CINXE.COM

Search results for: expected life-cycle cost

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: expected life-cycle cost</title> <meta name="description" content="Search results for: expected life-cycle cost"> <meta name="keywords" content="expected life-cycle cost"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="expected life-cycle cost" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="expected life-cycle cost"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8796</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: expected life-cycle cost</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8796</span> Mitigation of High Voltage Equipment Design Deficiencies for Improved Operation and Maintenance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Riyad%20Awad">Riyad Awad</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulmohsen%20Alghadeer"> Abdulmohsen Alghadeer</a>, <a href="https://publications.waset.org/abstracts/search?q=Meshari%20Otaibi"> Meshari Otaibi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Proper operation and maintenance (O&M) activities of high voltage equipment can lead to an increased asset lifecycle and maintain its integrity and reliability. Such a vital process is important to be proactively considered during equipment design and manufacturing phases by removing and eliminating any obstacles in the equipment which adversely affect the (O&M) activities. This paper presents a gap analysis pertaining to difficulties in performing operations and maintenance (O&M) high voltage electrical equipment, includes power transformers, switch gears, motor control center, disconnect switches and circuit breakers. The difficulties are gathered from field personnel, equipment design review comments, quality management system, and lessons learned database. The purpose of the gap analysis is to mitigate and prevent the (O&M) difficulties as early as possible in the design stage of the equipment lifecycle. The paper concludes with several recommendations and corrective actions for all identified gaps in order to reduce the cost (O&M) difficulties and improve the equipment lifecycle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=operation%20and%20maintenance" title="operation and maintenance">operation and maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20voltage%20equipment" title=" high voltage equipment"> high voltage equipment</a>, <a href="https://publications.waset.org/abstracts/search?q=equipment%20lifecycle" title=" equipment lifecycle"> equipment lifecycle</a>, <a href="https://publications.waset.org/abstracts/search?q=reduce%20the%20cost%20of%20maintenance" title=" reduce the cost of maintenance"> reduce the cost of maintenance</a> </p> <a href="https://publications.waset.org/abstracts/152881/mitigation-of-high-voltage-equipment-design-deficiencies-for-improved-operation-and-maintenance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152881.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8795</span> Evaluation of Earthquake Induced Cost for Mid-Rise Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gulsah%20Olgun">Gulsah Olgun</a>, <a href="https://publications.waset.org/abstracts/search?q=Ozgur%20Bozdag"> Ozgur Bozdag</a>, <a href="https://publications.waset.org/abstracts/search?q=Yildirim%20Ertutar"> Yildirim Ertutar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper mainly focuses on performance assessment of buildings by associating the damage level with the damage cost. For this purpose a methodology is explained and applied to the representative mid-rise concrete building residing in Izmir. In order to consider uncertainties in occurrence of earthquakes, the structural analyses are conducted for all possible earthquakes in the region through the hazard curve. By means of the analyses, probability of the structural response being in different limit states are obtained and used to calculate expected damage cost. The expected damage cost comprises diverse cost components related to earthquake such as cost of casualties, replacement or repair cost of building etc. In this study, inter-story drift is used as an effective response variable to associate expected damage cost with different damage levels. The structural analysis methods performed to obtain inter story drifts are response spectrum method as a linear one, accurate push-over and time history methods to demonstrate the nonlinear effects on loss estimation. Comparison of the results indicates that each method provides similar values of expected damage cost. To sum up, this paper explains an approach which enables to minimize the expected damage cost of buildings and relate performance level to damage cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=expected%20damage%20cost" title="expected damage cost">expected damage cost</a>, <a href="https://publications.waset.org/abstracts/search?q=limit%20states" title=" limit states"> limit states</a>, <a href="https://publications.waset.org/abstracts/search?q=loss%20estimation" title=" loss estimation"> loss estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20based%20design" title=" performance based design"> performance based design</a> </p> <a href="https://publications.waset.org/abstracts/57369/evaluation-of-earthquake-induced-cost-for-mid-rise-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57369.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8794</span> Preliminary Study of the Cost-Effectiveness of Green Walls: Analyzing Cases from the Perspective of Life Cycle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jyun-Huei%20Huang">Jyun-Huei Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ting-I%20Lee"> Ting-I Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Urban heat island effect is derived from the reduction of vegetative cover by urban development. Because plants can improve air quality and microclimate, green walls have been applied as a sustainable design approach to cool building temperature. By using plants to green vertical surfaces, they decrease room temperature and, as a result, decrease the energy use for air conditioning. Based on their structures, green walls can be divided into two categories, green façades and living walls. A green façade uses the climbing ability of a plant itself, while a living wall assembles planter modules. The latter one is widely adopted in public space, as it is time-effective and less limited. Although a living wall saves energy spent on cooling, it is not necessarily cost-effective from the perspective of a lifecycle analysis. The Italian study shows that the overall benefit of a living wall is only greater than its costs after 47 years of its establishment. In Taiwan, urban greening policies encourage establishment of green walls by referring to their benefits of energy saving while neglecting their low performance on cost-effectiveness. Thus, this research aims at understanding the perception of appliers and consumers on the cost-effectiveness of their living wall products from the lifecycle viewpoint. It adopts semi-structured interviews and field observations on the maintenance of the products. By comparing the two results, it generates insights for sustainable urban greening policies. The preliminary finding shows that stakeholders do not have a holistic sense of lifecycle or cost-effectiveness. Most importantly, a living wall well maintained is often with high input due to the availability of its maintenance budget, and thus less sustainable. In conclusion, without a comprehensive sense of cost-effectiveness throughout a product’s lifecycle, it is very difficult for suppliers and consumers to maintain a living wall system while achieve sustainability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=case%20study" title="case study">case study</a>, <a href="https://publications.waset.org/abstracts/search?q=maintenance" title=" maintenance"> maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=post-occupancy%20evaluation" title=" post-occupancy evaluation"> post-occupancy evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20greening" title=" vertical greening"> vertical greening</a> </p> <a href="https://publications.waset.org/abstracts/67160/preliminary-study-of-the-cost-effectiveness-of-green-walls-analyzing-cases-from-the-perspective-of-life-cycle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67160.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8793</span> Design On Demand (DoD): Spiral Model of The Lifecycle of Products in The Personal 3D-Printed Products&#039; Market</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zuk%20Nechemia%20Turbovich">Zuk Nechemia Turbovich</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper introduces DoD, a contextual spiral model that describes the lifecycle of products intended for manufacturing using Personal 3D Printers (P3DP). The study is based on a review of the desktop P3DPs market that shows that the combination of digital connectivity, coupled with the potential ownership of P3DP by home users, is radically changing the form of the product lifecycle, comparatively to familiar lifecycle paradigms. The paper presents the change in the design process, considering the characterization of product types in the P3DP market and the possibility of having a direct dialogue between end-user and product designers. The model, as an updated paradigm, provides a strategic perspective on product design and tools for success, understanding that design is subject to rapid and continuous improvement and that products are subject to repair, update, and customization. The paper will include a review of real cases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lifecycle" title="lifecycle">lifecycle</a>, <a href="https://publications.waset.org/abstracts/search?q=mass-customization" title=" mass-customization"> mass-customization</a>, <a href="https://publications.waset.org/abstracts/search?q=personal%203d-printing" title=" personal 3d-printing"> personal 3d-printing</a>, <a href="https://publications.waset.org/abstracts/search?q=user%20involvement" title=" user involvement"> user involvement</a> </p> <a href="https://publications.waset.org/abstracts/140982/design-on-demand-dod-spiral-model-of-the-lifecycle-of-products-in-the-personal-3d-printed-products-market" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140982.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8792</span> Economical Working Hours per Workday for a Production Worker under Hazardous Environment </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Darwish">Mohammed Darwish</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Workplace injuries cost organizations significant amount of money. Causes of injuries at workplace are very well documented in the literature and attributed to variety of reasons. One important reason is the long working-hours. The purpose of this paper is to develop a mathematical model that finds the optimal working-hours at workplace. The developed model minimizes the expected total cost which consists of the expected cost incurred due to unsafe conditions of workplace, the other cost is related to the lost production due to work incidents, and the production cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=8-hour%20workday" title="8-hour workday">8-hour workday</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20model" title=" mathematical model"> mathematical model</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20working%20hours" title=" optimal working hours"> optimal working hours</a>, <a href="https://publications.waset.org/abstracts/search?q=workplace%20injuries" title=" workplace injuries"> workplace injuries</a> </p> <a href="https://publications.waset.org/abstracts/106265/economical-working-hours-per-workday-for-a-production-worker-under-hazardous-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106265.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8791</span> Cost Effectiveness and Performance Study of Perpetual Pavement Using ABAQUS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mansour%20Fakhri">Mansour Fakhri</a>, <a href="https://publications.waset.org/abstracts/search?q=Monire%20Zokaei"> Monire Zokaei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Where there are many demolitions on conventional asphalt pavements, heavy costs are paid to repair and reconstruct the pavement roads annually. Recently some research has been done in order to increase the pavement life. Perpetual pavement is regarded as one of them which can improve the pavement life and minimize the maintenance activity and cost. In this research, ABAQUS which is a finite element software is implemented for analyzing and simulation of perpetual pavement. Viscoelastic model of material is used and loading wheel is considered to be dynamic. Effect of different parameters on pavement function has been considered. Because of high primary cost these pavements are not widely used. In this regard, life cost analysis was also carried out to compare perpetual pavement to conventional asphalt concrete pavement. It was concluded that although the initial cost of perpetual pavement is higher than that of conventional asphalt pavement, life cycle cost analysis during 50 years of service life showed that the performance of this pavement is better and the whole life cost of that is less. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ABAQUS" title="ABAQUS">ABAQUS</a>, <a href="https://publications.waset.org/abstracts/search?q=lifecycle%20cost%20analysis" title=" lifecycle cost analysis"> lifecycle cost analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanistic%20empirical" title=" mechanistic empirical"> mechanistic empirical</a>, <a href="https://publications.waset.org/abstracts/search?q=perpetual%20pavement" title=" perpetual pavement"> perpetual pavement</a> </p> <a href="https://publications.waset.org/abstracts/33524/cost-effectiveness-and-performance-study-of-perpetual-pavement-using-abaqus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33524.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8790</span> Healthy and Smart Building Projects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20A.%20Karakhan">Ali A. Karakhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stakeholders in the architecture, engineering, and construction (AEC) industry have been always searching for strategies to develop, design, and construct healthy and smart building projects. Healthy and smart building projects require that the building process including design and construction be altered and carefully implemented in order to bring about sustainable outcomes throughout the facility lifecycle. Healthy and smart building projects are expected to positively influence organizational success and facility performance across the project lifecycle leading to superior outcomes in terms of people, economy, and the environment. The present study aims to identify potential strategies that AEC organizations can implement to achieve healthy and smart building projects. Drivers and barriers for healthy and smart building features are also examined. The study findings indicate that there are three strategies to advance the development of healthy and smart building projects: (1) the incorporation of high-quality products and low chemical-emitting materials, (2) the integration of innovative designs, methods, and practices, and (3) the adoption of smart technology throughout the facility lifecycle. Satisfying external demands, achievement of a third-party certification, obtaining financial incentives, and a desire to fulfill professional duty are identified as the key drivers for developing healthy and smart building features; whereas, lack of knowledge and training, time/cost constrains, preference for/adherence to customary practices, and unclear business case for why healthy buildings are advantageous are recognized as the primary barriers toward a wider diffusion of healthy and smart building projects. The present study grounded in previous engineering, medical, and public health research provides valuable technical and practical recommendations for facility owners and industry professionals interested in pursuing sustainable, yet healthy and smart building projects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=healthy%20buildings" title="healthy buildings">healthy buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20construction" title=" smart construction"> smart construction</a>, <a href="https://publications.waset.org/abstracts/search?q=innovative%20designs" title=" innovative designs"> innovative designs</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20projects" title=" sustainable projects"> sustainable projects</a> </p> <a href="https://publications.waset.org/abstracts/90240/healthy-and-smart-building-projects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90240.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8789</span> Adding Security Blocks to the DevOps Lifecycle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andrew%20John%20Zeller">Andrew John Zeller</a>, <a href="https://publications.waset.org/abstracts/search?q=Francis%20Pouatcha"> Francis Pouatcha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Working according to the DevOps principle has gained in popularity over the past decade. While its extension DevSecOps started to include elements of cybersecurity, most real-life projects do not focus risk and security until the later phases of a project as teams are often more familiar with engineering and infrastructure services. To help bridge the gap between security and engineering, this paper will take six building blocks of cybersecurity and apply them to the DevOps approach. After giving a brief overview of the stages in the DevOps lifecycle, the main part discusses to what extent six cybersecurity blocks can be utilized in various stages of the lifecycle. The paper concludes with an outlook on how to stay up to date in the dynamic world of cybersecurity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=information%20security" title="information security">information security</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20security" title=" data security"> data security</a>, <a href="https://publications.waset.org/abstracts/search?q=cybersecurity" title=" cybersecurity"> cybersecurity</a>, <a href="https://publications.waset.org/abstracts/search?q=devOps" title=" devOps"> devOps</a>, <a href="https://publications.waset.org/abstracts/search?q=IT%20management" title=" IT management"> IT management</a> </p> <a href="https://publications.waset.org/abstracts/168996/adding-security-blocks-to-the-devops-lifecycle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168996.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8788</span> Systems Engineering Management Using Transdisciplinary Quality System Development Lifecycle Model </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Asaad%20Abdelrazek">Mohamed Asaad Abdelrazek</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Taher%20El-Sheikh"> Amir Taher El-Sheikh</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zayan"> M. Zayan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.M.%20Elhady"> A.M. Elhady</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The successful realization of complex systems is dependent not only on the technology issues and the process for implementing them, but on the management issues as well. Managing the systems development lifecycle requires technical management. Systems engineering management is the technical management. Systems engineering management is accomplished by incorporating many activities. The three major activities are development phasing, systems engineering process and lifecycle integration. Systems engineering management activities are performed across the system development lifecycle. Due to the ever-increasing complexity of systems as well the difficulty of managing and tracking the development activities, new ways to achieve systems engineering management activities are required. This paper presents a systematic approach used as a design management tool applied across systems engineering management roles. In this approach, Transdisciplinary System Development Lifecycle (TSDL) Model has been modified and integrated with Quality Function Deployment. Hereinafter, the name of the systematic approach is the Transdisciplinary Quality System Development Lifecycle (TQSDL) Model. The QFD translates the voice of customers (VOC) into measurable technical characteristics. The modified TSDL model is based on Axiomatic Design developed by Suh which is applicable to all designs: products, processes, systems and organizations. The TQSDL model aims to provide a robust structure and systematic thinking to support the implementation of systems engineering management roles. This approach ensures that the customer requirements are fulfilled as well as satisfies all the systems engineering manager roles and activities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=axiomatic%20design" title="axiomatic design">axiomatic design</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20function%20deployment" title=" quality function deployment"> quality function deployment</a>, <a href="https://publications.waset.org/abstracts/search?q=systems%20engineering%20management" title=" systems engineering management"> systems engineering management</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20development%20lifecycle" title=" system development lifecycle"> system development lifecycle</a> </p> <a href="https://publications.waset.org/abstracts/63058/systems-engineering-management-using-transdisciplinary-quality-system-development-lifecycle-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63058.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8787</span> Overcoming the Impacts of Covid-19 Outbreak Using Value Integrated Project Delivery Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Ramya">G. Ramya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Value engineering is a systematic approach, widely used to optimize the design or process or product in the designing stage. It used to achieve the client's obligation by increasing the functionality and attain the targeted cost in the cost planning. Value engineering effectiveness and benefits decrease along with the progress of the project since the change in the scope of the work and design will account for more cost all along the lifecycle of the project. Integrating the value engineering with other project management activities will promote cost minimization, client satisfaction, and ensure early completion of the project in time. Previous research studies suggested that value engineering can integrate with other project delivery activities, but research studies unable to frame a model that collaborates the project management activities with the job plan of value engineering approach. I analyzed various project management activities and their synergy between each other. The project management activities and processes like a)risk analysis b)lifecycle cost analysis c)lean construction d)facility management e)Building information modelling f)Contract administration, collaborated, and project delivery model planned along with the RIBA plan of work. The key outcome of the research is a value-driven project delivery model, which will succeed in dealing with the economic impact, constraints and conflicts arise due to the COVID-19 outbreak in the Indian construction sector. Benefits associated with the structured framework is construction project delivery that ensures early contractor involvement, mutual risk sharing, and reviving the project with a cost overrun and delay back on track ,are discussed. Keywords: Value-driven project delivery model, Integration, RIBA plan of work Themes: Design Economics <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=value-driven%20project%20delivery%20model" title="value-driven project delivery model">value-driven project delivery model</a>, <a href="https://publications.waset.org/abstracts/search?q=Integration" title=" Integration"> Integration</a>, <a href="https://publications.waset.org/abstracts/search?q=RIBA" title=" RIBA "> RIBA </a> </p> <a href="https://publications.waset.org/abstracts/129134/overcoming-the-impacts-of-covid-19-outbreak-using-value-integrated-project-delivery-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129134.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8786</span> Arsenic Removal by Membrane Technology, Adsorption and Ion Exchange: An Environmental Lifecycle Assessment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karan%20R.%20Chavan">Karan R. Chavan</a>, <a href="https://publications.waset.org/abstracts/search?q=Paula%20Saavalainen"> Paula Saavalainen</a>, <a href="https://publications.waset.org/abstracts/search?q=Kumudini%20V.%20Marathe"> Kumudini V. Marathe</a>, <a href="https://publications.waset.org/abstracts/search?q=Riitta%20L.%20Keiski"> Riitta L. Keiski</a>, <a href="https://publications.waset.org/abstracts/search?q=Ganapati%20D.%20Yadav"> Ganapati D. Yadav</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Co-contamination of groundwaters by arsenic in different forms is often observed around the globe. Arsenic is introduced into the waters by several mechanisms and different technologies are proposed and practiced for effective removal. The assessment of three prominent technologies, namely, adsorption, ion exchange and nanofiltration was carried out in this study based on lifecycle methodology. The life of the technologies was divided into two stages: cradle to gate (C-G) and gate to gate (G-G), in order to find out the impacts in different categories of environmental burdens, human health and resource consumption. Life cycle inventory was estimated by use of models and design equations concerning with the different technologies. Regeneration was considered for each technology and over the course of its full lifetime. The impact values of adsorption technology for the C-G stage are greater by thousand times (103) and million times (106) compared to ion exchange and nanofiltration technologies, respectively. The impact of G-G stage of the lifecycle is the major contributor of the impact for all the 3 technologies due to electricity consumption during the operation. Overall, the ion Exchange technology fares well in this study of removal of As (V) only. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arsenic" title="arsenic">arsenic</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofiltration" title=" nanofiltration"> nanofiltration</a>, <a href="https://publications.waset.org/abstracts/search?q=lifecycle%20assessment" title=" lifecycle assessment"> lifecycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20technology" title=" membrane technology"> membrane technology</a> </p> <a href="https://publications.waset.org/abstracts/46853/arsenic-removal-by-membrane-technology-adsorption-and-ion-exchange-an-environmental-lifecycle-assessment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46853.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8785</span> Identification of Factors Influencing Costs in Green Projects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nazirah%20Zainul%20Abidin">Nazirah Zainul Abidin</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurul%20Zahirah%20Mokhtar%20Azizi"> Nurul Zahirah Mokhtar Azizi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cost has always been the leading concern in green building development. The perception that construction cost for green building is higher than conventional buildings has only made the discussion of green building cost more difficult. Understanding the factors that will influence the cost of green construction is expected to shed light into what makes green construction more or at par with conventional projects, or perhaps, where cost can be optimised. This paper identifies the elements of cost before shifting the attention to the influencing factors. Findings from past studies uncovered various factors related to cost which are grouped into five focal themes i.e. awareness, knowledge, financial, technical, and government support. A conceptual framework is produced in a form of a flower diagram indicating the cost influencing factors of green building development. These factors were found to be both physical and non-physical aspects of a project. The framework provides ground for the next stage of research that is to further explore how these factors influence the project cost and decision making. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20project" title="green project">green project</a>, <a href="https://publications.waset.org/abstracts/search?q=factors%20influencing%20cost" title=" factors influencing cost"> factors influencing cost</a>, <a href="https://publications.waset.org/abstracts/search?q=hard%20cost" title=" hard cost"> hard cost</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20cost" title=" soft cost"> soft cost</a> </p> <a href="https://publications.waset.org/abstracts/49827/identification-of-factors-influencing-costs-in-green-projects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8784</span> Expected Present Value of Losses in the Computation of Optimum Seismic Design Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Garc%C3%ADa-P%C3%A9rez">J. García-Pérez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An approach to compute optimum seismic design parameters is presented. It is based on the optimization of the expected present value of the total cost, which includes the initial cost of structures as well as the cost due to earthquakes. Different types of seismicity models are considered, including one for characteristic earthquakes. Uncertainties are included in some variables to observe the influence on optimum values. Optimum seismic design coefficients are computed for three different structural types representing high, medium and low rise buildings, located near and far from the seismic sources. Ordinary and important structures are considered in the analysis. The results of optimum values show an important influence of seismicity models as well as of uncertainties on the variables. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=importance%20factors" title="importance factors">importance factors</a>, <a href="https://publications.waset.org/abstracts/search?q=optimum%20parameters" title=" optimum parameters"> optimum parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20losses" title=" seismic losses"> seismic losses</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20risk" title=" seismic risk"> seismic risk</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20cost" title=" total cost"> total cost</a> </p> <a href="https://publications.waset.org/abstracts/50007/expected-present-value-of-losses-in-the-computation-of-optimum-seismic-design-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50007.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8783</span> Uncertainty in Building Energy Performance Analysis at Different Stages of the Building’s Lifecycle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elham%20Delzendeh">Elham Delzendeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Song%20Wu"> Song Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Al-Adhami"> Mustafa Al-Adhami</a>, <a href="https://publications.waset.org/abstracts/search?q=Rima%20Alaaeddine"> Rima Alaaeddine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over the last 15 years, prediction of energy consumption has become a common practice and necessity at different stages of the building’s lifecycle, particularly, at the design and post-occupancy stages for planning and maintenance purposes. This is due to the ever-growing response of governments to address sustainability and reduction of CO₂ emission in the building sector. However, there is a level of uncertainty in the estimation of energy consumption in buildings. The accuracy of energy consumption predictions is directly related to the precision of the initial inputs used in the energy assessment process. In this study, multiple cases of large non-residential buildings at design, construction, and post-occupancy stages are investigated. The energy consumption process and inputs, and the actual and predicted energy consumption of the cases are analysed. The findings of this study have pointed out and evidenced various parameters that cause uncertainty in the prediction of energy consumption in buildings such as modelling, location data, and occupant behaviour. In addition, unavailability and insufficiency of energy-consumption-related inputs at different stages of the building’s lifecycle are classified and categorized. Understanding the roots of uncertainty in building energy analysis will help energy modellers and energy simulation software developers reach more accurate energy consumption predictions in buildings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20lifecycle" title="building lifecycle">building lifecycle</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20analysis" title=" energy analysis"> energy analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20performance" title=" energy performance"> energy performance</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty" title=" uncertainty"> uncertainty</a> </p> <a href="https://publications.waset.org/abstracts/111629/uncertainty-in-building-energy-performance-analysis-at-different-stages-of-the-buildings-lifecycle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111629.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8782</span> Application of Lean Six Sigma Tools to Minimize Time and Cost in Furniture Packaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suleiman%20Obeidat">Suleiman Obeidat</a>, <a href="https://publications.waset.org/abstracts/search?q=Nabeel%20Mandahawi"> Nabeel Mandahawi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, the packaging process for a move is improved. The customers of this move need their household stuff to be moved from their current house to the new one with minimum damage, in an organized manner, on time and with the minimum cost. Our goal was to improve the process between 10% and 20% time efficiency, 90% reduction in damaged parts and an acceptable improvement in the cost of the total move process. The expected ROI was 833%. Many improvement techniques have been used in terms of the way the boxes are prepared, their preparation cost, packing the goods, labeling them and moving them to a place for moving out. DMAIC technique is used in this work: SIPOC diagram, value stream map of “As Is” process, Root Cause Analysis, Maps of “Future State” and “Ideal State” and an Improvement Plan. A value of ROI=624% is obtained which is lower than the expected value of 833%. The work explains the techniques of improvement and the deficiencies in the old process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=packaging" title="packaging">packaging</a>, <a href="https://publications.waset.org/abstracts/search?q=lean%20tools" title=" lean tools"> lean tools</a>, <a href="https://publications.waset.org/abstracts/search?q=six%20sigma" title=" six sigma"> six sigma</a>, <a href="https://publications.waset.org/abstracts/search?q=DMAIC%20methodology" title=" DMAIC methodology"> DMAIC methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=SIPOC" title=" SIPOC"> SIPOC</a> </p> <a href="https://publications.waset.org/abstracts/10169/application-of-lean-six-sigma-tools-to-minimize-time-and-cost-in-furniture-packaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10169.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8781</span> Optimal Replacement Period for a One-Unit System with Double Repair Cost Limits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Min-Tsai%20Lai">Min-Tsai Lai</a>, <a href="https://publications.waset.org/abstracts/search?q=Taqwa%20Hariguna"> Taqwa Hariguna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a periodical replacement model for a system, considering the concept of single and cumulative repair cost limits simultaneously. The failures are divided into two types. Minor failure can be corrected by minimal repair and serious failure makes the system breakdown completely. When a minor failure occurs, if the repair cost is less than a single repair cost limit L1 and the accumulated repair cost is less than a cumulative repair cost limit L2, then minimal repair is executed, otherwise, the system is preventively replaced. The system is also replaced at time T or at serious failure. The optimal period T minimizing the long-run expected cost per unit time is verified to be finite and unique under some specific conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=repair-cost%20limit" title="repair-cost limit">repair-cost limit</a>, <a href="https://publications.waset.org/abstracts/search?q=cumulative%20repair-cost%20limit" title=" cumulative repair-cost limit"> cumulative repair-cost limit</a>, <a href="https://publications.waset.org/abstracts/search?q=minimal%20repair" title=" minimal repair"> minimal repair</a>, <a href="https://publications.waset.org/abstracts/search?q=periodical%20replacement%20policy" title=" periodical replacement policy"> periodical replacement policy</a> </p> <a href="https://publications.waset.org/abstracts/28802/optimal-replacement-period-for-a-one-unit-system-with-double-repair-cost-limits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28802.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8780</span> Multilayer Neural Network and Fuzzy Logic Based Software Quality Prediction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sadaf%20Sahar">Sadaf Sahar</a>, <a href="https://publications.waset.org/abstracts/search?q=Usman%20Qamar"> Usman Qamar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sadaf%20Ayaz"> Sadaf Ayaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the software development lifecycle, the quality prediction techniques hold a prime importance in order to minimize future design errors and expensive maintenance. There are many techniques proposed by various researchers, but with the increasing complexity of the software lifecycle model, it is crucial to develop a flexible system which can cater for the factors which in result have an impact on the quality of the end product. These factors include properties of the software development process and the product along with its operation conditions. In this paper, a neural network (perceptron) based software quality prediction technique is proposed. Using this technique, the stakeholders can predict the quality of the resulting software during the early phases of the lifecycle saving time and resources on future elimination of design errors and costly maintenance. This technique can be brought into practical use using successful training. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=software%20quality" title="software quality">software quality</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic" title=" fuzzy logic"> fuzzy logic</a>, <a href="https://publications.waset.org/abstracts/search?q=perception" title=" perception"> perception</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a> </p> <a href="https://publications.waset.org/abstracts/78014/multilayer-neural-network-and-fuzzy-logic-based-software-quality-prediction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78014.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8779</span> Development of Work Breakdown Structure for EVMS in South Korea </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dong-Ho%20Kim">Dong-Ho Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Su-Sang%20Lim"> Su-Sang Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang-Won%20Han"> Sang-Won Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang-Taek%20Hyun"> Chang-Taek Hyun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the construction site, the cost and schedules are the most important management elements. Despite efforts to integrated management the cost and schedule, WBS classification is struggling to differ from each other. The cost and schedule can be integrated and can be managed due to the characteristic of the detail system in the case of Korea around the axis of pressure and official fixture system. In this research, the Work Breakdown Structure (WBS) integrating the cost and schedules around in government office construction, WBS which can be used in common was presented in order to analyze the detail system of the public institution construction and improve. As to this method, the efficient administration of not only the link application of the cost and schedule but also construction project is expected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=WBS" title="WBS">WBS</a>, <a href="https://publications.waset.org/abstracts/search?q=EVMS" title=" EVMS"> EVMS</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20cost%20and%20schedule" title=" integrated cost and schedule"> integrated cost and schedule</a>, <a href="https://publications.waset.org/abstracts/search?q=Korea%20case" title=" Korea case"> Korea case</a> </p> <a href="https://publications.waset.org/abstracts/32470/development-of-work-breakdown-structure-for-evms-in-south-korea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32470.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8778</span> CompleX-Machine: An Automated Testing Tool Using X-Machine Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20K.%20A.%20Ogunshile">E. K. A. Ogunshile</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is aimed at creating an Automatic Java X-Machine testing tool for software development. The nature of software development is changing; thus, the type of software testing tools required is also changing. Software is growing increasingly complex and, in part due to commercial impetus for faster software releases with new features and value, increasingly in danger of containing faults. These faults can incur huge cost for software development organisations and users; Cambridge Judge Business School&rsquo;s research estimated the cost of software bugs to the global economy is $312 billion. Beyond the cost, faster software development methodologies and increasing expectations on developers to become testers is driving demand for faster, automated, and effective tools to prevent potential faults as early as possible in the software development lifecycle. Using X-Machine theory, this paper will explore a new tool to address software complexity, changing expectations on developers, faster development pressures and methodologies, with a view to reducing the huge cost of fixing software bugs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conformance%20testing" title="conformance testing">conformance testing</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20state%20machine" title=" finite state machine"> finite state machine</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20testing" title=" software testing"> software testing</a>, <a href="https://publications.waset.org/abstracts/search?q=x-machine" title=" x-machine"> x-machine</a> </p> <a href="https://publications.waset.org/abstracts/82574/complex-machine-an-automated-testing-tool-using-x-machine-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82574.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8777</span> MLOps Scaling Machine Learning Lifecycle in an Industrial Setting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yizhen%20Zhao">Yizhen Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Adam%20S.%20Z.%20Belloum"> Adam S. Z. Belloum</a>, <a href="https://publications.waset.org/abstracts/search?q=Goncalo%20Maia%20Da%20Costa"> Goncalo Maia Da Costa</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhiming%20Zhao"> Zhiming Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Machine learning has evolved from an area of academic research to a real-word applied field. This change comes with challenges, gaps and differences exist between common practices in academic environments and the ones in production environments. Following continuous integration, development and delivery practices in software engineering, similar trends have happened in machine learning (ML) systems, called MLOps. In this paper we propose a framework that helps to streamline and introduce best practices that facilitate the ML lifecycle in an industrial setting. This framework can be used as a template that can be customized to implement various machine learning experiment. The proposed framework is modular and can be recomposed to be adapted to various use cases (e.g. data versioning, remote training on cloud). The framework inherits practices from DevOps and introduces other practices that are unique to the machine learning system (e.g.data versioning). Our MLOps practices automate the entire machine learning lifecycle, bridge the gap between development and operation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cloud%20computing" title="cloud computing">cloud computing</a>, <a href="https://publications.waset.org/abstracts/search?q=continuous%20development" title=" continuous development"> continuous development</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20versioning" title=" data versioning"> data versioning</a>, <a href="https://publications.waset.org/abstracts/search?q=DevOps" title=" DevOps"> DevOps</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20setting" title=" industrial setting"> industrial setting</a>, <a href="https://publications.waset.org/abstracts/search?q=MLOps" title=" MLOps"> MLOps</a> </p> <a href="https://publications.waset.org/abstracts/144096/mlops-scaling-machine-learning-lifecycle-in-an-industrial-setting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144096.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8776</span> Logistical Optimization of Nuclear Waste Flows during Decommissioning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Dottavio">G. Dottavio</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20F.%20Andrade"> M. F. Andrade</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Renard"> F. Renard</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Cheutet"> V. Cheutet</a>, <a href="https://publications.waset.org/abstracts/search?q=A.-L.%20Ladier"> A.-L. Ladier</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Vercraene"> S. Vercraene</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Hoang"> P. Hoang</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Briet"> S. Briet</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Dachicourt"> R. Dachicourt</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Baizet"> Y. Baizet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An important number of technological equipment and high-skilled workers over long periods of time have to be mobilized during nuclear decommissioning processes. The related operations generate complex flows of waste and high inventory levels, associated to information flows of heterogeneous types. Taking into account that more than 10 decommissioning operations are on-going in France and about 50 are expected toward 2025: A big challenge is addressed today. The management of decommissioning and dismantling of nuclear installations represents an important part of the nuclear-based energy lifecycle, since it has an environmental impact as well as an important influence on the electricity cost and therefore the price for end-users. Bringing new technologies and new solutions into decommissioning methodologies is thus mandatory to improve the quality, cost and delay efficiency of these operations. The purpose of our project is to improve decommissioning management efficiency by developing a decision-support framework dedicated to plan nuclear facility decommissioning operations and to optimize waste evacuation by means of a logistic approach. The target is to create an easy-to-handle tool capable of i) predicting waste flows and proposing the best decommissioning logistics scenario and ii) managing information during all the steps of the process and following the progress: planning, resources, delays, authorizations, saturation zones, waste volume, etc. In this article we present our results from waste nuclear flows simulation during decommissioning process, including discrete-event simulation supported by FLEXSIM 3-D software. This approach was successfully tested and our works confirms its ability to improve this type of industrial process by identifying the critical points of the chain and optimizing it by identifying improvement actions. This type of simulation, executed before the start of the process operations on the basis of a first conception, allow ‘what-if’ process evaluation and help to ensure quality of the process in an uncertain context. The simulation of nuclear waste flows before evacuation from the site will help reducing the cost and duration of the decommissioning process by optimizing the planning and the use of resources, transitional storage and expensive radioactive waste containers. Additional benefits are expected for the governance system of the waste evacuation since it will enable a shared responsibility of the waste flows. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nuclear%20decommissioning" title="nuclear decommissioning">nuclear decommissioning</a>, <a href="https://publications.waset.org/abstracts/search?q=logistical%20optimization" title=" logistical optimization"> logistical optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=decision-support%20framework" title=" decision-support framework"> decision-support framework</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20management" title=" waste management"> waste management</a> </p> <a href="https://publications.waset.org/abstracts/51625/logistical-optimization-of-nuclear-waste-flows-during-decommissioning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51625.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8775</span> Uncertain Time-Cost Trade off Problems of Construction Projects Using Fuzzy Set Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20S.%20S.%20Kumar">V. S. S. Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Vikram"> B. Vikram</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of effective decision support tools that adopted in the construction industry is vital in the world we live in today, since it can lead to substantial cost reduction and efficient resource consumption. Solving the time-cost trade off problems and its related variants is at the heart of scientific research for optimizing construction planning problems. In general, the classical optimization techniques have difficulties in dealing with TCT problems. One of the main reasons of their failure is that they can easily be entrapped in local minima. This paper presents an investigation on the application of meta-heuristic techniques to two particular variants of the time-cost trade of analysis, the time-cost trade off problem (TCT), and time-cost trade off optimization problem (TCO). In first problem, the total project cost should be minimized, and in the second problem, the total project cost and total project duration should be minimized simultaneously. Finally it is expected that, the optimization models developed in this paper will contribute significantly for efficient planning and management of construction project. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20sets" title="fuzzy sets">fuzzy sets</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty" title=" uncertainty"> uncertainty</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20cost%20trade%20off%20problems" title=" time cost trade off problems"> time cost trade off problems</a> </p> <a href="https://publications.waset.org/abstracts/3994/uncertain-time-cost-trade-off-problems-of-construction-projects-using-fuzzy-set-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3994.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8774</span> Preventative Maintenance, Impact on the Optimal Replacement Strategy of Secondhand Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pin-Wei%20Chiang">Pin-Wei Chiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Wen-Liang%20Chang"> Wen-Liang Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruey-Huei%20Yeh"> Ruey-Huei Yeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates optimal replacement and preventative maintenance policies of secondhand products under a Finite Planning Horizon (FPH). Any consumer wishing to replace their product under FPH would have it undergo minimal repairs. The replacement provided would be required to undergo periodical preventive maintenance done to avoid product failure. Then, a mathematical formula for disbursement cost for products under FPH can be derived. Optimal policies are then obtained to minimize cost. In the first of two segments of the paper, a model for initial product purchase of either new or secondhand products is used. This model is built by analyzing product purchasing price, surplus value of product, as well as the minimal repair cost. The second segment uses a model for replacement products, which are also secondhand products with no limit on usage. This model analyzes the same components as the first as well as expected preventative maintenance cost. Using these two models, a formula for the expected final total cost can be developed. The formula requires four variables (optimal preventive maintenance level, preventive maintenance frequency, replacement timing, age of replacement product) to find minimal cost requirement. Based on analysis of the variables using the expected total final cost model, it was found that the purchasing price and length of ownership were directly related. Also, consumers should choose the secondhand product with the higher usage for replacement. Products with higher initial usage upon acquisition require an earlier replacement schedule. In this case, replacements should be made with a secondhand product with less usage. In addition, preventative maintenance also significantly reduces cost. Consumers that plan to use products for longer periods of time replace their products later. Hence these consumers should choose the secondhand product with lesser initial usage for replacement. Preventative maintenance also creates significant total cost savings in this case. This study provides consumers with a method of calculating both the ideal amount of usage of the products they should purchase as well as the frequency and level of preventative maintenance that should be conducted in order to minimize cost and maintain product function. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20planning%20horizon" title="finite planning horizon">finite planning horizon</a>, <a href="https://publications.waset.org/abstracts/search?q=second%20hand%20product" title=" second hand product"> second hand product</a>, <a href="https://publications.waset.org/abstracts/search?q=replacement" title=" replacement"> replacement</a>, <a href="https://publications.waset.org/abstracts/search?q=preventive%20maintenance" title=" preventive maintenance"> preventive maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=minimal%20repair" title=" minimal repair"> minimal repair</a> </p> <a href="https://publications.waset.org/abstracts/22433/preventative-maintenance-impact-on-the-optimal-replacement-strategy-of-secondhand-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22433.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">473</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8773</span> Pavement Management for a Metropolitan Area: A Case Study of Montreal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luis%20Amador%20Jimenez">Luis Amador Jimenez</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Shohel%20Amin"> Md. Shohel Amin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pavement performance models are based on projections of observed traffic loads, which makes uncertain to study funding strategies in the long run if history does not repeat. Neural networks can be used to estimate deterioration rates but the learning rate and momentum have not been properly investigated, in addition, economic evolvement could change traffic flows. This study addresses both issues through a case study for roads of Montreal that simulates traffic for a period of 50 years and deals with the measurement error of the pavement deterioration model. Travel demand models are applied to simulate annual average daily traffic (AADT) every 5 years. Accumulated equivalent single axle loads (ESALs) are calculated from the predicted AADT and locally observed truck distributions combined with truck factors. A back propagation Neural Network (BPN) method with a Generalized Delta Rule (GDR) learning algorithm is applied to estimate pavement deterioration models capable of overcoming measurement errors. Linear programming of lifecycle optimization is applied to identify M&R strategies that ensure good pavement condition while minimizing the budget. It was found that CAD 150 million is the minimum annual budget to good condition for arterial and local roads in Montreal. Montreal drivers prefer the use of public transportation for work and education purposes. Vehicle traffic is expected to double within 50 years, ESALS are expected to double the number of ESALs every 15 years. Roads in the island of Montreal need to undergo a stabilization period for about 25 years, a steady state seems to be reached after. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pavement%20management%20system" title="pavement management system">pavement management system</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20simulation" title=" traffic simulation"> traffic simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=backpropagation%20neural%20network" title=" backpropagation neural network"> backpropagation neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20modeling" title=" performance modeling"> performance modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=measurement%20errors" title=" measurement errors"> measurement errors</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20programming" title=" linear programming"> linear programming</a>, <a href="https://publications.waset.org/abstracts/search?q=lifecycle%20optimization" title=" lifecycle optimization"> lifecycle optimization</a> </p> <a href="https://publications.waset.org/abstracts/35595/pavement-management-for-a-metropolitan-area-a-case-study-of-montreal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35595.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8772</span> Optimal Bayesian Chart for Controlling Expected Number of Defects in Production Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Makis">V. Makis</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Jafari"> L. Jafari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we develop an optimal Bayesian chart to control the expected number of defects per inspection unit in production processes with long production runs. We formulate this control problem in the optimal stopping framework. The objective is to determine the optimal stopping rule minimizing the long-run expected average cost per unit time considering partial information obtained from the process sampling at regular epochs. We prove the optimality of the control limit policy, i.e., the process is stopped and the search for assignable causes is initiated when the posterior probability that the process is out of control exceeds a control limit. An algorithm in the semi-Markov decision process framework is developed to calculate the optimal control limit and the corresponding average cost. Numerical examples are presented to illustrate the developed optimal control chart and to compare it with the traditional u-chart. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20u-chart" title="Bayesian u-chart">Bayesian u-chart</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20design" title=" economic design"> economic design</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20stopping" title=" optimal stopping"> optimal stopping</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-Markov%20decision%20process" title=" semi-Markov decision process"> semi-Markov decision process</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20process%20control" title=" statistical process control"> statistical process control</a> </p> <a href="https://publications.waset.org/abstracts/62841/optimal-bayesian-chart-for-controlling-expected-number-of-defects-in-production-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62841.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">573</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8771</span> Final Costs of Civil Claims</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Behnam%20Habibi%20Dargah">Behnam Habibi Dargah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The economics of cost-benefit theory seeks to monitor claims and determine their final price. The cost of litigation is important because it is a measure of the efficiency of the justice system. From an economic point of view, the cost of litigation is considered to be the point of equilibrium of litigation, whereby litigation is regarded as a high-risk investment and is initiated when the costs are less than the probable and expected benefits. Costs are economically separated into private and social costs. Private cost includes material (direct and indirect) and spiritual costs. The social costs of litigation are also subsidized-centric due to the public and governmental nature of litigation and cover both types of bureaucratic bureaucracy and the costs of judicial misconduct. Macroeconomic policy in the economics of justice is the reverse engineering of controlling the social costs of litigation by employing selective litigation and working on the judicial culture to achieve rationality in the monopoly system. Procedures for controlling and managing court costs are also circumscribed to economic patterns in the field. Rational cost allocation model and cost transfer model. The rational allocation model deals with cost-tolerance systems, and the transfer model also considers three models of transferability, including legal, judicial and contractual transferability, which will be described and explored in the present article in a comparative manner. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cost%20of%20litigation" title="cost of litigation">cost of litigation</a>, <a href="https://publications.waset.org/abstracts/search?q=economics%20of%20litigation" title=" economics of litigation"> economics of litigation</a>, <a href="https://publications.waset.org/abstracts/search?q=private%20cost" title=" private cost"> private cost</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20cost" title=" social cost"> social cost</a>, <a href="https://publications.waset.org/abstracts/search?q=cost%20of%20litigation" title=" cost of litigation"> cost of litigation</a> </p> <a href="https://publications.waset.org/abstracts/126746/final-costs-of-civil-claims" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8770</span> The Optimal Order Policy for the Newsvendor Model under Worker Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sunantha%20Teyarachakul">Sunantha Teyarachakul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We consider the worker-learning Newsvendor Model, under the case of lost-sales for unmet demand, with the research objective of proposing the cost-minimization order policy and lot size, scheduled to arrive at the beginning of the selling-period. In general, the New Vendor Model is used to find the optimal order quantity for the perishable items such as fashionable products or those with seasonal demand or short-life cycles. Technically, it is used when the product demand is stochastic and available for the single selling-season, and when there is only a one time opportunity for the vendor to purchase, with possibly of long ordering lead-times. Our work differs from the classical Newsvendor Model in that we incorporate the human factor (specifically worker learning) and its influence over the costs of processing units into the model. We describe this by using the well-known Wright’s Learning Curve. Most of the assumptions of the classical New Vendor Model are still maintained in our work, such as the constant per-unit cost of leftover and shortage, the zero initial inventory, as well as the continuous time. Our problem is challenging in the way that the best order quantity in the classical model, which is balancing the over-stocking and under-stocking costs, is no longer optimal. Specifically, when adding the cost-saving from worker learning to such expected total cost, the convexity of the cost function will likely not be maintained. This has called for a new way in determining the optimal order policy. In response to such challenges, we found a number of characteristics related to the expected cost function and its derivatives, which we then used in formulating the optimal ordering policy. Examples of such characteristics are; the optimal order quantity exists and is unique if the demand follows a Uniform Distribution; if the demand follows the Beta Distribution with some specific properties of its parameters, the second derivative of the expected cost function has at most two roots; and there exists the specific level of lot size that satisfies the first order condition. Our research results could be helpful for analysis of supply chain coordination and of the periodic review system for similar problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inventory%20management" title="inventory management">inventory management</a>, <a href="https://publications.waset.org/abstracts/search?q=Newsvendor%20model" title=" Newsvendor model"> Newsvendor model</a>, <a href="https://publications.waset.org/abstracts/search?q=order%20policy" title=" order policy"> order policy</a>, <a href="https://publications.waset.org/abstracts/search?q=worker%20learning" title=" worker learning"> worker learning</a> </p> <a href="https://publications.waset.org/abstracts/24622/the-optimal-order-policy-for-the-newsvendor-model-under-worker-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24622.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8769</span> A Review of Benefit-Risk Assessment over the Product Lifecycle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Miljkovic">M. Miljkovic</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Urakpo"> A. Urakpo</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Simic-Koumoutsaris"> M. Simic-Koumoutsaris</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Benefit-risk assessment (BRA) is a valuable tool that takes place in multiple stages during a medicine's lifecycle, and this assessment can be conducted in a variety of ways. The aim was to summarize current BRA methods used during approval decisions and in post-approval settings and to see possible future directions. Relevant reviews, recommendations, and guidelines published in medical literature and through regulatory agencies over the past five years have been examined. BRA implies the review of two dimensions: the dimension of benefits (determined mainly by the therapeutic efficacy) and the dimension of risks (comprises the safety profile of a drug). Regulators, industry, and academia have developed various approaches, ranging from descriptive textual (qualitative) to decision-analytic (quantitative) models, to facilitate the BRA of medicines during the product lifecycle (from Phase I trials, to authorization procedure, post-marketing surveillance and health technology assessment for inclusion in public formularies). These approaches can be classified into the following categories: stepwise structured approaches (frameworks); measures for benefits and risks that are usually endpoint specific (metrics), simulation techniques and meta-analysis (estimation techniques), and utility survey techniques to elicit stakeholders’ preferences (utilities). All these approaches share the following two common goals: to assist this analysis and to improve the communication of decisions, but each is subject to its own specific strengths and limitations. Before using any method, its utility, complexity, the extent to which it is established, and the ease of results interpretation should be considered. Despite widespread and long-time use, BRA is subject to debate, suffers from a number of limitations, and currently is still under development. The use of formal, systematic structured approaches to BRA for regulatory decision-making and quantitative methods to support BRA during the product lifecycle is a standard practice in medicine that is subject to continuous improvement and modernization, not only in methodology but also in cooperation between organizations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=benefit-risk%20assessment" title="benefit-risk assessment">benefit-risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=benefit-risk%20profile" title=" benefit-risk profile"> benefit-risk profile</a>, <a href="https://publications.waset.org/abstracts/search?q=product%20lifecycle" title=" product lifecycle"> product lifecycle</a>, <a href="https://publications.waset.org/abstracts/search?q=quantitative%20methods" title=" quantitative methods"> quantitative methods</a>, <a href="https://publications.waset.org/abstracts/search?q=structured%20approaches" title=" structured approaches"> structured approaches</a> </p> <a href="https://publications.waset.org/abstracts/102835/a-review-of-benefit-risk-assessment-over-the-product-lifecycle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102835.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8768</span> Influence of Radio Frequency Identification Technology at Cost of Supply Chain as a Driver for the Generation of Competitive Advantage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mona%20Baniahmadi">Mona Baniahmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Saied%20Haghanifar"> Saied Haghanifar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Radio Frequency Identification (RFID) is regarded as a promising technology for the optimization of supply chain processes since it improves manufacturing and retail operations from forecasting demand for planning, managing inventory, and distribution. This study precisely aims at learning to know the RFID technology and at explaining how it can concretely be used for supply chain management and how it can help improving it in the case of Hejrat Company which is located in Iran and works on the distribution of medical drugs and cosmetics. This study uses some statistical analysis to calculate the expected benefits of an integrated RFID system on supply chain obtained through competitive advantages increases with decreasing cost factor. The study investigates how the cost of storage process, labor cost, the cost of missing goods, inventory management optimization, on-time delivery, order cost, lost sales and supply process optimization affect the performance of the integrated RFID supply chain regarding cost factors and provides a competitive advantage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cost" title="cost">cost</a>, <a href="https://publications.waset.org/abstracts/search?q=competitive%20advantage" title=" competitive advantage"> competitive advantage</a>, <a href="https://publications.waset.org/abstracts/search?q=radio%20frequency%20identification" title=" radio frequency identification"> radio frequency identification</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain" title=" supply chain"> supply chain</a> </p> <a href="https://publications.waset.org/abstracts/54109/influence-of-radio-frequency-identification-technology-at-cost-of-supply-chain-as-a-driver-for-the-generation-of-competitive-advantage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54109.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8767</span> The Egyptian eGovernment Journey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Abdelsattar%20Elshabrawy">Ali Abdelsattar Elshabrawy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Egyptian government is struggling to build it's eGovernment project. They succeeded to build the Egyptian digital portal, which contain links for number of services provided by different ministries. For achieving such success, their are requirements necessary to build such a project such as: internet dissemination, IT literacy, Strategy, disqualification of paper based services. This paper is going to clarify the main obstacles to the Egyptian eGovernment project from both the supply and demand sides. Also will clarify the most critical requirements in this phase of the project lifecycle. This paper should be in great value for the project team and also for many other developing countries that share the same obstacles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=the%20egyptian%20egovernment%20project%20lifecycle" title="the egyptian egovernment project lifecycle">the egyptian egovernment project lifecycle</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20side%20barriers" title=" supply side barriers"> supply side barriers</a>, <a href="https://publications.waset.org/abstracts/search?q=demand%20side%20barriers" title=" demand side barriers"> demand side barriers</a>, <a href="https://publications.waset.org/abstracts/search?q=egovernment%20project%20requirements" title=" egovernment project requirements"> egovernment project requirements</a> </p> <a href="https://publications.waset.org/abstracts/145631/the-egyptian-egovernment-journey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145631.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=expected%20life-cycle%20cost&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=expected%20life-cycle%20cost&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=expected%20life-cycle%20cost&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=expected%20life-cycle%20cost&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=expected%20life-cycle%20cost&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=expected%20life-cycle%20cost&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=expected%20life-cycle%20cost&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=expected%20life-cycle%20cost&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=expected%20life-cycle%20cost&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=expected%20life-cycle%20cost&amp;page=293">293</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=expected%20life-cycle%20cost&amp;page=294">294</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=expected%20life-cycle%20cost&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10