CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 110 results for author: <span class="mathjax">Haverkort, M W</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/" aria-role="search"> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Haverkort, M W"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Haverkort%2C+M+W&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Haverkort, M W"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Haverkort%2C+M+W&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Haverkort%2C+M+W&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Haverkort%2C+M+W&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Haverkort%2C+M+W&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.01641">arXiv:2410.01641</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.01641">pdf</a>, <a href="https://arxiv.org/format/2410.01641">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> A method for the automatic generation of a minimal basis set of structural templates for material phase-space exploration </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Annweiler%2C+C">Caja Annweiler</a>, <a href="/search/?searchtype=author&amp;query=Di+Cataldo%2C+S">Simone Di Cataldo</a>, <a href="/search/?searchtype=author&amp;query=Haverkort%2C+M+W">Maurits W. Haverkort</a>, <a href="/search/?searchtype=author&amp;query=Boeri%2C+L">Lilia Boeri</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.01641v1-abstract-short" style="display: inline;"> We present a novel method for predicting binary phase diagrams through the automatic construction of a minimal basis set of representative templates. The core assumption is that any materials space can be divided into a small number of regions with similar chemical tendencies and bonding properties, and that a minimal set of templates can efficiently represent the key chemical trends across the di&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01641v1-abstract-full').style.display = 'inline'; document.getElementById('2410.01641v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.01641v1-abstract-full" style="display: none;"> We present a novel method for predicting binary phase diagrams through the automatic construction of a minimal basis set of representative templates. The core assumption is that any materials space can be divided into a small number of regions with similar chemical tendencies and bonding properties, and that a minimal set of templates can efficiently represent the key chemical trends across the different regions. By combining data-driven techniques with ab-initio crystal structure prediction, we can efficiently partition the materials space and construct templates reflecting variations in chemical behavior. Preliminary results demonstrate that our method predicts binary convex hulls with accuracy comparable to resource-intensive EA searches, while achieving a significant reduction in computational time (by a factor of 25). The method can be extended to ternary and multinary systems, enabling efficient high-throughput exploration and mapping of complex material spaces. By providing a transformative solution for high-throughput materials discovery, our approach paves the way for uncovering advanced quantum materials and accelerating in silico design. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01641v1-abstract-full').style.display = 'none'; document.getElementById('2410.01641v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 figures, 2 tables, 11 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.00151">arXiv:2406.00151</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.00151">pdf</a>, <a href="https://arxiv.org/format/2406.00151">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.111.035124">10.1103/PhysRevB.111.035124 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Neural-network-supported basis optimizer for the configuration interaction problem in quantum many-body clusters: Feasibility study and numerical proof </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Bilous%2C+P">Pavlo Bilous</a>, <a href="/search/?searchtype=author&amp;query=Thirion%2C+L">Louis Thirion</a>, <a href="/search/?searchtype=author&amp;query=Menke%2C+H">Henri Menke</a>, <a href="/search/?searchtype=author&amp;query=Haverkort%2C+M+W">Maurits W. Haverkort</a>, <a href="/search/?searchtype=author&amp;query=P%C3%A1lffy%2C+A">Adriana P谩lffy</a>, <a href="/search/?searchtype=author&amp;query=Hansmann%2C+P">Philipp Hansmann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.00151v1-abstract-short" style="display: inline;"> A deep-learning approach to optimize the selection of Slater determinants in configuration interaction calculations for condensed-matter quantum many-body systems is developed. We exemplify our algorithm on the discrete version of the single-impurity Anderson model with up to 299 bath sites. Employing a neural network classifier and active learning, our algorithm enhances computational efficiency&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.00151v1-abstract-full').style.display = 'inline'; document.getElementById('2406.00151v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.00151v1-abstract-full" style="display: none;"> A deep-learning approach to optimize the selection of Slater determinants in configuration interaction calculations for condensed-matter quantum many-body systems is developed. We exemplify our algorithm on the discrete version of the single-impurity Anderson model with up to 299 bath sites. Employing a neural network classifier and active learning, our algorithm enhances computational efficiency by iteratively identifying the most relevant Slater determinants for the ground-state wavefunction. We benchmark our results against established methods and investigate the efficiency of our approach as compared to other basis truncation schemes. Our algorithm demonstrates a substantial improvement in the efficiency of determinant selection, yielding a more compact and computationally manageable basis without compromising accuracy. Given the straightforward application of our neural network-supported selection scheme to other model Hamiltonians of quantum many-body clusters, our algorithm can significantly advance selective configuration interaction calculations in the context of correlated condensed matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.00151v1-abstract-full').style.display = 'none'; document.getElementById('2406.00151v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.06464">arXiv:2402.06464</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.06464">pdf</a>, <a href="https://arxiv.org/ps/2402.06464">ps</a>, <a href="https://arxiv.org/format/2402.06464">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Penning-trap measurement of the $Q$-value of the electron capture in $^{163}\mathrm{Ho}$ for the determination of the electron neutrino mass </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Schweiger%2C+C">Christoph Schweiger</a>, <a href="/search/?searchtype=author&amp;query=Bra%C3%9F%2C+M">Martin Bra脽</a>, <a href="/search/?searchtype=author&amp;query=Debierre%2C+V">Vincent Debierre</a>, <a href="/search/?searchtype=author&amp;query=Door%2C+M">Menno Door</a>, <a href="/search/?searchtype=author&amp;query=Dorrer%2C+H">Holger Dorrer</a>, <a href="/search/?searchtype=author&amp;query=D%C3%BCllmann%2C+C+E">Christoph E. D眉llmann</a>, <a href="/search/?searchtype=author&amp;query=Enss%2C+C">Christian Enss</a>, <a href="/search/?searchtype=author&amp;query=Filianin%2C+P">Pavel Filianin</a>, <a href="/search/?searchtype=author&amp;query=Gastaldo%2C+L">Loredana Gastaldo</a>, <a href="/search/?searchtype=author&amp;query=Harman%2C+Z">Zolt谩n Harman</a>, <a href="/search/?searchtype=author&amp;query=Haverkort%2C+M+W">Maurits W. Haverkort</a>, <a href="/search/?searchtype=author&amp;query=Herkenhoff%2C+J">Jost Herkenhoff</a>, <a href="/search/?searchtype=author&amp;query=Indelicato%2C+P">Paul Indelicato</a>, <a href="/search/?searchtype=author&amp;query=Keitel%2C+C+H">Christoph H. Keitel</a>, <a href="/search/?searchtype=author&amp;query=Kromer%2C+K">Kathrin Kromer</a>, <a href="/search/?searchtype=author&amp;query=Lange%2C+D">Daniel Lange</a>, <a href="/search/?searchtype=author&amp;query=Novikov%2C+Y+N">Yuri N. Novikov</a>, <a href="/search/?searchtype=author&amp;query=Renisch%2C+D">Dennis Renisch</a>, <a href="/search/?searchtype=author&amp;query=Rischka%2C+A">Alexander Rischka</a>, <a href="/search/?searchtype=author&amp;query=Sch%C3%BCssler%2C+R+X">Rima X. Sch眉ssler</a>, <a href="/search/?searchtype=author&amp;query=Eliseev%2C+S">Sergey Eliseev</a>, <a href="/search/?searchtype=author&amp;query=Blaum%2C+K">Klaus Blaum</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.06464v1-abstract-short" style="display: inline;"> The investigation of the absolute scale of the effective neutrino mass remains challenging due to the exclusively weak interaction of neutrinos with all known particles in the standard model of particle physics. Currently, the most precise and least model-dependent upper limit on the electron antineutrino mass is set by the KATRIN experiment from the analysis of the tritium \b{eta}-decay. Another&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.06464v1-abstract-full').style.display = 'inline'; document.getElementById('2402.06464v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.06464v1-abstract-full" style="display: none;"> The investigation of the absolute scale of the effective neutrino mass remains challenging due to the exclusively weak interaction of neutrinos with all known particles in the standard model of particle physics. Currently, the most precise and least model-dependent upper limit on the electron antineutrino mass is set by the KATRIN experiment from the analysis of the tritium \b{eta}-decay. Another promising approach is the electron capture in $^{163}\mathrm{Ho}$, which is under investigation using microcalorimetry within the ECHo and HOLMES collab orations. An independently measured Q-value of this process is vital for the assessment of systematic uncertainties in the neutrino mass determination. Here, we report a direct, independent determination of this $Q$-value by measuring the free-space cyclotron frequency ratio of highly charged ions of $^{163}\mathrm{Ho}$ and $^{163}\mathrm{Dy}$ in the Penning trap experiment \textsc{Pentatrap}. Combining this ratio with atomic physics calculations of the electronic binding energies yields a $Q$-value of $2863.2(0.6)\,\mathrm{eV}/c^{2}$ - a more than 50-fold improvement over the state-of-the-art. This will enable the determination of the electron neutrino mass on a sub-eV level from the analysis of the electron capture in $^{163}\mathrm{Ho}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.06464v1-abstract-full').style.display = 'none'; document.getElementById('2402.06464v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.03852">arXiv:2402.03852</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.03852">pdf</a>, <a href="https://arxiv.org/format/2402.03852">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Stabilization of U 5$f^2$ configuration in UTe$_2$ through U 6d dimers in the presence of Te2 chains </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Christovam%2C+D+S">Denise S. Christovam</a>, <a href="/search/?searchtype=author&amp;query=Sundermann%2C+M">Martin Sundermann</a>, <a href="/search/?searchtype=author&amp;query=Marino%2C+A">Andrea Marino</a>, <a href="/search/?searchtype=author&amp;query=Takegami%2C+D">Daisuke Takegami</a>, <a href="/search/?searchtype=author&amp;query=Falke%2C+J">Johannes Falke</a>, <a href="/search/?searchtype=author&amp;query=Dolmantas%2C+P">Paulius Dolmantas</a>, <a href="/search/?searchtype=author&amp;query=Harder%2C+M">Manuel Harder</a>, <a href="/search/?searchtype=author&amp;query=Keimer%2C+H+G+a+B">Hlynur Gretarsson amd Bernhard Keimer</a>, <a href="/search/?searchtype=author&amp;query=Gloskovskii%2C+A">Andrei Gloskovskii</a>, <a href="/search/?searchtype=author&amp;query=Haverkort%2C+M+W">Maurits W. Haverkort</a>, <a href="/search/?searchtype=author&amp;query=Elfimov%2C+I">Ilya Elfimov</a>, <a href="/search/?searchtype=author&amp;query=Zwicknagl%2C+G">Gertrud Zwicknagl</a>, <a href="/search/?searchtype=author&amp;query=Andreev%2C+A+V">Alexander V. Andreev</a>, <a href="/search/?searchtype=author&amp;query=Havela%2C+L">Ladislav Havela</a>, <a href="/search/?searchtype=author&amp;query=Bordelon%2C+M+M">Mitchell M. Bordelon</a>, <a href="/search/?searchtype=author&amp;query=Bauer%2C+E+D">Eric D. Bauer</a>, <a href="/search/?searchtype=author&amp;query=Rosa%2C+P+F+S">Priscila F. S. Rosa</a>, <a href="/search/?searchtype=author&amp;query=Severing%2C+A">Andrea Severing</a>, <a href="/search/?searchtype=author&amp;query=Tjeng%2C+L+H">Liu Hao Tjeng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.03852v1-abstract-short" style="display: inline;"> We investigate the topological superconductor candidate UTe$_2$ using high-resolution valence-band resonant inelastic x-ray scattering at the U $M_{4,5}$-edges. We observe atomic-like low-energy excitations that support the correlated nature of this unconventional superconductor. These excitations originate from the U $5f^2$ configuration, which is unexpected since the short Te2-Te2 distances excl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.03852v1-abstract-full').style.display = 'inline'; document.getElementById('2402.03852v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.03852v1-abstract-full" style="display: none;"> We investigate the topological superconductor candidate UTe$_2$ using high-resolution valence-band resonant inelastic x-ray scattering at the U $M_{4,5}$-edges. We observe atomic-like low-energy excitations that support the correlated nature of this unconventional superconductor. These excitations originate from the U $5f^2$ configuration, which is unexpected since the short Te2-Te2 distances exclude Te2 being 2-. By utilizing the photoionization cross-section dependence of the photoemission spectra in combination with band structure calculations, we infer that the stabilization of the U $5f^2$ configuration is due to the U $6d$ bonding states in the U-dimers acting as a charge reservoir. Our results emphasize that the description of the physical properties should commence with a $5f^2$ $ansatz$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.03852v1-abstract-full').style.display = 'none'; document.getElementById('2402.03852v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures, article</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.10663">arXiv:2308.10663</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.10663">pdf</a>, <a href="https://arxiv.org/format/2308.10663">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.132.046401">10.1103/PhysRevLett.132.046401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spectroscopic evidence of Kondo-induced quasi-quartet in CeRh$_2$As$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Christovam%2C+D+S">Denise S. Christovam</a>, <a href="/search/?searchtype=author&amp;query=Ferreira-Carvalho%2C+M">Miguel Ferreira-Carvalho</a>, <a href="/search/?searchtype=author&amp;query=Marino%2C+A">Andrea Marino</a>, <a href="/search/?searchtype=author&amp;query=Sundermann%2C+M">Martin Sundermann</a>, <a href="/search/?searchtype=author&amp;query=Takegami%2C+D">Daisuke Takegami</a>, <a href="/search/?searchtype=author&amp;query=Melendez-Sans%2C+A">Anna Melendez-Sans</a>, <a href="/search/?searchtype=author&amp;query=Tsuei%2C+K+D">Ku Ding Tsuei</a>, <a href="/search/?searchtype=author&amp;query=Hu%2C+Z">Zhiwei Hu</a>, <a href="/search/?searchtype=author&amp;query=Roessler%2C+S">Sahana Roessler</a>, <a href="/search/?searchtype=author&amp;query=Valvidares%2C+M">Manuel Valvidares</a>, <a href="/search/?searchtype=author&amp;query=Haverkort%2C+M+W">Maurits W. Haverkort</a>, <a href="/search/?searchtype=author&amp;query=Liu%2C+Y">Yu Liu</a>, <a href="/search/?searchtype=author&amp;query=Bauer%2C+E+D">Eric D. Bauer</a>, <a href="/search/?searchtype=author&amp;query=Tjeng%2C+L+H">Liu Hao Tjeng</a>, <a href="/search/?searchtype=author&amp;query=Zwicknagl%2C+G">Gertrud Zwicknagl</a>, <a href="/search/?searchtype=author&amp;query=Severing%2C+A">Andrea Severing</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.10663v2-abstract-short" style="display: inline;"> CeRh$_2$As$_2$ is a new multiphase superconductor with strong suggestions for an additional itinerant multipolar ordered phase. The modeling of the low temperature properties of this heavy fermion compound requires a quartet Ce$^{3+}$ crystal-field ground state. Here we provide the evidence for the formation of such a quartet state using x-ray spectroscopy. Core-level photoelectron and x-ray absor&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.10663v2-abstract-full').style.display = 'inline'; document.getElementById('2308.10663v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.10663v2-abstract-full" style="display: none;"> CeRh$_2$As$_2$ is a new multiphase superconductor with strong suggestions for an additional itinerant multipolar ordered phase. The modeling of the low temperature properties of this heavy fermion compound requires a quartet Ce$^{3+}$ crystal-field ground state. Here we provide the evidence for the formation of such a quartet state using x-ray spectroscopy. Core-level photoelectron and x-ray absorption spectroscopy confirm the presence of Kondo hybridization in CeRh$_2$As$_2$. The temperature dependence of the linear dichroism unambiguously reveils the impact of Kondo physics for coupling the Kramer&#39;s doublets into an effective quasi-quartet. Non-resonant inelastic x-ray scattering data find that the $|螕_7^- \rangle$ state with its lobes along the 110 direction of the tetragonal structure ($xy$ orientation) contributes most to the multi-orbital ground state of CeRh$_2$As$_2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.10663v2-abstract-full').style.display = 'none'; document.getElementById('2308.10663v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Letters 132, 046401 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.15100">arXiv:2307.15100</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.15100">pdf</a>, <a href="https://arxiv.org/format/2307.15100">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.045142">10.1103/PhysRevB.108.045142 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Singlet magnetism in intermetallic UGa$_2$ unveiled by inelastic x-ray scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Marino%2C+A">Andrea Marino</a>, <a href="/search/?searchtype=author&amp;query=Sundermann%2C+M">Martin Sundermann</a>, <a href="/search/?searchtype=author&amp;query=Christovam%2C+D+S">Denise S. Christovam</a>, <a href="/search/?searchtype=author&amp;query=Amorese%2C+A">Andrea Amorese</a>, <a href="/search/?searchtype=author&amp;query=Chang%2C+C">Chun-Fu Chang</a>, <a href="/search/?searchtype=author&amp;query=Dolmantas%2C+P">Paulius Dolmantas</a>, <a href="/search/?searchtype=author&amp;query=Said%2C+A+H">Ayman H. Said</a>, <a href="/search/?searchtype=author&amp;query=Grrtarsson%2C+H">Hlynur Grrtarsson</a>, <a href="/search/?searchtype=author&amp;query=Keimer%2C+B">Bernhard Keimer</a>, <a href="/search/?searchtype=author&amp;query=Haverkort%2C+M+W">Maurits W. Haverkort</a>, <a href="/search/?searchtype=author&amp;query=Andreev%2C+A+V">Alexander V. Andreev</a>, <a href="/search/?searchtype=author&amp;query=Havela%2C+L">Ladilav Havela</a>, <a href="/search/?searchtype=author&amp;query=Thalmeier%2C+P">Peter Thalmeier</a>, <a href="/search/?searchtype=author&amp;query=Tjeng%2C+L+H">Liu Hao Tjeng</a>, <a href="/search/?searchtype=author&amp;query=Severing%2C+A">Andrea Severing</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.15100v1-abstract-short" style="display: inline;"> Using high resolution tender-x-ray resonant inelastic scattering and hard-x-ray non-resonant inelastic scattering beyond the dipole limit we were able to detect electronic excitations in intermetallic UGa$_2$ that are highly atomic in nature. Analysis of the spectral lineshape reveals that the local $5f^2$ configuration characterizes the correlated nature of this ferromagnet. The orientation and d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.15100v1-abstract-full').style.display = 'inline'; document.getElementById('2307.15100v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.15100v1-abstract-full" style="display: none;"> Using high resolution tender-x-ray resonant inelastic scattering and hard-x-ray non-resonant inelastic scattering beyond the dipole limit we were able to detect electronic excitations in intermetallic UGa$_2$ that are highly atomic in nature. Analysis of the spectral lineshape reveals that the local $5f^2$ configuration characterizes the correlated nature of this ferromagnet. The orientation and directional dependence of the spectra indicate that the ground state is made of the $螕_1$ singlet and/or $螕_6$ doublet symmetry. With the ordered moment in the $ab$ plane, we infer that the magnetism originates from the higher lying $螕_6$ doublet being mixed with the $螕_1$ singlet due to inter-site exchange, qualifying UGa$_2$ to be a true quantum magnet. The ability to observe atomic excitations is crucial to resolve the on-going debate about the degree of localization versus itineracy in U intermetallics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.15100v1-abstract-full').style.display = 'none'; document.getElementById('2307.15100v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 108, 045142 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.13812">arXiv:2307.13812</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.13812">pdf</a>, <a href="https://arxiv.org/format/2307.13812">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Non-Lorentzian atomic natural line-shape of core level multiplets: Access high energy x-ray photons in electron capture nuclear decay </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Merstorf%2C+M">Marc Merstorf</a>, <a href="/search/?searchtype=author&amp;query=Bra%C3%9F%2C+M">Martin Bra脽</a>, <a href="/search/?searchtype=author&amp;query=Haverkort%2C+M+W">Maurits W. Haverkort</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.13812v1-abstract-short" style="display: inline;"> We present a method to calculate the natural line width and energy dependent line shape due to fluorescence decay of core excited atoms within a full relativistic multi-reference configuration interaction theory. The atomic absorption lines show a deviation from a Lorentzian line-shape due to energy dependent matrix elements of the localized electronic state coupling to the photon field. This give&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.13812v1-abstract-full').style.display = 'inline'; document.getElementById('2307.13812v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.13812v1-abstract-full" style="display: none;"> We present a method to calculate the natural line width and energy dependent line shape due to fluorescence decay of core excited atoms within a full relativistic multi-reference configuration interaction theory. The atomic absorption lines show a deviation from a Lorentzian line-shape due to energy dependent matrix elements of the localized electronic state coupling to the photon field. This gives rise to spectral lines with small but visible asymmetry. One generally finds an excess of spectral weight at the high energy shoulder of the atomic absorption line. We present the example of nuclear decay of $^{55}$Fe by electron capture of an inner-shell core electron. We show that the amount of ionizing radiation in the energy window between 50 and 200 keV is around one order of magnitude larger due to the energy dependent fluorescence yield lifetime compared to the value one would obtain if one assumes a constant fluorescence decay rate. This yields a total change of energy deposited into ionizing radiation of about 1\textperthousand. Our calculations are in good agreement with previous calculations and experimental observations where data is available. Our results can be further validated by high precision measurements of electron capture nuclear decay spectra using recently developed experimental methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.13812v1-abstract-full').style.display = 'none'; document.getElementById('2307.13812v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.01023">arXiv:2302.01023</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.01023">pdf</a>, <a href="https://arxiv.org/format/2302.01023">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Intermixing-driven surface and bulk ferromagnetism in the quantum anomalous Hall candidate MnBi$_6$Te$_{10}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Tcakaev%2C+A+V">Abdul V. Tcakaev</a>, <a href="/search/?searchtype=author&amp;query=Rubrecht%2C+B">Bastian Rubrecht</a>, <a href="/search/?searchtype=author&amp;query=Facio%2C+J+I">Jorge I. Facio</a>, <a href="/search/?searchtype=author&amp;query=Zabolotnyy%2C+V+B">Volodymyr B. Zabolotnyy</a>, <a href="/search/?searchtype=author&amp;query=Corredor%2C+L+T">Laura T. Corredor</a>, <a href="/search/?searchtype=author&amp;query=Folkers%2C+L+C">Laura C. Folkers</a>, <a href="/search/?searchtype=author&amp;query=Kochetkova%2C+E">Ekaterina Kochetkova</a>, <a href="/search/?searchtype=author&amp;query=Peixoto%2C+T+R+F">Thiago R. F. Peixoto</a>, <a href="/search/?searchtype=author&amp;query=Kagerer%2C+P">Philipp Kagerer</a>, <a href="/search/?searchtype=author&amp;query=Heinze%2C+S">Simon Heinze</a>, <a href="/search/?searchtype=author&amp;query=Bentmann%2C+H">Hendrik Bentmann</a>, <a href="/search/?searchtype=author&amp;query=Green%2C+R+J">Robert J. Green</a>, <a href="/search/?searchtype=author&amp;query=Gargiani%2C+P">Pierluigi Gargiani</a>, <a href="/search/?searchtype=author&amp;query=Valvidares%2C+M">Manuel Valvidares</a>, <a href="/search/?searchtype=author&amp;query=Weschke%2C+E">Eugen Weschke</a>, <a href="/search/?searchtype=author&amp;query=Haverkort%2C+M+W">Maurits W. Haverkort</a>, <a href="/search/?searchtype=author&amp;query=Reinert%2C+F">Friedrich Reinert</a>, <a href="/search/?searchtype=author&amp;query=Brink%2C+J+v+d">Jeroen van den Brink</a>, <a href="/search/?searchtype=author&amp;query=B%C3%BCchner%2C+B">Bernd B眉chner</a>, <a href="/search/?searchtype=author&amp;query=Wolter%2C+A+U+B">Anja U. B. Wolter</a>, <a href="/search/?searchtype=author&amp;query=Isaeva%2C+A">Anna Isaeva</a>, <a href="/search/?searchtype=author&amp;query=Hinkov%2C+V">Vladimir Hinkov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.01023v1-abstract-short" style="display: inline;"> The recent realizations of the quantum anomalous Hall effect (QAHE) in MnBi$_2$Te$_4$ and MnBi$_4$Te$_7$ benchmark the (MnBi$_2$Te$_4$)(Bi$_2$Te$_3$)$_n$ family as a promising hotbed for further QAHE improvements. The family owes its potential to its ferromagnetically (FM) ordered MnBi$_2$Te$_4$ septuple layers (SL). However, the QAHE realization is complicated in MnBi$_2$Te$_4$ and MnBi$_4$Te&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.01023v1-abstract-full').style.display = 'inline'; document.getElementById('2302.01023v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.01023v1-abstract-full" style="display: none;"> The recent realizations of the quantum anomalous Hall effect (QAHE) in MnBi$_2$Te$_4$ and MnBi$_4$Te$_7$ benchmark the (MnBi$_2$Te$_4$)(Bi$_2$Te$_3$)$_n$ family as a promising hotbed for further QAHE improvements. The family owes its potential to its ferromagnetically (FM) ordered MnBi$_2$Te$_4$ septuple layers (SL). However, the QAHE realization is complicated in MnBi$_2$Te$_4$ and MnBi$_4$Te$_7$ due to the substantial antiferromagnetic (AFM) coupling between the SL. An FM state, advantageous for the QAHE, can be stabilized by interlacing the SL with an increasing number $n$ of Bi$_2$Te$_3$ layers. However, the mechanisms driving the FM state and the number of necessary QLs are not understood, and the surface magnetism remains obscure. Here, we demonstrate robust FM properties in MnBi$_6$Te$_{10}$ ($n = 2$) with $T_C \approx 12$ K and establish their origin in the Mn/Bi intermixing phenomenon by a combined experimental and theoretical study. Our measurements reveal a magnetically intact surface with a large magnetic moment, and with FM properties similar to the bulk. Our investigation thus consolidates the MnBi$_6$Te$_{10}$ system as perspective for the QAHE at elevated temperatures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.01023v1-abstract-full').style.display = 'none'; document.getElementById('2302.01023v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Accepted to Advanced Science (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.15264">arXiv:2211.15264</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.15264">pdf</a>, <a href="https://arxiv.org/format/2211.15264">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.115164">10.1103/PhysRevB.107.115164 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Orbital selective coupling in CeRh$_3$B$_2$: co-existence of high Curie and high Kondo temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Amorese%2C+A">Andrea Amorese</a>, <a href="/search/?searchtype=author&amp;query=Hansmann%2C+P">Philipp Hansmann</a>, <a href="/search/?searchtype=author&amp;query=Marino%2C+A">Andrea Marino</a>, <a href="/search/?searchtype=author&amp;query=Korner%2C+P">Peter Korner</a>, <a href="/search/?searchtype=author&amp;query=Willers%2C+T">Thomas Willers</a>, <a href="/search/?searchtype=author&amp;query=Walters%2C+A">Andrew Walters</a>, <a href="/search/?searchtype=author&amp;query=Zhou%2C+K">Kejin Zhou</a>, <a href="/search/?searchtype=author&amp;query=Kummer%2C+K">Kurt Kummer</a>, <a href="/search/?searchtype=author&amp;query=Brooks%2C+N+B">Nicholas B. Brooks</a>, <a href="/search/?searchtype=author&amp;query=Lin%2C+H">Hong-Ji Lin</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+C">Cien-Te Chen</a>, <a href="/search/?searchtype=author&amp;query=Lejay%2C+P">Pascal Lejay</a>, <a href="/search/?searchtype=author&amp;query=Haverkort%2C+M+W">Maurits W. Haverkort</a>, <a href="/search/?searchtype=author&amp;query=Tjeng%2C+L+H">Liu Hao Tjeng</a>, <a href="/search/?searchtype=author&amp;query=Severing%2C+A">Andrea Severing</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.15264v2-abstract-short" style="display: inline;"> We investigated the electronic structure of the enigmatic CeRh$_3$B$_2$ using resonant inelastic scattering and x-ray absorption spectroscopy in combination with $ab$ $initio$ density functional calculations. We find that the Rh 4$d$ states are irrelevant for the high-temperature ferromagnetism and the Kondo effect. We also find that the Ce 4$f$ crystal-field strength is too small to explain the s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.15264v2-abstract-full').style.display = 'inline'; document.getElementById('2211.15264v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.15264v2-abstract-full" style="display: none;"> We investigated the electronic structure of the enigmatic CeRh$_3$B$_2$ using resonant inelastic scattering and x-ray absorption spectroscopy in combination with $ab$ $initio$ density functional calculations. We find that the Rh 4$d$ states are irrelevant for the high-temperature ferromagnetism and the Kondo effect. We also find that the Ce 4$f$ crystal-field strength is too small to explain the strong reduction of the Ce magnetic moment. The data reveal instead the presence of two different active Ce 4$f$ orbitals, with each coupling selectively to different bands in CeRh$_3$B$_2$. The inter-site hybridization of the |J=5/2,Jz=+/-1/2&gt; crystal-field state and Ce 5$d$ band combined with the intra-site Ce 4$f$-5$d$ exchange creates the strong ferromagnetism, while hybridization between the |J=5/2,Jz=+/-5/2&gt; and the B $sp$ in the $ab$-plane contributes to the Kondo interaction which causes the moment reduction. This orbital selective coupling explains the unique and seemingly contradictory properties of CeRh$_3$B$_2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.15264v2-abstract-full').style.display = 'none'; document.getElementById('2211.15264v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 14 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Ref. B 107 115164 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.03198">arXiv:2208.03198</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.03198">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-38341-8">10.1038/s41467-023-38341-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Novel magnetic excitations beyond the single- and double-magnons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Elnaggar%2C+H">Hebatalla Elnaggar</a>, <a href="/search/?searchtype=author&amp;query=Nag%2C+A">Abhishek Nag</a>, <a href="/search/?searchtype=author&amp;query=Haverkort%2C+M+W">Maurits W. Haverkort</a>, <a href="/search/?searchtype=author&amp;query=Zhou%2C+K">Ke-jin Zhou</a>, <a href="/search/?searchtype=author&amp;query=de+Groot%2C+F">Frank de Groot</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.03198v1-abstract-short" style="display: inline;"> Conventional wisdom suggests that one photon that carries one unit of angular momentum can change the spin angular momentum of a magnetic system with one unit (delta Ms = +-1) at most. This would imply that a two-photon scattering process can manipulate the spin angular momentum of the magnetic system with a maximum of two units. Here we examine the fundamental limit of the photon-driven transport&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.03198v1-abstract-full').style.display = 'inline'; document.getElementById('2208.03198v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.03198v1-abstract-full" style="display: none;"> Conventional wisdom suggests that one photon that carries one unit of angular momentum can change the spin angular momentum of a magnetic system with one unit (delta Ms = +-1) at most. This would imply that a two-photon scattering process can manipulate the spin angular momentum of the magnetic system with a maximum of two units. Here we examine the fundamental limit of the photon-driven transport of angular momentum by studying the magnon spectrum of 伪-Fe2O3 using resonant inelastic x-ray scattering. We discovered a cascade of higher-rank magnons carrying double, triple, quadruple, and quintuple the spin angular momentum of a single-magnon. Guided by theoretical calculations, we reveal how a two-photons scattering process can create exotic higher-rank magnons and the relevance of these quasiparticles for magnon-based applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.03198v1-abstract-full').style.display = 'none'; document.getElementById('2208.03198v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Work presented as an invited talk by Hebatalla Elnaggar at the IXS conference 2021 https://www.bnl.gov/rixsrexs2021/</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.01290">arXiv:2207.01290</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.01290">pdf</a>, <a href="https://arxiv.org/format/2207.01290">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Resolving Vibrations in a Polyatomic Molecule with Femtometer Precision </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Rupprecht%2C+P">Patrick Rupprecht</a>, <a href="/search/?searchtype=author&amp;query=Aufleger%2C+L">Lennart Aufleger</a>, <a href="/search/?searchtype=author&amp;query=Heinze%2C+S">Simon Heinze</a>, <a href="/search/?searchtype=author&amp;query=Magunia%2C+A">Alexander Magunia</a>, <a href="/search/?searchtype=author&amp;query=Ding%2C+T">Thomas Ding</a>, <a href="/search/?searchtype=author&amp;query=Rebholz%2C+M">Marc Rebholz</a>, <a href="/search/?searchtype=author&amp;query=Amberg%2C+S">Stefano Amberg</a>, <a href="/search/?searchtype=author&amp;query=Mollov%2C+N">Nikola Mollov</a>, <a href="/search/?searchtype=author&amp;query=Henrich%2C+F">Felix Henrich</a>, <a href="/search/?searchtype=author&amp;query=Haverkort%2C+M+W">Maurits W. Haverkort</a>, <a href="/search/?searchtype=author&amp;query=Ott%2C+C">Christian Ott</a>, <a href="/search/?searchtype=author&amp;query=Pfeifer%2C+T">Thomas Pfeifer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.01290v1-abstract-short" style="display: inline;"> We measure molecular vibrations with femtometer precision using time-resolved x-ray absorption spectroscopy. For a demonstration, a Raman process excites the A$_{1g}$ mode in gas-phase SF$_6$ molecules with an amplitude of $\approx50$ fm, which is probed by a time-delayed soft x-ray pulse at the sulfur $L_{2,3}$-edge. Mapping the extremely small measured energy shifts to internuclear distances req&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.01290v1-abstract-full').style.display = 'inline'; document.getElementById('2207.01290v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.01290v1-abstract-full" style="display: none;"> We measure molecular vibrations with femtometer precision using time-resolved x-ray absorption spectroscopy. For a demonstration, a Raman process excites the A$_{1g}$ mode in gas-phase SF$_6$ molecules with an amplitude of $\approx50$ fm, which is probed by a time-delayed soft x-ray pulse at the sulfur $L_{2,3}$-edge. Mapping the extremely small measured energy shifts to internuclear distances requires an understanding of the electronic contributions provided by a many-body ab initio simulation. Our study establishes core-level spectroscopy as a precision tool for time-dependent molecular-structure metrology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.01290v1-abstract-full').style.display = 'none'; document.getElementById('2207.01290v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.05545">arXiv:2103.05545</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.05545">pdf</a>, <a href="https://arxiv.org/format/2103.05545">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.115119">10.1103/PhysRevB.104.115119 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tree tensor-network real-time multiorbital impurity solver: Spin-orbit coupling and correlation functions in Sr$_2$RuO$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Cao%2C+X">X. Cao</a>, <a href="/search/?searchtype=author&amp;query=Lu%2C+Y">Y. Lu</a>, <a href="/search/?searchtype=author&amp;query=Hansmann%2C+P">P. Hansmann</a>, <a href="/search/?searchtype=author&amp;query=Haverkort%2C+M+W">M. W. Haverkort</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.05545v2-abstract-short" style="display: inline;"> We present a tree tensor-network impurity solver suited for general multiorbital systems. The network is constructed to efficiently capture the entanglement structure and symmetry of an impurity problem. The solver works directly on the real-time/frequency axis and generates spectral functions with energy-independent resolution of the order of one percent of the correlated bandwidth. Combined with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.05545v2-abstract-full').style.display = 'inline'; document.getElementById('2103.05545v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.05545v2-abstract-full" style="display: none;"> We present a tree tensor-network impurity solver suited for general multiorbital systems. The network is constructed to efficiently capture the entanglement structure and symmetry of an impurity problem. The solver works directly on the real-time/frequency axis and generates spectral functions with energy-independent resolution of the order of one percent of the correlated bandwidth. Combined with an optimized representation of the impurity bath, it efficiently solves self-consistent dynamical mean-field equations and calculates various dynamical correlation functions for systems with off-diagonal Green&#39;s functions. For the archetypal correlated Hund&#39;s metal Sr$_2$RuO$_4$, we show that both the low-energy quasiparticle spectra related to the van Hove singularity and the high-energy atomic multiplet excitations can be faithfully resolved. In particular, we show that while the spin-orbit coupling has only minor effects on the orbital-diagonal one-particle spectral functions, it has a more profound impact on the low-energy spin and orbital response functions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.05545v2-abstract-full').style.display = 'none'; document.getElementById('2103.05545v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Updated results with SOC; as published</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 104, 115119 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.01947">arXiv:2101.01947</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.01947">pdf</a>, <a href="https://arxiv.org/format/2101.01947">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.11.011002">10.1103/PhysRevX.11.011002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Selective orbital imaging of excited states with x-ray spectroscopy: the example of $伪$-MnS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Amorese%2C+A">A. Amorese</a>, <a href="/search/?searchtype=author&amp;query=Leedahl%2C+B">B. Leedahl</a>, <a href="/search/?searchtype=author&amp;query=Sundermann%2C+M">M. Sundermann</a>, <a href="/search/?searchtype=author&amp;query=Gretarsson%2C+H">H. Gretarsson</a>, <a href="/search/?searchtype=author&amp;query=Hu%2C+Z">Z. Hu</a>, <a href="/search/?searchtype=author&amp;query=Lin%2C+H+-">H. -J. Lin</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+C+T">C. T. Chen</a>, <a href="/search/?searchtype=author&amp;query=Schmidt%2C+M">M. Schmidt</a>, <a href="/search/?searchtype=author&amp;query=Borrmann%2C+H">H. Borrmann</a>, <a href="/search/?searchtype=author&amp;query=Grin%2C+Y">Yu. Grin</a>, <a href="/search/?searchtype=author&amp;query=Severing%2C+A">A. Severing</a>, <a href="/search/?searchtype=author&amp;query=Haverkort%2C+M+W">M. W. Haverkort</a>, <a href="/search/?searchtype=author&amp;query=Tjeng%2C+L+H">L. H. Tjeng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.01947v1-abstract-short" style="display: inline;"> Herein we show that non-resonant inelastic x-ray scattering involving an $s$ core level is a powerful spectroscopic method to characterize the excited states of transition metal compounds. The spherical charge distribution of the $s$ core hole allows the orientational dependence of the intensities of the various spectral features to produce a spatial charge image of the associated multiplet states&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.01947v1-abstract-full').style.display = 'inline'; document.getElementById('2101.01947v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.01947v1-abstract-full" style="display: none;"> Herein we show that non-resonant inelastic x-ray scattering involving an $s$ core level is a powerful spectroscopic method to characterize the excited states of transition metal compounds. The spherical charge distribution of the $s$ core hole allows the orientational dependence of the intensities of the various spectral features to produce a spatial charge image of the associated multiplet states in a straightforward manner, thereby facilitating the identification of their orbital character. In addition, the $s$ core hole does not add an extra orbital angular momentum component to the multiplet structure so that the well-established Sugano-Tanabe-Kamimura diagrams can be used for the analysis of the spectra. For $伪$-MnS we observe the spherical charge density corresponding to its high spin $3d^5$ ($^6A_1$) ground state configuration and we were able to selectively image its excited states and identify them as $t_{2g}$ ($^5T_2$) and $e_g$ ($^5E$) with an energy splitting $10Dq$ of 0.78\,eV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.01947v1-abstract-full').style.display = 'none'; document.getElementById('2101.01947v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review X 11, 011002 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.01836">arXiv:2010.01836</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.01836">pdf</a>, <a href="https://arxiv.org/format/2010.01836">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.102.245146">10.1103/PhysRevB.102.245146 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Possible multi-orbital ground state in CeCu$_2$Si$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Amorese%2C+A">Andrea Amorese</a>, <a href="/search/?searchtype=author&amp;query=Marino%2C+A">Andrea Marino</a>, <a href="/search/?searchtype=author&amp;query=Sundermann%2C+M">Martin Sundermann</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+K">Kai Chen</a>, <a href="/search/?searchtype=author&amp;query=Hu%2C+Z">Zhiwei Hu</a>, <a href="/search/?searchtype=author&amp;query=Willers%2C+T">Thomas Willers</a>, <a href="/search/?searchtype=author&amp;query=Choukani%2C+F">Fadi Choukani</a>, <a href="/search/?searchtype=author&amp;query=Ohresser%2C+P">Philippe Ohresser</a>, <a href="/search/?searchtype=author&amp;query=Herrero-Martin%2C+J">Javier Herrero-Martin</a>, <a href="/search/?searchtype=author&amp;query=Agrestini%2C+S">Stefano Agrestini</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+C">Chien-Te Chen</a>, <a href="/search/?searchtype=author&amp;query=Lin%2C+H">Hong-Ji Lin</a>, <a href="/search/?searchtype=author&amp;query=Haverkort%2C+M+W">Maurits W. Haverkort</a>, <a href="/search/?searchtype=author&amp;query=Seiro%2C+S">Silvia Seiro</a>, <a href="/search/?searchtype=author&amp;query=Geibel%2C+C">Christoph Geibel</a>, <a href="/search/?searchtype=author&amp;query=Steglich%2C+F">Frank Steglich</a>, <a href="/search/?searchtype=author&amp;query=Tjeng%2C+L+H">Liu Hao Tjeng</a>, <a href="/search/?searchtype=author&amp;query=Zwicknagl%2C+G">Gertrud Zwicknagl</a>, <a href="/search/?searchtype=author&amp;query=Severing%2C+A">Andrea Severing</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.01836v2-abstract-short" style="display: inline;"> The crystal-field ground state wave function of CeCu$_2$Si$_2$ has been investigated with linear polarized $M$-edge x-ray absorption spectroscopy from 250mK to 250K, thus covering the superconducting ($T_{\text{c}}$=0.6K), the Kondo ($T_{\text{K}}$$\approx$20K) as well as the Curie-Weiss regime. The comparison with full-multiplet calculations shows that the temperature dependence of the experiment&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.01836v2-abstract-full').style.display = 'inline'; document.getElementById('2010.01836v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.01836v2-abstract-full" style="display: none;"> The crystal-field ground state wave function of CeCu$_2$Si$_2$ has been investigated with linear polarized $M$-edge x-ray absorption spectroscopy from 250mK to 250K, thus covering the superconducting ($T_{\text{c}}$=0.6K), the Kondo ($T_{\text{K}}$$\approx$20K) as well as the Curie-Weiss regime. The comparison with full-multiplet calculations shows that the temperature dependence of the experimental linear dichroism is well explained with a $螕_7^{(1)}$ crystal-field ground-state and the thermal population of excited states at around 30meV. The crystal-field scheme does not change throughout the entire temperature range thus making the scenario of orbital switching unlikely. Spectroscopic evidence for the presence of the Ce 4$f^0$ configuration in the ground state is consistent with the possibility for a multi-orbital character of the ground state. We estimate from the Kondo temperature and crystal-field splitting energies that several percents of the higher lying $螕_6$ state and $螕_7^{(2)}$ crystal-field states are mixed into the primarily $螕_7^{(1)}$ ground state. This estimate is also supported by re-normalized band-structure calculations that uses the experimentally determined crystal-field scheme. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.01836v2-abstract-full').style.display = 'none'; document.getElementById('2010.01836v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 102, 245146 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.04892">arXiv:2005.04892</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.04892">pdf</a>, <a href="https://arxiv.org/format/2005.04892">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-020-2221-0">10.1038/s41586-020-2221-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Detection of metastable electronic states by Penning trap mass spectrometry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Sch%C3%BCssler%2C+R+X">Rima Xenia Sch眉ssler</a>, <a href="/search/?searchtype=author&amp;query=Bekker%2C+H">Hendrik Bekker</a>, <a href="/search/?searchtype=author&amp;query=Bra%C3%9F%2C+M">Martin Bra脽</a>, <a href="/search/?searchtype=author&amp;query=Cakir%2C+H">Halil Cakir</a>, <a href="/search/?searchtype=author&amp;query=L%C3%B3pez-Urrutia%2C+J+R+C">Jos茅 R. Crespo L贸pez-Urrutia</a>, <a href="/search/?searchtype=author&amp;query=Door%2C+M">Menno Door</a>, <a href="/search/?searchtype=author&amp;query=Filianin%2C+P">Pavel Filianin</a>, <a href="/search/?searchtype=author&amp;query=Harman%2C+Z">Zoltan Harman</a>, <a href="/search/?searchtype=author&amp;query=Haverkort%2C+M+W">Maurits W. Haverkort</a>, <a href="/search/?searchtype=author&amp;query=Huang%2C+W+J">Wen Jia Huang</a>, <a href="/search/?searchtype=author&amp;query=Indelicato%2C+P">Paul Indelicato</a>, <a href="/search/?searchtype=author&amp;query=Keitel%2C+C+H">Christoph Helmut Keitel</a>, <a href="/search/?searchtype=author&amp;query=K%C3%B6nig%2C+C+M">Charlotte Maria K枚nig</a>, <a href="/search/?searchtype=author&amp;query=Kromer%2C+K">Kathrin Kromer</a>, <a href="/search/?searchtype=author&amp;query=M%C3%BCller%2C+M">Marius M眉ller</a>, <a href="/search/?searchtype=author&amp;query=Novikov%2C+Y+N">Yuri N. Novikov</a>, <a href="/search/?searchtype=author&amp;query=Rischka%2C+A">Alexander Rischka</a>, <a href="/search/?searchtype=author&amp;query=Schweiger%2C+C">Christoph Schweiger</a>, <a href="/search/?searchtype=author&amp;query=Sturm%2C+S">Sven Sturm</a>, <a href="/search/?searchtype=author&amp;query=Ulmer%2C+S">Stefan Ulmer</a>, <a href="/search/?searchtype=author&amp;query=Eliseev%2C+S">Ssergey Eliseev</a>, <a href="/search/?searchtype=author&amp;query=Blaum%2C+K">Klaus Blaum</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.04892v1-abstract-short" style="display: inline;"> State-of-the-art optical clocks achieve fractional precisions of $10^{-18}$ and below using ensembles of atoms in optical lattices or individual ions in radio-frequency traps. Promising candidates for novel clocks are highly charged ions (HCIs) and nuclear transitions, which are largely insensitive to external perturbations and reach wavelengths beyond the optical range, now becoming accessible to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.04892v1-abstract-full').style.display = 'inline'; document.getElementById('2005.04892v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.04892v1-abstract-full" style="display: none;"> State-of-the-art optical clocks achieve fractional precisions of $10^{-18}$ and below using ensembles of atoms in optical lattices or individual ions in radio-frequency traps. Promising candidates for novel clocks are highly charged ions (HCIs) and nuclear transitions, which are largely insensitive to external perturbations and reach wavelengths beyond the optical range, now becoming accessible to frequency combs. However, insufficiently accurate atomic structure calculations still hinder the identification of suitable transitions in HCIs. Here, we report on the discovery of a long-lived metastable electronic state in a HCI by measuring the mass difference of the ground and the excited state in Re, the first non-destructive, direct determination of an electronic excitation energy. This result agrees with our advanced calculations, and we confirmed them with an Os ion with the same electronic configuration. We used the high-precision Penning-trap mass spectrometer PENTATRAP, unique in its synchronous use of five individual traps for simultaneous mass measurements. The cyclotron frequency ratio $R$ of the ion in the ground state to the metastable state could be determined to a precision of $未R=1\cdot 10^{-11}$, unprecedented in the heavy atom regime. With a lifetime of about 130 days, the potential soft x-ray frequency reference at $谓=4.86\cdot 10^{16}\,\text{Hz}$ has a linewidth of only $螖谓\approx 5\cdot 10^{-8}\,\text{Hz}$, and one of the highest electronic quality factor ($Q=\frac谓{螖谓}\approx 10^{24}$) ever seen in an experiment. Our low uncertainty enables searching for more HCI soft x-ray clock transitions, needed for promising precision studies of fundamental physics in a thus far unexplored frontier. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.04892v1-abstract-full').style.display = 'none'; document.getElementById('2005.04892v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 581, 42-46 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.13419">arXiv:2004.13419</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.13419">pdf</a>, <a href="https://arxiv.org/format/2004.13419">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1073/pnas.2005701117">10.1073/pnas.2005701117 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dual nature of 5$f$ electrons in the isostructural UM$_2$Si$_2$ family: from antiferro- to Pauli paramagnetism via hidden order </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Amorese%2C+A">Andrea Amorese</a>, <a href="/search/?searchtype=author&amp;query=Sundermann%2C+M">Martin Sundermann</a>, <a href="/search/?searchtype=author&amp;query=Leedahl%2C+B">Brett Leedahl</a>, <a href="/search/?searchtype=author&amp;query=Marino%2C+A">Andrea Marino</a>, <a href="/search/?searchtype=author&amp;query=Takegami%2C+D">Daisuke Takegami</a>, <a href="/search/?searchtype=author&amp;query=Gretarsson%2C+H">Hlynur Gretarsson</a>, <a href="/search/?searchtype=author&amp;query=Hloskovsky%2C+A">Andrei Hloskovsky</a>, <a href="/search/?searchtype=author&amp;query=Schl%C3%BCter%2C+C">Christoph Schl眉ter</a>, <a href="/search/?searchtype=author&amp;query=Haverkort%2C+M+W">Maurits W. Haverkort</a>, <a href="/search/?searchtype=author&amp;query=Huang%2C+Y">Yingkai Huang</a>, <a href="/search/?searchtype=author&amp;query=Szlawska%2C+M">Maria Szlawska</a>, <a href="/search/?searchtype=author&amp;query=Kaczorowski%2C+D">Dariusz Kaczorowski</a>, <a href="/search/?searchtype=author&amp;query=Ran%2C+S">Sheng Ran</a>, <a href="/search/?searchtype=author&amp;query=Maple%2C+M+B">M. Brian Maple</a>, <a href="/search/?searchtype=author&amp;query=Bauer%2C+E+D">Eric D. Bauer</a>, <a href="/search/?searchtype=author&amp;query=Leithe-Jasper%2C+A">Andreas Leithe-Jasper</a>, <a href="/search/?searchtype=author&amp;query=Thalmeier%2C+P">Peter Thalmeier</a>, <a href="/search/?searchtype=author&amp;query=Tjeng%2C+L+H">Liu Hao Tjeng</a>, <a href="/search/?searchtype=author&amp;query=Severing%2C+A">Andrea Severing</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.13419v2-abstract-short" style="display: inline;"> Using inelastic x-ray scattering beyond the dipole limit and hard x-ray photoelectron spectroscopy we establish the dual nature of the U $5f$ electrons in UM$_2$Si$_2$ (M = Pd, Ni, Ru, Fe), regardless of their degree of delocalization. We have observed that the compounds have in common a local atomic-like state that is well described by the U $5f^2$ configuration with the $螕_1^{(1)}$ and $螕_2$ qua&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.13419v2-abstract-full').style.display = 'inline'; document.getElementById('2004.13419v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.13419v2-abstract-full" style="display: none;"> Using inelastic x-ray scattering beyond the dipole limit and hard x-ray photoelectron spectroscopy we establish the dual nature of the U $5f$ electrons in UM$_2$Si$_2$ (M = Pd, Ni, Ru, Fe), regardless of their degree of delocalization. We have observed that the compounds have in common a local atomic-like state that is well described by the U $5f^2$ configuration with the $螕_1^{(1)}$ and $螕_2$ quasi-doublet symmetry. The amount of the U 5$f^3$ configuration, however, varies considerably across the UM$_2$Si$_2$ series, indicating an increase of U5$f$ itineracy in going from M=Pd to Ni to Ru, and to the Fe compound. The identified electronic states explain the formation of the very large ordered magnetic moments in UPd$_2$Si$_2$ and UNi$_2$Si$_2$, the availability of orbital degrees of freedom needed for the hidden order in URu$_2$Si$_2$ to occur, as well as the appearance of Pauli paramagnetism in UFe$_2$Si$_2$. A unified and systematic picture of the U$M_2$Si$_2$ compounds may now be drawn, thereby providing suggestions for new experiments to induce hidden order and/or superconductivity in U compounds with the tetragonal body-centered ThCr$_2$Si$_2$ structure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.13419v2-abstract-full').style.display = 'none'; document.getElementById('2004.13419v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proceedings of the National Academy of Sciences Dec 2020, 117 (48) 30220-30227 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.05989">arXiv:2002.05989</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2002.05989">pdf</a>, <a href="https://arxiv.org/format/2002.05989">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/abac72">10.1088/1367-2630/abac72 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ab initio calculation of the electron capture spectrum of 163Ho: Auger-Meitner decay into continuum states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Brass%2C+M">M. Brass</a>, <a href="/search/?searchtype=author&amp;query=Haverkort%2C+M+W">M. W. Haverkort</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.05989v1-abstract-short" style="display: inline;"> Determining the electron neutrino mass by electron capture in $^{163}$Ho relies on an accurate understanding of the differential electron capture nuclear decay rate as a function of the distribution of the total decay energy between the neutrino and electronic excitations. The resulting spectrum is dominated by resonances due to local atomic multiplet states with core holes. Coulomb scattering bet&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.05989v1-abstract-full').style.display = 'inline'; document.getElementById('2002.05989v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.05989v1-abstract-full" style="display: none;"> Determining the electron neutrino mass by electron capture in $^{163}$Ho relies on an accurate understanding of the differential electron capture nuclear decay rate as a function of the distribution of the total decay energy between the neutrino and electronic excitations. The resulting spectrum is dominated by resonances due to local atomic multiplet states with core holes. Coulomb scattering between electrons couple the discrete atomic states, via Auger-Meitner decay, to final states with free electrons. The atomic multiplets are above the auto-ionisation energy, such that the delta functions representing these discrete levels turn into a superposition of Lorentzian, Mahan- and Fano-like line-shapes. We present an \textit{ab initio} method to calculate nuclear decay modifications due to such processes. It includes states with multiple correlated holes in local atomic orbitals interacting with unbound Auger-Meitner electrons. A strong energy-dependent, asymmetric broadening of the resonances in good agreement with recent experiments is found. We present a detailed analysis of the mechanisms determining the final spectral line-shape and discuss both the Fano interference between different resonances, as well as the energy dependence of the Auger-Meitner Coulomb matrix elements. The latter mechanism is shown to be the dominant channel responsible for the asymmetric line-shape of the resonances in the electron capture spectrum of $^{163}$Ho. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.05989v1-abstract-full').style.display = 'none'; document.getElementById('2002.05989v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> New J. Phys. 22 093018 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.13750">arXiv:1910.13750</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.13750">pdf</a>, <a href="https://arxiv.org/format/1910.13750">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-019-13273-4">10.1038/s41467-019-13273-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Origin of Ising magnetism in Ca3Co2O6 unveiled by orbital imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Leedahl%2C+B">Brett Leedahl</a>, <a href="/search/?searchtype=author&amp;query=Sundermann%2C+M">Martin Sundermann</a>, <a href="/search/?searchtype=author&amp;query=Amorese%2C+A">Andrea Amorese</a>, <a href="/search/?searchtype=author&amp;query=Severing%2C+A">Andrea Severing</a>, <a href="/search/?searchtype=author&amp;query=Gretarsson%2C+H">Hlynur Gretarsson</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+L">Lunyong Zhang</a>, <a href="/search/?searchtype=author&amp;query=Komarek%2C+A+C">Alexander C. Komarek</a>, <a href="/search/?searchtype=author&amp;query=Haverkort%2C+M+W">Maurits W. Haverkort</a>, <a href="/search/?searchtype=author&amp;query=Maignan%2C+A">Antoine Maignan</a>, <a href="/search/?searchtype=author&amp;query=Tjeng%2C+L+H">Liu Hao Tjeng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.13750v1-abstract-short" style="display: inline;"> The one-dimensional cobaltate Ca3Co2O6 is an intriguing material having an unconventional magnetic structure, displaying quantum tunneling phenomena in its magnetization. Using a newly developed experimental method, s-core-level non-resonant inelastic x-ray scattering (s-NIXS), we were able to image the atomic Co 3d orbital that is responsible for the Ising magnetism in this system. We show that w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.13750v1-abstract-full').style.display = 'inline'; document.getElementById('1910.13750v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.13750v1-abstract-full" style="display: none;"> The one-dimensional cobaltate Ca3Co2O6 is an intriguing material having an unconventional magnetic structure, displaying quantum tunneling phenomena in its magnetization. Using a newly developed experimental method, s-core-level non-resonant inelastic x-ray scattering (s-NIXS), we were able to image the atomic Co 3d orbital that is responsible for the Ising magnetism in this system. We show that we can directly observe that it is the complex d2 orbital occupied by the sixth electron at the high-spin Co-trig{3+} (d6) sites that generates this behavior. This is extremely rare in the research field of transition metal compounds, and is only made possible by the delicately balanced prismatic trigonal coordination. The ability to directly relate the orbital occupation with the local crystal structure is essential to model the magnetic properties of this system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.13750v1-abstract-full').style.display = 'none'; document.getElementById('1910.13750v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications. 10, 5447 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.02757">arXiv:1909.02757</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.02757">pdf</a>, <a href="https://arxiv.org/format/1909.02757">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.100.115134">10.1103/PhysRevB.100.115134 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Natural-Orbital Impurity Solver and Projection Approach for Green&#39;s Function </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Lu%2C+Y">Y. Lu</a>, <a href="/search/?searchtype=author&amp;query=Cao%2C+X">X. Cao</a>, <a href="/search/?searchtype=author&amp;query=Hansmann%2C+P">P. Hansmann</a>, <a href="/search/?searchtype=author&amp;query=Haverkort%2C+M+W">M. W. Haverkort</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.02757v1-abstract-short" style="display: inline;"> We extend a previously proposed rotation and truncation scheme to optimize quantum Anderson impurity calculations with exact diagonalization [PRB 90, 085102 (2014)] to density-matrix renormalization group (DMRG) calculations. The method reduces the solution of a full impurity problem with virtually unlimited bath sites to that of a small subsystem based on a natural impurity orbital basis set. The&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.02757v1-abstract-full').style.display = 'inline'; document.getElementById('1909.02757v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.02757v1-abstract-full" style="display: none;"> We extend a previously proposed rotation and truncation scheme to optimize quantum Anderson impurity calculations with exact diagonalization [PRB 90, 085102 (2014)] to density-matrix renormalization group (DMRG) calculations. The method reduces the solution of a full impurity problem with virtually unlimited bath sites to that of a small subsystem based on a natural impurity orbital basis set. The later is solved by DMRG in combination with a restricted-active-space truncation scheme. The method allows one to compute Green&#39;s functions directly on the real frequency or time axis. We critically test the convergence of the truncation scheme using a one-band Hubbard model solved in the dynamical mean-field theory. The projection is exact in the limit of both infinitely large and small Coulomb interactions. For all parameter ranges the accuracy of the projected solution converges exponentially to the exact solution with increasing subsystem size. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.02757v1-abstract-full').style.display = 'none'; document.getElementById('1909.02757v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages and 6 figures; accepted in PRB</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.03311">arXiv:1906.03311</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1906.03311">pdf</a>, <a href="https://arxiv.org/format/1906.03311">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.100.014443">10.1103/PhysRevB.100.014443 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nature of the magnetism of iridium in the double perovskite Sr2CoIrO6 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Agrestini%2C+S">S. Agrestini</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+K">K. Chen</a>, <a href="/search/?searchtype=author&amp;query=Kuo%2C+C+-">C. -Y. Kuo</a>, <a href="/search/?searchtype=author&amp;query=Zhao%2C+L">L. Zhao</a>, <a href="/search/?searchtype=author&amp;query=Lin%2C+H+-">H. -J. Lin</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+C+-">C. -T. Chen</a>, <a href="/search/?searchtype=author&amp;query=Rogalev%2C+A">A. Rogalev</a>, <a href="/search/?searchtype=author&amp;query=Ohresser%2C+P">P. Ohresser</a>, <a href="/search/?searchtype=author&amp;query=Chan%2C+T+-">T. -S. Chan</a>, <a href="/search/?searchtype=author&amp;query=Weng%2C+S+-">S. -C. Weng</a>, <a href="/search/?searchtype=author&amp;query=Komarek%2C+A+C">A. C. Komarek</a>, <a href="/search/?searchtype=author&amp;query=Yamaura%2C+K">K. Yamaura</a>, <a href="/search/?searchtype=author&amp;query=Haverkort%2C+M+W">M. W. Haverkort</a>, <a href="/search/?searchtype=author&amp;query=Hu%2C+Z">Z. Hu</a>, <a href="/search/?searchtype=author&amp;query=Tjeng%2C+L+H">L. H. Tjeng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.03311v1-abstract-short" style="display: inline;"> We report on our investigation on the magnetism of the iridate double perovskite Sr$_2$CoIrO$_6$, a nominally Ir$^{5+}$ Van Vleck $J_{eff}=0$ system. Using x-ray absorption (XAS) and x-ray magnetic circular dichroism (XMCD) spectroscopy at the Ir-$L_{2,3}$ edges, we found a nearly zero orbital contribution to the magnetic moment and thus an apparent breakdown of the $J_{eff}=0$ ground state. By ca&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.03311v1-abstract-full').style.display = 'inline'; document.getElementById('1906.03311v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.03311v1-abstract-full" style="display: none;"> We report on our investigation on the magnetism of the iridate double perovskite Sr$_2$CoIrO$_6$, a nominally Ir$^{5+}$ Van Vleck $J_{eff}=0$ system. Using x-ray absorption (XAS) and x-ray magnetic circular dichroism (XMCD) spectroscopy at the Ir-$L_{2,3}$ edges, we found a nearly zero orbital contribution to the magnetic moment and thus an apparent breakdown of the $J_{eff}=0$ ground state. By carrying out also XAS and XMCD experiments at the Co-$L_{2,3}$ edges and by performing detailed full atomic multiplet calculations to simulate all spectra, we discovered that the compound consists of about 90% Ir$^{5+}$ ($J_{eff}=0$) and Co$^{3+}$ ($S=2$) and 10% Ir$^{6+}$ ($S=3/2$) and Co$^{2+}$ ($S=3/2$). The magnetic signal of this minority Ir$^{6+}$ component is almost equally strong as that of the main Ir$^{5+}$ component. We infer that there is a competition between the Ir$^{5+}$-Co$^{3+}$ and the Ir$^{6+}$-Co$^{2+}$ configurations in this stoichiometric compound. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.03311v1-abstract-full').style.display = 'none'; document.getElementById('1906.03311v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 100, 014443 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.02782">arXiv:1904.02782</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.02782">pdf</a>, <a href="https://arxiv.org/format/1904.02782">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.99.165124">10.1103/PhysRevB.99.165124 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Resonant inelastic x-ray scattering study of bond order and spin excitations in nickelate thin-film structures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=F%C3%BCrsich%2C+K">K. F眉rsich</a>, <a href="/search/?searchtype=author&amp;query=Lu%2C+Y">Y. Lu</a>, <a href="/search/?searchtype=author&amp;query=Betto%2C+D">D. Betto</a>, <a href="/search/?searchtype=author&amp;query=Bluschke%2C+M">M. Bluschke</a>, <a href="/search/?searchtype=author&amp;query=Porras%2C+J">J. Porras</a>, <a href="/search/?searchtype=author&amp;query=Schierle%2C+E">E. Schierle</a>, <a href="/search/?searchtype=author&amp;query=Ortiz%2C+R">R. Ortiz</a>, <a href="/search/?searchtype=author&amp;query=Suzuki%2C+H">H. Suzuki</a>, <a href="/search/?searchtype=author&amp;query=Cristiani%2C+G">G. Cristiani</a>, <a href="/search/?searchtype=author&amp;query=Logvenov%2C+G">G. Logvenov</a>, <a href="/search/?searchtype=author&amp;query=Brookes%2C+N+B">N. B. Brookes</a>, <a href="/search/?searchtype=author&amp;query=Haverkort%2C+M+W">M. W. Haverkort</a>, <a href="/search/?searchtype=author&amp;query=Tacon%2C+M+L">M. Le Tacon</a>, <a href="/search/?searchtype=author&amp;query=Benckiser%2C+E">E. Benckiser</a>, <a href="/search/?searchtype=author&amp;query=Minola%2C+M">M. Minola</a>, <a href="/search/?searchtype=author&amp;query=Keimer%2C+B">B. Keimer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.02782v2-abstract-short" style="display: inline;"> We used high-resolution resonant inelastic x-ray scattering (RIXS) at the Ni $L_3$ edge to simultaneously investigate high-energy interband transitions characteristic of Ni-O bond ordering and low-energy collective excitations of the Ni spins in the rare-earth nickelates $R$NiO$_3$ ($R$ = Nd, Pr, La) with pseudocubic perovskite structure. With the support of calculations based on a double-cluster&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.02782v2-abstract-full').style.display = 'inline'; document.getElementById('1904.02782v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.02782v2-abstract-full" style="display: none;"> We used high-resolution resonant inelastic x-ray scattering (RIXS) at the Ni $L_3$ edge to simultaneously investigate high-energy interband transitions characteristic of Ni-O bond ordering and low-energy collective excitations of the Ni spins in the rare-earth nickelates $R$NiO$_3$ ($R$ = Nd, Pr, La) with pseudocubic perovskite structure. With the support of calculations based on a double-cluster model we quantify bond order (BO) amplitudes for different thin films and heterostructures and discriminate short-range BO fluctuations from long-range static order. Moreover we investigate magnetic order and exchange interactions in spatially confined $R$NiO$_3$ slabs by probing dispersive magnon excitations. While our study of superlattices (SLs) grown in the (001) direction of the perovskite structure reveals a robust non-collinear spin spiral magnetic order with dispersive magnon excitations that are essentially unperturbed by BO modulations and spatial confinement, we find magnons with flat dispersions and strongly reduced energies in SLs grown in the $(111)_{\text{pc}}$ direction that exhibit collinear magnetic order. These results give insight into the interplay of different collective ordering phenomena in a prototypical 3$d$ transition metal oxide and establish RIXS as a powerful tool to quantitatively study several order parameters and the corresponding collective excitations within one experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.02782v2-abstract-full').style.display = 'none'; document.getElementById('1904.02782v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 8 figures, accepted in Physical Review B</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.07128">arXiv:1902.07128</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.07128">pdf</a>, <a href="https://arxiv.org/format/1902.07128">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-019-0471-2">10.1038/s41567-019-0471-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct imaging of orbitals in quantum materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Yava%C5%9F%2C+H">Hasan Yava艧</a>, <a href="/search/?searchtype=author&amp;query=Sundermann%2C+M">Martin Sundermann</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+K">Kai Chen</a>, <a href="/search/?searchtype=author&amp;query=Amorese%2C+A">Andrea Amorese</a>, <a href="/search/?searchtype=author&amp;query=Severing%2C+A">Andrea Severing</a>, <a href="/search/?searchtype=author&amp;query=Gretarsson%2C+H">Hlynur Gretarsson</a>, <a href="/search/?searchtype=author&amp;query=Haverkort%2C+M+W">Maurits W. Haverkort</a>, <a href="/search/?searchtype=author&amp;query=Tjeng%2C+L+H">Liu Hao Tjeng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.07128v1-abstract-short" style="display: inline;"> The spectacular physical properties of quantum materials based on transition metal, rare earth, and actinide elements continue to challenge our comprehension of solid state physics and chemistry. The electronic states of these materials are dominated by the $d$ and $f$ wave functions intertwined with the strong band formation of the solid. In order to estimate which wave functions contribute to th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.07128v1-abstract-full').style.display = 'inline'; document.getElementById('1902.07128v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.07128v1-abstract-full" style="display: none;"> The spectacular physical properties of quantum materials based on transition metal, rare earth, and actinide elements continue to challenge our comprehension of solid state physics and chemistry. The electronic states of these materials are dominated by the $d$ and $f$ wave functions intertwined with the strong band formation of the solid. In order to estimate which wave functions contribute to the ground state formation, we have had to rely, until now, on theoretical calculations combined with spectroscopy. Here we show that $s$-core-level non-resonant inelastic x-ray scattering ($s$-NIXS) can directly image the active orbital in real space, without the necessity of any modeling. The power and accuracy of this new technique is shown using the text-book example, x$^2$-y$^2$/3$z^2$-r$^2$ orbital of the Ni$^{2+}$ ion in NiO single crystal. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.07128v1-abstract-full').style.display = 'none'; document.getElementById('1902.07128v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics 15, 559 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.06726">arXiv:1902.06726</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.06726">pdf</a>, <a href="https://arxiv.org/format/1902.06726">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.99.235143">10.1103/PhysRevB.99.235143 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Orientation of ground-state orbital in CeCoIn$_5$ and CeRhIn$_5$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Sundermann%2C+M">M. Sundermann</a>, <a href="/search/?searchtype=author&amp;query=Amorese%2C+A">A. Amorese</a>, <a href="/search/?searchtype=author&amp;query=Strigari%2C+F">F. Strigari</a>, <a href="/search/?searchtype=author&amp;query=Leedahl%2C+B">B. Leedahl</a>, <a href="/search/?searchtype=author&amp;query=Haverkort%2C+M+W">M. W. Haverkort</a>, <a href="/search/?searchtype=author&amp;query=Gretarsson%2C+H">H. Gretarsson</a>, <a href="/search/?searchtype=author&amp;query=Tjeng%2C+L+H">L. H. Tjeng</a>, <a href="/search/?searchtype=author&amp;query=Sala%2C+M+M">M. Moretti Sala</a>, <a href="/search/?searchtype=author&amp;query=Yav%C5%9F%2C+H">H. Yav艧</a>, <a href="/search/?searchtype=author&amp;query=Bauer%2C+E+D">E. D. Bauer</a>, <a href="/search/?searchtype=author&amp;query=Rosa%2C+P+F+S">P. F. S. Rosa</a>, <a href="/search/?searchtype=author&amp;query=Thompson%2C+J+D">J. D. Thompson</a>, <a href="/search/?searchtype=author&amp;query=Severing%2C+A">A. Severing</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.06726v2-abstract-short" style="display: inline;"> We present core level non-resonant inelastic x-ray scattering (NIXS) data of the heavy fermion compounds CeCoIn$_5$ and CeRhIn$_5$ measured at the Ce $N_{4,5}$-edges. The higher than dipole transitions in NIXS allow determining the orientation of the $螕_7$ crystal-field ground-state orbital within the unit cell. The crystal-field parameters of the Ce$M$In$_5$ compounds and related substitution pha&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.06726v2-abstract-full').style.display = 'inline'; document.getElementById('1902.06726v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.06726v2-abstract-full" style="display: none;"> We present core level non-resonant inelastic x-ray scattering (NIXS) data of the heavy fermion compounds CeCoIn$_5$ and CeRhIn$_5$ measured at the Ce $N_{4,5}$-edges. The higher than dipole transitions in NIXS allow determining the orientation of the $螕_7$ crystal-field ground-state orbital within the unit cell. The crystal-field parameters of the Ce$M$In$_5$ compounds and related substitution phase diagrams have been investigated in great detail in the past; however, whether the ground-state wavefunction is the $螕_7^+$ ($x^2\,-\,y^2$) or $螕_7^-$ ($xy$ orientation) remained undetermined. We show that the $螕_7^-$ doublet with lobes along the (110) direction forms the ground state in CeCoIn$_5$ and CeRhIn$_5$. For CeCoIn$_5$, however, we find also some contribution of the first excited state crystal-field state in the ground state due to the stronger hybridization of 4$f$ and conduction electrons, suggesting a smaller $伪^2$ value than originally anticipated from x-ray absorption. A comparison is made to the results of existing density functional theory plus dynamical mean-field theory calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.06726v2-abstract-full').style.display = 'none'; document.getElementById('1902.06726v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 99, 235143 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.10808">arXiv:1901.10808</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.10808">pdf</a>, <a href="https://arxiv.org/format/1901.10808">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.100.241107">10.1103/PhysRevB.100.241107 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A RIXS investigation of the crystal-field splitting of Sm$^{3+}$ in SmB$_6$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Amorese%2C+A">Andrea Amorese</a>, <a href="/search/?searchtype=author&amp;query=Stockert%2C+O">Oliver Stockert</a>, <a href="/search/?searchtype=author&amp;query=Kummer%2C+K">Kurt Kummer</a>, <a href="/search/?searchtype=author&amp;query=Brookes%2C+N+B">Nickolas B. Brookes</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+D">Dae-Jeong Kim</a>, <a href="/search/?searchtype=author&amp;query=Fisk%2C+Z">Zachary Fisk</a>, <a href="/search/?searchtype=author&amp;query=Haverkort%2C+M+W">Maurits W. Haverkort</a>, <a href="/search/?searchtype=author&amp;query=Thalmeier%2C+P">Peter Thalmeier</a>, <a href="/search/?searchtype=author&amp;query=Tjeng%2C+L+H">Liu Hao Tjeng</a>, <a href="/search/?searchtype=author&amp;query=Severing%2C+A">Andrea Severing</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.10808v2-abstract-short" style="display: inline;"> The crystal-field (CF) splitting of the $^6H_{5/2}$ Hund&#39;s rule ground state of Sm$^{3+}$ in the strongly correlated topological insulator SmB$_6$ has been determined with high resolution resonant inelastic x-ray scattering (RIXS) at the Sm M$_5$ edge. The valence selectivity of RIXS allows isolating the crystal-field-split excited multiplets of the Sm$^{3+}$ (4$f^5$) configuration from those of S&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.10808v2-abstract-full').style.display = 'inline'; document.getElementById('1901.10808v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.10808v2-abstract-full" style="display: none;"> The crystal-field (CF) splitting of the $^6H_{5/2}$ Hund&#39;s rule ground state of Sm$^{3+}$ in the strongly correlated topological insulator SmB$_6$ has been determined with high resolution resonant inelastic x-ray scattering (RIXS) at the Sm M$_5$ edge. The valence selectivity of RIXS allows isolating the crystal-field-split excited multiplets of the Sm$^{3+}$ (4$f^5$) configuration from those of Sm$^{2+}$ (4$f^6$) in intermediate valent SmB$_6$. The very large energy range of RIXS allows the crystal-field analysis of a high lying multiplet at about 2.4\,eV that has the same total angular momentum $J$ as the ground state so that ambiguities due to the elastic tail can be avoided. We find that the $螕_7$ doublet and $螕_8$ quartet of the $^6H_{5/2}$ Hund&#39;s rule ground state are split by $螖^{CF}_{^6H_{5/2}}$\,=\,20$\pm$10\,meV which sets an upper limit for the 4$f$ band width. This indicates an extremely large mass renormalization from the band structure value, pointing out the need to consider the coefficients of fractional parentage for the hopping of the 4$f$ electrons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.10808v2-abstract-full').style.display = 'none'; document.getElementById('1901.10808v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 100, 241107 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.07213">arXiv:1812.07213</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1812.07213">pdf</a>, <a href="https://arxiv.org/format/1812.07213">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.3.045002">10.1103/PhysRevMaterials.3.045002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hidden kagome-lattice picture and origin of high conductivity in delafossite PtCoO$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Usui%2C+H">Hidetomo Usui</a>, <a href="/search/?searchtype=author&amp;query=Ochi%2C+M">Masayuki Ochi</a>, <a href="/search/?searchtype=author&amp;query=Kitamura%2C+S">Sota Kitamura</a>, <a href="/search/?searchtype=author&amp;query=Oka%2C+T">Takashi Oka</a>, <a href="/search/?searchtype=author&amp;query=Ogura%2C+D">Daisuke Ogura</a>, <a href="/search/?searchtype=author&amp;query=Rosner%2C+H">Helge Rosner</a>, <a href="/search/?searchtype=author&amp;query=Haverkort%2C+M+W">Maurits W. Haverkort</a>, <a href="/search/?searchtype=author&amp;query=Sunko%2C+V">Veronika Sunko</a>, <a href="/search/?searchtype=author&amp;query=King%2C+P+D+C">Philip D. C. King</a>, <a href="/search/?searchtype=author&amp;query=Mackenzie%2C+A+P">Andrew P. Mackenzie</a>, <a href="/search/?searchtype=author&amp;query=Kuroki%2C+K">Kazuhiko Kuroki</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.07213v2-abstract-short" style="display: inline;"> We study the electronic structure of delafossite PtCoO$_2$ to elucidate its extremely small resistivity and high mobility. The band exhibits steep dispersion near the Fermi level despite the fact that it is formed mainly by Pt $d$ orbitals that are typically localized. We propose a picture based on two hidden kagome-lattice-like electronic structure: one originating from Pt $s+p_x/p_y$ orbitals, a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.07213v2-abstract-full').style.display = 'inline'; document.getElementById('1812.07213v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.07213v2-abstract-full" style="display: none;"> We study the electronic structure of delafossite PtCoO$_2$ to elucidate its extremely small resistivity and high mobility. The band exhibits steep dispersion near the Fermi level despite the fact that it is formed mainly by Pt $d$ orbitals that are typically localized. We propose a picture based on two hidden kagome-lattice-like electronic structure: one originating from Pt $s+p_x/p_y$ orbitals, and the other from Pt $d_{3z^2-r^2}+d_{xy}/d_{x^2-y^2}$ orbitals, each placed on the bonds of the triangular lattice. In particular, we find that the underlying Pt $s+p_x/p_y$ bands actually determine the steepness of the original dispersion, so that the large Fermi velocity can be attributed to the large width of the Pt $s+p_x/p_y$ band. More importantly, the kagome-like electronic structure gives rise to &#34;orbital-momentum locking&#34; on the Fermi surface, which reduces the electron scattering by impurities. We conclude that the combination of the large Fermi velocity and the orbital-momentum locking is likely to be the origin of the extremely small resistivity in PtCoO$_2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.07213v2-abstract-full').style.display = 'none'; document.getElementById('1812.07213v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 14 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 3, 045002 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.03388">arXiv:1812.03388</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1812.03388">pdf</a>, <a href="https://arxiv.org/format/1812.03388">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.115143">10.1103/PhysRevB.109.115143 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Wannier-Orbital theory and ARPES for the quasi-1D conductor LiMo$_{6}$O$_{17}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Dudy%2C+L">L. Dudy</a>, <a href="/search/?searchtype=author&amp;query=Allen%2C+J+W">J. W. Allen</a>, <a href="/search/?searchtype=author&amp;query=Denlinger%2C+J+D">J. D. Denlinger</a>, <a href="/search/?searchtype=author&amp;query=He%2C+J">J. He</a>, <a href="/search/?searchtype=author&amp;query=Greenblatt%2C+M">M. Greenblatt</a>, <a href="/search/?searchtype=author&amp;query=Haverkort%2C+M+W">M. W. Haverkort</a>, <a href="/search/?searchtype=author&amp;query=Nohara%2C+Y">Y. Nohara</a>, <a href="/search/?searchtype=author&amp;query=Andersen%2C+O+K">O. K. Andersen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.03388v3-abstract-short" style="display: inline;"> In this set of three papers, we present the results of a combined study by density-functional (LDA) band theory (NMTO) and angle-resolved photoemission spectroscopy (ARPES) of lithium purple bronze, 2(Li$_{1x}$Mo$_{6}$O$_{17}$). This material is particularly notable for its unusually robust quasi-one-dimensional (quasi-1D) behavior. The band structure, in a large energy window around the Fermi ene&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.03388v3-abstract-full').style.display = 'inline'; document.getElementById('1812.03388v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.03388v3-abstract-full" style="display: none;"> In this set of three papers, we present the results of a combined study by density-functional (LDA) band theory (NMTO) and angle-resolved photoemission spectroscopy (ARPES) of lithium purple bronze, 2(Li$_{1x}$Mo$_{6}$O$_{17}$). This material is particularly notable for its unusually robust quasi-one-dimensional (quasi-1D) behavior. The band structure, in a large energy window around the Fermi energy, is basically 2D and formed by three Mo $t_{2g}$-like extended Wannier orbitals (WOs) per cell, each one giving rise to a 1D band running at a 120$^{\circ }$ angle to the two others. A structural &#34;dimerization&#34; from $\mathbf{c}/2$ to $\mathbf{c}$ gaps the $xz$ and $yz$ bands while leaving the $xy$ bands metallic in the gap but resonantly coupled to the gap edges and, hence, to the two other directions. The resulting complex shape of the quasi-1D Fermi surface (FS), verified by our ARPES, thus depends strongly on the Fermi energy position in the gap, implying a great sensitivity to Li stoichiometry of properties dependent on the FS, such as FS nesting or superconductivity. The band structure, expressed as a six-band, analytical tight-binding (TB) Hamiltonian, is verified in detail by the recognition and application of an ARPES selection rule that enables, for the first time, the separation in ARPES spectra of the two barely split $xy$ bands and the observation of their complex split FS. The strong resonances prevent either a two-band TB model or a related real-space ladder picture from giving a valid description of the low-energy electronic structure. Down to a temperature of 6$\,$K we find no evidence for a theoretically expected downward renormalization of perpendicular single particle hopping due to LL fluctuations in the quasi-1D chains. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.03388v3-abstract-full').style.display = 'none'; document.getElementById('1812.03388v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.04836">arXiv:1811.04836</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.04836">pdf</a>, <a href="https://arxiv.org/format/1811.04836">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Site selective spin and orbital excitations in Fe3O4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Elnaggar%2C+H">H. Elnaggar</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+R">R. Wang</a>, <a href="/search/?searchtype=author&amp;query=Lafuerza%2C+S">S. Lafuerza</a>, <a href="/search/?searchtype=author&amp;query=Paris%2C+E">E. Paris</a>, <a href="/search/?searchtype=author&amp;query=Komarek%2C+A+C">A. C. Komarek</a>, <a href="/search/?searchtype=author&amp;query=Guo%2C+H">H. Guo</a>, <a href="/search/?searchtype=author&amp;query=Tseng%2C+Y">Y. Tseng</a>, <a href="/search/?searchtype=author&amp;query=McNally%2C+D">D. McNally</a>, <a href="/search/?searchtype=author&amp;query=Frati%2C+F">F. Frati</a>, <a href="/search/?searchtype=author&amp;query=Haverkort%2C+M+W">M. W. Haverkort</a>, <a href="/search/?searchtype=author&amp;query=Sikora%2C+M">M. Sikora</a>, <a href="/search/?searchtype=author&amp;query=Schmitt%2C+T">T. Schmitt</a>, <a href="/search/?searchtype=author&amp;query=de+Groot%2C+F+M+F">F. M. F. de Groot</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.04836v1-abstract-short" style="display: inline;"> $Fe_3O_4$ is a mixed-valence strongly correlated transition metal oxide which displays the intriguing metal to insulator Verwey transition. Here we investigate the electronic and magnetic structure of $Fe_3O_4&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.04836v1-abstract-full').style.display = 'inline'; document.getElementById('1811.04836v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.04836v1-abstract-full" style="display: none;"> $Fe_3O_4$ is a mixed-valence strongly correlated transition metal oxide which displays the intriguing metal to insulator Verwey transition. Here we investigate the electronic and magnetic structure of $Fe_3O_4$ by a unique combination of high-resolution Fe 2p3d resonant inelastic scattering magnetic circular (RIXS-MCD) and magnetic linear (RIXS-MLD) dichroism. We show that by coupling the site selectivity of RIXS with the magnetic selectivity imposed by the incident polarization handedness, we can unambiguously identify spin-flip excitations and quantify the exchange interaction of the different sublattices. Furthermore, our RIXS-MLD measurements show spin-orbital excitations that exhibit strong polarization and magnetic field dependence. Guided by theoretical simulations, we reveal that the angular dependence arises from a strong interplay between trigonal crystal-field, magnetic exchange and spin-orbit interaction at the nominal $Fe^{2+}$ sites. Our results highlight the capabilities of RIXS magnetic dichroism studies to investigate the ground state of complex systems where in-equivalent sites and bonds are simultaneously present. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.04836v1-abstract-full').style.display = 'none'; document.getElementById('1811.04836v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.10499">arXiv:1806.10499</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1806.10499">pdf</a>, <a href="https://arxiv.org/format/1806.10499">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.8.031014">10.1103/PhysRevX.8.031014 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Site-selective Probe of Magnetic Excitations in Rare-earth Nickelates using Resonant Inelastic X-ray Scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Lu%2C+Y">Y. Lu</a>, <a href="/search/?searchtype=author&amp;query=Betto%2C+D">D. Betto</a>, <a href="/search/?searchtype=author&amp;query=F%C3%BCrsich%2C+K">K. F眉rsich</a>, <a href="/search/?searchtype=author&amp;query=Suzuki%2C+H">H. Suzuki</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+H+-">H. -H. Kim</a>, <a href="/search/?searchtype=author&amp;query=Cristiani%2C+G">G. Cristiani</a>, <a href="/search/?searchtype=author&amp;query=Logvenov%2C+G">G. Logvenov</a>, <a href="/search/?searchtype=author&amp;query=Brookes%2C+N+B">N. B. Brookes</a>, <a href="/search/?searchtype=author&amp;query=Benckiser%2C+E">E. Benckiser</a>, <a href="/search/?searchtype=author&amp;query=Haverkort%2C+M+W">M. W. Haverkort</a>, <a href="/search/?searchtype=author&amp;query=Khaliullin%2C+G">G. Khaliullin</a>, <a href="/search/?searchtype=author&amp;query=Tacon%2C+M+L">M. Le Tacon</a>, <a href="/search/?searchtype=author&amp;query=Minola%2C+M">M. Minola</a>, <a href="/search/?searchtype=author&amp;query=Keimer%2C+B">B. Keimer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.10499v1-abstract-short" style="display: inline;"> We have used high-resolution resonant inelastic x-ray scattering (RIXS) to study a thin film of NdNiO$_3$, a compound whose unusual spin- and bond-ordered electronic ground state has been of long-standing interest. Below the magnetic ordering temperature, we observe well-defined collective magnon excitations along different high-symmetry directions in momentum space. The magnetic spectra depend st&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.10499v1-abstract-full').style.display = 'inline'; document.getElementById('1806.10499v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.10499v1-abstract-full" style="display: none;"> We have used high-resolution resonant inelastic x-ray scattering (RIXS) to study a thin film of NdNiO$_3$, a compound whose unusual spin- and bond-ordered electronic ground state has been of long-standing interest. Below the magnetic ordering temperature, we observe well-defined collective magnon excitations along different high-symmetry directions in momentum space. The magnetic spectra depend strongly on the incident photon energy, which we attribute to RIXS coupling to different local electronic configurations of the expanded and compressed NiO$_6$ octahedra in the bond-ordered state. Both the noncollinear magnetic ground state and the observed site-dependent magnon excitations are well described by a model that assumes strong competition between the antiferromagnetic superexchange and ferromagnetic double-exchange interactions. Our study provides direct insight into the magnetic dynamics and exchange interactions of the rare-earth nickelates, and demonstrates that RIXS can serve as a site-selective probe of magnetism in these and other materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.10499v1-abstract-full').style.display = 'none'; document.getElementById('1806.10499v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Phys. Rev. X, in press</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X 8, 031014 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.04978">arXiv:1806.04978</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1806.04978">pdf</a>, <a href="https://arxiv.org/format/1806.04978">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.98.081116">10.1103/PhysRevB.98.081116 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Determining the local low-energy excitations in the Kondo semimetal CeRu$_4$Sn$_6$ using resonant inelastic x-ray scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Amorese%2C+A">Andrea Amorese</a>, <a href="/search/?searchtype=author&amp;query=Kummer%2C+K">Kurt Kummer</a>, <a href="/search/?searchtype=author&amp;query=Brookes%2C+N+B">Nickolas B. Brookes</a>, <a href="/search/?searchtype=author&amp;query=Stockert%2C+O">Oliver Stockert</a>, <a href="/search/?searchtype=author&amp;query=Adroja%2C+D+T">Devashibhai T. Adroja</a>, <a href="/search/?searchtype=author&amp;query=Stryodm%2C+A+M">Andre M. Stryodm</a>, <a href="/search/?searchtype=author&amp;query=Sidorenko%2C+A">Andrey Sidorenko</a>, <a href="/search/?searchtype=author&amp;query=Winkler%2C+H">Hannes Winkler</a>, <a href="/search/?searchtype=author&amp;query=Zocco%2C+D+A">Diego A. Zocco</a>, <a href="/search/?searchtype=author&amp;query=Prokofiev%2C+A">Andrey Prokofiev</a>, <a href="/search/?searchtype=author&amp;query=Paschen%2C+S">Silke Paschen</a>, <a href="/search/?searchtype=author&amp;query=Haverkort%2C+M+W">Maurits W. Haverkort</a>, <a href="/search/?searchtype=author&amp;query=Tjeng%2C+L+H">Liu Hao Tjeng</a>, <a href="/search/?searchtype=author&amp;query=Severing%2C+A">Andrea Severing</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.04978v1-abstract-short" style="display: inline;"> We have investigated the local low-energy excitations in CeRu$_4$Sn$_6$, a material discussed recently in the framework of strongly correlated Weyl semimetals, by means of Ce $M_5$ resonant inelastic x-ray scattering (RIXS). The availability of both $^2$F$_\frac{5}{2}$ and $^2$F$_\frac{7}{2}$ excitations of the Ce $4f^1$ configuration in the spectra allows for the determination of the crystal-elec&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.04978v1-abstract-full').style.display = 'inline'; document.getElementById('1806.04978v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.04978v1-abstract-full" style="display: none;"> We have investigated the local low-energy excitations in CeRu$_4$Sn$_6$, a material discussed recently in the framework of strongly correlated Weyl semimetals, by means of Ce $M_5$ resonant inelastic x-ray scattering (RIXS). The availability of both $^2$F$_\frac{5}{2}$ and $^2$F$_\frac{7}{2}$ excitations of the Ce $4f^1$ configuration in the spectra allows for the determination of the crystal-electric field parameters that explain quantitatively the temperature dependence and anisotropy of the magnetic susceptibility. The absence of an azimuthal dependence in the spectra indicates that all crystal-electric field states are close to being rotational symmetric. We show further that the non-negligible impact of the $\check A_6^0$ parameter on the ground state of CeRu$_4$Sn$_6$ leads to a reduction of the magnetic moment due to multiplet intermixing. The RIXS results are consistent with inelastic neutron scattering (INS) data and are compared to the predictions from \textsl{ab-initio} based electronic structure calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.04978v1-abstract-full').style.display = 'none'; document.getElementById('1806.04978v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages and 7 figures, submitted</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 98, 081116 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.08752">arXiv:1802.08752</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1802.08752">pdf</a>, <a href="https://arxiv.org/format/1802.08752">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.97.214436">10.1103/PhysRevB.97.214436 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing the $J_{eff}=0$ ground state and the Van Vleck paramagnetism of the Ir$^{5+}$ ions in the layered Sr$_2$Co$_{0.5}$Ir$_{0.5}$O$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Agrestini%2C+S">S. Agrestini</a>, <a href="/search/?searchtype=author&amp;query=Kuo%2C+C+-">C. -Y. Kuo</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+K">K. Chen</a>, <a href="/search/?searchtype=author&amp;query=Utsumi%2C+Y">Y. Utsumi</a>, <a href="/search/?searchtype=author&amp;query=Mikhailova%2C+D">D. Mikhailova</a>, <a href="/search/?searchtype=author&amp;query=Rogalev%2C+A">A. Rogalev</a>, <a href="/search/?searchtype=author&amp;query=Wilhelm%2C+F">F. Wilhelm</a>, <a href="/search/?searchtype=author&amp;query=F%C3%B6rster%2C+T">T. F枚rster</a>, <a href="/search/?searchtype=author&amp;query=Matsumoto%2C+A">A. Matsumoto</a>, <a href="/search/?searchtype=author&amp;query=Takayama%2C+T">T. Takayama</a>, <a href="/search/?searchtype=author&amp;query=Takagi%2C+H">H. Takagi</a>, <a href="/search/?searchtype=author&amp;query=Haverkort%2C+M+W">M. W. Haverkort</a>, <a href="/search/?searchtype=author&amp;query=Hu%2C+Z">Z. Hu</a>, <a href="/search/?searchtype=author&amp;query=Tjeng%2C+L+H">L. H. Tjeng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.08752v1-abstract-short" style="display: inline;"> We report a combined experimental and theoretical x-ray magnetic circular dichroism (XMCD) spectroscopy study at the Ir-$L_{2,3}$ edges on the Ir$^{5+}$ ions of the layered hybrid solid state oxide Sr$_2$Co$_{0.5}$Ir$_{0.5}$O$_4$ with the K$_2$NiF$_4$ structure. From theoretical simulation of the experimental Ir-$L_{2,3}$ XMCD spectrum, we found a deviation from a pure $J_{eff}=0$ ground state wit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.08752v1-abstract-full').style.display = 'inline'; document.getElementById('1802.08752v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.08752v1-abstract-full" style="display: none;"> We report a combined experimental and theoretical x-ray magnetic circular dichroism (XMCD) spectroscopy study at the Ir-$L_{2,3}$ edges on the Ir$^{5+}$ ions of the layered hybrid solid state oxide Sr$_2$Co$_{0.5}$Ir$_{0.5}$O$_4$ with the K$_2$NiF$_4$ structure. From theoretical simulation of the experimental Ir-$L_{2,3}$ XMCD spectrum, we found a deviation from a pure $J_{eff}=0$ ground state with an anisotropic orbital-to-spin moment ratio ($L_x/2S_x$ = 0.43 and $L_z/2S_z$ = 0.78). This deviation is mainly due to multiplet interactions being not small compared to the cubic crystal field and due to the presence of a large tetragonal crystal field associated with the crystal structure. Nevertheless, our calculations show that the energy gap between the singlet ground state and the triplet excited state is still large and that the magnetic properties of the Ir$^{5+}$ ions can be well described in terms of singlet Van Vleck paramagnetism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.08752v1-abstract-full').style.display = 'none'; document.getElementById('1802.08752v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1711.10309">arXiv:1711.10309</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1711.10309">pdf</a>, <a href="https://arxiv.org/format/1711.10309">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.97.054620">10.1103/PhysRevC.97.054620 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $\textit{Ab initio}$ calculation of the calorimetric electron capture spectrum of $^{163}$Holmium: Intra-atomic decay into bound-states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Bra%C3%9F%2C+M">M. Bra脽</a>, <a href="/search/?searchtype=author&amp;query=Enss%2C+C">C. Enss</a>, <a href="/search/?searchtype=author&amp;query=Gastaldo%2C+L">L. Gastaldo</a>, <a href="/search/?searchtype=author&amp;query=Haverkort%2C+M+W">M. W. Haverkort</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1711.10309v2-abstract-short" style="display: inline;"> The determination of the electron neutrino mass by electron capture in $^{163}$Ho relies on a precise understanding of the deexcitation of a core hole after an electron capture event. We here present an \textit{ab intio} calculation of the electron capture spectrum in $^{163}$Ho, including all intra-atomic decay channels into bound-states. We use theoretical methods developed for the calculation o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.10309v2-abstract-full').style.display = 'inline'; document.getElementById('1711.10309v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1711.10309v2-abstract-full" style="display: none;"> The determination of the electron neutrino mass by electron capture in $^{163}$Ho relies on a precise understanding of the deexcitation of a core hole after an electron capture event. We here present an \textit{ab intio} calculation of the electron capture spectrum in $^{163}$Ho, including all intra-atomic decay channels into bound-states. We use theoretical methods developed for the calculation of core level spectroscopy on correlated electron compounds. Our comparison critically tests the reality of these theories. We find that relativistic interactions beyond the Dirac equation, i.e. quantum-electro dynamics, only lead to minor shifts of the spectral peaks. The electronic relaxation after an electron capture event due to the changed nuclear potential leads to a mixing of different edges, but due to conservation of angular momentum of each scattered electron, no additional structures emerge. Many-body Coulomb interactions lead to the formation of multiplets and to additional peaks with multiple core-holes due to Auger decay. Multiplets crucially change the appearance of the resonances on a Rydberg energy scale. The additional structures due to Auger decay are, although clearly visible, relatively weak compared to the one core hole states and accidentally far away from the end-point region of the spectrum. As the end-point of the spectrum is effected most by the neutrino mass these additional states do not influence the statistics for determining the neutrino mass directly. The multiplet broadening and Auger shake-up of the main core-level edges do change the apparent line-width and accompanying lifetime of these edges, thereby invalidating experimentally obtained lifetimes at the resonance for regions far away from the resonance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.10309v2-abstract-full').style.display = 'none'; document.getElementById('1711.10309v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. C 97, 054620 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1711.03780">arXiv:1711.03780</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1711.03780">pdf</a>, <a href="https://arxiv.org/format/1711.03780">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.119.256401">10.1103/PhysRevLett.119.256401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Non-perturbative series expansion of Green&#39;s functions: The Anatomy of Resonant Inelastic X-Ray Scattering in Doped Hubbard Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Lu%2C+Y">Yi Lu</a>, <a href="/search/?searchtype=author&amp;query=Haverkort%2C+M+W">Maurits W. Haverkort</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1711.03780v1-abstract-short" style="display: inline;"> We present a non-perturbative, divergence-free series expansion of Green&#39;s functions using effective operators. The method is especially suited for computing correlators of complex operators as a series of correlation functions of simpler forms. We apply the method to study low-energy excitations in resonant inelastic x-ray scattering (RIXS) in doped one- and two-dimensional single-band Hubbard mo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.03780v1-abstract-full').style.display = 'inline'; document.getElementById('1711.03780v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1711.03780v1-abstract-full" style="display: none;"> We present a non-perturbative, divergence-free series expansion of Green&#39;s functions using effective operators. The method is especially suited for computing correlators of complex operators as a series of correlation functions of simpler forms. We apply the method to study low-energy excitations in resonant inelastic x-ray scattering (RIXS) in doped one- and two-dimensional single-band Hubbard models. The RIXS operator is expanded into polynomials of spin, density, and current operators weighted by fundamental x-ray spectral functions. These operators couple to different polarization channels resulting in simple selection rules. The incident photon energy dependent coefficients help to pinpoint main RIXS contributions from different degrees of freedom. We show in particular that, with parameters pertaining to cuprate superconductors, local spin excitation dominates the RIXS spectral weight over a wide doping range in the cross-polarization channel. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.03780v1-abstract-full').style.display = 'none'; document.getElementById('1711.03780v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6+6 pages; 4+9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.08771">arXiv:1710.08771</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.08771">pdf</a>, <a href="https://arxiv.org/format/1710.08771">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.8.021004">10.1103/PhysRevX.8.021004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The $c$-axis dimer and its electronic break-up: the insulator-to-metal transition in Ti$_2$O$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Chang%2C+C+F">C. F. Chang</a>, <a href="/search/?searchtype=author&amp;query=Koethe%2C+T+C">T. C. Koethe</a>, <a href="/search/?searchtype=author&amp;query=Hu%2C+Z">Z. Hu</a>, <a href="/search/?searchtype=author&amp;query=Weinen%2C+J">J. Weinen</a>, <a href="/search/?searchtype=author&amp;query=Agrestini%2C+S">S. Agrestini</a>, <a href="/search/?searchtype=author&amp;query=Gegner%2C+J">J. Gegner</a>, <a href="/search/?searchtype=author&amp;query=Ott%2C+H">H. Ott</a>, <a href="/search/?searchtype=author&amp;query=Panaccione%2C+G">G. Panaccione</a>, <a href="/search/?searchtype=author&amp;query=Wu%2C+H">Hua Wu</a>, <a href="/search/?searchtype=author&amp;query=Haverkort%2C+M+W">M. W. Haverkort</a>, <a href="/search/?searchtype=author&amp;query=Roth%2C+H">H. Roth</a>, <a href="/search/?searchtype=author&amp;query=Komarek%2C+A+C">A. C. Komarek</a>, <a href="/search/?searchtype=author&amp;query=Offi%2C+F">F. Offi</a>, <a href="/search/?searchtype=author&amp;query=Monaco%2C+G">G. Monaco</a>, <a href="/search/?searchtype=author&amp;query=Liao%2C+Y+-">Y. -F. Liao</a>, <a href="/search/?searchtype=author&amp;query=Tsuei%2C+K+-">K. -D. Tsuei</a>, <a href="/search/?searchtype=author&amp;query=Lin%2C+H+-">H. -J. Lin</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+C+T">C. T. Chen</a>, <a href="/search/?searchtype=author&amp;query=Tanaka%2C+A">A. Tanaka</a>, <a href="/search/?searchtype=author&amp;query=Tjeng%2C+L+H">L. H. Tjeng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.08771v1-abstract-short" style="display: inline;"> We report on our investigation of the electronic structure of Ti$_2$O$_3$ using (hard) x-ray photoelectron and soft x-ray absorption spectroscopy. From the distinct satellite structures in the spectra we have been able to establish unambiguously that the Ti-Ti $c$-axis dimer in the corundum crystal structure is electronically present and forms an $a_{1g}a_{1g}$ molecular singlet in the low tempera&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.08771v1-abstract-full').style.display = 'inline'; document.getElementById('1710.08771v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.08771v1-abstract-full" style="display: none;"> We report on our investigation of the electronic structure of Ti$_2$O$_3$ using (hard) x-ray photoelectron and soft x-ray absorption spectroscopy. From the distinct satellite structures in the spectra we have been able to establish unambiguously that the Ti-Ti $c$-axis dimer in the corundum crystal structure is electronically present and forms an $a_{1g}a_{1g}$ molecular singlet in the low temperature insulating phase. Upon heating we observed a considerable spectral weight transfer to lower energies with orbital reconstruction. The insulator-metal transition may be viewed as a transition from a solid of isolated Ti-Ti molecules into a solid of electronically partially broken dimers where the Ti ions acquire additional hopping in the $a$-$b$ plane via the $e_g^蟺$ channel, the opening of which requires the consideration of the multiplet structure of the on-site Coulomb interaction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.08771v1-abstract-full').style.display = 'none'; document.getElementById('1710.08771v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X 8, 021004 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.01862">arXiv:1710.01862</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.01862">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.7566/JPSJ.86.093706">10.7566/JPSJ.86.093706 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice and Magnetic Effects on a d-d Excitation in NiO Using a 25 meV Resolution X-ray Spectrometer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Ishikawa%2C+D">Daisuke Ishikawa</a>, <a href="/search/?searchtype=author&amp;query=Haverkort%2C+M+W">Maurits W. Haverkort</a>, <a href="/search/?searchtype=author&amp;query=Baron%2C+A+Q+R">Alfred Q. R. Baron</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.01862v1-abstract-short" style="display: inline;"> We investigate the behavior of a $d$-$d$ transition in NiO using a new x-ray spectrometer with 0.025 eV resolution at 15816 eV, and via ab-initio ligand field theory calculations. The transition at ~1.7 eV energy transfer is measured at temperatures between 20 and 800 K, at a momentum transfer |$\bf{Q}$| = 6.52 脜$^{-1}$. Fine structure is clearly observed at 20 K. As temperature is increased, the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.01862v1-abstract-full').style.display = 'inline'; document.getElementById('1710.01862v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.01862v1-abstract-full" style="display: none;"> We investigate the behavior of a $d$-$d$ transition in NiO using a new x-ray spectrometer with 0.025 eV resolution at 15816 eV, and via ab-initio ligand field theory calculations. The transition at ~1.7 eV energy transfer is measured at temperatures between 20 and 800 K, at a momentum transfer |$\bf{Q}$| = 6.52 脜$^{-1}$. Fine structure is clearly observed at 20 K. As temperature is increased, the excitation shifts to lower energy and broadens. We explain the energy shift as being related to thermal expansion and to magnetism. The broadening is well fit considering thermal fluctuations of the Ni-O bond length, with a scale factor found to be in reasonable agreement with calculation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.01862v1-abstract-full').style.display = 'none'; document.getElementById('1710.01862v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. Soc. Japan, 86L (2017) 093706 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1708.03887">arXiv:1708.03887</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1708.03887">pdf</a>, <a href="https://arxiv.org/format/1708.03887">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nature23898">10.1038/nature23898 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Maximal Rashba-like spin splitting via kinetic energy-driven inversion symmetry breaking </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Sunko%2C+V">Veronika Sunko</a>, <a href="/search/?searchtype=author&amp;query=Rosner%2C+H">H. Rosner</a>, <a href="/search/?searchtype=author&amp;query=Kushwaha%2C+P">P. Kushwaha</a>, <a href="/search/?searchtype=author&amp;query=Khim%2C+S">S. Khim</a>, <a href="/search/?searchtype=author&amp;query=Mazzola%2C+F">F. Mazzola</a>, <a href="/search/?searchtype=author&amp;query=Bawden%2C+L">L. Bawden</a>, <a href="/search/?searchtype=author&amp;query=Clark%2C+O+J">O. J. Clark</a>, <a href="/search/?searchtype=author&amp;query=Riley%2C+J+M">J. M. Riley</a>, <a href="/search/?searchtype=author&amp;query=Kasinathan%2C+D">D. Kasinathan</a>, <a href="/search/?searchtype=author&amp;query=Haverkort%2C+M+W">M. W. Haverkort</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+T+K">T. K. Kim</a>, <a href="/search/?searchtype=author&amp;query=Hoesch%2C+M">M. Hoesch</a>, <a href="/search/?searchtype=author&amp;query=Fujii%2C+J">J. Fujii</a>, <a href="/search/?searchtype=author&amp;query=Vobornik%2C+I">I. Vobornik</a>, <a href="/search/?searchtype=author&amp;query=Mackenzie%2C+A+P">A. P. Mackenzie</a>, <a href="/search/?searchtype=author&amp;query=King%2C+P+D+C">P. D. C. King</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1708.03887v1-abstract-short" style="display: inline;"> Engineering and enhancing inversion symmetry breaking in solids is a major goal in condensed matter physics and materials science, as a route to advancing new physics and applications ranging from improved ferroelectrics for memory devices to materials hosting Majorana zero modes for quantum computing. Here, we uncover a new mechanism for realising a much larger energy scale of inversion symmetry&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.03887v1-abstract-full').style.display = 'inline'; document.getElementById('1708.03887v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1708.03887v1-abstract-full" style="display: none;"> Engineering and enhancing inversion symmetry breaking in solids is a major goal in condensed matter physics and materials science, as a route to advancing new physics and applications ranging from improved ferroelectrics for memory devices to materials hosting Majorana zero modes for quantum computing. Here, we uncover a new mechanism for realising a much larger energy scale of inversion symmetry breaking at surfaces and interfaces than is typically achieved. The key ingredient is a pronounced asymmetry of surface hopping energies, i.e. a kinetic energy-driven inversion symmetry breaking, whose energy scale is pinned at a significant fraction of the bandwidth. We show, from spin- and angle-resolved photoemission, how this enables surface states of 3d and 4d-based transition-metal oxides to surprisingly develop some of the largest Rashba-like spin splittings that are known. Our findings open new possibilities to produce spin textured states in oxides which exploit the full potential of the bare atomic spin-orbit coupling, raising exciting prospects for oxide spintronics. More generally, the core structural building blocks which enable this are common to numerous materials, providing the prospect of enhanced inversion symmetry breaking at judiciously-chosen surfaces of a plethora of compounds, and suggesting routes to interfacial control of inversion symmetry breaking in designer heterostructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.03887v1-abstract-full').style.display = 'none'; document.getElementById('1708.03887v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 549, 492-496 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1708.00663">arXiv:1708.00663</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1708.00663">pdf</a>, <a href="https://arxiv.org/format/1708.00663">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.119.097001">10.1103/PhysRevLett.119.097001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Crossover from Collective to Incoherent Spin Excitations in Superconducting Cuprates Probed by Detuned Resonant Inelastic X-ray Scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Minola%2C+M">M. Minola</a>, <a href="/search/?searchtype=author&amp;query=Lu%2C+Y">Y. Lu</a>, <a href="/search/?searchtype=author&amp;query=Peng%2C+Y+Y">Y. Y. Peng</a>, <a href="/search/?searchtype=author&amp;query=Dellea%2C+G">G. Dellea</a>, <a href="/search/?searchtype=author&amp;query=Gretarsson%2C+H">H. Gretarsson</a>, <a href="/search/?searchtype=author&amp;query=Haverkort%2C+M+W">M. W. Haverkort</a>, <a href="/search/?searchtype=author&amp;query=Ding%2C+Y">Y. Ding</a>, <a href="/search/?searchtype=author&amp;query=Sun%2C+X">X. Sun</a>, <a href="/search/?searchtype=author&amp;query=Zhou%2C+X+J">X. J. Zhou</a>, <a href="/search/?searchtype=author&amp;query=Peets%2C+D+C">D. C. Peets</a>, <a href="/search/?searchtype=author&amp;query=Chauviere%2C+L">L. Chauviere</a>, <a href="/search/?searchtype=author&amp;query=Dosanjh%2C+P">P. Dosanjh</a>, <a href="/search/?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a>, <a href="/search/?searchtype=author&amp;query=Liang%2C+R">R. Liang</a>, <a href="/search/?searchtype=author&amp;query=Damascelli%2C+A">A. Damascelli</a>, <a href="/search/?searchtype=author&amp;query=Brookes%2C+N+B">N. B. Brookes</a>, <a href="/search/?searchtype=author&amp;query=Yakhou%2C+F">F. Yakhou</a>, <a href="/search/?searchtype=author&amp;query=Pelliciari%2C+J">J. Pelliciari</a>, <a href="/search/?searchtype=author&amp;query=Dantz%2C+M">M. Dantz</a>, <a href="/search/?searchtype=author&amp;query=Lu%2C+X">X. Lu</a>, <a href="/search/?searchtype=author&amp;query=Schmitt%2C+T">T. Schmitt</a>, <a href="/search/?searchtype=author&amp;query=Braicovich%2C+L">L. Braicovich</a>, <a href="/search/?searchtype=author&amp;query=Ghiringhelli%2C+G">G. Ghiringhelli</a>, <a href="/search/?searchtype=author&amp;query=Keimer%2C+B">B. Keimer</a>, <a href="/search/?searchtype=author&amp;query=Tacon%2C+M+L">M. Le Tacon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1708.00663v1-abstract-short" style="display: inline;"> Spin excitations in the overdoped high temperature superconductors Tl$_2$Ba$_2$CuO$_{6+未}$ and (Bi,Pb)$_2$(Sr,La)$_{2}$CuO$_{6+未}$ were investigated by resonant inelastic x-ray scattering (RIXS) as functions of doping and detuning of the incoming photon energy above the Cu-$L_3$ absorption peak. The RIXS spectra at optimal doping are dominated by a paramagnon feature with peak energy independent o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.00663v1-abstract-full').style.display = 'inline'; document.getElementById('1708.00663v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1708.00663v1-abstract-full" style="display: none;"> Spin excitations in the overdoped high temperature superconductors Tl$_2$Ba$_2$CuO$_{6+未}$ and (Bi,Pb)$_2$(Sr,La)$_{2}$CuO$_{6+未}$ were investigated by resonant inelastic x-ray scattering (RIXS) as functions of doping and detuning of the incoming photon energy above the Cu-$L_3$ absorption peak. The RIXS spectra at optimal doping are dominated by a paramagnon feature with peak energy independent of photon energy, similar to prior results on underdoped cuprates. Beyond optimal doping, the RIXS data indicate a sharp crossover to a regime with a strong contribution from incoherent particle/hole excitations whose maximum shows a fluorescence-like shift upon detuning. The spectra of both compound families are closely similar, and their salient features are reproduced by exact-diagonalization calculations of the single-band Hubbard model on a finite cluster. The results are discussed in the light of recent transport experiments indicating a quantum phase transition near optimal doping. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.00663v1-abstract-full').style.display = 'none'; document.getElementById('1708.00663v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures, accepted in Physical Review Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 119, 097001 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1706.08168">arXiv:1706.08168</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1706.08168">pdf</a>, <a href="https://arxiv.org/format/1706.08168">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.96.245131">10.1103/PhysRevB.96.245131 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Theory of $L$-edge spectroscopy of strongly correlated systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=L%C3%BCder%2C+J">Johann L眉der</a>, <a href="/search/?searchtype=author&amp;query=Sch%C3%B6tt%2C+J">Johan Sch枚tt</a>, <a href="/search/?searchtype=author&amp;query=Brena%2C+B">Barbara Brena</a>, <a href="/search/?searchtype=author&amp;query=Haverkort%2C+M+W">Maurits W. Haverkort</a>, <a href="/search/?searchtype=author&amp;query=Thunstr%C3%B6m%2C+P">Patrik Thunstr枚m</a>, <a href="/search/?searchtype=author&amp;query=Eriksson%2C+O">Olle Eriksson</a>, <a href="/search/?searchtype=author&amp;query=Sanyal%2C+B">Biplab Sanyal</a>, <a href="/search/?searchtype=author&amp;query=Di+Marco%2C+I">Igor Di Marco</a>, <a href="/search/?searchtype=author&amp;query=Kvashnin%2C+Y+O">Yaroslav O. Kvashnin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1706.08168v2-abstract-short" style="display: inline;"> X-ray absorption spectroscopy measured at the $L$-edge of transition metals (TMs) is a powerful element-selective tool providing direct information about the correlation effects in the $3d$ states. The theoretical modeling of the $2p\rightarrow3d$ excitation processes remains to be challenging for contemporary \textit{ab initio} electronic structure techniques, due to strong core-hole and multiple&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.08168v2-abstract-full').style.display = 'inline'; document.getElementById('1706.08168v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1706.08168v2-abstract-full" style="display: none;"> X-ray absorption spectroscopy measured at the $L$-edge of transition metals (TMs) is a powerful element-selective tool providing direct information about the correlation effects in the $3d$ states. The theoretical modeling of the $2p\rightarrow3d$ excitation processes remains to be challenging for contemporary \textit{ab initio} electronic structure techniques, due to strong core-hole and multiplet effects influencing the spectra. In this work we present a realization of the method combining the density-functional theory with multiplet ligand field theory, proposed in Haverkort et al. (https://link.aps.org/doi/10.1103/PhysRevB.85.165113), Phys. Rev. B 85, 165113 (2012). In this approach a single-impurity Anderson model (SIAM) is constructed, with almost all parameters obtained from first principles, and then solved to obtain the spectra. In our implementation we adopt the language of the dynamical mean-field theory and utilize the local density of states and the hybridization function, projected onto TM $3d$ states, in order to construct the SIAM. The developed computational scheme is applied to calculate the $L$-edge spectra for several TM monoxides. A very good agreement between the theory and experiment is found for all studied systems. The effect of core-hole relaxation, hybridization discretization, possible extensions of the method as well as its limitations are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.08168v2-abstract-full').style.display = 'none'; document.getElementById('1706.08168v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 96, 245131 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1706.08072">arXiv:1706.08072</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1706.08072">pdf</a>, <a href="https://arxiv.org/format/1706.08072">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.120.016402">10.1103/PhysRevLett.120.016402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> 4$f$ crystal field ground state of the strongly correlated topological insulator SmB$_6$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Sundermann%2C+M">Martin Sundermann</a>, <a href="/search/?searchtype=author&amp;query=Yava%C5%9F%2C+H">Hasan Yava艧</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+K">Kai Chen</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+D+J">Dae Jeong Kim</a>, <a href="/search/?searchtype=author&amp;query=Fisk%2C+Z">Zachary Fisk</a>, <a href="/search/?searchtype=author&amp;query=Kasinathan%2C+D">Deepa Kasinathan</a>, <a href="/search/?searchtype=author&amp;query=Haverkort%2C+M+W">Maurits Wim Haverkort</a>, <a href="/search/?searchtype=author&amp;query=Thalmeier%2C+p">peter Thalmeier</a>, <a href="/search/?searchtype=author&amp;query=Severing%2C+A">Andrea Severing</a>, <a href="/search/?searchtype=author&amp;query=Tjeng%2C+L+H">Liu Hao Tjeng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1706.08072v2-abstract-short" style="display: inline;"> We investigated the crystal-electric field ground state of the 4$f$ manifold in the strongly correlated topological insulator SmB$_6$ using core level non-resonant inelastic x-ray scattering (NIXS). The directional dependence of the scattering function that arises from higher multipole transitions establishes unambiguously that the $螕_8$ quartet state of the Sm $f^5$ $J$=$5/2$ configuration govern&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.08072v2-abstract-full').style.display = 'inline'; document.getElementById('1706.08072v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1706.08072v2-abstract-full" style="display: none;"> We investigated the crystal-electric field ground state of the 4$f$ manifold in the strongly correlated topological insulator SmB$_6$ using core level non-resonant inelastic x-ray scattering (NIXS). The directional dependence of the scattering function that arises from higher multipole transitions establishes unambiguously that the $螕_8$ quartet state of the Sm $f^5$ $J$=$5/2$ configuration governs the ground-state symmetry and hence the topological properties of SmB$_6$. Our findings contradict the results of density functional calculations reported so far. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.08072v2-abstract-full').style.display = 'none'; document.getElementById('1706.08072v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 120, 016402 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.03459">arXiv:1705.03459</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1705.03459">pdf</a>, <a href="https://arxiv.org/ps/1705.03459">ps</a>, <a href="https://arxiv.org/format/1705.03459">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.96.155130">10.1103/PhysRevB.96.155130 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bulk and surface electronic properties of SmB6: a hard x-ray photoelectron spectroscopy study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Utsumi%2C+Y">Y. Utsumi</a>, <a href="/search/?searchtype=author&amp;query=Kasinathan%2C+D">D. Kasinathan</a>, <a href="/search/?searchtype=author&amp;query=Ko%2C+K">K-T. Ko</a>, <a href="/search/?searchtype=author&amp;query=Agrestini%2C+S">S. Agrestini</a>, <a href="/search/?searchtype=author&amp;query=Haverkort%2C+M+W">M. W. Haverkort</a>, <a href="/search/?searchtype=author&amp;query=Wirth%2C+S">S. Wirth</a>, <a href="/search/?searchtype=author&amp;query=Wu%2C+Y">Y-H. Wu</a>, <a href="/search/?searchtype=author&amp;query=Tsuei%2C+K">K-D. Tsuei</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+D">D-J. Kim</a>, <a href="/search/?searchtype=author&amp;query=Fisk%2C+Z">Z. Fisk</a>, <a href="/search/?searchtype=author&amp;query=Tanaka%2C+A">A. Tanaka</a>, <a href="/search/?searchtype=author&amp;query=Thalmeier%2C+P">P. Thalmeier</a>, <a href="/search/?searchtype=author&amp;query=Tjeng%2C+L+H">L. H. Tjeng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.03459v2-abstract-short" style="display: inline;"> We have carried out bulk-sensitive hard x-ray photoelectron spectroscopy (HAXPES) measurements on in-situ cleaved and ex-situ polished SmB6 single crystals. Using the multiplet-structure in the Sm 3d core level spectra, we determined reliably that the valence of Sm in bulk SmB6 is close to 2.55 at ~5 K. Temperature dependent measurements revealed that the Sm valence gradually increases to 2.64 at&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.03459v2-abstract-full').style.display = 'inline'; document.getElementById('1705.03459v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.03459v2-abstract-full" style="display: none;"> We have carried out bulk-sensitive hard x-ray photoelectron spectroscopy (HAXPES) measurements on in-situ cleaved and ex-situ polished SmB6 single crystals. Using the multiplet-structure in the Sm 3d core level spectra, we determined reliably that the valence of Sm in bulk SmB6 is close to 2.55 at ~5 K. Temperature dependent measurements revealed that the Sm valence gradually increases to 2.64 at 300 K. From a detailed line shape analysis we can clearly observe that not only the J=0 but also the J=1 state of the Sm 4f 6 configuration becomes occupied at elevated temperatures. Making use of the polarization dependence, we were able to identify and extract the Sm 4f spectral weight of the bulk material. Finally, we revealed that the oxidized or chemically damaged surface region of the ex-situ polished SmB6 single crystal is surprisingly thin, about 1 nm only. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.03459v2-abstract-full').style.display = 'none'; document.getElementById('1705.03459v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 96, 155130 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1702.03677">arXiv:1702.03677</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1702.03677">pdf</a>, <a href="https://arxiv.org/format/1702.03677">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.95.195117">10.1103/PhysRevB.95.195117 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Origins of bond and spin order in rare-earth nickelate bulk and heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Lu%2C+Y">Yi Lu</a>, <a href="/search/?searchtype=author&amp;query=Zhong%2C+Z">Zhicheng Zhong</a>, <a href="/search/?searchtype=author&amp;query=Haverkort%2C+M+W">Maurits W. Haverkort</a>, <a href="/search/?searchtype=author&amp;query=Hansmann%2C+P">Philipp Hansmann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1702.03677v1-abstract-short" style="display: inline;"> We analyze the charge- and spin response functions of rare-earth nickelates RNiO3 and their heterostructures using random-phase approximation in a two-band Hubbard model. The inter-orbital charge fluctuation is found to be the driving mechanism for the rock-salt type bond order in bulk RNiO3, and good agreement of the ordering temperature with experimental values is achieved for all RNiO3 using re&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.03677v1-abstract-full').style.display = 'inline'; document.getElementById('1702.03677v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1702.03677v1-abstract-full" style="display: none;"> We analyze the charge- and spin response functions of rare-earth nickelates RNiO3 and their heterostructures using random-phase approximation in a two-band Hubbard model. The inter-orbital charge fluctuation is found to be the driving mechanism for the rock-salt type bond order in bulk RNiO3, and good agreement of the ordering temperature with experimental values is achieved for all RNiO3 using realistic crystal structures and interaction parameters. We further show that magnetic ordering in bulk is not driven by the spin fluctuation and should be instead explained as ordering of localized moments. This picture changes for low-dimensional heterostructures, where the charge fluctuation is suppressed and overtaken by the enhanced spin instability, which results in a spin-density-wave ground state observed in recent experiments. Predictions for spectroscopy allow for further experimental testing of our claims. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.03677v1-abstract-full').style.display = 'none'; document.getElementById('1702.03677v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures plus supplemental material</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 95, 195117 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1612.00074">arXiv:1612.00074</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1612.00074">pdf</a>, <a href="https://arxiv.org/ps/1612.00074">ps</a>, <a href="https://arxiv.org/format/1612.00074">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.95.205123">10.1103/PhysRevB.95.205123 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Long-range interactions in the effective low energy Hamiltonian of Sr2IrO4: a core level resonant inelastic x-ray scattering study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Agrestini%2C+S">S. Agrestini</a>, <a href="/search/?searchtype=author&amp;query=Kuo%2C+C+-">C. -Y. Kuo</a>, <a href="/search/?searchtype=author&amp;query=Sala%2C+M+M">M. Moretti Sala</a>, <a href="/search/?searchtype=author&amp;query=Hu%2C+Z">Z. Hu</a>, <a href="/search/?searchtype=author&amp;query=Kasinathan%2C+D">D. Kasinathan</a>, <a href="/search/?searchtype=author&amp;query=Ko%2C+K+-">K. -T. Ko</a>, <a href="/search/?searchtype=author&amp;query=Glatzel%2C+P">P. Glatzel</a>, <a href="/search/?searchtype=author&amp;query=Rossi%2C+M">M. Rossi</a>, <a href="/search/?searchtype=author&amp;query=Cafun%2C+J+-">J. -D. Cafun</a>, <a href="/search/?searchtype=author&amp;query=Kvashnina%2C+K+O">K. O. Kvashnina</a>, <a href="/search/?searchtype=author&amp;query=Matsumoto%2C+A">A. Matsumoto</a>, <a href="/search/?searchtype=author&amp;query=Takayama%2C+T">T. Takayama</a>, <a href="/search/?searchtype=author&amp;query=Takagi%2C+H">H. Takagi</a>, <a href="/search/?searchtype=author&amp;query=Tjeng%2C+L+H">L. H. Tjeng</a>, <a href="/search/?searchtype=author&amp;query=Haverkort%2C+M+W">M. W. Haverkort</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1612.00074v1-abstract-short" style="display: inline;"> We have investigated the electronic structure of Sr2IrO4 using core level resonant inelastic x-ray scattering. The experimental spectra can be well reproduced using ab initio density functional theory based multiplet ligand field theory calculations, thereby validating these calculations. We found that the low-energy, effective Ir t2g orbitals are practically degenerate in energy. We uncovered tha&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.00074v1-abstract-full').style.display = 'inline'; document.getElementById('1612.00074v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1612.00074v1-abstract-full" style="display: none;"> We have investigated the electronic structure of Sr2IrO4 using core level resonant inelastic x-ray scattering. The experimental spectra can be well reproduced using ab initio density functional theory based multiplet ligand field theory calculations, thereby validating these calculations. We found that the low-energy, effective Ir t2g orbitals are practically degenerate in energy. We uncovered that covalency in Sr2IrO4, and generally in iridates, is very large with substantial oxygen ligand hole character in the Ir t2g Wannier orbitals. This has far reaching consequences, as not only the onsite crystal-field energies are determined by the long range crystal-structure, but, more significantly, magnetic exchange interactions will have long range distance dependent anisotropies in the spin direction. These findings set constraints and show pathways for the design of d^5 materials that can host compass-like magnetic interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.00074v1-abstract-full').style.display = 'none'; document.getElementById('1612.00074v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 95, 205123 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1611.02913">arXiv:1611.02913</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1611.02913">pdf</a>, <a href="https://arxiv.org/format/1611.02913">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1209/0295-5075/117/17003">10.1209/0295-5075/117/17003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The quartet ground state in CeB$_6$: an inelastic x-ray scattering study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Sundermann%2C+M">M. Sundermann</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+K">K. Chen</a>, <a href="/search/?searchtype=author&amp;query=Yava%C5%9F%2C+H">H. Yava艧</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+H">Han-Oh Lee</a>, <a href="/search/?searchtype=author&amp;query=Fisk%2C+Z">Z. Fisk</a>, <a href="/search/?searchtype=author&amp;query=Haverkort%2C+M+W">M. W. Haverkort</a>, <a href="/search/?searchtype=author&amp;query=Tjeng%2C+L+H">L. H. Tjeng</a>, <a href="/search/?searchtype=author&amp;query=Severing%2C+A">A. Severing</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1611.02913v1-abstract-short" style="display: inline;"> We investigated the ground state symmetry of the cubic hidden order compound CeB$_6$ by means of core level non-resonant inelastic x-ray scattering (NIXS). The information is obtained from the directional dependence of the scattering function that arises from higher than dipole transitions. Our new method confirms that the ground state is well described using a localized crystal-field model assumi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.02913v1-abstract-full').style.display = 'inline'; document.getElementById('1611.02913v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1611.02913v1-abstract-full" style="display: none;"> We investigated the ground state symmetry of the cubic hidden order compound CeB$_6$ by means of core level non-resonant inelastic x-ray scattering (NIXS). The information is obtained from the directional dependence of the scattering function that arises from higher than dipole transitions. Our new method confirms that the ground state is well described using a localized crystal-field model assuming a $螕_8$ quartet ground state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.02913v1-abstract-full').style.display = 'none'; document.getElementById('1611.02913v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Euro. Phys. Lett. 117, 17003 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.01840">arXiv:1608.01840</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1608.01840">pdf</a>, <a href="https://arxiv.org/format/1608.01840">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1073/pnas.1612791113">10.1073/pnas.1612791113 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct bulk sensitive probe of 5f symmetry in URu2Si2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Sundermann%2C+M">Martin Sundermann</a>, <a href="/search/?searchtype=author&amp;query=Haverkort%2C+M+W">Maurits W. Haverkort</a>, <a href="/search/?searchtype=author&amp;query=Agrestini%2C+S">Stefano Agrestini</a>, <a href="/search/?searchtype=author&amp;query=Al-Zein%2C+A">Ali Al-Zein</a>, <a href="/search/?searchtype=author&amp;query=Sala%2C+M+M">Marco Moretti Sala</a>, <a href="/search/?searchtype=author&amp;query=Huang%2C+Y">Yingkai Huang</a>, <a href="/search/?searchtype=author&amp;query=Golden%2C+M">Mark Golden</a>, <a href="/search/?searchtype=author&amp;query=de+Visser%2C+A">Anne de Visser</a>, <a href="/search/?searchtype=author&amp;query=Thalmeier%2C+P">Peter Thalmeier</a>, <a href="/search/?searchtype=author&amp;query=Tjeng%2C+L+H">Liu Hao Tjeng</a>, <a href="/search/?searchtype=author&amp;query=Severing%2C+A">Andrea Severing</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.01840v2-abstract-short" style="display: inline;"> The second-order phase transition into a hidden order phase in URu$_2$Si$_2$ goes along with an order parameter which is still a mystery, despite 30 years of research. However, it is understood that the symmetry of the order parameter must be related to the symmetry of the low lying local electronic $f$-states. Here we present results of a novel spectroscopy, namely core-level non-resonant inelast&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.01840v2-abstract-full').style.display = 'inline'; document.getElementById('1608.01840v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.01840v2-abstract-full" style="display: none;"> The second-order phase transition into a hidden order phase in URu$_2$Si$_2$ goes along with an order parameter which is still a mystery, despite 30 years of research. However, it is understood that the symmetry of the order parameter must be related to the symmetry of the low lying local electronic $f$-states. Here we present results of a novel spectroscopy, namely core-level non-resonant inelastic x-ray scattering (NIXS). This method allows for the measurement of local high-multipole excitations and it is bulk sensitive. The observed anisotropy of the scattering function unambiguously shows that the 5$f$ ground state wave function is composed mainly, but essentially not purely, of the $螕_1$ with majority $J_z$ =$|4\rangle$ + $|-4\rangle$ and/or $螕_2$ singlet states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.01840v2-abstract-full').style.display = 'none'; document.getElementById('1608.01840v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proc. Natl. Acad. Sci. U.S.A. 113 (49), 13989 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.01645">arXiv:1608.01645</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1608.01645">pdf</a>, <a href="https://arxiv.org/format/1608.01645">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.94.195127">10.1103/PhysRevB.94.195127 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bond disproportionation and dynamical charge fluctuations in the perovskite rare earth nickelates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Green%2C+R+J">Robert J. Green</a>, <a href="/search/?searchtype=author&amp;query=Haverkort%2C+M+W">Maurits W. Haverkort</a>, <a href="/search/?searchtype=author&amp;query=Sawatzky%2C+G+A">George A. Sawatzky</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.01645v1-abstract-short" style="display: inline;"> We present a theory describing the local electronic properties of the perovskite rare earth nickelates--materials which have negative charge transfer energies, strong O $2p$ -- Ni $3d$ covalence, and breathing mode lattice distortions at the origin of highly studied metal-insulator and antiferromagnetic ordering transitions. Utilizing a full orbital, full correlation double cluster approach, we fi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.01645v1-abstract-full').style.display = 'inline'; document.getElementById('1608.01645v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.01645v1-abstract-full" style="display: none;"> We present a theory describing the local electronic properties of the perovskite rare earth nickelates--materials which have negative charge transfer energies, strong O $2p$ -- Ni $3d$ covalence, and breathing mode lattice distortions at the origin of highly studied metal-insulator and antiferromagnetic ordering transitions. Utilizing a full orbital, full correlation double cluster approach, we find strong charge fluctuations in agreement with a bond disproportionation interpretation. The unique double cluster formulation permits the inclusion of necessary orbital degeneracies and Coulomb interactions to calculate resonant x-ray spectral responses, with which we find excellent agreement with well-established experimental results. This previously absent, crucial link between theory and experiment provides validation of the recently proposed bond disproportionation theory, and provides an analysis methodology for spectroscopic studies of engineered phases of nickelates and other high valence transition metal compounds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.01645v1-abstract-full').style.display = 'none'; document.getElementById('1608.01645v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 94, 195127 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1604.07317">arXiv:1604.07317</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1604.07317">pdf</a>, <a href="https://arxiv.org/ps/1604.07317">ps</a>, <a href="https://arxiv.org/format/1604.07317">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.93.165121">10.1103/PhysRevB.93.165121 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantitative determination of bond order and lattice distortions in nickel oxide heterostructures by resonant x-ray scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Lu%2C+Y">Y. Lu</a>, <a href="/search/?searchtype=author&amp;query=Frano%2C+A">A. Frano</a>, <a href="/search/?searchtype=author&amp;query=Bluschke%2C+M">M. Bluschke</a>, <a href="/search/?searchtype=author&amp;query=Hepting%2C+M">M. Hepting</a>, <a href="/search/?searchtype=author&amp;query=Macke%2C+S">S. Macke</a>, <a href="/search/?searchtype=author&amp;query=Strempfer%2C+J">J. Strempfer</a>, <a href="/search/?searchtype=author&amp;query=Wochner%2C+P">P. Wochner</a>, <a href="/search/?searchtype=author&amp;query=Cristiani%2C+G">G. Cristiani</a>, <a href="/search/?searchtype=author&amp;query=Logvenov%2C+G">G. Logvenov</a>, <a href="/search/?searchtype=author&amp;query=Habermeier%2C+H+-">H. -U. Habermeier</a>, <a href="/search/?searchtype=author&amp;query=Haverkort%2C+M+W">M. W. Haverkort</a>, <a href="/search/?searchtype=author&amp;query=Keimer%2C+B">B. Keimer</a>, <a href="/search/?searchtype=author&amp;query=Benckiser%2C+E">E. Benckiser</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1604.07317v1-abstract-short" style="display: inline;"> We present a combined study of Ni $K$-edge resonant x-ray scattering and density functional calculations to probe and distinguish electronically driven ordering and lattice distortions in nickelate heterostructures. We demonstrate that due to the low crystal symmetry, contributions from structural distortions can contribute significantly to the energy-dependent Bragg peak intensities of a bond-ord&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.07317v1-abstract-full').style.display = 'inline'; document.getElementById('1604.07317v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1604.07317v1-abstract-full" style="display: none;"> We present a combined study of Ni $K$-edge resonant x-ray scattering and density functional calculations to probe and distinguish electronically driven ordering and lattice distortions in nickelate heterostructures. We demonstrate that due to the low crystal symmetry, contributions from structural distortions can contribute significantly to the energy-dependent Bragg peak intensities of a bond-ordered NdNiO$_3$ reference film. For a LaNiO$_3$-LaAlO$_3$ superlattice that exhibits magnetic order, we establish a rigorous upper bound on the bond-order parameter. We thus conclusively confirm predictions of a dominant spin density wave order parameter in metallic nickelates with a quasi-two-dimensional electronic structure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.07317v1-abstract-full').style.display = 'none'; document.getElementById('1604.07317v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 93, 165121 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1601.07240">arXiv:1601.07240</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1601.07240">pdf</a>, <a href="https://arxiv.org/format/1601.07240">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.93.165107">10.1103/PhysRevB.93.165107 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exploring small energy scales with x-ray absorption and dichroism </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Praetorius%2C+C">C. Praetorius</a>, <a href="/search/?searchtype=author&amp;query=Zinner%2C+M">M. Zinner</a>, <a href="/search/?searchtype=author&amp;query=Hansmann%2C+P">P. Hansmann</a>, <a href="/search/?searchtype=author&amp;query=Haverkort%2C+M+W">M. W. Haverkort</a>, <a href="/search/?searchtype=author&amp;query=Fauth%2C+K">K. Fauth</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1601.07240v1-abstract-short" style="display: inline;"> Soft x-ray linear and circular dichroism (XLD, XMCD) experiments at the Ce M$_{4,5}$ edges are being used to determine the energy scales characterizing the Ce $4f$ degrees of freedom in the ultrathin ordered surface intermetallic CeAg$_x$/Ag(111). We find that all relevant interactions, i. e. Kondo scattering, crystal field splitting and magnetic exchange coupling occur on small scales. Our study&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.07240v1-abstract-full').style.display = 'inline'; document.getElementById('1601.07240v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1601.07240v1-abstract-full" style="display: none;"> Soft x-ray linear and circular dichroism (XLD, XMCD) experiments at the Ce M$_{4,5}$ edges are being used to determine the energy scales characterizing the Ce $4f$ degrees of freedom in the ultrathin ordered surface intermetallic CeAg$_x$/Ag(111). We find that all relevant interactions, i. e. Kondo scattering, crystal field splitting and magnetic exchange coupling occur on small scales. Our study demonstrates the usefulness of combining x-ray absorption experiments probing linear and circular dichroism owing to their strong sensitivity for anisotropies in both charge distribution and paramagnetic response, respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.07240v1-abstract-full').style.display = 'none'; document.getElementById('1601.07240v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 January, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1508.07129">arXiv:1508.07129</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1508.07129">pdf</a>, <a href="https://arxiv.org/ps/1508.07129">ps</a>, <a href="https://arxiv.org/format/1508.07129">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/srep17937">10.1038/srep17937 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> CeRu$_4$Sn$_6$: a strongly correlated material with nontrivial topology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Sundermann%2C+M">M. Sundermann</a>, <a href="/search/?searchtype=author&amp;query=Strigari%2C+F">F. Strigari</a>, <a href="/search/?searchtype=author&amp;query=Willers%2C+T">T. Willers</a>, <a href="/search/?searchtype=author&amp;query=Winkler%2C+H">H. Winkler</a>, <a href="/search/?searchtype=author&amp;query=Prokofiev%2C+A">A. Prokofiev</a>, <a href="/search/?searchtype=author&amp;query=Ablett%2C+J+M">J. M. Ablett</a>, <a href="/search/?searchtype=author&amp;query=Rueff%2C+J+-">J. -P. Rueff</a>, <a href="/search/?searchtype=author&amp;query=Schmitz%2C+D">D. Schmitz</a>, <a href="/search/?searchtype=author&amp;query=Weschke%2C+E">E. Weschke</a>, <a href="/search/?searchtype=author&amp;query=Sala%2C+M+M">M. Moretti Sala</a>, <a href="/search/?searchtype=author&amp;query=Al-Zein%2C+A">A. Al-Zein</a>, <a href="/search/?searchtype=author&amp;query=Tanaka%2C+A">A. Tanaka</a>, <a href="/search/?searchtype=author&amp;query=Haverkort%2C+M+W">M. W. Haverkort</a>, <a href="/search/?searchtype=author&amp;query=Kasinathan%2C+D">D. Kasinathan</a>, <a href="/search/?searchtype=author&amp;query=Tjeng%2C+L+H">L. H. Tjeng</a>, <a href="/search/?searchtype=author&amp;query=Paschen%2C+S">S. Paschen</a>, <a href="/search/?searchtype=author&amp;query=Severing%2C+A">A. Severing</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1508.07129v1-abstract-short" style="display: inline;"> Topological insulators form a novel state of matter that provides new opportunities to create unique quantum phenomena. While the materials used so far are based on semiconductors, recent theoretical studies predict that also strongly correlated systems can show non-trivial topological properties, thereby allowing even the emergence of surface phenomena that are not possible with topological band&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.07129v1-abstract-full').style.display = 'inline'; document.getElementById('1508.07129v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1508.07129v1-abstract-full" style="display: none;"> Topological insulators form a novel state of matter that provides new opportunities to create unique quantum phenomena. While the materials used so far are based on semiconductors, recent theoretical studies predict that also strongly correlated systems can show non-trivial topological properties, thereby allowing even the emergence of surface phenomena that are not possible with topological band insulators. From a practical point of view, it is also expected that strong correlations will reduce the disturbing impact of defects or impurities, and at the same increase the Fermi velocities of the topological surface states. The challenge is now to discover such correlated materials. Here, using advanced x-ray spectroscopies in combination with band structure calculations, we infer that CeRu$_4$Sn$_6$ is a strongly correlated material with non-trivial topology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.07129v1-abstract-full').style.display = 'none'; document.getElementById('1508.07129v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures, submitted to Scientific Reports</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci. Rep. 5, 17937 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1501.06899">arXiv:1501.06899</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1501.06899">pdf</a>, <a href="https://arxiv.org/ps/1501.06899">ps</a>, <a href="https://arxiv.org/format/1501.06899">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.91.075127">10.1103/PhysRevB.91.075127 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronic and Spin States of SrRuO3 Thin Films: an X-ray Magnetic Circular Dichroism Study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Agrestini%2C+S">S. Agrestini</a>, <a href="/search/?searchtype=author&amp;query=Hu%2C+Z">Z. Hu</a>, <a href="/search/?searchtype=author&amp;query=Kuo%2C+C+-">C. -Y. Kuo</a>, <a href="/search/?searchtype=author&amp;query=Haverkort%2C+1+M+W">1 M. W. Haverkort</a>, <a href="/search/?searchtype=author&amp;query=Ko%2C+K+-">K. -T. Ko</a>, <a href="/search/?searchtype=author&amp;query=Hollmann%2C+N">N. Hollmann</a>, <a href="/search/?searchtype=author&amp;query=Liu%2C+Q">Q. Liu</a>, <a href="/search/?searchtype=author&amp;query=Pellegrin%2C+E">E. Pellegrin</a>, <a href="/search/?searchtype=author&amp;query=Valvidares%2C+M">M. Valvidares</a>, <a href="/search/?searchtype=author&amp;query=Herrero-Martin%2C+J">J. Herrero-Martin</a>, <a href="/search/?searchtype=author&amp;query=Gargiani%2C+P">P. Gargiani</a>, <a href="/search/?searchtype=author&amp;query=Gegenwart%2C+P">P. Gegenwart</a>, <a href="/search/?searchtype=author&amp;query=Schneider%2C+M">M. Schneider</a>, <a href="/search/?searchtype=author&amp;query=Esser%2C+S">S. Esser</a>, <a href="/search/?searchtype=author&amp;query=Tanaka%2C+A">A. Tanaka</a>, <a href="/search/?searchtype=author&amp;query=Komarek%2C+A+C">A. C. Komarek</a>, <a href="/search/?searchtype=author&amp;query=Tjeng%2C+L+H">L. H. Tjeng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1501.06899v1-abstract-short" style="display: inline;"> We report a study of the local magnetism in thin films of SrRuO3 grown on (111) and (001) oriented SrTiO3 substrates using x-ray magnetic circular dichroism spectroscopy (XMCD) at the Ru-L2,3 edges. The application of the sum rules to the XMCD data gives an almost quenched orbital moment and a spin moment close to the value expected for the low spin state S = 1 . Full-multiplet cluster calculation&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.06899v1-abstract-full').style.display = 'inline'; document.getElementById('1501.06899v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1501.06899v1-abstract-full" style="display: none;"> We report a study of the local magnetism in thin films of SrRuO3 grown on (111) and (001) oriented SrTiO3 substrates using x-ray magnetic circular dichroism spectroscopy (XMCD) at the Ru-L2,3 edges. The application of the sum rules to the XMCD data gives an almost quenched orbital moment and a spin moment close to the value expected for the low spin state S = 1 . Full-multiplet cluster calculations indicate that the low spin state is quite stable and suggest that the occurrence of a transition to the high spin state S = 2 in strained thin films of SrRuO3 is unlikely as it would be too expensive in energy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.06899v1-abstract-full').style.display = 'none'; document.getElementById('1501.06899v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 January, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 6 figures, submitted to Phys Rev B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 91, 075127 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1501.01902">arXiv:1501.01902</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1501.01902">pdf</a>, <a href="https://arxiv.org/format/1501.01902">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.91.195127">10.1103/PhysRevB.91.195127 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> SmO thin films: a flexible route to correlated flat bands with nontrivial topology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Kasinathan%2C+D">Deepa Kasinathan</a>, <a href="/search/?searchtype=author&amp;query=Koepernik%2C+K">Klaus Koepernik</a>, <a href="/search/?searchtype=author&amp;query=Tjeng%2C+L+H">L. H. Tjeng</a>, <a href="/search/?searchtype=author&amp;query=Haverkort%2C+M+W">Maurits W. Haverkort</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1501.01902v1-abstract-short" style="display: inline;"> Using density functional theory based calculations, we show that the correlated mixed-valent compound SmO is a 3D strongly topological semi-metal as a result of a 4$f$-5$d$ band inversion at the X point. The [001] surface Bloch spectral density reveals two weakly interacting Dirac cones that are quasi-degenerate at the M_bar-point and another single Dirac cone at the Gamma_bar-point. We also show&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.01902v1-abstract-full').style.display = 'inline'; document.getElementById('1501.01902v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1501.01902v1-abstract-full" style="display: none;"> Using density functional theory based calculations, we show that the correlated mixed-valent compound SmO is a 3D strongly topological semi-metal as a result of a 4$f$-5$d$ band inversion at the X point. The [001] surface Bloch spectral density reveals two weakly interacting Dirac cones that are quasi-degenerate at the M_bar-point and another single Dirac cone at the Gamma_bar-point. We also show that the topological non-triviality in SmO is very robust and prevails for a wide range of lattice parameters, making it an ideal candidate to investigate topological nontrivial correlated flat bands in thin-film form. Moreover, the electron filling is tunable by strain. In addition, we find conditions for which the inversion is of the 4f-6s type, making SmO to be a rather unique system. The similarities of the crystal symmetry and the lattice constant of SmO to the well studied ferromagnetic semiconductor EuO, makes SmO/EuO thin film interfaces an excellent contender towards realizing the quantum anomalous Hall effect in a strongly correlated electron system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.01902v1-abstract-full').style.display = 'none'; document.getElementById('1501.01902v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Paper+supplement</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B vol. 91, 195127 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1411.2340">arXiv:1411.2340</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1411.2340">pdf</a>, <a href="https://arxiv.org/ps/1411.2340">ps</a>, <a href="https://arxiv.org/format/1411.2340">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1209/0295-5075/108/57004">10.1209/0295-5075/108/57004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bands, resonances, edge singularities and excitons in core level spectroscopy investigated within the dynamical mean field theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Haverkort%2C+M+W">M. W. Haverkort</a>, <a href="/search/?searchtype=author&amp;query=Sangiovanni%2C+G">G. Sangiovanni</a>, <a href="/search/?searchtype=author&amp;query=Hansmann%2C+P">P. Hansmann</a>, <a href="/search/?searchtype=author&amp;query=Toschi%2C+A">A. Toschi</a>, <a href="/search/?searchtype=author&amp;query=Lu%2C+Y">Y. Lu</a>, <a href="/search/?searchtype=author&amp;query=Macke%2C+S">S. Macke</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1411.2340v1-abstract-short" style="display: inline;"> Using a recently developed impurity solver we exemplify how dynamical mean field theory captures band excitations, resonances, edge singularities and excitons in core level x-ray absorption (XAS) and core level photo electron spectroscopy (cPES) on metals, correlated metals and Mott insulators. Comparing XAS at different values of the core-valence interaction shows how the quasiparticle peak in th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.2340v1-abstract-full').style.display = 'inline'; document.getElementById('1411.2340v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1411.2340v1-abstract-full" style="display: none;"> Using a recently developed impurity solver we exemplify how dynamical mean field theory captures band excitations, resonances, edge singularities and excitons in core level x-ray absorption (XAS) and core level photo electron spectroscopy (cPES) on metals, correlated metals and Mott insulators. Comparing XAS at different values of the core-valence interaction shows how the quasiparticle peak in the absence of core-valence interactions evolves into a resonance of similar shape, but different origin. Whereas XAS is rather insensitive to the metal insulator transition, cPES can be used, due to nonlocal screening, to measure the amount of local charge fluctuation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.2340v1-abstract-full').style.display = 'none'; document.getElementById('1411.2340v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2014. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Haverkort%2C+M+W&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Haverkort%2C+M+W&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Haverkort%2C+M+W&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Haverkort%2C+M+W&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10