanian" lang="ro" hreflang="ro" data-title="Spațiu Hilbert" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%93%D0%B8%D0%BB%D1%8C%D0%B1%D0%B5%D1%80%D1%82%D0%BE%D0%B2%D0%BE_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D1%80%D0%B0%D0%BD%D1%81%D1%82%D0%B2%D0%BE" title="Гильбертово пространство – Russian" lang="ru" hreflang="ru" data-title="Гильбертово пространство" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sco mw-list-item"><a href="https://sco.wikipedia.org/wiki/Hilbert_space" title="Hilbert space – Scots" lang="sco" hreflang="sco" data-title="Hilbert space" data-language-autonym="Scots" data-language-local-name="Scots" class="interlanguage-link-target"><span>Scots</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Hap%C3%ABsira_e_Hilbertit" title="Hapësira e Hilbertit – Albanian" lang="sq" hreflang="sq" data-title="Hapësira e Hilbertit" data-language-autonym="Shqip" data-language-local-name="Albanian" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Hilbert_space" title="Hilbert space – Simple English" lang="en-simple" hreflang="en-simple" data-title="Hilbert space" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Hilbertov_priestor" title="Hilbertov priestor – Slovak" lang="sk" hreflang="sk" data-title="Hilbertov priestor" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Hilbertov_prostor" title="Hilbertov prostor – Slovenian" lang="sl" hreflang="sl" data-title="Hilbertov prostor" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%D8%A8%DB%86%D8%B4%D8%A7%DB%8C%DB%8C%DB%8C_%DA%BE%DB%8C%D9%84%D8%A8%DB%8E%D8%B1%D8%AA" title="بۆشاییی ھیلبێرت – Central Kurdish" lang="ckb" hreflang="ckb" data-title="بۆشاییی ھیلبێرت" data-language-autonym="کوردی" data-language-local-name="Central Kurdish" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%A5%D0%B8%D0%BB%D0%B1%D0%B5%D1%80%D1%82%D0%BE%D0%B2_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D0%BE%D1%80" title="Хилбертов простор – Serbian" lang="sr" hreflang="sr" data-title="Хилбертов простор" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Hilbertov_prostor" title="Hilbertov prostor – Serbo-Croatian" lang="sh" hreflang="sh" data-title="Hilbertov prostor" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbo-Croatian" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Hilbertin_avaruus" title="Hilbertin avaruus – Finnish" lang="fi" hreflang="fi" data-title="Hilbertin avaruus" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Hilbertrum" title="Hilbertrum – Swedish" lang="sv" hreflang="sv" data-title="Hilbertrum" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Espasyong_Hilbert" title="Espasyong Hilbert – Tagalog" lang="tl" hreflang="tl" data-title="Espasyong Hilbert" data-language-autonym="Tagalog" data-language-local-name="Tagalog" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Hilbert_uzay%C4%B1" title="Hilbert uzayı – Turkish" lang="tr" hreflang="tr" data-title="Hilbert uzayı" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%93%D1%96%D0%BB%D1%8C%D0%B1%D0%B5%D1%80%D1%82%D1%96%D0%B2_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D1%96%D1%80" title="Гільбертів простір – Ukrainian" lang="uk" hreflang="uk" data-title="Гільбертів простір" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Kh%C3%B4ng_gian_Hilbert" title="Không gian Hilbert – Vietnamese" lang="vi" hreflang="vi" data-title="Không gian Hilbert" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh-classical mw-list-item"><a href="https://zh-classical.wikipedia.org/wiki/%E5%B8%8C%E7%88%BE%E4%BC%AF%E7%89%B9%E7%A9%BA%E9%96%93" title="希爾伯特空間 – Literary Chinese" lang="lzh" hreflang="lzh" data-title="希爾伯特空間" data-language-autonym="文言" data-language-local-name="Literary Chinese" class="interlanguage-link-target"><span>文言</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E5%B8%8C%E5%B0%94%E4%BC%AF%E7%89%B9%E7%A9%BA%E9%97%B4" title="希尔伯特空间 – Wu" lang="wuu" hreflang="wuu" data-title="希尔伯特空间" data-language-autonym="吴语" data-language-local-name="Wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E5%9B%82%E6%8B%94%E7%A9%BA%E9%96%93" title="囂拔空間 – Cantonese" lang="yue" hreflang="yue" data-title="囂拔空間" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%B8%8C%E5%B0%94%E4%BC%AF%E7%89%B9%E7%A9%BA%E9%97%B4" title="希尔伯特空间 – Chinese" lang="zh" hreflang="zh" data-title="希尔伯特空间" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q190056#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Hilbert_space" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Hilbert_space" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Hilbert_space"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Hilbert_space&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Hilbert_space&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Hilbert_space"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Hilbert_space&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Hilbert_space&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Hilbert_space" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Hilbert_space" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Hilbert_space&amp;oldid=1255844830" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Hilbert_space&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Hilbert_space&amp;id=1255844830&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FHilbert_space"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FHilbert_space"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Hilbert_space&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Hilbert_space&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Hilbert_space" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q190056" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> <div id="mw-indicator-good-star" class="mw-indicator"><div class="mw-parser-output"><span typeof="mw:File"><a href="/wiki/Wikipedia:Good_articles*" title="This is a good article. Click here for more information."><img alt="This is a good article. Click here for more information." src="//upload.wikimedia.org/wikipedia/en/thumb/9/94/Symbol_support_vote.svg/19px-Symbol_support_vote.svg.png" decoding="async" width="19" height="20" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/94/Symbol_support_vote.svg/29px-Symbol_support_vote.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/94/Symbol_support_vote.svg/39px-Symbol_support_vote.svg.png 2x" data-file-width="180" data-file-height="185" /></a></span></div></div> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Type of topological vector space</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">For the space-filling curve, see <a href="/wiki/Hilbert_curve" title="Hilbert curve">Hilbert curve</a>.</div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Standing_waves_on_a_string.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/5c/Standing_waves_on_a_string.gif/220px-Standing_waves_on_a_string.gif" decoding="async" width="220" height="207" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/5c/Standing_waves_on_a_string.gif/330px-Standing_waves_on_a_string.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/5/5c/Standing_waves_on_a_string.gif 2x" data-file-width="360" data-file-height="339" /></a><figcaption>The state of a <a href="/wiki/Vibrating_string" class="mw-redirect" title="Vibrating string">vibrating string</a> can be modeled as a point in a Hilbert space. The decomposition of a vibrating string into its vibrations in distinct <a href="/wiki/Overtone" title="Overtone">overtones</a> is given by the projection of the point onto the <a href="/wiki/Coordinate_axes" class="mw-redirect" title="Coordinate axes">coordinate axes</a> in the space.</figcaption></figure> <p>In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, <b>Hilbert spaces</b> (named after <a href="/wiki/David_Hilbert" title="David Hilbert">David Hilbert</a>) allow the methods of <a href="/wiki/Linear_algebra" title="Linear algebra">linear algebra</a> and <a href="/wiki/Calculus" title="Calculus">calculus</a> to be generalized from (finite-dimensional) <a href="/wiki/Euclidean_vector_space" class="mw-redirect" title="Euclidean vector space">Euclidean vector spaces</a> to spaces that may be <a href="/wiki/Infinite-dimensional" class="mw-redirect" title="Infinite-dimensional">infinite-dimensional</a>. Hilbert spaces arise naturally and frequently in mathematics and <a href="/wiki/Physics" title="Physics">physics</a>, typically as <a href="/wiki/Function_space" title="Function space">function spaces</a>. Formally, a Hilbert space is a <a href="/wiki/Vector_space" title="Vector space">vector space</a> equipped with an <a href="/wiki/Inner_product" class="mw-redirect" title="Inner product">inner product</a> that induces a <a href="/wiki/Distance_function" class="mw-redirect" title="Distance function">distance function</a> for which the space is a <a href="/wiki/Complete_metric_space" title="Complete metric space">complete metric space</a>. A Hilbert space is a special case of a <a href="/wiki/Banach_space" title="Banach space">Banach space</a>. </p><p>Hilbert spaces were studied beginning in the first decade of the 20th century by <a href="/wiki/David_Hilbert" title="David Hilbert">David Hilbert</a>, <a href="/wiki/Erhard_Schmidt" title="Erhard Schmidt">Erhard Schmidt</a>, and <a href="/wiki/Frigyes_Riesz" title="Frigyes Riesz">Frigyes Riesz</a>. They are indispensable tools in the theories of <a href="/wiki/Partial_differential_equation" title="Partial differential equation">partial differential equations</a>, <a href="/wiki/Mathematical_formulation_of_quantum_mechanics" title="Mathematical formulation of quantum mechanics">quantum mechanics</a>, <a href="/wiki/Fourier_analysis" title="Fourier analysis">Fourier analysis</a> (which includes applications to <a href="/wiki/Signal_processing" title="Signal processing">signal processing</a> and <a href="/wiki/Heat_transfer" title="Heat transfer">heat transfer</a>), and <a href="/wiki/Ergodic_theory" title="Ergodic theory">ergodic theory</a> (which forms the mathematical underpinning of <a href="/wiki/Thermodynamics" title="Thermodynamics">thermodynamics</a>). <a href="/wiki/John_von_Neumann" title="John von Neumann">John von Neumann</a> coined the term <i>Hilbert space</i> for the abstract concept that underlies many of these diverse applications. The success of Hilbert space methods ushered in a very fruitful era for <a href="/wiki/Functional_analysis" title="Functional analysis">functional analysis</a>. Apart from the classical Euclidean vector spaces, examples of Hilbert spaces include <a href="/wiki/Square-integrable_function" title="Square-integrable function">spaces of square-integrable functions</a>, <a href="/wiki/Sequence_space" title="Sequence space">spaces of sequences</a>, <a href="/wiki/Sobolev_space" title="Sobolev space">Sobolev spaces</a> consisting of <a href="/wiki/Generalized_function" title="Generalized function">generalized functions</a>, and <a href="/wiki/Hardy_space" title="Hardy space">Hardy spaces</a> of <a href="/wiki/Holomorphic_function" title="Holomorphic function">holomorphic functions</a>. </p><p>Geometric intuition plays an important role in many aspects of Hilbert space theory. Exact analogs of the <a href="/wiki/Pythagorean_theorem" title="Pythagorean theorem">Pythagorean theorem</a> and <a href="/wiki/Parallelogram_law" title="Parallelogram law">parallelogram law</a> hold in a Hilbert space. At a deeper level, <a href="/wiki/Perpendicular" title="Perpendicular">perpendicular</a> <a href="/wiki/Projection_(linear_algebra)" title="Projection (linear algebra)">projection</a> onto a <a href="/wiki/Linear_subspace" title="Linear subspace">linear subspace</a> plays a significant role in <a href="/wiki/Mathematical_optimization" title="Mathematical optimization">optimization</a> problems and other aspects of the theory. An element of a Hilbert space can be uniquely specified by its coordinates with respect to an <a href="/wiki/Orthonormal_basis" title="Orthonormal basis">orthonormal basis</a>, in analogy with <a href="/wiki/Cartesian_coordinates" class="mw-redirect" title="Cartesian coordinates">Cartesian coordinates</a> in classical geometry. When this <a href="/wiki/Basis_(linear_algebra)" title="Basis (linear algebra)">basis</a> is <a href="/wiki/Countably_infinite" class="mw-redirect" title="Countably infinite">countably infinite</a>, it allows identifying the Hilbert space with the space of the <a href="/wiki/Infinite_sequence" class="mw-redirect" title="Infinite sequence">infinite sequences</a> that are <a href="/wiki/Square-integrable_function" title="Square-integrable function">square-summable</a>. The latter space is often in the older literature referred to as <i>the</i> Hilbert space. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Definition_and_illustration">Definition and illustration</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Hilbert_space&amp;action=edit&amp;section=1" title="Edit section: Definition and illustration"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Motivating_example:_Euclidean_vector_space">Motivating example: Euclidean vector space</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Hilbert_space&amp;action=edit&amp;section=2" title="Edit section: Motivating example: Euclidean vector space"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>One of the most familiar examples of a Hilbert space is the <a href="/wiki/Euclidean_vector_space" class="mw-redirect" title="Euclidean vector space">Euclidean vector space</a> consisting of three-dimensional <a href="/wiki/Euclidean_vector" title="Euclidean vector">vectors</a>, denoted by <span class="texhtml"><b>R</b><sup>3</sup></span>, and equipped with the <a href="/wiki/Dot_product" title="Dot product">dot product</a>. The dot product takes two vectors <span class="texhtml"><b>x</b></span> and <span class="texhtml"><b>y</b></span>, and produces a real number <span class="texhtml"><b>x</b> ⋅ <b>y</b></span>. If <span class="texhtml"><b>x</b></span> and <span class="texhtml"><b>y</b></span> are represented in <a href="/wiki/Cartesian_coordinates" class="mw-redirect" title="Cartesian coordinates">Cartesian coordinates</a>, then the dot product is defined by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{pmatrix}x_{1}\\x_{2}\\x_{3}\end{pmatrix}}\cdot {\begin{pmatrix}y_{1}\\y_{2}\\y_{3}\end{pmatrix}}=x_{1}y_{1}+x_{2}y_{2}+x_{3}y_{3}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{pmatrix}x_{1}\\x_{2}\\x_{3}\end{pmatrix}}\cdot {\begin{pmatrix}y_{1}\\y_{2}\\y_{3}\end{pmatrix}}=x_{1}y_{1}+x_{2}y_{2}+x_{3}y_{3}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1a6c73091bcfb40e8ae18ba63c544d4bd4d690b1" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.171ex; width:39.439ex; height:9.509ex;" alt="{\displaystyle {\begin{pmatrix}x_{1}\\x_{2}\\x_{3}\end{pmatrix}}\cdot {\begin{pmatrix}y_{1}\\y_{2}\\y_{3}\end{pmatrix}}=x_{1}y_{1}+x_{2}y_{2}+x_{3}y_{3}\,.}"></span> </p><p>The dot product satisfies the properties<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> </p> <ol><li>It is <a href="/wiki/Symmetric_relation" title="Symmetric relation">symmetric</a> in <span class="texhtml"><b>x</b></span> and <span class="texhtml"><b>y</b></span>: <span class="texhtml"><b>x</b> ⋅ <b>y</b> = <b>y</b> ⋅ <b>x</b></span>.</li> <li>It is <a href="/wiki/Linear_function" title="Linear function">linear</a> in its first argument: <span class="texhtml">(<i>a</i><b>x</b><sub>1</sub> + <i>b</i><b>x</b><sub>2</sub>) ⋅ <b>y</b> = <i>a</i>(<b>x</b><sub>1</sub> ⋅ <b>y</b>) + <i>b</i>(<b>x</b><sub>2</sub> ⋅ <b>y</b>)</span> for any <a href="/wiki/Scalar_(mathematics)" title="Scalar (mathematics)">scalars</a> <span class="texhtml mvar" style="font-style:italic;">a</span>, <span class="texhtml mvar" style="font-style:italic;">b</span>, and vectors <span class="texhtml"><b>x</b><sub>1</sub></span>, <span class="texhtml"><b>x</b><sub>2</sub></span>, and <span class="texhtml"><b>y</b></span>.</li> <li>It is <a href="/wiki/Definite_bilinear_form" class="mw-redirect" title="Definite bilinear form">positive definite</a>: for all vectors <span class="texhtml"><b>x</b></span>, <span class="texhtml"><b>x</b> ⋅ <b>x</b> ≥ 0 </span>, with equality <a href="/wiki/If_and_only_if" title="If and only if">if and only if</a> <span class="texhtml"><b>x</b> = <b>0</b></span>.</li></ol> <p>An operation on pairs of vectors that, like the dot product, satisfies these three properties is known as a (real) <a href="/wiki/Inner_product" class="mw-redirect" title="Inner product">inner product</a>. A <a href="/wiki/Vector_space" title="Vector space">vector space</a> equipped with such an inner product is known as a (real) <a href="/wiki/Inner_product_space" title="Inner product space">inner product space</a>. Every finite-dimensional inner product space is also a Hilbert space.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> The basic feature of the dot product that connects it with Euclidean geometry is that it is related to both the length (or <a href="/wiki/Norm_(mathematics)" title="Norm (mathematics)">norm</a>) of a vector, denoted <span class="texhtml">&#x2016;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><b>x</b></span>&#x2016;</span>, and to the angle <span class="texhtml mvar" style="font-style:italic;">θ</span> between two vectors <span class="texhtml"><b>x</b></span> and <span class="texhtml"><b>y</b></span> by means of the formula <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} \cdot \mathbf {y} =\left\|\mathbf {x} \right\|\left\|\mathbf {y} \right\|\,\cos \theta \,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> <mo>=</mo> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mspace width="thinmathspace" /> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} \cdot \mathbf {y} =\left\|\mathbf {x} \right\|\left\|\mathbf {y} \right\|\,\cos \theta \,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ff5157fde2381e9dcd0a006d3e1d0575512afbd" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.855ex; height:2.843ex;" alt="{\displaystyle \mathbf {x} \cdot \mathbf {y} =\left\|\mathbf {x} \right\|\left\|\mathbf {y} \right\|\,\cos \theta \,.}"></span> </p> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Completeness_in_Hilbert_space.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/89/Completeness_in_Hilbert_space.png/220px-Completeness_in_Hilbert_space.png" decoding="async" width="220" height="136" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/89/Completeness_in_Hilbert_space.png/330px-Completeness_in_Hilbert_space.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/89/Completeness_in_Hilbert_space.png/440px-Completeness_in_Hilbert_space.png 2x" data-file-width="742" data-file-height="459" /></a><figcaption>Completeness means that a series of vectors (in blue) results in a <a href="/wiki/Well_defined" class="mw-redirect" title="Well defined">well-defined</a> net displacement vector (in orange).</figcaption></figure> <p><a href="/wiki/Multivariable_calculus" title="Multivariable calculus">Multivariable calculus</a> in Euclidean space relies on the ability to compute <a href="/wiki/Limit_(mathematics)" title="Limit (mathematics)">limits</a>, and to have useful criteria for concluding that limits exist. A <a href="/wiki/Series_(mathematics)" title="Series (mathematics)">mathematical series</a> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=0}^{\infty }\mathbf {x} _{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=0}^{\infty }\mathbf {x} _{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b3d791a8b023df5a980200e276eec54d69eb2b6" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:6.372ex; height:6.843ex;" alt="{\displaystyle \sum _{n=0}^{\infty }\mathbf {x} _{n}}"></span> consisting of vectors in <span class="texhtml"><b>R</b><sup>3</sup></span> is <a href="/wiki/Absolute_convergence" title="Absolute convergence">absolutely convergent</a> provided that the sum of the lengths converges as an ordinary series of real numbers:<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{k=0}^{\infty }\|\mathbf {x} _{k}\|&lt;\infty \,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mo>&lt;</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{k=0}^{\infty }\|\mathbf {x} _{k}\|&lt;\infty \,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c49858bb1785370ae3843e6ea5398f612524f806" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:15.023ex; height:7.009ex;" alt="{\displaystyle \sum _{k=0}^{\infty }\|\mathbf {x} _{k}\|&lt;\infty \,.}"></span> </p><p>Just as with a series of scalars, a series of vectors that converges absolutely also converges to some limit vector <span class="texhtml"><b>L</b></span> in the Euclidean space, in the sense that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\Biggl \|}\mathbf {L} -\sum _{k=0}^{N}\mathbf {x} _{k}{\Biggr \|}\to 0\quad {\text{as }}N\to \infty \,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo symmetric="true" maxsize="2.470em" minsize="2.470em">&#x2016;</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">L</mi> </mrow> <mo>&#x2212;<!-- − --></mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo symmetric="true" maxsize="2.470em" minsize="2.470em">&#x2016;</mo> </mrow> </mrow> <mo stretchy="false">&#x2192;<!-- → --></mo> <mn>0</mn> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>as&#xA0;</mtext> </mrow> <mi>N</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\Biggl \|}\mathbf {L} -\sum _{k=0}^{N}\mathbf {x} _{k}{\Biggr \|}\to 0\quad {\text{as }}N\to \infty \,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b26b075a3dcc6d237c8c141a155f076338daaaed" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:31.809ex; height:7.509ex;" alt="{\displaystyle {\Biggl \|}\mathbf {L} -\sum _{k=0}^{N}\mathbf {x} _{k}{\Biggr \|}\to 0\quad {\text{as }}N\to \infty \,.}"></span> </p><p>This property expresses the <i>completeness</i> of Euclidean space: that a series that converges absolutely also converges in the ordinary sense. </p><p>Hilbert spaces are often taken over the <a href="/wiki/Complex_number" title="Complex number">complex numbers</a>. The <a href="/wiki/Complex_plane" title="Complex plane">complex plane</a> denoted by <span class="texhtml"><b>C</b></span> is equipped with a notion of magnitude, the <a href="/wiki/Absolute_value" title="Absolute value">complex modulus</a> <span class="texhtml">&#124;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>z</i></span>&#124;</span>, which is defined as the square root of the product of <span class="texhtml mvar" style="font-style:italic;">z</span> with its <a href="/wiki/Complex_conjugate" title="Complex conjugate">complex conjugate</a>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |z|^{2}=z{\overline {z}}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>z</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>z</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |z|^{2}=z{\overline {z}}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85f9ec3c8dc777c161389ccaf3e175e8993b4a19" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.864ex; height:3.343ex;" alt="{\displaystyle |z|^{2}=z{\overline {z}}\,.}"></span> </p><p>If <span class="texhtml"><i>z</i> = <i>x</i> + <i>iy</i></span> is a decomposition of <span class="texhtml mvar" style="font-style:italic;">z</span> into its real and imaginary parts, then the modulus is the usual Euclidean two-dimensional length: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |z|={\sqrt {x^{2}+y^{2}}}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |z|={\sqrt {x^{2}+y^{2}}}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/21888cd022a8dfd5d07d8257d0fd25e2823b5bce" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:16.277ex; height:4.843ex;" alt="{\displaystyle |z|={\sqrt {x^{2}+y^{2}}}\,.}"></span> </p><p>The inner product of a pair of complex numbers <span class="texhtml mvar" style="font-style:italic;">z</span> and <span class="texhtml mvar" style="font-style:italic;">w</span> is the product of <span class="texhtml mvar" style="font-style:italic;">z</span> with the complex conjugate of <span class="texhtml mvar" style="font-style:italic;">w</span>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle z,w\rangle =z{\overline {w}}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>z</mi> <mo>,</mo> <mi>w</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>w</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle z,w\rangle =z{\overline {w}}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04c95ae0bc59457f9b44a262586ab7caa2542d11" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.595ex; height:2.843ex;" alt="{\displaystyle \langle z,w\rangle =z{\overline {w}}\,.}"></span> </p><p>This is complex-valued. The real part of <span class="texhtml">⟨<i>z</i>, <i>w</i>⟩</span> gives the usual two-dimensional Euclidean <a href="/wiki/Dot_product" title="Dot product">dot product</a>. </p><p>A second example is the space <span class="texhtml"><b>C</b><sup>2</sup></span> whose elements are pairs of complex numbers <span class="texhtml"><i>z</i> = (<i>z</i><sub>1</sub>, <i>z</i><sub>2</sub>)</span>. Then an inner product of <span class="texhtml mvar" style="font-style:italic;">z</span> with another such vector <span class="texhtml"><i>w</i> = (<i>w</i><sub>1</sub>, <i>w</i><sub>2</sub>)</span> is given by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle z,w\rangle =z_{1}{\overline {w_{1}}}+z_{2}{\overline {w_{2}}}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>z</mi> <mo>,</mo> <mi>w</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>+</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle z,w\rangle =z_{1}{\overline {w_{1}}}+z_{2}{\overline {w_{2}}}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8d2f682a0dac408d4cd1e636a033e39c5021d757" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.506ex; height:2.843ex;" alt="{\displaystyle \langle z,w\rangle =z_{1}{\overline {w_{1}}}+z_{2}{\overline {w_{2}}}\,.}"></span> </p><p>The real part of <span class="texhtml">⟨<i>z</i>, <i>w</i>⟩</span> is then the four-dimensional Euclidean dot product. This inner product is <i>Hermitian</i> symmetric, which means that the result of interchanging <span class="texhtml mvar" style="font-style:italic;">z</span> and <span class="texhtml mvar" style="font-style:italic;">w</span> is the complex conjugate: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle w,z\rangle ={\overline {\langle z,w\rangle }}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>w</mi> <mo>,</mo> <mi>z</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>z</mi> <mo>,</mo> <mi>w</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle w,z\rangle ={\overline {\langle z,w\rangle }}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72f310d466f226a09af8f8593ff396e1f0401251" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.438ex; height:3.676ex;" alt="{\displaystyle \langle w,z\rangle ={\overline {\langle z,w\rangle }}\,.}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Definition">Definition</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Hilbert_space&amp;action=edit&amp;section=3" title="Edit section: Definition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A <em>Hilbert space</em> is a <a href="/wiki/Real_number" title="Real number">real</a> or <a href="/wiki/Complex_number" title="Complex number">complex</a> <a href="/wiki/Inner_product_space" title="Inner product space">inner product space</a> that is also a <a href="/wiki/Complete_metric_space" title="Complete metric space">complete metric space</a> with respect to the distance function <a href="/wiki/Induced_topology" class="mw-redirect" title="Induced topology">induced</a> by the inner product.<sup id="cite_ref-General_4-0" class="reference"><a href="#cite_note-General-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> </p><p>To say that a complex vector space <span class="texhtml"><i>H</i></span> is a <em>complex inner product space</em> means that there is an inner product <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle x,y\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle x,y\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9df1806ebe1fed1a728b18aed82c30be8b2a0acb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.328ex; height:2.843ex;" alt="{\displaystyle \langle x,y\rangle }"></span> associating a complex number to each pair of elements <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x,y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>,</mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x,y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ea0abffd33a692ded22accc104515a032851dff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.519ex; height:2.009ex;" alt="{\displaystyle x,y}"></span> of <span class="texhtml"><i>H</i></span> that satisfies the following properties: </p> <ol><li>The inner product is conjugate symmetric; that is, the inner product of a pair of elements is equal to the <a href="/wiki/Complex_conjugate" title="Complex conjugate">complex conjugate</a> of the inner product of the swapped elements: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle y,x\rangle ={\overline {\langle x,y\rangle }}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>y</mi> <mo>,</mo> <mi>x</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle y,x\rangle ={\overline {\langle x,y\rangle }}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb947b57df47d548a0ff388d1af8fb489e90f3ac" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.904ex; height:3.676ex;" alt="{\displaystyle \langle y,x\rangle ={\overline {\langle x,y\rangle }}\,.}"></span> Importantly, this implies that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle x,x\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>x</mi> <mo>,</mo> <mi>x</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle x,x\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f081a4822ec7bdff2661ee2070b70a3406cf70f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.503ex; height:2.843ex;" alt="{\displaystyle \langle x,x\rangle }"></span> is a real number.</li> <li>The inner product is <a href="/wiki/Linear_functional" class="mw-redirect" title="Linear functional">linear</a> in its first<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>nb 1<span class="cite-bracket">&#93;</span></a></sup> argument. For all complex numbers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bdb96677ba71b937617ca8751955f884f6306b64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.644ex; height:2.509ex;" alt="{\displaystyle b,}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle ax_{1}+bx_{2},y\rangle =a\langle x_{1},y\rangle +b\langle x_{2},y\rangle \,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>a</mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mi>b</mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mi>y</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mi>a</mi> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mi>y</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>+</mo> <mi>b</mi> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mi>y</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle ax_{1}+bx_{2},y\rangle =a\langle x_{1},y\rangle +b\langle x_{2},y\rangle \,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5c1164bfad1024b720cd7262f99f77063676ab12" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:35.8ex; height:2.843ex;" alt="{\displaystyle \langle ax_{1}+bx_{2},y\rangle =a\langle x_{1},y\rangle +b\langle x_{2},y\rangle \,.}"></span></li> <li>The inner product of an element with itself is <a href="/wiki/Definite_bilinear_form" class="mw-redirect" title="Definite bilinear form">positive definite</a>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{alignedat}{4}\langle x,x\rangle &gt;0&amp;\quad {\text{ if }}x\neq 0,\\\langle x,x\rangle =0&amp;\quad {\text{ if }}x=0\,.\end{alignedat}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left" rowspacing="3pt" columnspacing="0em 0em 0em 0em 0em 0em 0em 0em" displaystyle="true"> <mtr> <mtd> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>x</mi> <mo>,</mo> <mi>x</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>&gt;</mo> <mn>0</mn> </mtd> <mtd> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;if&#xA0;</mtext> </mrow> <mi>x</mi> <mo>&#x2260;<!-- ≠ --></mo> <mn>0</mn> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>x</mi> <mo>,</mo> <mi>x</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mn>0</mn> </mtd> <mtd> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;if&#xA0;</mtext> </mrow> <mi>x</mi> <mo>=</mo> <mn>0</mn> <mspace width="thinmathspace" /> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{alignedat}{4}\langle x,x\rangle &gt;0&amp;\quad {\text{ if }}x\neq 0,\\\langle x,x\rangle =0&amp;\quad {\text{ if }}x=0\,.\end{alignedat}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e04e01914ed2ed909cbfaaa2dafd141857e258e7" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:21.982ex; height:6.176ex;" alt="{\displaystyle {\begin{alignedat}{4}\langle x,x\rangle &gt;0&amp;\quad {\text{ if }}x\neq 0,\\\langle x,x\rangle =0&amp;\quad {\text{ if }}x=0\,.\end{alignedat}}}"></span></li></ol> <p>It follows from properties 1 and 2 that a complex inner product is <em><a href="/wiki/Antilinear_map" title="Antilinear map">antilinear</a></em>, also called <em>conjugate linear</em>, in its second argument, meaning that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle x,ay_{1}+by_{2}\rangle ={\bar {a}}\langle x,y_{1}\rangle +{\bar {b}}\langle x,y_{2}\rangle \,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>x</mi> <mo>,</mo> <mi>a</mi> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mi>b</mi> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>x</mi> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>x</mi> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle x,ay_{1}+by_{2}\rangle ={\bar {a}}\langle x,y_{1}\rangle +{\bar {b}}\langle x,y_{2}\rangle \,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/648a87771f6ed2eae5f1a7867493312b6292ba71" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:35.725ex; height:3.009ex;" alt="{\displaystyle \langle x,ay_{1}+by_{2}\rangle ={\bar {a}}\langle x,y_{1}\rangle +{\bar {b}}\langle x,y_{2}\rangle \,.}"></span> </p><p>A <em>real inner product space</em> is defined in the same way, except that <span class="texhtml"><i>H</i></span> is a real vector space and the inner product takes real values. Such an inner product will be a <a href="/wiki/Bilinear_map" title="Bilinear map">bilinear map</a> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (H,H,\langle \cdot ,\cdot \rangle )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>H</mi> <mo>,</mo> <mi>H</mi> <mo>,</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo>,</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (H,H,\langle \cdot ,\cdot \rangle )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1bee7511626db6a54e1af12d29ff989d2aff8b7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.141ex; height:2.843ex;" alt="{\displaystyle (H,H,\langle \cdot ,\cdot \rangle )}"></span> will form a <a href="/wiki/Dual_system" title="Dual system">dual system</a>.<sup id="cite_ref-FOOTNOTESchaeferWolff1999122–202_6-0" class="reference"><a href="#cite_note-FOOTNOTESchaeferWolff1999122–202-6"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p><p>The <a href="/wiki/Norm_(mathematics)" title="Norm (mathematics)">norm</a> is the real-valued function <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|x\|={\sqrt {\langle x,x\rangle }}\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>x</mi> <mo>,</mo> <mi>x</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </msqrt> </mrow> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|x\|={\sqrt {\langle x,x\rangle }}\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23d803bc001c215a1be59acf43e6606b1d774ea8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:15.613ex; height:4.843ex;" alt="{\displaystyle \|x\|={\sqrt {\langle x,x\rangle }}\,,}"></span> and the distance <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e85ff03cbe0c7341af6b982e47e9f90d235c66ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.216ex; height:2.176ex;" alt="{\displaystyle d}"></span> between two points <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x,y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>,</mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x,y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ea0abffd33a692ded22accc104515a032851dff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.519ex; height:2.009ex;" alt="{\displaystyle x,y}"></span> in <span class="texhtml"><i>H</i></span> is defined in terms of the norm by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(x,y)=\|x-y\|={\sqrt {\langle x-y,x-y\rangle }}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>y</mi> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>y</mi> <mo>,</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>y</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </msqrt> </mrow> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(x,y)=\|x-y\|={\sqrt {\langle x-y,x-y\rangle }}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a4401717fb6ad3702ce9b40126a159d8756a8fed" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:37.244ex; height:4.843ex;" alt="{\displaystyle d(x,y)=\|x-y\|={\sqrt {\langle x-y,x-y\rangle }}\,.}"></span> </p><p>That this function is a distance function means firstly that it is symmetric in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99bd9829c9ef4adcb0f9f5d53b27463a873a8e88" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.802ex; height:2.009ex;" alt="{\displaystyle y,}"></span> secondly that the distance between <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> and itself is zero, and otherwise the distance between <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> must be positive, and lastly that the <a href="/wiki/Triangle_inequality" title="Triangle inequality">triangle inequality</a> holds, meaning that the length of one leg of a triangle <span class="texhtml"><i>xyz</i></span> cannot exceed the sum of the lengths of the other two legs: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(x,z)\leq d(x,y)+d(y,z)\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>&#x2264;<!-- ≤ --></mo> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>d</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(x,z)\leq d(x,y)+d(y,z)\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ef67169190c37bb6b853a1304d1c5ead6bad92b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.297ex; height:2.843ex;" alt="{\displaystyle d(x,z)\leq d(x,y)+d(y,z)\,.}"></span> </p> <dl><dd><figure class="mw-halign-none" typeof="mw:File"><a href="/wiki/File:Triangle_inequality_in_a_metric_space.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/ca/Triangle_inequality_in_a_metric_space.svg/300px-Triangle_inequality_in_a_metric_space.svg.png" decoding="async" width="300" height="140" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/ca/Triangle_inequality_in_a_metric_space.svg/450px-Triangle_inequality_in_a_metric_space.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/ca/Triangle_inequality_in_a_metric_space.svg/600px-Triangle_inequality_in_a_metric_space.svg.png 2x" data-file-width="456" data-file-height="213" /></a><figcaption></figcaption></figure></dd></dl> <p>This last property is ultimately a consequence of the more fundamental <a href="/wiki/Cauchy%E2%80%93Schwarz_inequality" title="Cauchy–Schwarz inequality">Cauchy–Schwarz inequality</a>, which asserts <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left|\langle x,y\rangle \right|\leq \|x\|\|y\|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>|</mo> <mrow> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mrow> <mo>|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>y</mi> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left|\langle x,y\rangle \right|\leq \|x\|\|y\|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eea56af9f54f8732fcbe7204ffdcebaeb16a4ba8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.856ex; height:2.843ex;" alt="{\displaystyle \left|\langle x,y\rangle \right|\leq \|x\|\|y\|}"></span> with equality if and only if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> are <a href="/wiki/Linear_independence" title="Linear independence">linearly dependent</a>. </p><p>With a distance function defined in this way, any inner product space is a <a href="/wiki/Metric_space" title="Metric space">metric space</a>, and sometimes is known as a <em>pre-Hilbert space</em>.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> Any pre-Hilbert space that is additionally also a <a href="/wiki/Complete_space" class="mw-redirect" title="Complete space">complete space</a> is a Hilbert space.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> </p><p>The <em><a href="/wiki/Complete_metric_space" title="Complete metric space">completeness</a></em> of <span class="texhtml"><i>H</i></span> is expressed using a form of the <a href="/wiki/Cauchy_criterion" class="mw-redirect" title="Cauchy criterion">Cauchy criterion</a> for sequences in <span class="texhtml"><i>H</i></span>: a pre-Hilbert space <span class="texhtml"><i>H</i></span> is complete if every <a href="/wiki/Cauchy_sequence" title="Cauchy sequence">Cauchy sequence</a> <a href="/wiki/Limit_(mathematics)" title="Limit (mathematics)">converges with respect to this norm</a> to an element in the space. Completeness can be characterized by the following equivalent condition: if a series of vectors <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{k=0}^{\infty }u_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{k=0}^{\infty }u_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1eab948361735efa594296bd04d873a8485149c2" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:6.16ex; height:7.009ex;" alt="{\displaystyle \sum _{k=0}^{\infty }u_{k}}"></span> <a href="/wiki/Absolute_convergence" title="Absolute convergence">converges absolutely</a> in the sense that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{k=0}^{\infty }\|u_{k}\|&lt;\infty \,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mo>&lt;</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{k=0}^{\infty }\|u_{k}\|&lt;\infty \,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a193b4cda60532c04dc0900d7d30353145ffcab" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:14.942ex; height:7.009ex;" alt="{\displaystyle \sum _{k=0}^{\infty }\|u_{k}\|&lt;\infty \,,}"></span> then the series converges in <span class="texhtml"><i>H</i></span>, in the sense that the <a href="/wiki/Partial_sums" class="mw-redirect" title="Partial sums">partial sums</a> converge to an element of <span class="texhtml"><i>H</i></span>.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> </p><p>As a complete normed space, Hilbert spaces are by definition also <a href="/wiki/Banach_space" title="Banach space">Banach spaces</a>. As such they are <a href="/wiki/Topological_vector_space" title="Topological vector space">topological vector spaces</a>, in which <a href="/wiki/Topology" title="Topology">topological</a> notions like the <a href="/wiki/Open_set" title="Open set">openness</a> and <a href="/wiki/Closed_set" title="Closed set">closedness</a> of subsets are <a href="/wiki/Well-defined_expression" title="Well-defined expression">well defined</a>. Of special importance is the notion of a closed <a href="/wiki/Linear_subspace" title="Linear subspace">linear subspace</a> of a Hilbert space that, with the inner product induced by <a href="/wiki/Restriction_(mathematics)" title="Restriction (mathematics)">restriction</a>, is also complete (being a closed set in a complete metric space) and therefore a Hilbert space in its own right. </p> <div class="mw-heading mw-heading3"><h3 id="Second_example:_sequence_spaces">Second example: sequence spaces</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Hilbert_space&amp;action=edit&amp;section=4" title="Edit section: Second example: sequence spaces"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Sequence_space" title="Sequence space">sequence space</a> <span class="texhtml"><i>l</i><sup>2</sup></span> consists of all <a href="/wiki/Sequence_(mathematics)" class="mw-redirect" title="Sequence (mathematics)">infinite sequences</a> <span class="texhtml"><b>z</b> = (<i>z</i><sub>1</sub>, <i>z</i><sub>2</sub>, …)</span> of complex numbers such that the following series <a href="/wiki/Convergent_series" title="Convergent series">converges</a>:<sup id="cite_ref-Stein_2005_10-0" class="reference"><a href="#cite_note-Stein_2005-10"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=1}^{\infty }|z_{n}|^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=1}^{\infty }|z_{n}|^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e56a3c8d984a07aea65427989643bcd774fc8ab0" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:8.39ex; height:6.843ex;" alt="{\displaystyle \sum _{n=1}^{\infty }|z_{n}|^{2}}"></span> </p><p>The inner product on <span class="texhtml"><i>l</i><sup>2</sup></span> is defined by: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle \mathbf {z} ,\mathbf {w} \rangle =\sum _{n=1}^{\infty }z_{n}{\overline {w_{n}}}\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">z</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">w</mi> </mrow> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle \mathbf {z} ,\mathbf {w} \rangle =\sum _{n=1}^{\infty }z_{n}{\overline {w_{n}}}\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81e4a63265ba175624e53a0dca1caa094d62114e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:19.134ex; height:6.843ex;" alt="{\displaystyle \langle \mathbf {z} ,\mathbf {w} \rangle =\sum _{n=1}^{\infty }z_{n}{\overline {w_{n}}}\,,}"></span> </p><p>This second series converges as a consequence of the <a href="/wiki/Cauchy%E2%80%93Schwarz_inequality" title="Cauchy–Schwarz inequality">Cauchy–Schwarz inequality</a> and the convergence of the previous series. </p><p>Completeness of the space holds provided that whenever a series of elements from <span class="texhtml"><i>l</i><sup>2</sup></span> converges absolutely (in norm), then it converges to an element of <span class="texhtml"><i>l</i><sup>2</sup></span>. The proof is basic in <a href="/wiki/Mathematical_analysis" title="Mathematical analysis">mathematical analysis</a>, and permits mathematical series of elements of the space to be manipulated with the same ease as series of complex numbers (or vectors in a finite-dimensional Euclidean space).<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="History">History</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Hilbert_space&amp;action=edit&amp;section=5" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Hilbert.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/79/Hilbert.jpg/220px-Hilbert.jpg" decoding="async" width="220" height="298" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/79/Hilbert.jpg/330px-Hilbert.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/7/79/Hilbert.jpg 2x" data-file-width="437" data-file-height="592" /></a><figcaption><a href="/wiki/David_Hilbert" title="David Hilbert">David Hilbert</a></figcaption></figure> <p>Prior to the development of Hilbert spaces, other generalizations of Euclidean spaces were known to <a href="/wiki/Mathematician" title="Mathematician">mathematicians</a> and <a href="/wiki/Physicist" title="Physicist">physicists</a>. In particular, the idea of an <a href="/wiki/Vector_space" title="Vector space">abstract linear space (vector space)</a> had gained some traction towards the end of the 19th century:<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> this is a space whose elements can be added together and multiplied by scalars (such as <a href="/wiki/Real_numbers" class="mw-redirect" title="Real numbers">real</a> or <a href="/wiki/Complex_numbers" class="mw-redirect" title="Complex numbers">complex numbers</a>) without necessarily identifying these elements with <a href="/wiki/Vector_(geometric)" class="mw-redirect" title="Vector (geometric)">"geometric" vectors</a>, such as position and momentum vectors in physical systems. Other objects studied by mathematicians at the turn of the 20th century, in particular spaces of <a href="/wiki/Sequence_(mathematics)" class="mw-redirect" title="Sequence (mathematics)">sequences</a> (including <a href="/wiki/Series_(mathematics)" title="Series (mathematics)">series</a>) and spaces of functions,<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> can naturally be thought of as linear spaces. Functions, for instance, can be added together or multiplied by constant scalars, and these operations obey the algebraic laws satisfied by addition and scalar multiplication of spatial vectors. </p><p>In the first decade of the 20th century, parallel developments led to the introduction of Hilbert spaces. The first of these was the observation, which arose during <a href="/wiki/David_Hilbert" title="David Hilbert">David Hilbert</a> and <a href="/wiki/Erhard_Schmidt" title="Erhard Schmidt">Erhard Schmidt</a>'s study of <a href="/wiki/Integral_equations" class="mw-redirect" title="Integral equations">integral equations</a>,<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> that two <a href="/wiki/Square-integrable" class="mw-redirect" title="Square-integrable">square-integrable</a> real-valued functions <span class="texhtml mvar" style="font-style:italic;">f</span> and <span class="texhtml mvar" style="font-style:italic;">g</span> on an interval <span class="texhtml">[<i>a</i>, <i>b</i>]</span> have an <i>inner product</i> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle f,g\rangle =\int _{a}^{b}f(x)g(x)\,\mathrm {d} x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>f</mi> <mo>,</mo> <mi>g</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle f,g\rangle =\int _{a}^{b}f(x)g(x)\,\mathrm {d} x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/15d3b8c1935031c7769ee297cf76cba993af6de5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:23.807ex; height:6.343ex;" alt="{\displaystyle \langle f,g\rangle =\int _{a}^{b}f(x)g(x)\,\mathrm {d} x}"></span></dd></dl> <p>which has many of the familiar properties of the Euclidean dot product. In particular, the idea of an <a href="/wiki/Orthogonality" title="Orthogonality">orthogonal</a> family of functions has meaning. Schmidt exploited the similarity of this inner product with the usual dot product to prove an analog of the <a href="/wiki/Spectral_theorem" title="Spectral theorem">spectral decomposition</a> for an operator of the form </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)\mapsto \int _{a}^{b}K(x,y)f(y)\,\mathrm {d} y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <mi>K</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)\mapsto \int _{a}^{b}K(x,y)f(y)\,\mathrm {d} y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0dee2bd40943738c454875f27b51c039baf5ef5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:26.293ex; height:6.343ex;" alt="{\displaystyle f(x)\mapsto \int _{a}^{b}K(x,y)f(y)\,\mathrm {d} y}"></span></dd></dl> <p>where <span class="texhtml mvar" style="font-style:italic;">K</span> is a continuous function symmetric in <span class="texhtml mvar" style="font-style:italic;">x</span> and <span class="texhtml mvar" style="font-style:italic;">y</span>. The resulting <a href="/wiki/Eigenfunction_expansion" class="mw-redirect" title="Eigenfunction expansion">eigenfunction expansion</a> expresses the function <span class="texhtml mvar" style="font-style:italic;">K</span> as a series of the form </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K(x,y)=\sum _{n}\lambda _{n}\varphi _{n}(x)\varphi _{n}(y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munder> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K(x,y)=\sum _{n}\lambda _{n}\varphi _{n}(x)\varphi _{n}(y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/921e2db751333a14035d636bcf05c6a167344ce1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:28.39ex; height:5.509ex;" alt="{\displaystyle K(x,y)=\sum _{n}\lambda _{n}\varphi _{n}(x)\varphi _{n}(y)}"></span></dd></dl> <p>where the functions <span class="texhtml mvar" style="font-style:italic;">φ<sub>n</sub></span> are orthogonal in the sense that <span class="texhtml">⟨<i>φ</i><sub><i>n</i></sub>, <i>φ</i><sub><i>m</i></sub>⟩ = 0</span> for all <span class="texhtml"><i>n</i> ≠ <i>m</i></span>. The individual terms in this series are sometimes referred to as elementary product solutions. However, there are eigenfunction expansions that fail to converge in a suitable sense to a square-integrable function: the missing ingredient, which ensures convergence, is completeness.<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> </p><p>The second development was the <a href="/wiki/Lebesgue_integral" title="Lebesgue integral">Lebesgue integral</a>, an alternative to the <a href="/wiki/Riemann_integral" title="Riemann integral">Riemann integral</a> introduced by <a href="/wiki/Henri_Lebesgue" title="Henri Lebesgue">Henri Lebesgue</a> in 1904.<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> The Lebesgue integral made it possible to integrate a much broader class of functions. In 1907, <a href="/wiki/Frigyes_Riesz" title="Frigyes Riesz">Frigyes Riesz</a> and <a href="/wiki/Ernst_Sigismund_Fischer" title="Ernst Sigismund Fischer">Ernst Sigismund Fischer</a> independently proved that the space <span class="texhtml"><i>L</i><sup>2</sup></span> of square Lebesgue-integrable functions is a <a href="/wiki/Complete_metric_space" title="Complete metric space">complete metric space</a>.<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> As a consequence of the interplay between geometry and completeness, the 19th century results of <a href="/wiki/Joseph_Fourier" title="Joseph Fourier">Joseph Fourier</a>, <a href="/wiki/Friedrich_Bessel" class="mw-redirect" title="Friedrich Bessel">Friedrich Bessel</a> and <a href="/wiki/Marc-Antoine_Parseval" title="Marc-Antoine Parseval">Marc-Antoine Parseval</a> on <a href="/wiki/Trigonometric_series" title="Trigonometric series">trigonometric series</a> easily carried over to these more general spaces, resulting in a geometrical and analytical apparatus now usually known as the <a href="/wiki/Riesz%E2%80%93Fischer_theorem" title="Riesz–Fischer theorem">Riesz–Fischer theorem</a>.<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> </p><p>Further basic results were proved in the early 20th century. For example, the <a href="/wiki/Riesz_representation_theorem" title="Riesz representation theorem">Riesz representation theorem</a> was independently established by <a href="/wiki/Maurice_Fr%C3%A9chet" class="mw-redirect" title="Maurice Fréchet">Maurice Fréchet</a> and <a href="/wiki/Frigyes_Riesz" title="Frigyes Riesz">Frigyes Riesz</a> in 1907.<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/John_von_Neumann" title="John von Neumann">John von Neumann</a> coined the term <i>abstract Hilbert space</i> in his work on unbounded <a href="/wiki/Self-adjoint_operator" title="Self-adjoint operator">Hermitian operators</a>.<sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> Although other mathematicians such as <a href="/wiki/Hermann_Weyl" title="Hermann Weyl">Hermann Weyl</a> and <a href="/wiki/Norbert_Wiener" title="Norbert Wiener">Norbert Wiener</a> had already studied particular Hilbert spaces in great detail, often from a physically motivated point of view, von Neumann gave the first complete and axiomatic treatment of them.<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> Von Neumann later used them in his seminal work on the foundations of quantum mechanics,<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> and in his continued work with <a href="/wiki/Eugene_Wigner" title="Eugene Wigner">Eugene Wigner</a>. The name "Hilbert space" was soon adopted by others, for example by Hermann Weyl in his book on quantum mechanics and the theory of groups.<sup id="cite_ref-Weyl31_23-0" class="reference"><a href="#cite_note-Weyl31-23"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> </p><p>The significance of the concept of a Hilbert space was underlined with the realization that it offers one of the best <a href="/wiki/Mathematical_formulation_of_quantum_mechanics" title="Mathematical formulation of quantum mechanics">mathematical formulations of quantum mechanics</a>.<sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup> In short, the states of a quantum mechanical system are vectors in a certain Hilbert space, the observables are <a href="/wiki/Hermitian_operator" class="mw-redirect" title="Hermitian operator">hermitian operators</a> on that space, the <a href="/wiki/Symmetry" title="Symmetry">symmetries</a> of the system are <a href="/wiki/Unitary_operator" title="Unitary operator">unitary operators</a>, and <a href="/wiki/Quantum_measurement" class="mw-redirect" title="Quantum measurement">measurements</a> are <a href="/wiki/Orthogonal_projection" class="mw-redirect" title="Orthogonal projection">orthogonal projections</a>. The relation between quantum mechanical symmetries and unitary operators provided an impetus for the development of the <a href="/wiki/Unitary_representation" title="Unitary representation">unitary</a> <a href="/wiki/Representation_theory" title="Representation theory">representation theory</a> of <a href="/wiki/Group_(mathematics)" title="Group (mathematics)">groups</a>, initiated in the 1928 work of Hermann Weyl.<sup id="cite_ref-Weyl31_23-1" class="reference"><a href="#cite_note-Weyl31-23"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> On the other hand, in the early 1930s it became clear that classical mechanics can be described in terms of Hilbert space (<a href="/wiki/Koopman%E2%80%93von_Neumann_classical_mechanics" title="Koopman–von Neumann classical mechanics">Koopman–von Neumann classical mechanics</a>) and that certain properties of classical <a href="/wiki/Dynamical_systems" class="mw-redirect" title="Dynamical systems">dynamical systems</a> can be analyzed using Hilbert space techniques in the framework of <a href="/wiki/Ergodic_theory" title="Ergodic theory">ergodic theory</a>.<sup id="cite_ref-von_Neumann_1932_25-0" class="reference"><a href="#cite_note-von_Neumann_1932-25"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> </p><p>The algebra of <a href="/wiki/Observable" title="Observable">observables</a> in quantum mechanics is naturally an algebra of operators defined on a Hilbert space, according to <a href="/wiki/Werner_Heisenberg" title="Werner Heisenberg">Werner Heisenberg</a>'s <a href="/wiki/Matrix_mechanics" title="Matrix mechanics">matrix mechanics</a> formulation of quantum theory.<sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup> Von Neumann began investigating <a href="/wiki/Operator_algebra" title="Operator algebra">operator algebras</a> in the 1930s, as <a href="/wiki/Ring_(mathematics)" title="Ring (mathematics)">rings</a> of operators on a Hilbert space. The kind of algebras studied by von Neumann and his contemporaries are now known as <a href="/wiki/Von_Neumann_algebra" title="Von Neumann algebra">von Neumann algebras</a>.<sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup> In the 1940s, <a href="/wiki/Israel_Gelfand" title="Israel Gelfand">Israel Gelfand</a>, <a href="/wiki/Mark_Naimark" title="Mark Naimark">Mark Naimark</a> and <a href="/wiki/Irving_Segal" title="Irving Segal">Irving Segal</a> gave a definition of a kind of operator algebras called <a href="/wiki/C*-algebra" title="C*-algebra">C*-algebras</a> that on the one hand made no reference to an underlying Hilbert space, and on the other extrapolated many of the useful features of the operator algebras that had previously been studied. The spectral theorem for self-adjoint operators in particular that underlies much of the existing Hilbert space theory was generalized to C*-algebras.<sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup> These techniques are now basic in abstract harmonic analysis and representation theory. </p> <div class="mw-heading mw-heading2"><h2 id="Examples">Examples</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Hilbert_space&amp;action=edit&amp;section=6" title="Edit section: Examples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Lebesgue_spaces">Lebesgue spaces</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Hilbert_space&amp;action=edit&amp;section=7" title="Edit section: Lebesgue spaces"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Lp_space" title="Lp space"><span class="texhtml mvar" style="font-style:italic;">L<sup>p</sup></span> space</a></div> <p>Lebesgue spaces are <a href="/wiki/Function_space" title="Function space">function spaces</a> associated to <a href="/wiki/Measure_(mathematics)" title="Measure (mathematics)">measure spaces</a> <span class="texhtml">(<i>X</i>, <i>M</i>, <i>μ</i>)</span>, where <span class="texhtml"><i>X</i></span> is a set, <span class="texhtml"><i>M</i></span> is a <a href="/wiki/Sigma-algebra" class="mw-redirect" title="Sigma-algebra">σ-algebra</a> of subsets of <span class="texhtml"><i>X</i></span>, and <span class="texhtml"><i>μ</i></span> is a <a href="/wiki/Countably_additive_measure" class="mw-redirect" title="Countably additive measure">countably additive measure</a> on <span class="texhtml"><i>M</i></span>. Let <span class="texhtml"><i>L</i><sup>2</sup>(<i>X</i>, <i>μ</i>)</span> be the space of those complex-valued measurable functions on <span class="texhtml"><i>X</i></span> for which the <a href="/wiki/Lebesgue_integration" class="mw-redirect" title="Lebesgue integration">Lebesgue integral</a> of the square of the <a href="/wiki/Absolute_value" title="Absolute value">absolute value</a> of the function is finite, i.e., for a function <span class="texhtml"><i>f</i></span> in <span class="texhtml"><i>L</i><sup>2</sup>(<i>X</i>, <i>μ</i>)</span>, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{X}|f|^{2}\mathrm {d} \mu &lt;\infty \,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03BC;<!-- μ --></mi> <mo>&lt;</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{X}|f|^{2}\mathrm {d} \mu &lt;\infty \,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ee85db694c36e91a5e3cb04a30106bc3309da88" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:16.089ex; height:5.676ex;" alt="{\displaystyle \int _{X}|f|^{2}\mathrm {d} \mu &lt;\infty \,,}"></span> and where functions are identified if and only if they differ only on a <a href="/wiki/Null_set" title="Null set">set of measure zero</a>. </p><p>The inner product of functions <span class="texhtml"><i>f</i></span> and <span class="texhtml"><i>g</i></span> in <span class="texhtml"><i>L</i><sup>2</sup>(<i>X</i>, <i>μ</i>)</span> is then defined as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle f,g\rangle =\int _{X}f(t){\overline {g(t)}}\,\mathrm {d} \mu (t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>f</mi> <mo>,</mo> <mi>g</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle f,g\rangle =\int _{X}f(t){\overline {g(t)}}\,\mathrm {d} \mu (t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/444efb40cac89ff9e517f21cabefac4b4c461817" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:25.186ex; height:5.676ex;" alt="{\displaystyle \langle f,g\rangle =\int _{X}f(t){\overline {g(t)}}\,\mathrm {d} \mu (t)}"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle f,g\rangle =\int _{X}{\overline {f(t)}}g(t)\,\mathrm {d} \mu (t)\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>f</mi> <mo>,</mo> <mi>g</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle f,g\rangle =\int _{X}{\overline {f(t)}}g(t)\,\mathrm {d} \mu (t)\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/759d01e4c6dcc1d76d34c5bf653cf220818a464d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:26.22ex; height:5.676ex;" alt="{\displaystyle \langle f,g\rangle =\int _{X}{\overline {f(t)}}g(t)\,\mathrm {d} \mu (t)\,,}"></span> </p><p>where the second form (conjugation of the first element) is commonly found in the <a href="/wiki/Theoretical_physics" title="Theoretical physics">theoretical physics</a> literature. For <span class="texhtml"><i>f</i></span> and <span class="texhtml"><i>g</i></span> in <span class="texhtml"><i>L</i><sup>2</sup></span>, the integral exists because of the Cauchy–Schwarz inequality, and defines an inner product on the space. Equipped with this inner product, <span class="texhtml"><i>L</i><sup>2</sup></span> is in fact complete.<sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup> The Lebesgue integral is essential to ensure completeness: on domains of real numbers, for instance, not enough functions are <a href="/wiki/Riemann_integral" title="Riemann integral">Riemann integrable</a>.<sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup> </p><p>The Lebesgue spaces appear in many natural settings. The spaces <span class="texhtml"><i>L</i><sup>2</sup>(<b>R</b>)</span> and <span class="texhtml"><i>L</i><sup>2</sup>([0,1])</span> of square-integrable functions with respect to the <a href="/wiki/Lebesgue_measure" title="Lebesgue measure">Lebesgue measure</a> on the real line and unit interval, respectively, are natural domains on which to define the Fourier transform and Fourier series. In other situations, the measure may be something other than the ordinary Lebesgue measure on the real line. For instance, if <span class="texhtml"><i>w</i></span> is any positive measurable function, the space of all measurable functions <span class="texhtml"><i>f</i></span> on the interval <span class="texhtml">[0, 1]</span> satisfying <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{0}^{1}{\bigl |}f(t){\bigr |}^{2}w(t)\,\mathrm {d} t&lt;\infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">|</mo> </mrow> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">|</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>w</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> <mo>&lt;</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{0}^{1}{\bigl |}f(t){\bigr |}^{2}w(t)\,\mathrm {d} t&lt;\infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06662023c777cfa7c3cda7e5fa8e2e3e390f053f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:22.435ex; height:6.176ex;" alt="{\displaystyle \int _{0}^{1}{\bigl |}f(t){\bigr |}^{2}w(t)\,\mathrm {d} t&lt;\infty }"></span> is called the <a href="/wiki/Lp_space#Weighted_Lp_spaces" title="Lp space">weighted <span class="texhtml"><i>L</i><sup>2</sup></span> space</a> <span class="texhtml"><i>L</i><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:0.8em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"><i>w</i></sub></span></span>([0, 1])</span>, and <span class="texhtml"><i>w</i></span> is called the weight function. The inner product is defined by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle f,g\rangle =\int _{0}^{1}f(t){\overline {g(t)}}w(t)\,\mathrm {d} t\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>f</mi> <mo>,</mo> <mi>g</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mi>w</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle f,g\rangle =\int _{0}^{1}f(t){\overline {g(t)}}w(t)\,\mathrm {d} t\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3305f5510dd0b3311769c19e47bc8f2b0c4e832d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:27.915ex; height:6.176ex;" alt="{\displaystyle \langle f,g\rangle =\int _{0}^{1}f(t){\overline {g(t)}}w(t)\,\mathrm {d} t\,.}"></span> </p><p>The weighted space <span class="texhtml"><i>L</i><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:0.8em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"><i>w</i></sub></span></span>([0, 1])</span> is identical with the Hilbert space <span class="texhtml"><i>L</i><sup>2</sup>([0, 1], <i>μ</i>)</span> where the measure <span class="texhtml"><i>μ</i></span> of a Lebesgue-measurable set <span class="texhtml"><i>A</i></span> is defined by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu (A)=\int _{A}w(t)\,\mathrm {d} t\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <mi>w</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu (A)=\int _{A}w(t)\,\mathrm {d} t\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/536c89546b2b4876f1c6835d87700c09fd984100" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:19.063ex; height:5.676ex;" alt="{\displaystyle \mu (A)=\int _{A}w(t)\,\mathrm {d} t\,.}"></span> </p><p>Weighted <span class="texhtml"><i>L</i><sup>2</sup></span> spaces like this are frequently used to study <a href="/wiki/Orthogonal_polynomials" title="Orthogonal polynomials">orthogonal polynomials</a>, because different families of orthogonal polynomials are orthogonal with respect to different weighting functions.<sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Sobolev_spaces">Sobolev spaces</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Hilbert_space&amp;action=edit&amp;section=8" title="Edit section: Sobolev spaces"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Sobolev_space" title="Sobolev space">Sobolev spaces</a>, denoted by <span class="texhtml"><i>H</i><span style="padding-left:0.12em;"><sup><i>s</i></sup></span></span> or <span class="texhtml"><i>W</i><span style="padding-left:0.12em;"><sup><i>s</i>, 2</sup></span></span>, are Hilbert spaces. These are a special kind of <a href="/wiki/Function_space" title="Function space">function space</a> in which <a href="/wiki/Derivative" title="Derivative">differentiation</a> may be performed, but that (unlike other <a href="/wiki/Banach_spaces" class="mw-redirect" title="Banach spaces">Banach spaces</a> such as the <a href="/wiki/H%C3%B6lder_space" class="mw-redirect" title="Hölder space">Hölder spaces</a>) support the structure of an inner product. Because differentiation is permitted, Sobolev spaces are a convenient setting for the theory of <a href="/wiki/Partial_differential_equations" class="mw-redirect" title="Partial differential equations">partial differential equations</a>.<sup id="cite_ref-BeJoSc81_32-0" class="reference"><a href="#cite_note-BeJoSc81-32"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup> They also form the basis of the theory of <a href="/wiki/Direct_method_in_calculus_of_variations" class="mw-redirect" title="Direct method in calculus of variations">direct methods in the calculus of variations</a>.<sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">&#91;</span>32<span class="cite-bracket">&#93;</span></a></sup> </p><p>For <span class="texhtml"><i>s</i></span> a non-negative <a href="/wiki/Integer" title="Integer">integer</a> and <span class="texhtml">Ω ⊂ <b>R</b><sup><i>n</i></sup></span>, the Sobolev space <span class="texhtml"><i>H</i><sup><i>s</i></sup>(Ω)</span> contains <span class="texhtml"><i>L</i><sup>2</sup></span> functions whose <a href="/wiki/Weak_derivative" title="Weak derivative">weak derivatives</a> of order up to <span class="texhtml"><i>s</i></span> are also <span class="texhtml"><i>L</i><sup>2</sup></span>. The inner product in <span class="texhtml"><i>H</i><sup><i>s</i></sup>(Ω)</span> is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle f,g\rangle =\int _{\Omega }f(x){\bar {g}}(x)\,\mathrm {d} x+\int _{\Omega }Df(x)\cdot D{\bar {g}}(x)\,\mathrm {d} x+\cdots +\int _{\Omega }D^{s}f(x)\cdot D^{s}{\bar {g}}(x)\,\mathrm {d} x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>f</mi> <mo>,</mo> <mi>g</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>x</mi> <mo>+</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mrow> </msub> <mi>D</mi> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>x</mi> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mrow> </msub> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle f,g\rangle =\int _{\Omega }f(x){\bar {g}}(x)\,\mathrm {d} x+\int _{\Omega }Df(x)\cdot D{\bar {g}}(x)\,\mathrm {d} x+\cdots +\int _{\Omega }D^{s}f(x)\cdot D^{s}{\bar {g}}(x)\,\mathrm {d} x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/50aeb4e11264166dd7a52c8a92ff01274b07ced5" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:77.33ex; height:5.676ex;" alt="{\displaystyle \langle f,g\rangle =\int _{\Omega }f(x){\bar {g}}(x)\,\mathrm {d} x+\int _{\Omega }Df(x)\cdot D{\bar {g}}(x)\,\mathrm {d} x+\cdots +\int _{\Omega }D^{s}f(x)\cdot D^{s}{\bar {g}}(x)\,\mathrm {d} x}"></span> where the dot indicates the dot product in the Euclidean space of partial derivatives of each order. Sobolev spaces can also be defined when <span class="texhtml"><i>s</i></span> is not an integer. </p><p>Sobolev spaces are also studied from the point of view of spectral theory, relying more specifically on the Hilbert space structure. If <span class="texhtml">Ω</span> is a suitable domain, then one can define the Sobolev space <span class="texhtml"><i>H</i><sup><i>s</i></sup>(Ω)</span> as the space of <a href="/wiki/Bessel_potential" title="Bessel potential">Bessel potentials</a>;<sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup> roughly, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H^{s}(\Omega )=\left\{(1-\Delta )^{-s/2}f\mathrel {\Big |} f\in L^{2}(\Omega )\right\}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow> <mo>{</mo> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> <mi>f</mi> <mrow class="MJX-TeXAtom-REL"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">|</mo> </mrow> </mrow> <mi>f</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo stretchy="false">)</mo> </mrow> <mo>}</mo> </mrow> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H^{s}(\Omega )=\left\{(1-\Delta )^{-s/2}f\mathrel {\Big |} f\in L^{2}(\Omega )\right\}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d29c7b84760df017ba43e6ddfaf97c373b67fc92" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:39.348ex; height:4.843ex;" alt="{\displaystyle H^{s}(\Omega )=\left\{(1-\Delta )^{-s/2}f\mathrel {\Big |} f\in L^{2}(\Omega )\right\}\,.}"></span> </p><p>Here <span class="texhtml">Δ</span> is the Laplacian and <span class="texhtml">(1 − Δ)<sup>−<i>s</i>&#8202;/&#8202;2</sup></span> is understood in terms of the <a href="/wiki/Spectral_mapping_theorem" class="mw-redirect" title="Spectral mapping theorem">spectral mapping theorem</a>. Apart from providing a workable definition of Sobolev spaces for non-integer <span class="texhtml"><i>s</i></span>, this definition also has particularly desirable properties under the <a href="/wiki/Fourier_transform" title="Fourier transform">Fourier transform</a> that make it ideal for the study of <a href="/wiki/Pseudodifferential_operator" class="mw-redirect" title="Pseudodifferential operator">pseudodifferential operators</a>. Using these methods on a <a href="/wiki/Compact_space" title="Compact space">compact</a> <a href="/wiki/Riemannian_manifold" title="Riemannian manifold">Riemannian manifold</a>, one can obtain for instance the <a href="/wiki/Hodge_decomposition" class="mw-redirect" title="Hodge decomposition">Hodge decomposition</a>, which is the basis of <a href="/wiki/Hodge_theory" title="Hodge theory">Hodge theory</a>.<sup id="cite_ref-35" class="reference"><a href="#cite_note-35"><span class="cite-bracket">&#91;</span>34<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Spaces_of_holomorphic_functions">Spaces of holomorphic functions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Hilbert_space&amp;action=edit&amp;section=9" title="Edit section: Spaces of holomorphic functions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="Hardy_spaces">Hardy spaces</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Hilbert_space&amp;action=edit&amp;section=10" title="Edit section: Hardy spaces"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Hardy_space" title="Hardy space">Hardy spaces</a> are function spaces, arising in <a href="/wiki/Complex_analysis" title="Complex analysis">complex analysis</a> and <a href="/wiki/Harmonic_analysis" title="Harmonic analysis">harmonic analysis</a>, whose elements are certain <a href="/wiki/Holomorphic_function" title="Holomorphic function">holomorphic functions</a> in a complex domain.<sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">&#91;</span>35<span class="cite-bracket">&#93;</span></a></sup> Let <span class="texhtml"><i>U</i></span> denote the <a href="/wiki/Unit_disc" class="mw-redirect" title="Unit disc">unit disc</a> in the complex plane. Then the Hardy space <span class="texhtml"><i>H</i><sup>2</sup>(<i>U</i>)</span> is defined as the space of holomorphic functions <span class="texhtml"><i>f</i></span> on <span class="texhtml"><i>U</i></span> such that the means </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{r}(f)={\frac {1}{2\pi }}\int _{0}^{2\pi }\left|f{\bigl (}re^{i\theta }{\bigr )}\right|^{2}\,\mathrm {d} \theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </mfrac> </mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </msubsup> <msup> <mrow> <mo>|</mo> <mrow> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mi>r</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> </mrow> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03B8;<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{r}(f)={\frac {1}{2\pi }}\int _{0}^{2\pi }\left|f{\bigl (}re^{i\theta }{\bigr )}\right|^{2}\,\mathrm {d} \theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75d48a7b8ea6e2c4f63b249ef1921e472f615354" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:30.209ex; height:6.176ex;" alt="{\displaystyle M_{r}(f)={\frac {1}{2\pi }}\int _{0}^{2\pi }\left|f{\bigl (}re^{i\theta }{\bigr )}\right|^{2}\,\mathrm {d} \theta }"></span> </p><p>remain bounded for <span class="texhtml"><i>r</i> &lt; 1</span>. The norm on this Hardy space is defined by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\|f\right\|_{2}=\lim _{r\to 1}{\sqrt {M_{r}(f)}}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow> <mo symmetric="true">&#x2016;</mo> <mi>f</mi> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mn>1</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> </msqrt> </mrow> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\|f\right\|_{2}=\lim _{r\to 1}{\sqrt {M_{r}(f)}}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/246ff4232c927287a6ed5b599c9fa846a1529085" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:21.046ex; height:5.009ex;" alt="{\displaystyle \left\|f\right\|_{2}=\lim _{r\to 1}{\sqrt {M_{r}(f)}}\,.}"></span> </p><p>Hardy spaces in the disc are related to Fourier series. A function <span class="texhtml"><i>f</i></span> is in <span class="texhtml"><i>H</i><sup>2</sup>(<i>U</i>)</span> if and only if <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(z)=\sum _{n=0}^{\infty }a_{n}z^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(z)=\sum _{n=0}^{\infty }a_{n}z^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2163356e45f7c36725ccdd94146d0f9a204b4fad" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:15.774ex; height:6.843ex;" alt="{\displaystyle f(z)=\sum _{n=0}^{\infty }a_{n}z^{n}}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=0}^{\infty }|a_{n}|^{2}&lt;\infty \,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&lt;</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=0}^{\infty }|a_{n}|^{2}&lt;\infty \,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0205b868913347fe8e885d451d575382c60941d4" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:14.994ex; height:6.843ex;" alt="{\displaystyle \sum _{n=0}^{\infty }|a_{n}|^{2}&lt;\infty \,.}"></span> </p><p>Thus <span class="texhtml"><i>H</i><sup>2</sup>(<i>U</i>)</span> consists of those functions that are <i>L</i><sup>2</sup> on the circle, and whose negative frequency Fourier coefficients vanish. </p> <div class="mw-heading mw-heading4"><h4 id="Bergman_spaces">Bergman spaces</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Hilbert_space&amp;action=edit&amp;section=11" title="Edit section: Bergman spaces"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Bergman_space" title="Bergman space">Bergman spaces</a> are another family of Hilbert spaces of holomorphic functions.<sup id="cite_ref-37" class="reference"><a href="#cite_note-37"><span class="cite-bracket">&#91;</span>36<span class="cite-bracket">&#93;</span></a></sup> Let <span class="texhtml"><i>D</i></span> be a bounded open set in the <a href="/wiki/Complex_plane" title="Complex plane">complex plane</a> (or a higher-dimensional complex space) and let <span class="texhtml"><i>L</i><sup>2, <i>h</i></sup>(<i>D</i>)</span> be the space of holomorphic functions <span class="texhtml"><i>f</i></span> in <span class="texhtml"><i>D</i></span> that are also in <span class="texhtml"><i>L</i><sup>2</sup>(<i>D</i>)</span> in the sense that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|f\|^{2}=\int _{D}|f(z)|^{2}\,\mathrm {d} \mu (z)&lt;\infty \,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>f</mi> <msup> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>&lt;</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|f\|^{2}=\int _{D}|f(z)|^{2}\,\mathrm {d} \mu (z)&lt;\infty \,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7abfa454eccbd44a2f8b837454134d9770b38577" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:29.988ex; height:5.676ex;" alt="{\displaystyle \|f\|^{2}=\int _{D}|f(z)|^{2}\,\mathrm {d} \mu (z)&lt;\infty \,,}"></span> </p><p>where the integral is taken with respect to the Lebesgue measure in <span class="texhtml"><i>D</i></span>. Clearly <span class="texhtml"><i>L</i><sup>2, <i>h</i></sup>(<i>D</i>)</span> is a subspace of <span class="texhtml"><i>L</i><sup>2</sup>(<i>D</i>)</span>; in fact, it is a <a href="/wiki/Closed_set" title="Closed set">closed</a> subspace, and so a Hilbert space in its own right. This is a consequence of the estimate, valid on <a href="/wiki/Compact_space" title="Compact space">compact</a> subsets <span class="texhtml"><i>K</i></span> of <span class="texhtml"><i>D</i></span>, that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sup _{z\in K}\left|f(z)\right|\leq C_{K}\left\|f\right\|_{2}\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">sup</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>K</mi> </mrow> </munder> <mrow> <mo>|</mo> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>K</mi> </mrow> </msub> <msub> <mrow> <mo symmetric="true">&#x2016;</mo> <mi>f</mi> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sup _{z\in K}\left|f(z)\right|\leq C_{K}\left\|f\right\|_{2}\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7243a8cb764807f9a5d13eb03ada405869f8642d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:21.503ex; height:4.509ex;" alt="{\displaystyle \sup _{z\in K}\left|f(z)\right|\leq C_{K}\left\|f\right\|_{2}\,,}"></span> which in turn follows from <a href="/wiki/Cauchy%27s_integral_formula" title="Cauchy&#39;s integral formula">Cauchy's integral formula</a>. Thus convergence of a sequence of holomorphic functions in <span class="texhtml"><i>L</i><sup>2</sup>(<i>D</i>)</span> implies also <a href="/wiki/Compact_convergence" title="Compact convergence">compact convergence</a>, and so the limit function is also holomorphic. Another consequence of this inequality is that the linear functional that evaluates a function <span class="texhtml"><i>f</i></span> at a point of <span class="texhtml"><i>D</i></span> is actually continuous on <span class="texhtml"><i>L</i><sup>2, <i>h</i></sup>(<i>D</i>)</span>. The Riesz representation theorem implies that the evaluation functional can be represented as an element of <span class="texhtml"><i>L</i><sup>2, <i>h</i></sup>(<i>D</i>)</span>. Thus, for every <span class="texhtml"><i>z</i> ∈ <i>D</i></span>, there is a function <span class="texhtml"><i>η</i><sub><i>z</i></sub> ∈ <i>L</i><sup>2, <i>h</i></sup>(<i>D</i>)</span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(z)=\int _{D}f(\zeta ){\overline {\eta _{z}(\zeta )}}\,\mathrm {d} \mu (\zeta )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <msub> <mi>&#x03B7;<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">)</mo> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(z)=\int _{D}f(\zeta ){\overline {\eta _{z}(\zeta )}}\,\mathrm {d} \mu (\zeta )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c7ad03af32f07660d72581836b127864b66754ff" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:25.892ex; height:5.676ex;" alt="{\displaystyle f(z)=\int _{D}f(\zeta ){\overline {\eta _{z}(\zeta )}}\,\mathrm {d} \mu (\zeta )}"></span> for all <span class="texhtml"><i>f</i> ∈ <i>L</i><sup>2, <i>h</i></sup>(<i>D</i>)</span>. The integrand <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K(\zeta ,z)={\overline {\eta _{z}(\zeta )}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo stretchy="false">(</mo> <mi>&#x03B6;<!-- ζ --></mi> <mo>,</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <msub> <mi>&#x03B7;<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">)</mo> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K(\zeta ,z)={\overline {\eta _{z}(\zeta )}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04b706e60c2651a125a998c77e079cda951306c4" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.367ex; height:3.676ex;" alt="{\displaystyle K(\zeta ,z)={\overline {\eta _{z}(\zeta )}}}"></span> is known as the <a href="/wiki/Bergman_kernel" title="Bergman kernel">Bergman kernel</a> of <span class="texhtml"><i>D</i></span>. This <a href="/wiki/Integral_kernel" class="mw-redirect" title="Integral kernel">integral kernel</a> satisfies a reproducing property <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(z)=\int _{D}f(\zeta )K(\zeta ,z)\,\mathrm {d} \mu (\zeta )\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">)</mo> <mi>K</mi> <mo stretchy="false">(</mo> <mi>&#x03B6;<!-- ζ --></mi> <mo>,</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(z)=\int _{D}f(\zeta )K(\zeta ,z)\,\mathrm {d} \mu (\zeta )\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/537dd2cecfc6886382c7172984995ebeb0fe6be1" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:28.842ex; height:5.676ex;" alt="{\displaystyle f(z)=\int _{D}f(\zeta )K(\zeta ,z)\,\mathrm {d} \mu (\zeta )\,.}"></span> </p><p>A Bergman space is an example of a <a href="/wiki/Reproducing_kernel_Hilbert_space" title="Reproducing kernel Hilbert space">reproducing kernel Hilbert space</a>, which is a Hilbert space of functions along with a kernel <span class="texhtml"><i>K</i>(<i>ζ</i>, <i>z</i>)</span> that verifies a reproducing property analogous to this one. The Hardy space <span class="texhtml"><i>H</i><sup>2</sup>(<i>D</i>)</span> also admits a reproducing kernel, known as the <a href="/wiki/Szeg%C5%91_kernel" title="Szegő kernel">Szegő kernel</a>.<sup id="cite_ref-38" class="reference"><a href="#cite_note-38"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup> Reproducing kernels are common in other areas of mathematics as well. For instance, in <a href="/wiki/Harmonic_analysis" title="Harmonic analysis">harmonic analysis</a> the <a href="/wiki/Poisson_kernel" title="Poisson kernel">Poisson kernel</a> is a reproducing kernel for the Hilbert space of square-integrable <a href="/wiki/Harmonic_function" title="Harmonic function">harmonic functions</a> in the <a href="/wiki/Unit_ball" class="mw-redirect" title="Unit ball">unit ball</a>. That the latter is a Hilbert space at all is a consequence of the mean value theorem for harmonic functions. </p> <div class="mw-heading mw-heading2"><h2 id="Applications">Applications</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Hilbert_space&amp;action=edit&amp;section=12" title="Edit section: Applications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Many of the applications of Hilbert spaces exploit the fact that Hilbert spaces support generalizations of simple geometric concepts like <a href="/wiki/Projection_operator" class="mw-redirect" title="Projection operator">projection</a> and <a href="/wiki/Change_of_basis" title="Change of basis">change of basis</a> from their usual finite dimensional setting. In particular, the <a href="/wiki/Spectral_theory" title="Spectral theory">spectral theory</a> of <a href="/wiki/Continuous_function" title="Continuous function">continuous</a> <a href="/wiki/Self-adjoint_operator" title="Self-adjoint operator">self-adjoint</a> <a href="/wiki/Linear_operator" class="mw-redirect" title="Linear operator">linear operators</a> on a Hilbert space generalizes the usual <a href="/wiki/Eigendecomposition_of_a_matrix" title="Eigendecomposition of a matrix">spectral decomposition</a> of a <a href="/wiki/Matrix_(mathematics)" title="Matrix (mathematics)">matrix</a>, and this often plays a major role in applications of the theory to other areas of mathematics and physics. </p> <div class="mw-heading mw-heading3"><h3 id="Sturm–Liouville_theory"><span id="Sturm.E2.80.93Liouville_theory"></span>Sturm–Liouville theory</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Hilbert_space&amp;action=edit&amp;section=13" title="Edit section: Sturm–Liouville theory"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Sturm%E2%80%93Liouville_theory" title="Sturm–Liouville theory">Sturm–Liouville theory</a> and <a href="/wiki/Spectral_theory_of_ordinary_differential_equations" title="Spectral theory of ordinary differential equations">Spectral theory of ordinary differential equations</a></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Harmonic_partials_on_strings.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c5/Harmonic_partials_on_strings.svg/220px-Harmonic_partials_on_strings.svg.png" decoding="async" width="220" height="209" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c5/Harmonic_partials_on_strings.svg/330px-Harmonic_partials_on_strings.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c5/Harmonic_partials_on_strings.svg/440px-Harmonic_partials_on_strings.svg.png 2x" data-file-width="620" data-file-height="590" /></a><figcaption>The <a href="/wiki/Overtone" title="Overtone">overtones</a> of a vibrating string. These are <a href="/wiki/Eigenfunction" title="Eigenfunction">eigenfunctions</a> of an associated Sturm–Liouville problem. The eigenvalues 1, <style data-mw-deduplicate="TemplateStyles:r1214402035">.mw-parser-output .sfrac{white-space:nowrap}.mw-parser-output .sfrac.tion,.mw-parser-output .sfrac .tion{display:inline-block;vertical-align:-0.5em;font-size:85%;text-align:center}.mw-parser-output .sfrac .num{display:block;line-height:1em;margin:0.0em 0.1em;border-bottom:1px solid}.mw-parser-output .sfrac .den{display:block;line-height:1em;margin:0.1em 0.1em}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);clip-path:polygon(0px 0px,0px 0px,0px 0px);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}</style><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>&#8288;</span>, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">3</span></span>&#8288;</span>, ... form the (musical) <a href="/wiki/Harmonic_series_(music)" title="Harmonic series (music)">harmonic series</a>.</figcaption></figure> <p>In the theory of <a href="/wiki/Ordinary_differential_equation" title="Ordinary differential equation">ordinary differential equations</a>, spectral methods on a suitable Hilbert space are used to study the behavior of eigenvalues and eigenfunctions of differential equations. For example, the <a href="/wiki/Sturm%E2%80%93Liouville_theory" title="Sturm–Liouville theory">Sturm–Liouville problem</a> arises in the study of the harmonics of waves in a violin string or a drum, and is a central problem in <a href="/wiki/Ordinary_differential_equations" class="mw-redirect" title="Ordinary differential equations">ordinary differential equations</a>.<sup id="cite_ref-39" class="reference"><a href="#cite_note-39"><span class="cite-bracket">&#91;</span>38<span class="cite-bracket">&#93;</span></a></sup> The problem is a differential equation of the form <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{\frac {\mathrm {d} }{\mathrm {d} x}}\left[p(x){\frac {\mathrm {d} y}{\mathrm {d} x}}\right]+q(x)y=\lambda w(x)y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>x</mi> </mrow> </mfrac> </mrow> <mrow> <mo>[</mo> <mrow> <mi>p</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>y</mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>x</mi> </mrow> </mfrac> </mrow> </mrow> <mo>]</mo> </mrow> <mo>+</mo> <mi>q</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>y</mi> <mo>=</mo> <mi>&#x03BB;<!-- λ --></mi> <mi>w</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -{\frac {\mathrm {d} }{\mathrm {d} x}}\left[p(x){\frac {\mathrm {d} y}{\mathrm {d} x}}\right]+q(x)y=\lambda w(x)y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8d4e93c4082311667644e8554f78774b963ffb0e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:34.492ex; height:6.176ex;" alt="{\displaystyle -{\frac {\mathrm {d} }{\mathrm {d} x}}\left[p(x){\frac {\mathrm {d} y}{\mathrm {d} x}}\right]+q(x)y=\lambda w(x)y}"></span> for an unknown function <span class="texhtml"><i>y</i></span> on an interval <span class="texhtml">&#91;<i>a</i>, <i>b</i>&#93;</span>, satisfying general homogeneous <a href="/wiki/Robin_boundary_conditions" class="mw-redirect" title="Robin boundary conditions">Robin boundary conditions</a> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{cases}\alpha y(a)+\alpha 'y'(a)&amp;=0\\\beta y(b)+\beta 'y'(b)&amp;=0\,.\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mi>&#x03B1;<!-- α --></mi> <mi>y</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>+</mo> <msup> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2032;</mo> </msup> <msup> <mi>y</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mo>=</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>&#x03B2;<!-- β --></mi> <mi>y</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>+</mo> <msup> <mi>&#x03B2;<!-- β --></mi> <mo>&#x2032;</mo> </msup> <msup> <mi>y</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mo>=</mo> <mn>0</mn> <mspace width="thinmathspace" /> <mo>.</mo> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{cases}\alpha y(a)+\alpha 'y'(a)&amp;=0\\\beta y(b)+\beta 'y'(b)&amp;=0\,.\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/992667418f6db4ca72e98721e1d698be8a90a7e8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:25.046ex; height:6.176ex;" alt="{\displaystyle {\begin{cases}\alpha y(a)+\alpha &#039;y&#039;(a)&amp;=0\\\beta y(b)+\beta &#039;y&#039;(b)&amp;=0\,.\end{cases}}}"></span> The functions <span class="texhtml"><i>p</i></span>, <span class="texhtml"><i>q</i></span>, and <span class="texhtml"><i>w</i></span> are given in advance, and the problem is to find the function <span class="texhtml"><i>y</i></span> and constants <span class="texhtml"><i>λ</i></span> for which the equation has a solution. The problem only has solutions for certain values of <span class="texhtml"><i>λ</i></span>, called eigenvalues of the system, and this is a consequence of the spectral theorem for <a href="/wiki/Compact_operator" title="Compact operator">compact operators</a> applied to the <a href="/wiki/Integral_operator" title="Integral operator">integral operator</a> defined by the <a href="/wiki/Green%27s_function" title="Green&#39;s function">Green's function</a> for the system. Furthermore, another consequence of this general result is that the eigenvalues <span class="texhtml"><i>λ</i></span> of the system can be arranged in an increasing sequence tending to infinity.<sup id="cite_ref-40" class="reference"><a href="#cite_note-40"><span class="cite-bracket">&#91;</span>39<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-41" class="reference"><a href="#cite_note-41"><span class="cite-bracket">&#91;</span>nb 2<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Partial_differential_equations">Partial differential equations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Hilbert_space&amp;action=edit&amp;section=14" title="Edit section: Partial differential equations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Hilbert spaces form a basic tool in the study of <a href="/wiki/Partial_differential_equations" class="mw-redirect" title="Partial differential equations">partial differential equations</a>.<sup id="cite_ref-BeJoSc81_32-1" class="reference"><a href="#cite_note-BeJoSc81-32"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup> For many classes of partial differential equations, such as linear <a href="/wiki/Elliptic_partial_differential_equation" title="Elliptic partial differential equation">elliptic equations</a>, it is possible to consider a generalized solution (known as a <a href="/wiki/Weak_derivative" title="Weak derivative">weak</a> solution) by enlarging the class of functions. Many weak formulations involve the class of <a href="/wiki/Sobolev_space" title="Sobolev space">Sobolev functions</a>, which is a Hilbert space. A suitable weak formulation reduces to a geometrical problem, the analytic problem of finding a solution or, often what is more important, showing that a solution exists and is unique for given boundary data. For linear elliptic equations, one geometrical result that ensures unique solvability for a large class of problems is the <a href="/wiki/Lax%E2%80%93Milgram_theorem" class="mw-redirect" title="Lax–Milgram theorem">Lax–Milgram theorem</a>. This strategy forms the rudiment of the <a href="/wiki/Galerkin_method" title="Galerkin method">Galerkin method</a> (a <a href="/wiki/Finite_element_method" title="Finite element method">finite element method</a>) for numerical solution of partial differential equations.<sup id="cite_ref-42" class="reference"><a href="#cite_note-42"><span class="cite-bracket">&#91;</span>40<span class="cite-bracket">&#93;</span></a></sup> </p><p>A typical example is the <a href="/wiki/Poisson_equation" class="mw-redirect" title="Poisson equation">Poisson equation</a> <span class="texhtml">−Δ<i>u</i> = <i>g</i></span> with <a href="/wiki/Dirichlet_boundary_conditions" class="mw-redirect" title="Dirichlet boundary conditions">Dirichlet boundary conditions</a> in a bounded domain <span class="texhtml">Ω</span> in <span class="texhtml"><b>R</b><sup>2</sup></span>. The weak formulation consists of finding a function <span class="texhtml"><i>u</i></span> such that, for all continuously differentiable functions <span class="texhtml"><i>v</i></span> in <span class="texhtml">Ω</span> vanishing on the boundary: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{\Omega }\nabla u\cdot \nabla v=\int _{\Omega }gv\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mrow> </msub> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mi>u</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mi>v</mi> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mrow> </msub> <mi>g</mi> <mi>v</mi> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{\Omega }\nabla u\cdot \nabla v=\int _{\Omega }gv\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3f8bcf957f73f0f6f2b6c40537741271a5923c38" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:20.581ex; height:5.676ex;" alt="{\displaystyle \int _{\Omega }\nabla u\cdot \nabla v=\int _{\Omega }gv\,.}"></span> </p><p>This can be recast in terms of the Hilbert space <span class="texhtml"><i>H</i><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">1</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sub></span></span>(Ω)</span> consisting of functions <span class="texhtml"><i>u</i></span> such that <span class="texhtml"><i>u</i></span>, along with its weak partial derivatives, are square integrable on <span class="texhtml">Ω</span>, and vanish on the boundary. The question then reduces to finding <span class="texhtml"><i>u</i></span> in this space such that for all <span class="texhtml"><i>v</i></span> in this space <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a(u,v)=b(v)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>b</mi> <mo stretchy="false">(</mo> <mi>v</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a(u,v)=b(v)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/386fc8bc772c1d357db4e4549e05ad79174118df" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.563ex; height:2.843ex;" alt="{\displaystyle a(u,v)=b(v)}"></span> </p><p>where <span class="texhtml"><i>a</i></span> is a continuous <a href="/wiki/Bilinear_form" title="Bilinear form">bilinear form</a>, and <span class="texhtml"><i>b</i></span> is a continuous <a href="/wiki/Linear_functional" class="mw-redirect" title="Linear functional">linear functional</a>, given respectively by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a(u,v)=\int _{\Omega }\nabla u\cdot \nabla v,\quad b(v)=\int _{\Omega }gv\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mrow> </msub> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mi>u</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mi>v</mi> <mo>,</mo> <mspace width="1em" /> <mi>b</mi> <mo stretchy="false">(</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mrow> </msub> <mi>g</mi> <mi>v</mi> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a(u,v)=\int _{\Omega }\nabla u\cdot \nabla v,\quad b(v)=\int _{\Omega }gv\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eda62b2fa76285d30b8ca17da5714caa584b0da4" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:37.501ex; height:5.676ex;" alt="{\displaystyle a(u,v)=\int _{\Omega }\nabla u\cdot \nabla v,\quad b(v)=\int _{\Omega }gv\,.}"></span> </p><p>Since the Poisson equation is <a href="/wiki/Elliptic_partial_differential_equation" title="Elliptic partial differential equation">elliptic</a>, it follows from Poincaré's inequality that the bilinear form <span class="texhtml"><i>a</i></span> is <a href="/wiki/Coercive_function" title="Coercive function">coercive</a>. The Lax–Milgram theorem then ensures the existence and uniqueness of solutions of this equation.<sup id="cite_ref-43" class="reference"><a href="#cite_note-43"><span class="cite-bracket">&#91;</span>41<span class="cite-bracket">&#93;</span></a></sup> </p><p>Hilbert spaces allow for many elliptic partial differential equations to be formulated in a similar way, and the Lax–Milgram theorem is then a basic tool in their analysis. With suitable modifications, similar techniques can be applied to <a href="/wiki/Parabolic_partial_differential_equation" title="Parabolic partial differential equation">parabolic partial differential equations</a> and certain <a href="/wiki/Hyperbolic_partial_differential_equation" title="Hyperbolic partial differential equation">hyperbolic partial differential equations</a>.<sup id="cite_ref-44" class="reference"><a href="#cite_note-44"><span class="cite-bracket">&#91;</span>42<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Ergodic_theory">Ergodic theory</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Hilbert_space&amp;action=edit&amp;section=15" title="Edit section: Ergodic theory"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:BunimovichStadium.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b6/BunimovichStadium.svg/220px-BunimovichStadium.svg.png" decoding="async" width="220" height="108" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b6/BunimovichStadium.svg/330px-BunimovichStadium.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b6/BunimovichStadium.svg/440px-BunimovichStadium.svg.png 2x" data-file-width="663" data-file-height="324" /></a><figcaption>The path of a <a href="/wiki/Dynamical_billiards" title="Dynamical billiards">billiard</a> ball in the <a href="/wiki/Bunimovich_stadium" class="mw-redirect" title="Bunimovich stadium">Bunimovich stadium</a> is described by an ergodic <a href="/wiki/Dynamical_system" title="Dynamical system">dynamical system</a>.</figcaption></figure> <p>The field of <a href="/wiki/Ergodic_theory" title="Ergodic theory">ergodic theory</a> is the study of the long-term behavior of <a href="/wiki/Chaos_theory" title="Chaos theory">chaotic</a> <a href="/wiki/Dynamical_system" title="Dynamical system">dynamical systems</a>. The protypical case of a field that ergodic theory applies to is <a href="/wiki/Thermodynamics" title="Thermodynamics">thermodynamics</a>, in which—though the microscopic state of a system is extremely complicated (it is impossible to understand the ensemble of individual collisions between particles of matter)—the average behavior over sufficiently long time intervals is tractable. The <a href="/wiki/Laws_of_thermodynamics" title="Laws of thermodynamics">laws of thermodynamics</a> are assertions about such average behavior. In particular, one formulation of the <a href="/wiki/Zeroth_law_of_thermodynamics" title="Zeroth law of thermodynamics">zeroth law of thermodynamics</a> asserts that over sufficiently long timescales, the only functionally independent measurement that one can make of a thermodynamic system in equilibrium is its total energy, in the form of <a href="/wiki/Temperature" title="Temperature">temperature</a>.<sup id="cite_ref-45" class="reference"><a href="#cite_note-45"><span class="cite-bracket">&#91;</span>43<span class="cite-bracket">&#93;</span></a></sup> </p><p>An ergodic dynamical system is one for which, apart from the energy—measured by the <a href="/wiki/Hamiltonian_(quantum_mechanics)" title="Hamiltonian (quantum mechanics)">Hamiltonian</a>—there are no other functionally independent <a href="/wiki/Conserved_quantities" class="mw-redirect" title="Conserved quantities">conserved quantities</a> on the <a href="/wiki/Phase_space" title="Phase space">phase space</a>. More explicitly, suppose that the energy <span class="texhtml"><i>E</i></span> is fixed, and let <span class="texhtml">Ω<sub><i>E</i></sub></span> be the subset of the phase space consisting of all states of energy <span class="texhtml"><i>E</i></span> (an energy surface), and let <span class="texhtml"><i>T</i><sub><i>t</i></sub></span> denote the evolution operator on the phase space. The dynamical system is ergodic if every invariant measurable functions on <span class="texhtml">Ω<sub><i>E</i></sub></span> is constant <a href="/wiki/Almost_everywhere" title="Almost everywhere">almost everywhere</a>.<sup id="cite_ref-46" class="reference"><a href="#cite_note-46"><span class="cite-bracket">&#91;</span>44<span class="cite-bracket">&#93;</span></a></sup> An invariant function <span class="texhtml"><i>f</i></span> is one for which <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(T_{t}w)=f(w)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mi>w</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>w</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(T_{t}w)=f(w)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/edf2a493c10cb88b35c1d4a145926a7ff2cd8842" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.786ex; height:2.843ex;" alt="{\displaystyle f(T_{t}w)=f(w)}"></span> for all <span class="texhtml"><i>w</i></span> on <span class="texhtml">Ω<sub><i>E</i></sub></span> and all time <span class="texhtml"><i>t</i></span>. <a href="/wiki/Liouville%27s_theorem_(Hamiltonian)" title="Liouville&#39;s theorem (Hamiltonian)">Liouville's theorem</a> implies that there exists a <a href="/wiki/Measure_theory" class="mw-redirect" title="Measure theory">measure</a> <span class="texhtml"><i>μ</i></span> on the energy surface that is invariant under the <a href="/wiki/Time_translation" class="mw-redirect" title="Time translation">time translation</a>. As a result, time translation is a <a href="/wiki/Unitary_transformation" title="Unitary transformation">unitary transformation</a> of the Hilbert space <span class="texhtml"><i>L</i><sup>2</sup>(Ω<sub><i>E</i></sub>, <i>μ</i>)</span> consisting of square-integrable functions on the energy surface <span class="texhtml">Ω<sub><i>E</i></sub></span> with respect to the inner product <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\langle f,g\right\rangle _{L^{2}\left(\Omega _{E},\mu \right)}=\int _{E}f{\bar {g}}\,\mathrm {d} \mu \,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow> <mo>&#x27E8;</mo> <mrow> <mi>f</mi> <mo>,</mo> <mi>g</mi> </mrow> <mo>&#x27E9;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <msub> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>E</mi> </mrow> </msub> <mo>,</mo> <mi>&#x03BC;<!-- μ --></mi> </mrow> <mo>)</mo> </mrow> </mrow> </msub> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>E</mi> </mrow> </msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03BC;<!-- μ --></mi> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\langle f,g\right\rangle _{L^{2}\left(\Omega _{E},\mu \right)}=\int _{E}f{\bar {g}}\,\mathrm {d} \mu \,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/decbac50d55419a511d0372b6dfad9baa58a20f4" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:25.41ex; height:5.676ex;" alt="{\displaystyle \left\langle f,g\right\rangle _{L^{2}\left(\Omega _{E},\mu \right)}=\int _{E}f{\bar {g}}\,\mathrm {d} \mu \,.}"></span> </p><p>The von Neumann mean ergodic theorem<sup id="cite_ref-von_Neumann_1932_25-1" class="reference"><a href="#cite_note-von_Neumann_1932-25"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> states the following: </p> <ul><li>If <span class="texhtml"><i>U</i><sub><i>t</i></sub></span> is a (strongly continuous) one-parameter <a href="/wiki/Semigroup" title="Semigroup">semigroup</a> of unitary operators on a Hilbert space <span class="texhtml"><i>H</i></span>, and <span class="texhtml"><i>P</i></span> is the orthogonal projection onto the space of common fixed points of <span class="texhtml"><i>U</i><sub><i>t</i></sub></span>, <span class="texhtml">{<i>x</i> ∈<i>H</i> | <i>U</i><sub><i>t</i></sub><i>x</i> = <i>x</i>, ∀<i>t</i> &gt; 0}</span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Px=\lim _{T\to \infty }{\frac {1}{T}}\int _{0}^{T}U_{t}x\,\mathrm {d} t\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mi>x</mi> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>T</mi> </mfrac> </mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msubsup> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mi>x</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Px=\lim _{T\to \infty }{\frac {1}{T}}\int _{0}^{T}U_{t}x\,\mathrm {d} t\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/58abae503a6878f01de9a3c3517ae8c94ecfbd73" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:25.4ex; height:6.176ex;" alt="{\displaystyle Px=\lim _{T\to \infty }{\frac {1}{T}}\int _{0}^{T}U_{t}x\,\mathrm {d} t\,.}"></span></li></ul> <p>For an ergodic system, the fixed set of the time evolution consists only of the constant functions, so the ergodic theorem implies the following:<sup id="cite_ref-47" class="reference"><a href="#cite_note-47"><span class="cite-bracket">&#91;</span>45<span class="cite-bracket">&#93;</span></a></sup> for any function <span class="texhtml"><i>f</i> ∈ <i>L</i><sup>2</sup>(Ω<sub><i>E</i></sub>, <i>μ</i>)</span>, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\underset {T\to \infty }{L^{2}-\lim }}{\frac {1}{T}}\int _{0}^{T}f(T_{t}w)\,\mathrm {d} t=\int _{\Omega _{E}}f(y)\,\mathrm {d} \mu (y)\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <munder> <mrow> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mo movablelimits="true" form="prefix">lim</mo> </mrow> <mrow> <mi>T</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>T</mi> </mfrac> </mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mi>w</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>E</mi> </mrow> </msub> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\underset {T\to \infty }{L^{2}-\lim }}{\frac {1}{T}}\int _{0}^{T}f(T_{t}w)\,\mathrm {d} t=\int _{\Omega _{E}}f(y)\,\mathrm {d} \mu (y)\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b23f47d65d6729b56ee0921737f1840150206835" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:43.966ex; height:6.509ex;" alt="{\displaystyle {\underset {T\to \infty }{L^{2}-\lim }}{\frac {1}{T}}\int _{0}^{T}f(T_{t}w)\,\mathrm {d} t=\int _{\Omega _{E}}f(y)\,\mathrm {d} \mu (y)\,.}"></span> </p><p>That is, the long time average of an observable <span class="texhtml"><i>f</i></span> is equal to its expectation value over an energy surface. </p> <div class="mw-heading mw-heading3"><h3 id="Fourier_analysis">Fourier analysis</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Hilbert_space&amp;action=edit&amp;section=16" title="Edit section: Fourier analysis"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Sawtooth_Fourier_Analysys.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/32/Sawtooth_Fourier_Analysys.svg/220px-Sawtooth_Fourier_Analysys.svg.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/32/Sawtooth_Fourier_Analysys.svg/330px-Sawtooth_Fourier_Analysys.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/32/Sawtooth_Fourier_Analysys.svg/440px-Sawtooth_Fourier_Analysys.svg.png 2x" data-file-width="512" data-file-height="512" /></a><figcaption>Superposition of sinusoidal wave basis functions (bottom) to form a sawtooth wave (top)</figcaption></figure> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Harmoniki.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0e/Harmoniki.png/220px-Harmoniki.png" decoding="async" width="220" height="124" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0e/Harmoniki.png/330px-Harmoniki.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0e/Harmoniki.png/440px-Harmoniki.png 2x" data-file-width="1280" data-file-height="721" /></a><figcaption><a href="/wiki/Spherical_harmonics" title="Spherical harmonics">Spherical harmonics</a>, an orthonormal basis for the Hilbert space of square-integrable functions on the sphere, shown graphed along the radial direction</figcaption></figure> <p>One of the basic goals of <a href="/wiki/Fourier_analysis" title="Fourier analysis">Fourier analysis</a> is to decompose a function into a (possibly infinite) <a href="/wiki/Linear_combination" title="Linear combination">linear combination</a> of given basis functions: the associated <a href="/wiki/Fourier_series" title="Fourier series">Fourier series</a>. The classical Fourier series associated to a function <span class="texhtml"><i>f</i></span> defined on the interval <span class="texhtml">[0, 1]</span> is a series of the form <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=-\infty }^{\infty }a_{n}e^{2\pi in\theta }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>i</mi> <mi>n</mi> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=-\infty }^{\infty }a_{n}e^{2\pi in\theta }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8e2147afcbe4d3a488c888213ccba7a7aff0b3f9" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:13.426ex; height:6.843ex;" alt="{\displaystyle \sum _{n=-\infty }^{\infty }a_{n}e^{2\pi in\theta }}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{n}=\int _{0}^{1}f(\theta )\;\!e^{-2\pi in\theta }\,\mathrm {d} \theta \,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">)</mo> <mspace width="thickmathspace" /> <mspace width="negativethinmathspace" /> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>i</mi> <mi>n</mi> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03B8;<!-- θ --></mi> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{n}=\int _{0}^{1}f(\theta )\;\!e^{-2\pi in\theta }\,\mathrm {d} \theta \,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/929652493606593c89b5d1e2831e236bd4d59912" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:24.375ex; height:6.176ex;" alt="{\displaystyle a_{n}=\int _{0}^{1}f(\theta )\;\!e^{-2\pi in\theta }\,\mathrm {d} \theta \,.}"></span> </p><p>The example of adding up the first few terms in a Fourier series for a sawtooth function is shown in the figure. The basis functions are sine waves with wavelengths <span class="texhtml"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num"><i>λ</i></span><span class="sr-only">/</span><span class="den"><i>n</i></span></span>&#8288;</span></span> (for integer <span class="texhtml"><i>n</i></span>) shorter than the wavelength <span class="texhtml"><i>λ</i></span> of the sawtooth itself (except for <span class="texhtml"><i>n</i> = 1</span>, the <i>fundamental</i> wave). </p><p>A significant problem in classical Fourier series asks in what sense the Fourier series converges, if at all, to the function <span class="texhtml"><i>f</i></span>. Hilbert space methods provide one possible answer to this question.<sup id="cite_ref-48" class="reference"><a href="#cite_note-48"><span class="cite-bracket">&#91;</span>46<span class="cite-bracket">&#93;</span></a></sup> The functions <span class="texhtml"><i>e<sub>n</sub></i>(<i>θ</i>) = <i>e</i><sup>2π<i>inθ</i></sup></span> form an orthogonal basis of the Hilbert space <span class="texhtml"><i>L</i><sup>2</sup>([0, 1])</span>. Consequently, any square-integrable function can be expressed as a series <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(\theta )=\sum _{n}a_{n}e_{n}(\theta )\,,\quad a_{n}=\langle f,e_{n}\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munder> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo>,</mo> <mspace width="1em" /> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>f</mi> <mo>,</mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(\theta )=\sum _{n}a_{n}e_{n}(\theta )\,,\quad a_{n}=\langle f,e_{n}\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/180ca7e1463bb5f755ba1377633d8643b9b9d312" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:34.383ex; height:5.509ex;" alt="{\displaystyle f(\theta )=\sum _{n}a_{n}e_{n}(\theta )\,,\quad a_{n}=\langle f,e_{n}\rangle }"></span> </p><p>and, moreover, this series converges in the Hilbert space sense (that is, in the <a href="/wiki/Mean_convergence" class="mw-redirect" title="Mean convergence"><span class="texhtml"><i>L</i><sup>2</sup></span> mean</a>). </p><p>The problem can also be studied from the abstract point of view: every Hilbert space has an <a href="/wiki/Orthonormal_basis" title="Orthonormal basis">orthonormal basis</a>, and every element of the Hilbert space can be written in a unique way as a sum of multiples of these basis elements. The coefficients appearing on these basis elements are sometimes known abstractly as the Fourier coefficients of the element of the space.<sup id="cite_ref-49" class="reference"><a href="#cite_note-49"><span class="cite-bracket">&#91;</span>47<span class="cite-bracket">&#93;</span></a></sup> The abstraction is especially useful when it is more natural to use different basis functions for a space such as <span class="texhtml"><i>L</i><sup>2</sup>([0, 1])</span>. In many circumstances, it is desirable not to decompose a function into trigonometric functions, but rather into <a href="/wiki/Orthogonal_polynomials" title="Orthogonal polynomials">orthogonal polynomials</a> or <a href="/wiki/Wavelet" title="Wavelet">wavelets</a> for instance,<sup id="cite_ref-50" class="reference"><a href="#cite_note-50"><span class="cite-bracket">&#91;</span>48<span class="cite-bracket">&#93;</span></a></sup> and in higher dimensions into <a href="/wiki/Spherical_harmonics" title="Spherical harmonics">spherical harmonics</a>.<sup id="cite_ref-51" class="reference"><a href="#cite_note-51"><span class="cite-bracket">&#91;</span>49<span class="cite-bracket">&#93;</span></a></sup> </p><p>For instance, if <span class="texhtml"><i>e</i><sub><i>n</i></sub></span> are any orthonormal basis functions of <span class="texhtml"><i>L</i><sup>2</sup>[0, 1]</span>, then a given function in <span class="texhtml"><i>L</i><sup>2</sup>[0, 1]</span> can be approximated as a finite linear combination<sup id="cite_ref-52" class="reference"><a href="#cite_note-52"><span class="cite-bracket">&#91;</span>50<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)\approx f_{n}(x)=a_{1}e_{1}(x)+a_{2}e_{2}(x)+\cdots +a_{n}e_{n}(x)\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2248;<!-- ≈ --></mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)\approx f_{n}(x)=a_{1}e_{1}(x)+a_{2}e_{2}(x)+\cdots +a_{n}e_{n}(x)\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e7942e7d3c2d9843987b8382eeae55b7f1f1f04b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:51.4ex; height:2.843ex;" alt="{\displaystyle f(x)\approx f_{n}(x)=a_{1}e_{1}(x)+a_{2}e_{2}(x)+\cdots +a_{n}e_{n}(x)\,.}"></span> </p><p>The coefficients <span class="texhtml">{<i>a</i><sub><i>j</i></sub>}</span> are selected to make the magnitude of the difference <span class="texhtml">&#x2016;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>f</i> − <i>f</i><sub><i>n</i></sub></span>&#x2016;<sup>2</sup></span> as small as possible. Geometrically, the <a href="#Best_approximation">best approximation</a> is the <a href="#Orthogonal_complements_and_projections">orthogonal projection</a> of <span class="texhtml"><i>f</i></span> onto the subspace consisting of all linear combinations of the <span class="texhtml">{<i>e</i><sub><i>j</i></sub>}</span>, and can be calculated by<sup id="cite_ref-53" class="reference"><a href="#cite_note-53"><span class="cite-bracket">&#91;</span>51<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{j}=\int _{0}^{1}{\overline {e_{j}(x)}}f(x)\,\mathrm {d} x\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>x</mi> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{j}=\int _{0}^{1}{\overline {e_{j}(x)}}f(x)\,\mathrm {d} x\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6880852f6c9f4506bca5fc28e0dfdf088fa9ae19" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:22.851ex; height:6.176ex;" alt="{\displaystyle a_{j}=\int _{0}^{1}{\overline {e_{j}(x)}}f(x)\,\mathrm {d} x\,.}"></span> </p><p>That this formula minimizes the difference <span class="texhtml">&#x2016;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>f</i> − <i>f</i><sub><i>n</i></sub></span>&#x2016;<sup>2</sup></span> is a consequence of <a href="#Bessel&#39;s_inequality_and_Parseval&#39;s_formula">Bessel's inequality and Parseval's formula</a>. </p><p>In various applications to physical problems, a function can be decomposed into physically meaningful <a href="/wiki/Eigenfunction" title="Eigenfunction">eigenfunctions</a> of a <a href="/wiki/Differential_operator" title="Differential operator">differential operator</a> (typically the <a href="/wiki/Laplace_operator" title="Laplace operator">Laplace operator</a>): this forms the foundation for the spectral study of functions, in reference to the <a href="/wiki/Spectral_theorem" title="Spectral theorem">spectrum</a> of the differential operator.<sup id="cite_ref-54" class="reference"><a href="#cite_note-54"><span class="cite-bracket">&#91;</span>52<span class="cite-bracket">&#93;</span></a></sup> A concrete physical application involves the problem of <a href="/wiki/Hearing_the_shape_of_a_drum" title="Hearing the shape of a drum">hearing the shape of a drum</a>: given the fundamental modes of vibration that a drumhead is capable of producing, can one infer the shape of the drum itself?<sup id="cite_ref-55" class="reference"><a href="#cite_note-55"><span class="cite-bracket">&#91;</span>53<span class="cite-bracket">&#93;</span></a></sup> The mathematical formulation of this question involves the <a href="/wiki/Dirichlet_eigenvalue" title="Dirichlet eigenvalue">Dirichlet eigenvalues</a> of the Laplace equation in the plane, that represent the fundamental modes of vibration in direct analogy with the integers that represent the fundamental modes of vibration of the violin string. </p><p><a href="/wiki/Spectral_theory" title="Spectral theory">Spectral theory</a> also underlies certain aspects of the <a href="/wiki/Fourier_transform" title="Fourier transform">Fourier transform</a> of a function. Whereas Fourier analysis decomposes a function defined on a <a href="/wiki/Compact_set" class="mw-redirect" title="Compact set">compact set</a> into the discrete spectrum of the Laplacian (which corresponds to the vibrations of a violin string or drum), the Fourier transform of a function is the decomposition of a function defined on all of Euclidean space into its components in the <a href="/wiki/Continuous_spectrum" class="mw-redirect" title="Continuous spectrum">continuous spectrum</a> of the Laplacian. The Fourier transformation is also geometrical, in a sense made precise by the <a href="/wiki/Plancherel_theorem" title="Plancherel theorem">Plancherel theorem</a>, that asserts that it is an <a href="/wiki/Isometry" title="Isometry">isometry</a> of one Hilbert space (the "time domain") with another (the "frequency domain"). This isometry property of the Fourier transformation is a recurring theme in abstract <a href="/wiki/Harmonic_analysis" title="Harmonic analysis">harmonic analysis</a> (since it reflects the conservation of energy for the continuous Fourier Transform), as evidenced for instance by the <a href="/wiki/Plancherel_theorem_for_spherical_functions" title="Plancherel theorem for spherical functions">Plancherel theorem for spherical functions</a> occurring in <a href="/wiki/Noncommutative_harmonic_analysis" title="Noncommutative harmonic analysis">noncommutative harmonic analysis</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Quantum_mechanics">Quantum mechanics</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Hilbert_space&amp;action=edit&amp;section=17" title="Edit section: Quantum mechanics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:HAtomOrbitals.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/cf/HAtomOrbitals.png/220px-HAtomOrbitals.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/c/cf/HAtomOrbitals.png 1.5x" data-file-width="316" data-file-height="316" /></a><figcaption>The <a href="/wiki/Atomic_orbital" title="Atomic orbital">orbitals</a> of an <a href="/wiki/Electron" title="Electron">electron</a> in a <a href="/wiki/Hydrogen_atom" title="Hydrogen atom">hydrogen atom</a> are <a href="/wiki/Eigenfunction" title="Eigenfunction">eigenfunctions</a> of the <a href="/wiki/Energy_(physics)" class="mw-redirect" title="Energy (physics)">energy</a>.</figcaption></figure> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Measurement_in_quantum_mechanics" title="Measurement in quantum mechanics">Measurement in quantum mechanics</a></div> <p>In the mathematically rigorous formulation of <a href="/wiki/Quantum_mechanics" title="Quantum mechanics">quantum mechanics</a>, developed by <a href="/wiki/John_von_Neumann" title="John von Neumann">John von Neumann</a>,<sup id="cite_ref-56" class="reference"><a href="#cite_note-56"><span class="cite-bracket">&#91;</span>54<span class="cite-bracket">&#93;</span></a></sup> the possible states (more precisely, the <a href="/wiki/Pure_state" class="mw-redirect" title="Pure state">pure states</a>) of a quantum mechanical system are represented by <a href="/wiki/Unit_vector" title="Unit vector">unit vectors</a> (called <i>state vectors</i>) residing in a complex separable Hilbert space, known as the <a href="/wiki/Quantum_state_space" title="Quantum state space">state space</a>, well defined up to a complex number of norm 1 (the <a href="/wiki/Phase_factor" title="Phase factor">phase factor</a>). In other words, the possible states are points in the <a href="/wiki/Projective_space" title="Projective space">projectivization</a> of a Hilbert space, usually called the <a href="/wiki/Complex_projective_space" title="Complex projective space">complex projective space</a>. The exact nature of this Hilbert space is dependent on the system; for example, the position and momentum states for a single non-relativistic spin zero particle is the space of all <a href="/wiki/Square-integrable" class="mw-redirect" title="Square-integrable">square-integrable</a> functions, while the states for the spin of a single proton are unit elements of the two-dimensional complex Hilbert space of <a href="/wiki/Spinors_in_three_dimensions" title="Spinors in three dimensions">spinors</a>. Each observable is represented by a <a href="/wiki/Self-adjoint_operator" title="Self-adjoint operator">self-adjoint</a> <a href="/wiki/Linear_operator" class="mw-redirect" title="Linear operator">linear operator</a> acting on the state space. Each eigenstate of an observable corresponds to an <a href="/wiki/Eigenvector" class="mw-redirect" title="Eigenvector">eigenvector</a> of the operator, and the associated <a href="/wiki/Eigenvalue" class="mw-redirect" title="Eigenvalue">eigenvalue</a> corresponds to the value of the observable in that eigenstate.<sup id="cite_ref-57" class="reference"><a href="#cite_note-57"><span class="cite-bracket">&#91;</span>55<span class="cite-bracket">&#93;</span></a></sup> </p><p>The inner product between two state vectors is a complex number known as a <a href="/wiki/Probability_amplitude" title="Probability amplitude">probability amplitude</a>. During an ideal measurement of a quantum mechanical system, the probability that a system collapses from a given initial state to a particular eigenstate is given by the square of the <a href="/wiki/Absolute_value" title="Absolute value">absolute value</a> of the probability amplitudes between the initial and final states.<sup id="cite_ref-58" class="reference"><a href="#cite_note-58"><span class="cite-bracket">&#91;</span>56<span class="cite-bracket">&#93;</span></a></sup> The possible results of a measurement are the eigenvalues of the operator—which explains the choice of self-adjoint operators, for all the eigenvalues must be real. The probability distribution of an observable in a given state can be found by computing the spectral decomposition of the corresponding operator.<sup id="cite_ref-59" class="reference"><a href="#cite_note-59"><span class="cite-bracket">&#91;</span>57<span class="cite-bracket">&#93;</span></a></sup> </p><p>For a general system, states are typically not pure, but instead are represented as statistical mixtures of pure states, or mixed states, given by <a href="/wiki/Density_matrix" title="Density matrix">density matrices</a>: self-adjoint operators of <a href="/wiki/Trace_of_a_matrix" class="mw-redirect" title="Trace of a matrix">trace</a> one on a Hilbert space.<sup id="cite_ref-60" class="reference"><a href="#cite_note-60"><span class="cite-bracket">&#91;</span>58<span class="cite-bracket">&#93;</span></a></sup> Moreover, for general quantum mechanical systems, the effects of a single measurement can influence other parts of a system in a manner that is described instead by a <a href="/wiki/Positive_operator_valued_measure" class="mw-redirect" title="Positive operator valued measure">positive operator valued measure</a>. Thus the structure both of the states and observables in the general theory is considerably more complicated than the idealization for pure states.<sup id="cite_ref-61" class="reference"><a href="#cite_note-61"><span class="cite-bracket">&#91;</span>59<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Probability_theory">Probability theory</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Hilbert_space&amp;action=edit&amp;section=18" title="Edit section: Probability theory"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In <a href="/wiki/Probability_theory" title="Probability theory">probability theory</a>, Hilbert spaces also have diverse applications. Here a fundamental Hilbert space is the space of <a href="/wiki/Random_variable" title="Random variable">random variables</a> on a given <a href="/wiki/Probability_space" title="Probability space">probability space</a>, having class <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba162c66ca85776c83557af5088cc6f8584d1912" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.637ex; height:2.676ex;" alt="{\displaystyle L^{2}}"></span> (finite first and second <a href="/wiki/Moment_(mathematics)" title="Moment (mathematics)">moments</a>). A common operation in statistics is that of centering a random variable by subtracting its <a href="/wiki/Expected_value" title="Expected value">expectation</a>. Thus if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> is a random variable, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X-E(X)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>&#x2212;<!-- − --></mo> <mi>E</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X-E(X)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0abbac80451543e002ee8914298f66c8cd53a8ea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.385ex; height:2.843ex;" alt="{\displaystyle X-E(X)}"></span> is its centering. In the Hilbert space view, this is the orthogonal projection of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> onto the <a href="/wiki/Kernel_(algebra)" title="Kernel (algebra)">kernel</a> of the expectation operator, which a <a href="/wiki/Continuous_linear_functional" class="mw-redirect" title="Continuous linear functional">continuous linear functional</a> on the Hilbert space (in fact, the inner product with the constant random variable 1), and so this kernel is a closed subspace. </p><p>The <a href="/wiki/Conditional_expectation" title="Conditional expectation">conditional expectation</a> has a natural interpretation in the Hilbert space.<sup id="cite_ref-62" class="reference"><a href="#cite_note-62"><span class="cite-bracket">&#91;</span>60<span class="cite-bracket">&#93;</span></a></sup> Suppose that a probability space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\Omega ,P,{\mathcal {B}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo>,</mo> <mi>P</mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\Omega ,P,{\mathcal {B}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ad2a7e94a34894aec6994e0834db493394c87aa0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.844ex; height:2.843ex;" alt="{\displaystyle (\Omega ,P,{\mathcal {B}})}"></span> is given, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {B}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {B}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e5622de88a69f68340f8dcb43d0b8bd443ba9e13" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.543ex; height:2.176ex;" alt="{\displaystyle {\mathcal {B}}}"></span> is a <a href="/wiki/Sigma_algebra" class="mw-redirect" title="Sigma algebra">sigma algebra</a> on the set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Omega }"></span>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span> is a <a href="/wiki/Probability_measure" title="Probability measure">probability measure</a> on the measure space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\Omega ,{\mathcal {B}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\Omega ,{\mathcal {B}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3c71c3b681b11d672fb4712a121dc140ff810ef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.065ex; height:2.843ex;" alt="{\displaystyle (\Omega ,{\mathcal {B}})}"></span>. If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {F}}\leq {\mathcal {B}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {F}}\leq {\mathcal {B}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/28298e2f52274e8c0bf0e03dbe4e40f15691e2a2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.568ex; height:2.343ex;" alt="{\displaystyle {\mathcal {F}}\leq {\mathcal {B}}}"></span> is a sigma subalgebra of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {B}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {B}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e5622de88a69f68340f8dcb43d0b8bd443ba9e13" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.543ex; height:2.176ex;" alt="{\displaystyle {\mathcal {B}}}"></span>, then the conditional expectation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E[X|{\mathcal {F}}]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo stretchy="false">[</mo> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E[X|{\mathcal {F}}]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bda70bf9ef6fa0e4a2acbc19572fc775644a4225" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.623ex; height:2.843ex;" alt="{\displaystyle E[X|{\mathcal {F}}]}"></span> is the orthogonal projection of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> onto the subspace of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{2}(\Omega ,P)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo>,</mo> <mi>P</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{2}(\Omega ,P)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8fcb896d24e39cee28d95a2483f448d3fa231ae1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.904ex; height:3.176ex;" alt="{\displaystyle L^{2}(\Omega ,P)}"></span> consisting of the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {F}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {F}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/205d4b91000d9dcf1a5bbabdfa6a8395fa60b676" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.927ex; height:2.176ex;" alt="{\displaystyle {\mathcal {F}}}"></span>-measurable functions. If the random variable <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{2}(\Omega ,P)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo>,</mo> <mi>P</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{2}(\Omega ,P)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8fcb896d24e39cee28d95a2483f448d3fa231ae1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.904ex; height:3.176ex;" alt="{\displaystyle L^{2}(\Omega ,P)}"></span> is independent of the sigma algebra <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {F}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {F}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/205d4b91000d9dcf1a5bbabdfa6a8395fa60b676" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.927ex; height:2.176ex;" alt="{\displaystyle {\mathcal {F}}}"></span> then conditional expectation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E(X|{\mathcal {F}})=E(X)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mi>E</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E(X|{\mathcal {F}})=E(X)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2c35b1a7858cae37cc026b8844fa536f955cf648" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.802ex; height:2.843ex;" alt="{\displaystyle E(X|{\mathcal {F}})=E(X)}"></span>, i.e., its projection onto the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {F}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {F}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/205d4b91000d9dcf1a5bbabdfa6a8395fa60b676" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.927ex; height:2.176ex;" alt="{\displaystyle {\mathcal {F}}}"></span>-measurable functions is constant. Equivalently, the projection of its centering is zero. </p><p>In particular, if two random variables <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span> (in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{2}(\Omega ,P)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo>,</mo> <mi>P</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{2}(\Omega ,P)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8fcb896d24e39cee28d95a2483f448d3fa231ae1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.904ex; height:3.176ex;" alt="{\displaystyle L^{2}(\Omega ,P)}"></span>) are independent, then the centered random variables <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X-E(X)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>&#x2212;<!-- − --></mo> <mi>E</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X-E(X)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0abbac80451543e002ee8914298f66c8cd53a8ea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.385ex; height:2.843ex;" alt="{\displaystyle X-E(X)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y-E(Y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> <mo>&#x2212;<!-- − --></mo> <mi>E</mi> <mo stretchy="false">(</mo> <mi>Y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y-E(Y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d3edaee1c70a145e670d5de5d609b729167ab65" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.972ex; height:2.843ex;" alt="{\displaystyle Y-E(Y)}"></span> are orthogonal. (This means that the two variables have zero <a href="/wiki/Covariance" title="Covariance">covariance</a>: they are <a href="/wiki/Uncorrelated" class="mw-redirect" title="Uncorrelated">uncorrelated</a>.) In that case, the Pythagorean theorem in the kernel of the expectation operator implies that the <a href="/wiki/Variance" title="Variance">variances</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span> satisfy the identity: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Var} (X+Y)=\operatorname {Var} (X)+\operatorname {Var} (Y),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Var</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>+</mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>Var</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>Var</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Var} (X+Y)=\operatorname {Var} (X)+\operatorname {Var} (Y),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7edda73fedaf279c028c7bbf77cd3cb044e301e5" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:33.812ex; height:2.843ex;" alt="{\displaystyle \operatorname {Var} (X+Y)=\operatorname {Var} (X)+\operatorname {Var} (Y),}"></span> sometimes called the Pythagorean theorem of statistics, and is of importance in <a href="/wiki/Linear_regression" title="Linear regression">linear regression</a>.<sup id="cite_ref-63" class="reference"><a href="#cite_note-63"><span class="cite-bracket">&#91;</span>61<span class="cite-bracket">&#93;</span></a></sup> As <a href="#CITEREFStapleton1995">Stapleton (1995)</a> puts it, "the <a href="/wiki/Analysis_of_variance" title="Analysis of variance">analysis of variance</a> may be viewed as the decomposition of the squared length of a vector into the sum of the squared lengths of several vectors, using the Pythagorean Theorem." </p><p>The theory of <a href="/wiki/Martingale_(probability_theory)" title="Martingale (probability theory)">martingales</a> can be formulated in Hilbert spaces. A martingale in a Hilbert space is a sequence <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{1},x_{2},\dots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{1},x_{2},\dots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e71a0bff46c1d8ad13a271387dcf9c11fb30cee9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.559ex; height:2.009ex;" alt="{\displaystyle x_{1},x_{2},\dots }"></span> of elements of a Hilbert space such that, for each <span class="texhtml"><i>n</i></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c5ea190699149306d242b70439e663559e3ffbe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.548ex; height:2.009ex;" alt="{\displaystyle x_{n}}"></span> is the orthogonal projection of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{n+1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{n+1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e76103271a353337f6b3c697209cb19359807df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.649ex; height:2.009ex;" alt="{\displaystyle x_{n+1}}"></span> onto the linear hull of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{1},\dots ,x_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{1},\dots ,x_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e5afdbc2d248d8fa9ba2c4f5188d946a0537e753" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.11ex; height:2.009ex;" alt="{\displaystyle x_{1},\dots ,x_{n}}"></span>.<sup id="cite_ref-64" class="reference"><a href="#cite_note-64"><span class="cite-bracket">&#91;</span>62<span class="cite-bracket">&#93;</span></a></sup> If the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d2b88c64c76a03611549fb9b4cf4ed060b56002" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.418ex; height:2.009ex;" alt="{\displaystyle x_{k}}"></span> are random variables, this reproduces the usual definition of a (discrete) martingale: the expectation of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{n+1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{n+1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e76103271a353337f6b3c697209cb19359807df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.649ex; height:2.009ex;" alt="{\displaystyle x_{n+1}}"></span>, conditioned on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{1},\dots ,x_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{1},\dots ,x_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e5afdbc2d248d8fa9ba2c4f5188d946a0537e753" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.11ex; height:2.009ex;" alt="{\displaystyle x_{1},\dots ,x_{n}}"></span>, is equal to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c5ea190699149306d242b70439e663559e3ffbe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.548ex; height:2.009ex;" alt="{\displaystyle x_{n}}"></span>. </p><p>Hilbert spaces are also used throughout the foundations of the <a href="/wiki/It%C3%B4_calculus" title="Itô calculus">Itô calculus</a>.<sup id="cite_ref-65" class="reference"><a href="#cite_note-65"><span class="cite-bracket">&#91;</span>63<span class="cite-bracket">&#93;</span></a></sup> To any square-integrable <a href="/wiki/Martingale_(probability_theory)" title="Martingale (probability theory)">martingale</a>, it is possible to associate a Hilbert norm on the space of equivalence classes of <a href="/wiki/Progressively_measurable_process" title="Progressively measurable process">progressively measurable processes</a> with respect to the martingale (using the <a href="/wiki/Quadratic_variation" title="Quadratic variation">quadratic variation</a> of the martingale as the measure). The <a href="/wiki/It%C3%B4_integral" class="mw-redirect" title="Itô integral">Itô integral</a> can be constructed by first defining it for <a href="/w/index.php?title=Simple_process&amp;action=edit&amp;redlink=1" class="new" title="Simple process (page does not exist)">simple processes</a>, and then exploiting their density in the Hilbert space. A noteworthy result is then the <a href="/wiki/It%C3%B4_isometry" title="Itô isometry">Itô isometry</a>, which attests that for any martingale <i>M</i> having quadratic variation measure <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d\langle M\rangle _{t}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>M</mi> <msub> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d\langle M\rangle _{t}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d8ebcf606010792fcbc0ce38340f2f2f774daa8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.293ex; height:2.843ex;" alt="{\displaystyle d\langle M\rangle _{t}}"></span>, and any progressively measurable process <i>H</i>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E\left[\left(\int _{0}^{t}H_{s}dM_{s}\right)^{2}\right]=E\left[\int _{0}^{t}H_{s}^{2}d\langle M\rangle _{s}\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mrow> <mo>[</mo> <msup> <mrow> <mo>(</mo> <mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> <mi>d</mi> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>]</mo> </mrow> <mo>=</mo> <mi>E</mi> <mrow> <mo>[</mo> <mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> <msubsup> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mi>d</mi> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>M</mi> <msub> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> </mrow> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E\left[\left(\int _{0}^{t}H_{s}dM_{s}\right)^{2}\right]=E\left[\int _{0}^{t}H_{s}^{2}d\langle M\rangle _{s}\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ddc67bd90763bdda507f2bfd375f0106f921894" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:41.455ex; height:7.509ex;" alt="{\displaystyle E\left[\left(\int _{0}^{t}H_{s}dM_{s}\right)^{2}\right]=E\left[\int _{0}^{t}H_{s}^{2}d\langle M\rangle _{s}\right]}"></span> whenever the expectation on the right-hand side is finite. </p><p>A deeper application of Hilbert spaces that is especially important in the theory of <a href="/wiki/Gaussian_process" title="Gaussian process">Gaussian processes</a> is an attempt, due to <a href="/wiki/Leonard_Gross" title="Leonard Gross">Leonard Gross</a> and others, to make sense of certain formal integrals over infinite dimensional spaces like the <a href="/wiki/Feynman_path_integral" class="mw-redirect" title="Feynman path integral">Feynman path integral</a> from <a href="/wiki/Quantum_field_theory" title="Quantum field theory">quantum field theory</a>. The problem with integral like this is that there is no <a href="/wiki/Infinite_dimensional_Lebesgue_measure" class="mw-redirect" title="Infinite dimensional Lebesgue measure">infinite dimensional Lebesgue measure</a>. The notion of an <a href="/wiki/Abstract_Wiener_space" title="Abstract Wiener space">abstract Wiener space</a> allows one to construct a measure on a Banach space <span class="texhtml"><i>B</i></span> that contains a Hilbert space <span class="texhtml"><i>H</i></span>, called the <a href="/wiki/Cameron%E2%80%93Martin_space" class="mw-redirect" title="Cameron–Martin space">Cameron–Martin space</a>, as a dense subset, out of a finitely additive cylinder set measure on <span class="texhtml"><i>H</i></span>. The resulting measure on <span class="texhtml"><i>B</i></span> is countably additive and invariant under translation by elements of <span class="texhtml"><i>H</i></span>, and this provides a mathematically rigorous way of thinking of the <a href="/wiki/Wiener_measure" class="mw-redirect" title="Wiener measure">Wiener measure</a> as a Gaussian measure on the Sobolev space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H^{1}([0,\infty ))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H^{1}([0,\infty ))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac69384c0c142a8bcb92dfa23538dd4f3c8f1f22" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.039ex; height:3.176ex;" alt="{\displaystyle H^{1}([0,\infty ))}"></span>.<sup id="cite_ref-66" class="reference"><a href="#cite_note-66"><span class="cite-bracket">&#91;</span>64<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Color_perception">Color perception</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Hilbert_space&amp;action=edit&amp;section=19" title="Edit section: Color perception"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Color_vision#Mathematics_of_color_perception" title="Color vision">Color vision §&#160;Mathematics of color perception</a></div> <p>Any true physical color can be represented by a combination of pure <a href="/wiki/Spectral_color" title="Spectral color">spectral colors</a>. As physical colors can be composed of any number of spectral colors, the space of physical colors may aptly be represented by a Hilbert space over spectral colors. Humans have <a href="/wiki/Trichromacy" title="Trichromacy">three types of cone cells</a> for color perception, so the perceivable colors can be represented by 3-dimensional Euclidean space. The many-to-one linear mapping from the Hilbert space of physical colors to the Euclidean space of human perceivable colors explains why many distinct physical colors may be perceived by humans to be identical (e.g., pure yellow light versus a mix of red and green light, see <a href="/wiki/Metamerism_(color)" title="Metamerism (color)">metamerism</a>).<sup id="cite_ref-67" class="reference"><a href="#cite_note-67"><span class="cite-bracket">&#91;</span>65<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-68" class="reference"><a href="#cite_note-68"><span class="cite-bracket">&#91;</span>66<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Properties">Properties</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Hilbert_space&amp;action=edit&amp;section=20" title="Edit section: Properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Pythagorean_identity">Pythagorean identity</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Hilbert_space&amp;action=edit&amp;section=21" title="Edit section: Pythagorean identity"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Two vectors <span class="texhtml"><i>u</i></span> and <span class="texhtml"><i>v</i></span> in a Hilbert space <span class="texhtml"><i>H</i></span> are orthogonal when <span class="texhtml">⟨<i>u</i>, <i>v</i>⟩ = 0</span>. The notation for this is <span class="texhtml"><i>u</i> ⊥ <i>v</i></span>. More generally, when <span class="texhtml"><i>S</i></span> is a subset in <span class="texhtml"><i>H</i></span>, the notation <span class="texhtml"><i>u</i> ⊥ <i>S</i></span> means that <span class="texhtml"><i>u</i></span> is orthogonal to every element from <span class="texhtml"><i>S</i></span>. </p><p>When <span class="texhtml"><i>u</i></span> and <span class="texhtml"><i>v</i></span> are orthogonal, one has <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|u+v\|^{2}=\langle u+v,u+v\rangle =\langle u,u\rangle +2\,\operatorname {Re} \langle u,v\rangle +\langle v,v\rangle =\|u\|^{2}+\|v\|^{2}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>u</mi> <mo>+</mo> <mi>v</mi> <msup> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>u</mi> <mo>+</mo> <mi>v</mi> <mo>,</mo> <mi>u</mi> <mo>+</mo> <mi>v</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>u</mi> <mo>,</mo> <mi>u</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>+</mo> <mn>2</mn> <mspace width="thinmathspace" /> <mi>Re</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>+</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>v</mi> <mo>,</mo> <mi>v</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>u</mi> <msup> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>v</mi> <msup> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|u+v\|^{2}=\langle u+v,u+v\rangle =\langle u,u\rangle +2\,\operatorname {Re} \langle u,v\rangle +\langle v,v\rangle =\|u\|^{2}+\|v\|^{2}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e18db6083346d3b1f8e925f0d2d6a5a1cf02d288" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:70.763ex; height:3.176ex;" alt="{\displaystyle \|u+v\|^{2}=\langle u+v,u+v\rangle =\langle u,u\rangle +2\,\operatorname {Re} \langle u,v\rangle +\langle v,v\rangle =\|u\|^{2}+\|v\|^{2}\,.}"></span> </p><p>By induction on <span class="texhtml"><i>n</i></span>, this is extended to any family <span class="texhtml"><i>u</i><sub>1</sub>, ..., <i>u<sub>n</sub></i></span> of <span class="texhtml"><i>n</i></span> orthogonal vectors, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\|u_{1}+\cdots +u_{n}\right\|^{2}=\left\|u_{1}\right\|^{2}+\cdots +\left\|u_{n}\right\|^{2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mrow> <mo symmetric="true">&#x2016;</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msup> <mrow> <mo symmetric="true">&#x2016;</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\|u_{1}+\cdots +u_{n}\right\|^{2}=\left\|u_{1}\right\|^{2}+\cdots +\left\|u_{n}\right\|^{2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac8a2ecc3d4b7abb352ce0887b1eec38f97295f0" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:40.555ex; height:3.343ex;" alt="{\displaystyle \left\|u_{1}+\cdots +u_{n}\right\|^{2}=\left\|u_{1}\right\|^{2}+\cdots +\left\|u_{n}\right\|^{2}.}"></span> </p><p>Whereas the Pythagorean identity as stated is valid in any inner product space, completeness is required for the extension of the Pythagorean identity to series.<sup id="cite_ref-69" class="reference"><a href="#cite_note-69"><span class="cite-bracket">&#91;</span>67<span class="cite-bracket">&#93;</span></a></sup> A series <span class="texhtml">Σ<i>u<sub>k</sub></i></span> of <i>orthogonal</i> vectors converges in <span class="texhtml"><i>H</i></span> if and only if the series of squares of norms converges, and <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\Biggl \|}\sum _{k=0}^{\infty }u_{k}{\Biggr \|}^{2}=\sum _{k=0}^{\infty }\left\|u_{k}\right\|^{2}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo symmetric="true" maxsize="2.470em" minsize="2.470em">&#x2016;</mo> </mrow> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo symmetric="true" maxsize="2.470em" minsize="2.470em">&#x2016;</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msup> <mrow> <mo symmetric="true">&#x2016;</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\Biggl \|}\sum _{k=0}^{\infty }u_{k}{\Biggr \|}^{2}=\sum _{k=0}^{\infty }\left\|u_{k}\right\|^{2}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca2cbc044bcb2f7757753e87855fe3ff07aae355" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:23.599ex; height:7.343ex;" alt="{\displaystyle {\Biggl \|}\sum _{k=0}^{\infty }u_{k}{\Biggr \|}^{2}=\sum _{k=0}^{\infty }\left\|u_{k}\right\|^{2}\,.}"></span> Furthermore, the sum of a series of orthogonal vectors is independent of the order in which it is taken. </p> <div class="mw-heading mw-heading3"><h3 id="Parallelogram_identity_and_polarization">Parallelogram identity and polarization</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Hilbert_space&amp;action=edit&amp;section=22" title="Edit section: Parallelogram identity and polarization"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Color_parallelogram.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/38/Color_parallelogram.svg/220px-Color_parallelogram.svg.png" decoding="async" width="220" height="151" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/38/Color_parallelogram.svg/330px-Color_parallelogram.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/38/Color_parallelogram.svg/440px-Color_parallelogram.svg.png 2x" data-file-width="255" data-file-height="175" /></a><figcaption>Geometrically, the parallelogram identity asserts that <span class="texhtml">AC<sup>2</sup> + BD<sup>2</sup> = 2(AB<sup>2</sup> + AD<sup>2</sup>)</span>. In words, the sum of the squares of the diagonals is twice the sum of the squares of any two adjacent sides.</figcaption></figure> <p>By definition, every Hilbert space is also a <a href="/wiki/Banach_space" title="Banach space">Banach space</a>. Furthermore, in every Hilbert space the following <a href="/wiki/Parallelogram_identity" class="mw-redirect" title="Parallelogram identity">parallelogram identity</a> holds:<sup id="cite_ref-70" class="reference"><a href="#cite_note-70"><span class="cite-bracket">&#91;</span>68<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|u+v\|^{2}+\|u-v\|^{2}=2{\bigl (}\|u\|^{2}+\|v\|^{2}{\bigr )}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>u</mi> <mo>+</mo> <mi>v</mi> <msup> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>u</mi> <mo>&#x2212;<!-- − --></mo> <mi>v</mi> <msup> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>u</mi> <msup> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>v</mi> <msup> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|u+v\|^{2}+\|u-v\|^{2}=2{\bigl (}\|u\|^{2}+\|v\|^{2}{\bigr )}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99f0e0121d10601ed32a1acf93b491870eef3bd3" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:39.675ex; height:3.343ex;" alt="{\displaystyle \|u+v\|^{2}+\|u-v\|^{2}=2{\bigl (}\|u\|^{2}+\|v\|^{2}{\bigr )}\,.}"></span> </p><p>Conversely, every Banach space in which the parallelogram identity holds is a Hilbert space, and the inner product is uniquely determined by the norm by the <a href="/wiki/Polarization_identity" title="Polarization identity">polarization identity</a>.<sup id="cite_ref-71" class="reference"><a href="#cite_note-71"><span class="cite-bracket">&#91;</span>69<span class="cite-bracket">&#93;</span></a></sup> For real Hilbert spaces, the polarization identity is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle u,v\rangle ={\tfrac {1}{4}}{\bigl (}\|u+v\|^{2}-\|u-v\|^{2}{\bigr )}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>u</mi> <mo>+</mo> <mi>v</mi> <msup> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>u</mi> <mo>&#x2212;<!-- − --></mo> <mi>v</mi> <msup> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle u,v\rangle ={\tfrac {1}{4}}{\bigl (}\|u+v\|^{2}-\|u-v\|^{2}{\bigr )}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bbddb1a3d65ef0456f237dcad6a74b6ce8954e02" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:33.415ex; height:3.509ex;" alt="{\displaystyle \langle u,v\rangle ={\tfrac {1}{4}}{\bigl (}\|u+v\|^{2}-\|u-v\|^{2}{\bigr )}\,.}"></span> </p><p>For complex Hilbert spaces, it is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle u,v\rangle ={\tfrac {1}{4}}{\bigl (}\|u+v\|^{2}-\|u-v\|^{2}+i\|u+iv\|^{2}-i\|u-iv\|^{2}{\bigr )}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>u</mi> <mo>+</mo> <mi>v</mi> <msup> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>u</mi> <mo>&#x2212;<!-- − --></mo> <mi>v</mi> <msup> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>i</mi> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>u</mi> <mo>+</mo> <mi>i</mi> <mi>v</mi> <msup> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>u</mi> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mi>v</mi> <msup> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle u,v\rangle ={\tfrac {1}{4}}{\bigl (}\|u+v\|^{2}-\|u-v\|^{2}+i\|u+iv\|^{2}-i\|u-iv\|^{2}{\bigr )}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e178f0bd9f69910d6d29b3159da2a40fc17481fe" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:59.659ex; height:3.509ex;" alt="{\displaystyle \langle u,v\rangle ={\tfrac {1}{4}}{\bigl (}\|u+v\|^{2}-\|u-v\|^{2}+i\|u+iv\|^{2}-i\|u-iv\|^{2}{\bigr )}\,.}"></span> </p><p>The parallelogram law implies that any Hilbert space is a <a href="/wiki/Uniformly_convex_Banach_space" class="mw-redirect" title="Uniformly convex Banach space">uniformly convex Banach space</a>.<sup id="cite_ref-72" class="reference"><a href="#cite_note-72"><span class="cite-bracket">&#91;</span>70<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Best_approximation">Best approximation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Hilbert_space&amp;action=edit&amp;section=23" title="Edit section: Best approximation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>This subsection employs the <a href="/wiki/Hilbert_projection_theorem" title="Hilbert projection theorem">Hilbert projection theorem</a>. If <span class="texhtml"><i>C</i></span> is a non-empty closed convex subset of a Hilbert space <span class="texhtml"><i>H</i></span> and <span class="texhtml"><i>x</i></span> a point in <span class="texhtml"><i>H</i></span>, there exists a unique point <span class="texhtml"><i>y</i> ∈ <i>C</i></span> that minimizes the distance between <span class="texhtml"><i>x</i></span> and points in <span class="texhtml"><i>C</i></span>,<sup id="cite_ref-73" class="reference"><a href="#cite_note-73"><span class="cite-bracket">&#91;</span>71<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y\in C\,,\quad \|x-y\|=\operatorname {dist} (x,C)=\min {\bigl \{}\|x-z\|\mathrel {\big |} z\in C{\bigr \}}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>C</mi> <mspace width="thinmathspace" /> <mo>,</mo> <mspace width="1em" /> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>y</mi> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mo>=</mo> <mi>dist</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>C</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo movablelimits="true" form="prefix">min</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">{</mo> </mrow> </mrow> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-REL"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em">|</mo> </mrow> </mrow> <mi>z</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">}</mo> </mrow> </mrow> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y\in C\,,\quad \|x-y\|=\operatorname {dist} (x,C)=\min {\bigl \{}\|x-z\|\mathrel {\big |} z\in C{\bigr \}}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4d4e7ee5ff6bed2e474dc7061e2a68c1ee67522f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:56.275ex; height:3.176ex;" alt="{\displaystyle y\in C\,,\quad \|x-y\|=\operatorname {dist} (x,C)=\min {\bigl \{}\|x-z\|\mathrel {\big |} z\in C{\bigr \}}\,.}"></span> </p><p>This is equivalent to saying that there is a point with minimal norm in the translated convex set <span class="texhtml"><i>D</i> = <i>C</i> − <i>x</i></span>. The proof consists in showing that every minimizing sequence <span class="texhtml">(<i>d<sub>n</sub></i>) ⊂ <i>D</i></span> is Cauchy (using the parallelogram identity) hence converges (using completeness) to a point in <span class="texhtml"><i>D</i></span> that has minimal norm. More generally, this holds in any uniformly convex Banach space.<sup id="cite_ref-74" class="reference"><a href="#cite_note-74"><span class="cite-bracket">&#91;</span>72<span class="cite-bracket">&#93;</span></a></sup> </p><p>When this result is applied to a closed subspace <span class="texhtml"><i>F</i></span> of <span class="texhtml"><i>H</i></span>, it can be shown that the point <span class="texhtml"><i>y</i> ∈ <i>F</i></span> closest to <span class="texhtml"><i>x</i></span> is characterized by<sup id="cite_ref-75" class="reference"><a href="#cite_note-75"><span class="cite-bracket">&#91;</span>73<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y\in F\,,\quad x-y\perp F\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>F</mi> <mspace width="thinmathspace" /> <mo>,</mo> <mspace width="1em" /> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>y</mi> <mo>&#x22A5;<!-- ⊥ --></mo> <mi>F</mi> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y\in F\,,\quad x-y\perp F\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/51abff2fb0fa9975d7b21d7945b9ec722369b5d0" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:20.679ex; height:2.509ex;" alt="{\displaystyle y\in F\,,\quad x-y\perp F\,.}"></span> </p><p>This point <span class="texhtml"><i>y</i></span> is the <i>orthogonal projection</i> of <span class="texhtml"><i>x</i></span> onto <span class="texhtml"><i>F</i></span>, and the mapping <span class="texhtml"><i>P<sub>F</sub></i>&#160;: <i>x</i> → <i>y</i></span> is linear (see <a href="#Orthogonal_complements_and_projections">Orthogonal complements and projections</a>). This result is especially significant in <a href="/wiki/Applied_mathematics" title="Applied mathematics">applied mathematics</a>, especially <a href="/wiki/Numerical_analysis" title="Numerical analysis">numerical analysis</a>, where it forms the basis of <a href="/wiki/Least_squares" title="Least squares">least squares</a> methods.<sup id="cite_ref-76" class="reference"><a href="#cite_note-76"><span class="cite-bracket">&#91;</span>74<span class="cite-bracket">&#93;</span></a></sup> </p><p>In particular, when <span class="texhtml"><i>F</i></span> is not equal to <span class="texhtml"><i>H</i></span>, one can find a nonzero vector <span class="texhtml"><i>v</i></span> orthogonal to <span class="texhtml"><i>F</i></span> (select <span class="texhtml"><i>x</i> ∉ <i>F</i></span> and <span class="texhtml"><i>v</i> = <i>x</i> − <i>y</i></span>). A very useful criterion is obtained by applying this observation to the closed subspace <span class="texhtml"><i>F</i></span> generated by a subset <span class="texhtml"><i>S</i></span> of <span class="texhtml"><i>H</i></span>. </p> <dl><dd>A subset <span class="texhtml"><i>S</i></span> of <span class="texhtml"><i>H</i></span> spans a dense vector subspace if (and only if) the vector 0 is the sole vector <span class="texhtml"><i>v</i> ∈ <i>H</i></span> orthogonal to <span class="texhtml"><i>S</i></span>.</dd></dl> <div class="mw-heading mw-heading3"><h3 id="Duality">Duality</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Hilbert_space&amp;action=edit&amp;section=24" title="Edit section: Duality"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Continuous_dual_space" class="mw-redirect" title="Continuous dual space">dual space</a> <span class="texhtml"><i>H</i>*</span> is the space of all <a href="/wiki/Continuous_function_(topology)" class="mw-redirect" title="Continuous function (topology)">continuous</a> linear functions from the space <span class="texhtml"><i>H</i></span> into the base field. It carries a natural norm, defined by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|\varphi \|=\sup _{\|x\|=1,x\in H}|\varphi (x)|\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">sup</mo> <mrow class="MJX-TeXAtom-ORD"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>H</mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|\varphi \|=\sup _{\|x\|=1,x\in H}|\varphi (x)|\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/63ca1b74cb8e720c7d8ebc2a59d67b6427d479ef" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:22.955ex; height:5.009ex;" alt="{\displaystyle \|\varphi \|=\sup _{\|x\|=1,x\in H}|\varphi (x)|\,.}"></span> This norm satisfies the <a href="/wiki/Parallelogram_law" title="Parallelogram law">parallelogram law</a>, and so the dual space is also an inner product space where this inner product can be defined in terms of this dual norm by using the <a href="/wiki/Polarization_identity" title="Polarization identity">polarization identity</a>. The dual space is also complete so it is a Hilbert space in its own right. If <span class="texhtml"><i>e</i><sub>•</sub> = (<i>e</i><sub><i>i</i></sub>)<sub><i>i</i> ∈ <i>I</i></sub></span> is a complete orthonormal basis for <span class="texhtml mvar" style="font-style:italic;">H</span> then the inner product on the dual space of any two <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f,g\in H^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>,</mo> <mi>g</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f,g\in H^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35514ab9493e958f4c5de4ebfbaf2c7561222492" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.427ex; height:2.676ex;" alt="{\displaystyle f,g\in H^{*}}"></span> is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle f,g\rangle _{H^{*}}=\sum _{i\in I}f(e_{i}){\overline {g(e_{i})}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>f</mi> <mo>,</mo> <mi>g</mi> <msub> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mrow> </msub> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> </mrow> </munder> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>g</mi> <mo stretchy="false">(</mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle f,g\rangle _{H^{*}}=\sum _{i\in I}f(e_{i}){\overline {g(e_{i})}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ad405e9182a274919f6018875a65f20132ced37f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:24.524ex; height:6.009ex;" alt="{\displaystyle \langle f,g\rangle _{H^{*}}=\sum _{i\in I}f(e_{i}){\overline {g(e_{i})}}}"></span> where all but countably many of the terms in this series are zero. </p><p>The <a href="/wiki/Riesz_representation_theorem" title="Riesz representation theorem">Riesz representation theorem</a> affords a convenient description of the dual space. To every element <span class="texhtml"><i>u</i></span> of <span class="texhtml"><i>H</i></span>, there is a unique element <span class="texhtml"><i>φ<sub>u</sub></i></span> of <span class="texhtml"><i>H</i>*</span>, defined by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi _{u}(x)=\langle x,u\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>x</mi> <mo>,</mo> <mi>u</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi _{u}(x)=\langle x,u\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8bb78bcc918808e9e933a0096a2af8211f15a029" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.433ex; height:2.843ex;" alt="{\displaystyle \varphi _{u}(x)=\langle x,u\rangle }"></span> where moreover, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\|\varphi _{u}\right\|=\left\|u\right\|.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo symmetric="true">&#x2016;</mo> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> </msub> <mo symmetric="true">&#x2016;</mo> </mrow> <mo>=</mo> <mrow> <mo symmetric="true">&#x2016;</mo> <mi>u</mi> <mo symmetric="true">&#x2016;</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\|\varphi _{u}\right\|=\left\|u\right\|.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb85d4871783b5ce911c1466616a910ea1422cae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.805ex; height:2.843ex;" alt="{\displaystyle \left\|\varphi _{u}\right\|=\left\|u\right\|.}"></span> </p><p>The Riesz representation theorem states that the map from <span class="texhtml"><i>H</i></span> to <span class="texhtml"><i>H</i>*</span> defined by <span class="texhtml"><i>u</i> ↦ <i>φ<sub>u</sub></i></span> is <a href="/wiki/Surjective_map" class="mw-redirect" title="Surjective map">surjective</a>, which makes this map an <a href="/wiki/Isometry" title="Isometry">isometric</a> <a href="/wiki/Antilinear_map" title="Antilinear map">antilinear</a> isomorphism.<sup id="cite_ref-77" class="reference"><a href="#cite_note-77"><span class="cite-bracket">&#91;</span>75<span class="cite-bracket">&#93;</span></a></sup> So to every element <span class="texhtml"><i>φ</i></span> of the dual <span class="texhtml"><i>H</i>*</span> there exists one and only one <span class="texhtml"><i>u<sub>φ</sub></i></span> in <span class="texhtml"><i>H</i></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle x,u_{\varphi }\rangle =\varphi (x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>x</mi> <mo>,</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C6;<!-- φ --></mi> </mrow> </msub> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle x,u_{\varphi }\rangle =\varphi (x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8e56abca14ae484d69e5eaeaee5d875b3e1f24b8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:14.567ex; height:3.009ex;" alt="{\displaystyle \langle x,u_{\varphi }\rangle =\varphi (x)}"></span> for all <span class="texhtml"><i>x</i> ∈ <i>H</i></span>. The inner product on the dual space <span class="texhtml"><i>H</i>*</span> satisfies <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle \varphi ,\psi \rangle =\langle u_{\psi },u_{\varphi }\rangle \,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>,</mo> <mi>&#x03C8;<!-- ψ --></mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C8;<!-- ψ --></mi> </mrow> </msub> <mo>,</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C6;<!-- φ --></mi> </mrow> </msub> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle \varphi ,\psi \rangle =\langle u_{\psi },u_{\varphi }\rangle \,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe81611f66827f550f48ab0e8d55854e834f8408" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:18.121ex; height:3.009ex;" alt="{\displaystyle \langle \varphi ,\psi \rangle =\langle u_{\psi },u_{\varphi }\rangle \,.}"></span> </p><p>The reversal of order on the right-hand side restores linearity in <span class="texhtml"><i>φ</i></span> from the antilinearity of <span class="texhtml"><i>u<sub>φ</sub></i></span>. In the real case, the antilinear isomorphism from <span class="texhtml"><i>H</i></span> to its dual is actually an isomorphism, and so real Hilbert spaces are naturally isomorphic to their own duals. </p><p>The representing vector <span class="texhtml"><i>u<sub>φ</sub></i></span> is obtained in the following way. When <span class="texhtml"><i>φ</i> ≠ 0</span>, the <a href="/wiki/Kernel_(algebra)" title="Kernel (algebra)">kernel</a> <span class="texhtml"><i>F</i> = Ker(<i>φ</i>)</span> is a closed vector subspace of <span class="texhtml"><i>H</i></span>, not equal to <span class="texhtml"><i>H</i></span>, hence there exists a nonzero vector <span class="texhtml"><i>v</i></span> orthogonal to <span class="texhtml"><i>F</i></span>. The vector <span class="texhtml"><i>u</i></span> is a suitable scalar multiple <span class="texhtml"><i>λv</i></span> of <span class="texhtml"><i>v</i></span>. The requirement that <span class="texhtml"><i>φ</i>(<i>v</i>) = ⟨<i>v</i>, <i>u</i>⟩</span> yields <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u=\langle v,v\rangle ^{-1}\,{\overline {\varphi (v)}}\,v\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>u</mi> <mo>=</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>v</mi> <mo>,</mo> <mi>v</mi> <msup> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>v</mi> <mo stretchy="false">)</mo> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mspace width="thinmathspace" /> <mi>v</mi> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u=\langle v,v\rangle ^{-1}\,{\overline {\varphi (v)}}\,v\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0940b7ef7fe6dfc275ea7ab1961924b9158a047c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.367ex; height:3.676ex;" alt="{\displaystyle u=\langle v,v\rangle ^{-1}\,{\overline {\varphi (v)}}\,v\,.}"></span> </p><p>This correspondence <span class="texhtml"><i>φ</i> ↔ <i>u</i></span> is exploited by the <a href="/wiki/Bra%E2%80%93ket_notation" title="Bra–ket notation">bra–ket notation</a> popular in <a href="/wiki/Physics" title="Physics">physics</a>.<sup id="cite_ref-78" class="reference"><a href="#cite_note-78"><span class="cite-bracket">&#91;</span>76<span class="cite-bracket">&#93;</span></a></sup> It is common in physics to assume that the inner product, denoted by <span class="texhtml"><span class="nowrap">&#x27e8;<i>x</i>&#124;<i>y</i>&#x27e9;</span></span>, is linear on the right, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle x|y\rangle =\langle y,x\rangle \,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>y</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>y</mi> <mo>,</mo> <mi>x</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle x|y\rangle =\langle y,x\rangle \,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d436ad7973ee47f13d01890d26cc98612fae99c1" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.402ex; height:2.843ex;" alt="{\displaystyle \langle x|y\rangle =\langle y,x\rangle \,.}"></span> The result <span class="texhtml"><span class="nowrap">&#x27e8;<i>x</i>&#124;<i>y</i>&#x27e9;</span></span> can be seen as the action of the linear functional <span class="texhtml"><span class="nowrap">&#x27e8;<i>x</i>&#124;</span></span> (the <i>bra</i>) on the vector <span class="texhtml"><span class="nowrap">&#124;<i>y</i>&#x27e9;</span></span> (the <i>ket</i>). </p><p>The Riesz representation theorem relies fundamentally not just on the presence of an inner product, but also on the completeness of the space. In fact, the theorem implies that the <a href="/wiki/Banach_space" title="Banach space">topological dual</a> of any inner product space can be identified with its completion.<sup id="cite_ref-79" class="reference"><a href="#cite_note-79"><span class="cite-bracket">&#91;</span>77<span class="cite-bracket">&#93;</span></a></sup> An immediate consequence of the Riesz representation theorem is also that a Hilbert space <span class="texhtml"><i>H</i></span> is <a href="/wiki/Reflexive_space" title="Reflexive space">reflexive</a>, meaning that the natural map from <span class="texhtml"><i>H</i></span> into its <a href="/wiki/Dual_space" title="Dual space">double dual space</a> is an isomorphism. </p> <div class="mw-heading mw-heading3"><h3 id="Weakly-convergent_sequences">Weakly-convergent sequences</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Hilbert_space&amp;action=edit&amp;section=25" title="Edit section: Weakly-convergent sequences"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Weak_convergence_(Hilbert_space)" title="Weak convergence (Hilbert space)">Weak convergence (Hilbert space)</a></div> <p>In a Hilbert space <span class="texhtml"><i>H</i></span>, a sequence <span class="texhtml">{<i>x<sub>n</sub></i>}</span> is <a href="/wiki/Weak_topology#Weak_convergence" title="Weak topology">weakly convergent</a> to a vector <span class="texhtml"><i>x</i> ∈ <i>H</i></span> when <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{n}\langle x_{n},v\rangle =\langle x,v\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munder> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>,</mo> <mi>v</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>x</mi> <mo>,</mo> <mi>v</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{n}\langle x_{n},v\rangle =\langle x,v\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc10be6704806b8ad1d07b418c54115e93863c0c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:18.148ex; height:3.843ex;" alt="{\displaystyle \lim _{n}\langle x_{n},v\rangle =\langle x,v\rangle }"></span> for every <span class="texhtml"><i>v</i> ∈ <i>H</i></span>. </p><p>For example, any orthonormal sequence <span class="texhtml">{<i>f<sub>n</sub></i>}</span> converges weakly to&#160;0, as a consequence of <a href="#Bessel&#39;s_inequality">Bessel's inequality</a>. Every weakly convergent sequence <span class="texhtml">{<i>x<sub>n</sub></i>}</span> is bounded, by the <a href="/wiki/Uniform_boundedness_principle" title="Uniform boundedness principle">uniform boundedness principle</a>. </p><p>Conversely, every bounded sequence in a Hilbert space admits weakly convergent subsequences (<a href="/wiki/Alaoglu%27s_theorem" class="mw-redirect" title="Alaoglu&#39;s theorem">Alaoglu's theorem</a>).<sup id="cite_ref-80" class="reference"><a href="#cite_note-80"><span class="cite-bracket">&#91;</span>78<span class="cite-bracket">&#93;</span></a></sup> This fact may be used to prove minimization results for continuous <a href="/wiki/Convex_function" title="Convex function">convex functionals</a>, in the same way that the <a href="/wiki/Bolzano%E2%80%93Weierstrass_theorem" title="Bolzano–Weierstrass theorem">Bolzano–Weierstrass theorem</a> is used for continuous functions on <span class="texhtml"><b>R</b><sup><i>d</i></sup></span>. Among several variants, one simple statement is as follows:<sup id="cite_ref-81" class="reference"><a href="#cite_note-81"><span class="cite-bracket">&#91;</span>79<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd>If <span class="texhtml"><i>f</i>&#160;: <i>H</i> → <b>R</b></span> is a convex continuous function such that <span class="texhtml"><i>f</i>(<i>x</i>)</span> tends to <span class="texhtml">+∞</span> when <span class="texhtml">&#x2016;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>x</i></span>&#x2016;</span> tends to <span class="texhtml">∞</span>, then <span class="texhtml"><i>f</i></span> admits a minimum at some point <span class="texhtml"><i>x</i><sub>0</sub> ∈ <i>H</i></span>.</dd></dl> <p>This fact (and its various generalizations) are fundamental for <a href="/wiki/Direct_method_in_the_calculus_of_variations" title="Direct method in the calculus of variations">direct methods</a> in the <a href="/wiki/Calculus_of_variations" title="Calculus of variations">calculus of variations</a>. Minimization results for convex functionals are also a direct consequence of the slightly more abstract fact that closed bounded convex subsets in a Hilbert space <span class="texhtml"><i>H</i></span> are <a href="/wiki/Weak_topology" title="Weak topology">weakly compact</a>, since <span class="texhtml"><i>H</i></span> is reflexive. The existence of weakly convergent subsequences is a special case of the <a href="/wiki/Eberlein%E2%80%93%C5%A0mulian_theorem" title="Eberlein–Šmulian theorem">Eberlein–Šmulian theorem</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Banach_space_properties">Banach space properties</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Hilbert_space&amp;action=edit&amp;section=26" title="Edit section: Banach space properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Any general property of <a href="/wiki/Banach_space" title="Banach space">Banach spaces</a> continues to hold for Hilbert spaces. The <a href="/wiki/Open_mapping_theorem_(functional_analysis)" title="Open mapping theorem (functional analysis)">open mapping theorem</a> states that a <a href="/wiki/Continuous_function" title="Continuous function">continuous</a> <a href="/wiki/Surjective" class="mw-redirect" title="Surjective">surjective</a> linear transformation from one Banach space to another is an <a href="/wiki/Open_mapping" class="mw-redirect" title="Open mapping">open mapping</a> meaning that it sends open sets to open sets. A corollary is the <a href="/wiki/Bounded_inverse_theorem" class="mw-redirect" title="Bounded inverse theorem">bounded inverse theorem</a>, that a continuous and <a href="/wiki/Bijective" class="mw-redirect" title="Bijective">bijective</a> linear function from one Banach space to another is an isomorphism (that is, a continuous linear map whose inverse is also continuous). This theorem is considerably simpler to prove in the case of Hilbert spaces than in general Banach spaces.<sup id="cite_ref-82" class="reference"><a href="#cite_note-82"><span class="cite-bracket">&#91;</span>80<span class="cite-bracket">&#93;</span></a></sup> The open mapping theorem is equivalent to the <a href="/wiki/Closed_graph_theorem" title="Closed graph theorem">closed graph theorem</a>, which asserts that a linear function from one Banach space to another is continuous if and only if its graph is a <a href="/wiki/Closed_set" title="Closed set">closed set</a>.<sup id="cite_ref-83" class="reference"><a href="#cite_note-83"><span class="cite-bracket">&#91;</span>81<span class="cite-bracket">&#93;</span></a></sup> In the case of Hilbert spaces, this is basic in the study of <a href="/wiki/Unbounded_operator" title="Unbounded operator">unbounded operators</a> (see <a href="/wiki/Closed_operator" class="mw-redirect" title="Closed operator">closed operator</a>). </p><p>The (geometrical) <a href="/wiki/Hahn%E2%80%93Banach_theorem" title="Hahn–Banach theorem">Hahn–Banach theorem</a> asserts that a closed convex set can be separated from any point outside it by means of a <a href="/wiki/Hyperplane" title="Hyperplane">hyperplane</a> of the Hilbert space. This is an immediate consequence of the <a href="#Best_approximation">best approximation</a> property: if <span class="texhtml"><i>y</i></span> is the element of a closed convex set <span class="texhtml"><i>F</i></span> closest to <span class="texhtml"><i>x</i></span>, then the separating hyperplane is the plane perpendicular to the segment <span class="texhtml"><i>xy</i></span> passing through its midpoint.<sup id="cite_ref-84" class="reference"><a href="#cite_note-84"><span class="cite-bracket">&#91;</span>82<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Operators_on_Hilbert_spaces">Operators on Hilbert spaces</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Hilbert_space&amp;action=edit&amp;section=27" title="Edit section: Operators on Hilbert spaces"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Bounded_operators">Bounded operators</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Hilbert_space&amp;action=edit&amp;section=28" title="Edit section: Bounded operators"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Continuous_function_(topology)" class="mw-redirect" title="Continuous function (topology)">continuous</a> <a href="/wiki/Linear_operator" class="mw-redirect" title="Linear operator">linear operators</a> <span class="texhtml"><i>A</i>&#160;: <i>H</i><sub>1</sub> → <i>H</i><sub>2</sub></span> from a Hilbert space <span class="texhtml"><i>H</i><sub>1</sub></span> to a second Hilbert space <span class="texhtml"><i>H</i><sub>2</sub></span> are <a href="/wiki/Bounded_linear_operator" class="mw-redirect" title="Bounded linear operator"><i>bounded</i></a> in the sense that they map <a href="/wiki/Bounded_set" title="Bounded set">bounded sets</a> to bounded sets.<sup id="cite_ref-85" class="reference"><a href="#cite_note-85"><span class="cite-bracket">&#91;</span>83<span class="cite-bracket">&#93;</span></a></sup> Conversely, if an operator is bounded, then it is continuous. The space of such <a href="/wiki/Bounded_linear_operator" class="mw-redirect" title="Bounded linear operator">bounded linear operators</a> has a <a href="/wiki/Norm_(mathematics)" title="Norm (mathematics)">norm</a>, the <a href="/wiki/Operator_norm" title="Operator norm">operator norm</a> given by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lVert A\rVert =\sup {\bigl \{}\|Ax\|\mathrel {\big |} \|x\|\leq 1{\bigr \}}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>A</mi> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mo>=</mo> <mo movablelimits="true" form="prefix">sup</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">{</mo> </mrow> </mrow> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>A</mi> <mi>x</mi> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-REL"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em">|</mo> </mrow> </mrow> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mo>&#x2264;<!-- ≤ --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">}</mo> </mrow> </mrow> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lVert A\rVert =\sup {\bigl \{}\|Ax\|\mathrel {\big |} \|x\|\leq 1{\bigr \}}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cfa5bda3c3b0a00fe3f8551b4e4628c4d6288e89" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:30.05ex; height:3.176ex;" alt="{\displaystyle \lVert A\rVert =\sup {\bigl \{}\|Ax\|\mathrel {\big |} \|x\|\leq 1{\bigr \}}\,.}"></span> </p><p>The sum and the composite of two bounded linear operators is again bounded and linear. For <i>y</i> in <i>H</i><sub>2</sub>, the map that sends <span class="texhtml"><i>x</i> ∈ <i>H</i><sub>1</sub></span> to <span class="texhtml">⟨<i>Ax</i>, <i>y</i>⟩</span> is linear and continuous, and according to the <a href="/wiki/Riesz_representation_theorem" title="Riesz representation theorem">Riesz representation theorem</a> can therefore be represented in the form <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\langle x,A^{*}y\right\rangle =\langle Ax,y\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>&#x27E8;</mo> <mrow> <mi>x</mi> <mo>,</mo> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mi>y</mi> </mrow> <mo>&#x27E9;</mo> </mrow> <mo>=</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>A</mi> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\langle x,A^{*}y\right\rangle =\langle Ax,y\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b29adafb3f47953e72bb01aad30ad286e8ce98eb" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.296ex; height:2.843ex;" alt="{\displaystyle \left\langle x,A^{*}y\right\rangle =\langle Ax,y\rangle }"></span> for some vector <span class="texhtml"><i>A</i>*<i>y</i></span> in <span class="texhtml"><i>H</i><sub>1</sub></span>. This defines another bounded linear operator <span class="texhtml"><i>A</i>*&#160;: <i>H</i><sub>2</sub> → <i>H</i><sub>1</sub></span>, the <a href="/wiki/Hermitian_adjoint" title="Hermitian adjoint">adjoint</a> of <span class="texhtml mvar" style="font-style:italic;"><i>A</i></span>. The adjoint satisfies <span class="texhtml"><i>A</i>** = <i>A</i></span>. When the Riesz representation theorem is used to identify each Hilbert space with its continuous dual space, the adjoint of <span class="texhtml mvar" style="font-style:italic;">A</span> can be shown to be <a href="/wiki/Riesz_representation_theorem#Adjoints_and_transposes" title="Riesz representation theorem">identical to</a> the <a href="/wiki/Transpose_of_a_linear_map" title="Transpose of a linear map">transpose</a> <span class="texhtml"><sup>t</sup><i>A</i>&#160;: <i>H</i><sub>2</sub>* → <i>H</i><sub>1</sub>*</span> of <span class="texhtml mvar" style="font-style:italic;">A</span>, which by definition sends <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi \in H_{2}^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C8;<!-- ψ --></mi> <mo>&#x2208;<!-- ∈ --></mo> <msubsup> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi \in H_{2}^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b567856dbcc5edd986c8a0354ec55b70722ecb8e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.512ex; height:2.843ex;" alt="{\displaystyle \psi \in H_{2}^{*}}"></span> to the functional <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi \circ A\in H_{1}^{*}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C8;<!-- ψ --></mi> <mo>&#x2218;<!-- ∘ --></mo> <mi>A</mi> <mo>&#x2208;<!-- ∈ --></mo> <msubsup> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi \circ A\in H_{1}^{*}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ebde178b2785096195c865497a755ef7b12841e9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:12.096ex; height:2.843ex;" alt="{\displaystyle \psi \circ A\in H_{1}^{*}.}"></span> </p><p>The set <span class="texhtml">B(<i>H</i>)</span> of all bounded linear operators on <span class="texhtml"><i>H</i></span> (meaning operators <span class="texhtml"><i>H</i> → <i>H</i></span>), together with the addition and composition operations, the norm and the adjoint operation, is a <a href="/wiki/C*-algebra" title="C*-algebra">C*-algebra</a>, which is a type of <a href="/wiki/Operator_algebra" title="Operator algebra">operator algebra</a>. </p><p>An element <span class="texhtml"><i>A</i></span> of <span class="texhtml">B(<i>H</i>)</span> is called 'self-adjoint' or 'Hermitian' if <span class="texhtml"><i>A</i>* = <i>A</i></span>. If <span class="texhtml"><i>A</i></span> is Hermitian and <span class="texhtml">⟨<i>Ax</i>, <i>x</i>⟩ ≥ 0</span> for every <span class="texhtml"><i>x</i></span>, then <span class="texhtml"><i>A</i></span> is called 'nonnegative', written <span class="texhtml"><i>A</i> ≥ 0</span>; if equality holds only when <span class="texhtml"><i>x</i> = 0</span>, then <span class="texhtml"><i>A</i></span> is called 'positive'. The set of self adjoint operators admits a <a href="/wiki/Partial_order" class="mw-redirect" title="Partial order">partial order</a>, in which <span class="texhtml"><i>A</i> ≥ <i>B</i></span> if <span class="texhtml"><i>A</i> − <i>B</i> ≥ 0</span>. If <span class="texhtml"><i>A</i></span> has the form <span class="texhtml"><i>B</i>*<i>B</i></span> for some <span class="texhtml"><i>B</i></span>, then <span class="texhtml"><i>A</i></span> is nonnegative; if <span class="texhtml"><i>B</i></span> is invertible, then <span class="texhtml"><i>A</i></span> is positive. A converse is also true in the sense that, for a non-negative operator <span class="texhtml"><i>A</i></span>, there exists a unique non-negative <a href="/wiki/Square_root_of_a_matrix" title="Square root of a matrix">square root</a> <span class="texhtml"><i>B</i></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A=B^{2}=B^{*}B\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mi>B</mi> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A=B^{2}=B^{*}B\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0ca56120d48281eac1949aca5c4a1d18d12d1a5" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:16.374ex; height:2.676ex;" alt="{\displaystyle A=B^{2}=B^{*}B\,.}"></span> </p><p>In a sense made precise by the <a href="/wiki/Spectral_theorem" title="Spectral theorem">spectral theorem</a>, self-adjoint operators can usefully be thought of as operators that are "real". An element <span class="texhtml"><i>A</i></span> of <span class="texhtml">B(<i>H</i>)</span> is called <i>normal</i> if <span class="texhtml"><i>A</i>*<i>A</i> = <i>AA</i>*</span>. Normal operators decompose into the sum of a self-adjoint operator and an imaginary multiple of a self adjoint operator <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A={\frac {A+A^{*}}{2}}+i{\frac {A-A^{*}}{2i}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>A</mi> <mo>+</mo> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>A</mi> <mo>&#x2212;<!-- − --></mo> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mrow> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A={\frac {A+A^{*}}{2}}+i{\frac {A-A^{*}}{2i}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/15b7b43f751581832f492a76d21d90aceb87865d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:24.918ex; height:5.343ex;" alt="{\displaystyle A={\frac {A+A^{*}}{2}}+i{\frac {A-A^{*}}{2i}}}"></span> that commute with each other. Normal operators can also usefully be thought of in terms of their real and imaginary parts. </p><p>An element <span class="texhtml"><i>U</i></span> of <span class="texhtml">B(<i>H</i>)</span> is called <a href="/wiki/Unitary_operator" title="Unitary operator">unitary</a> if <span class="texhtml"><i>U</i></span> is invertible and its inverse is given by <span class="texhtml"><i>U</i>*</span>. This can also be expressed by requiring that <span class="texhtml"><i>U</i></span> be onto and <span class="texhtml">⟨<i>Ux</i>, <i>Uy</i>⟩ = ⟨<i>x</i>, <i>y</i>⟩</span> for all <span class="texhtml"><i>x</i>, <i>y</i> ∈ <i>H</i></span>. The unitary operators form a <a href="/wiki/Group_(mathematics)" title="Group (mathematics)">group</a> under composition, which is the <a href="/wiki/Isometry_group" title="Isometry group">isometry group</a> of <span class="texhtml"><i>H</i></span>. </p><p>An element of <span class="texhtml">B(<i>H</i>)</span> is <a href="/wiki/Compact_operator" title="Compact operator">compact</a> if it sends bounded sets to <a href="/wiki/Relatively_compact" class="mw-redirect" title="Relatively compact">relatively compact</a> sets. Equivalently, a bounded operator <span class="texhtml"><i>T</i></span> is compact if, for any bounded sequence <span class="texhtml">{<i>x<sub>k</sub></i>}</span>, the sequence <span class="texhtml">{<i>Tx<sub>k</sub></i>}</span> has a convergent subsequence. Many <a href="/wiki/Integral_operator" title="Integral operator">integral operators</a> are compact, and in fact define a special class of operators known as <a href="/wiki/Hilbert%E2%80%93Schmidt_operator" title="Hilbert–Schmidt operator">Hilbert–Schmidt operators</a> that are especially important in the study of <a href="/wiki/Integral_equation" title="Integral equation">integral equations</a>. <a href="/wiki/Fredholm_operator" title="Fredholm operator">Fredholm operators</a> differ from a compact operator by a multiple of the identity, and are equivalently characterized as operators with a finite dimensional <a href="/wiki/Kernel_(linear_operator)" class="mw-redirect" title="Kernel (linear operator)">kernel</a> and <a href="/wiki/Cokernel" title="Cokernel">cokernel</a>. The index of a Fredholm operator <span class="texhtml"><i>T</i></span> is defined by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {index} T=\dim \ker T-\dim \operatorname {coker} T\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>index</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>T</mi> <mo>=</mo> <mi>dim</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>ker</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>T</mi> <mo>&#x2212;<!-- − --></mo> <mi>dim</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>coker</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>T</mi> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {index} T=\dim \ker T-\dim \operatorname {coker} T\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/77927cb900b809d2100c945d0c0ffcdb9cbf187f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:35.597ex; height:2.343ex;" alt="{\displaystyle \operatorname {index} T=\dim \ker T-\dim \operatorname {coker} T\,.}"></span> </p><p>The index is <a href="/wiki/Homotopy" title="Homotopy">homotopy</a> invariant, and plays a deep role in <a href="/wiki/Differential_geometry" title="Differential geometry">differential geometry</a> via the <a href="/wiki/Atiyah%E2%80%93Singer_index_theorem" title="Atiyah–Singer index theorem">Atiyah–Singer index theorem</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Unbounded_operators">Unbounded operators</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Hilbert_space&amp;action=edit&amp;section=29" title="Edit section: Unbounded operators"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Unbounded_operator" title="Unbounded operator">Unbounded operators</a> are also tractable in Hilbert spaces, and have important applications to <a href="/wiki/Quantum_mechanics" title="Quantum mechanics">quantum mechanics</a>.<sup id="cite_ref-86" class="reference"><a href="#cite_note-86"><span class="cite-bracket">&#91;</span>84<span class="cite-bracket">&#93;</span></a></sup> An unbounded operator <span class="texhtml"><i>T</i></span> on a Hilbert space <span class="texhtml"><i>H</i></span> is defined as a linear operator whose domain <span class="texhtml"><i>D</i>(<i>T</i>)</span> is a linear subspace of <span class="texhtml"><i>H</i></span>. Often the domain <span class="texhtml"><i>D</i>(<i>T</i>)</span> is a dense subspace of <span class="texhtml"><i>H</i></span>, in which case <span class="texhtml"><i>T</i></span> is known as a <a href="/wiki/Densely_defined_operator" title="Densely defined operator">densely defined operator</a>. </p><p>The adjoint of a densely defined unbounded operator is defined in essentially the same manner as for bounded operators. <a href="/wiki/Self-adjoint_operator" title="Self-adjoint operator">Self-adjoint unbounded operators</a> play the role of the <i>observables</i> in the mathematical formulation of quantum mechanics. Examples of self-adjoint unbounded operators on the Hilbert space <span class="texhtml"><i>L</i><sup>2</sup>(<b>R</b>)</span> are:<sup id="cite_ref-87" class="reference"><a href="#cite_note-87"><span class="cite-bracket">&#91;</span>85<span class="cite-bracket">&#93;</span></a></sup> </p> <ul><li>A suitable extension of the differential operator <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (Af)(x)=-i{\frac {\mathrm {d} }{\mathrm {d} x}}f(x)\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>A</mi> <mi>f</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>x</mi> </mrow> </mfrac> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (Af)(x)=-i{\frac {\mathrm {d} }{\mathrm {d} x}}f(x)\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f052b6830adce7017b7d7e60a8f964e77603395" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:22.589ex; height:5.509ex;" alt="{\displaystyle (Af)(x)=-i{\frac {\mathrm {d} }{\mathrm {d} x}}f(x)\,,}"></span> where <span class="texhtml"><i>i</i></span> is the imaginary unit and <span class="texhtml"><i>f</i></span> is a differentiable function of compact support.</li> <li>The multiplication-by-<span class="texhtml"><i>x</i></span> operator: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (Bf)(x)=xf(x)\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>B</mi> <mi>f</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>x</mi> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (Bf)(x)=xf(x)\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf7fecc1d7fe4103f485fa583d8ed01b2d61708a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.871ex; height:2.843ex;" alt="{\displaystyle (Bf)(x)=xf(x)\,.}"></span></li></ul> <p>These correspond to the <a href="/wiki/Momentum" title="Momentum">momentum</a> and <a href="/wiki/Position_operator" title="Position operator">position</a> observables, respectively. Neither <span class="texhtml"><i>A</i></span> nor <span class="texhtml"><i>B</i></span> is defined on all of <span class="texhtml"><i>H</i></span>, since in the case of <span class="texhtml"><i>A</i></span> the derivative need not exist, and in the case of <span class="texhtml"><i>B</i></span> the product function need not be square integrable. In both cases, the set of possible arguments form dense subspaces of <span class="texhtml"><i>L</i><sup>2</sup>(<b>R</b>)</span>. </p> <div class="mw-heading mw-heading2"><h2 id="Constructions">Constructions</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Hilbert_space&amp;action=edit&amp;section=30" title="Edit section: Constructions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Direct_sums">Direct sums</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Hilbert_space&amp;action=edit&amp;section=31" title="Edit section: Direct sums"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Two Hilbert spaces <span class="texhtml"><i>H</i><sub>1</sub></span> and <span class="texhtml"><i>H</i><sub>2</sub></span> can be combined into another Hilbert space, called the <a href="/wiki/Direct_sum_of_modules#Direct_sum_of_Hilbert_spaces" title="Direct sum of modules">(orthogonal) direct sum</a>,<sup id="cite_ref-88" class="reference"><a href="#cite_note-88"><span class="cite-bracket">&#91;</span>86<span class="cite-bracket">&#93;</span></a></sup> and denoted <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H_{1}\oplus H_{2}\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2295;<!-- ⊕ --></mo> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H_{1}\oplus H_{2}\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bfae1d22f024f459b7993cb0457aa8575b0292a6" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.845ex; height:2.509ex;" alt="{\displaystyle H_{1}\oplus H_{2}\,,}"></span> </p><p>consisting of the set of all <a href="/wiki/Ordered_pair" title="Ordered pair">ordered pairs</a> <span class="texhtml">(<i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>)</span> where <span class="texhtml"><i>x</i><sub><i>i</i></sub> ∈ <i>H</i><sub><i>i</i></sub></span>, <span class="texhtml"><i>i</i> = 1, 2</span>, and inner product defined by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bigl \langle }(x_{1},x_{2}),(y_{1},y_{2}){\bigr \rangle }_{H_{1}\oplus H_{2}}=\left\langle x_{1},y_{1}\right\rangle _{H_{1}}+\left\langle x_{2},y_{2}\right\rangle _{H_{2}}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">&#x27E8;</mo> </mrow> </mrow> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">&#x27E9;</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2295;<!-- ⊕ --></mo> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </msub> <mo>=</mo> <msub> <mrow> <mo>&#x27E8;</mo> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mo>&#x27E9;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msub> <mo>+</mo> <msub> <mrow> <mo>&#x27E8;</mo> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mo>&#x27E9;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </msub> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\bigl \langle }(x_{1},x_{2}),(y_{1},y_{2}){\bigr \rangle }_{H_{1}\oplus H_{2}}=\left\langle x_{1},y_{1}\right\rangle _{H_{1}}+\left\langle x_{2},y_{2}\right\rangle _{H_{2}}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/93bc21003f3808137fb4c3f5ada597ecc18dfafc" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:50.648ex; height:3.676ex;" alt="{\displaystyle {\bigl \langle }(x_{1},x_{2}),(y_{1},y_{2}){\bigr \rangle }_{H_{1}\oplus H_{2}}=\left\langle x_{1},y_{1}\right\rangle _{H_{1}}+\left\langle x_{2},y_{2}\right\rangle _{H_{2}}\,.}"></span> </p><p>More generally, if <span class="texhtml"><i>H</i><sub><i>i</i></sub></span> is a family of Hilbert spaces indexed by <span class="nowrap"><i>i</i> ∈ <i>I</i></span>, then the direct sum of the <span class="texhtml"><i>H</i><sub><i>i</i></sub></span>, denoted <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \bigoplus _{i\in I}H_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo>&#x2A01;<!-- ⨁ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> </mrow> </munder> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \bigoplus _{i\in I}H_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/31f61cfad2e924b1c5a4cdfe63d5ec8d7a176ef7" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:6.629ex; height:5.676ex;" alt="{\displaystyle \bigoplus _{i\in I}H_{i}}"></span> consists of the set of all indexed families <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=(x_{i}\in H_{i}\mid i\in I)\in \prod _{i\in I}H_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2223;<!-- ∣ --></mo> <mi>i</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <munder> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> </mrow> </munder> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=(x_{i}\in H_{i}\mid i\in I)\in \prod _{i\in I}H_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a199f9cfb236ef57ac07da4f97bd2cfe26de7cf" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:29.618ex; height:5.676ex;" alt="{\displaystyle x=(x_{i}\in H_{i}\mid i\in I)\in \prod _{i\in I}H_{i}}"></span> in the <a href="/wiki/Cartesian_product" title="Cartesian product">Cartesian product</a> of the <span class="texhtml"><i>H</i><sub><i>i</i></sub></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{i\in I}\|x_{i}\|^{2}&lt;\infty \,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> </mrow> </munder> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msup> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&lt;</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{i\in I}\|x_{i}\|^{2}&lt;\infty \,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a15cfa56f27c36c0d8091110b30eebfdad5c051f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:15.707ex; height:5.676ex;" alt="{\displaystyle \sum _{i\in I}\|x_{i}\|^{2}&lt;\infty \,.}"></span> </p><p>The inner product is defined by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle x,y\rangle =\sum _{i\in I}\left\langle x_{i},y_{i}\right\rangle _{H_{i}}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> </mrow> </munder> <msub> <mrow> <mo>&#x27E8;</mo> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mo>&#x27E9;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </msub> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle x,y\rangle =\sum _{i\in I}\left\langle x_{i},y_{i}\right\rangle _{H_{i}}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e4aacc8f267ce5405bcd8d77550ae773254dc247" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:22.337ex; height:5.676ex;" alt="{\displaystyle \langle x,y\rangle =\sum _{i\in I}\left\langle x_{i},y_{i}\right\rangle _{H_{i}}\,.}"></span> </p><p>Each of the <span class="texhtml"><i>H</i><sub><i>i</i></sub></span> is included as a closed subspace in the direct sum of all of the <span class="texhtml"><i>H</i><sub><i>i</i></sub></span>. Moreover, the <span class="texhtml"><i>H</i><sub><i>i</i></sub></span> are pairwise orthogonal. Conversely, if there is a system of closed subspaces, <span class="texhtml"><i>V</i><sub><i>i</i></sub></span>, <span class="texhtml"><i>i</i> ∈ <i>I</i></span>, in a Hilbert space <span class="texhtml"><i>H</i></span>, that are pairwise orthogonal and whose union is dense in <span class="texhtml"><i>H</i></span>, then <span class="texhtml"><i>H</i></span> is canonically isomorphic to the direct sum of <span class="texhtml"><i>V<sub>i</sub></i></span>. In this case, <span class="texhtml"><i>H</i></span> is called the internal direct sum of the <span class="texhtml"><i>V<sub>i</sub></i></span>. A direct sum (internal or external) is also equipped with a family of orthogonal projections <span class="texhtml"><i>E<sub>i</sub></i></span> onto the <span class="texhtml"><i>i</i></span>th direct summand <span class="texhtml"><i>H<sub>i</sub></i></span>. These projections are bounded, self-adjoint, <a href="/wiki/Idempotent" class="mw-redirect" title="Idempotent">idempotent</a> operators that satisfy the orthogonality condition <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{i}E_{j}=0,\quad i\neq j\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mspace width="1em" /> <mi>i</mi> <mo>&#x2260;<!-- ≠ --></mo> <mi>j</mi> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{i}E_{j}=0,\quad i\neq j\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc313041cf3e24642f4f53b752db11de86c99c99" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:18.65ex; height:2.843ex;" alt="{\displaystyle E_{i}E_{j}=0,\quad i\neq j\,.}"></span> </p><p>The <a href="/wiki/Spectral_theorem" title="Spectral theorem">spectral theorem</a> for <a href="/wiki/Compact_operator" title="Compact operator">compact</a> self-adjoint operators on a Hilbert space <span class="texhtml"><i>H</i></span> states that <span class="texhtml"><i>H</i></span> splits into an orthogonal direct sum of the eigenspaces of an operator, and also gives an explicit decomposition of the operator as a sum of projections onto the eigenspaces. The direct sum of Hilbert spaces also appears in quantum mechanics as the <a href="/wiki/Fock_space" title="Fock space">Fock space</a> of a system containing a variable number of particles, where each Hilbert space in the direct sum corresponds to an additional <a href="/wiki/Degrees_of_freedom_(mechanics)" title="Degrees of freedom (mechanics)">degree of freedom</a> for the quantum mechanical system. In <a href="/wiki/Representation_theory" title="Representation theory">representation theory</a>, the <a href="/wiki/Peter%E2%80%93Weyl_theorem" title="Peter–Weyl theorem">Peter–Weyl theorem</a> guarantees that any <a href="/wiki/Unitary_representation" title="Unitary representation">unitary representation</a> of a <a href="/wiki/Compact_group" title="Compact group">compact group</a> on a Hilbert space splits as the direct sum of finite-dimensional representations. </p> <div class="mw-heading mw-heading3"><h3 id="Tensor_products">Tensor products</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Hilbert_space&amp;action=edit&amp;section=32" title="Edit section: Tensor products"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Tensor_product_of_Hilbert_spaces" title="Tensor product of Hilbert spaces">Tensor product of Hilbert spaces</a></div> <p>If <span class="texhtml"><i>x</i><sub>1</sub>, <i>y</i><sub>1</sub> ∊ <i>H</i><sub>1</sub></span> and <span class="texhtml"><i>x</i><sub>2</sub>, <i>y</i><sub>2</sub> ∊ <i>H</i><sub>2</sub></span>, then one defines an inner product on the (ordinary) <a href="/wiki/Tensor_product" title="Tensor product">tensor product</a> as follows. On <a href="/wiki/Simple_tensor" class="mw-redirect" title="Simple tensor">simple tensors</a>, let <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle x_{1}\otimes x_{2},\,y_{1}\otimes y_{2}\rangle =\langle x_{1},y_{1}\rangle \,\langle x_{2},y_{2}\rangle \,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2297;<!-- ⊗ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mspace width="thinmathspace" /> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2297;<!-- ⊗ --></mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mspace width="thinmathspace" /> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle x_{1}\otimes x_{2},\,y_{1}\otimes y_{2}\rangle =\langle x_{1},y_{1}\rangle \,\langle x_{2},y_{2}\rangle \,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/67b591ee3265bc86c65b2299c3212c29b4918619" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:37.427ex; height:2.843ex;" alt="{\displaystyle \langle x_{1}\otimes x_{2},\,y_{1}\otimes y_{2}\rangle =\langle x_{1},y_{1}\rangle \,\langle x_{2},y_{2}\rangle \,.}"></span> </p><p>This formula then extends by <a href="/wiki/Sesquilinear_form" title="Sesquilinear form">sesquilinearity</a> to an inner product on <span class="texhtml"><i>H</i><sub>1</sub> ⊗ <i>H</i><sub>2</sub></span>. The Hilbertian tensor product of <span class="texhtml"><i>H</i><sub>1</sub></span> and <span class="texhtml"><i>H</i><sub>2</sub></span>, sometimes denoted by <span class="texhtml"><i>H</i><sub>1</sub> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {\otimes }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mo>&#x2297;<!-- ⊗ --></mo> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {\otimes }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/769aaba98f277892ad4872fa3a3620550e96323d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:1.808ex; height:2.843ex;" alt="{\displaystyle {\widehat {\otimes }}}"></span> <i>H</i><sub>2</sub></span>, is the Hilbert space obtained by completing <span class="texhtml"><i>H</i><sub>1</sub> ⊗ <i>H</i><sub>2</sub></span> for the metric associated to this inner product.<sup id="cite_ref-89" class="reference"><a href="#cite_note-89"><span class="cite-bracket">&#91;</span>87<span class="cite-bracket">&#93;</span></a></sup> </p><p>An example is provided by the Hilbert space <span class="texhtml"><i>L</i><sup>2</sup>([0, 1])</span>. The Hilbertian tensor product of two copies of <span class="texhtml"><i>L</i><sup>2</sup>([0, 1])</span> is isometrically and linearly isomorphic to the space <span class="texhtml"><i>L</i><sup>2</sup>([0, 1]<sup>2</sup>)</span> of square-integrable functions on the square <span class="texhtml">[0, 1]<sup>2</sup></span>. This isomorphism sends a simple tensor <span class="texhtml"><i>f</i><sub>1</sub> ⊗ <i>f</i><sub>2</sub></span> to the function <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (s,t)\mapsto f_{1}(s)\,f_{2}(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>s</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (s,t)\mapsto f_{1}(s)\,f_{2}(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bba73ee31532e31ff40fa8a8bb36865c597bb23c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.71ex; height:2.843ex;" alt="{\displaystyle (s,t)\mapsto f_{1}(s)\,f_{2}(t)}"></span> on the square. </p><p>This example is typical in the following sense.<sup id="cite_ref-90" class="reference"><a href="#cite_note-90"><span class="cite-bracket">&#91;</span>88<span class="cite-bracket">&#93;</span></a></sup> Associated to every simple tensor product <span class="texhtml"><i>x</i><sub>1</sub> ⊗ <i>x</i><sub>2</sub></span> is the rank one operator from <span class="texhtml"><i>H</i><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:0.8em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">∗</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">1</sub></span></span></span> to <span class="texhtml"><i>H</i><sub>2</sub></span> that maps a given <span class="texhtml"><i>x</i>* ∈ <i>H</i><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:0.8em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">∗</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">1</sub></span></span></span> as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{*}\mapsto x^{*}(x_{1})x_{2}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{*}\mapsto x^{*}(x_{1})x_{2}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa601a323516b585fb98c5771bf04b90ee16f8e0" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.993ex; height:2.843ex;" alt="{\displaystyle x^{*}\mapsto x^{*}(x_{1})x_{2}\,.}"></span> </p><p>This mapping defined on simple tensors extends to a linear identification between <span class="texhtml"><i>H</i><sub>1</sub> ⊗ <i>H</i><sub>2</sub></span> and the space of finite rank operators from <span class="texhtml"><i>H</i><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:0.8em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">∗</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">1</sub></span></span></span> to <span class="texhtml"><i>H</i><sub>2</sub></span>. This extends to a linear isometry of the Hilbertian tensor product <span class="texhtml"><i>H</i><sub>1</sub> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {\otimes }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mo>&#x2297;<!-- ⊗ --></mo> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {\otimes }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/769aaba98f277892ad4872fa3a3620550e96323d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:1.808ex; height:2.843ex;" alt="{\displaystyle {\widehat {\otimes }}}"></span> <i>H</i><sub>2</sub></span> with the Hilbert space <span class="texhtml"><i>HS</i>(<i>H</i><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:0.8em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">∗</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">1</sub></span></span>, <i>H</i><sub>2</sub>)</span> of <a href="/wiki/Hilbert%E2%80%93Schmidt_operator" title="Hilbert–Schmidt operator">Hilbert–Schmidt operators</a> from <span class="texhtml"><i>H</i><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:0.8em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">∗</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">1</sub></span></span></span> to <span class="texhtml"><i>H</i><sub>2</sub></span>. </p> <div class="mw-heading mw-heading2"><h2 id="Orthonormal_bases">Orthonormal bases</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Hilbert_space&amp;action=edit&amp;section=33" title="Edit section: Orthonormal bases"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The notion of an <a href="/wiki/Orthonormal_basis" title="Orthonormal basis">orthonormal basis</a> from linear algebra generalizes over to the case of Hilbert spaces.<sup id="cite_ref-91" class="reference"><a href="#cite_note-91"><span class="cite-bracket">&#91;</span>89<span class="cite-bracket">&#93;</span></a></sup> In a Hilbert space <span class="texhtml"><i>H</i></span>, an orthonormal basis is a family <span class="texhtml">{<i>e</i><sub><i>k</i></sub>}<sub><i>k</i> ∈ <i>B</i></sub></span> of elements of <span class="texhtml"><i>H</i></span> satisfying the conditions: </p> <ol><li><i>Orthogonality</i>: Every two different elements of <span class="texhtml"><i>B</i></span> are orthogonal: <span class="texhtml">⟨<i>e<sub>k</sub></i>, <i>e<sub>j</sub></i>⟩ = 0</span> for all <span class="texhtml"><i>k</i>, <i>j</i> ∈ <i>B</i></span> with <span class="nowrap"><i>k</i> ≠ <i>j</i></span>.</li> <li><i>Normalization</i>: Every element of the family has norm 1: <span class="texhtml">&#x2016;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>e</i><sub><i>k</i></sub></span>&#x2016; = 1</span> for all <span class="texhtml"><i>k</i> ∈ <i>B</i></span>.</li> <li><i>Completeness</i>: The <a href="/wiki/Linear_span" title="Linear span">linear span</a> of the family <span class="texhtml"><i>e</i><sub><i>k</i></sub></span>, <span class="texhtml"><i>k</i> ∈ <i>B</i></span>, is <a href="/wiki/Dense_set" title="Dense set">dense</a> in <i>H</i>.</li></ol> <p>A system of vectors satisfying the first two conditions basis is called an orthonormal system or an orthonormal set (or an orthonormal sequence if <span class="texhtml"><i>B</i></span> is <a href="/wiki/Countable_set" title="Countable set">countable</a>). Such a system is always <a href="/wiki/Linearly_independent" class="mw-redirect" title="Linearly independent">linearly independent</a>. </p><p>Despite the name, an orthonormal basis is not, in general, a basis in the sense of linear algebra (<a href="/wiki/Hamel_basis" class="mw-redirect" title="Hamel basis">Hamel basis</a>). More precisely, an orthonormal basis is a Hamel basis if and only if the Hilbert space is a finite-dimensional vector space.<sup id="cite_ref-92" class="reference"><a href="#cite_note-92"><span class="cite-bracket">&#91;</span>90<span class="cite-bracket">&#93;</span></a></sup> </p><p>Completeness of an orthonormal system of vectors of a Hilbert space can be equivalently restated as: </p> <dl><dd>for every <span class="texhtml"><i>v</i> ∈ <i>H</i></span>, if <span class="texhtml">⟨<i>v</i>, <i>e</i><sub><i>k</i></sub>⟩ = 0</span> for all <span class="texhtml"><i>k</i> ∈ <i>B</i></span>, then <span class="texhtml"><i>v</i> = <b>0</b></span>.</dd></dl> <p>This is related to the fact that the only vector orthogonal to a dense linear subspace is the zero vector, for if <span class="texhtml"><i>S</i></span> is any orthonormal set and <span class="texhtml"><i>v</i></span> is orthogonal to <span class="texhtml"><i>S</i></span>, then <span class="texhtml"><i>v</i></span> is orthogonal to the closure of the linear span of <span class="texhtml"><i>S</i></span>, which is the whole space. </p><p>Examples of orthonormal bases include: </p> <ul><li>the set <span class="texhtml">{(1, 0, 0), (0, 1, 0), (0, 0, 1)}</span> forms an orthonormal basis of <span class="texhtml"><b>R</b><sup>3</sup></span> with the <a href="/wiki/Dot_product" title="Dot product">dot product</a>;</li> <li>the sequence <span class="texhtml">{&#8202;<i>f</i><sub><i>n</i></sub> | <i>n</i> ∈ <b>Z</b>}</span> with <span class="texhtml"><i>f</i><sub><i>n</i></sub>(<i>x</i>) = <a href="/wiki/Exponential_function" title="Exponential function">exp</a>(2π<i>inx</i>)</span> forms an orthonormal basis of the complex space <span class="texhtml"><i>L</i><sup>2</sup>([0, 1])</span>;</li></ul> <p>In the infinite-dimensional case, an orthonormal basis will not be a basis in the sense of <a href="/wiki/Linear_algebra" title="Linear algebra">linear algebra</a>; to distinguish the two, the latter basis is also called a <a href="/wiki/Hamel_basis" class="mw-redirect" title="Hamel basis">Hamel basis</a>. That the span of the basis vectors is dense implies that every vector in the space can be written as the sum of an infinite series, and the orthogonality implies that this decomposition is unique. </p> <div class="mw-heading mw-heading3"><h3 id="Sequence_spaces">Sequence spaces</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Hilbert_space&amp;action=edit&amp;section=34" title="Edit section: Sequence spaces"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ell _{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x2113;<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ell _{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85a4571ee9be10bd3c9df2480ab3d280f99e801a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.024ex; height:2.509ex;" alt="{\displaystyle \ell _{2}}"></span> of square-summable sequences of complex numbers is the set of infinite sequences<sup id="cite_ref-Stein_2005_10-1" class="reference"><a href="#cite_note-Stein_2005-10"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (c_{1},c_{2},c_{3},\dots )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (c_{1},c_{2},c_{3},\dots )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/768f67354e8a3d14402b25c6570e502c4ae57d3a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.818ex; height:2.843ex;" alt="{\displaystyle (c_{1},c_{2},c_{3},\dots )}"></span> of real or complex numbers such that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left|c_{1}\right|^{2}+\left|c_{2}\right|^{2}+\left|c_{3}\right|^{2}+\cdots &lt;\infty \,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow> <mo>|</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mrow> <mo>|</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mrow> <mo>|</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>&lt;</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left|c_{1}\right|^{2}+\left|c_{2}\right|^{2}+\left|c_{3}\right|^{2}+\cdots &lt;\infty \,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34d0333aabdeb5ecdd32dff6435c0b21649646b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:30.928ex; height:3.343ex;" alt="{\displaystyle \left|c_{1}\right|^{2}+\left|c_{2}\right|^{2}+\left|c_{3}\right|^{2}+\cdots &lt;\infty \,.}"></span> </p><p>This space has an orthonormal basis: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}e_{1}&amp;=(1,0,0,\dots )\\e_{2}&amp;=(0,1,0,\dots )\\&amp;\ \ \vdots \end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mtext>&#xA0;</mtext> <mtext>&#xA0;</mtext> <mo>&#x22EE;<!-- ⋮ --></mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}e_{1}&amp;=(1,0,0,\dots )\\e_{2}&amp;=(0,1,0,\dots )\\&amp;\ \ \vdots \end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/651d004b8d244263bc4b40ee99daeeaea3c47b83" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.505ex; width:17.109ex; height:10.176ex;" alt="{\displaystyle {\begin{aligned}e_{1}&amp;=(1,0,0,\dots )\\e_{2}&amp;=(0,1,0,\dots )\\&amp;\ \ \vdots \end{aligned}}}"></span> </p><p>This space is the infinite-dimensional generalization of the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ell _{2}^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>&#x2113;<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ell _{2}^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4ac3233a9c36d0e75e9bfc58aab52554a80bbafd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.188ex; height:2.843ex;" alt="{\displaystyle \ell _{2}^{n}}"></span> space of finite-dimensional vectors. It is usually the first example used to show that in infinite-dimensional spaces, a set that is <a href="/wiki/Closed_set" title="Closed set">closed</a> and <a href="/wiki/Bounded_set" title="Bounded set">bounded</a> is not necessarily <a href="/wiki/Sequentially_compact_space" title="Sequentially compact space">(sequentially) compact</a> (as is the case in all <i>finite</i> dimensional spaces). Indeed, the set of orthonormal vectors above shows this: It is an infinite sequence of vectors in the unit ball (i.e., the ball of points with norm less than or equal one). This set is clearly bounded and closed; yet, no subsequence of these vectors converges to anything and consequently the unit ball in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ell _{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x2113;<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ell _{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85a4571ee9be10bd3c9df2480ab3d280f99e801a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.024ex; height:2.509ex;" alt="{\displaystyle \ell _{2}}"></span> is not compact. Intuitively, this is because "there is always another coordinate direction" into which the next elements of the sequence can evade. </p><p>One can generalize the space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ell _{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x2113;<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ell _{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85a4571ee9be10bd3c9df2480ab3d280f99e801a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.024ex; height:2.509ex;" alt="{\displaystyle \ell _{2}}"></span> in many ways. For example, if <span class="texhtml"><i>B</i></span> is any set, then one can form a Hilbert space of sequences with index set <span class="texhtml"><i>B</i></span>, defined by<sup id="cite_ref-93" class="reference"><a href="#cite_note-93"><span class="cite-bracket">&#91;</span>91<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ell ^{2}(B)={\biggl \{}x:B\xrightarrow {x} \mathbb {C} \mathrel {\bigg |} \sum _{b\in B}\left|x(b)\right|^{2}&lt;\infty {\biggr \}}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x2113;<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">{</mo> </mrow> </mrow> <mi>x</mi> <mo>:</mo> <mi>B</mi> <mover> <mo>&#x2192;</mo> <mpadded width="+0.611em" lspace="0.278em" voffset=".15em"> <mi>x</mi> </mpadded> </mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mrow class="MJX-TeXAtom-REL"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="2.047em" minsize="2.047em">|</mo> </mrow> </mrow> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>B</mi> </mrow> </munder> <msup> <mrow> <mo>|</mo> <mrow> <mi>x</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&lt;</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">}</mo> </mrow> </mrow> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ell ^{2}(B)={\biggl \{}x:B\xrightarrow {x} \mathbb {C} \mathrel {\bigg |} \sum _{b\in B}\left|x(b)\right|^{2}&lt;\infty {\biggr \}}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2d626401d25c62bd23b60f8c6947ed391898efbd" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:41.125ex; height:6.843ex;" alt="{\displaystyle \ell ^{2}(B)={\biggl \{}x:B\xrightarrow {x} \mathbb {C} \mathrel {\bigg |} \sum _{b\in B}\left|x(b)\right|^{2}&lt;\infty {\biggr \}}\,.}"></span> </p><p>The summation over <i>B</i> is here defined by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{b\in B}\left|x(b)\right|^{2}=\sup \sum _{n=1}^{N}\left|x(b_{n})\right|^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>B</mi> </mrow> </munder> <msup> <mrow> <mo>|</mo> <mrow> <mi>x</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mo movablelimits="true" form="prefix">sup</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <msup> <mrow> <mo>|</mo> <mrow> <mi>x</mi> <mo stretchy="false">(</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{b\in B}\left|x(b)\right|^{2}=\sup \sum _{n=1}^{N}\left|x(b_{n})\right|^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/923ebbaa57863084429d6ae2e1a09b598d76cc9c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:28.658ex; height:7.509ex;" alt="{\displaystyle \sum _{b\in B}\left|x(b)\right|^{2}=\sup \sum _{n=1}^{N}\left|x(b_{n})\right|^{2}}"></span> the <a href="/wiki/Supremum" class="mw-redirect" title="Supremum">supremum</a> being taken over all finite subsets of&#160;<span class="texhtml"><i>B</i></span>. It follows that, for this sum to be finite, every element of <span class="texhtml"><i>l</i><sup>2</sup>(<i>B</i>)</span> has only countably many nonzero terms. This space becomes a Hilbert space with the inner product <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle x,y\rangle =\sum _{b\in B}x(b){\overline {y(b)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>B</mi> </mrow> </munder> <mi>x</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>y</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle x,y\rangle =\sum _{b\in B}x(b){\overline {y(b)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ceafc84777c484d7336b63ae19a8373e061443ed" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:20.383ex; height:6.009ex;" alt="{\displaystyle \langle x,y\rangle =\sum _{b\in B}x(b){\overline {y(b)}}}"></span> </p><p>for all <span class="texhtml"><i>x</i>, <i>y</i> ∈ <i>l</i><sup>2</sup>(<i>B</i>)</span>. Here the sum also has only countably many nonzero terms, and is unconditionally convergent by the Cauchy–Schwarz inequality. </p><p>An orthonormal basis of <span class="texhtml"><i>l</i><sup>2</sup>(<i>B</i>)</span> is indexed by the set <span class="texhtml"><i>B</i></span>, given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e_{b}(b')={\begin{cases}1&amp;{\text{if }}b=b'\\0&amp;{\text{otherwise.}}\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msup> <mi>b</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>if&#xA0;</mtext> </mrow> <mi>b</mi> <mo>=</mo> <msup> <mi>b</mi> <mo>&#x2032;</mo> </msup> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>otherwise.</mtext> </mrow> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e_{b}(b')={\begin{cases}1&amp;{\text{if }}b=b'\\0&amp;{\text{otherwise.}}\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b89bb9d648728d42a2333751eac8a71700c31d8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:24.815ex; height:6.176ex;" alt="{\displaystyle e_{b}(b&#039;)={\begin{cases}1&amp;{\text{if }}b=b&#039;\\0&amp;{\text{otherwise.}}\end{cases}}}"></span></dd></dl> <p><span class="anchor" id="Bessel&#39;s_inequality"></span> <span class="anchor" id="Parseval&#39;s_formula"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Bessel's_inequality_and_Parseval's_formula"><span id="Bessel.27s_inequality_and_Parseval.27s_formula"></span>Bessel's inequality and Parseval's formula</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Hilbert_space&amp;action=edit&amp;section=35" title="Edit section: Bessel&#039;s inequality and Parseval&#039;s formula"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <span class="texhtml"><i>f</i><sub>1</sub>, …, <i>f</i><sub><i>n</i></sub></span> be a finite orthonormal system in&#160;<span class="texhtml"><i>H</i></span>. For an arbitrary vector <span class="texhtml"><i>x</i> ∈ <i>H</i></span>, let <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=\sum _{j=1}^{n}\langle x,f_{j}\rangle \,f_{j}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>x</mi> <mo>,</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mspace width="thinmathspace" /> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y=\sum _{j=1}^{n}\langle x,f_{j}\rangle \,f_{j}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1cae76e679dee41086182349e23adc6c0c983d60" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:17.301ex; height:7.176ex;" alt="{\displaystyle y=\sum _{j=1}^{n}\langle x,f_{j}\rangle \,f_{j}\,.}"></span> </p><p>Then <span class="texhtml">⟨<i>x</i>, <i>f</i><sub><i>k</i></sub>⟩ = ⟨<i>y</i>, <i>f</i><sub><i>k</i></sub>⟩</span> for every <span class="texhtml"><i>k</i> = 1, …, <i>n</i></span>. It follows that <span class="texhtml"><i>x</i> − <i>y</i></span> is orthogonal to each <span class="texhtml"><i>f</i><sub><i>k</i></sub></span>, hence <span class="texhtml"><i>x</i> − <i>y</i></span> is orthogonal to&#160;<span class="texhtml"><i>y</i></span>. Using the Pythagorean identity twice, it follows that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|x\|^{2}=\|x-y\|^{2}+\|y\|^{2}\geq \|y\|^{2}=\sum _{j=1}^{n}{\bigl |}\langle x,f_{j}\rangle {\bigr |}^{2}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>x</mi> <msup> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>y</mi> <msup> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>y</mi> <msup> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2265;<!-- ≥ --></mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>y</mi> <msup> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">|</mo> </mrow> </mrow> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>x</mi> <mo>,</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">|</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|x\|^{2}=\|x-y\|^{2}+\|y\|^{2}\geq \|y\|^{2}=\sum _{j=1}^{n}{\bigl |}\langle x,f_{j}\rangle {\bigr |}^{2}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b6914b2f27fcd799379d1324efd6d26a92796afc" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:47.964ex; height:7.176ex;" alt="{\displaystyle \|x\|^{2}=\|x-y\|^{2}+\|y\|^{2}\geq \|y\|^{2}=\sum _{j=1}^{n}{\bigl |}\langle x,f_{j}\rangle {\bigr |}^{2}\,.}"></span> </p><p>Let <span class="texhtml">{<i>f</i><sub><i>i</i></sub>}, <i>i</i> ∈ <i>I</i></span>, be an arbitrary orthonormal system in&#160;<span class="texhtml"><i>H</i></span>. Applying the preceding inequality to every finite subset <span class="texhtml"><i>J</i></span> of <span class="texhtml"><i>I</i></span> gives Bessel's inequality:<sup id="cite_ref-94" class="reference"><a href="#cite_note-94"><span class="cite-bracket">&#91;</span>92<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{i\in I}{\bigl |}\langle x,f_{i}\rangle {\bigr |}^{2}\leq \|x\|^{2},\quad x\in H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">|</mo> </mrow> </mrow> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>x</mi> <mo>,</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">|</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2264;<!-- ≤ --></mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>x</mi> <msup> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> <mspace width="1em" /> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{i\in I}{\bigl |}\langle x,f_{i}\rangle {\bigr |}^{2}\leq \|x\|^{2},\quad x\in H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04cd7cbd400cf024363716e694f90eabfe30a8d9" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:29.6ex; height:5.843ex;" alt="{\displaystyle \sum _{i\in I}{\bigl |}\langle x,f_{i}\rangle {\bigr |}^{2}\leq \|x\|^{2},\quad x\in H}"></span> (according to the definition of the <a href="/wiki/Series_(mathematics)#Summations_over_arbitrary_index_sets" title="Series (mathematics)">sum of an arbitrary family</a> of non-negative real numbers). </p><p>Geometrically, Bessel's inequality implies that the orthogonal projection of <span class="texhtml"><i>x</i></span> onto the linear subspace spanned by the <span class="texhtml"><i>f<sub>i</sub></i></span> has norm that does not exceed that of <span class="texhtml"><i>x</i></span>. In two dimensions, this is the assertion that the length of the leg of a right triangle may not exceed the length of the hypotenuse. </p><p>Bessel's inequality is a stepping stone to the stronger result called <a href="/wiki/Parseval_identity" class="mw-redirect" title="Parseval identity">Parseval's identity</a>, which governs the case when Bessel's inequality is actually an equality. By definition, if <span class="texhtml">{<i>e</i><sub><i>k</i></sub>}<sub><i>k</i> ∈ <i>B</i></sub></span> is an orthonormal basis of <span class="texhtml"><i>H</i></span>, then every element <span class="texhtml"><i>x</i></span> of <span class="texhtml"><i>H</i></span> may be written as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=\sum _{k\in B}\left\langle x,e_{k}\right\rangle \,e_{k}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>B</mi> </mrow> </munder> <mrow> <mo>&#x27E8;</mo> <mrow> <mi>x</mi> <mo>,</mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> <mo>&#x27E9;</mo> </mrow> <mspace width="thinmathspace" /> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=\sum _{k\in B}\left\langle x,e_{k}\right\rangle \,e_{k}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2998c111fdc5c46c1258e3ec87214b6b8961caef" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:18.496ex; height:5.676ex;" alt="{\displaystyle x=\sum _{k\in B}\left\langle x,e_{k}\right\rangle \,e_{k}\,.}"></span> </p><p>Even if <span class="texhtml"><i>B</i></span> is uncountable, Bessel's inequality guarantees that the expression is well-defined and consists only of countably many nonzero terms. This sum is called the Fourier expansion of <span class="texhtml"><i>x</i></span>, and the individual coefficients <span class="texhtml">⟨<i>x</i>, <i>e</i><sub><i>k</i></sub>⟩</span> are the Fourier coefficients of <span class="texhtml"><i>x</i></span>. Parseval's identity then asserts that<sup id="cite_ref-Hewitt_1965_95-0" class="reference"><a href="#cite_note-Hewitt_1965-95"><span class="cite-bracket">&#91;</span>93<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|x\|^{2}=\sum _{k\in B}|\langle x,e_{k}\rangle |^{2}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>x</mi> <msup> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>B</mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>x</mi> <mo>,</mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|x\|^{2}=\sum _{k\in B}|\langle x,e_{k}\rangle |^{2}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e8f86931997645328aefd2451525b8a4b3faf6d8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:21.276ex; height:5.676ex;" alt="{\displaystyle \|x\|^{2}=\sum _{k\in B}|\langle x,e_{k}\rangle |^{2}\,.}"></span> </p><p>Conversely,<sup id="cite_ref-Hewitt_1965_95-1" class="reference"><a href="#cite_note-Hewitt_1965-95"><span class="cite-bracket">&#91;</span>93<span class="cite-bracket">&#93;</span></a></sup> if <span class="texhtml">{<i>e</i><sub><i>k</i></sub>}</span> is an orthonormal set such that Parseval's identity holds for every <span class="texhtml"><i>x</i></span>, then <span class="texhtml">{<i>e</i><sub><i>k</i></sub>}</span> is an orthonormal basis. </p> <div class="mw-heading mw-heading3"><h3 id="Hilbert_dimension">Hilbert dimension</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Hilbert_space&amp;action=edit&amp;section=36" title="Edit section: Hilbert dimension"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>As a consequence of <a href="/wiki/Zorn%27s_lemma" title="Zorn&#39;s lemma">Zorn's lemma</a>, <i>every</i> Hilbert space admits an orthonormal basis; furthermore, any two orthonormal bases of the same space have the same <a href="/wiki/Cardinal_number" title="Cardinal number">cardinality</a>, called the Hilbert dimension of the space.<sup id="cite_ref-96" class="reference"><a href="#cite_note-96"><span class="cite-bracket">&#91;</span>94<span class="cite-bracket">&#93;</span></a></sup> For instance, since <span class="texhtml"><i>l</i><sup>2</sup>(<i>B</i>)</span> has an orthonormal basis indexed by <span class="texhtml"><i>B</i></span>, its Hilbert dimension is the cardinality of <span class="texhtml"><i>B</i></span> (which may be a finite integer, or a countable or uncountable <a href="/wiki/Cardinal_number" title="Cardinal number">cardinal number</a>). </p><p>The Hilbert dimension is not greater than the <a href="/wiki/Hamel_dimension" class="mw-redirect" title="Hamel dimension">Hamel dimension</a> (the usual dimension of a vector space). The two dimensions are equal if and only if one of them is finite. </p><p>As a consequence of Parseval's identity,<sup id="cite_ref-97" class="reference"><a href="#cite_note-97"><span class="cite-bracket">&#91;</span>95<span class="cite-bracket">&#93;</span></a></sup> if <span class="texhtml">{<i>e</i><sub><i>k</i></sub>}<sub><i>k</i> ∈ <i>B</i></sub></span> is an orthonormal basis of <span class="texhtml"><i>H</i></span>, then the map <span class="texhtml">Φ&#160;: <i>H</i> → <i>l</i><sup>2</sup>(<i>B</i>)</span> defined by <span class="texhtml">Φ(<i>x</i>) = ⟨x, <i>e</i><sub><i>k</i></sub>⟩<sub><i>k</i>∈<i>B</i></sub></span> is an isometric isomorphism of Hilbert spaces: it is a bijective linear mapping such that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bigl \langle }\Phi (x),\Phi (y){\bigr \rangle }_{l^{2}(B)}=\left\langle x,y\right\rangle _{H}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">&#x27E8;</mo> </mrow> </mrow> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">&#x27E9;</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>l</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> </mrow> </msub> <mo>=</mo> <msub> <mrow> <mo>&#x27E8;</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> </mrow> <mo>&#x27E9;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>H</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\bigl \langle }\Phi (x),\Phi (y){\bigr \rangle }_{l^{2}(B)}=\left\langle x,y\right\rangle _{H}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e124d3427359d497ec8ec6795f810e9692257ab9" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:26.888ex; height:3.676ex;" alt="{\displaystyle {\bigl \langle }\Phi (x),\Phi (y){\bigr \rangle }_{l^{2}(B)}=\left\langle x,y\right\rangle _{H}}"></span> for all <span class="texhtml"><i>x</i>, <i>y</i> ∈ <i>H</i></span>. The <a href="/wiki/Cardinal_number" title="Cardinal number">cardinal number</a> of <span class="texhtml"><i>B</i></span> is the Hilbert dimension of <span class="texhtml"><i>H</i></span>. Thus every Hilbert space is isometrically isomorphic to a sequence space <span class="texhtml"><i>l</i><sup>2</sup>(<i>B</i>)</span> for some set <span class="texhtml"><i>B</i></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Separable_spaces">Separable spaces</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Hilbert_space&amp;action=edit&amp;section=37" title="Edit section: Separable spaces"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>By definition, a Hilbert space is <a href="/wiki/Separable_space" title="Separable space">separable</a> provided it contains a dense countable subset. Along with Zorn's lemma, this means a Hilbert space is separable if and only if it admits a <a href="/wiki/Countable" class="mw-redirect" title="Countable">countable</a> orthonormal basis. All infinite-dimensional separable Hilbert spaces are therefore isometrically isomorphic to the <a href="/wiki/Sequence_space#ℓp_spaces" title="Sequence space">square-summable sequence space</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ell ^{2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x2113;<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ell ^{2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11e5f61f7f39a2ef38b3466db6274c425e782404" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.671ex; height:2.676ex;" alt="{\displaystyle \ell ^{2}.}"></span> </p><p>In the past, Hilbert spaces were often required to be separable as part of the definition.<sup id="cite_ref-98" class="reference"><a href="#cite_note-98"><span class="cite-bracket">&#91;</span>96<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="In_quantum_field_theory">In quantum field theory</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Hilbert_space&amp;action=edit&amp;section=38" title="Edit section: In quantum field theory"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Most spaces used in physics are separable, and since these are all isomorphic to each other, one often refers to any infinite-dimensional separable Hilbert space as "<i>the</i> Hilbert space" or just "Hilbert space".<sup id="cite_ref-99" class="reference"><a href="#cite_note-99"><span class="cite-bracket">&#91;</span>97<span class="cite-bracket">&#93;</span></a></sup> Even in <a href="/wiki/Quantum_field_theory" title="Quantum field theory">quantum field theory</a>, most of the Hilbert spaces are in fact separable, as stipulated by the <a href="/wiki/Wightman_axioms" title="Wightman axioms">Wightman axioms</a>. However, it is sometimes argued that non-separable Hilbert spaces are also important in quantum field theory, roughly because the systems in the theory possess an infinite number of <a href="/wiki/Degrees_of_freedom_(mechanics)" title="Degrees of freedom (mechanics)">degrees of freedom</a> and any infinite <a href="/wiki/Tensor_product_of_Hilbert_spaces" title="Tensor product of Hilbert spaces">Hilbert tensor product</a> (of spaces of dimension greater than one) is non-separable.<sup id="cite_ref-Streater_100-0" class="reference"><a href="#cite_note-Streater-100"><span class="cite-bracket">&#91;</span>98<span class="cite-bracket">&#93;</span></a></sup> For instance, a <a href="/wiki/Bosonic_field" title="Bosonic field">bosonic field</a> can be naturally thought of as an element of a tensor product whose factors represent harmonic oscillators at each point of space. From this perspective, the natural state space of a boson might seem to be a non-separable space.<sup id="cite_ref-Streater_100-1" class="reference"><a href="#cite_note-Streater-100"><span class="cite-bracket">&#91;</span>98<span class="cite-bracket">&#93;</span></a></sup> However, it is only a small separable subspace of the full tensor product that can contain physically meaningful fields (on which the observables can be defined). Another non-separable Hilbert space models the state of an infinite collection of particles in an unbounded region of space. An orthonormal basis of the space is indexed by the density of the particles, a continuous parameter, and since the set of possible densities is uncountable, the basis is not countable.<sup id="cite_ref-Streater_100-2" class="reference"><a href="#cite_note-Streater-100"><span class="cite-bracket">&#91;</span>98<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Orthogonal_complements_and_projections">Orthogonal complements and projections</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Hilbert_space&amp;action=edit&amp;section=39" title="Edit section: Orthogonal complements and projections"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Orthogonal_complement" title="Orthogonal complement">Orthogonal complement</a></div> <p>If <span class="texhtml"><i>S</i></span> is a subset of a Hilbert space <span class="texhtml"><i>H</i></span>, the set of vectors orthogonal to <span class="texhtml"><i>S</i></span> is defined by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S^{\perp }=\left\{x\in H\mid \langle x,s\rangle =0\ {\text{ for all }}s\in S\right\}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x22A5;<!-- ⊥ --></mo> </mrow> </msup> <mo>=</mo> <mrow> <mo>{</mo> <mrow> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>H</mi> <mo>&#x2223;<!-- ∣ --></mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>x</mi> <mo>,</mo> <mi>s</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mn>0</mn> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;for all&#xA0;</mtext> </mrow> <mi>s</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>S</mi> </mrow> <mo>}</mo> </mrow> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S^{\perp }=\left\{x\in H\mid \langle x,s\rangle =0\ {\text{ for all }}s\in S\right\}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b50d39d82dd2b8976b675f2799be00209c978c0c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:40.567ex; height:3.176ex;" alt="{\displaystyle S^{\perp }=\left\{x\in H\mid \langle x,s\rangle =0\ {\text{ for all }}s\in S\right\}\,.}"></span> </p><p>The set <span class="texhtml"><i>S</i><sup>⊥</sup></span> is a <a href="/wiki/Closed_set" title="Closed set">closed</a> subspace of <span class="texhtml"><i>H</i></span> (can be proved easily using the linearity and continuity of the inner product) and so forms itself a Hilbert space. If <span class="texhtml"><i>V</i></span> is a closed subspace of <span class="texhtml"><i>H</i></span>, then <span class="texhtml"><i>V</i><sup>⊥</sup></span> is called the <em><a href="/wiki/Orthogonal_complement" title="Orthogonal complement">orthogonal complement</a></em> of <span class="texhtml"><i>V</i></span>. In fact, every <span class="texhtml"><i>x</i> ∈ <i>H</i></span> can then be written uniquely as <span class="texhtml"><i>x</i> = <i>v</i> + <i>w</i></span>, with <span class="texhtml"><i>v</i> ∈ <i>V</i></span> and <span class="texhtml"><i>w</i> ∈ <i>V</i><sup>⊥</sup></span>. Therefore, <span class="texhtml"><i>H</i></span> is the internal Hilbert direct sum of <span class="texhtml"><i>V</i></span> and <span class="texhtml"><i>V</i><sup>⊥</sup></span>. </p><p>The linear operator <span class="texhtml"><i>P<sub>V</sub></i>&#160;: <i>H</i> → <i>H</i></span> that maps <span class="texhtml"><i>x</i></span> to <span class="texhtml"><i>v</i></span> is called the <em><a href="/wiki/Orthogonal_projection" class="mw-redirect" title="Orthogonal projection">orthogonal projection</a></em> onto <span class="texhtml"><i>V</i></span>. There is a <a href="/wiki/Natural_transformation" title="Natural transformation">natural</a> one-to-one correspondence between the set of all closed subspaces of <span class="texhtml"><i>H</i></span> and the set of all bounded self-adjoint operators <span class="texhtml"><i>P</i></span> such that <span class="texhtml"><i>P</i><sup>2</sup> = <i>P</i></span>. Specifically, </p> <style data-mw-deduplicate="TemplateStyles:r1110004140">.mw-parser-output .math_theorem{margin:1em 2em;padding:0.5em 1em 0.4em;border:1px solid #aaa;overflow:hidden}@media(max-width:500px){.mw-parser-output .math_theorem{margin:1em 0em;padding:0.5em 0.5em 0.4em}}</style><div class="math_theorem" style=""> <p><strong class="theorem-name">Theorem</strong><span class="theoreme-tiret">&#160;&#8212;&#160;</span>The orthogonal projection <span class="texhtml"><i>P<sub>V</sub></i></span> is a self-adjoint linear operator on <span class="texhtml"><i>H</i></span> of norm ≤&#160;1 with the property <span class="texhtml"><i>P</i><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"><i>V</i></sub></span></span> = <i>P<sub>V</sub></i></span>. Moreover, any self-adjoint linear operator <span class="texhtml"><i>E</i></span> such that <span class="texhtml"><i>E</i><sup>2</sup> = <i>E</i></span> is of the form <span class="texhtml"><i>P<sub>V</sub></i></span>, where <span class="texhtml"><i>V</i></span> is the range of <span class="texhtml"><i>E</i></span>. For every <span class="texhtml"><i>x</i></span> in <span class="texhtml"><i>H</i></span>, <span class="texhtml"><i>P<sub>V</sub></i>(<i>x</i>)</span> is the unique element <span class="texhtml"><i>v</i></span> of <span class="texhtml"><i>V</i></span> that <a href="/wiki/Hilbert_projection_theorem" title="Hilbert projection theorem">minimizes the distance</a> <span class="texhtml">&#x2016;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>x</i> − <i>v</i></span>&#x2016;</span>. </p> </div> <p>This provides the geometrical interpretation of <span class="texhtml"><i>P<sub>V</sub></i>(<i>x</i>)</span>: it is the best approximation to <i>x</i> by elements of <i>V</i>.<sup id="cite_ref-101" class="reference"><a href="#cite_note-101"><span class="cite-bracket">&#91;</span>99<span class="cite-bracket">&#93;</span></a></sup> </p><p>Projections <span class="texhtml"><i>P<sub>U</sub></i></span> and <span class="texhtml"><i>P<sub>V</sub></i></span> are called mutually orthogonal if <span class="texhtml"><i>P</i><sub><i>U</i></sub><i>P</i><sub><i>V</i></sub> = 0</span>. This is equivalent to <span class="texhtml"><i>U</i></span> and <span class="texhtml"><i>V</i></span> being orthogonal as subspaces of <span class="texhtml"><i>H</i></span>. The sum of the two projections <span class="texhtml"><i>P</i><sub><i>U</i></sub></span> and <span class="texhtml"><i>P</i><sub><i>V</i></sub></span> is a projection only if <span class="texhtml"><i>U</i></span> and <span class="texhtml"><i>V</i></span> are orthogonal to each other, and in that case <span class="texhtml"><i>P</i><sub><i>U</i></sub> + <i>P</i><sub><i>V</i></sub> = <i>P</i><sub><i>U</i>+<i>V</i></sub></span>.<sup id="cite_ref-102" class="reference"><a href="#cite_note-102"><span class="cite-bracket">&#91;</span>100<span class="cite-bracket">&#93;</span></a></sup> The composite <span class="texhtml"><i>P</i><sub><i>U</i></sub><i>P</i><sub><i>V</i></sub></span> is generally not a projection; in fact, the composite is a projection if and only if the two projections commute, and in that case <span class="texhtml"><i>P</i><sub><i>U</i></sub><i>P</i><sub><i>V</i></sub> = <i>P</i><sub><i>U</i>∩<i>V</i></sub></span>.<sup id="cite_ref-103" class="reference"><a href="#cite_note-103"><span class="cite-bracket">&#91;</span>101<span class="cite-bracket">&#93;</span></a></sup> </p><p>By restricting the codomain to the Hilbert space <span class="texhtml"><i>V</i></span>, the orthogonal projection <span class="texhtml"><i>P</i><sub><i>V</i></sub></span> gives rise to a projection mapping <span class="texhtml"><i>π</i>&#160;: <i>H</i> → <i>V</i></span>; it is the adjoint of the <a href="/wiki/Inclusion_mapping" class="mw-redirect" title="Inclusion mapping">inclusion mapping</a> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i:V\to H\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mo>:</mo> <mi>V</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>H</mi> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i:V\to H\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eff8dd80c9bda997967981b74b00c080d6d9cb81" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.238ex; height:2.509ex;" alt="{\displaystyle i:V\to H\,,}"></span> meaning that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\langle ix,y\right\rangle _{H}=\left\langle x,\pi y\right\rangle _{V}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow> <mo>&#x27E8;</mo> <mrow> <mi>i</mi> <mi>x</mi> <mo>,</mo> <mi>y</mi> </mrow> <mo>&#x27E9;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>H</mi> </mrow> </msub> <mo>=</mo> <msub> <mrow> <mo>&#x27E8;</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>&#x03C0;<!-- π --></mi> <mi>y</mi> </mrow> <mo>&#x27E9;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\langle ix,y\right\rangle _{H}=\left\langle x,\pi y\right\rangle _{V}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7dedd63bfa32beb3519ab13b1feffd305e84c4b9" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:19.077ex; height:3.009ex;" alt="{\displaystyle \left\langle ix,y\right\rangle _{H}=\left\langle x,\pi y\right\rangle _{V}}"></span> for all <span class="texhtml"><i>x</i> ∈ <i>V</i></span> and <span class="texhtml"><i>y</i> ∈ <i>H</i></span>. </p><p>The operator norm of the orthogonal projection <span class="texhtml"><i>P</i><sub><i>V</i></sub></span> onto a nonzero closed subspace <span class="texhtml"><i>V</i></span> is equal to 1: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|P_{V}\|=\sup _{x\in H,x\neq 0}{\frac {\|P_{V}x\|}{\|x\|}}=1\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> </mrow> </msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">sup</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>H</mi> <mo>,</mo> <mi>x</mi> <mo>&#x2260;<!-- ≠ --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> </mrow> </msub> <mi>x</mi> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> </mrow> <mrow> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mn>1</mn> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|P_{V}\|=\sup _{x\in H,x\neq 0}{\frac {\|P_{V}x\|}{\|x\|}}=1\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6a34fe5aa961ed70c750598d753f451aae687d3b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:28.566ex; height:6.676ex;" alt="{\displaystyle \|P_{V}\|=\sup _{x\in H,x\neq 0}{\frac {\|P_{V}x\|}{\|x\|}}=1\,.}"></span> </p><p>Every closed subspace <i>V</i> of a Hilbert space is therefore the image of an operator <span class="texhtml"><i>P</i></span> of norm one such that <span class="texhtml"><i>P</i><sup>2</sup> = <i>P</i></span>. The property of possessing appropriate projection operators characterizes Hilbert spaces:<sup id="cite_ref-104" class="reference"><a href="#cite_note-104"><span class="cite-bracket">&#91;</span>102<span class="cite-bracket">&#93;</span></a></sup> </p> <ul><li>A Banach space of dimension higher than 2 is (isometrically) a Hilbert space if and only if, for every closed subspace <span class="texhtml"><i>V</i></span>, there is an operator <span class="texhtml"><i>P</i><sub><i>V</i></sub></span> of norm one whose image is <span class="texhtml"><i>V</i></span> such that <span class="texhtml"><i>P</i><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"><i>V</i></sub></span></span> = <i>P<sub>V</sub></i></span>.</li></ul> <p>While this result characterizes the metric structure of a Hilbert space, the structure of a Hilbert space as a <a href="/wiki/Topological_vector_space" title="Topological vector space">topological vector space</a> can itself be characterized in terms of the presence of complementary subspaces:<sup id="cite_ref-105" class="reference"><a href="#cite_note-105"><span class="cite-bracket">&#91;</span>103<span class="cite-bracket">&#93;</span></a></sup> </p> <ul><li>A Banach space <span class="texhtml"><i>X</i></span> is topologically and linearly isomorphic to a Hilbert space if and only if, to every closed subspace <span class="texhtml"><i>V</i></span>, there is a closed subspace <span class="texhtml"><i>W</i></span> such that <span class="texhtml"><i>X</i></span> is equal to the internal direct sum <span class="texhtml"><i>V</i> ⊕ <i>W</i></span>.</li></ul> <p>The orthogonal complement satisfies some more elementary results. It is a <a href="/wiki/Monotone_function" class="mw-redirect" title="Monotone function">monotone function</a> in the sense that if <span class="texhtml"><i>U</i> ⊂ <i>V</i></span>, then <span class="texhtml"><i>V</i><sup>⊥</sup> ⊆ <i>U</i><sup>⊥</sup></span> with equality holding if and only if <span class="texhtml"><i>V</i></span> is contained in the <a href="/wiki/Closure_(topology)" title="Closure (topology)">closure</a> of <span class="texhtml"><i>U</i></span>. This result is a special case of the <a href="/wiki/Hahn%E2%80%93Banach_theorem" title="Hahn–Banach theorem">Hahn–Banach theorem</a>. The closure of a subspace can be completely characterized in terms of the orthogonal complement: if <span class="texhtml"><i>V</i></span> is a subspace of <span class="texhtml"><i>H</i></span>, then the closure of <span class="texhtml"><i>V</i></span> is equal to <span class="texhtml"><i>V</i><sup>⊥⊥</sup></span>. The orthogonal complement is thus a <a href="/wiki/Galois_connection" title="Galois connection">Galois connection</a> on the <a href="/wiki/Partial_order" class="mw-redirect" title="Partial order">partial order</a> of subspaces of a Hilbert space. In general, the orthogonal complement of a sum of subspaces is the intersection of the orthogonal complements:<sup id="cite_ref-106" class="reference"><a href="#cite_note-106"><span class="cite-bracket">&#91;</span>104<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\biggl (}\sum _{i}V_{i}{\biggr )}^{\perp }=\bigcap _{i}V_{i}^{\perp }\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> </mrow> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x22A5;<!-- ⊥ --></mo> </mrow> </msup> <mo>=</mo> <munder> <mo>&#x22C2;<!-- ⋂ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <msubsup> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x22A5;<!-- ⊥ --></mo> </mrow> </msubsup> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\biggl (}\sum _{i}V_{i}{\biggr )}^{\perp }=\bigcap _{i}V_{i}^{\perp }\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a9630ac35d7d98746b5461804660f51e13861fcf" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:21.745ex; height:7.176ex;" alt="{\displaystyle {\biggl (}\sum _{i}V_{i}{\biggr )}^{\perp }=\bigcap _{i}V_{i}^{\perp }\,.}"></span> </p><p>If the <span class="texhtml"><i>V</i><sub><i>i</i></sub></span> are in addition closed, then <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {\sum _{i}V_{i}^{\perp }{\vphantom {\Big |}}}}={\biggl (}\bigcap _{i}V_{i}{\biggr )}^{\perp }\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <msubsup> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x22A5;<!-- ⊥ --></mo> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mpadded width="0"> <mphantom> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">|</mo> </mrow> </mphantom> </mpadded> </mrow> </mrow> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> </mrow> <munder> <mo>&#x22C2;<!-- ⋂ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x22A5;<!-- ⊥ --></mo> </mrow> </msup> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {\sum _{i}V_{i}^{\perp }{\vphantom {\Big |}}}}={\biggl (}\bigcap _{i}V_{i}{\biggr )}^{\perp }\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75c7dc911875bb0fc30d91e4ee1c62f8ae5867f6" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:21.86ex; height:7.176ex;" alt="{\displaystyle {\overline {\sum _{i}V_{i}^{\perp }{\vphantom {\Big |}}}}={\biggl (}\bigcap _{i}V_{i}{\biggr )}^{\perp }\,.}"></span> </p> <div class="mw-heading mw-heading2"><h2 id="Spectral_theory">Spectral theory</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Hilbert_space&amp;action=edit&amp;section=40" title="Edit section: Spectral theory"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>There is a well-developed <a href="/wiki/Spectral_theory" title="Spectral theory">spectral theory</a> for self-adjoint operators in a Hilbert space, that is roughly analogous to the study of <a href="/wiki/Symmetric_matrix" title="Symmetric matrix">symmetric matrices</a> over the reals or self-adjoint matrices over the complex numbers.<sup id="cite_ref-107" class="reference"><a href="#cite_note-107"><span class="cite-bracket">&#91;</span>105<span class="cite-bracket">&#93;</span></a></sup> In the same sense, one can obtain a "diagonalization" of a self-adjoint operator as a suitable sum (actually an integral) of orthogonal projection operators. </p><p>The <a href="/wiki/Spectrum_of_an_operator" class="mw-redirect" title="Spectrum of an operator">spectrum of an operator</a> <span class="texhtml"><i>T</i></span>, denoted <span class="texhtml"><i>σ</i>(<i>T</i>)</span>, is the set of complex numbers <span class="texhtml"><i>λ</i></span> such that <span class="texhtml"><i>T</i> − <i>λ</i></span> lacks a continuous inverse. If <span class="texhtml"><i>T</i></span> is bounded, then the spectrum is always a <a href="/wiki/Compact_set" class="mw-redirect" title="Compact set">compact set</a> in the complex plane, and lies inside the disc <span class="texhtml">&#124;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>z</i></span>&#124; ≤ &#x2016;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>T</i></span>&#x2016;</span>. If <span class="texhtml"><i>T</i></span> is self-adjoint, then the spectrum is real. In fact, it is contained in the interval <span class="texhtml">[<i>m</i>, <i>M</i>]</span> where <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m=\inf _{\|x\|=1}\langle Tx,x\rangle \,,\quad M=\sup _{\|x\|=1}\langle Tx,x\rangle \,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">inf</mo> <mrow class="MJX-TeXAtom-ORD"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mo>=</mo> <mn>1</mn> </mrow> </munder> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>T</mi> <mi>x</mi> <mo>,</mo> <mi>x</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mspace width="thinmathspace" /> <mo>,</mo> <mspace width="1em" /> <mi>M</mi> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">sup</mo> <mrow class="MJX-TeXAtom-ORD"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mo>=</mo> <mn>1</mn> </mrow> </munder> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>T</mi> <mi>x</mi> <mo>,</mo> <mi>x</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m=\inf _{\|x\|=1}\langle Tx,x\rangle \,,\quad M=\sup _{\|x\|=1}\langle Tx,x\rangle \,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ccc60676b6b2cc94cd85e7447575d20dc96d68cc" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:39.104ex; height:5.009ex;" alt="{\displaystyle m=\inf _{\|x\|=1}\langle Tx,x\rangle \,,\quad M=\sup _{\|x\|=1}\langle Tx,x\rangle \,.}"></span> </p><p>Moreover, <span class="texhtml"><i>m</i></span> and <span class="texhtml"><i>M</i></span> are both actually contained within the spectrum. </p><p>The eigenspaces of an operator <span class="texhtml"><i>T</i></span> are given by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H_{\lambda }=\ker(T-\lambda )\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BB;<!-- λ --></mi> </mrow> </msub> <mo>=</mo> <mi>ker</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>T</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H_{\lambda }=\ker(T-\lambda )\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2822ca54eb778655b2c52f2efa28394566abae91" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.067ex; height:2.843ex;" alt="{\displaystyle H_{\lambda }=\ker(T-\lambda )\,.}"></span> </p><p>Unlike with finite matrices, not every element of the spectrum of <span class="texhtml"><i>T</i></span> must be an eigenvalue: the linear operator <span class="texhtml"><i>T</i> − <i>λ</i></span> may only lack an inverse because it is not surjective. Elements of the spectrum of an operator in the general sense are known as <i>spectral values</i>. Since spectral values need not be eigenvalues, the spectral decomposition is often more subtle than in finite dimensions. </p><p>However, the <a href="/wiki/Spectral_theorem" title="Spectral theorem">spectral theorem</a> of a self-adjoint operator <span class="texhtml"><i>T</i></span> takes a particularly simple form if, in addition, <span class="texhtml"><i>T</i></span> is assumed to be a <a href="/wiki/Compact_operator" title="Compact operator">compact operator</a>. The <a href="/wiki/Compact_operator_on_Hilbert_space#Spectral_theorem" title="Compact operator on Hilbert space">spectral theorem for compact self-adjoint operators</a> states:<sup id="cite_ref-108" class="reference"><a href="#cite_note-108"><span class="cite-bracket">&#91;</span>106<span class="cite-bracket">&#93;</span></a></sup> </p> <ul><li>A compact self-adjoint operator <span class="texhtml"><i>T</i></span> has only countably (or finitely) many spectral values. The spectrum of <span class="texhtml"><i>T</i></span> has no <a href="/wiki/Limit_point" class="mw-redirect" title="Limit point">limit point</a> in the complex plane except possibly zero. The eigenspaces of <span class="texhtml"><i>T</i></span> decompose <span class="texhtml"><i>H</i></span> into an orthogonal direct sum: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H=\bigoplus _{\lambda \in \sigma (T)}H_{\lambda }\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo>=</mo> <munder> <mo>&#x2A01;<!-- ⨁ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BB;<!-- λ --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">(</mo> <mi>T</mi> <mo stretchy="false">)</mo> </mrow> </munder> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BB;<!-- λ --></mi> </mrow> </msub> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H=\bigoplus _{\lambda \in \sigma (T)}H_{\lambda }\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/70108e3beaada58a9e87760f340e7d87ecb0c55d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:15.136ex; height:6.009ex;" alt="{\displaystyle H=\bigoplus _{\lambda \in \sigma (T)}H_{\lambda }\,.}"></span> Moreover, if <span class="texhtml"><i>E<sub>λ</sub></i></span> denotes the orthogonal projection onto the eigenspace <span class="texhtml"><i>H<sub>λ</sub></i></span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T=\sum _{\lambda \in \sigma (T)}\lambda E_{\lambda }\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BB;<!-- λ --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">(</mo> <mi>T</mi> <mo stretchy="false">)</mo> </mrow> </munder> <mi>&#x03BB;<!-- λ --></mi> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BB;<!-- λ --></mi> </mrow> </msub> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T=\sum _{\lambda \in \sigma (T)}\lambda E_{\lambda }\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/18e1f9f670a5b8f4d6debb1b646ebd41b2588570" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:15.848ex; height:6.009ex;" alt="{\displaystyle T=\sum _{\lambda \in \sigma (T)}\lambda E_{\lambda }\,,}"></span> where the sum converges with respect to the norm on <span class="texhtml">B(<i>H</i>)</span>.</li></ul> <p>This theorem plays a fundamental role in the theory of <a href="/wiki/Integral_equation" title="Integral equation">integral equations</a>, as many integral operators are compact, in particular those that arise from <a href="/wiki/Hilbert%E2%80%93Schmidt_operator" title="Hilbert–Schmidt operator">Hilbert–Schmidt operators</a>. </p><p>The general spectral theorem for self-adjoint operators involves a kind of operator-valued <a href="/wiki/Riemann%E2%80%93Stieltjes_integral" title="Riemann–Stieltjes integral">Riemann–Stieltjes integral</a>, rather than an infinite summation.<sup id="cite_ref-109" class="reference"><a href="#cite_note-109"><span class="cite-bracket">&#91;</span>107<span class="cite-bracket">&#93;</span></a></sup> The <i>spectral family</i> associated to <span class="texhtml"><i>T</i></span> associates to each real number λ an operator <span class="texhtml"><i>E<sub>λ</sub></i></span>, which is the projection onto the nullspace of the operator <span class="texhtml">(<i>T</i> − <i>λ</i>)<sup>+</sup></span>, where the positive part of a self-adjoint operator is defined by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A^{+}={\tfrac {1}{2}}{\Bigl (}{\sqrt {A^{2}}}+A{\Bigr )}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.623em" minsize="1.623em">(</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mo>+</mo> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.623em" minsize="1.623em">)</mo> </mrow> </mrow> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A^{+}={\tfrac {1}{2}}{\Bigl (}{\sqrt {A^{2}}}+A{\Bigr )}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a99be7cf627f786503cca22294360ada0038c0e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:21.525ex; height:4.843ex;" alt="{\displaystyle A^{+}={\tfrac {1}{2}}{\Bigl (}{\sqrt {A^{2}}}+A{\Bigr )}\,.}"></span> </p><p>The operators <span class="texhtml"><i>E<sub>λ</sub></i></span> are monotone increasing relative to the partial order defined on self-adjoint operators; the eigenvalues correspond precisely to the jump discontinuities. One has the spectral theorem, which asserts <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T=\int _{\mathbb {R} }\lambda \,\mathrm {d} E_{\lambda }\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mrow> </msub> <mi>&#x03BB;<!-- λ --></mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BB;<!-- λ --></mi> </mrow> </msub> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T=\int _{\mathbb {R} }\lambda \,\mathrm {d} E_{\lambda }\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e6337933ee817e34327fbb88c0f4fb5094f5794a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:14.808ex; height:5.676ex;" alt="{\displaystyle T=\int _{\mathbb {R} }\lambda \,\mathrm {d} E_{\lambda }\,.}"></span> </p><p>The integral is understood as a Riemann–Stieltjes integral, convergent with respect to the norm on <span class="texhtml">B(<i>H</i>)</span>. In particular, one has the ordinary scalar-valued integral representation <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle Tx,y\rangle =\int _{\mathbb {R} }\lambda \,\mathrm {d} \langle E_{\lambda }x,y\rangle \,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>T</mi> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mrow> </msub> <mi>&#x03BB;<!-- λ --></mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BB;<!-- λ --></mi> </mrow> </msub> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle Tx,y\rangle =\int _{\mathbb {R} }\lambda \,\mathrm {d} \langle E_{\lambda }x,y\rangle \,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/266e2f6e28456de2af73cedddfd75bdc5f30c18a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:25.465ex; height:5.676ex;" alt="{\displaystyle \langle Tx,y\rangle =\int _{\mathbb {R} }\lambda \,\mathrm {d} \langle E_{\lambda }x,y\rangle \,.}"></span> </p><p>A somewhat similar spectral decomposition holds for normal operators, although because the spectrum may now contain non-real complex numbers, the operator-valued Stieltjes measure <span class="texhtml">d<i>E<sub>λ</sub></i></span> must instead be replaced by a <a href="/wiki/Resolution_of_the_identity" class="mw-redirect" title="Resolution of the identity">resolution of the identity</a>. </p><p>A major application of spectral methods is the <a href="/wiki/Spectral_mapping_theorem" class="mw-redirect" title="Spectral mapping theorem">spectral mapping theorem</a>, which allows one to apply to a self-adjoint operator <span class="texhtml"><i>T</i></span> any continuous complex function <span class="texhtml"><i>f</i></span> defined on the spectrum of <span class="texhtml"><i>T</i></span> by forming the integral <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(T)=\int _{\sigma (T)}f(\lambda )\,\mathrm {d} E_{\lambda }\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>T</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">(</mo> <mi>T</mi> <mo stretchy="false">)</mo> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BB;<!-- λ --></mi> </mrow> </msub> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(T)=\int _{\sigma (T)}f(\lambda )\,\mathrm {d} E_{\lambda }\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/36bf8ffa0897168c6173ebf83aafd9d1d7735435" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:23.174ex; height:6.009ex;" alt="{\displaystyle f(T)=\int _{\sigma (T)}f(\lambda )\,\mathrm {d} E_{\lambda }\,.}"></span> </p><p>The resulting <a href="/wiki/Continuous_functional_calculus" title="Continuous functional calculus">continuous functional calculus</a> has applications in particular to <a href="/wiki/Pseudodifferential_operators" class="mw-redirect" title="Pseudodifferential operators">pseudodifferential operators</a>.<sup id="cite_ref-110" class="reference"><a href="#cite_note-110"><span class="cite-bracket">&#91;</span>108<span class="cite-bracket">&#93;</span></a></sup> </p><p>The spectral theory of <i>unbounded</i> self-adjoint operators is only marginally more difficult than for bounded operators. The spectrum of an unbounded operator is defined in precisely the same way as for bounded operators: <span class="texhtml"><i>λ</i></span> is a spectral value if the <a href="/wiki/Resolvent_operator" class="mw-redirect" title="Resolvent operator">resolvent operator</a> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R_{\lambda }=(T-\lambda )^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BB;<!-- λ --></mi> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <mi>T</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BB;<!-- λ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R_{\lambda }=(T-\lambda )^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8ab87e56c41c0896676a628685b26e77c4dcebe" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.027ex; height:3.176ex;" alt="{\displaystyle R_{\lambda }=(T-\lambda )^{-1}}"></span> </p><p>fails to be a well-defined continuous operator. The self-adjointness of <span class="texhtml"><i>T</i></span> still guarantees that the spectrum is real. Thus the essential idea of working with unbounded operators is to look instead at the resolvent <span class="texhtml"><i>R<sub>λ</sub></i></span> where <span class="texhtml"><i>λ</i></span> is nonreal. This is a <i>bounded</i> normal operator, which admits a spectral representation that can then be transferred to a spectral representation of <span class="texhtml"><i>T</i></span> itself. A similar strategy is used, for instance, to study the spectrum of the Laplace operator: rather than address the operator directly, one instead looks as an associated resolvent such as a <a href="/wiki/Riesz_potential" title="Riesz potential">Riesz potential</a> or <a href="/wiki/Bessel_potential" title="Bessel potential">Bessel potential</a>. </p><p>A precise version of the spectral theorem in this case is:<sup id="cite_ref-111" class="reference"><a href="#cite_note-111"><span class="cite-bracket">&#91;</span>109<span class="cite-bracket">&#93;</span></a></sup> </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1110004140"><div class="math_theorem" style=""> <p><strong class="theorem-name">Theorem</strong><span class="theoreme-tiret">&#160;&#8212;&#160;</span>Given a densely defined self-adjoint operator <span class="texhtml"><i>T</i></span> on a Hilbert space <span class="texhtml"><i>H</i></span>, there corresponds a unique <a href="/wiki/Resolution_of_the_identity" class="mw-redirect" title="Resolution of the identity">resolution of the identity</a> <span class="texhtml"><i>E</i></span> on the Borel sets of <span class="texhtml"><b>R</b></span>, such that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle Tx,y\rangle =\int _{\mathbb {R} }\lambda \,\mathrm {d} E_{x,y}(\lambda )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>T</mi> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mrow> </msub> <mi>&#x03BB;<!-- λ --></mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo>,</mo> <mi>y</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle Tx,y\rangle =\int _{\mathbb {R} }\lambda \,\mathrm {d} E_{x,y}(\lambda )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43acc7d3fc1e95faa2b9d5b000516abdaa85f177" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:23.523ex; height:5.676ex;" alt="{\displaystyle \langle Tx,y\rangle =\int _{\mathbb {R} }\lambda \,\mathrm {d} E_{x,y}(\lambda )}"></span> for all <span class="texhtml"><i>x</i> ∈ <i>D</i>(<i>T</i>)</span> and <span class="texhtml"><i>y</i> ∈ <i>H</i></span>. The spectral measure <span class="texhtml"><i>E</i></span> is concentrated on the spectrum of <span class="texhtml"><i>T</i></span>. </p> </div> <p>There is also a version of the spectral theorem that applies to unbounded normal operators. </p> <div class="mw-heading mw-heading2"><h2 id="In_popular_culture">In popular culture</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Hilbert_space&amp;action=edit&amp;section=41" title="Edit section: In popular culture"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In <i><a href="/wiki/Gravity%27s_Rainbow" title="Gravity&#39;s Rainbow">Gravity's Rainbow</a></i> (1973), a novel by <a href="/wiki/Thomas_Pynchon" title="Thomas Pynchon">Thomas Pynchon</a>, one of the characters is called "Sammy Hilbert-Spaess", a pun on "Hilbert Space". The novel refers also to <a href="/wiki/G%C3%B6del%27s_incompleteness_theorems" title="Gödel&#39;s incompleteness theorems">Gödel's incompleteness theorems</a>.<sup id="cite_ref-112" class="reference"><a href="#cite_note-112"><span class="cite-bracket">&#91;</span>110<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Hilbert_space&amp;action=edit&amp;section=42" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239009302">.mw-parser-output .portalbox{padding:0;margin:0.5em 0;display:table;box-sizing:border-box;max-width:175px;list-style:none}.mw-parser-output .portalborder{border:1px solid var(--border-color-base,#a2a9b1);padding:0.1em;background:var(--background-color-neutral-subtle,#f8f9fa)}.mw-parser-output .portalbox-entry{display:table-row;font-size:85%;line-height:110%;height:1.9em;font-style:italic;font-weight:bold}.mw-parser-output .portalbox-image{display:table-cell;padding:0.2em;vertical-align:middle;text-align:center}.mw-parser-output .portalbox-link{display:table-cell;padding:0.2em 0.2em 0.2em 0.3em;vertical-align:middle}@media(min-width:720px){.mw-parser-output .portalleft{clear:left;float:left;margin:0.5em 1em 0.5em 0}.mw-parser-output .portalright{clear:right;float:right;margin:0.5em 0 0.5em 1em}}</style><ul role="navigation" aria-label="Portals" class="noprint portalbox portalborder portalright"> <li class="portalbox-entry"><span class="portalbox-image"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Nuvola_apps_edu_mathematics_blue-p.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/28px-Nuvola_apps_edu_mathematics_blue-p.svg.png" decoding="async" width="28" height="28" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/42px-Nuvola_apps_edu_mathematics_blue-p.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/56px-Nuvola_apps_edu_mathematics_blue-p.svg.png 2x" data-file-width="128" data-file-height="128" /></a></span></span><span class="portalbox-link"><a href="/wiki/Portal:Mathematics" title="Portal:Mathematics">Mathematics portal</a></span></li></ul> <style data-mw-deduplicate="TemplateStyles:r1184024115">.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}</style><div class="div-col" style="column-width: 21em;"> <ul><li><a href="/wiki/Banach_space" title="Banach space">Banach space</a>&#160;– Normed vector space that is complete</li> <li><a href="/wiki/Fock_space" title="Fock space">Fock space</a>&#160;– Multi particle state space</li> <li><a href="/wiki/Fundamental_theorem_of_Hilbert_spaces" title="Fundamental theorem of Hilbert spaces">Fundamental theorem of Hilbert spaces</a></li> <li><a href="/wiki/Hadamard_space" title="Hadamard space">Hadamard space</a>&#160;– geodesically complete metric space of non-positive curvature<span style="display:none" class="category-wikidata-fallback-annotation">Pages displaying wikidata descriptions as a fallback</span></li> <li><a href="/wiki/Hausdorff_space" title="Hausdorff space">Hausdorff space</a>&#160;– Type of topological space</li> <li><a href="/wiki/Hilbert_algebra_(disambiguation)" class="mw-redirect mw-disambig" title="Hilbert algebra (disambiguation)">Hilbert algebra</a></li> <li><a href="/wiki/Hilbert_C*-module" title="Hilbert C*-module">Hilbert C*-module</a>&#160;– Mathematical objects that generalise the notion of Hilbert spaces</li> <li><a href="/wiki/Hilbert_manifold" title="Hilbert manifold">Hilbert manifold</a>&#160;– Manifold modelled on Hilbert spaces</li> <li><a href="/wiki/L-semi-inner_product" title="L-semi-inner product">L-semi-inner product</a>&#160;– Generalization of inner products that applies to all normed spaces</li> <li><a href="/wiki/Locally_convex_topological_vector_space" title="Locally convex topological vector space">Locally convex topological vector space</a>&#160;– A vector space with a topology defined by convex open sets</li> <li><a href="/wiki/Operator_theory" title="Operator theory">Operator theory</a>&#160;– Mathematical field of study</li> <li><a href="/wiki/Operator_topologies" title="Operator topologies">Operator topologies</a>&#160;– Topologies on the set of operators on a Hilbert space</li> <li><a href="/wiki/Quantum_state_space" title="Quantum state space">Quantum state space</a>&#160;– Mathematical space representing physical quantum systems</li> <li><a href="/wiki/Rigged_Hilbert_space" title="Rigged Hilbert space">Rigged Hilbert space</a>&#160;– Construction linking the study of "bound" and continuous eigenvalues in functional analysis</li> <li><a href="/wiki/Topological_vector_space" title="Topological vector space">Topological vector space</a>&#160;– Vector space with a notion of nearness</li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="Remarks">Remarks</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Hilbert_space&amp;action=edit&amp;section=43" title="Edit section: Remarks"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text">In some conventions, inner products are linear in their second arguments instead.</span> </li> <li id="cite_note-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-41">^</a></b></span> <span class="reference-text">The eigenvalues of the Fredholm kernel are <span class="texhtml"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den"><i>λ</i></span></span>&#8288;</span></span>, which tend to zero.</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Hilbert_space&amp;action=edit&amp;section=44" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist reflist-columns references-column-width" style="column-width: 30em;"> <ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><a href="#CITEREFAxler2014">Axler 2014</a>, p. 164 §6.2</span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text">However, some sources call finite-dimensional spaces with these properties pre-Hilbert spaces, reserving the term "Hilbert space" for infinite-dimensional spaces; see, e.g., <a href="#CITEREFLevitan2001">Levitan 2001</a>.</span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><a href="#CITEREFMarsden1974">Marsden 1974</a>, §2.8</span> </li> <li id="cite_note-General-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-General_4-0">^</a></b></span> <span class="reference-text">The mathematical material in this section can be found in any good textbook on functional analysis, such as <a href="#CITEREFDieudonné1960">Dieudonné (1960)</a>, <a href="#CITEREFHewittStromberg1965">Hewitt &amp; Stromberg (1965)</a>, <a href="#CITEREFReedSimon1980">Reed &amp; Simon (1980)</a> or <a href="#CITEREFRudin1987">Rudin (1987)</a>.</span> </li> <li id="cite_note-FOOTNOTESchaeferWolff1999122–202-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTESchaeferWolff1999122–202_6-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFSchaeferWolff1999">Schaefer &amp; Wolff 1999</a>, pp.&#160;122–202.</span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><a href="#CITEREFDieudonné1960">Dieudonné 1960</a>, §6.2</span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><a href="#CITEREFRoman2008">Roman 2008</a>, p. 327</span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><a href="#CITEREFRoman2008">Roman 2008</a>, p. 330 Theorem 13.8</span> </li> <li id="cite_note-Stein_2005-10"><span class="mw-cite-backlink">^ <a href="#cite_ref-Stein_2005_10-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Stein_2005_10-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFSteinShakarchi2005">Stein &amp; Shakarchi 2005</a>, p.&#160;163</span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><a href="#CITEREFDieudonné1960">Dieudonné 1960</a></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text">Largely from the work of <a href="/wiki/Hermann_Grassmann" title="Hermann Grassmann">Hermann Grassmann</a>, at the urging of <a href="/wiki/August_Ferdinand_M%C3%B6bius" title="August Ferdinand Möbius">August Ferdinand Möbius</a> (<a href="#CITEREFBoyerMerzbach1991">Boyer &amp; Merzbach 1991</a>, pp.&#160;584–586). The first modern axiomatic account of abstract vector spaces ultimately appeared in <a href="/wiki/Giuseppe_Peano" title="Giuseppe Peano">Giuseppe Peano</a>'s 1888 account (<a href="#CITEREFGrattan-Guinness2000">Grattan-Guinness 2000</a>, §5.2.2; <a href="#CITEREFO&#39;ConnorRobertson1996">O'Connor &amp; Robertson 1996</a>).</span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text">A detailed account of the history of Hilbert spaces can be found in <a href="#CITEREFBourbaki1987">Bourbaki 1987</a>.</span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"><a href="#CITEREFSchmidt1908">Schmidt 1908</a></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><a href="#CITEREFTitchmarsh1946">Titchmarsh 1946</a>, §IX.1</span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><a href="#CITEREFLebesgue1904">Lebesgue 1904</a>. Further details on the history of integration theory can be found in <a href="#CITEREFBourbaki1987">Bourbaki (1987)</a> and <a href="#CITEREFSaks2005">Saks (2005)</a>.</span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><a href="#CITEREFBourbaki1987">Bourbaki 1987</a>.</span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><a href="#CITEREFDunfordSchwartz1958">Dunford &amp; Schwartz 1958</a>, §IV.16</span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text">In <a href="#CITEREFDunfordSchwartz1958">Dunford &amp; Schwartz (1958</a>, §IV.16), the result that every linear functional on <span class="texhtml"><i>L</i><sup>2</sup>[0,1]</span> is represented by integration is jointly attributed to <a href="#CITEREFFréchet1907">Fréchet (1907)</a> and <a href="#CITEREFRiesz1907">Riesz (1907)</a>. The general result, that the dual of a Hilbert space is identified with the Hilbert space itself, can be found in <a href="#CITEREFRiesz1934">Riesz (1934)</a>.</span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"><a href="#CITEREFvon_Neumann1929">von Neumann 1929</a>.</span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><a href="#CITEREFKline1972">Kline 1972</a>, p.&#160;1092</span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text"><a href="#CITEREFHilbertNordheimvon_Neumann1927">Hilbert, Nordheim &amp; von Neumann 1927</a></span> </li> <li id="cite_note-Weyl31-23"><span class="mw-cite-backlink">^ <a href="#cite_ref-Weyl31_23-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Weyl31_23-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFWeyl1931">Weyl 1931</a>.</span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text"><a href="#CITEREFPrugovečki1981">Prugovečki 1981</a>, pp.&#160;1–10.</span> </li> <li id="cite_note-von_Neumann_1932-25"><span class="mw-cite-backlink">^ <a href="#cite_ref-von_Neumann_1932_25-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-von_Neumann_1932_25-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFvon_Neumann1932">von Neumann 1932</a></span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text"><a href="#CITEREFPeres1993">Peres 1993</a>, pp.&#160;79–99.</span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text"><a href="#CITEREFMurphy1990">Murphy 1990</a>, p.&#160;112</span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text"><a href="#CITEREFMurphy1990">Murphy 1990</a>, p.&#160;72</span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-29">^</a></b></span> <span class="reference-text"><a href="#CITEREFHalmos1957">Halmos 1957</a>, Section 42.</span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-30">^</a></b></span> <span class="reference-text"><a href="#CITEREFHewittStromberg1965">Hewitt &amp; Stromberg 1965</a>.</span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-31">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFAbramowitzStegun1983" class="citation book cs1"><a href="/wiki/Milton_Abramowitz" title="Milton Abramowitz">Abramowitz, Milton</a>; <a href="/wiki/Irene_Stegun" title="Irene Stegun">Stegun, Irene Ann</a>, eds. (1983) [June 1964]. <a rel="nofollow" class="external text" href="http://www.math.ubc.ca/~cbm/aands/page_773.htm">"Chapter 22"</a>. <a href="/wiki/Abramowitz_and_Stegun" title="Abramowitz and Stegun"><i>Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables</i></a>. Applied Mathematics Series. Vol.&#160;55 (Ninth reprint with additional corrections of tenth original printing with corrections (December 1972); first&#160;ed.). Washington D.C.; New York: United States Department of Commerce, National Bureau of Standards; Dover Publications. p.&#160;773. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-486-61272-0" title="Special:BookSources/978-0-486-61272-0"><bdi>978-0-486-61272-0</bdi></a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/64-60036">64-60036</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0167642">0167642</a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://www.loc.gov/item/65012253">65-12253</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Chapter+22&amp;rft.btitle=Handbook+of+Mathematical+Functions+with+Formulas%2C+Graphs%2C+and+Mathematical+Tables&amp;rft.place=Washington+D.C.%3B+New+York&amp;rft.series=Applied+Mathematics+Series&amp;rft.pages=773&amp;rft.edition=Ninth+reprint+with+additional+corrections+of+tenth+original+printing+with+corrections+%28December+1972%29%3B+first&amp;rft.pub=United+States+Department+of+Commerce%2C+National+Bureau+of+Standards%3B+Dover+Publications&amp;rft.date=1983&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0167642%23id-name%3DMR&amp;rft_id=info%3Alccn%2F64-60036&amp;rft.isbn=978-0-486-61272-0&amp;rft_id=http%3A%2F%2Fwww.math.ubc.ca%2F~cbm%2Faands%2Fpage_773.htm&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span></span> </li> <li id="cite_note-BeJoSc81-32"><span class="mw-cite-backlink">^ <a href="#cite_ref-BeJoSc81_32-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-BeJoSc81_32-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFBersJohnSchechter1981">Bers, John &amp; Schechter 1981</a>.</span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text"><a href="#CITEREFGiusti2003">Giusti 2003</a>.</span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text"><a href="#CITEREFStein1970">Stein 1970</a></span> </li> <li id="cite_note-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-35">^</a></b></span> <span class="reference-text">Details can be found in <a href="#CITEREFWarner1983">Warner (1983)</a>.</span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-36">^</a></b></span> <span class="reference-text">A general reference on Hardy spaces is the book <a href="#CITEREFDuren1970">Duren (1970)</a>.</span> </li> <li id="cite_note-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-37">^</a></b></span> <span class="reference-text"><a href="#CITEREFKrantz2002">Krantz 2002</a>, §1.4</span> </li> <li id="cite_note-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-38">^</a></b></span> <span class="reference-text"><a href="#CITEREFKrantz2002">Krantz 2002</a>, §1.5</span> </li> <li id="cite_note-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-39">^</a></b></span> <span class="reference-text"><a href="#CITEREFYoung1988">Young 1988</a>, Chapter 9.</span> </li> <li id="cite_note-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-40">^</a></b></span> <span class="reference-text"><a href="#CITEREFPedersen1995">Pedersen 1995</a>, §4.4</span> </li> <li id="cite_note-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-42">^</a></b></span> <span class="reference-text">More detail on finite element methods from this point of view can be found in <a href="#CITEREFBrennerScott2005">Brenner &amp; Scott (2005)</a>.</span> </li> <li id="cite_note-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-43">^</a></b></span> <span class="reference-text"><a href="#CITEREFBrezis2010">Brezis 2010</a>, section 9.5</span> </li> <li id="cite_note-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-44">^</a></b></span> <span class="reference-text"><a href="#CITEREFEvans1998">Evans 1998</a></span> </li> <li id="cite_note-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-45">^</a></b></span> <span class="reference-text"><a href="#CITEREFPathria1996">Pathria (1996)</a>, Chapters 2 and 3</span> </li> <li id="cite_note-46"><span class="mw-cite-backlink"><b><a href="#cite_ref-46">^</a></b></span> <span class="reference-text"><a href="#CITEREFEinsiedlerWard2011">Einsiedler &amp; Ward (2011)</a>, Proposition 2.14.</span> </li> <li id="cite_note-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-47">^</a></b></span> <span class="reference-text"><a href="#CITEREFReedSimon1980">Reed &amp; Simon 1980</a></span> </li> <li id="cite_note-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-48">^</a></b></span> <span class="reference-text">A treatment of Fourier series from this point of view is available, for instance, in <a href="#CITEREFRudin1987">Rudin (1987)</a> or <a href="#CITEREFFolland2009">Folland (2009)</a>.</span> </li> <li id="cite_note-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-49">^</a></b></span> <span class="reference-text"><a href="#CITEREFHalmos1957">Halmos 1957</a>, §5</span> </li> <li id="cite_note-50"><span class="mw-cite-backlink"><b><a href="#cite_ref-50">^</a></b></span> <span class="reference-text"><a href="#CITEREFBachmanNariciBeckenstein2000">Bachman, Narici &amp; Beckenstein 2000</a></span> </li> <li id="cite_note-51"><span class="mw-cite-backlink"><b><a href="#cite_ref-51">^</a></b></span> <span class="reference-text"><a href="#CITEREFSteinWeiss1971">Stein &amp; Weiss 1971</a>, §IV.2.</span> </li> <li id="cite_note-52"><span class="mw-cite-backlink"><b><a href="#cite_ref-52">^</a></b></span> <span class="reference-text"><a href="#CITEREFLanczos1988">Lanczos 1988</a>, pp.&#160;212–213</span> </li> <li id="cite_note-53"><span class="mw-cite-backlink"><b><a href="#cite_ref-53">^</a></b></span> <span class="reference-text"><a href="#CITEREFLanczos1988">Lanczos 1988</a>, Equation 4-3.10</span> </li> <li id="cite_note-54"><span class="mw-cite-backlink"><b><a href="#cite_ref-54">^</a></b></span> <span class="reference-text">The classic reference for spectral methods is <a href="#CITEREFCourantHilbert1953">Courant &amp; Hilbert 1953</a>. A more up-to-date account is <a href="#CITEREFReedSimon1975">Reed &amp; Simon 1975</a>.</span> </li> <li id="cite_note-55"><span class="mw-cite-backlink"><b><a href="#cite_ref-55">^</a></b></span> <span class="reference-text"><a href="#CITEREFKac1966">Kac 1966</a></span> </li> <li id="cite_note-56"><span class="mw-cite-backlink"><b><a href="#cite_ref-56">^</a></b></span> <span class="reference-text"><a href="#CITEREFvon_Neumann1955">von Neumann 1955</a></span> </li> <li id="cite_note-57"><span class="mw-cite-backlink"><b><a href="#cite_ref-57">^</a></b></span> <span class="reference-text"><a href="#CITEREFHolevo2001">Holevo 2001</a>, p.&#160;17</span> </li> <li id="cite_note-58"><span class="mw-cite-backlink"><b><a href="#cite_ref-58">^</a></b></span> <span class="reference-text"><a href="#CITEREFRieffelPolak2011">Rieffel &amp; Polak 2011</a>, p.&#160;55</span> </li> <li id="cite_note-59"><span class="mw-cite-backlink"><b><a href="#cite_ref-59">^</a></b></span> <span class="reference-text"><a href="#CITEREFPeres1993">Peres 1993</a>, p.&#160;101</span> </li> <li id="cite_note-60"><span class="mw-cite-backlink"><b><a href="#cite_ref-60">^</a></b></span> <span class="reference-text"><a href="#CITEREFPeres1993">Peres 1993</a>, pp.&#160;73</span> </li> <li id="cite_note-61"><span class="mw-cite-backlink"><b><a href="#cite_ref-61">^</a></b></span> <span class="reference-text"><a href="#CITEREFNielsenChuang2000">Nielsen &amp; Chuang 2000</a>, p.&#160;90</span> </li> <li id="cite_note-62"><span class="mw-cite-backlink"><b><a href="#cite_ref-62">^</a></b></span> <span class="reference-text"><a href="#CITEREFBillingsley1986">Billingsley (1986)</a>, p. 477, ex. 34.13}}</span> </li> <li id="cite_note-63"><span class="mw-cite-backlink"><b><a href="#cite_ref-63">^</a></b></span> <span class="reference-text"><a href="#CITEREFStapleton1995">Stapleton 1995</a></span> </li> <li id="cite_note-64"><span class="mw-cite-backlink"><b><a href="#cite_ref-64">^</a></b></span> <span class="reference-text"><a href="#CITEREFHewittStromberg1965">Hewitt &amp; Stromberg (1965)</a>, Exercise 16.45.</span> </li> <li id="cite_note-65"><span class="mw-cite-backlink"><b><a href="#cite_ref-65">^</a></b></span> <span class="reference-text"><a href="#CITEREFKaratzasShreve2019">Karatzas &amp; Shreve 2019</a>, Chapter 3</span> </li> <li id="cite_note-66"><span class="mw-cite-backlink"><b><a href="#cite_ref-66">^</a></b></span> <span class="reference-text"><a href="#CITEREFStroock2011">Stroock (2011)</a>, Chapter 8.</span> </li> <li id="cite_note-67"><span class="mw-cite-backlink"><b><a href="#cite_ref-67">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHermann_Weyl2009" class="citation cs2"><a href="/wiki/Hermann_Weyl" title="Hermann Weyl">Hermann Weyl</a> (2009), "Mind and nature", <i>Mind and nature: selected writings on philosophy, mathematics, and physics</i>, Princeton University Press</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Mind+and+nature&amp;rft.btitle=Mind+and+nature%3A+selected+writings+on+philosophy%2C+mathematics%2C+and+physics&amp;rft.pub=Princeton+University+Press&amp;rft.date=2009&amp;rft.au=Hermann+Weyl&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</span> </li> <li id="cite_note-68"><span class="mw-cite-backlink"><b><a href="#cite_ref-68">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBerthier2020" class="citation cs2">Berthier, M. (2020), "Geometry of color perception. Part 2: perceived colors from real quantum states and Hering's rebit", <i>The Journal of Mathematical Neuroscience</i>, <b>10</b> (1): 14, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1186%2Fs13408-020-00092-x">10.1186/s13408-020-00092-x</a></span>, <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7481323">7481323</a></span>, <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/32902776">32902776</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Journal+of+Mathematical+Neuroscience&amp;rft.atitle=Geometry+of+color+perception.+Part+2%3A+perceived+colors+from+real+quantum+states+and+Hering%27s+rebit&amp;rft.volume=10&amp;rft.issue=1&amp;rft.pages=14&amp;rft.date=2020&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC7481323%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F32902776&amp;rft_id=info%3Adoi%2F10.1186%2Fs13408-020-00092-x&amp;rft.aulast=Berthier&amp;rft.aufirst=M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</span> </li> <li id="cite_note-69"><span class="mw-cite-backlink"><b><a href="#cite_ref-69">^</a></b></span> <span class="reference-text"><a href="#CITEREFReedSimon1980">Reed &amp; Simon 1980</a>, Theorem 12.6</span> </li> <li id="cite_note-70"><span class="mw-cite-backlink"><b><a href="#cite_ref-70">^</a></b></span> <span class="reference-text"><a href="#CITEREFReedSimon1980">Reed &amp; Simon 1980</a>, p. 38</span> </li> <li id="cite_note-71"><span class="mw-cite-backlink"><b><a href="#cite_ref-71">^</a></b></span> <span class="reference-text"><a href="#CITEREFYoung1988">Young 1988</a>, p.&#160;23.</span> </li> <li id="cite_note-72"><span class="mw-cite-backlink"><b><a href="#cite_ref-72">^</a></b></span> <span class="reference-text"><a href="#CITEREFClarkson1936">Clarkson 1936</a>.</span> </li> <li id="cite_note-73"><span class="mw-cite-backlink"><b><a href="#cite_ref-73">^</a></b></span> <span class="reference-text"><a href="#CITEREFRudin1987">Rudin 1987</a>, Theorem 4.10</span> </li> <li id="cite_note-74"><span class="mw-cite-backlink"><b><a href="#cite_ref-74">^</a></b></span> <span class="reference-text"><a href="#CITEREFDunfordSchwartz1958">Dunford &amp; Schwartz 1958</a>, II.4.29</span> </li> <li id="cite_note-75"><span class="mw-cite-backlink"><b><a href="#cite_ref-75">^</a></b></span> <span class="reference-text"><a href="#CITEREFRudin1987">Rudin 1987</a>, Theorem 4.11</span> </li> <li id="cite_note-76"><span class="mw-cite-backlink"><b><a href="#cite_ref-76">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBlanchetCharbit2014" class="citation book cs1">Blanchet, Gérard; Charbit, Maurice (2014). <i>Digital Signal and Image Processing Using MATLAB</i>. Vol.&#160;1 (Second&#160;ed.). New Jersey: Wiley. pp.&#160;349–360. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1848216402" title="Special:BookSources/978-1848216402"><bdi>978-1848216402</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Digital+Signal+and+Image+Processing+Using+MATLAB&amp;rft.place=New+Jersey&amp;rft.pages=349-360&amp;rft.edition=Second&amp;rft.pub=Wiley&amp;rft.date=2014&amp;rft.isbn=978-1848216402&amp;rft.aulast=Blanchet&amp;rft.aufirst=G%C3%A9rard&amp;rft.au=Charbit%2C+Maurice&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span></span> </li> <li id="cite_note-77"><span class="mw-cite-backlink"><b><a href="#cite_ref-77">^</a></b></span> <span class="reference-text"><a href="#CITEREFWeidmann1980">Weidmann 1980</a>, Theorem 4.8</span> </li> <li id="cite_note-78"><span class="mw-cite-backlink"><b><a href="#cite_ref-78">^</a></b></span> <span class="reference-text"><a href="#CITEREFPeres1993">Peres 1993</a>, pp.&#160;77–78.</span> </li> <li id="cite_note-79"><span class="mw-cite-backlink"><b><a href="#cite_ref-79">^</a></b></span> <span class="reference-text"><a href="#CITEREFWeidmann1980">Weidmann (1980)</a>, Exercise 4.11.</span> </li> <li id="cite_note-80"><span class="mw-cite-backlink"><b><a href="#cite_ref-80">^</a></b></span> <span class="reference-text"><a href="#CITEREFWeidmann1980">Weidmann 1980</a>, §4.5</span> </li> <li id="cite_note-81"><span class="mw-cite-backlink"><b><a href="#cite_ref-81">^</a></b></span> <span class="reference-text"><a href="#CITEREFButtazzoGiaquintaHildebrandt1998">Buttazzo, Giaquinta &amp; Hildebrandt 1998</a>, Theorem 5.17</span> </li> <li id="cite_note-82"><span class="mw-cite-backlink"><b><a href="#cite_ref-82">^</a></b></span> <span class="reference-text"><a href="#CITEREFHalmos1982">Halmos 1982</a>, Problem 52, 58</span> </li> <li id="cite_note-83"><span class="mw-cite-backlink"><b><a href="#cite_ref-83">^</a></b></span> <span class="reference-text"><a href="#CITEREFRudin1973">Rudin 1973</a></span> </li> <li id="cite_note-84"><span class="mw-cite-backlink"><b><a href="#cite_ref-84">^</a></b></span> <span class="reference-text"><a href="#CITEREFTrèves1967">Trèves 1967</a>, Chapter 18</span> </li> <li id="cite_note-85"><span class="mw-cite-backlink"><b><a href="#cite_ref-85">^</a></b></span> <span class="reference-text">A general reference for this section is <a href="#CITEREFRudin1973">Rudin (1973)</a>, chapter 12.</span> </li> <li id="cite_note-86"><span class="mw-cite-backlink"><b><a href="#cite_ref-86">^</a></b></span> <span class="reference-text">See <a href="#CITEREFPrugovečki1981">Prugovečki (1981)</a>, <a href="#CITEREFReedSimon1980">Reed &amp; Simon (1980</a>, Chapter VIII) and <a href="#CITEREFFolland1989">Folland (1989)</a>.</span> </li> <li id="cite_note-87"><span class="mw-cite-backlink"><b><a href="#cite_ref-87">^</a></b></span> <span class="reference-text"><a href="#CITEREFPrugovečki1981">Prugovečki 1981</a>, III, §1.4</span> </li> <li id="cite_note-88"><span class="mw-cite-backlink"><b><a href="#cite_ref-88">^</a></b></span> <span class="reference-text"><a href="#CITEREFDunfordSchwartz1958">Dunford &amp; Schwartz 1958</a>, IV.4.17-18</span> </li> <li id="cite_note-89"><span class="mw-cite-backlink"><b><a href="#cite_ref-89">^</a></b></span> <span class="reference-text"><a href="#CITEREFWeidmann1980">Weidmann 1980</a>, §3.4</span> </li> <li id="cite_note-90"><span class="mw-cite-backlink"><b><a href="#cite_ref-90">^</a></b></span> <span class="reference-text"><a href="#CITEREFKadisonRingrose1983">Kadison &amp; Ringrose 1983</a>, Theorem 2.6.4</span> </li> <li id="cite_note-91"><span class="mw-cite-backlink"><b><a href="#cite_ref-91">^</a></b></span> <span class="reference-text"><a href="#CITEREFDunfordSchwartz1958">Dunford &amp; Schwartz 1958</a>, §IV.4.</span> </li> <li id="cite_note-92"><span class="mw-cite-backlink"><b><a href="#cite_ref-92">^</a></b></span> <span class="reference-text"><a href="#CITEREFRoman2008">Roman 2008</a>, p. 218</span> </li> <li id="cite_note-93"><span class="mw-cite-backlink"><b><a href="#cite_ref-93">^</a></b></span> <span class="reference-text"><a href="#CITEREFRudin1987">Rudin 1987</a>, Definition 3.7</span> </li> <li id="cite_note-94"><span class="mw-cite-backlink"><b><a href="#cite_ref-94">^</a></b></span> <span class="reference-text">For the case of finite index sets, see, for instance, <a href="#CITEREFHalmos1957">Halmos 1957</a>, §5. For infinite index sets, see <a href="#CITEREFWeidmann1980">Weidmann 1980</a>, Theorem 3.6.</span> </li> <li id="cite_note-Hewitt_1965-95"><span class="mw-cite-backlink">^ <a href="#cite_ref-Hewitt_1965_95-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Hewitt_1965_95-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFHewittStromberg1965">Hewitt &amp; Stromberg (1965)</a>, Theorem 16.26.</span> </li> <li id="cite_note-96"><span class="mw-cite-backlink"><b><a href="#cite_ref-96">^</a></b></span> <span class="reference-text"><a href="#CITEREFLevitan2001">Levitan 2001</a>. Many authors, such as <a href="#CITEREFDunfordSchwartz1958">Dunford &amp; Schwartz (1958</a>, §IV.4), refer to this just as the dimension. Unless the Hilbert space is finite dimensional, this is not the same thing as its dimension as a linear space (the cardinality of a Hamel basis).</span> </li> <li id="cite_note-97"><span class="mw-cite-backlink"><b><a href="#cite_ref-97">^</a></b></span> <span class="reference-text"><a href="#CITEREFHewittStromberg1965">Hewitt &amp; Stromberg (1965)</a>, Theorem 16.29.</span> </li> <li id="cite_note-98"><span class="mw-cite-backlink"><b><a href="#cite_ref-98">^</a></b></span> <span class="reference-text"><a href="#CITEREFPrugovečki1981">Prugovečki 1981</a>, I, §4.2</span> </li> <li id="cite_note-99"><span class="mw-cite-backlink"><b><a href="#cite_ref-99">^</a></b></span> <span class="reference-text"><a href="#CITEREFvon_Neumann1955">von Neumann (1955)</a> defines a Hilbert space via a countable Hilbert basis, which amounts to an isometric isomorphism with <i>l</i><sup>2</sup>. The convention still persists in most rigorous treatments of quantum mechanics; see for instance <a href="#CITEREFSobrino1996">Sobrino 1996</a>, Appendix B.</span> </li> <li id="cite_note-Streater-100"><span class="mw-cite-backlink">^ <a href="#cite_ref-Streater_100-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Streater_100-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Streater_100-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFStreaterWightman1964">Streater &amp; Wightman 1964</a>, pp.&#160;86–87</span> </li> <li id="cite_note-101"><span class="mw-cite-backlink"><b><a href="#cite_ref-101">^</a></b></span> <span class="reference-text"><a href="#CITEREFYoung1988">Young 1988</a>, Theorem 15.3</span> </li> <li id="cite_note-102"><span class="mw-cite-backlink"><b><a href="#cite_ref-102">^</a></b></span> <span class="reference-text"><a href="#CITEREFvon_Neumann1955">von Neumann 1955</a>, Theorem 16</span> </li> <li id="cite_note-103"><span class="mw-cite-backlink"><b><a href="#cite_ref-103">^</a></b></span> <span class="reference-text"><a href="#CITEREFvon_Neumann1955">von Neumann 1955</a>, Theorem 14</span> </li> <li id="cite_note-104"><span class="mw-cite-backlink"><b><a href="#cite_ref-104">^</a></b></span> <span class="reference-text"><a href="#CITEREFKakutani1939">Kakutani 1939</a></span> </li> <li id="cite_note-105"><span class="mw-cite-backlink"><b><a href="#cite_ref-105">^</a></b></span> <span class="reference-text"><a href="#CITEREFLindenstraussTzafriri1971">Lindenstrauss &amp; Tzafriri 1971</a></span> </li> <li id="cite_note-106"><span class="mw-cite-backlink"><b><a href="#cite_ref-106">^</a></b></span> <span class="reference-text"><a href="#CITEREFHalmos1957">Halmos 1957</a>, §12</span> </li> <li id="cite_note-107"><span class="mw-cite-backlink"><b><a href="#cite_ref-107">^</a></b></span> <span class="reference-text">A general account of spectral theory in Hilbert spaces can be found in <a href="#CITEREFRieszSz.-Nagy1990">Riesz &amp; Sz.-Nagy (1990)</a>. A more sophisticated account in the language of C*-algebras is in <a href="#CITEREFRudin1973">Rudin (1973)</a> or <a href="#CITEREFKadisonRingrose1997">Kadison &amp; Ringrose (1997)</a></span> </li> <li id="cite_note-108"><span class="mw-cite-backlink"><b><a href="#cite_ref-108">^</a></b></span> <span class="reference-text">See, for instance, <a href="#CITEREFRieszSz.-Nagy1990">Riesz &amp; Sz.-Nagy (1990</a>, Chapter VI) or <a href="#CITEREFWeidmann1980">Weidmann 1980</a>, Chapter 7. This result was already known to <a href="#CITEREFSchmidt1908">Schmidt (1908)</a> in the case of operators arising from integral kernels.</span> </li> <li id="cite_note-109"><span class="mw-cite-backlink"><b><a href="#cite_ref-109">^</a></b></span> <span class="reference-text"><a href="#CITEREFRieszSz.-Nagy1990">Riesz &amp; Sz.-Nagy 1990</a>, §§107–108</span> </li> <li id="cite_note-110"><span class="mw-cite-backlink"><b><a href="#cite_ref-110">^</a></b></span> <span class="reference-text"><a href="#CITEREFShubin1987">Shubin 1987</a></span> </li> <li id="cite_note-111"><span class="mw-cite-backlink"><b><a href="#cite_ref-111">^</a></b></span> <span class="reference-text"><a href="#CITEREFRudin1973">Rudin 1973</a>, Theorem 13.30.</span> </li> <li id="cite_note-112"><span class="mw-cite-backlink"><b><a href="#cite_ref-112">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPynchon1973" class="citation book cs1">Pynchon, Thomas (1973). <i>Gravity's Rainbow</i>. Viking Press. pp.&#160;217, 275. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0143039945" title="Special:BookSources/978-0143039945"><bdi>978-0143039945</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Gravity%27s+Rainbow&amp;rft.pages=217%2C+275&amp;rft.pub=Viking+Press&amp;rft.date=1973&amp;rft.isbn=978-0143039945&amp;rft.aulast=Pynchon&amp;rft.aufirst=Thomas&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span></span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Hilbert_space&amp;action=edit&amp;section=45" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239549316">.mw-parser-output .refbegin{margin-bottom:0.5em}.mw-parser-output .refbegin-hanging-indents>ul{margin-left:0}.mw-parser-output .refbegin-hanging-indents>ul>li{margin-left:0;padding-left:3.2em;text-indent:-3.2em}.mw-parser-output .refbegin-hanging-indents ul,.mw-parser-output .refbegin-hanging-indents ul li{list-style:none}@media(max-width:720px){.mw-parser-output .refbegin-hanging-indents>ul>li{padding-left:1.6em;text-indent:-1.6em}}.mw-parser-output .refbegin-columns{margin-top:0.3em}.mw-parser-output .refbegin-columns ul{margin-top:0}.mw-parser-output .refbegin-columns li{page-break-inside:avoid;break-inside:avoid-column}@media screen{.mw-parser-output .refbegin{font-size:90%}}</style><div class="refbegin refbegin-columns references-column-width" style="column-width: 30em"> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAxler2014" class="citation cs2"><a href="/wiki/Sheldon_Axler" title="Sheldon Axler">Axler, Sheldon</a> (18 December 2014), <i>Linear Algebra Done Right</i>, <a href="/wiki/Undergraduate_Texts_in_Mathematics" title="Undergraduate Texts in Mathematics">Undergraduate Texts in Mathematics</a> (3rd&#160;ed.), <a href="/wiki/Springer_Publishing" title="Springer Publishing">Springer Publishing</a> (published 2015), p.&#160;296, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-319-11079-0" title="Special:BookSources/978-3-319-11079-0"><bdi>978-3-319-11079-0</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Linear+Algebra+Done+Right&amp;rft.series=Undergraduate+Texts+in+Mathematics&amp;rft.pages=296&amp;rft.edition=3rd&amp;rft.pub=Springer+Publishing&amp;rft.date=2014-12-18&amp;rft.isbn=978-3-319-11079-0&amp;rft.aulast=Axler&amp;rft.aufirst=Sheldon&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBachmanNariciBeckenstein2000" class="citation cs2">Bachman, George; Narici, Lawrence; Beckenstein, Edward (2000), <i>Fourier and wavelet analysis</i>, Universitext, Berlin, New York: <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer-Verlag</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-98899-3" title="Special:BookSources/978-0-387-98899-3"><bdi>978-0-387-98899-3</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1729490">1729490</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Fourier+and+wavelet+analysis&amp;rft.place=Berlin%2C+New+York&amp;rft.series=Universitext&amp;rft.pub=Springer-Verlag&amp;rft.date=2000&amp;rft.isbn=978-0-387-98899-3&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1729490%23id-name%3DMR&amp;rft.aulast=Bachman&amp;rft.aufirst=George&amp;rft.au=Narici%2C+Lawrence&amp;rft.au=Beckenstein%2C+Edward&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBersJohnSchechter1981" class="citation cs2"><a href="/wiki/Lipman_Bers" title="Lipman Bers">Bers, Lipman</a>; <a href="/wiki/Fritz_John" title="Fritz John">John, Fritz</a>; Schechter, Martin (1981), <i>Partial differential equations</i>, American Mathematical Society, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8218-0049-2" title="Special:BookSources/978-0-8218-0049-2"><bdi>978-0-8218-0049-2</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Partial+differential+equations&amp;rft.pub=American+Mathematical+Society&amp;rft.date=1981&amp;rft.isbn=978-0-8218-0049-2&amp;rft.aulast=Bers&amp;rft.aufirst=Lipman&amp;rft.au=John%2C+Fritz&amp;rft.au=Schechter%2C+Martin&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBillingsley1986" class="citation cs2">Billingsley, Patrick (1986), <i>Probability and measure</i>, Wiley</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Probability+and+measure&amp;rft.pub=Wiley&amp;rft.date=1986&amp;rft.aulast=Billingsley&amp;rft.aufirst=Patrick&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBourbaki1986" class="citation cs2"><a href="/wiki/Nicolas_Bourbaki" title="Nicolas Bourbaki">Bourbaki, Nicolas</a> (1986), <i>Spectral theories</i>, Elements of mathematics, Berlin: Springer-Verlag, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-201-00767-1" title="Special:BookSources/978-0-201-00767-1"><bdi>978-0-201-00767-1</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Spectral+theories&amp;rft.place=Berlin&amp;rft.series=Elements+of+mathematics&amp;rft.pub=Springer-Verlag&amp;rft.date=1986&amp;rft.isbn=978-0-201-00767-1&amp;rft.aulast=Bourbaki&amp;rft.aufirst=Nicolas&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBourbaki1987" class="citation cs2"><a href="/wiki/Nicolas_Bourbaki" title="Nicolas Bourbaki">Bourbaki, Nicolas</a> (1987), <i>Topological vector spaces</i>, Elements of mathematics, Berlin: Springer-Verlag, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-540-13627-9" title="Special:BookSources/978-3-540-13627-9"><bdi>978-3-540-13627-9</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Topological+vector+spaces&amp;rft.place=Berlin&amp;rft.series=Elements+of+mathematics&amp;rft.pub=Springer-Verlag&amp;rft.date=1987&amp;rft.isbn=978-3-540-13627-9&amp;rft.aulast=Bourbaki&amp;rft.aufirst=Nicolas&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBoyerMerzbach1991" class="citation cs2"><a href="/wiki/Carl_Benjamin_Boyer" title="Carl Benjamin Boyer">Boyer, Carl Benjamin</a>; <a href="/wiki/Uta_Merzbach" title="Uta Merzbach">Merzbach, Uta C</a> (1991), <a rel="nofollow" class="external text" href="https://archive.org/details/historyofmathema00boye"><i>A History of Mathematics</i></a> (2nd&#160;ed.), John Wiley &amp; Sons, Inc., <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-471-54397-8" title="Special:BookSources/978-0-471-54397-8"><bdi>978-0-471-54397-8</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+History+of+Mathematics&amp;rft.edition=2nd&amp;rft.pub=John+Wiley+%26+Sons%2C+Inc.&amp;rft.date=1991&amp;rft.isbn=978-0-471-54397-8&amp;rft.aulast=Boyer&amp;rft.aufirst=Carl+Benjamin&amp;rft.au=Merzbach%2C+Uta+C&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fhistoryofmathema00boye&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrennerScott2005" class="citation cs2">Brenner, S.; Scott, R. L. (2005), <i>The Mathematical Theory of Finite Element Methods</i> (2nd&#160;ed.), Springer, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-95451-6" title="Special:BookSources/978-0-387-95451-6"><bdi>978-0-387-95451-6</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Mathematical+Theory+of+Finite+Element+Methods&amp;rft.edition=2nd&amp;rft.pub=Springer&amp;rft.date=2005&amp;rft.isbn=978-0-387-95451-6&amp;rft.aulast=Brenner&amp;rft.aufirst=S.&amp;rft.au=Scott%2C+R.+L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrezis2010" class="citation cs2"><a href="/wiki/Haim_Brezis" class="mw-redirect" title="Haim Brezis">Brezis, Haim</a> (2010), <i>Functional analysis, Sobolev spaces, and partial differential equations</i>, Springer</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Functional+analysis%2C+Sobolev+spaces%2C+and+partial+differential+equations&amp;rft.pub=Springer&amp;rft.date=2010&amp;rft.aulast=Brezis&amp;rft.aufirst=Haim&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFButtazzoGiaquintaHildebrandt1998" class="citation cs2">Buttazzo, Giuseppe; Giaquinta, Mariano; Hildebrandt, Stefan (1998), <i>One-dimensional variational problems</i>, Oxford Lecture Series in Mathematics and its Applications, vol.&#160;15, The Clarendon Press Oxford University Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-19-850465-8" title="Special:BookSources/978-0-19-850465-8"><bdi>978-0-19-850465-8</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1694383">1694383</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=One-dimensional+variational+problems&amp;rft.series=Oxford+Lecture+Series+in+Mathematics+and+its+Applications&amp;rft.pub=The+Clarendon+Press+Oxford+University+Press&amp;rft.date=1998&amp;rft.isbn=978-0-19-850465-8&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1694383%23id-name%3DMR&amp;rft.aulast=Buttazzo&amp;rft.aufirst=Giuseppe&amp;rft.au=Giaquinta%2C+Mariano&amp;rft.au=Hildebrandt%2C+Stefan&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFClarkson1936" class="citation cs2">Clarkson, J. A. (1936), "Uniformly convex spaces", <i>Trans. Amer. Math. Soc.</i>, <b>40</b> (3): 396–414, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F1989630">10.2307/1989630</a></span>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/1989630">1989630</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Trans.+Amer.+Math.+Soc.&amp;rft.atitle=Uniformly+convex+spaces&amp;rft.volume=40&amp;rft.issue=3&amp;rft.pages=396-414&amp;rft.date=1936&amp;rft_id=info%3Adoi%2F10.2307%2F1989630&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F1989630%23id-name%3DJSTOR&amp;rft.aulast=Clarkson&amp;rft.aufirst=J.+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCourantHilbert1953" class="citation cs2"><a href="/wiki/Richard_Courant" title="Richard Courant">Courant, Richard</a>; <a href="/wiki/David_Hilbert" title="David Hilbert">Hilbert, David</a> (1953), <i>Methods of Mathematical Physics, Vol. I</i>, Interscience</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Methods+of+Mathematical+Physics%2C+Vol.+I&amp;rft.pub=Interscience&amp;rft.date=1953&amp;rft.aulast=Courant&amp;rft.aufirst=Richard&amp;rft.au=Hilbert%2C+David&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDieudonné1960" class="citation cs2"><a href="/wiki/Jean_Dieudonn%C3%A9" title="Jean Dieudonné">Dieudonné, Jean</a> (1960), <i>Foundations of Modern Analysis</i>, Academic Press</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Foundations+of+Modern+Analysis&amp;rft.pub=Academic+Press&amp;rft.date=1960&amp;rft.aulast=Dieudonn%C3%A9&amp;rft.aufirst=Jean&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDirac1930" class="citation cs2"><a href="/wiki/Paul_Dirac" title="Paul Dirac">Dirac, P.A.M.</a> (1930), <a href="/wiki/The_Principles_of_Quantum_Mechanics" title="The Principles of Quantum Mechanics"><i>The Principles of Quantum Mechanics</i></a>, Oxford: Clarendon Press</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Principles+of+Quantum+Mechanics&amp;rft.place=Oxford&amp;rft.pub=Clarendon+Press&amp;rft.date=1930&amp;rft.aulast=Dirac&amp;rft.aufirst=P.A.M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDunfordSchwartz1958" class="citation cs2">Dunford, N.; <a href="/wiki/Jacob_T._Schwartz" title="Jacob T. Schwartz">Schwartz, J.T.</a> (1958), <i>Linear operators, Parts I and II</i>, Wiley-Interscience</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Linear+operators%2C+Parts+I+and+II&amp;rft.pub=Wiley-Interscience&amp;rft.date=1958&amp;rft.aulast=Dunford&amp;rft.aufirst=N.&amp;rft.au=Schwartz%2C+J.T.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDuren1970" class="citation cs2">Duren, P. (1970), <i>Theory of H<sup>p</sup>-Spaces</i>, New York: Academic Press</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Theory+of+H%3Csup%3Ep%3C%2Fsup%3E-Spaces&amp;rft.place=New+York&amp;rft.pub=Academic+Press&amp;rft.date=1970&amp;rft.aulast=Duren&amp;rft.aufirst=P.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEinsiedlerWard2011" class="citation cs2">Einsiedler, Manfred; Ward, Thomas (2011), <i>Ergodic theory with a view towards number theory</i>, Springer</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Ergodic+theory+with+a+view+towards+number+theory&amp;rft.pub=Springer&amp;rft.date=2011&amp;rft.aulast=Einsiedler&amp;rft.aufirst=Manfred&amp;rft.au=Ward%2C+Thomas&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEvans1998" class="citation cs2"><a href="/wiki/Lawrence_C._Evans" title="Lawrence C. Evans">Evans, L. C.</a> (1998), <i>Partial Differential Equations</i>, Providence: American Mathematical Society, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-8218-0772-2" title="Special:BookSources/0-8218-0772-2"><bdi>0-8218-0772-2</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Partial+Differential+Equations&amp;rft.place=Providence&amp;rft.pub=American+Mathematical+Society&amp;rft.date=1998&amp;rft.isbn=0-8218-0772-2&amp;rft.aulast=Evans&amp;rft.aufirst=L.+C.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFolland2009" class="citation cs2">Folland, Gerald B. (2009), <a rel="nofollow" class="external text" href="https://books.google.com/books?as_isbn=0-8218-4790-2"><i>Fourier analysis and its application</i></a> (Reprint of Wadsworth and Brooks/Cole 1992&#160;ed.), American Mathematical Society Bookstore, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8218-4790-9" title="Special:BookSources/978-0-8218-4790-9"><bdi>978-0-8218-4790-9</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Fourier+analysis+and+its+application&amp;rft.edition=Reprint+of+Wadsworth+and+Brooks%2FCole+1992&amp;rft.pub=American+Mathematical+Society+Bookstore&amp;rft.date=2009&amp;rft.isbn=978-0-8218-4790-9&amp;rft.aulast=Folland&amp;rft.aufirst=Gerald+B.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fas_isbn%3D0-8218-4790-2&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFolland1989" class="citation cs2">Folland, Gerald B. (1989), <i>Harmonic analysis in phase space</i>, Annals of Mathematics Studies, vol.&#160;122, Princeton University Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-691-08527-2" title="Special:BookSources/978-0-691-08527-2"><bdi>978-0-691-08527-2</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Harmonic+analysis+in+phase+space&amp;rft.series=Annals+of+Mathematics+Studies&amp;rft.pub=Princeton+University+Press&amp;rft.date=1989&amp;rft.isbn=978-0-691-08527-2&amp;rft.aulast=Folland&amp;rft.aufirst=Gerald+B.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFréchet1907" class="citation cs2">Fréchet, Maurice (1907), "Sur les ensembles de fonctions et les opérations linéaires", <i>C. R. Acad. Sci. Paris</i>, <b>144</b>: 1414–1416</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=C.+R.+Acad.+Sci.+Paris&amp;rft.atitle=Sur+les+ensembles+de+fonctions+et+les+op%C3%A9rations+lin%C3%A9aires&amp;rft.volume=144&amp;rft.pages=1414-1416&amp;rft.date=1907&amp;rft.aulast=Fr%C3%A9chet&amp;rft.aufirst=Maurice&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFréchet1904" class="citation cs2">Fréchet, Maurice (1904), "Sur les opérations linéaires", <i>Transactions of the American Mathematical Society</i>, <b>5</b> (4): 493–499, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F1986278">10.2307/1986278</a>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/1986278">1986278</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Transactions+of+the+American+Mathematical+Society&amp;rft.atitle=Sur+les+op%C3%A9rations+lin%C3%A9aires&amp;rft.volume=5&amp;rft.issue=4&amp;rft.pages=493-499&amp;rft.date=1904&amp;rft_id=info%3Adoi%2F10.2307%2F1986278&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F1986278%23id-name%3DJSTOR&amp;rft.aulast=Fr%C3%A9chet&amp;rft.aufirst=Maurice&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGiusti2003" class="citation cs2">Giusti, Enrico (2003), <i>Direct Methods in the Calculus of Variations</i>, World Scientific, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-981-238-043-2" title="Special:BookSources/978-981-238-043-2"><bdi>978-981-238-043-2</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Direct+Methods+in+the+Calculus+of+Variations&amp;rft.pub=World+Scientific&amp;rft.date=2003&amp;rft.isbn=978-981-238-043-2&amp;rft.aulast=Giusti&amp;rft.aufirst=Enrico&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGrattan-Guinness2000" class="citation cs2">Grattan-Guinness, Ivor (2000), <i>The search for mathematical roots, 1870–1940</i>, Princeton Paperbacks, <a href="/wiki/Princeton_University_Press" title="Princeton University Press">Princeton University Press</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-691-05858-0" title="Special:BookSources/978-0-691-05858-0"><bdi>978-0-691-05858-0</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1807717">1807717</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+search+for+mathematical+roots%2C+1870%E2%80%931940&amp;rft.series=Princeton+Paperbacks&amp;rft.pub=Princeton+University+Press&amp;rft.date=2000&amp;rft.isbn=978-0-691-05858-0&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1807717%23id-name%3DMR&amp;rft.aulast=Grattan-Guinness&amp;rft.aufirst=Ivor&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHalmos1957" class="citation cs2"><a href="/wiki/Paul_Halmos" title="Paul Halmos">Halmos, Paul</a> (1957), <i>Introduction to Hilbert Space and the Theory of Spectral Multiplicity</i>, Chelsea Pub. Co</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+Hilbert+Space+and+the+Theory+of+Spectral+Multiplicity&amp;rft.pub=Chelsea+Pub.+Co&amp;rft.date=1957&amp;rft.aulast=Halmos&amp;rft.aufirst=Paul&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHalmos1982" class="citation cs2"><a href="/wiki/Paul_Halmos" title="Paul Halmos">Halmos, Paul</a> (1982), <i>A Hilbert Space Problem Book</i>, Springer-Verlag, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-90685-0" title="Special:BookSources/978-0-387-90685-0"><bdi>978-0-387-90685-0</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Hilbert+Space+Problem+Book&amp;rft.pub=Springer-Verlag&amp;rft.date=1982&amp;rft.isbn=978-0-387-90685-0&amp;rft.aulast=Halmos&amp;rft.aufirst=Paul&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHewittStromberg1965" class="citation cs2">Hewitt, Edwin; Stromberg, Karl (1965), <i>Real and Abstract Analysis</i>, New York: Springer-Verlag</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Real+and+Abstract+Analysis&amp;rft.place=New+York&amp;rft.pub=Springer-Verlag&amp;rft.date=1965&amp;rft.aulast=Hewitt&amp;rft.aufirst=Edwin&amp;rft.au=Stromberg%2C+Karl&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHilbertNordheimvon_Neumann1927" class="citation cs2"><a href="/wiki/David_Hilbert" title="David Hilbert">Hilbert, David</a>; <a href="/wiki/Lothar_Nordheim" class="mw-redirect" title="Lothar Nordheim">Nordheim, Lothar Wolfgang</a>; <a href="/wiki/John_von_Neumann" title="John von Neumann">von Neumann, John</a> (1927), "Über die Grundlagen der Quantenmechanik", <i>Mathematische Annalen</i>, <b>98</b>: 1–30, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01451579">10.1007/BF01451579</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:120986758">120986758</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Mathematische+Annalen&amp;rft.atitle=%C3%9Cber+die+Grundlagen+der+Quantenmechanik&amp;rft.volume=98&amp;rft.pages=1-30&amp;rft.date=1927&amp;rft_id=info%3Adoi%2F10.1007%2FBF01451579&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A120986758%23id-name%3DS2CID&amp;rft.aulast=Hilbert&amp;rft.aufirst=David&amp;rft.au=Nordheim%2C+Lothar+Wolfgang&amp;rft.au=von+Neumann%2C+John&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHolevo2001" class="citation cs2"><a href="/wiki/Alexander_Holevo" title="Alexander Holevo">Holevo, Alexander S.</a> (2001), <i>Statistical Structure of Quantum Theory</i>, Lecture Notes in Physics, Springer, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/3-540-42082-7" title="Special:BookSources/3-540-42082-7"><bdi>3-540-42082-7</bdi></a>, <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/318268606">318268606</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Statistical+Structure+of+Quantum+Theory&amp;rft.series=Lecture+Notes+in+Physics&amp;rft.pub=Springer&amp;rft.date=2001&amp;rft_id=info%3Aoclcnum%2F318268606&amp;rft.isbn=3-540-42082-7&amp;rft.aulast=Holevo&amp;rft.aufirst=Alexander+S.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKac1966" class="citation cs2"><a href="/wiki/Mark_Kac" title="Mark Kac">Kac, Mark</a> (1966), "Can one hear the shape of a drum?", <i><a href="/wiki/American_Mathematical_Monthly" class="mw-redirect" title="American Mathematical Monthly">American Mathematical Monthly</a></i>, <b>73</b> (4, part 2): 1–23, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2313748">10.2307/2313748</a>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2313748">2313748</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=American+Mathematical+Monthly&amp;rft.atitle=Can+one+hear+the+shape+of+a+drum%3F&amp;rft.volume=73&amp;rft.issue=4%2C+part+2&amp;rft.pages=1-23&amp;rft.date=1966&amp;rft_id=info%3Adoi%2F10.2307%2F2313748&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2313748%23id-name%3DJSTOR&amp;rft.aulast=Kac&amp;rft.aufirst=Mark&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKadisonRingrose1997" class="citation cs2">Kadison, Richard V.; Ringrose, John R. (1997), <i>Fundamentals of the theory of operator algebras. Vol. I</i>, Graduate Studies in Mathematics, vol.&#160;15, Providence, R.I.: <a href="/wiki/American_Mathematical_Society" title="American Mathematical Society">American Mathematical Society</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8218-0819-1" title="Special:BookSources/978-0-8218-0819-1"><bdi>978-0-8218-0819-1</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1468229">1468229</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Fundamentals+of+the+theory+of+operator+algebras.+Vol.+I&amp;rft.place=Providence%2C+R.I.&amp;rft.series=Graduate+Studies+in+Mathematics&amp;rft.pub=American+Mathematical+Society&amp;rft.date=1997&amp;rft.isbn=978-0-8218-0819-1&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1468229%23id-name%3DMR&amp;rft.aulast=Kadison&amp;rft.aufirst=Richard+V.&amp;rft.au=Ringrose%2C+John+R.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKadisonRingrose1983" class="citation cs2">Kadison, Richard V.; Ringrose, John R. (1983), <i>Fundamentals of the Theory of Operator Algebras, Vol. I: Elementary Theory</i>, New York: Academic Press, Inc.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Fundamentals+of+the+Theory+of+Operator+Algebras%2C+Vol.+I%3A+Elementary+Theory&amp;rft.place=New+York&amp;rft.pub=Academic+Press%2C+Inc.&amp;rft.date=1983&amp;rft.aulast=Kadison&amp;rft.aufirst=Richard+V.&amp;rft.au=Ringrose%2C+John+R.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKaratzasShreve2019" class="citation cs2">Karatzas, Ioannis; Shreve, Steven (2019), <i>Brownian Motion and Stochastic Calculus</i> (2nd&#160;ed.), Springer, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-97655-6" title="Special:BookSources/978-0-387-97655-6"><bdi>978-0-387-97655-6</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Brownian+Motion+and+Stochastic+Calculus&amp;rft.edition=2nd&amp;rft.pub=Springer&amp;rft.date=2019&amp;rft.isbn=978-0-387-97655-6&amp;rft.aulast=Karatzas&amp;rft.aufirst=Ioannis&amp;rft.au=Shreve%2C+Steven&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span></li></ul> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKakutani1939" class="citation cs2"><a href="/wiki/Shizuo_Kakutani" title="Shizuo Kakutani">Kakutani, Shizuo</a> (1939), "Some characterizations of Euclidean space", <i>Japanese Journal of Mathematics</i>, <b>16</b>: 93–97, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.4099%2Fjjm1924.16.0_93">10.4099/jjm1924.16.0_93</a></span>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0000895">0000895</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Japanese+Journal+of+Mathematics&amp;rft.atitle=Some+characterizations+of+Euclidean+space&amp;rft.volume=16&amp;rft.pages=93-97&amp;rft.date=1939&amp;rft_id=info%3Adoi%2F10.4099%2Fjjm1924.16.0_93&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0000895%23id-name%3DMR&amp;rft.aulast=Kakutani&amp;rft.aufirst=Shizuo&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKline1972" class="citation cs2"><a href="/wiki/Morris_Kline" title="Morris Kline">Kline, Morris</a> (1972), <a rel="nofollow" class="external text" href="https://archive.org/details/mathematicalthou00morr"><i>Mathematical thought from ancient to modern times, Volume 3</i></a> (3rd&#160;ed.), <a href="/wiki/Oxford_University_Press" title="Oxford University Press">Oxford University Press</a> (published 1990), <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-19-506137-6" title="Special:BookSources/978-0-19-506137-6"><bdi>978-0-19-506137-6</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Mathematical+thought+from+ancient+to+modern+times%2C+Volume+3&amp;rft.edition=3rd&amp;rft.pub=Oxford+University+Press&amp;rft.date=1972&amp;rft.isbn=978-0-19-506137-6&amp;rft.aulast=Kline&amp;rft.aufirst=Morris&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fmathematicalthou00morr&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKolmogorovFomin1970" class="citation cs2"><a href="/wiki/Andrey_Kolmogorov" title="Andrey Kolmogorov">Kolmogorov, Andrey</a>; <a href="/wiki/Sergei_Fomin" title="Sergei Fomin">Fomin, Sergei V.</a> (1970), <a rel="nofollow" class="external text" href="https://archive.org/details/introductoryreal00kolm_0"><i>Introductory Real Analysis</i></a> (Revised English edition, trans. by Richard A. Silverman (1975)&#160;ed.), Dover Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-486-61226-3" title="Special:BookSources/978-0-486-61226-3"><bdi>978-0-486-61226-3</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introductory+Real+Analysis&amp;rft.edition=Revised+English+edition%2C+trans.+by+Richard+A.+Silverman+%281975%29&amp;rft.pub=Dover+Press&amp;rft.date=1970&amp;rft.isbn=978-0-486-61226-3&amp;rft.aulast=Kolmogorov&amp;rft.aufirst=Andrey&amp;rft.au=Fomin%2C+Sergei+V.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fintroductoryreal00kolm_0&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKrantz2002" class="citation cs2"><a href="/wiki/Steven_Krantz" class="mw-redirect" title="Steven Krantz">Krantz, Steven G.</a> (2002), <i>Function Theory of Several Complex Variables</i>, Providence, R.I.: <a href="/wiki/American_Mathematical_Society" title="American Mathematical Society">American Mathematical Society</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8218-2724-6" title="Special:BookSources/978-0-8218-2724-6"><bdi>978-0-8218-2724-6</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Function+Theory+of+Several+Complex+Variables&amp;rft.place=Providence%2C+R.I.&amp;rft.pub=American+Mathematical+Society&amp;rft.date=2002&amp;rft.isbn=978-0-8218-2724-6&amp;rft.aulast=Krantz&amp;rft.aufirst=Steven+G.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLanczos1988" class="citation cs2">Lanczos, Cornelius (1988), <a rel="nofollow" class="external text" href="https://books.google.com/books?as_isbn=0-486-65656-X"><i>Applied analysis</i></a> (Reprint of 1956 Prentice-Hall&#160;ed.), Dover Publications, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-486-65656-4" title="Special:BookSources/978-0-486-65656-4"><bdi>978-0-486-65656-4</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Applied+analysis&amp;rft.edition=Reprint+of+1956+Prentice-Hall&amp;rft.pub=Dover+Publications&amp;rft.date=1988&amp;rft.isbn=978-0-486-65656-4&amp;rft.aulast=Lanczos&amp;rft.aufirst=Cornelius&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fas_isbn%3D0-486-65656-X&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLebesgue1904" class="citation cs2">Lebesgue, Henri (1904), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=VfUKAAAAYAAJ&amp;q=%22Lebesgue%22%20%22Le%C3%A7ons%20sur%20l&#39;int%C3%A9gration%20et%20la%20recherche%20des%20fonctions%20...%22&amp;pg=PA1"><i>Leçons sur l'intégration et la recherche des fonctions primitives</i></a>, Gauthier-Villars</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Le%C3%A7ons+sur+l%27int%C3%A9gration+et+la+recherche+des+fonctions+primitives&amp;rft.pub=Gauthier-Villars&amp;rft.date=1904&amp;rft.aulast=Lebesgue&amp;rft.aufirst=Henri&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DVfUKAAAAYAAJ%26q%3D%2522Lebesgue%2522%2520%2522Le%25C3%25A7ons%2520sur%2520l%27int%25C3%25A9gration%2520et%2520la%2520recherche%2520des%2520fonctions%2520...%2522%26pg%3DPA1&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLevitan2001" class="citation cs2">Levitan, B.M. (2001) [1994], <a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=Hilbert_space">"Hilbert space"</a>, <i><a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>, <a href="/wiki/European_Mathematical_Society" title="European Mathematical Society">EMS Press</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Hilbert+space&amp;rft.btitle=Encyclopedia+of+Mathematics&amp;rft.pub=EMS+Press&amp;rft.date=2001&amp;rft.aulast=Levitan&amp;rft.aufirst=B.M.&amp;rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DHilbert_space&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLindenstraussTzafriri1971" class="citation cs2">Lindenstrauss, J.; Tzafriri, L. (1971), "On the complemented subspaces problem", <i><a href="/wiki/Israel_Journal_of_Mathematics" title="Israel Journal of Mathematics">Israel Journal of Mathematics</a></i>, <b>9</b> (2): 263–269, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF02771592">10.1007/BF02771592</a>, <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0021-2172">0021-2172</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0276734">0276734</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119575718">119575718</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Israel+Journal+of+Mathematics&amp;rft.atitle=On+the+complemented+subspaces+problem&amp;rft.volume=9&amp;rft.issue=2&amp;rft.pages=263-269&amp;rft.date=1971&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119575718%23id-name%3DS2CID&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0276734%23id-name%3DMR&amp;rft.issn=0021-2172&amp;rft_id=info%3Adoi%2F10.1007%2FBF02771592&amp;rft.aulast=Lindenstrauss&amp;rft.aufirst=J.&amp;rft.au=Tzafriri%2C+L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMarsden1974" class="citation cs2"><a href="/wiki/Jerrold_E._Marsden" title="Jerrold E. Marsden">Marsden, Jerrold E.</a> (1974), <i>Elementary classical analysis</i>, W. H. Freeman and Co., <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0357693">0357693</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Elementary+classical+analysis&amp;rft.pub=W.+H.+Freeman+and+Co.&amp;rft.date=1974&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0357693%23id-name%3DMR&amp;rft.aulast=Marsden&amp;rft.aufirst=Jerrold+E.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMurphy1990" class="citation cs2">Murphy, Gerald J. (1990), <i>C*-algebras and Operator Theory</i>, Academic Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-12-511360-9" title="Special:BookSources/0-12-511360-9"><bdi>0-12-511360-9</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=C%2A-algebras+and+Operator+Theory&amp;rft.pub=Academic+Press&amp;rft.date=1990&amp;rft.isbn=0-12-511360-9&amp;rft.aulast=Murphy&amp;rft.aufirst=Gerald+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFvon_Neumann1929" class="citation cs2"><a href="/wiki/John_von_Neumann" title="John von Neumann">von Neumann, John</a> (1929), "Allgemeine Eigenwerttheorie Hermitescher Funktionaloperatoren", <i>Mathematische Annalen</i>, <b>102</b>: 49–131, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01782338">10.1007/BF01782338</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:121249803">121249803</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Mathematische+Annalen&amp;rft.atitle=Allgemeine+Eigenwerttheorie+Hermitescher+Funktionaloperatoren&amp;rft.volume=102&amp;rft.pages=49-131&amp;rft.date=1929&amp;rft_id=info%3Adoi%2F10.1007%2FBF01782338&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A121249803%23id-name%3DS2CID&amp;rft.aulast=von+Neumann&amp;rft.aufirst=John&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFvon_Neumann1932" class="citation cs2"><a href="/wiki/John_von_Neumann" title="John von Neumann">von Neumann, John</a> (1932), "Physical Applications of the Ergodic Hypothesis", <i>Proc Natl Acad Sci USA</i>, <b>18</b> (3): 263–266, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1932PNAS...18..263N">1932PNAS...18..263N</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1073%2Fpnas.18.3.263">10.1073/pnas.18.3.263</a></span>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/86260">86260</a>, <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1076204">1076204</a></span>, <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/16587674">16587674</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Proc+Natl+Acad+Sci+USA&amp;rft.atitle=Physical+Applications+of+the+Ergodic+Hypothesis&amp;rft.volume=18&amp;rft.issue=3&amp;rft.pages=263-266&amp;rft.date=1932&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1076204%23id-name%3DPMC&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F86260%23id-name%3DJSTOR&amp;rft_id=info%3Abibcode%2F1932PNAS...18..263N&amp;rft_id=info%3Apmid%2F16587674&amp;rft_id=info%3Adoi%2F10.1073%2Fpnas.18.3.263&amp;rft.aulast=von+Neumann&amp;rft.aufirst=John&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFvon_Neumann1955" class="citation cs2"><a href="/wiki/John_von_Neumann" title="John von Neumann">von Neumann, John</a> (1955), <a href="/wiki/Mathematical_Foundations_of_Quantum_Mechanics" title="Mathematical Foundations of Quantum Mechanics"><i>Mathematical Foundations of Quantum Mechanics</i></a>, Princeton Landmarks in Mathematics, translated by Beyer, Robert T., <a href="/wiki/Princeton_University_Press" title="Princeton University Press">Princeton University Press</a> (published 1996), <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-691-02893-4" title="Special:BookSources/978-0-691-02893-4"><bdi>978-0-691-02893-4</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1435976">1435976</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Mathematical+Foundations+of+Quantum+Mechanics&amp;rft.series=Princeton+Landmarks+in+Mathematics&amp;rft.pub=Princeton+University+Press&amp;rft.date=1955&amp;rft.isbn=978-0-691-02893-4&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1435976%23id-name%3DMR&amp;rft.aulast=von+Neumann&amp;rft.aufirst=John&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNielsenChuang2000" class="citation cs2"><a href="/wiki/Michael_Nielsen" title="Michael Nielsen">Nielsen, Michael A.</a>; <a href="/wiki/Isaac_Chuang" title="Isaac Chuang">Chuang, Isaac L.</a> (2000), <a href="/wiki/Quantum_Computation_and_Quantum_Information" title="Quantum Computation and Quantum Information"><i>Quantum Computation and Quantum Information</i></a> (1st&#160;ed.), Cambridge: <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-521-63503-5" title="Special:BookSources/978-0-521-63503-5"><bdi>978-0-521-63503-5</bdi></a>, <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/634735192">634735192</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Quantum+Computation+and+Quantum+Information&amp;rft.place=Cambridge&amp;rft.edition=1st&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2000&amp;rft_id=info%3Aoclcnum%2F634735192&amp;rft.isbn=978-0-521-63503-5&amp;rft.aulast=Nielsen&amp;rft.aufirst=Michael+A.&amp;rft.au=Chuang%2C+Isaac+L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFO&#39;ConnorRobertson1996" class="citation cs2">O'Connor, John J.; <a href="/wiki/Edmund_F._Robertson" title="Edmund F. Robertson">Robertson, Edmund F.</a> (1996), <a rel="nofollow" class="external text" href="https://mathshistory.st-andrews.ac.uk/HistTopics/Abstract_linear_spaces.html">"Abstract linear spaces"</a>, <i><a href="/wiki/MacTutor_History_of_Mathematics_Archive" title="MacTutor History of Mathematics Archive">MacTutor History of Mathematics Archive</a></i>, <a href="/wiki/University_of_St_Andrews" title="University of St Andrews">University of St Andrews</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Abstract+linear+spaces&amp;rft.btitle=MacTutor+History+of+Mathematics+Archive&amp;rft.pub=University+of+St+Andrews&amp;rft.date=1996&amp;rft.aulast=O%27Connor&amp;rft.aufirst=John+J.&amp;rft.au=Robertson%2C+Edmund+F.&amp;rft_id=https%3A%2F%2Fmathshistory.st-andrews.ac.uk%2FHistTopics%2FAbstract_linear_spaces.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPathria1996" class="citation cs2">Pathria, RK (1996), <i>Statistical mechanics</i> (2&#160;ed.), Academic Press</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Statistical+mechanics&amp;rft.edition=2&amp;rft.pub=Academic+Press&amp;rft.date=1996&amp;rft.aulast=Pathria&amp;rft.aufirst=RK&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPedersen1995" class="citation cs2">Pedersen, Gert (1995), <i>Analysis Now</i>, Graduate Texts in Mathematics, vol.&#160;118, Berlin, New York: <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer-Verlag</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4612-6981-6" title="Special:BookSources/978-1-4612-6981-6"><bdi>978-1-4612-6981-6</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0971256">0971256</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Analysis+Now&amp;rft.place=Berlin%2C+New+York&amp;rft.series=Graduate+Texts+in+Mathematics&amp;rft.pub=Springer-Verlag&amp;rft.date=1995&amp;rft.isbn=978-1-4612-6981-6&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0971256%23id-name%3DMR&amp;rft.aulast=Pedersen&amp;rft.aufirst=Gert&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPeres1993" class="citation cs2"><a href="/wiki/Asher_Peres" title="Asher Peres">Peres, Asher</a> (1993), <i><a href="/wiki/Quantum_Theory:_Concepts_and_Methods" title="Quantum Theory: Concepts and Methods">Quantum Theory: Concepts and Methods</a></i>, Kluwer, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-7923-2549-4" title="Special:BookSources/0-7923-2549-4"><bdi>0-7923-2549-4</bdi></a>, <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/28854083">28854083</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Quantum+Theory%3A+Concepts+and+Methods&amp;rft.pub=Kluwer&amp;rft.date=1993&amp;rft_id=info%3Aoclcnum%2F28854083&amp;rft.isbn=0-7923-2549-4&amp;rft.aulast=Peres&amp;rft.aufirst=Asher&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPrugovečki1981" class="citation cs2">Prugovečki, Eduard (1981), <i>Quantum mechanics in Hilbert space</i> (2nd&#160;ed.), Dover (published 2006), <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-486-45327-9" title="Special:BookSources/978-0-486-45327-9"><bdi>978-0-486-45327-9</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Quantum+mechanics+in+Hilbert+space&amp;rft.edition=2nd&amp;rft.pub=Dover&amp;rft.date=1981&amp;rft.isbn=978-0-486-45327-9&amp;rft.aulast=Prugove%C4%8Dki&amp;rft.aufirst=Eduard&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFReedSimon1980" class="citation cs2"><a href="/wiki/Michael_C._Reed" title="Michael C. Reed">Reed, Michael</a>; <a href="/wiki/Barry_Simon" title="Barry Simon">Simon, Barry</a> (1980), <i>Functional Analysis (vol I of 4 vols)</i>, Methods of Modern Mathematical Physics, Academic Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-12-585050-6" title="Special:BookSources/978-0-12-585050-6"><bdi>978-0-12-585050-6</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Functional+Analysis+%28vol+I+of+4+vols%29&amp;rft.series=Methods+of+Modern+Mathematical+Physics&amp;rft.pub=Academic+Press&amp;rft.date=1980&amp;rft.isbn=978-0-12-585050-6&amp;rft.aulast=Reed&amp;rft.aufirst=Michael&amp;rft.au=Simon%2C+Barry&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFReedSimon1975" class="citation cs2"><a href="/wiki/Michael_C._Reed" title="Michael C. Reed">Reed, Michael</a>; <a href="/wiki/Barry_Simon" title="Barry Simon">Simon, Barry</a> (1975), <i>Fourier Analysis, Self-Adjointness (vol II of 4 vols)</i>, Methods of Modern Mathematical Physics, Academic Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780125850025" title="Special:BookSources/9780125850025"><bdi>9780125850025</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Fourier+Analysis%2C+Self-Adjointness+%28vol+II+of+4+vols%29&amp;rft.series=Methods+of+Modern+Mathematical+Physics&amp;rft.pub=Academic+Press&amp;rft.date=1975&amp;rft.isbn=9780125850025&amp;rft.aulast=Reed&amp;rft.aufirst=Michael&amp;rft.au=Simon%2C+Barry&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRieffelPolak2011" class="citation cs2"><a href="/wiki/Eleanor_Rieffel" title="Eleanor Rieffel">Rieffel, Eleanor G.</a>; Polak, Wolfgang H. (2011-03-04), <a href="/wiki/Quantum_Computing:_A_Gentle_Introduction" title="Quantum Computing: A Gentle Introduction"><i>Quantum Computing: A Gentle Introduction</i></a>, MIT Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-262-01506-6" title="Special:BookSources/978-0-262-01506-6"><bdi>978-0-262-01506-6</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Quantum+Computing%3A+A+Gentle+Introduction&amp;rft.pub=MIT+Press&amp;rft.date=2011-03-04&amp;rft.isbn=978-0-262-01506-6&amp;rft.aulast=Rieffel&amp;rft.aufirst=Eleanor+G.&amp;rft.au=Polak%2C+Wolfgang+H.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRiesz1907" class="citation cs2"><a href="/wiki/Frigyes_Riesz" title="Frigyes Riesz">Riesz, Frigyes</a> (1907), "Sur une espèce de Géométrie analytique des systèmes de fonctions sommables", <i>C. R. Acad. Sci. Paris</i>, <b>144</b>: 1409–1411</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=C.+R.+Acad.+Sci.+Paris&amp;rft.atitle=Sur+une+esp%C3%A8ce+de+G%C3%A9om%C3%A9trie+analytique+des+syst%C3%A8mes+de+fonctions+sommables&amp;rft.volume=144&amp;rft.pages=1409-1411&amp;rft.date=1907&amp;rft.aulast=Riesz&amp;rft.aufirst=Frigyes&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRiesz1934" class="citation cs2"><a href="/wiki/Frigyes_Riesz" title="Frigyes Riesz">Riesz, Frigyes</a> (1934), "Zur Theorie des Hilbertschen Raumes", <i>Acta Sci. Math. Szeged</i>, <b>7</b>: 34–38</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Acta+Sci.+Math.+Szeged&amp;rft.atitle=Zur+Theorie+des+Hilbertschen+Raumes&amp;rft.volume=7&amp;rft.pages=34-38&amp;rft.date=1934&amp;rft.aulast=Riesz&amp;rft.aufirst=Frigyes&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRieszSz.-Nagy1990" class="citation cs2"><a href="/wiki/Frigyes_Riesz" title="Frigyes Riesz">Riesz, Frigyes</a>; <a href="/wiki/B%C3%A9la_Sz%C5%91kefalvi-Nagy" title="Béla Szőkefalvi-Nagy">Sz.-Nagy, Béla</a> (1990), <i>Functional analysis</i>, Dover, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-486-66289-3" title="Special:BookSources/978-0-486-66289-3"><bdi>978-0-486-66289-3</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Functional+analysis&amp;rft.pub=Dover&amp;rft.date=1990&amp;rft.isbn=978-0-486-66289-3&amp;rft.aulast=Riesz&amp;rft.aufirst=Frigyes&amp;rft.au=Sz.-Nagy%2C+B%C3%A9la&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRoman2008" class="citation cs2"><a href="/wiki/Steven_Roman" title="Steven Roman">Roman, Stephen</a> (2008), <i>Advanced Linear Algebra</i>, <a href="/wiki/Graduate_Texts_in_Mathematics" title="Graduate Texts in Mathematics">Graduate Texts in Mathematics</a> (Third&#160;ed.), Springer, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-72828-5" title="Special:BookSources/978-0-387-72828-5"><bdi>978-0-387-72828-5</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Advanced+Linear+Algebra&amp;rft.series=Graduate+Texts+in+Mathematics&amp;rft.edition=Third&amp;rft.pub=Springer&amp;rft.date=2008&amp;rft.isbn=978-0-387-72828-5&amp;rft.aulast=Roman&amp;rft.aufirst=Stephen&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRudin1973" class="citation book cs1"><a href="/wiki/Walter_Rudin" title="Walter Rudin">Rudin, Walter</a> (1973). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/functionalanalys00rudi"><i>Functional Analysis</i></a></span>. International Series in Pure and Applied Mathematics. Vol.&#160;25 (First&#160;ed.). New York, NY: <a href="/wiki/McGraw-Hill_Science/Engineering/Math" class="mw-redirect" title="McGraw-Hill Science/Engineering/Math">McGraw-Hill Science/Engineering/Math</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780070542259" title="Special:BookSources/9780070542259"><bdi>9780070542259</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Functional+Analysis&amp;rft.place=New+York%2C+NY&amp;rft.series=International+Series+in+Pure+and+Applied+Mathematics&amp;rft.edition=First&amp;rft.pub=McGraw-Hill+Science%2FEngineering%2FMath&amp;rft.date=1973&amp;rft.isbn=9780070542259&amp;rft.aulast=Rudin&amp;rft.aufirst=Walter&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Ffunctionalanalys00rudi&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRudin1987" class="citation cs2"><a href="/wiki/Walter_Rudin" title="Walter Rudin">Rudin, Walter</a> (1987), <i>Real and Complex Analysis</i>, McGraw-Hill, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-07-100276-9" title="Special:BookSources/978-0-07-100276-9"><bdi>978-0-07-100276-9</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Real+and+Complex+Analysis&amp;rft.pub=McGraw-Hill&amp;rft.date=1987&amp;rft.isbn=978-0-07-100276-9&amp;rft.aulast=Rudin&amp;rft.aufirst=Walter&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSaks2005" class="citation cs2"><a href="/wiki/Stanis%C5%82aw_Saks" title="Stanisław Saks">Saks, Stanisław</a> (2005), <i>Theory of the integral</i> (2nd Dover&#160;ed.), Dover, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-486-44648-6" title="Special:BookSources/978-0-486-44648-6"><bdi>978-0-486-44648-6</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Theory+of+the+integral&amp;rft.edition=2nd+Dover&amp;rft.pub=Dover&amp;rft.date=2005&amp;rft.isbn=978-0-486-44648-6&amp;rft.aulast=Saks&amp;rft.aufirst=Stanis%C5%82aw&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>; originally published <i>Monografje Matematyczne</i>, vol. 7, Warszawa, 1937.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchaeferWolff1999" class="citation book cs1"><a href="/wiki/Helmut_H._Schaefer" title="Helmut H. Schaefer">Schaefer, Helmut H.</a>; Wolff, Manfred P. (1999). <i>Topological Vector Spaces</i>. <a href="/wiki/Graduate_Texts_in_Mathematics" title="Graduate Texts in Mathematics">GTM</a>. Vol.&#160;8 (Second&#160;ed.). New York, NY: Springer New York Imprint Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4612-7155-0" title="Special:BookSources/978-1-4612-7155-0"><bdi>978-1-4612-7155-0</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/840278135">840278135</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Topological+Vector+Spaces&amp;rft.place=New+York%2C+NY&amp;rft.series=GTM&amp;rft.edition=Second&amp;rft.pub=Springer+New+York+Imprint+Springer&amp;rft.date=1999&amp;rft_id=info%3Aoclcnum%2F840278135&amp;rft.isbn=978-1-4612-7155-0&amp;rft.aulast=Schaefer&amp;rft.aufirst=Helmut+H.&amp;rft.au=Wolff%2C+Manfred+P.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchmidt1908" class="citation cs2"><a href="/wiki/Erhard_Schmidt" title="Erhard Schmidt">Schmidt, Erhard</a> (1908), "Über die Auflösung linearer Gleichungen mit unendlich vielen Unbekannten", <i>Rend. Circ. Mat. Palermo</i>, <b>25</b>: 63–77, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF03029116">10.1007/BF03029116</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:120666844">120666844</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Rend.+Circ.+Mat.+Palermo&amp;rft.atitle=%C3%9Cber+die+Aufl%C3%B6sung+linearer+Gleichungen+mit+unendlich+vielen+Unbekannten&amp;rft.volume=25&amp;rft.pages=63-77&amp;rft.date=1908&amp;rft_id=info%3Adoi%2F10.1007%2FBF03029116&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A120666844%23id-name%3DS2CID&amp;rft.aulast=Schmidt&amp;rft.aufirst=Erhard&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFShubin1987" class="citation cs2">Shubin, M. A. (1987), <i>Pseudodifferential operators and spectral theory</i>, Springer Series in Soviet Mathematics, Berlin, New York: <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer-Verlag</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-540-13621-7" title="Special:BookSources/978-3-540-13621-7"><bdi>978-3-540-13621-7</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0883081">0883081</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Pseudodifferential+operators+and+spectral+theory&amp;rft.place=Berlin%2C+New+York&amp;rft.series=Springer+Series+in+Soviet+Mathematics&amp;rft.pub=Springer-Verlag&amp;rft.date=1987&amp;rft.isbn=978-3-540-13621-7&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D883081%23id-name%3DMR&amp;rft.aulast=Shubin&amp;rft.aufirst=M.+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSobrino1996" class="citation cs2">Sobrino, Luis (1996), <i>Elements of non-relativistic quantum mechanics</i>, River Edge, New Jersey: World Scientific Publishing Co. Inc., <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1996lnrq.book.....S">1996lnrq.book.....S</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1142%2F2865">10.1142/2865</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-981-02-2386-1" title="Special:BookSources/978-981-02-2386-1"><bdi>978-981-02-2386-1</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1626401">1626401</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Elements+of+non-relativistic+quantum+mechanics&amp;rft.place=River+Edge%2C+New+Jersey&amp;rft.pub=World+Scientific+Publishing+Co.+Inc.&amp;rft.date=1996&amp;rft_id=info%3Adoi%2F10.1142%2F2865&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1626401%23id-name%3DMR&amp;rft_id=info%3Abibcode%2F1996lnrq.book.....S&amp;rft.isbn=978-981-02-2386-1&amp;rft.aulast=Sobrino&amp;rft.aufirst=Luis&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStapleton1995" class="citation cs2">Stapleton, James (1995), <i>Linear statistical models</i>, John Wiley and Sons</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Linear+statistical+models&amp;rft.pub=John+Wiley+and+Sons&amp;rft.date=1995&amp;rft.aulast=Stapleton&amp;rft.aufirst=James&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStewart2006" class="citation cs2">Stewart, James (2006), <i>Calculus: Concepts and Contexts</i> (3rd&#160;ed.), Thomson/Brooks/Cole</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Calculus%3A+Concepts+and+Contexts&amp;rft.edition=3rd&amp;rft.pub=Thomson%2FBrooks%2FCole&amp;rft.date=2006&amp;rft.aulast=Stewart&amp;rft.aufirst=James&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStein1970" class="citation cs2">Stein, E (1970), <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/singularintegral0000stei"><i>Singular Integrals and Differentiability Properties of Functions</i></a></span>, Princeton Univ. Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-691-08079-6" title="Special:BookSources/978-0-691-08079-6"><bdi>978-0-691-08079-6</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Singular+Integrals+and+Differentiability+Properties+of+Functions&amp;rft.pub=Princeton+Univ.+Press&amp;rft.date=1970&amp;rft.isbn=978-0-691-08079-6&amp;rft.aulast=Stein&amp;rft.aufirst=E&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fsingularintegral0000stei&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSteinWeiss1971" class="citation cs2"><a href="/wiki/Elias_Stein" class="mw-redirect" title="Elias Stein">Stein, Elias</a>; <a href="/wiki/Guido_Weiss" title="Guido Weiss">Weiss, Guido</a> (1971), <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/introductiontofo0000stei"><i>Introduction to Fourier Analysis on Euclidean Spaces</i></a></span>, Princeton, N.J.: Princeton University Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-691-08078-9" title="Special:BookSources/978-0-691-08078-9"><bdi>978-0-691-08078-9</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+Fourier+Analysis+on+Euclidean+Spaces&amp;rft.place=Princeton%2C+N.J.&amp;rft.pub=Princeton+University+Press&amp;rft.date=1971&amp;rft.isbn=978-0-691-08078-9&amp;rft.aulast=Stein&amp;rft.aufirst=Elias&amp;rft.au=Weiss%2C+Guido&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fintroductiontofo0000stei&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSteinShakarchi2005" class="citation cs2">Stein, E; Shakarchi, R (2005), <i>Real analysis, measure theory, integration, and Hilbert spaces</i>, Princeton University Press</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Real+analysis%2C+measure+theory%2C+integration%2C+and+Hilbert+spaces&amp;rft.pub=Princeton+University+Press&amp;rft.date=2005&amp;rft.aulast=Stein&amp;rft.aufirst=E&amp;rft.au=Shakarchi%2C+R&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStreaterWightman1964" class="citation cs2"><a href="/wiki/Ray_Streater" title="Ray Streater">Streater, Ray</a>; <a href="/wiki/Arthur_Wightman" title="Arthur Wightman">Wightman, Arthur</a> (1964), <i>PCT, Spin and Statistics and All That</i>, W. A. Benjamin, Inc</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=PCT%2C+Spin+and+Statistics+and+All+That&amp;rft.pub=W.+A.+Benjamin%2C+Inc&amp;rft.date=1964&amp;rft.aulast=Streater&amp;rft.aufirst=Ray&amp;rft.au=Wightman%2C+Arthur&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStroock2011" class="citation cs2">Stroock, Daniel (2011), <i>Probability theory: an analytic view</i> (2&#160;ed.), Cambridge University Press</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Probability+theory%3A+an+analytic+view&amp;rft.edition=2&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2011&amp;rft.aulast=Stroock&amp;rft.aufirst=Daniel&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTeschl2009" class="citation book cs1"><a href="/wiki/Gerald_Teschl" title="Gerald Teschl">Teschl, Gerald</a> (2009). <a rel="nofollow" class="external text" href="https://www.mat.univie.ac.at/~gerald/ftp/book-schroe/"><i>Mathematical Methods in Quantum Mechanics; With Applications to Schrödinger Operators</i></a>. <a href="/wiki/Providence,_Rhode_Island" title="Providence, Rhode Island">Providence</a>: <a href="/wiki/American_Mathematical_Society" title="American Mathematical Society">American Mathematical Society</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8218-4660-5" title="Special:BookSources/978-0-8218-4660-5"><bdi>978-0-8218-4660-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Mathematical+Methods+in+Quantum+Mechanics%3B+With+Applications+to+Schr%C3%B6dinger+Operators&amp;rft.place=Providence&amp;rft.pub=American+Mathematical+Society&amp;rft.date=2009&amp;rft.isbn=978-0-8218-4660-5&amp;rft.aulast=Teschl&amp;rft.aufirst=Gerald&amp;rft_id=https%3A%2F%2Fwww.mat.univie.ac.at%2F~gerald%2Fftp%2Fbook-schroe%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTitchmarsh1946" class="citation cs2"><a href="/wiki/Edward_Charles_Titchmarsh" title="Edward Charles Titchmarsh">Titchmarsh, Edward Charles</a> (1946), <i>Eigenfunction expansions, part 1</i>, Oxford University: Clarendon Press</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Eigenfunction+expansions%2C+part+1&amp;rft.place=Oxford+University&amp;rft.pub=Clarendon+Press&amp;rft.date=1946&amp;rft.aulast=Titchmarsh&amp;rft.aufirst=Edward+Charles&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTrèves1967" class="citation cs2">Trèves, François (1967), <i>Topological Vector Spaces, Distributions and Kernels</i>, Academic Press</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Topological+Vector+Spaces%2C+Distributions+and+Kernels&amp;rft.pub=Academic+Press&amp;rft.date=1967&amp;rft.aulast=Tr%C3%A8ves&amp;rft.aufirst=Fran%C3%A7ois&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWarner1983" class="citation cs2">Warner, Frank (1983), <i>Foundations of Differentiable Manifolds and Lie Groups</i>, Berlin, New York: <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer-Verlag</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-90894-6" title="Special:BookSources/978-0-387-90894-6"><bdi>978-0-387-90894-6</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Foundations+of+Differentiable+Manifolds+and+Lie+Groups&amp;rft.place=Berlin%2C+New+York&amp;rft.pub=Springer-Verlag&amp;rft.date=1983&amp;rft.isbn=978-0-387-90894-6&amp;rft.aulast=Warner&amp;rft.aufirst=Frank&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeidmann1980" class="citation cs2">Weidmann, Joachim (1980), <i>Linear operators in Hilbert spaces</i>, Graduate Texts in Mathematics, vol.&#160;68, Berlin, New York: <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer-Verlag</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-90427-6" title="Special:BookSources/978-0-387-90427-6"><bdi>978-0-387-90427-6</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0566954">0566954</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Linear+operators+in+Hilbert+spaces&amp;rft.place=Berlin%2C+New+York&amp;rft.series=Graduate+Texts+in+Mathematics&amp;rft.pub=Springer-Verlag&amp;rft.date=1980&amp;rft.isbn=978-0-387-90427-6&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D566954%23id-name%3DMR&amp;rft.aulast=Weidmann&amp;rft.aufirst=Joachim&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeyl1931" class="citation cs2"><a href="/wiki/Hermann_Weyl" title="Hermann Weyl">Weyl, Hermann</a> (1931), <i>The Theory of Groups and Quantum Mechanics</i> (English 1950&#160;ed.), Dover Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-486-60269-1" title="Special:BookSources/978-0-486-60269-1"><bdi>978-0-486-60269-1</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Theory+of+Groups+and+Quantum+Mechanics&amp;rft.edition=English+1950&amp;rft.pub=Dover+Press&amp;rft.date=1931&amp;rft.isbn=978-0-486-60269-1&amp;rft.aulast=Weyl&amp;rft.aufirst=Hermann&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYoung1988" class="citation cs2">Young, Nicholas (1988), <i>An introduction to Hilbert space</i>, Cambridge University Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-521-33071-8" title="Special:BookSources/978-0-521-33071-8"><bdi>978-0-521-33071-8</bdi></a>, <a href="/wiki/Zbl_(identifier)" class="mw-redirect" title="Zbl (identifier)">Zbl</a>&#160;<a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&amp;q=an:0645.46024">0645.46024</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=An+introduction+to+Hilbert+space&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1988&amp;rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A0645.46024%23id-name%3DZbl&amp;rft.isbn=978-0-521-33071-8&amp;rft.aulast=Young&amp;rft.aufirst=Nicholas&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span>.</li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Hilbert_space&amp;action=edit&amp;section=46" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/40px-Wikibooks-logo-en-noslogan.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/60px-Wikibooks-logo-en-noslogan.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/80px-Wikibooks-logo-en-noslogan.svg.png 2x" data-file-width="400" data-file-height="400" /></span></span></div> <div class="side-box-text plainlist">Wikibooks has a book on the topic of: <i><b><a href="https://en.wikibooks.org/wiki/Functional_Analysis/Hilbert_spaces" class="extiw" title="wikibooks:Functional Analysis/Hilbert spaces">Functional Analysis/Hilbert spaces</a></b></i></div></div> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1235681985"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1237033735"><div class="side-box side-box-right plainlinks sistersitebox"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png" decoding="async" width="30" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/45px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/59px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span></div> <div class="side-box-text plainlist">Wikimedia Commons has media related to <span style="font-weight: bold; font-style: italic;"><a href="https://commons.wikimedia.org/wiki/Category:Hilbert_space" class="extiw" title="commons:Category:Hilbert space">Hilbert space</a></span>.</div></div> </div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=Hilbert_space">"Hilbert space"</a>, <i><a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>, <a href="/wiki/European_Mathematical_Society" title="European Mathematical Society">EMS Press</a>, 2001 [1994]</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Hilbert+space&amp;rft.btitle=Encyclopedia+of+Mathematics&amp;rft.pub=EMS+Press&amp;rft.date=2001&amp;rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DHilbert_space&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHilbert+space" class="Z3988"></span></li> <li><a rel="nofollow" class="external text" href="http://mathworld.wolfram.com/HilbertSpace.html">Hilbert space at Mathworld</a></li> <li><a rel="nofollow" class="external text" href="http://terrytao.wordpress.com/2009/01/17/254a-notes-5-hilbert-spaces/">245B, notes 5: Hilbert spaces</a> by <a href="/wiki/Terence_Tao" title="Terence Tao">Terence Tao</a></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Hilbert_spaces" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Hilbert_space" title="Template:Hilbert space"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Hilbert_space" title="Template talk:Hilbert space"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Hilbert_space" title="Special:EditPage/Template:Hilbert space"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Hilbert_spaces" style="font-size:114%;margin:0 4em"><a class="mw-selflink selflink">Hilbert spaces</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Basic concepts</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Hermitian_adjoint" title="Hermitian adjoint">Adjoint</a></li> <li><a href="/wiki/Inner_product_space" title="Inner product space">Inner product</a> and <a href="/wiki/L-semi-inner_product" title="L-semi-inner product">L-semi-inner product</a></li> <li><a class="mw-selflink selflink">Hilbert space</a> and <a href="/wiki/Prehilbert_space" class="mw-redirect" title="Prehilbert space">Prehilbert space</a></li> <li><a href="/wiki/Orthogonal_complement" title="Orthogonal complement">Orthogonal complement</a></li> <li><a href="/wiki/Orthonormal_basis" title="Orthonormal basis">Orthonormal basis</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Main results</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bessel%27s_inequality" title="Bessel&#39;s inequality">Bessel's inequality</a></li> <li><a href="/wiki/Cauchy%E2%80%93Schwarz_inequality" title="Cauchy–Schwarz inequality">Cauchy–Schwarz inequality</a></li> <li><a href="/wiki/Riesz_representation_theorem" title="Riesz representation theorem">Riesz representation</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Other results</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Hilbert_projection_theorem" title="Hilbert projection theorem">Hilbert projection theorem</a></li> <li><a href="/wiki/Parseval%27s_identity" title="Parseval&#39;s identity">Parseval's identity</a></li> <li><a href="/wiki/Polarization_identity" title="Polarization identity">Polarization identity</a> (<a href="/wiki/Parallelogram_law#The_parallelogram_law_in_inner_product_spaces" title="Parallelogram law">Parallelogram law</a>)</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Maps</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Compact_operator_on_Hilbert_space" title="Compact operator on Hilbert space">Compact operator on Hilbert space</a></li> <li><a href="/wiki/Densely_defined_operator" title="Densely defined operator">Densely defined</a></li> <li><a href="/wiki/Sesquilinear_form#Hermitian_form" title="Sesquilinear form">Hermitian form</a></li> <li><a href="/wiki/Hilbert%E2%80%93Schmidt_operator" title="Hilbert–Schmidt operator">Hilbert–Schmidt</a></li> <li><a href="/wiki/Normal_operator" title="Normal operator">Normal</a></li> <li><a href="/wiki/Self-adjoint_operator" title="Self-adjoint operator">Self-adjoint</a></li> <li><a href="/wiki/Sesquilinear_form" title="Sesquilinear form">Sesquilinear form</a></li> <li><a href="/wiki/Trace_class" title="Trace class">Trace class</a></li> <li><a href="/wiki/Unitary_operator" title="Unitary operator">Unitary</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Examples</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Distribution_(mathematics)" title="Distribution (mathematics)"><i>C</i><sup><i>n</i></sup>(<i>K</i>) with <i>K</i> compact &amp; <i>n</i>&lt;∞</a></li> <li><a href="/wiki/Segal%E2%80%93Bargmann_space" title="Segal–Bargmann space">Segal–Bargmann <i>F</i></a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Lp_spaces" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Lp_spaces" title="Template:Lp spaces"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Lp_spaces" title="Template talk:Lp spaces"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Lp_spaces" title="Special:EditPage/Template:Lp spaces"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Lp_spaces" style="font-size:114%;margin:0 4em"><a href="/wiki/Lp_space" title="Lp space">Lp spaces</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Basic concepts</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Banach_space" title="Banach space">Banach</a>&#160;&amp;&#160;<a class="mw-selflink selflink">Hilbert spaces</a></li> <li><a href="/wiki/Lp_space" title="Lp space"><i>L</i><sup><i>p</i></sup> spaces</a></li> <li><a href="/wiki/Measure_(mathematics)" title="Measure (mathematics)">Measure</a> <ul><li><a href="/wiki/Lebesgue_measure" title="Lebesgue measure">Lebesgue</a></li></ul></li> <li><a href="/wiki/Measure_space" title="Measure space">Measure space</a></li> <li><a href="/wiki/Measurable_space" title="Measurable space">Measurable space</a>/<a href="/wiki/Measurable_function" title="Measurable function">function</a></li> <li><a href="/wiki/Minkowski_distance" title="Minkowski distance">Minkowski distance</a></li> <li><a href="/wiki/Sequence_space" title="Sequence space">Sequence spaces</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/L1_space" class="mw-redirect" title="L1 space"><i>L</i><sup>1</sup> spaces</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Integrable_function" class="mw-redirect" title="Integrable function">Integrable function</a></li> <li><a href="/wiki/Lebesgue_integration" class="mw-redirect" title="Lebesgue integration">Lebesgue integration</a></li> <li><a href="/wiki/Taxicab_geometry" title="Taxicab geometry">Taxicab geometry</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/L2_space" class="mw-redirect" title="L2 space"><i>L</i><sup>2</sup> spaces</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bessel%27s_inequality" title="Bessel&#39;s inequality">Bessel's</a></li> <li><a href="/wiki/Cauchy%E2%80%93Schwarz_inequality" title="Cauchy–Schwarz inequality">Cauchy–Schwarz</a></li> <li><a href="/wiki/Euclidean_distance" title="Euclidean distance">Euclidean distance</a></li> <li><a class="mw-selflink selflink">Hilbert space</a></li> <li><a href="/wiki/Parseval%27s_identity" title="Parseval&#39;s identity">Parseval's identity</a></li> <li><a href="/wiki/Polarization_identity" title="Polarization identity">Polarization identity</a></li> <li><a href="/wiki/Pythagorean_theorem" title="Pythagorean theorem">Pythagorean theorem</a></li> <li><a href="/wiki/Square-integrable_function" title="Square-integrable function">Square-integrable function</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/L-infinity" title="L-infinity"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{\infty }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{\infty }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b9ab400cc4dfd865180cd84c72dc894ca457671f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.458ex; height:2.343ex;" alt="{\displaystyle L^{\infty }}"></span> spaces</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bounded_function" title="Bounded function">Bounded function</a></li> <li><a href="/wiki/Chebyshev_distance" title="Chebyshev distance">Chebyshev distance</a></li> <li><a href="/wiki/Infimum_and_supremum" title="Infimum and supremum">Infimum and supremum</a> <ul><li><a href="/wiki/Essential_infimum_and_essential_supremum" title="Essential infimum and essential supremum">Essential</a></li></ul></li> <li><a href="/wiki/Uniform_norm" title="Uniform norm">Uniform norm</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Maps</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Almost_everywhere" title="Almost everywhere">Almost everywhere</a></li> <li><a href="/wiki/Convergence_almost_everywhere" class="mw-redirect" title="Convergence almost everywhere">Convergence almost everywhere</a></li> <li><a href="/wiki/Convergence_in_measure" title="Convergence in measure">Convergence in measure</a></li> <li><a href="/wiki/Function_space" title="Function space">Function space</a></li> <li><a href="/wiki/Integral_transform" title="Integral transform">Integral transform</a></li> <li><a href="/wiki/Locally_integrable_function" title="Locally integrable function">Locally integrable function</a></li> <li><a href="/wiki/Measurable_function" title="Measurable function">Measurable function</a></li> <li><a href="/wiki/Symmetric_decreasing_rearrangement" title="Symmetric decreasing rearrangement">Symmetric decreasing rearrangement</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Inequalities</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Babenko%E2%80%93Beckner_inequality" title="Babenko–Beckner inequality">Babenko–Beckner</a></li> <li><a href="/wiki/Chebyshev%27s_inequality" title="Chebyshev&#39;s inequality">Chebyshev's</a></li> <li><a href="/wiki/Clarkson%27s_inequalities" title="Clarkson&#39;s inequalities">Clarkson's</a></li> <li><a href="/wiki/Hanner%27s_inequalities" title="Hanner&#39;s inequalities">Hanner's</a></li> <li><a href="/wiki/Hausdorff%E2%80%93Young_inequality" title="Hausdorff–Young inequality">Hausdorff–Young</a></li> <li><a href="/wiki/H%C3%B6lder%27s_inequality" title="Hölder&#39;s inequality">Hölder's</a></li> <li><a href="/wiki/Markov%27s_inequality" title="Markov&#39;s inequality">Markov's</a></li> <li><a href="/wiki/Minkowski_inequality" title="Minkowski inequality">Minkowski</a></li> <li><a href="/wiki/Young%27s_convolution_inequality" title="Young&#39;s convolution inequality">Young's convolution</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Category:Theorems_in_analysis" title="Category:Theorems in analysis">Results</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Marcinkiewicz_interpolation_theorem" title="Marcinkiewicz interpolation theorem">Marcinkiewicz interpolation theorem</a></li> <li><a href="/wiki/Plancherel_theorem" title="Plancherel theorem">Plancherel theorem</a></li> <li><a href="/wiki/Riemann%E2%80%93Lebesgue_lemma" title="Riemann–Lebesgue lemma">Riemann–Lebesgue</a></li> <li><a href="/wiki/Riesz%E2%80%93Fischer_theorem" title="Riesz–Fischer theorem">Riesz–Fischer theorem</a></li> <li><a href="/wiki/Riesz%E2%80%93Thorin_theorem" title="Riesz–Thorin theorem">Riesz–Thorin theorem</a></li></ul> </div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><span style="font-size:85%;">For <a href="/wiki/Lebesgue_measure" title="Lebesgue measure">Lebesgue measure</a></span></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Isoperimetric_inequality" title="Isoperimetric inequality">Isoperimetric inequality</a></li> <li><a href="/wiki/Brunn%E2%80%93Minkowski_theorem" title="Brunn–Minkowski theorem">Brunn–Minkowski theorem</a> <ul><li><a href="/wiki/Milman%27s_reverse_Brunn%E2%80%93Minkowski_inequality" title="Milman&#39;s reverse Brunn–Minkowski inequality">Milman's reverse</a></li></ul></li> <li><a href="/wiki/Minkowski%E2%80%93Steiner_formula" title="Minkowski–Steiner formula">Minkowski–Steiner formula</a></li> <li><a href="/wiki/Pr%C3%A9kopa%E2%80%93Leindler_inequality" title="Prékopa–Leindler inequality">Prékopa–Leindler inequality</a></li> <li><a href="/wiki/Vitale%27s_random_Brunn%E2%80%93Minkowski_inequality" title="Vitale&#39;s random Brunn–Minkowski inequality">Vitale's random Brunn–Minkowski inequality</a></li></ul> </div></td></tr></tbody></table><div> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Applications&#160;&amp;&#160;related</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bochner_space" title="Bochner space">Bochner space</a></li> <li><a href="/wiki/Fourier_analysis" title="Fourier analysis">Fourier analysis</a></li> <li><a href="/wiki/Lorentz_space" title="Lorentz space">Lorentz space</a></li> <li><a href="/wiki/Probability_theory" title="Probability theory">Probability theory</a></li> <li><a href="/wiki/Quasinorm" title="Quasinorm">Quasinorm</a></li> <li><a href="/wiki/Real_analysis" title="Real analysis">Real analysis</a></li> <li><a href="/wiki/Sobolev_space" title="Sobolev space">Sobolev space</a></li> <li><a href="/wiki/*-algebra" title="*-algebra">*-algebra</a> <ul><li><a href="/wiki/C*-algebra" title="C*-algebra">C*-algebra</a></li> <li><a href="/wiki/Von_Neumann_algebra" title="Von Neumann algebra">Von Neumann</a></li></ul></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Functional_analysis_(topics_–_glossary)" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Functional_analysis" title="Template:Functional analysis"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Functional_analysis" title="Template talk:Functional analysis"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Functional_analysis" title="Special:EditPage/Template:Functional analysis"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Functional_analysis_(topics_–_glossary)" style="font-size:114%;margin:0 4em"><a href="/wiki/Functional_analysis" title="Functional analysis">Functional analysis</a>&#160;(<a href="/wiki/List_of_functional_analysis_topics" title="List of functional analysis topics">topics</a> – <a href="/wiki/Glossary_of_functional_analysis" title="Glossary of functional analysis">glossary</a>)</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Spaces</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Banach_space" title="Banach space">Banach</a></li> <li><a href="/wiki/Besov_space" title="Besov space">Besov</a></li> <li><a href="/wiki/Fr%C3%A9chet_space" title="Fréchet space">Fréchet</a></li> <li><a class="mw-selflink selflink">Hilbert</a></li> <li><a href="/wiki/H%C3%B6lder_space" class="mw-redirect" title="Hölder space">Hölder</a></li> <li><a href="/wiki/Nuclear_space" title="Nuclear space">Nuclear</a></li> <li><a href="/wiki/Orlicz_space" title="Orlicz space">Orlicz</a></li> <li><a href="/wiki/Schwartz_space" title="Schwartz space">Schwartz</a></li> <li><a href="/wiki/Sobolev_space" title="Sobolev space">Sobolev</a></li> <li><a href="/wiki/Topological_vector_space" title="Topological vector space">Topological vector</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Properties</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Barrelled_space" title="Barrelled space">Barrelled</a></li> <li><a href="/wiki/Complete_topological_vector_space" title="Complete topological vector space">Complete</a></li> <li><a href="/wiki/Dual_space" title="Dual space">Dual</a> (<a href="/wiki/Dual_space#Algebraic_dual_space" title="Dual space">Algebraic</a>/<a href="/wiki/Dual_space#Continuous_dual_space" title="Dual space">Topological</a>)</li> <li><a href="/wiki/Locally_convex_topological_vector_space" title="Locally convex topological vector space">Locally convex</a></li> <li><a href="/wiki/Reflexive_space" title="Reflexive space">Reflexive</a></li> <li><a href="/wiki/Separable_space" title="Separable space">Separable</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Category:Theorems_in_functional_analysis" title="Category:Theorems in functional analysis">Theorems</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Hahn%E2%80%93Banach_theorem" title="Hahn–Banach theorem">Hahn–Banach</a></li> <li><a href="/wiki/Riesz_representation_theorem" title="Riesz representation theorem">Riesz representation</a></li> <li><a href="/wiki/Closed_graph_theorem_(functional_analysis)" title="Closed graph theorem (functional analysis)">Closed graph</a></li> <li><a href="/wiki/Uniform_boundedness_principle" title="Uniform boundedness principle">Uniform boundedness principle</a></li> <li><a href="/wiki/Kakutani_fixed-point_theorem#Infinite-dimensional_generalizations" title="Kakutani fixed-point theorem">Kakutani fixed-point</a></li> <li><a href="/wiki/Krein%E2%80%93Milman_theorem" title="Krein–Milman theorem">Krein–Milman</a></li> <li><a href="/wiki/Min-max_theorem" title="Min-max theorem">Min–max</a></li> <li><a href="/wiki/Gelfand%E2%80%93Naimark_theorem" title="Gelfand–Naimark theorem">Gelfand–Naimark</a></li> <li><a href="/wiki/Banach%E2%80%93Alaoglu_theorem" title="Banach–Alaoglu theorem">Banach–Alaoglu</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Operators</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Adjoint_operator" class="mw-redirect" title="Adjoint operator">Adjoint</a></li> <li><a href="/wiki/Bounded_operator" title="Bounded operator">Bounded</a></li> <li><a href="/wiki/Compact_operator" title="Compact operator">Compact</a></li> <li><a href="/wiki/Hilbert%E2%80%93Schmidt_operator" title="Hilbert–Schmidt operator">Hilbert–Schmidt</a></li> <li><a href="/wiki/Normal_operator" title="Normal operator">Normal</a></li> <li><a href="/wiki/Nuclear_operator" title="Nuclear operator">Nuclear</a></li> <li><a href="/wiki/Trace_class" title="Trace class">Trace class</a></li> <li><a href="/wiki/Transpose_of_a_linear_map" title="Transpose of a linear map">Transpose</a></li> <li><a href="/wiki/Unbounded_operator" title="Unbounded operator">Unbounded</a></li> <li><a href="/wiki/Unitary_operator" title="Unitary operator">Unitary</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Algebras</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Banach_algebra" title="Banach algebra">Banach algebra</a></li> <li><a href="/wiki/C*-algebra" title="C*-algebra">C*-algebra</a></li> <li><a href="/wiki/Spectrum_of_a_C*-algebra" title="Spectrum of a C*-algebra">Spectrum of a C*-algebra</a></li> <li><a href="/wiki/Operator_algebra" title="Operator algebra">Operator algebra</a></li> <li><a href="/wiki/Group_algebra_of_a_locally_compact_group" title="Group algebra of a locally compact group">Group algebra of a locally compact group</a></li> <li><a href="/wiki/Von_Neumann_algebra" title="Von Neumann algebra">Von Neumann algebra</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Open problems</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Invariant_subspace_problem" title="Invariant subspace problem">Invariant subspace problem</a></li> <li><a href="/wiki/Mahler%27s_conjecture" class="mw-redirect" title="Mahler&#39;s conjecture">Mahler's conjecture</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Applications</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Hardy_space" title="Hardy space">Hardy space</a></li> <li><a href="/wiki/Spectral_theory_of_ordinary_differential_equations" title="Spectral theory of ordinary differential equations">Spectral theory of ordinary differential equations</a></li> <li><a href="/wiki/Heat_kernel" title="Heat kernel">Heat kernel</a></li> <li><a href="/wiki/Index_theorem" class="mw-redirect" title="Index theorem">Index theorem</a></li> <li><a href="/wiki/Calculus_of_variations" title="Calculus of variations">Calculus of variations</a></li> <li><a href="/wiki/Functional_calculus" title="Functional calculus">Functional calculus</a></li> <li><a href="/wiki/Integral_operator" title="Integral operator">Integral operator</a></li> <li><a href="/wiki/Jones_polynomial" title="Jones polynomial">Jones polynomial</a></li> <li><a href="/wiki/Topological_quantum_field_theory" title="Topological quantum field theory">Topological quantum field theory</a></li> <li><a href="/wiki/Noncommutative_geometry" title="Noncommutative geometry">Noncommutative geometry</a></li> <li><a href="/wiki/Riemann_hypothesis" title="Riemann hypothesis">Riemann hypothesis</a></li> <li><a href="/wiki/Distribution_(mathematics)" title="Distribution (mathematics)">Distribution</a> (or <a href="/wiki/Generalized_function" title="Generalized function">Generalized functions</a>)</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Advanced topics</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Approximation_property" title="Approximation property">Approximation property</a></li> <li><a href="/wiki/Balanced_set" title="Balanced set">Balanced set</a></li> <li><a href="/wiki/Choquet_theory" title="Choquet theory">Choquet theory</a></li> <li><a href="/wiki/Weak_topology" title="Weak topology">Weak topology</a></li> <li><a href="/wiki/Banach%E2%80%93Mazur_distance" class="mw-redirect" title="Banach–Mazur distance">Banach–Mazur distance</a></li> <li><a href="/wiki/Tomita%E2%80%93Takesaki_theory" title="Tomita–Takesaki theory">Tomita–Takesaki theory</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:Functional_analysis" title="Category:Functional analysis">Category</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Banach_space_topics" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Banach_spaces" title="Template:Banach spaces"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Banach_spaces" title="Template talk:Banach spaces"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Banach_spaces" title="Special:EditPage/Template:Banach spaces"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Banach_space_topics" style="font-size:114%;margin:0 4em"><a href="/wiki/Banach_space" title="Banach space">Banach space</a> topics</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Types of Banach spaces</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Asplund_space" title="Asplund space">Asplund</a></li> <li><a href="/wiki/Banach_space" title="Banach space">Banach</a> <ul><li><a href="/wiki/List_of_Banach_spaces" title="List of Banach spaces">list</a></li></ul></li> <li><a href="/wiki/Banach_lattice" title="Banach lattice">Banach lattice</a></li> <li><a href="/wiki/Grothendieck_space" title="Grothendieck space">Grothendieck </a></li> <li><a class="mw-selflink selflink">Hilbert</a> <ul><li><a href="/wiki/Inner_product_space" title="Inner product space">Inner product space</a></li> <li><a href="/wiki/Polarization_identity" title="Polarization identity">Polarization identity</a></li></ul></li> <li>(<a href="/wiki/Polynomially_reflexive_space" title="Polynomially reflexive space">Polynomially</a>)&#160;<a href="/wiki/Reflexive_space" title="Reflexive space">Reflexive</a></li> <li><a href="/wiki/Riesz_space" title="Riesz space">Riesz</a></li> <li><a href="/wiki/L-semi-inner_product" title="L-semi-inner product">L-semi-inner product</a></li> <li>(<a href="/wiki/B-convex_space" title="B-convex space">B</a></li> <li><a href="/wiki/Strictly_convex_space" title="Strictly convex space">Strictly</a></li> <li><a href="/wiki/Uniformly_convex_space" title="Uniformly convex space">Uniformly</a>)&#160;convex</li> <li><a href="/wiki/Uniformly_smooth_space" title="Uniformly smooth space">Uniformly smooth</a></li> <li>(<a href="/wiki/Injective_tensor_product" title="Injective tensor product">Injective</a></li> <li><a href="/wiki/Projective_tensor_product" title="Projective tensor product">Projective</a>)&#160;<a href="/wiki/Topological_tensor_product" title="Topological tensor product">Tensor product</a>&#160;(<a href="/wiki/Tensor_product_of_Hilbert_spaces" title="Tensor product of Hilbert spaces">of Hilbert spaces</a>)</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Banach spaces are:</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Barrelled_space" title="Barrelled space">Barrelled</a></li> <li><a href="/wiki/Complete_topological_vector_space" title="Complete topological vector space">Complete</a></li> <li><a href="/wiki/F-space" title="F-space">F-space</a></li> <li><a href="/wiki/Fr%C3%A9chet_space" title="Fréchet space">Fréchet</a> <ul><li><a href="/wiki/Differentiation_in_Fr%C3%A9chet_spaces#Tame_Fréchet_spaces" title="Differentiation in Fréchet spaces">tame</a></li></ul></li> <li><a href="/wiki/Locally_convex_topological_vector_space" title="Locally convex topological vector space">Locally convex</a> <ul><li><a href="/wiki/Locally_convex_topological_vector_space#Definition_via_seminorms" title="Locally convex topological vector space">Seminorms</a>/<a href="/wiki/Minkowski_functional" title="Minkowski functional">Minkowski functionals</a></li></ul></li> <li><a href="/wiki/Mackey_space" title="Mackey space">Mackey</a></li> <li><a href="/wiki/Metrizable_topological_vector_space" title="Metrizable topological vector space">Metrizable</a></li> <li><a href="/wiki/Normed_space" class="mw-redirect" title="Normed space">Normed</a> <ul><li><a href="/wiki/Norm_(mathematics)" title="Norm (mathematics)">norm</a></li></ul></li> <li><a href="/wiki/Quasinorm" title="Quasinorm">Quasinormed</a></li> <li><a href="/wiki/Stereotype_space" class="mw-redirect" title="Stereotype space">Stereotype</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Function space Topologies</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Banach%E2%80%93Mazur_compactum" title="Banach–Mazur compactum">Banach–Mazur compactum</a></li> <li><a href="/wiki/Dual_topology" title="Dual topology">Dual</a></li> <li><a href="/wiki/Dual_space" title="Dual space">Dual space</a> <ul><li><a href="/wiki/Dual_norm" title="Dual norm">Dual norm</a></li></ul></li> <li><a href="/wiki/Operator_topologies" title="Operator topologies">Operator</a></li> <li><a href="/wiki/Ultraweak_topology" title="Ultraweak topology">Ultraweak</a></li> <li><a href="/wiki/Weak_topology" title="Weak topology">Weak</a> <ul><li><a href="/wiki/Weak_topology_(polar_topology)" class="mw-redirect" title="Weak topology (polar topology)">polar</a></li> <li><a href="/wiki/Weak_operator_topology" title="Weak operator topology">operator</a></li></ul></li> <li><a href="/wiki/Strong_topology" title="Strong topology">Strong</a> <ul><li><a href="/wiki/Strong_topology_(polar_topology)" class="mw-redirect" title="Strong topology (polar topology)">polar</a></li> <li><a href="/wiki/Strong_operator_topology" title="Strong operator topology">operator</a></li></ul></li> <li><a href="/wiki/Ultrastrong_topology" title="Ultrastrong topology">Ultrastrong</a></li> <li><a href="/wiki/Topology_of_uniform_convergence" class="mw-redirect" title="Topology of uniform convergence">Uniform convergence</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Linear_operator" class="mw-redirect" title="Linear operator">Linear operators</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Hermitian_adjoint" title="Hermitian adjoint">Adjoint</a></li> <li><a href="/wiki/Bilinear_map" title="Bilinear map">Bilinear</a> <ul><li><a href="/wiki/Bilinear_form" title="Bilinear form">form</a></li> <li><a href="/wiki/Bilinear_map" title="Bilinear map">operator</a></li> <li><a href="/wiki/Sesquilinear_form" title="Sesquilinear form">sesquilinear</a></li></ul></li> <li>(<a href="/wiki/Unbounded_operator" title="Unbounded operator">Un</a>)<a href="/wiki/Bounded_operator" title="Bounded operator">Bounded</a></li> <li><a href="/wiki/Closed_linear_operator" title="Closed linear operator">Closed</a></li> <li><a href="/wiki/Compact_operator" title="Compact operator">Compact</a> <ul><li><a href="/wiki/Compact_operator_on_Hilbert_space" title="Compact operator on Hilbert space">on Hilbert spaces</a></li></ul></li> <li>(<a href="/wiki/Discontinuous_linear_map" title="Discontinuous linear map">Dis</a>)<a href="/wiki/Continuous_linear_operator" title="Continuous linear operator">Continuous</a></li> <li><a href="/wiki/Densely_defined" class="mw-redirect" title="Densely defined">Densely defined</a></li> <li>Fredholm <ul><li><a href="/wiki/Fredholm_kernel" title="Fredholm kernel">kernel</a></li> <li><a href="/wiki/Fredholm_operator" title="Fredholm operator">operator</a></li></ul></li> <li><a href="/wiki/Hilbert%E2%80%93Schmidt_operator" title="Hilbert–Schmidt operator">Hilbert–Schmidt</a></li> <li><a href="/wiki/Linear_form" title="Linear form">Functionals</a> <ul><li><a href="/wiki/Positive_linear_functional" title="Positive linear functional">positive</a></li></ul></li> <li><a href="/wiki/Pseudo-monotone_operator" title="Pseudo-monotone operator">Pseudo-monotone</a></li> <li><a href="/wiki/Normal_operator" title="Normal operator">Normal</a></li> <li><a href="/wiki/Nuclear_operator" title="Nuclear operator">Nuclear</a></li> <li><a href="/wiki/Self-adjoint_operator" title="Self-adjoint operator">Self-adjoint</a></li> <li><a href="/wiki/Strictly_singular_operator" title="Strictly singular operator">Strictly singular</a></li> <li><a href="/wiki/Trace_class" title="Trace class">Trace class</a></li> <li><a href="/wiki/Transpose_of_a_linear_map" title="Transpose of a linear map">Transpose</a></li> <li><a href="/wiki/Unitary_operator" title="Unitary operator">Unitary</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Operator_theory" title="Operator theory">Operator theory</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Banach_algebra" title="Banach algebra">Banach algebras</a></li> <li><a href="/wiki/C*-algebra" title="C*-algebra">C*-algebras</a></li> <li><a href="/wiki/Operator_space" title="Operator space">Operator space</a></li> <li><a href="/wiki/Spectrum_(functional_analysis)" title="Spectrum (functional analysis)">Spectrum</a> <ul><li><a href="/wiki/Spectrum_of_a_C*-algebra" title="Spectrum of a C*-algebra">C*-algebra</a></li> <li><a href="/wiki/Spectral_radius" title="Spectral radius">radius</a></li></ul></li> <li><a href="/wiki/Spectral_theory" title="Spectral theory">Spectral theory</a> <ul><li><a href="/wiki/Spectral_theory_of_ordinary_differential_equations" title="Spectral theory of ordinary differential equations">of ODEs</a></li> <li><a href="/wiki/Spectral_theorem" title="Spectral theorem">Spectral theorem</a></li></ul></li> <li><a href="/wiki/Polar_decomposition" title="Polar decomposition">Polar decomposition</a></li> <li><a href="/wiki/Singular_value_decomposition" title="Singular value decomposition">Singular value decomposition</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Category:Theorems_in_functional_analysis" title="Category:Theorems in functional analysis">Theorems</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Anderson%E2%80%93Kadec_theorem" title="Anderson–Kadec theorem">Anderson–Kadec</a></li> <li><a href="/wiki/Banach%E2%80%93Alaoglu_theorem" title="Banach–Alaoglu theorem">Banach–Alaoglu</a></li> <li><a href="/wiki/Banach%E2%80%93Mazur_theorem" title="Banach–Mazur theorem">Banach–Mazur</a></li> <li><a href="/wiki/Banach%E2%80%93Saks_theorem" class="mw-redirect" title="Banach–Saks theorem">Banach–Saks</a></li> <li><a href="/wiki/Open_mapping_theorem_(functional_analysis)" title="Open mapping theorem (functional analysis)">Banach–Schauder (open mapping)</a></li> <li><a href="/wiki/Uniform_boundedness_principle" title="Uniform boundedness principle">Banach–Steinhaus (Uniform boundedness)</a></li> <li><a href="/wiki/Bessel%27s_inequality" title="Bessel&#39;s inequality">Bessel's inequality</a></li> <li><a href="/wiki/Cauchy%E2%80%93Schwarz_inequality" title="Cauchy–Schwarz inequality">Cauchy–Schwarz inequality</a></li> <li><a href="/wiki/Closed_graph_theorem" title="Closed graph theorem">Closed graph</a></li> <li><a href="/wiki/Closed_range_theorem" title="Closed range theorem">Closed range</a></li> <li><a href="/wiki/Eberlein%E2%80%93%C5%A0mulian_theorem" title="Eberlein–Šmulian theorem">Eberlein–Šmulian</a></li> <li><a href="/wiki/Freudenthal_spectral_theorem" title="Freudenthal spectral theorem">Freudenthal spectral</a></li> <li><a href="/wiki/Gelfand%E2%80%93Mazur_theorem" title="Gelfand–Mazur theorem">Gelfand–Mazur</a></li> <li><a href="/wiki/Gelfand%E2%80%93Naimark_theorem" title="Gelfand–Naimark theorem">Gelfand–Naimark</a></li> <li><a href="/wiki/Goldstine_theorem" title="Goldstine theorem">Goldstine</a></li> <li><a href="/wiki/Hahn%E2%80%93Banach_theorem" title="Hahn–Banach theorem">Hahn–Banach</a> <ul><li><a href="/wiki/Hyperplane_separation_theorem" title="Hyperplane separation theorem">hyperplane separation</a></li></ul></li> <li><a href="/wiki/Kakutani_fixed-point_theorem#Infinite-dimensional_generalizations" title="Kakutani fixed-point theorem">Kakutani fixed-point</a></li> <li><a href="/wiki/Krein%E2%80%93Milman_theorem" title="Krein–Milman theorem">Krein–Milman</a></li> <li><a href="/wiki/Invariant_subspace_problem#Known_special_cases" title="Invariant subspace problem">Lomonosov's invariant subspace</a></li> <li><a href="/wiki/Mackey%E2%80%93Arens_theorem" title="Mackey–Arens theorem">Mackey–Arens</a></li> <li><a href="/wiki/Mazur%27s_lemma" title="Mazur&#39;s lemma">Mazur's lemma</a></li> <li><a href="/wiki/M._Riesz_extension_theorem" title="M. Riesz extension theorem">M. Riesz extension</a></li> <li><a href="/wiki/Parseval%27s_identity" title="Parseval&#39;s identity">Parseval's identity</a></li> <li><a href="/wiki/Riesz%27s_lemma" title="Riesz&#39;s lemma">Riesz's lemma</a></li> <li><a href="/wiki/Riesz_representation_theorem" title="Riesz representation theorem">Riesz representation</a></li> <li><a href="/wiki/Ursescu_theorem#Robinson–Ursescu_theorem" title="Ursescu theorem">Robinson-Ursescu</a></li> <li><a href="/wiki/Schauder_fixed-point_theorem" title="Schauder fixed-point theorem">Schauder fixed-point</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Analysis</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Abstract_Wiener_space" title="Abstract Wiener space">Abstract Wiener space</a></li> <li><a href="/wiki/Banach_manifold" title="Banach manifold">Banach manifold</a> <ul><li><a href="/wiki/Banach_bundle" title="Banach bundle">bundle</a></li></ul></li> <li><a href="/wiki/Bochner_space" title="Bochner space">Bochner space</a></li> <li><a href="/wiki/Convex_series" title="Convex series">Convex series</a></li> <li><a href="/wiki/Differentiation_in_Fr%C3%A9chet_spaces" title="Differentiation in Fréchet spaces">Differentiation in Fréchet spaces</a></li> <li><a href="/wiki/Derivative" title="Derivative">Derivatives</a> <ul><li><a href="/wiki/Fr%C3%A9chet_derivative" title="Fréchet derivative">Fréchet</a></li> <li><a href="/wiki/Gateaux_derivative" title="Gateaux derivative">Gateaux</a></li> <li><a href="/wiki/Functional_derivative" title="Functional derivative">functional</a></li> <li><a href="/wiki/Infinite-dimensional_holomorphy" title="Infinite-dimensional holomorphy">holomorphic</a></li> <li><a href="/wiki/Quasi-derivative" title="Quasi-derivative">quasi</a></li></ul></li> <li><a href="/wiki/Integral" title="Integral">Integrals</a> <ul><li><a href="/wiki/Bochner_integral" title="Bochner integral">Bochner</a></li> <li><a href="/wiki/Dunford_integral" class="mw-redirect" title="Dunford integral">Dunford</a></li> <li><a href="/wiki/Pettis_integral" title="Pettis integral">Gelfand–Pettis</a></li> <li><a href="/wiki/Regulated_integral" title="Regulated integral">regulated</a></li> <li><a href="/wiki/Paley%E2%80%93Wiener_integral" title="Paley–Wiener integral">Paley–Wiener</a></li> <li><a href="/wiki/Pettis_integral" title="Pettis integral">weak</a></li></ul></li> <li><a href="/wiki/Functional_calculus" title="Functional calculus">Functional calculus</a> <ul><li><a href="/wiki/Borel_functional_calculus" title="Borel functional calculus">Borel</a></li> <li><a href="/wiki/Continuous_functional_calculus" title="Continuous functional calculus">continuous</a></li> <li><a href="/wiki/Holomorphic_functional_calculus" title="Holomorphic functional calculus">holomorphic</a></li></ul></li> <li><a href="/wiki/Measure_(mathematics)" title="Measure (mathematics)">Measures</a> <ul><li><a href="/wiki/Infinite-dimensional_Lebesgue_measure" title="Infinite-dimensional Lebesgue measure">Lebesgue</a></li> <li><a href="/wiki/Projection-valued_measure" title="Projection-valued measure">Projection-valued</a></li> <li><a href="/wiki/Vector_measure" title="Vector measure">Vector</a></li></ul></li> <li><a href="/wiki/Weakly_measurable_function" title="Weakly measurable function">Weakly</a> / <a href="/wiki/Strongly_measurable_functions" class="mw-redirect" title="Strongly measurable functions">Strongly</a> measurable function</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Types of sets</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Absolutely_convex_set" title="Absolutely convex set">Absolutely convex</a></li> <li><a href="/wiki/Absorbing_set" title="Absorbing set">Absorbing</a></li> <li><a href="/wiki/Affine_space" title="Affine space">Affine</a></li> <li><a href="/wiki/Balanced_set" title="Balanced set">Balanced/Circled</a></li> <li><a href="/wiki/Bounded_set_(topological_vector_space)" title="Bounded set (topological vector space)">Bounded</a></li> <li><a href="/wiki/Convex_set" title="Convex set">Convex</a></li> <li><a href="/wiki/Convex_cone" title="Convex cone">Convex cone <span style="font-size:85%;">(subset)</span></a></li> <li><a href="/wiki/Convex_series#Types_of_subsets" title="Convex series">Convex series related</a>&#160;((cs, lcs)-closed, (cs, bcs)-complete, (lower) ideally convex, (H<i>x</i>), and (Hw<i>x</i>))</li> <li><a href="/wiki/Cone_(linear_algebra)" class="mw-redirect" title="Cone (linear algebra)">Linear cone <span style="font-size:85%;">(subset)</span></a></li> <li><a href="/wiki/Radial_set" title="Radial set">Radial</a></li> <li><a href="/wiki/Star_domain" title="Star domain">Radially convex/Star-shaped</a></li> <li><a href="/wiki/Symmetric_set" title="Symmetric set">Symmetric</a></li> <li><a href="/wiki/Zonotope" class="mw-redirect" title="Zonotope">Zonotope</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Subsets&#160;/&#32;set operations</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Affine_hull" title="Affine hull">Affine hull</a></li> <li>(<a href="/wiki/Algebraic_interior#Relative_algebraic_interior" title="Algebraic interior">Relative</a>)&#160;<a href="/wiki/Algebraic_interior" title="Algebraic interior">Algebraic interior (core)</a></li> <li><a href="/wiki/Bounding_point" title="Bounding point">Bounding points</a></li> <li><a href="/wiki/Convex_hull" title="Convex hull">Convex hull</a></li> <li><a href="/wiki/Extreme_point" title="Extreme point">Extreme point</a></li> <li><a href="/wiki/Interior_(topology)" title="Interior (topology)">Interior</a></li> <li><a href="/wiki/Linear_span" title="Linear span">Linear span</a></li> <li><a href="/wiki/Minkowski_addition" title="Minkowski addition">Minkowski addition</a></li> <li><a href="/wiki/Polar_set" title="Polar set">Polar</a></li> <li>(<a href="/wiki/Algebraic_interior#Quasi_relative_interior" title="Algebraic interior">Quasi</a>)&#160;<a href="/wiki/Algebraic_interior#Relative_interior" title="Algebraic interior">Relative interior</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Template:ListOfBanachSpaces" class="mw-redirect" title="Template:ListOfBanachSpaces">Examples</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Absolute_continuity" title="Absolute continuity">Absolute continuity <i>AC</i></a></li> <li><a href="/wiki/Ba_space" title="Ba space"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ba(\Sigma )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> <mi>a</mi> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ba(\Sigma )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/58fe61351e3531b14043fa2d09e98c2437bd1a6a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.715ex; height:2.843ex;" alt="{\displaystyle ba(\Sigma )}"></span></a></li> <li><a href="/wiki/C_space" title="C space">c space</a></li> <li><a href="/wiki/BK-space" title="BK-space">Banach coordinate <i>BK</i></a></li> <li><a href="/wiki/Besov_space" title="Besov space">Besov <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{p,q}^{s}(\mathbb {R} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>,</mo> <mi>q</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{p,q}^{s}(\mathbb {R} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9919cf78ad095c237169772d2b27a37bfbef1b75" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.524ex; height:3.009ex;" alt="{\displaystyle B_{p,q}^{s}(\mathbb {R} )}"></span></a></li> <li><a href="/wiki/Birnbaum%E2%80%93Orlicz_space" class="mw-redirect" title="Birnbaum–Orlicz space">Birnbaum–Orlicz</a></li> <li><a href="/wiki/Bounded_variation" title="Bounded variation">Bounded variation <i>BV</i></a></li> <li><a href="/wiki/Bs_space" title="Bs space">Bs space</a></li> <li><a href="/wiki/Continuous_functions_on_a_compact_Hausdorff_space" title="Continuous functions on a compact Hausdorff space">Continuous <i>C(K)</i> with <i>K</i> compact Hausdorff</a></li> <li><a href="/wiki/Hardy_space" title="Hardy space">Hardy H<sup><i>p</i></sup></a></li> <li><a class="mw-selflink-fragment" href="#Definition">Hilbert <i>H</i></a></li> <li><a href="/wiki/Morrey%E2%80%93Campanato_space" title="Morrey–Campanato space">Morrey–Campanato <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{\lambda ,p}(\Omega )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BB;<!-- λ --></mi> <mo>,</mo> <mi>p</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{\lambda ,p}(\Omega )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b8af58fa038369c3ec6386c6656aab82825e372" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.545ex; height:3.176ex;" alt="{\displaystyle L^{\lambda ,p}(\Omega )}"></span></a></li> <li><a href="/wiki/Sequence_space#ℓp_spaces" title="Sequence space"><i>ℓ<sup>p</sup></i></a> <ul><li><a href="/wiki/L-infinity#Sequence_space" title="L-infinity"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ell ^{\infty }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x2113;<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ell ^{\infty }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8348195cf09473662c6f59e6717722a6fc01d0f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.845ex; height:2.343ex;" alt="{\displaystyle \ell ^{\infty }}"></span></a></li></ul></li> <li><a href="/wiki/Lp_space" title="Lp space"><i>L<sup>p</sup></i></a> <ul><li><a href="/wiki/L-infinity#Function_space" title="L-infinity"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{\infty }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{\infty }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b9ab400cc4dfd865180cd84c72dc894ca457671f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.458ex; height:2.343ex;" alt="{\displaystyle L^{\infty }}"></span></a></li> <li><a href="/wiki/Lp_space#Weighted_Lp_spaces" title="Lp space">weighted</a></li></ul></li> <li><a href="/wiki/Schwartz_space" title="Schwartz space">Schwartz <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S\left(\mathbb {R} ^{n}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mrow> <mo>(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S\left(\mathbb {R} ^{n}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0465acd58a0f31e32b095aed742d9ccc6331369c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.592ex; height:2.843ex;" alt="{\displaystyle S\left(\mathbb {R} ^{n}\right)}"></span></a></li> <li><a href="/wiki/Segal%E2%80%93Bargmann_space" title="Segal–Bargmann space">Segal–Bargmann <i>F</i></a></li> <li><a href="/wiki/Sequence_space" title="Sequence space">Sequence space</a></li> <li><a href="/wiki/Sobolev_space" title="Sobolev space">Sobolev W<sup><i>k,p</i></sup></a> <ul><li><a href="/wiki/Sobolev_inequality" title="Sobolev inequality">Sobolev inequality</a></li></ul></li> <li><a href="/wiki/Triebel%E2%80%93Lizorkin_space" title="Triebel–Lizorkin space">Triebel–Lizorkin</a></li> <li><a href="/wiki/Wiener_amalgam_space" title="Wiener amalgam space">Wiener amalgam <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W(X,L^{p})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>W</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo>,</mo> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W(X,L^{p})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b37b1dc9714960c525cb561a4828f41feb5844ec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.9ex; height:2.843ex;" alt="{\displaystyle W(X,L^{p})}"></span></a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Applications</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Differential_operator" title="Differential operator">Differential operator</a></li> <li><a href="/wiki/Finite_element_method" title="Finite element method">Finite element method</a></li> <li><a href="/wiki/Mathematical_formulation_of_quantum_mechanics" title="Mathematical formulation of quantum mechanics">Mathematical formulation of quantum mechanics</a></li> <li><a href="/wiki/Spectral_theory_of_ordinary_differential_equations" title="Spectral theory of ordinary differential equations">Ordinary Differential Equations (ODEs)</a></li> <li><a href="/wiki/Validated_numerics" title="Validated numerics">Validated numerics</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"><style data-mw-deduplicate="TemplateStyles:r1038841319">.mw-parser-output .tooltip-dotted{border-bottom:1px dotted;cursor:help}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"></div><div role="navigation" class="navbox authority-control" aria-label="Navbox" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a>: National <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q190056#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4159850-7">Germany</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh85060803">United States</a></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Hilbert, Espaces de"><a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb11979628h">France</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Hilbert, Espaces de"><a rel="nofollow" class="external text" href="https://data.bnf.fr/ark:/12148/cb11979628h">BnF data</a></span></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://id.ndl.go.jp/auth/ndlna/00563198">Japan</a></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Hilbertovy prostory"><a rel="nofollow" class="external text" href="https://aleph.nkp.cz/F/?func=find-c&amp;local_base=aut&amp;ccl_term=ica=ph117602&amp;CON_LNG=ENG">Czech Republic</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Hilbert, Espacios de"><a rel="nofollow" class="external text" href="http://catalogo.bne.es/uhtbin/authoritybrowse.cgi?action=display&amp;authority_id=XX531621">Spain</a></span></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="http://olduli.nli.org.il/F/?func=find-b&amp;local_base=NLX10&amp;find_code=UID&amp;request=987007560453005171">Israel</a></span></li></ul></div></td></tr></tbody></table></div> <p class="mw-empty-elt"> </p> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐lsrvg Cached time: 20241124053517 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 3.197 seconds Real time usage: 3.837 seconds Preprocessor visited node count: 40881/1000000 Post‐expand include size: 387476/2097152 bytes Template argument size: 58762/2097152 bytes Highest expansion depth: 14/100 Expensive parser function count: 11/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 299506/5000000 bytes Lua time usage: 1.573/10.000 seconds Lua memory usage: 19688266/52428800 bytes Lua Profile: ? 280 ms 16.5% recursiveClone <mwInit.lua:45> 240 ms 14.1% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::getAllExpandedArguments 200 ms 11.8% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::getExpandedArgument 160 ms 9.4% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::callParserFunction 160 ms 9.4% dataWrapper <mw.lua:672> 100 ms 5.9% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::gsub 80 ms 4.7% select_one <Module:Citation/CS1/Utilities:426> 60 ms 3.5% type 40 ms 2.4% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::sub 40 ms 2.4% [others] 340 ms 20.0% Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 3010.016 1 -total 25.57% 769.731 604 Template:Math 14.09% 424.164 77 Template:Citation 12.73% 383.066 2 Template:Reflist 10.81% 325.281 15 Template:Annotated_link 7.03% 211.572 6 Template:Navbox 6.67% 200.787 617 Template:Main_other 5.58% 167.845 1 Template:Short_description 5.51% 165.893 6 Template:Cite_book 5.13% 154.296 1 Template:Hilbert_space --> <!-- Saved in parser cache with key enwiki:pcache:idhash:20598932-0!canonical and timestamp 20241124053517 and revision id 1255844830. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Hilbert_space&amp;oldid=1255844830">https://en.wikipedia.org/w/index.php?title=Hilbert_space&amp;oldid=1255844830</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Hilbert_spaces" title="Category:Hilbert spaces">Hilbert spaces</a></li><li><a href="/wiki/Category:Functional_analysis" title="Category:Functional analysis">Functional analysis</a></li><li><a href="/wiki/Category:Linear_algebra" title="Category:Linear algebra">Linear algebra</a></li><li><a href="/wiki/Category:Operator_theory" title="Category:Operator theory">Operator theory</a></li><li><a href="/wiki/Category:David_Hilbert" title="Category:David Hilbert">David Hilbert</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Pages_displaying_wikidata_descriptions_as_a_fallback_via_Module:Annotated_link" title="Category:Pages displaying wikidata descriptions as a fallback via Module:Annotated link">Pages displaying wikidata descriptions as a fallback via Module:Annotated link</a></li><li><a href="/wiki/Category:Commons_category_link_from_Wikidata" title="Category:Commons category link from Wikidata">Commons category link from Wikidata</a></li><li><a href="/wiki/Category:Good_articles" title="Category:Good articles">Good articles</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 6 November 2024, at 23:15<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Hilbert_space&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-d8f47","wgBackendResponseTime":148,"wgPageParseReport":{"limitreport":{"cputime":"3.197","walltime":"3.837","ppvisitednodes":{"value":40881,"limit":1000000},"postexpandincludesize":{"value":387476,"limit":2097152},"templateargumentsize":{"value":58762,"limit":2097152},"expansiondepth":{"value":14,"limit":100},"expensivefunctioncount":{"value":11,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":299506,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 3010.016 1 -total"," 25.57% 769.731 604 Template:Math"," 14.09% 424.164 77 Template:Citation"," 12.73% 383.066 2 Template:Reflist"," 10.81% 325.281 15 Template:Annotated_link"," 7.03% 211.572 6 Template:Navbox"," 6.67% 200.787 617 Template:Main_other"," 5.58% 167.845 1 Template:Short_description"," 5.51% 165.893 6 Template:Cite_book"," 5.13% 154.296 1 Template:Hilbert_space"]},"scribunto":{"limitreport-timeusage":{"value":"1.573","limit":"10.000"},"limitreport-memusage":{"value":19688266,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"Bessel\u0026#039;s_inequality\"] = 1,\n [\"CITEREFAxler2014\"] = 1,\n [\"CITEREFBachmanNariciBeckenstein2000\"] = 1,\n [\"CITEREFBersJohnSchechter1981\"] = 1,\n [\"CITEREFBerthier2020\"] = 1,\n [\"CITEREFBillingsley1986\"] = 1,\n [\"CITEREFBlanchetCharbit2014\"] = 1,\n [\"CITEREFBourbaki1986\"] = 1,\n [\"CITEREFBourbaki1987\"] = 1,\n [\"CITEREFBoyerMerzbach1991\"] = 1,\n [\"CITEREFBrennerScott2005\"] = 1,\n [\"CITEREFBrezis2010\"] = 1,\n [\"CITEREFButtazzoGiaquintaHildebrandt1998\"] = 1,\n [\"CITEREFClarkson1936\"] = 1,\n [\"CITEREFCourantHilbert1953\"] = 1,\n [\"CITEREFDieudonné1960\"] = 1,\n [\"CITEREFDirac1930\"] = 1,\n [\"CITEREFDunfordSchwartz1958\"] = 1,\n [\"CITEREFDuren1970\"] = 1,\n [\"CITEREFEinsiedlerWard2011\"] = 1,\n [\"CITEREFEvans1998\"] = 1,\n [\"CITEREFFolland1989\"] = 1,\n [\"CITEREFFolland2009\"] = 1,\n [\"CITEREFFréchet1904\"] = 1,\n [\"CITEREFFréchet1907\"] = 1,\n [\"CITEREFGiusti2003\"] = 1,\n [\"CITEREFGrattan-Guinness2000\"] = 1,\n [\"CITEREFHalmos1957\"] = 1,\n [\"CITEREFHalmos1982\"] = 1,\n [\"CITEREFHermann_Weyl2009\"] = 1,\n [\"CITEREFHewittStromberg1965\"] = 1,\n [\"CITEREFHilbertNordheimvon_Neumann1927\"] = 1,\n [\"CITEREFHolevo2001\"] = 1,\n [\"CITEREFKac1966\"] = 1,\n [\"CITEREFKadisonRingrose1983\"] = 1,\n [\"CITEREFKadisonRingrose1997\"] = 1,\n [\"CITEREFKakutani1939\"] = 1,\n [\"CITEREFKaratzasShreve2019\"] = 1,\n [\"CITEREFKline1972\"] = 1,\n [\"CITEREFKolmogorovFomin1970\"] = 1,\n [\"CITEREFKrantz2002\"] = 1,\n [\"CITEREFLanczos1988\"] = 1,\n [\"CITEREFLebesgue1904\"] = 1,\n [\"CITEREFLindenstraussTzafriri1971\"] = 1,\n [\"CITEREFMarsden1974\"] = 1,\n [\"CITEREFMurphy1990\"] = 1,\n [\"CITEREFNielsenChuang2000\"] = 1,\n [\"CITEREFPathria1996\"] = 1,\n [\"CITEREFPedersen1995\"] = 1,\n [\"CITEREFPeres1993\"] = 1,\n [\"CITEREFPrugovečki1981\"] = 1,\n [\"CITEREFPynchon1973\"] = 1,\n [\"CITEREFReedSimon1975\"] = 1,\n [\"CITEREFReedSimon1980\"] = 1,\n [\"CITEREFRieffelPolak2011\"] = 1,\n [\"CITEREFRiesz1907\"] = 1,\n [\"CITEREFRiesz1934\"] = 1,\n [\"CITEREFRieszSz.-Nagy1990\"] = 1,\n [\"CITEREFRoman2008\"] = 1,\n [\"CITEREFRudin1987\"] = 1,\n [\"CITEREFSaks2005\"] = 1,\n [\"CITEREFSchmidt1908\"] = 1,\n [\"CITEREFShubin1987\"] = 1,\n [\"CITEREFSobrino1996\"] = 1,\n [\"CITEREFStapleton1995\"] = 1,\n [\"CITEREFStein1970\"] = 1,\n [\"CITEREFSteinShakarchi2005\"] = 1,\n [\"CITEREFSteinWeiss1971\"] = 1,\n [\"CITEREFStewart2006\"] = 1,\n [\"CITEREFStreaterWightman1964\"] = 1,\n [\"CITEREFStroock2011\"] = 1,\n [\"CITEREFTeschl2009\"] = 1,\n [\"CITEREFTitchmarsh1946\"] = 1,\n [\"CITEREFTrèves1967\"] = 1,\n [\"CITEREFWarner1983\"] = 1,\n [\"CITEREFWeidmann1980\"] = 1,\n [\"CITEREFWeyl1931\"] = 1,\n [\"CITEREFYoung1988\"] = 1,\n [\"CITEREFvon_Neumann1929\"] = 1,\n [\"CITEREFvon_Neumann1932\"] = 1,\n [\"CITEREFvon_Neumann1955\"] = 1,\n [\"Parseval\u0026#039;s_formula\"] = 1,\n}\ntemplate_list = table#1 {\n [\"!\"] = 2,\n [\"Abramowitz_Stegun_ref\"] = 1,\n [\"Abs\"] = 2,\n [\"Anchor\"] = 2,\n [\"Annotated link\"] = 15,\n [\"Authority control\"] = 1,\n [\"Banach spaces\"] = 1,\n [\"Bra\"] = 1,\n [\"Bra-ket\"] = 2,\n [\"Citation\"] = 77,\n [\"Cite book\"] = 3,\n [\"Closed-closed\"] = 1,\n [\"Colend\"] = 1,\n [\"Cols\"] = 1,\n [\"Commons category\"] = 1,\n [\"Em\"] = 9,\n [\"For\"] = 1,\n [\"Functional analysis\"] = 1,\n [\"Good article\"] = 1,\n [\"Harv\"] = 1,\n [\"Harvnb\"] = 90,\n [\"Harvtxt\"] = 35,\n [\"Hilbert space\"] = 1,\n [\"I sup\"] = 2,\n [\"Ket\"] = 1,\n [\"Lp spaces\"] = 1,\n [\"MacTutor\"] = 1,\n [\"Main\"] = 7,\n [\"Math\"] = 603,\n [\"Math theorem\"] = 2,\n [\"Mvar\"] = 24,\n [\"Norm\"] = 7,\n [\"Nowrap\"] = 2,\n [\"Portal\"] = 1,\n [\"Refbegin\"] = 1,\n [\"Refend\"] = 1,\n [\"Reflist\"] = 2,\n [\"Rudin Walter Functional Analysis\"] = 1,\n [\"Schaefer Wolff Topological Vector Spaces\"] = 1,\n [\"Sfn\"] = 1,\n [\"Sfrac\"] = 4,\n [\"Short description\"] = 1,\n [\"Springer\"] = 2,\n [\"Su\"] = 10,\n [\"Wikibooks\"] = 1,\n}\narticle_whitelist = table#1 {\n}\n","limitreport-profile":[["?","280","16.5"],["recursiveClone \u003CmwInit.lua:45\u003E","240","14.1"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::getAllExpandedArguments","200","11.8"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::getExpandedArgument","160","9.4"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::callParserFunction","160","9.4"],["dataWrapper \u003Cmw.lua:672\u003E","100","5.9"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::gsub","80","4.7"],["select_one \u003CModule:Citation/CS1/Utilities:426\u003E","60","3.5"],["type","40","2.4"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::sub","40","2.4"],["[others]","340","20.0"]]},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-lsrvg","timestamp":"20241124053517","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Hilbert space","url":"https:\/\/en.wikipedia.org\/wiki\/Hilbert_space","sameAs":"http:\/\/www.wikidata.org\/entity\/Q190056","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q190056","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2001-11-02T21:29:08Z","dateModified":"2024-11-06T23:15:07Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/5\/5c\/Standing_waves_on_a_string.gif","headline":"inner product space that is metrically complete; a Banach space whose norm induces an inner product (follows the parallelogram identity)"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10