CINXE.COM
nForum - analysis
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg.dtd" > <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en-ca"> <head> <title>nForum - analysis</title> <link rel="shortcut icon" href="/themes/nforum/styles/nforum/favicon.ico" /> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <link rel="stylesheet" type="text/css" href="/extensions/TagThis/theme/tagthis.css" /> <link rel="stylesheet" type="text/css" href="/themes/nforum/styles/nforum/vanilla.css" media="screen" /> <link rel="stylesheet" type="text/css" href="/themes/nforum/styles/nforum/vanilla.print.css" media="print" /> <link rel="stylesheet" type="text/css" href="/extensions/GuestPost/style.css" /> <link rel="stylesheet" type="text/css" href="/extensions/GuestSignIn/style.css" /> <link rel="stylesheet" type="text/css" href="/extensions/OpenID/css/openid.css" /> <link rel="stylesheet" type="text/css" href="/extensions/PreviewPost/preview.css" /> <script type="text/javascript" src="/js/global.js"></script> <script type="text/javascript" src="/js/vanilla.js"></script> <script type="text/javascript" src="/js/ajax.js"></script> <script type="text/javascript" src="/js/ac.js"></script> <script type="text/javascript" src="/extensions/JQuery/jquery-1.4.2.min.js"></script> <script type="text/javascript" src="/extensions/OpenID/js/openid-jquery.js"></script> <script type="text/javascript" src="/extensions/OpenID/js/openid-en.js"></script> <script type="text/javascript" src="/extensions/MarkdownItex/itex.js"></script> <script type="text/javascript" src="/extensions/MembersList/library/tablesort.js"></script> <script type="text/javascript" src="/extensions/MembersList/library/paginate.js"></script> <script type="text/javascript" src="/extensions/PreviewPost/preview.js"></script> <script type="text/javascript" src="/extensions/CustomStyles/functions.js"></script> <script type="text/javascript" src="/js/prototype.js"></script> <script type="text/javascript" src="/js/scriptaculous.js"></script> <script type="text/javascript" src="/extensions/Notify/functions.js"></script> <link rel="alternate" type="application/rss+xml" href="https://nforum.ncatlab.org/search/?PostBackAction=Search&Type=Comments&Page=1&Feed=RSS2&DiscussionID=7702&FeedTitle=Discussion+Feed+%28analysis%29" title="Discussion Feed (RSS2)" /> <link rel="alternate" type="application/atom+xml" href="https://nforum.ncatlab.org/search/?PostBackAction=Search&Type=Comments&Page=1&Feed=ATOM&DiscussionID=7702&FeedTitle=Discussion+Feed+%28analysis%29" title="Discussion Feed (ATOM)" /> <script type="text/javascript"> ( function($) { $(document).ready(function() { openid.init('openid_identifier',true); openid.setFormID('frmSignInOpenID'); }); }) (jQuery ); </script><script type="text/x-mathjax-config">MathJax.Hub.Config({TeX: {extensions: ["AMScd.js"]}});</script><script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"></script></head> <body id="CommentsPage" > <div id="SiteContainer"><div id="Session">Not signed in (<a href="/people.php?ReturnUrl=http%3A%2F%2Fnforum.ncatlab.org%2Fdiscussion%2F7702%2F">Sign In</a>)</div><div id="Header"> <a id="pgtop"></a> <span id="logo"></span> <h1> nForum </h1> <div id="TagLine">A discussion forum about contributions to the <a href="https://ncatlab.org/">nLab wiki</a> and related areas of mathematics, physics, and philosophy.</div><ul><li><a href="/extension.php?PostBackAction=HomeCat" >Home</a></li><li class="TabOn"><a href="/" >Discussions</a></li><li><a href="/categories.php" >Categories</a></li><li><a href="/search.php" >Search</a></li><li><a href="https://ncatlab.org/nlab/show/HomePage" >nLab</a></li><li><a href="https://ncatlab.org/nlabmeta/show/Welcome+to+the+nForum" >Help</a></li></ul> </div><div id="Body"><div id="Panel"><ul> <li> <h2>Discussion Feed</h2> <ul><li> <a href="https://nforum.ncatlab.org/search/?PostBackAction=Search&Type=Comments&Page=1&Feed=RSS2&DiscussionID=7702&FeedTitle=Discussion+Feed+%28analysis%29" title="Subscribe to this feed..." class="RSS2">RSS2</a></li><li> <a href="https://nforum.ncatlab.org/search/?PostBackAction=Search&Type=Comments&Page=1&Feed=ATOM&DiscussionID=7702&FeedTitle=Discussion+Feed+%28analysis%29" title="Subscribe to this feed..." class="ATOM">ATOM</a></li></ul> </li> </ul><div id="GuestSignIn"> <h2>Not signed in</h2> <p>Want to take part in these discussions? Sign in if you have an account, or apply for one below</p> <fieldset><form id="frmSignInUser" method="post" action="https://nforum.ncatlab.org/people/"> <div> <input name="PostBackAction" value="SignIn" type="hidden" /> <input name="ReturnUrl" value="http://nforum.ncatlab.org/discussion/7702/" type="hidden" /> <ul> <li><label for="txtUsername">Username</label> <input id="txtUsername" name="Username" value="" class="Input" maxlength="20" type="text" /> </li> <li><label for="txtPassword">Password</label> <input id="txtPassword" name="Password" value="" class="Input" type="password" /> </li> <li id="RememberMe"><label for="RememberMeID"> <input name="RememberMe" value="1" id="RememberMeID" type="checkbox" checked="checked" /> Remember me</label> </li> <li> <input name="userSignIn" value="Sign In" class="Button" type="submit" /> </li> </ul> </div> </form> </fieldset> <fieldset><form id="frmSignInOpenID" method="post" action="https://nforum.ncatlab.org/people/"> <input name="PostBackAction" value="SignIn" type="hidden" /> <div> <ul> <li>Sign in using OpenID <div id="openid_choice"> <div id="openid_btns"></div> </div> <div id="openid_input_area"> <input id="openid_identifier" name="openid_identifier" type="text" value="http://" /> </div> </li> <li id="RememberMe"><label for="RememberMeID"> <input name="RememberMe" value="1" id="RememberMeID" type="checkbox" checked="checked" /> Remember me</label> </li> <li><input name="openidSignIn" value="Sign In" class="Button" type="submit" /></li> </ul> </div></form></fieldset> <ul class="MembershipOptionLinks"> <li class="ForgotPasswordLink"><a href="https://nforum.ncatlab.org/people/?PostBackAction=PasswordRequestForm">Forgot your password?</a></li> <li class="ApplyForMembershipLink"><a href="https://nforum.ncatlab.org/people/?PostBackAction=ApplyForm">Apply for membership</a></li> </ul></div><h2>Discussion Tag Cloud</h2><div id="TagCloud"><span style="font-size:200%"><a href="https://nforum.ncatlab.org/search/?PostBackAction=Search&Type=Topics&Tag=analysis" class="TagLink">analysis</a></span></div><p id="AboutVanilla"><a href="http://getvanilla.com">Vanilla 1.1.10</a> is a product of <a href="http://lussumo.com">Lussumo</a>. More Information: <a href="http://lussumo.com/docs">Documentation</a>, <a href="http://lussumo.com/community">Community Support</a>.</p></div> <div id="Content"><div id="NoticeCollector" class="Notices"><div class="Notice"><strong>Welcome to nForum</strong> <br />If you want to take part in these discussions either <a href="/people.php?ReturnUrl=http%3A%2F%2Fnforum.ncatlab.org%2Fdiscussion%2F7702%2F">sign in now</a> (if you have an account), <a href="https://nforum.ncatlab.org/people/?PostBackAction=ApplyForm">apply for one now</a> (if you don't).</div></div><div class="ContentInfo Top"> <h1><a href="https://nforum.ncatlab.org/5/"><a href="https://nforum.ncatlab.org/18/">nLab</a> > </a> <a href="https://nforum.ncatlab.org/5/">Latest Changes</a>: analysis</h1> <a href="#pgbottom">Bottom of Page</a> <div class="PageInfo"> <p>1 to 13 of 13</p> <ol class="PageList PageListEmpty"> <li> </li> </ol> </div> </div> <div id="ContentBody"> <script type="text/javascript"> //<![CDATA[ function toggle_source(id) { var mysrc = document.getElementById("CommentBody_" + id).firstChild; if (mysrc.className == "source") { if (mysrc.style.display == "none") { mysrc.style.display = "block"; } else { mysrc.style.display = "none"; } } } var commentIds = new Array(0); function hide_sources() { for (i = 0; i < commentIds.length; i++) { var myself = document.getElementById("Source" + commentIds[i]); var mycmt = document.getElementById("CommentBody_" + commentIds[i]); if (mycmt.firstChild.className != "source") { myself.style.display = "none"; } } } window.onload = hide_sources; //]]> </script> <ol id="Comments"><li id="Comment_62190"> <a id="Item_1"></a> <div class="CommentHeader"> <ul> <li><span>CommentRowNumber</span>1.</li><li><span>CommentAuthor</span><a href="https://nforum.ncatlab.org/account/4/">Urs</a></li> <li><span>CommentTime</span>Apr 22nd 2017</li><li><em>(edited Apr 22nd 2017)</em></li></ul></div> <div class="CommentActions"> <div class="CommentActionsInner"><ul class="CommentActionsList"><li><a href="https://nforum.ncatlab.org/discussion/7702/analysis/?Focus=62190#Comment_62190">PermaLink</a></li></ul></div></div><div class="CommentBody" id="CommentBody_62190"><div class="source" style="display: none;"><span class="sourceType">Author: <a href="https://nforum.ncatlab.org/account/4/">Urs</a></span><br/><span class="sourceType">Format: MarkdownItex</span><code>I noticed that the entry _[[analysis]]_ is in a sad state. I now gave it an Idea-section ([here](https://ncatlab.org/nlab/show/analysis#Idea)), which certainly still leaves room for expansion; and I tried to clean up the very little that is listed at _[References -- General](https://ncatlab.org/nlab/show/analysis#ReferencesGeneral)_</code></div><div> <p>I noticed that the entry <em><a href="https://ncatlab.org/nlab/show/analysis">analysis</a></em> is in a sad state. I now gave it an Idea-section (<a href="https://ncatlab.org/nlab/show/analysis#Idea">here</a>), which certainly still leaves room for expansion; and I tried to clean up the very little that is listed at <em><a href="https://ncatlab.org/nlab/show/analysis#ReferencesGeneral">References – General</a></em></p> </div> </div> </li><li id="Comment_62192" class="Alternate"> <a id="Item_2"></a> <div class="CommentHeader"> <ul> <li><span>CommentRowNumber</span>2.</li><li><span>CommentAuthor</span><a href="https://nforum.ncatlab.org/account/24/">Todd_Trimble</a></li> <li><span>CommentTime</span>Apr 22nd 2017</li><li><em>(edited Apr 22nd 2017)</em></li></ul></div> <div class="CommentActions"> <div class="CommentActionsInner"><ul class="CommentActionsList"><li><a href="https://nforum.ncatlab.org/discussion/7702/analysis/?Focus=62192#Comment_62192">PermaLink</a></li></ul></div></div><div class="CommentBody" id="CommentBody_62192"><div class="source" style="display: none;"><span class="sourceType">Author: <a href="https://nforum.ncatlab.org/account/24/">Todd_Trimble</a></span><br/><span class="sourceType">Format: MarkdownItex</span><code>> The mathematical field of analysis is concerned with the concept of convergence of sequences (or more generally: of nets), in particular as concerns the infinitesimal analysis that gives rise to the theory of differentiation and integration (“calculus”). I think I'd phrase that a little differently, insofar as infinitesimal analysis is not a primary concern of classical analysis (of the type founded on the reals as the unique complete ordered field) -- in fact the two are incompatible. One possible rephrasing might be: "In mathematics, analysis usually refers to any of a broad family of fields that deals with a general theory of limits (convergence of sequences or more generally of nets), particularly those fields that pursue developments that originated in "the calculus", i.e., the theory of differentiation and integration of real and complex-valued functions. The classical foundation of this general subject is usually based on the idea that the real number system is describable as the (essentially unique) complete ordered field, with limits ultimately referring back to limits of sequences of real numbers. Analysis can also refer to other responses to the problem of founding these developments, especially "infinitesimal analysis" which admits infinitesimal quantities not found in the classical real number system and which takes various forms, for example the nonstandard analysis first introduced by Abraham Robinson, or "synthetic differential analysis" whose rigorous foundations were largely introduced by Bill Lawvere and other category theorists who, following the example of Grothendieck, consider nilpotent infinitesimals (instead of invertible ones &agrave; la Robinson) as a basis for understanding differentiation."</code></div><div> <blockquote> <p>The mathematical field of analysis is concerned with the concept of convergence of sequences (or more generally: of nets), in particular as concerns the infinitesimal analysis that gives rise to the theory of differentiation and integration (“calculus”).</p> </blockquote> <p>I think I’d phrase that a little differently, insofar as infinitesimal analysis is not a primary concern of classical analysis (of the type founded on the reals as the unique complete ordered field) – in fact the two are incompatible.</p> <p>One possible rephrasing might be:</p> <p>“In mathematics, analysis usually refers to any of a broad family of fields that deals with a general theory of limits (convergence of sequences or more generally of nets), particularly those fields that pursue developments that originated in “the calculus”, i.e., the theory of differentiation and integration of real and complex-valued functions. The classical foundation of this general subject is usually based on the idea that the real number system is describable as the (essentially unique) complete ordered field, with limits ultimately referring back to limits of sequences of real numbers.</p> <p>Analysis can also refer to other responses to the problem of founding these developments, especially “infinitesimal analysis” which admits infinitesimal quantities not found in the classical real number system and which takes various forms, for example the nonstandard analysis first introduced by Abraham Robinson, or “synthetic differential analysis” whose rigorous foundations were largely introduced by Bill Lawvere and other category theorists who, following the example of Grothendieck, consider nilpotent infinitesimals (instead of invertible ones à la Robinson) as a basis for understanding differentiation.”</p> </div> </div> </li><li id="Comment_62193"> <a id="Item_3"></a> <div class="CommentHeader"> <ul> <li><span>CommentRowNumber</span>3.</li><li><span>CommentAuthor</span><a href="https://nforum.ncatlab.org/account/4/">Urs</a></li> <li><span>CommentTime</span>Apr 22nd 2017</li><li><em>(edited Apr 22nd 2017)</em></li></ul></div> <div class="CommentActions"> <div class="CommentActionsInner"><ul class="CommentActionsList"><li><a href="https://nforum.ncatlab.org/discussion/7702/analysis/?Focus=62193#Comment_62193">PermaLink</a></li></ul></div></div><div class="CommentBody" id="CommentBody_62193"><div class="source" style="display: none;"><span class="sourceType">Author: <a href="https://nforum.ncatlab.org/account/4/">Urs</a></span><br/><span class="sourceType">Format: MarkdownItex</span><code>Thanks, Todd! I have merged that into the Idea-section [here](https://ncatlab.org/nlab/show/analysis#Idea). Please feel invited to edit right there. I was thinking of "infinitesimal analysis" as a synonym for "infinitesimal calculus", but I suppose it's right that it came to carry a more specific connotation.</code></div><div> <p>Thanks, Todd!</p> <p>I have merged that into the Idea-section <a href="https://ncatlab.org/nlab/show/analysis#Idea">here</a>. Please feel invited to edit right there.</p> <p>I was thinking of “infinitesimal analysis” as a synonym for “infinitesimal calculus”, but I suppose it’s right that it came to carry a more specific connotation.</p> </div> </div> </li><li id="Comment_62194" class="Alternate"> <a id="Item_4"></a> <div class="CommentHeader"> <ul> <li><span>CommentRowNumber</span>4.</li><li><span>CommentAuthor</span><a href="https://nforum.ncatlab.org/account/24/">Todd_Trimble</a></li> <li><span>CommentTime</span>Apr 22nd 2017</li></ul></div> <div class="CommentActions"> <div class="CommentActionsInner"><ul class="CommentActionsList"><li><a href="https://nforum.ncatlab.org/discussion/7702/analysis/?Focus=62194#Comment_62194">PermaLink</a></li></ul></div></div><div class="CommentBody" id="CommentBody_62194"><div class="source" style="display: none;"><span class="sourceType">Author: <a href="https://nforum.ncatlab.org/account/24/">Todd_Trimble</a></span><br/><span class="sourceType">Format: MarkdownItex</span><code>Oh, I hadn't noticed the article [[calculus]] before! I largely agree with the spirit of the beginning of [[calculus]], but I did have some questions. The term that I learned to refer to the calculus of differentials and integrals (as opposed to sequent calculus, etc.) is "the calculus" -- the "the" signifying a usual or default meaning. I can't remember ever hearing anyone utter the words "infinitesimal calculus" unless they really meant to refer to infinitesimal quantities. Then again, I don't have experience outside "anglosaxon universities"; is some cognate of "infinitesimal calculus" used in Francophone or German universities? Also, "anglosaxon" (unhyphenated and lower case!) looks a little odd to me -- is that a common locution I am unaware of? Could we have just as well said "Anglophone"? I'm going to perform some minor edits, including adding this [MO discussion](https://mathoverflow.net/questions/36758/difference-between-a-calculus-and-an-algebra) to the references.</code></div><div> <p>Oh, I hadn’t noticed the article <a href="https://ncatlab.org/nlab/show/calculus">calculus</a> before!</p> <p>I largely agree with the spirit of the beginning of <a href="https://ncatlab.org/nlab/show/calculus">calculus</a>, but I did have some questions. The term that I learned to refer to the calculus of differentials and integrals (as opposed to sequent calculus, etc.) is “the calculus” – the “the” signifying a usual or default meaning. I can’t remember ever hearing anyone utter the words “infinitesimal calculus” unless they really meant to refer to infinitesimal quantities. Then again, I don’t have experience outside “anglosaxon universities”; is some cognate of “infinitesimal calculus” used in Francophone or German universities? Also, “anglosaxon” (unhyphenated and lower case!) looks a little odd to me – is that a common locution I am unaware of? Could we have just as well said “Anglophone”?</p> <p>I’m going to perform some minor edits, including adding this <a href="https://mathoverflow.net/questions/36758/difference-between-a-calculus-and-an-algebra">MO discussion</a> to the references.</p> </div> </div> </li><li id="Comment_62195"> <a id="Item_5"></a> <div class="CommentHeader"> <ul> <li><span>CommentRowNumber</span>5.</li><li><span>CommentAuthor</span><a href="https://nforum.ncatlab.org/account/4/">Urs</a></li> <li><span>CommentTime</span>Apr 22nd 2017</li><li><em>(edited Apr 22nd 2017)</em></li></ul></div> <div class="CommentActions"> <div class="CommentActionsInner"><ul class="CommentActionsList"><li><a href="https://nforum.ncatlab.org/discussion/7702/analysis/?Focus=62195#Comment_62195">PermaLink</a></li></ul></div></div><div class="CommentBody" id="CommentBody_62195"><div class="source" style="display: none;"><span class="sourceType">Author: <a href="https://nforum.ncatlab.org/account/4/">Urs</a></span><br/><span class="sourceType">Format: MarkdownItex</span><code>The bulk of the entry _[[calculus]]_ is due to Zoran, [rev 1](https://ncatlab.org/nlab/revision/calculus/1) from March 2013. He seems not to be active here anymore, but I suppose since you are the native speaker, you should feel invited to adjust the terminology where appropriate. Regarding "infinitesimal calculus": Yes, at German schools they think that they are teaching _Infinitesimalrechnung_ (see also [these](https://www.google.de/search?q=Infinitesimalrechnung+Gymnasium&ie=utf-8&oe=utf-8&client=firefox-b-ab&gfe_rd=cr&ei=4IX7WLuzM4nKXuCOs3A) Google results)</code></div><div> <p>The bulk of the entry <em><a href="https://ncatlab.org/nlab/show/calculus">calculus</a></em> is due to Zoran, <a href="https://ncatlab.org/nlab/revision/calculus/1">rev 1</a> from March 2013. He seems not to be active here anymore, but I suppose since you are the native speaker, you should feel invited to adjust the terminology where appropriate.</p> <p>Regarding “infinitesimal calculus”: Yes, at German schools they think that they are teaching <em>Infinitesimalrechnung</em> (see also <a href="https://www.google.de/search?q=Infinitesimalrechnung+Gymnasium&ie=utf-8&oe=utf-8&client=firefox-b-ab&gfe_rd=cr&ei=4IX7WLuzM4nKXuCOs3A">these</a> Google results)</p> </div> </div> </li><li id="Comment_62196" class="Alternate"> <a id="Item_6"></a> <div class="CommentHeader"> <ul> <li><span>CommentRowNumber</span>6.</li><li><span>CommentAuthor</span><a href="https://nforum.ncatlab.org/account/24/">Todd_Trimble</a></li> <li><span>CommentTime</span>Apr 22nd 2017</li></ul></div> <div class="CommentActions"> <div class="CommentActionsInner"><ul class="CommentActionsList"><li><a href="https://nforum.ncatlab.org/discussion/7702/analysis/?Focus=62196#Comment_62196">PermaLink</a></li></ul></div></div><div class="CommentBody" id="CommentBody_62196"><div class="source" style="display: none;"><span class="sourceType">Author: <a href="https://nforum.ncatlab.org/account/24/">Todd_Trimble</a></span><br/><span class="sourceType">Format: MarkdownItex</span><code>It's too bad that Zoran's level of participation has dropped off recently, but I suppose in this instance he wouldn't mind my making some small adjustments, which I'll perform in a moment. Wikipedia writes, "Calculus has historically been called "the calculus of infinitesimals", or "infinitesimal calculus"." But later in [the article](https://en.wikipedia.org/wiki/Calculus) it says, "Following the work of Weierstrass, it eventually became common to base calculus on limits instead of infinitesimal quantities, though the subject is still occasionally called "infinitesimal calculus"." -- which I take to mean that this term is no longer much in fashion. I think "the differential/integral calculus" or simply "the calculus" is much more common (although that latter locution might also be obsolescent -- I'm not sure).</code></div><div> <p>It’s too bad that Zoran’s level of participation has dropped off recently, but I suppose in this instance he wouldn’t mind my making some small adjustments, which I’ll perform in a moment.</p> <p>Wikipedia writes, “Calculus has historically been called “the calculus of infinitesimals”, or “infinitesimal calculus”.” But later in <a href="https://en.wikipedia.org/wiki/Calculus">the article</a> it says, “Following the work of Weierstrass, it eventually became common to base calculus on limits instead of infinitesimal quantities, though the subject is still occasionally called “infinitesimal calculus”.” – which I take to mean that this term is no longer much in fashion. I think “the differential/integral calculus” or simply “the calculus” is much more common (although that latter locution might also be obsolescent – I’m not sure).</p> </div> </div> </li><li id="Comment_62197"> <a id="Item_7"></a> <div class="CommentHeader"> <ul> <li><span>CommentRowNumber</span>7.</li><li><span>CommentAuthor</span><a href="https://nforum.ncatlab.org/account/4/">Urs</a></li> <li><span>CommentTime</span>Apr 22nd 2017</li><li><em>(edited Apr 22nd 2017)</em></li></ul></div> <div class="CommentActions"> <div class="CommentActionsInner"><ul class="CommentActionsList"><li><a href="https://nforum.ncatlab.org/discussion/7702/analysis/?Focus=62197#Comment_62197">PermaLink</a></li></ul></div></div><div class="CommentBody" id="CommentBody_62197"><div class="source" style="display: none;"><span class="sourceType">Author: <a href="https://nforum.ncatlab.org/account/4/">Urs</a></span><br/><span class="sourceType">Format: MarkdownItex</span><code>Thanks, Todd. It's good to have the now common use of terminology accurately reflected. On general grounds though I suppose it is not entirely unreasonable to acknowledge implicit infinitesimals. Every formalization of the concept of differentiation knows about the infinitesimal in some sense, since, after all, the differential of a function is its infinitesimal rate of infinitesimal change. In this sense every incarnation of differentiation theory is some kind of computation with the infinitesimal, and in this sense may provide a calculus of the infinitesimal, even if isolated/explicit infinitesimal quantities are not part of the formalism. In this sense it seems not unreasonable (even if uncommon) to use "infinitesimal analysis" to distinguish that part of analysis that concerns itself with differentiation/integration from the vast rest of analysis that still considers limits of sequences, just not those of the very special kind that compute infinitesimal rates of infinitesimal change.</code></div><div> <p>Thanks, Todd. It’s good to have the now common use of terminology accurately reflected.</p> <p>On general grounds though I suppose it is not entirely unreasonable to acknowledge implicit infinitesimals. Every formalization of the concept of differentiation knows about the infinitesimal in some sense, since, after all, the differential of a function is its infinitesimal rate of infinitesimal change. In this sense every incarnation of differentiation theory is some kind of computation with the infinitesimal, and in this sense may provide a calculus of the infinitesimal, even if isolated/explicit infinitesimal quantities are not part of the formalism.</p> <p>In this sense it seems not unreasonable (even if uncommon) to use “infinitesimal analysis” to distinguish that part of analysis that concerns itself with differentiation/integration from the vast rest of analysis that still considers limits of sequences, just not those of the very special kind that compute infinitesimal rates of infinitesimal change.</p> </div> </div> </li><li id="Comment_62198" class="Alternate"> <a id="Item_8"></a> <div class="CommentHeader"> <ul> <li><span>CommentRowNumber</span>8.</li><li><span>CommentAuthor</span><a href="https://nforum.ncatlab.org/account/24/">Todd_Trimble</a></li> <li><span>CommentTime</span>Apr 23rd 2017</li></ul></div> <div class="CommentActions"> <div class="CommentActionsInner"><ul class="CommentActionsList"><li><a href="https://nforum.ncatlab.org/discussion/7702/analysis/?Focus=62198#Comment_62198">PermaLink</a></li></ul></div></div><div class="CommentBody" id="CommentBody_62198"><div class="source" style="display: none;"><span class="sourceType">Author: <a href="https://nforum.ncatlab.org/account/24/">Todd_Trimble</a></span><br/><span class="sourceType">Format: MarkdownItex</span><code>That's a very good point, Urs. I added a footnote to that effect (but please feel free to rewrite it if you wish).</code></div><div> <p>That’s a very good point, Urs. I added a footnote to that effect (but please feel free to rewrite it if you wish).</p> </div> </div> </li><li id="Comment_62224"> <a id="Item_9"></a> <div class="CommentHeader"> <ul> <li><span>CommentRowNumber</span>9.</li><li><span>CommentAuthor</span><a href="https://nforum.ncatlab.org/account/7/">TobyBartels</a></li> <li><span>CommentTime</span>Apr 25th 2017</li></ul></div> <div class="CommentActions"> <div class="CommentActionsInner"><ul class="CommentActionsList"><li><a href="https://nforum.ncatlab.org/discussion/7702/analysis/?Focus=62224#Comment_62224">PermaLink</a></li></ul></div></div><div class="CommentBody" id="CommentBody_62224"><div class="source" style="display: none;"><span class="sourceType">Author: <a href="https://nforum.ncatlab.org/account/7/">TobyBartels</a></span><br/><span class="sourceType">Format: MarkdownItex</span><code>I never liked just saying ‘calculus’ (although ‘the calculus’ is slightly better, and I often resign myself to saying ‘Calculus’, which the capital letter warning people that this is some sort of special name), because there are so many other calculuses in the world, even in mathematics. So saying ‘the infinitesimal calculus’ is a disambiguation. And since Calculus (as opposed to analysis!) is a practical method of doing calculations, it\'s not relevant whether one rigorously founds Calculus on infinitesimals, epsilontics, or indeed anything but gossamer and moonbeams; what\'s relevant is that it\'s a method of calculating with things (specifically, $\mathrm{d}x$ and the like) that one imagines as being infinitely small. So Calculus is always the infinitesimal calculus, even though analysis is not always infinitesimal analysis.</code></div><div> <p>I never liked just saying ‘calculus’ (although ‘the calculus’ is slightly better, and I often resign myself to saying ‘Calculus’, which the capital letter warning people that this is some sort of special name), because there are so many other calculuses in the world, even in mathematics. So saying ‘the infinitesimal calculus’ is a disambiguation. And since Calculus (as opposed to analysis!) is a practical method of doing calculations, it's not relevant whether one rigorously founds Calculus on infinitesimals, epsilontics, or indeed anything but gossamer and moonbeams; what's relevant is that it's a method of calculating with things (specifically, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">d</mi><mi>x</mi></mrow><annotation encoding="application/x-tex">\mathrm{d}x</annotation></semantics></math> and the like) that one imagines as being infinitely small.</p> <p>So Calculus is always the infinitesimal calculus, even though analysis is not always infinitesimal analysis.</p> </div> </div> </li><li id="Comment_96837" class="Alternate"> <a id="Item_10"></a> <div class="CommentHeader"> <ul> <li><span>CommentRowNumber</span>10.</li><li><span>CommentAuthor</span><a href="https://nforum.ncatlab.org/account/4/">Urs</a></li> <li><span>CommentTime</span>Dec 1st 2021</li></ul></div> <div class="CommentActions"> <div class="CommentActionsInner"><ul class="CommentActionsList"><li><a href="https://nforum.ncatlab.org/discussion/7702/analysis/?Focus=96837#Comment_96837">PermaLink</a></li></ul></div></div><div class="CommentBody" id="CommentBody_96837"><div class="source" style="display: none;"><span class="sourceType">Author: <a href="https://nforum.ncatlab.org/account/4/">Urs</a></span><br/><span class="sourceType">Format: MarkdownItex</span><code>added pointer to: * [[Tom Apostol]], *Mathematical Analysis* 1973 ([pdf](http://www.ru.ac.bd/wp-content/uploads/sites/25/2019/03/205_04_Apostol-Mathematical-Analysis-1973.pdf)) <a href="https://ncatlab.org/nlab/revision/diff/analysis/30">diff</a>, <a href="https://ncatlab.org/nlab/revision/analysis/30">v30</a>, <a href="https://ncatlab.org/nlab/show/analysis">current</a></code></div><div> <p>added pointer to:</p> <ul> <li><a href="https://ncatlab.org/nlab/show/Tom Apostol">Tom Apostol</a>, <em>Mathematical Analysis</em> 1973 (<a href="http://www.ru.ac.bd/wp-content/uploads/sites/25/2019/03/205_04_Apostol-Mathematical-Analysis-1973.pdf">pdf</a>)</li> </ul> <p><a href="https://ncatlab.org/nlab/revision/diff/analysis/30">diff</a>, <a href="https://ncatlab.org/nlab/revision/analysis/30">v30</a>, <a href="https://ncatlab.org/nlab/show/analysis">current</a></p> </div> </div> </li><li id="Comment_99853"> <a id="Item_11"></a> <div class="CommentHeader"> <ul> <li><span>CommentRowNumber</span>11.</li><li><span>CommentAuthor</span><a href="https://nforum.ncatlab.org/account/4/">Urs</a></li> <li><span>CommentTime</span>Jun 9th 2022</li></ul></div> <div class="CommentActions"> <div class="CommentActionsInner"><ul class="CommentActionsList"><li><a href="https://nforum.ncatlab.org/discussion/7702/analysis/?Focus=99853#Comment_99853">PermaLink</a></li></ul></div></div><div class="CommentBody" id="CommentBody_99853"><div class="source" style="display: none;"><span class="sourceType">Author: <a href="https://nforum.ncatlab.org/account/4/">Urs</a></span><br/><span class="sourceType">Format: MarkdownItex</span><code>added pointer to: * [[Auke B. Booij]], *Analysis in univalent type theory* (2020) $[$[etheses:10411](http://etheses.bham.ac.uk/id/eprint/10411), [pdf](https://etheses.bham.ac.uk/id/eprint/10411/7/Booij2020PhD.pdf)$]$ <a href="https://ncatlab.org/nlab/revision/diff/analysis/32">diff</a>, <a href="https://ncatlab.org/nlab/revision/analysis/32">v32</a>, <a href="https://ncatlab.org/nlab/show/analysis">current</a></code></div><div> <p>added pointer to:</p> <ul> <li><a href="https://ncatlab.org/nlab/show/Auke B. Booij">Auke B. Booij</a>, <em>Analysis in univalent type theory</em> (2020) <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">[</mo></mrow><annotation encoding="application/x-tex">[</annotation></semantics></math><a href="http://etheses.bham.ac.uk/id/eprint/10411">etheses:10411</a>, <a href="https://etheses.bham.ac.uk/id/eprint/10411/7/Booij2020PhD.pdf">pdf</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">]</annotation></semantics></math></li> </ul> <p><a href="https://ncatlab.org/nlab/revision/diff/analysis/32">diff</a>, <a href="https://ncatlab.org/nlab/revision/analysis/32">v32</a>, <a href="https://ncatlab.org/nlab/show/analysis">current</a></p> </div> </div> </li><li id="Comment_106995" class="Alternate"> <a id="Item_12"></a> <div class="CommentHeader"> <ul> <li><span>CommentRowNumber</span>12.</li><li><span>CommentAuthor</span><a href="https://nforum.ncatlab.org/account/4/">Urs</a></li> <li><span>CommentTime</span>Feb 9th 2023</li></ul></div> <div class="CommentActions"> <div class="CommentActionsInner"><ul class="CommentActionsList"><li><a href="https://nforum.ncatlab.org/discussion/7702/analysis/?Focus=106995#Comment_106995">PermaLink</a></li></ul></div></div><div class="CommentBody" id="CommentBody_106995"><div class="source" style="display: none;"><span class="sourceType">Author: <a href="https://nforum.ncatlab.org/account/4/">Urs</a></span><br/><span class="sourceType">Format: MarkdownItex</span><code>fixed dead pdf-link and added ISBN to * [[Tom Apostol]], *Mathematical Analysis* (1973) &lbrack;ISBN:0201002884, [pdf](http://webpages.iust.ac.ir/amtehrani/files/Addison%20Wesley%20-%20Mathematical%20Analysis%20_%20Apostol%20%285Th%20Ed%29%20%281981%29.pdf)&rbrack; <a href="https://ncatlab.org/nlab/revision/diff/analysis/35">diff</a>, <a href="https://ncatlab.org/nlab/revision/analysis/35">v35</a>, <a href="https://ncatlab.org/nlab/show/analysis">current</a></code></div><div> <p>fixed dead pdf-link and added ISBN to</p> <ul> <li><a href="https://ncatlab.org/nlab/show/Tom Apostol">Tom Apostol</a>, <em>Mathematical Analysis</em> (1973) [ISBN:0201002884, <a href="http://webpages.iust.ac.ir/amtehrani/files/Addison%20Wesley%20-%20Mathematical%20Analysis%20_%20Apostol%20%285Th%20Ed%29%20%281981%29.pdf">pdf</a>]</li> </ul> <p><a href="https://ncatlab.org/nlab/revision/diff/analysis/35">diff</a>, <a href="https://ncatlab.org/nlab/revision/analysis/35">v35</a>, <a href="https://ncatlab.org/nlab/show/analysis">current</a></p> </div> </div> </li><li id="Comment_106996"> <a id="Item_13"></a> <div class="CommentHeader"> <ul> <li><span>CommentRowNumber</span>13.</li><li><span>CommentAuthor</span><a href="https://nforum.ncatlab.org/account/4/">Urs</a></li> <li><span>CommentTime</span>Feb 9th 2023</li></ul></div> <div class="CommentActions"> <div class="CommentActionsInner"><ul class="CommentActionsList"><li><a href="https://nforum.ncatlab.org/discussion/7702/analysis/?Focus=106996#Comment_106996">PermaLink</a></li></ul></div></div><div class="CommentBody" id="CommentBody_106996"><div class="source" style="display: none;"><span class="sourceType">Author: <a href="https://nforum.ncatlab.org/account/4/">Urs</a></span><br/><span class="sourceType">Format: MarkdownItex</span><code>also replaced the dead pdf link for * [[Walter Rudin]], _Principles of Mathematical Analysis_, McGraw-Hill (1964, 1976) &lbrack;[pdf](https://web.math.ucsb.edu/~agboola/teaching/2021/winter/122A/rudin.pdf)&rbrack; Would be good if there were a more stable web-presence of these textbooks, but if they exist I haven't found them yet. <a href="https://ncatlab.org/nlab/revision/diff/analysis/35">diff</a>, <a href="https://ncatlab.org/nlab/revision/analysis/35">v35</a>, <a href="https://ncatlab.org/nlab/show/analysis">current</a></code></div><div> <p>also replaced the dead pdf link for</p> <ul> <li><a href="https://ncatlab.org/nlab/show/Walter Rudin">Walter Rudin</a>, <em>Principles of Mathematical Analysis</em>, McGraw-Hill (1964, 1976) [<a href="https://web.math.ucsb.edu/~agboola/teaching/2021/winter/122A/rudin.pdf">pdf</a>]</li> </ul> <p>Would be good if there were a more stable web-presence of these textbooks, but if they exist I haven’t found them yet.</p> <p><a href="https://ncatlab.org/nlab/revision/diff/analysis/35">diff</a>, <a href="https://ncatlab.org/nlab/revision/analysis/35">v35</a>, <a href="https://ncatlab.org/nlab/show/analysis">current</a></p> </div> </div> </li></ol> </div><div class="ContentInfo Middle"> <div class="PageInfo"> <p>1 to 13 of 13</p> <ol class="PageList PageListEmpty"> <li> </li> </ol> </div> </div></div> <a id="pgbottom" > </a> </div> </div></body> </html>