CINXE.COM
Search results for: marble dust
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: marble dust</title> <meta name="description" content="Search results for: marble dust"> <meta name="keywords" content="marble dust"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="marble dust" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="marble dust"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 340</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: marble dust</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">340</span> Performance of Structural Concrete Containing Marble Dust as a Partial Replacement for River Sand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ravande%20Kishore">Ravande Kishore</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper present the results of experimental investigation carried out to understand the mechanical properties of concrete containing marble dust. Two grades of concrete viz. M25 and M35 have been considered for investigation. For each grade of concrete five replacement percentages of sand viz. 5%, 10%, 15%, 20% and 25% by marble dust have been considered. In all, 12 concrete mix cases including two control concrete mixtures have been studied to understand the key properties such as Compressive strength, Modulus of elasticity, Modulus of rupture and Split tensile strength. Development of Compressive strength is also investigated. In general, the results of investigation indicated improved performance of concrete mixture containing marble dust. About 21% increase in Compressive strength is noticed for concrete mixtures containing 20% marble dust and 80% river sand. An overall assessment of investigation results pointed towards high potential for marble dust as alternative construction material coming from waste generated in marble industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=construction%20material" title="construction material">construction material</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20replacement" title=" partial replacement"> partial replacement</a>, <a href="https://publications.waset.org/abstracts/search?q=marble%20dust" title=" marble dust"> marble dust</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a> </p> <a href="https://publications.waset.org/abstracts/15741/performance-of-structural-concrete-containing-marble-dust-as-a-partial-replacement-for-river-sand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15741.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">339</span> Re-Use of Waste Marble in Producing Green Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasan%20%C5%9Eahan%20Arel">Hasan Şahan Arel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, literature related to the replacement of cement with waste marble and the use of waste marble as an aggregate in concrete production was examined. Workability of the concrete decreased when marble powder was used as a substitute for fine aggregate. Marble powder contributed to the compressive strength of concrete because of the CaCO<sub>3</sub> and SiO<sub>2</sub> present in the chemical structure of the marble. Additionally, the use of marble pieces in place of coarse aggregate revealed that this contributed to the workability and mechanical properties of the concrete. When natural standard sand was replaced with marble dust at a ratio of 15% and 75%, the compressive strength and splitting tensile strength of the concrete increased by 20%-26% and 10%-15%, respectively. However, coarse marble aggregates exhibited the best performance at a 100% replacement ratio. Additionally, there was a greater improvement in the mechanical properties of concrete when waste marble was used in a coarse aggregate form when compared to that of when marble was used in a dust form. If the cement was replaced with marble powder in proportions of 20% or more, then adverse effects were observed on the compressive strength and workability of the concrete. This study indicated that marble dust at a cement-replacement ratio of 5%-10% affected the mechanical properties of concrete by decreasing the global annual CO<sub>2</sub> emissions by 12% and also lowering the costs from US$40/m<sup>3</sup> to US$33/m<sup>3</sup>. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cement%20production" title="cement production">cement production</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2%20emission" title=" CO2 emission"> CO2 emission</a>, <a href="https://publications.waset.org/abstracts/search?q=marble" title=" marble"> marble</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/54230/re-use-of-waste-marble-in-producing-green-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54230.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">338</span> Utilization of Waste Marble Dust as a Viscosity Modifying Agent in Self Compacting Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shams%20Ul%20Khaliq">Shams Ul Khaliq</a>, <a href="https://publications.waset.org/abstracts/search?q=Mushtaq%20Zeb"> Mushtaq Zeb</a>, <a href="https://publications.waset.org/abstracts/search?q=Fawad%20Bilal"> Fawad Bilal</a>, <a href="https://publications.waset.org/abstracts/search?q=Faizan%20Akbar"> Faizan Akbar</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Aamir%20Abbas"> Syed Aamir Abbas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Self Compacting Concrete as the name implies--is the concrete requiring a very little or no vibration to fill the form homogeneously. Self Compacting Concrete (SCC) is defined by two primary properties: Ability to flow or deform under its own weight (with or without obstructions) and the ability to remain homogeneous while doing so. Flow ability is achieved by utilizing high range water reducing admixtures and segregation resistance is ensured by introducing a chemical viscosity modifying admixture (VMA) or increasing the amount of fines in the concrete. The study explores the use waste marble dust (WMD) to increase the amount of fines and hence achieve self-compatibility in an economical way, suitable for Pakistani construction industry. The study focuses on comparison of fresh properties of SCC containing varying amounts of waste marble dust (WMD) with that containing commercially available viscosity modifying admixture. The comparison is done at different dosages of super plasticizer keeping cement, water, coarse aggregate, and fine aggregate contents constant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=self%20compacting%20concrete" title="self compacting concrete">self compacting concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20marble%20dust%20%28WMD%29" title=" waste marble dust (WMD)"> waste marble dust (WMD)</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20ability" title=" flow ability"> flow ability</a>, <a href="https://publications.waset.org/abstracts/search?q=segregation%20resistance" title=" segregation resistance"> segregation resistance</a> </p> <a href="https://publications.waset.org/abstracts/49785/utilization-of-waste-marble-dust-as-a-viscosity-modifying-agent-in-self-compacting-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49785.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">337</span> The Engineering Properties of Jordanian Marble</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mousa%20Bani%20Baker">Mousa Bani Baker</a>, <a href="https://publications.waset.org/abstracts/search?q=Raed%20Abendeh"> Raed Abendeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Zaidoon%20Abu%20Salem"> Zaidoon Abu Salem</a>, <a href="https://publications.waset.org/abstracts/search?q=Hesham%20Ahmad"> Hesham Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research paper was commissioned to discuss the Jordanian marble, which is a non-foliated metamorphic rock composed of recrystallized carbonate minerals, most commonly calcite or dolomite. Geologists use the term "marble" to refer to metamorphosed limestone; however, stonemasons use the term more broadly to encompass unmetamorphised limestone. Marble is commonly used for sculpture and as a building material. The marble has many uses; one of them is using the white marble that has been prized for its use in sculptures since classical times. This preference has to do with its softness, relative isotropy and homogeneity, and a relative resistance to shattering. Another use of it is the construction marble which is “a stone which is composed of calcite, dolomite or serpentine which is capable of taking a polish” Marble Institute of America. This report focuses most about the marble in Jordan and its properties: rock definition, physical properties, the marble occurrences in Jordan, types of Jordanian marble and their prices and test done on this marble. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=marble" title="marble">marble</a>, <a href="https://publications.waset.org/abstracts/search?q=metamorphic" title=" metamorphic"> metamorphic</a>, <a href="https://publications.waset.org/abstracts/search?q=non-foliated" title=" non-foliated"> non-foliated</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=recrystallized" title=" recrystallized"> recrystallized</a>, <a href="https://publications.waset.org/abstracts/search?q=Moh%E2%80%99s%20hardness" title=" Moh’s hardness"> Moh’s hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=abrasion" title=" abrasion"> abrasion</a>, <a href="https://publications.waset.org/abstracts/search?q=absorption" title=" absorption"> absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=modulus%20of%20rupture" title=" modulus of rupture"> modulus of rupture</a>, <a href="https://publications.waset.org/abstracts/search?q=porosity" title=" porosity"> porosity</a> </p> <a href="https://publications.waset.org/abstracts/30419/the-engineering-properties-of-jordanian-marble" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30419.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">336</span> Marble Powder’s Effect on Permeability and Mechanical Properties of Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shams%20Ul%20Khaliq">Shams Ul Khaliq</a>, <a href="https://publications.waset.org/abstracts/search?q=Khan%20Shahzada"> Khan Shahzada</a>, <a href="https://publications.waset.org/abstracts/search?q=Bashir%20Alam"> Bashir Alam</a>, <a href="https://publications.waset.org/abstracts/search?q=Fawad%20Bilal"> Fawad Bilal</a>, <a href="https://publications.waset.org/abstracts/search?q=Mushtaq%20Zeb"> Mushtaq Zeb</a>, <a href="https://publications.waset.org/abstracts/search?q=Faizan%20Akbar"> Faizan Akbar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Marble industry contributes its fair share in environmental deterioration, producing voluminous amounts of mud and other excess residues obtained from marble and granite processing, polluting soil, water and air. Reusing these products in other products will not just prevent our environment from polluting but also help with economy. In this research, an attempt has been made to study the expediency of waste Marble Powder (MP) in concrete production. Various laboratory tests were performed to investigate permeability, physical and mechanical properties, such as slump, compressive strength, split tensile test, etc. Concrete test samples were fabricated with varying MP content (replacing 5-30% cement), furnished from two different sources. 5% replacement of marble dust caused 6% and 12% decrease in compressive and tensile strength respectively. These parameters gradually decreased with increasing MP content up to 30%. Most optimum results were obtained with 10% replacement. Improvement in consistency and permeability were noticed. The permeability was improved with increasing MP proportion up to 10% without substantial decrease in compressive strength. Obtained results revealed that MP as an alternative to cement in concrete production is a viable option considering its economic and environment friendly implications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=marble%20powder" title="marble powder">marble powder</a>, <a href="https://publications.waset.org/abstracts/search?q=strength" title=" strength"> strength</a>, <a href="https://publications.waset.org/abstracts/search?q=permeability" title=" permeability"> permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=consistency" title=" consistency"> consistency</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a> </p> <a href="https://publications.waset.org/abstracts/46746/marble-powders-effect-on-permeability-and-mechanical-properties-of-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">335</span> A Study on Marble Based Geopolymer Mortar / Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wei-Hao%20Lee">Wei-Hao Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Ta-Wui%20Cheng"> Ta-Wui Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Yung-Chin%20Ding"> Yung-Chin Ding</a>, <a href="https://publications.waset.org/abstracts/search?q=Tai-Tien%20Wang"> Tai-Tien Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is trying to use marble wastes as the raw material to fabricate geopolymer green mortar / concrete. Experiment results show that using marble to make geopolymer mortar and concrete, the compressive strength after 28 days curing can reach 35 MPa and 25 MPa, respectively. The characteristics of marble-based geopolymer green mortar and concrete will keep testing for a long term in order to understand the effect parameters. The study is based on resource recovery and recycling. Its basic characteristics are low consumption, low carbon dioxide emission and high efficiency that meet the international tendency 'Circular Economy.' By comparing with Portland cement mortar and concrete, production 1 ton of marble-based geopolymer mortar and concrete, they can be saved around 50.3% and 49.6% carbon dioxide emission, respectively. Production 1 m3 of marble-based geopolymer concrete costs about 62 USD that cheaper than that of traditional Portland concrete. It is proved that the marble-based geopolymer concrete has great potential for further engineering development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=marble" title="marble">marble</a>, <a href="https://publications.waset.org/abstracts/search?q=geopolymer" title=" geopolymer"> geopolymer</a>, <a href="https://publications.waset.org/abstracts/search?q=geopolymer%20concrete" title=" geopolymer concrete"> geopolymer concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82%20emission" title=" CO₂ emission"> CO₂ emission</a> </p> <a href="https://publications.waset.org/abstracts/69034/a-study-on-marble-based-geopolymer-mortar-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">334</span> Effects of the Usage of Marble Powder as Partial Replacement of Cement on the Durability of High Performance Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Talah%20Aissa">Talah Aissa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reports an experimental study of the influence of marble powder used as a partial substitute for Portland cement (PC) on the mechanical properties and durability of high-performance concretes. The analysis of the experimental results on concrete at 15% content of marble powder with a fineness modulus of 11500 cm2/g, in a chloride environment, showed that it contributes positively to the perfection of its mechanical characteristics, its durability with respect to migration of chloride ions and oxygen permeability. On the basis of the experiments performed, it can be concluded that the marble powder is suitable for formulation of high performance concretes (HPC) and their properties are significantly better compared to the reference concrete (RC). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=marble%20powder" title="marble powder">marble powder</a>, <a href="https://publications.waset.org/abstracts/search?q=durability" title=" durability"> durability</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=cement" title=" cement"> cement</a> </p> <a href="https://publications.waset.org/abstracts/34467/effects-of-the-usage-of-marble-powder-as-partial-replacement-of-cement-on-the-durability-of-high-performance-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34467.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">333</span> Experimental Study of Mechanical and Durability Properties of HPC Made with Binary Blends of Cement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vatsal%20Patel">Vatsal Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Niraj%20Shah"> Niraj Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the research reported in this paper is to assess the Strength and durability performance of High Performance Concrete containing different percentages of waste marble powder produced from marble industry. Concrete mixes possessing a target mean compressive strength of 70MPa were prepared with 0%,5%,10%,15% and 20% cement replacement by waste marble powder with W/B =0.33. More specifically, the compressive strength, flexural strength, chloride penetration, sorptivity and accelerated corrosion were determined. Concrete containing 10% waste marble powder proved to have best Mechanical and durability properties than other mixtures made with binary blends. However, poorer performance was noticeable when replacement percentage was higher. The replacement of Waste Marble Powder will have major environmental benefits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=durability" title="durability">durability</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20performance%20concrete" title=" high performance concrete"> high performance concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=marble%20waste%20powder" title=" marble waste powder"> marble waste powder</a>, <a href="https://publications.waset.org/abstracts/search?q=sorptivity" title=" sorptivity"> sorptivity</a>, <a href="https://publications.waset.org/abstracts/search?q=accelerated%20corrosion" title=" accelerated corrosion"> accelerated corrosion</a> </p> <a href="https://publications.waset.org/abstracts/33418/experimental-study-of-mechanical-and-durability-properties-of-hpc-made-with-binary-blends-of-cement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33418.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">332</span> Effects of Charge Fluctuating Positive Dust on Linear Dust-Acoustic Waves </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanjit%20Kumar%20Paul">Sanjit Kumar Paul</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Mamun"> A. A. Mamun</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Amin"> M. R. Amin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Linear propagation of the dust-acoustic wave in a dusty plasma consisting of Boltzmann distributed electrons and ions and mobile charge fluctuating positive dust grains has been investigated by employing the reductive perturbation method. It has been shown that the dust charge fluctuation is a source of dissipation and its responsible for the formation of the dust-acoustic waves in such a dusty plasma. The basic features of such dust-acoustic waves have been identified. It has been proposed to design a new laboratory experiment which will be able to identify the basic features of the dust-acoustic waves predicted in this theoretical investigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dust%20acoustic%20waves" title="dust acoustic waves">dust acoustic waves</a>, <a href="https://publications.waset.org/abstracts/search?q=dusty%20plasma" title=" dusty plasma"> dusty plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=Boltzmann%20distributed%20electrons" title=" Boltzmann distributed electrons"> Boltzmann distributed electrons</a>, <a href="https://publications.waset.org/abstracts/search?q=charge%20fluctuation" title=" charge fluctuation"> charge fluctuation</a> </p> <a href="https://publications.waset.org/abstracts/8380/effects-of-charge-fluctuating-positive-dust-on-linear-dust-acoustic-waves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8380.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">637</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">331</span> Physical Characterization of Indoor Dust Particles Using Scanning Electron Microscope (SEM)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatima%20S.%20Mohammed">Fatima S. Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Derrick%20Crump"> Derrick Crump</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Harmattan, a dusty weather condition characterized by thick smog-like suspended particles and dust storm are the peculiar events that happen during ¾ of the year in the Sahelian regions including Damaturu Town, Nigeria), resulting in heavy dust deposits especially indoors. The inhabitants of the Damaturu community are always inflicted with different ailments; respiratory tract infections, asthma, gastrointestinal infections and different ailments associated with the dusty nature of the immediate environment. This brought the need to investigate the nature of the settled indoor dust. Vacuum cleaner bag dust was collected from indoor of some Nigerian and UK homes, as well as outdoors including during seasonal dusty weather event (Harmattan and Storm dust). The dust was sieved, and the (150 µm size) particles were examined using scanning electron microscope (SEM). The physical characterization of the settled dust samples has revealed the various shapes and sizes, and elemental composition of the dust samples is indicating that some of the dust fractions were the respirable fractions and also the dust contained PM10 to PM 2.5 fractions with possible health effects. The elemental compositions were indicative of the diverse nature of the dust particle sources, which showed dust as a complex matrix. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indoor%20dust" title="indoor dust">indoor dust</a>, <a href="https://publications.waset.org/abstracts/search?q=Harmattan%20dust" title=" Harmattan dust"> Harmattan dust</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20effects" title=" health effects"> health effects</a> </p> <a href="https://publications.waset.org/abstracts/60517/physical-characterization-of-indoor-dust-particles-using-scanning-electron-microscope-sem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60517.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">330</span> Fire Safety Engineering of Wood Dust Layer or Cloud</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marzena%20P%C3%B3%C5%82ka">Marzena Półka</a>, <a href="https://publications.waset.org/abstracts/search?q=Bo%C5%BCena%20Kukfisz"> Bożena Kukfisz </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an analysis of dust explosion hazards in the process industries. It includes selected testing method of dust explosibility and presentation two of them according to experimental standards used by Department of Combustion and Fire Theory in The Main School of Fire Service in Warsaw. In the article are presented values of maximum acceptable surface temperature (MAST) of machines operating in the presence of dust cloud and chosen dust layer with thickness of 5 and 12,5mm. The comparative analysis, points to the conclusion that the value of the minimum ignition temperature of the layer (MITL) and the minimum ignition temperature of dust cloud (MTCD) depends on the granularity of the substance. Increasing the thickness of the dust layer reduces minimum ignition temperature of dust layer. Increasing the thickness of dust at the same time extends the flameless combustion and delays the ignition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fire%20safety%20engineering" title="fire safety engineering">fire safety engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20hazards" title=" industrial hazards"> industrial hazards</a>, <a href="https://publications.waset.org/abstracts/search?q=minimum%20ignition%20temperature" title=" minimum ignition temperature"> minimum ignition temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20dust" title=" wood dust"> wood dust</a> </p> <a href="https://publications.waset.org/abstracts/3163/fire-safety-engineering-of-wood-dust-layer-or-cloud" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3163.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">329</span> Studies on Design of Cyclone Separator with Tri-Chambered Filter Unit for Dust Removal in Rice Mills</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20K.%20Chandrashekar">T. K. Chandrashekar</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Harish%20Kumar"> R. Harish Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20B.%20Prasad"> T. B. Prasad</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20R.%20Rajashekhar"> C. R. Rajashekhar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cyclone separators are normally used for dust collection in rice mills for a long time. However, their dust collection efficiency is lower and is influenced by factors like geometry, exit pipe dimensions and length, humidity, and temperature at dust generation place. The design of cyclone has been slightly altered, and the new design has proven to be successful in collecting the dust particles of size up to 10 microns, the major modification was to change the height of exit pipe of the cyclone chamber to have optimum dust collection. The cyclone is coupled with a tri-chambered filter unit with three geo text materials filters of different mesh size to capture the dust less than 10 micron. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyclone-separator" title="cyclone-separator">cyclone-separator</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20mill" title=" rice mill"> rice mill</a>, <a href="https://publications.waset.org/abstracts/search?q=tri%20chambered%20filter" title=" tri chambered filter"> tri chambered filter</a>, <a href="https://publications.waset.org/abstracts/search?q=dust%20removal" title=" dust removal"> dust removal</a> </p> <a href="https://publications.waset.org/abstracts/13362/studies-on-design-of-cyclone-separator-with-tri-chambered-filter-unit-for-dust-removal-in-rice-mills" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13362.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">517</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">328</span> Garlic Extracts Stimulating Innate Immune System in Marble Goby (Oxyeleotris marmoratus)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiraporn%20Rojtinnakorn">Jiraporn Rojtinnakorn</a>, <a href="https://publications.waset.org/abstracts/search?q=Mallika%20Supa-Aksorn"> Mallika Supa-Aksorn</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudaporn%20Tongsiri"> Sudaporn Tongsiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Prachaub%20Chaibu"> Prachaub Chaibu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Marble goby is one of high demand consuming in Southeast Asia. However, the product was from riparian fisheries because of low yield in aquaculture, especially in nursery stage. Therefore, we studied for herb supplement in pellet feed of marble goby fingering. Garlic, a common herb and illustrated novel pharmaceutical and medical effectiveness, was considered. Garlic extracts with water (DW), 50% EtOH (50E), 95% EtOH (95E) and diethyl ether (DE) were subjected for feed additive to induce immune response in marble goby fingering for 0 (control), 0.3, 0.5, 1.0, 3.0 and 5.0 % (w/w). After seven days of feeding, blood was collected for analysis of blood composition; i.e. haematocrit (HCT), red blood cells (RBC), white blood cells (WBC) and humoral immune responses; i.e. lysozyme activity (Lys). It was resulted that values of HCT, WBC and Lys in all garlic fed group were significantly different from control (p < 0.05). For HCT, the highest values belonged to 5% DW and 0.5% 95E. For WBC and Lys, the highest values were 5% DW. For RBC, there was not obviously significant (p < 0.05). There were only 3 groups; 0.5% 95E, 1% and 5% DW, showed distinct statistical significance from the other groups. It was concluded that garlic extracts showed satisfy bioactivity to enhancing innate immune response in marble goby fingering. This result will be valuable for specific feed formula of marble goby nursery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=garlic%20extract" title="garlic extract">garlic extract</a>, <a href="https://publications.waset.org/abstracts/search?q=innate%20immune" title=" innate immune"> innate immune</a>, <a href="https://publications.waset.org/abstracts/search?q=marble%20goby" title=" marble goby"> marble goby</a>, <a href="https://publications.waset.org/abstracts/search?q=Oxyeleotris%20marmoratus" title=" Oxyeleotris marmoratus "> Oxyeleotris marmoratus </a> </p> <a href="https://publications.waset.org/abstracts/64906/garlic-extracts-stimulating-innate-immune-system-in-marble-goby-oxyeleotris-marmoratus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64906.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">327</span> Real-Time Classification of Marbles with Decision-Tree Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20S.%20Parlak">K. S. Parlak</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Turan"> E. Turan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The separation of marbles according to the pattern quality is a process made according to expert decision. The classification phase is the most critical part in terms of economic value. In this study, a self-learning system is proposed which performs the classification of marbles quickly and with high success. This system performs ten feature extraction by taking ten marble images from the camera. The marbles are classified by decision tree method using the obtained properties. The user forms the training set by training the system at the marble classification stage. The system evolves itself in every marble image that is classified. The aim of the proposed system is to minimize the error caused by the person performing the classification and achieve it quickly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=decision%20tree" title="decision tree">decision tree</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20extraction" title=" feature extraction"> feature extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=k-means%20clustering" title=" k-means clustering"> k-means clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=marble%20classification" title=" marble classification"> marble classification</a> </p> <a href="https://publications.waset.org/abstracts/76038/real-time-classification-of-marbles-with-decision-tree-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76038.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">326</span> The Use of Cement Dust in the Glass Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Magda%20Kosmal">Magda Kosmal</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20A.%20Ku%C5%9Bnierz"> Anna A. Kuśnierz</a>, <a href="https://publications.waset.org/abstracts/search?q=Joanna%20Rybicka-%C5%81ada"> Joanna Rybicka-Łada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the case of waste glass cullet, a fully functioning recycling system for individual glass industries was developed, while recycling of cement dust encounters a number of difficulties and is conducted to a limited extent in the packaging and flat glass industry. The aim of the project was to examine the possibility of using dust arising in cement plants in the process of melting various types of glasses. Dust management has a positive effect on the aspect of environmental protection and ecology. Sets have been designed, and the parameters of the melting process have been optimized. Glasses were obtained with the addition of selected cement dust on a laboratory scale, using DTA, XRD, SEM tests, and a gradient furnace was conducted to check the tendency to crystallization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cement%20dust" title="cement dust">cement dust</a>, <a href="https://publications.waset.org/abstracts/search?q=crystallization" title=" crystallization"> crystallization</a>, <a href="https://publications.waset.org/abstracts/search?q=glass" title=" glass"> glass</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a> </p> <a href="https://publications.waset.org/abstracts/176660/the-use-of-cement-dust-in-the-glass-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176660.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">325</span> Particle Dust Layer Density and the Optical Wavelength Absorption Relationship in Photovoltaic Module</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Mesrouk">M. Mesrouk</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Hadj%20Arab"> A. Hadj Arab </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work allows highlight the effect of dust on the absorption of the optical spectrum on the photovoltaic module, the effect of the particles dust presence on the photovoltaic modules have been a microscopic scale studied with COMSOL Multi-physic software simulation. In this paper, we have supposed the dust layer as a diffraction network repetitive optical structure characterized by the spacing between particle which represented by 'd' and the simulated structure (air-dust particle-glass). In this study we can observe the relationship between the wavelength and the particle spacing, the simulation shows us that the maximum wavelength transmission value corresponding, λ0 = 400nm, which represent the spacing value between the particles dust, d = 400 nm. In fact, we can observe that while increase dust layer density the wavelength transmission value decrease, there is a relationship between the density and wavelength value which can be absorbed in a dusty photovoltaic panel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dust%20effect" title="dust effect">dust effect</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20module" title=" photovoltaic module"> photovoltaic module</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20absorption" title=" spectral absorption"> spectral absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelength%20transmission" title=" wavelength transmission"> wavelength transmission</a> </p> <a href="https://publications.waset.org/abstracts/30291/particle-dust-layer-density-and-the-optical-wavelength-absorption-relationship-in-photovoltaic-module" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30291.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">463</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">324</span> Using Artificial Vision Techniques for Dust Detection on Photovoltaic Panels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gustavo%20Funes">Gustavo Funes</a>, <a href="https://publications.waset.org/abstracts/search?q=Eduardo%20Peters"> Eduardo Peters</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20Delpiano"> Jose Delpiano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is widely known that photovoltaic technology has been massively distributed over the last decade despite its low-efficiency ratio. Dust deposition reduces this efficiency even more, lowering the energy production and module lifespan. In this work, we developed an artificial vision algorithm based on CIELAB color space to identify dust over panels in an autonomous way. We performed several experiments photographing three different types of panels, 30W, 340W and 410W. Those panels were soiled artificially with uniform and non-uniform distributed dust. The algorithm proposed uses statistical tools to provide a simulation with a 100% soiled panel and then performs a comparison to get the percentage of dirt in the experimental data set. The simulation uses a seed that is obtained by taking a dust sample from the maximum amount of dust from the dataset. The final result is the dirt percentage and the possible distribution of dust over the panel. Dust deposition is a key factor for plant owners to determine cleaning cycles or identify nonuniform depositions that could lead to module failure and hot spots. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dust%20detection" title="dust detection">dust detection</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic" title=" photovoltaic"> photovoltaic</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20vision" title=" artificial vision"> artificial vision</a>, <a href="https://publications.waset.org/abstracts/search?q=soiling" title=" soiling"> soiling</a> </p> <a href="https://publications.waset.org/abstracts/182064/using-artificial-vision-techniques-for-dust-detection-on-photovoltaic-panels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182064.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">50</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">323</span> The Effect of Fly Ash in Dewatering of Marble Processing Wastewaters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20A.%20Taner">H. A. Taner</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20%C3%96nen"> V. Önen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the thermal power plants established to meet the energy need, lignite with low calorie and high ash content is used. Burning of these coals results in wastes such as fly ash, slag and flue gas. This constitutes a significant economic and environmental problems. However, fly ash can find evaluation opportunities in various sectors. In this study, the effectiveness of fly ash on suspended solid removal from marble processing wastewater containing high concentration of suspended solids was examined. Experiments were carried out for two different suspensions, marble and travertine. In the experiments, FeCl<sub>3</sub>, Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> and anionic polymer A130 were used also to compare with fly ash. Coagulant/flocculant type/dosage, mixing time/speed and pH were the experimental parameters. The performances in the experimental studies were assessed with the change in the interface height during sedimentation resultant and turbidity values of treated water. The highest sedimentation efficiency was achieved with anionic flocculant. However, it was determined that fly ash can be used instead of FeCl<sub>3</sub> and Al<sub>2</sub>(SO<sub>4</sub>)<sub>3 </sub>in the travertine plant as a coagulant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dewatering" title="dewatering">dewatering</a>, <a href="https://publications.waset.org/abstracts/search?q=flocculant" title=" flocculant"> flocculant</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title=" fly ash"> fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=marble%20plant%20wastewater" title=" marble plant wastewater"> marble plant wastewater</a> </p> <a href="https://publications.waset.org/abstracts/91052/the-effect-of-fly-ash-in-dewatering-of-marble-processing-wastewaters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91052.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">322</span> Changes in Serum Neopterin in Workers Exposed to Different Mineral Dust</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gospodinka%20Prakova">Gospodinka Prakova</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavlina%20Gidikova"> Pavlina Gidikova</a>, <a href="https://publications.waset.org/abstracts/search?q=Gergana%20Sandeva"> Gergana Sandeva</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamelia%20Haracherova"> Kamelia Haracherova</a>, <a href="https://publications.waset.org/abstracts/search?q=Emil%20Slavov"> Emil Slavov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Neopterin was demonstrated to be a sensitive marker of cell-mediated immune reactions which plays a key role in the interaction of monocyte / macrophage activation. The purpose of this work was to investigate changes in serum neopterin in workers exposed to different composition of mineral dust. Material and Methods: Serum neopterin was studied in 193 exposed workers, divided into three groups, depending on the mineral dust and content of the quartz in the respirable fraction. The I-st group-coal dust containing less than 2% free crystalline silica (n=44), II-nd group-coal dust containing over 2% free crystalline silica (n=94) and the III-rd group-mixed dust with corundum and carborundum (n=55). The control group was composed of 21 individuals without exposure to dust. Serum neopterin was investigated by Elisa method in ng/ml according to the instructions of the manufacturer. Results and Discussion: It was found significantly higher level of serum neopterin in exposed workers of mineral dust (2,10 ± 0,62 ng / ml), compared with that of the control group (1,10 ± 0,85 ng/ml; p < 0,05). Neopterin levels in workers exposed to coal dust (1,87 ± 0,42 ng / ml-I-st and 3,32 ± 0,77 ng / ml-II-nd group) were significantly higher compared with those exposed to a mixed dust (1,31±0,68 mg / ml-third) and control group (p < 0,05). No significant difference in serum neopterin when exposed to a mixed dust composed of corundum and carborundum (III-rd) and a control group. Conclusion: The results of this study indicate activates a cell-mediated immune response when exposed to a mineral dust. The level of that activation depends mainly on the composition of the dust and is significantly highest in workers exposed to coal dust. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mineral%20dust" title="mineral dust">mineral dust</a>, <a href="https://publications.waset.org/abstracts/search?q=neopterin" title=" neopterin"> neopterin</a>, <a href="https://publications.waset.org/abstracts/search?q=occupational%20exposure" title=" occupational exposure"> occupational exposure</a>, <a href="https://publications.waset.org/abstracts/search?q=respirable%20crystalline%20silica" title=" respirable crystalline silica"> respirable crystalline silica</a> </p> <a href="https://publications.waset.org/abstracts/69706/changes-in-serum-neopterin-in-workers-exposed-to-different-mineral-dust" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69706.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">321</span> The Effect of Street Dust on Urban Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Turki%20M.%20Habeebullah">Turki M. Habeebullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdel%20Hameed%20A.%20A.%20Awad"> Abdel Hameed A. A. Awad</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20Munir"> Said Munir</a>, <a href="https://publications.waset.org/abstracts/search?q=Atif%20M.%20F.%20Mohammed"> Atif M. F. Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Essam%20A.%20Morsy"> Essam A. Morsy</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulaziz%20R.%20Seroji"> Abdulaziz R. Seroji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Street dust has been knoweldged as an important source of air pollution. It does not remain deposited in a place for long, as it is easily resuspended back into the atmosphere. Street dust is a complex mixture derived from different sources: Deposited dust, traffic, tire, and brake wear, construction and demolition processes. The present study aims to evaluate the elementals ”iron, calcium, lead, cadmium, nickel, silicon, and selenium” and microbial “bacteria and fungi” contents associated street dust at the holy mosque areas. The street dust was collected by sweeping an arera~1m2 along the both sides of the road. The particles with diameter ≤ 1.7 µm constitued the highest percentages of the total particulate ≤45 µm. Moreover, The crustal species: iron and calcium were found in the highest concentrations, and proof that demolition and constricution were the main source of street dust. Also, the low biodiversity of microorganisms is attributed to severe weather conditions and characteristics of the arid environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dust" title="dust">dust</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial" title=" microbial"> microbial</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=street" title=" street"> street</a> </p> <a href="https://publications.waset.org/abstracts/30427/the-effect-of-street-dust-on-urban-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30427.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">553</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">320</span> Cosmic Dust as Dark Matter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Prevenslik">Thomas Prevenslik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Weakly Interacting Massive Particle (WIMP) experiments suggesting dark matter does not exist are consistent with the argument that the long-standing galaxy rotation problem may be resolved without the need for dark matter if the redshift measurements giving the higher than expected galaxy velocities are corrected for the redshift in cosmic dust. Because of the ubiquity of cosmic dust, all velocity measurements in astronomy based on redshift are most likely overstated, e.g., an accelerating Universe expansion need not exist if data showing supernovae brighter than expected based on the redshift/distance relation is corrected for the redshift in dust. Extensions of redshift corrections for cosmic dust to other historical astronomical observations are briefly discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alternative%20theories" title="alternative theories">alternative theories</a>, <a href="https://publications.waset.org/abstracts/search?q=cosmic%20dust%20redshift" title=" cosmic dust redshift"> cosmic dust redshift</a>, <a href="https://publications.waset.org/abstracts/search?q=doppler%20effect" title=" doppler effect"> doppler effect</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20mechanics" title=" quantum mechanics"> quantum mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20electrodynamics" title=" quantum electrodynamics"> quantum electrodynamics</a> </p> <a href="https://publications.waset.org/abstracts/60993/cosmic-dust-as-dark-matter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60993.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">319</span> Steel Dust as a Coating Agent for Iron Ore Pellets at Ironmaking</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Bahgat">M. Bahgat</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Hanafy"> H. Hanafy</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Al-Tassan"> H. Al-Tassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cluster formation is an essential phenomenon during direct reduction processes at shaft furnaces. Decreasing the reducing temperature to avoid this problem can cause a significant drop in throughput. In order to prevent sticking of pellets, a coating material basically inactive under the reducing conditions prevailing in the shaft furnace, should be applied to cover the outer layer of the pellets. In the present work, steel dust is used as coating material for iron ore pellets to explore dust coating effectiveness and determines the best coating conditions. Steel dust coating is applied for iron ore pellets in various concentrations. Dust slurry concentrations of 5.0-30% were used to have a coated steel dust amount of 1.0-5.0 kg per ton iron ore. Coated pellets with various concentrations were reduced isothermally in weight loss technique with simulated gas mixture to the composition of reducing gases at shaft furnaces. The influences of various coating conditions on the reduction behavior and the morphology were studied. The optimum reduced samples were comparatively applied for sticking index measurement. It was found that the optimized steel dust coating condition that achieve higher reducibility with lower sticking index was 30% steel dust slurry concentration with 3.0 kg steel dust/ton ore. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reduction" title="reduction">reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=ironmaking" title=" ironmaking"> ironmaking</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20dust" title=" steel dust"> steel dust</a>, <a href="https://publications.waset.org/abstracts/search?q=coating" title=" coating"> coating</a> </p> <a href="https://publications.waset.org/abstracts/83968/steel-dust-as-a-coating-agent-for-iron-ore-pellets-at-ironmaking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83968.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">318</span> Dust Holding Capacity of Some Selected Road Side Tree Species</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jitin%20Rahul">Jitin Rahul</a>, <a href="https://publications.waset.org/abstracts/search?q=Manish%20Kumar%20Jain"> Manish Kumar Jain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dust pollution refers to the various locations, activities, or factors which are responsible for the releasing of pollutants into the atmosphere. The sources of dust can be classified into two major categories anthropogenic sources (man-made sources) and natural sources. Dust kicked up by heavy vehicles (Bus, Truck, Loaders, Tankers, car etc.) travelling on highways may make up approximately 33-40% of air pollution. Plants naturally cleanse the atmosphere by absorbing gases and particulate matter plants (Leaves). Plants are very good pollution indicator and also very good for dust capturing (Dust controlling). Many types tree species like Azadirachta indica A. juss, Butea monosperma (Lam.) Kuntz., Ficus bengalensis (Linn)., Pterocarpus marspium (Roxb.), Terminalia arjuna (Roxb, exDC.), Dalbergia sissoo roxb., and Ficus religiosa (Linn.) generally occur in roadside. These selected tree spiciness can control the dust pollution or dust capturing. It is well known that plants absorb particulate pollutants and help in dust controlling. Some tree species like (Ficus bengalensis, Ficus religiosa and Azadirachta indica) are very effective and natural means for controlling air pollution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dust" title="dust">dust</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=road" title=" road"> road</a>, <a href="https://publications.waset.org/abstracts/search?q=tree%20species" title=" tree species"> tree species</a> </p> <a href="https://publications.waset.org/abstracts/45792/dust-holding-capacity-of-some-selected-road-side-tree-species" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45792.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">317</span> Garlic (Allium sativum) Extract Enhancing Protein Digestive Enzymes and Growth Performance in Marble Goby (Oxyleotris marmorata) Juvenile</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaturong%20Matidtor">Jaturong Matidtor</a>, <a href="https://publications.waset.org/abstracts/search?q=Krisna%20R.%20Torrissen"> Krisna R. Torrissen</a>, <a href="https://publications.waset.org/abstracts/search?q=Saengtong%20%20Pongjareankit"> Saengtong Pongjareankit</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudaporn%20Tongsiri"> Sudaporn Tongsiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiraporn%20%20Rojtinnakorn"> Jiraporn Rojtinnakorn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Low survival rate has being particular problem in nursery of marble goby juvenile. The aim of this study was to investigate effect of garlic extract on protein digestive pancreatic enzymes, trypsin (T) and chymotrypsin (C). The marble goby were reared with commercial feed mixed garlic extract at concentration of 0 (control), 0.3, 0.5, 1.0, 3.0 and 5.0% (w/w) for 6 weeks. Analysis of the digestive enzymes at 2 and 6 weeks was performed. Growth parameters; weight gain (WG), specific growth rate (SGR) and feed efficiency (FE), were identified. For T, C and T/C at 2 weeks, values of T and T/C ratio of 0.3% (w/w) group showed significant difference (p < 0.05) with the highest values of 17685.64± 11981.77 U/mg protein and of 51.64 ± 27.46 U/mg protein, respectively. For C at 2 weeks, 0% (w/w) group showed the highest values of 16191.76± 2225.56 U/mg protein. Whereas value of T, C and T/C ratio at 6 weeks, there was no significant difference (p > 0.05). For growth performance, it significantly increased in all garlic extract fed groups (0.3-5.0%, w/w), both at 2 and 6 weeks. At 2 weeks, values of WG and SGR of 0.5% (w/w) group showed the highest values of 71.51 ± 1.60%, and 3.85 ± 0.07%, respectively. For FE, 0.3% (w/w) group showed the highest value of 60.21 ± 6.51%. At 6 weeks, it illustrated that all growth parameters of 5.0% (w/w) group were the highest values; WG = 35.06 ± 5.66%, SGR = 2.14 ± 0.30%, and FE = 5.86 ± 0.68%. We suggested that garlic extract could be available for protein digestive enzyme and growth enhancement in marble goby nursery with artificial feed. This result will be high benefit for commercial aquaculture of marble goby. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=marble%20goby" title="marble goby">marble goby</a>, <a href="https://publications.waset.org/abstracts/search?q=nursery" title=" nursery"> nursery</a>, <a href="https://publications.waset.org/abstracts/search?q=garlic%20extract" title=" garlic extract"> garlic extract</a>, <a href="https://publications.waset.org/abstracts/search?q=digestive%20enzyme" title=" digestive enzyme"> digestive enzyme</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a> </p> <a href="https://publications.waset.org/abstracts/64912/garlic-allium-sativum-extract-enhancing-protein-digestive-enzymes-and-growth-performance-in-marble-goby-oxyleotris-marmorata-juvenile" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64912.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">316</span> Using Construction Wastes and Recyclable Materials in Sustainable Concrete Manufacture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20T.%20El-Hawary">Mohamed T. El-Hawary</a>, <a href="https://publications.waset.org/abstracts/search?q=Carsten%20Koenke"> Carsten Koenke</a>, <a href="https://publications.waset.org/abstracts/search?q=Amr%20M.%20El-Nemr"> Amr M. El-Nemr</a>, <a href="https://publications.waset.org/abstracts/search?q=Nagy%20F.%20Hanna"> Nagy F. Hanna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sustainable construction materials using solid construction wastes are of great environmental and economic significance. Construction wastes, demolishing wastes, and wastes coming out from the preparation of traditional materials could be used in sustainable concrete manufacture, which is the main scope of this paper. Ceramics, clay bricks, marble, recycled concrete, and many other materials should be tested and validated for use in the manufacture of green concrete. Introducing waste materials in concrete helps in reducing the required landfills, leaving more space for land investments, and decrease the environmental impact of the concrete buildings industry in both stages -construction and demolition-. In this paper, marble aggregate is used as a replacement for the natural aggregate in sustainable green concrete production. The results showed that marble aggregates can be used as a full replacement for the natural aggregates in eco-friendly green concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coarse%20aggregate%20replacement" title="coarse aggregate replacement">coarse aggregate replacement</a>, <a href="https://publications.waset.org/abstracts/search?q=economical%20designs" title=" economical designs"> economical designs</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20concrete" title=" green concrete"> green concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=marble%20aggregates" title=" marble aggregates"> marble aggregates</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20management" title=" waste management"> waste management</a> </p> <a href="https://publications.waset.org/abstracts/119963/using-construction-wastes-and-recyclable-materials-in-sustainable-concrete-manufacture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119963.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">315</span> Effect of Viscosity in Void Structure with Interacting Variable Charge Dust Grains</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nebbat%20El%20Amine">Nebbat El Amine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The void is a dust free region inside the dust cloud in the plasma. It is found that the dust grain charge variation lead to the extension of the void. Moreover, for bigger dust grains, it is seen that the wave-like structure recedes when charge variation is dealt with. Furthermore, as the grain-grain distance is inversely proportional to density, the grain-grain interaction gets more important for a denser dust population and is to be included in momentum equation. For the result indicate above, the plasma is considered non viscous. But in fact, it’s not always true. Some authors measured experimentally the viscosity of this background and found that the viscosity of dusty plasma increase with background gas pressure. In this paper, we tack account the viscosity of the fluid, and we compare the result with that found in the recent work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=voids" title="voids">voids</a>, <a href="https://publications.waset.org/abstracts/search?q=dusty%20plasmas" title=" dusty plasmas"> dusty plasmas</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20charge" title=" variable charge"> variable charge</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a> </p> <a href="https://publications.waset.org/abstracts/157586/effect-of-viscosity-in-void-structure-with-interacting-variable-charge-dust-grains" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157586.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">314</span> Use of Fine Marble in Concrete Based On Sand Dune</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Belachia">M. Belachia</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Djebien"> R. Djebien</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the development that our country has in all areas and especially in the field of Building and Construction, the development of new building materials is a current problem where researchers are trying to find the right materials for each region and returning cheapest countries. Enhancement of crushed sand and sand dunes and reuse of waste as additions in concrete can help to overcome the deficit in aggregates. This work focuses on the development of concrete made from sand, knowing that our country has huge potential in sand dune. This study is complemented by a review of the possibility of using certain recycled wastes in concrete sand, including the effect of fines (marble powders) on the rheological and mechanical properties of concrete and sand to the outcome optimal formulation. After the characterization phase of basic materials, we proceeded to carry out the experimental program was to search the optimum characteristics by adding different percentages of fines. The aim is to show that the possibility of using local materials (sand dune) for the manufacture of concrete and reuse of waste (marble powders) in the implementation of concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sand%20dune" title="sand dune">sand dune</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=rheological%20properties" title=" rheological properties"> rheological properties</a>, <a href="https://publications.waset.org/abstracts/search?q=fine%20marble" title=" fine marble"> fine marble</a> </p> <a href="https://publications.waset.org/abstracts/16777/use-of-fine-marble-in-concrete-based-on-sand-dune" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16777.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">467</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">313</span> Numerical Modeling of Air Pollution with PM-Particles and Dust</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Gigauri">N. Gigauri</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Surmava"> A. Surmava</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Intskirveli"> L. Intskirveli</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Kukhalashvili"> V. Kukhalashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Mdivani"> S. Mdivani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The subject of our study is atmospheric air pollution with numerical modeling. In the presented article, as the object of research, there is chosen city Tbilisi, the capital of Georgia, with a population of one and a half million and a difficult terrain. The main source of pollution in Tbilisi is currently vehicles and construction dust. The concentrations of dust and PM (Particulate Matter) were determined in the air of Tbilisi and in its vicinity. There are estimated their monthly maximum, minimum, and average concentrations. Processes of dust propagation in the atmosphere of the city and its surrounding territory are modelled using a 3D regional model of atmospheric processes and an admixture transfer-diffusion equation. There were taken figures of distribution of the polluted cloud and dust concentrations in different areas of the city at different heights and at different time intervals with the background stationary westward and eastward wind. It is accepted that the difficult terrain and mountain-bar circulation affect the deformation of the cloud and its spread, there are determined time periods when the dust concentration in the city is greater than MAC (Maximum Allowable Concentration, MAC=0.5 mg/m³). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20pollution" title="air pollution">air pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=dust" title=" dust"> dust</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20modeling" title=" numerical modeling"> numerical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=PM-particles" title=" PM-particles"> PM-particles</a> </p> <a href="https://publications.waset.org/abstracts/122101/numerical-modeling-of-air-pollution-with-pm-particles-and-dust" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122101.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">312</span> Microstructures and Chemical Compositions of Quarry Dust As Alternative Building Material in Malaysia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Murad%20Zainal%20Abidin">Abdul Murad Zainal Abidin</a>, <a href="https://publications.waset.org/abstracts/search?q=Tuan%20Suhaimi%20Salleh"> Tuan Suhaimi Salleh</a>, <a href="https://publications.waset.org/abstracts/search?q=Siti%20Nor%20Azila%20Khalid"> Siti Nor Azila Khalid</a>, <a href="https://publications.waset.org/abstracts/search?q=Noryati%20Mustapa"> Noryati Mustapa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quarry dust is a quarry end product from rock crushing processes, which is a concentrated material used as an alternative to fine aggregates for concreting purposes. In quarrying activities, the rocks are crushed into aggregates of varying sizes, from 75mm until less than 4.5 mm, the size of which is categorized as quarry dust. The quarry dust is usually considered as waste and not utilized as a recycled aggregate product. The dumping of the quarry dust at the quarry plant poses the risk of environmental pollution and health hazard. Therefore, the research is an attempt to identify the potential of quarry dust as an alternative building material that would reduce the materials and construction costs, as well as contribute effort in mitigating depletion of natural resources. The objectives are to conduct material characterization and evaluate the properties of fresh and hardened engineering brick with quarry dust mix proportion. The microstructures of quarry dust and the bricks were investigated using scanning electron microscopy (SEM), and the results suggest that the shape and surface texture of quarry dust is a combination of hard and angular formation. The chemical composition of the quarry dust was also evaluated using X-ray fluorescence (XRF) and compared against sand and concrete. The quarry dust was found to have a higher presence of alumina (Al₂O₃), indicating the possibility of an early strength effect for brick. They are utilizing quarry dust waste as replacement material has the potential of conserving non-renewable resources as well as providing a viable alternative to disposal of current quarry waste. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20materials" title="building materials">building materials</a>, <a href="https://publications.waset.org/abstracts/search?q=cement%20replacement" title=" cement replacement"> cement replacement</a>, <a href="https://publications.waset.org/abstracts/search?q=quarry%20microstructure" title=" quarry microstructure"> quarry microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=quarry%20product" title=" quarry product"> quarry product</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20materials" title=" sustainable materials"> sustainable materials</a> </p> <a href="https://publications.waset.org/abstracts/143286/microstructures-and-chemical-compositions-of-quarry-dust-as-alternative-building-material-in-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143286.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">311</span> Investigation of the Low-Level Jet Role in Transportation of Shamal Dust Storms in Southwest Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nasim%20Hossein%20Hamzeh">Nasim Hossein Hamzeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Abbas%20Ranjbar%20Saadat%20Abadi"> Abbas Ranjbar Saadat Abadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Maggie%20Chel%20Gee%20Ooi"> Maggie Chel Gee Ooi</a>, <a href="https://publications.waset.org/abstracts/search?q=Steven%20Soon-Kai%20Kong"> Steven Soon-Kai Kong</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Opp"> Christian Opp</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dust storm is one of the most important natural disasters in the world, where the Middle East suffers frequently due to the existence of the dust belt region. As a country in the Middle East, Iran mostly is affected by the dust storms from some internal and also external dust sources, mostly originating from deserts in Iraq, Syria, and Saudi Arabia. In this study, some severe Shamal dust storms were investigated in Southwest Iran. The measured 〖PM〗_10 reached up to 834 μg m-3 in some stations in west Iran and Iran-Iraq borders, while the measured 〖PM〗_10 reached up to 4947 μg m-3 SW stations in northern shores of the Persian Gulf. During these severe dust storms, a low-level jet was observed at 930hPa atmospheric level in north Iraq and south Iraq. the jet core and its width were about 16 ms-1 and 100 km, respectively, in the cases where it is located in the NW regions of Iraq and northeastern Syria (at 35°N and 40-41°E), So the jet was stronger at higher latitudes (34°N - 35°N) than at lower latitudes (32°N). Therefore, suitable conditions have been created for lifting of dust sources located in northwestern Iraq and northeastern Syria. The topography surrounding the Mesopotamia and north of the Persian Gulf play a major role in the development of the Low-Level Jet through the interaction of meteorological conditions and mountain forcing. Also, the output of CALIPSO satellite images show dust rising to higher than 5 km in these dust cases, that confirming the influence of Shamal wind on the dust storm occurrence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dust%20storm" title="dust storm">dust storm</a>, <a href="https://publications.waset.org/abstracts/search?q=shamal%20wind" title=" shamal wind"> shamal wind</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20persian%20gulf" title=" the persian gulf"> the persian gulf</a>, <a href="https://publications.waset.org/abstracts/search?q=southwest%20Iran" title=" southwest Iran"> southwest Iran</a> </p> <a href="https://publications.waset.org/abstracts/159602/investigation-of-the-low-level-jet-role-in-transportation-of-shamal-dust-storms-in-southwest-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159602.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=marble%20dust&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=marble%20dust&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=marble%20dust&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=marble%20dust&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=marble%20dust&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=marble%20dust&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=marble%20dust&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=marble%20dust&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=marble%20dust&page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=marble%20dust&page=11">11</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=marble%20dust&page=12">12</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=marble%20dust&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>