CINXE.COM

orbit (changes) in nLab

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> orbit (changes) in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="noindex,nofollow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> orbit (changes) </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/diff/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/10043/#Item_4" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <p class="show_diff"> Showing changes from revision #12 to #13: <ins class="diffins">Added</ins> | <del class="diffdel">Removed</del> | <del class="diffmod">Chan</del><ins class="diffmod">ged</ins> </p> <div class='rightHandSide'> <div class='toc clickDown' tabindex='0'> <h3 id='context'>Context</h3> <h4 id='group_theory'>Group Theory</h4> <div class='hide'> <p><strong><a class='existingWikiWord' href='/nlab/show/diff/group+theory'>group theory</a></strong></p> <ul> <li><a class='existingWikiWord' href='/nlab/show/diff/group'>group</a>, <a class='existingWikiWord' href='/nlab/show/diff/infinity-group'>∞-group</a></li> <li><a class='existingWikiWord' href='/nlab/show/diff/group+object'>group object</a>, <a class='existingWikiWord' href='/nlab/show/diff/groupoid+object+in+an+%28infinity%2C1%29-category'>group object in an (∞,1)-category</a></li> <li><a class='existingWikiWord' href='/nlab/show/diff/abelian+group'>abelian group</a>, <a class='existingWikiWord' href='/nlab/show/diff/spectrum'>spectrum</a></li> <li><a class='existingWikiWord' href='/nlab/show/diff/super+abelian+group'>super abelian group</a></li> <li><a class='existingWikiWord' href='/nlab/show/diff/action'>group action</a>, <a class='existingWikiWord' href='/nlab/show/diff/infinity-action'>∞-action</a></li> <li><a class='existingWikiWord' href='/nlab/show/diff/representation'>representation</a>, <a class='existingWikiWord' href='/nlab/show/diff/infinity-representation'>∞-representation</a></li> <li><a class='existingWikiWord' href='/nlab/show/diff/progroup'>progroup</a></li> <li><a class='existingWikiWord' href='/nlab/show/diff/homogeneous+space'>homogeneous space</a></li> </ul> <p><strong>Classical groups</strong></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/general+linear+group'>general linear group</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/unitary+group'>unitary group</a></p> <ul> <li><a class='existingWikiWord' href='/nlab/show/diff/special+unitary+group'>special unitary group</a>. <a class='existingWikiWord' href='/nlab/show/diff/projective+unitary+group'>projective unitary group</a></li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/orthogonal+group'>orthogonal group</a></p> <ul> <li><a class='existingWikiWord' href='/nlab/show/diff/special+orthogonal+group'>special orthogonal group</a></li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/symplectic+group'>symplectic group</a></p> </li> </ul> <p><strong>Finite groups</strong></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/finite+group'>finite group</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/symmetric+group'>symmetric group</a>, <a class='existingWikiWord' href='/nlab/show/diff/cyclic+group'>cyclic group</a>, <a class='existingWikiWord' href='/nlab/show/diff/braid+group'>braid group</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/classification+of+finite+simple+groups'>classification of finite simple groups</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/sporadic+finite+simple+group'>sporadic finite simple groups</a></p> <ul> <li><a class='existingWikiWord' href='/nlab/show/diff/Monster+group'>Monster group</a>, <a class='existingWikiWord' href='/nlab/show/diff/Mathieu+group'>Mathieu group</a></li> </ul> </li> </ul> <p><strong>Group schemes</strong></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/algebraic+group'>algebraic group</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/abelian+variety'>abelian variety</a></p> </li> </ul> <p><strong>Topological groups</strong></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/topological+group'>topological group</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/compact+topological+group'>compact topological group</a>, <a class='existingWikiWord' href='/nlab/show/diff/locally+compact+topological+group'>locally compact topological group</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/maximal+compact+subgroup'>maximal compact subgroup</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/string+group'>string group</a></p> </li> </ul> <p><strong>Lie groups</strong></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Lie+group'>Lie group</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/compact+Lie+group'>compact Lie group</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Kac-Moody+group'>Kac-Moody group</a></p> </li> </ul> <p><strong>Super-Lie groups</strong></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/supergroup'>super Lie group</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/super+Euclidean+group'>super Euclidean group</a></p> </li> </ul> <p><strong>Higher groups</strong></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/2-group'>2-group</a></p> <ul> <li><a class='existingWikiWord' href='/nlab/show/diff/crossed+module'>crossed module</a>, <a class='existingWikiWord' href='/nlab/show/diff/strict+2-group'>strict 2-group</a></li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/n-group'>n-group</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/infinity-group'>∞-group</a></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/simplicial+group'>simplicial group</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/crossed+complex'>crossed complex</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/k-tuply+groupal+n-groupoid'>k-tuply groupal n-groupoid</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/spectrum'>spectrum</a></p> </li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/circle+n-group'>circle n-group</a>, <a class='existingWikiWord' href='/nlab/show/diff/string+2-group'>string 2-group</a>, <a class='existingWikiWord' href='/nlab/show/diff/fivebrane+6-group'>fivebrane Lie 6-group</a></p> </li> </ul> <p><strong>Cohomology and Extensions</strong></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/group+cohomology'>group cohomology</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/group+extension'>group extension</a>,</p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/infinity-group+extension'>∞-group extension</a>, <a class='existingWikiWord' href='/nlab/show/diff/Ext'>Ext-group</a></p> </li> </ul> <p><strong>Related concepts</strong></p> <ul> <li><a class='existingWikiWord' href='/nlab/show/diff/quantum+group'>quantum group</a></li> </ul> </div> </div> </div> <h1 id='contents'>Contents</h1> <div class='maruku_toc'><ul><li><a href='#definition'>Definition</a><ul><li><a href='#discrete_case'>Discrete case</a></li><li><a href='#category_of_orbits'>Category of orbits</a></li><li><a href='#topological_case'>Topological case</a></li></ul></li><ins class='diffins'><li><a href='#examples'>Examples</a></li></ins><li><a href='#related_concepts'>Related concepts</a></li><li><a href='#references'>References</a></li></ul></div> <h2 id='definition'>Definition</h2> <h3 id='discrete_case'>Discrete case</h3> <p>Given an <a class='existingWikiWord' href='/nlab/show/diff/action'>action</a> <math class='maruku-mathml' display='inline' id='mathml_6006d5b14e05f738364b75503dffa610c4bb9b79_1' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>G</mi><mo>×</mo><mi>X</mi><mo>→</mo><mi>X</mi></mrow><annotation encoding='application/x-tex'>G\times X\to X</annotation></semantics></math> of a (<a class='existingWikiWord' href='/nlab/show/diff/discrete+group'>discrete</a>) <a class='existingWikiWord' href='/nlab/show/diff/group'>group</a> <math class='maruku-mathml' display='inline' id='mathml_6006d5b14e05f738364b75503dffa610c4bb9b79_2' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math> on a set <math class='maruku-mathml' display='inline' id='mathml_6006d5b14e05f738364b75503dffa610c4bb9b79_3' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math>, any <a class='existingWikiWord' href='/nlab/show/diff/set'>set</a> of the form <math class='maruku-mathml' display='inline' id='mathml_6006d5b14e05f738364b75503dffa610c4bb9b79_4' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>G</mi><mi>x</mi><mo>=</mo><mo stretchy='false'>{</mo><mi>g</mi><mi>x</mi><mo stretchy='false'>|</mo><mi>g</mi><mo>∈</mo><mi>G</mi><mo stretchy='false'>}</mo></mrow><annotation encoding='application/x-tex'>G x = \{g x|g\in G\}</annotation></semantics></math> for a fixed <math class='maruku-mathml' display='inline' id='mathml_6006d5b14e05f738364b75503dffa610c4bb9b79_5' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>x</mi><mo>∈</mo><mi>X</mi></mrow><annotation encoding='application/x-tex'>x\in X</annotation></semantics></math> is called an <strong>orbit</strong> of the action, or the <strong><math class='maruku-mathml' display='inline' id='mathml_6006d5b14e05f738364b75503dffa610c4bb9b79_6' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math>-orbit through the point <math class='maruku-mathml' display='inline' id='mathml_6006d5b14e05f738364b75503dffa610c4bb9b79_7' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math></strong>. The set <math class='maruku-mathml' display='inline' id='mathml_6006d5b14e05f738364b75503dffa610c4bb9b79_8' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math> is a <a class='existingWikiWord' href='/nlab/show/diff/disjoint+union'>disjoint union</a> of its orbits.</p> <h3 id='category_of_orbits'>Category of orbits</h3> <p>The <em>category of orbits</em> of a <a class='existingWikiWord' href='/nlab/show/diff/group'>group</a> <math class='maruku-mathml' display='inline' id='mathml_6006d5b14e05f738364b75503dffa610c4bb9b79_9' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math> is the full subcategory of the category of sets with an action of <math class='maruku-mathml' display='inline' id='mathml_6006d5b14e05f738364b75503dffa610c4bb9b79_10' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math>.</p> <p>Since any orbit of <math class='maruku-mathml' display='inline' id='mathml_6006d5b14e05f738364b75503dffa610c4bb9b79_11' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math> is isomorphic to the orbit <math class='maruku-mathml' display='inline' id='mathml_6006d5b14e05f738364b75503dffa610c4bb9b79_12' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>G</mi><mo stretchy='false'>/</mo><mi>H</mi></mrow><annotation encoding='application/x-tex'>G/H</annotation></semantics></math> for some group <math class='maruku-mathml' display='inline' id='mathml_6006d5b14e05f738364b75503dffa610c4bb9b79_13' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>H</mi></mrow><annotation encoding='application/x-tex'>H</annotation></semantics></math>, the category of <math class='maruku-mathml' display='inline' id='mathml_6006d5b14e05f738364b75503dffa610c4bb9b79_14' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math>-orbits admits the following alternative description: its objects are subgroups <math class='maruku-mathml' display='inline' id='mathml_6006d5b14e05f738364b75503dffa610c4bb9b79_15' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>H</mi></mrow><annotation encoding='application/x-tex'>H</annotation></semantics></math> of <math class='maruku-mathml' display='inline' id='mathml_6006d5b14e05f738364b75503dffa610c4bb9b79_16' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math> and morphisms <math class='maruku-mathml' display='inline' id='mathml_6006d5b14e05f738364b75503dffa610c4bb9b79_17' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>H</mi> <mn>1</mn></msub><mo>→</mo><msub><mi>H</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>H_1\to H_2</annotation></semantics></math> are elements <math class='maruku-mathml' display='inline' id='mathml_6006d5b14e05f738364b75503dffa610c4bb9b79_18' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>[</mo><mi>g</mi><mo stretchy='false'>]</mo><mo>∈</mo><mi>G</mi><mo stretchy='false'>/</mo><msub><mi>H</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>[g]\in G/H_2</annotation></semantics></math> such that <math class='maruku-mathml' display='inline' id='mathml_6006d5b14e05f738364b75503dffa610c4bb9b79_19' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>H</mi> <mn>1</mn></msub><mo>⊂</mo><mi>g</mi><msub><mi>H</mi> <mn>2</mn></msub><msup><mi>g</mi> <mrow><mo lspace='verythinmathspace' rspace='0em'>−</mo><mn>1</mn></mrow></msup></mrow><annotation encoding='application/x-tex'>H_1\subset g H_2g^{-1}</annotation></semantics></math>.</p> <p>In particular, the group of automorphisms of a <math class='maruku-mathml' display='inline' id='mathml_6006d5b14e05f738364b75503dffa610c4bb9b79_20' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math>-orbit <math class='maruku-mathml' display='inline' id='mathml_6006d5b14e05f738364b75503dffa610c4bb9b79_21' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>G</mi><mo stretchy='false'>/</mo><mi>H</mi></mrow><annotation encoding='application/x-tex'>G/H</annotation></semantics></math> is <math class='maruku-mathml' display='inline' id='mathml_6006d5b14e05f738364b75503dffa610c4bb9b79_22' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>N</mi> <mi>G</mi></msub><mo stretchy='false'>(</mo><mi>H</mi><mo stretchy='false'>)</mo><mo stretchy='false'>/</mo><mi>H</mi></mrow><annotation encoding='application/x-tex'>N_G(H)/H</annotation></semantics></math>, where <math class='maruku-mathml' display='inline' id='mathml_6006d5b14e05f738364b75503dffa610c4bb9b79_23' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>N</mi> <mi>G</mi></msub><mo stretchy='false'>(</mo><mi>H</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>N_G(H)</annotation></semantics></math> is the <a class='existingWikiWord' href='/nlab/show/diff/normalizer'>normalizer</a> of <math class='maruku-mathml' display='inline' id='mathml_6006d5b14e05f738364b75503dffa610c4bb9b79_24' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>H</mi></mrow><annotation encoding='application/x-tex'>H</annotation></semantics></math> in <math class='maruku-mathml' display='inline' id='mathml_6006d5b14e05f738364b75503dffa610c4bb9b79_25' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math>.</p> <h3 id='topological_case'>Topological case</h3> <p>If <math class='maruku-mathml' display='inline' id='mathml_6006d5b14e05f738364b75503dffa610c4bb9b79_26' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math> is a <a class='existingWikiWord' href='/nlab/show/diff/topological+group'>topological group</a>, <math class='maruku-mathml' display='inline' id='mathml_6006d5b14e05f738364b75503dffa610c4bb9b79_27' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math> a <a class='existingWikiWord' href='/nlab/show/diff/topological+space'>topological space</a> and the action <a class='existingWikiWord' href='/nlab/show/diff/continuous+map'>continuous</a>, then one can distinguish <a class='existingWikiWord' href='/nlab/show/diff/closed+subspace'>closed</a> orbits from those which are not. Even when one starts with <math class='maruku-mathml' display='inline' id='mathml_6006d5b14e05f738364b75503dffa610c4bb9b79_28' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>G</mi><mo>,</mo><mi>X</mi></mrow><annotation encoding='application/x-tex'>G,X</annotation></semantics></math> <a class='existingWikiWord' href='/nlab/show/diff/Hausdorff+space'>Hausdorff</a>, the space of orbits is typically non-Hausdorff. (This problem is one of the motivations of the <a class='existingWikiWord' href='/nlab/show/diff/noncommutative+geometry'>noncommutative geometry</a> of Connes’ school.)</p> <p>If the original space is <a class='existingWikiWord' href='/nlab/show/diff/paracompact+topological+space'>paracompact</a> Hausdorff, then every orbit <math class='maruku-mathml' display='inline' id='mathml_6006d5b14e05f738364b75503dffa610c4bb9b79_29' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>G</mi><mi>x</mi></mrow><annotation encoding='application/x-tex'>G x</annotation></semantics></math> as a topological <math class='maruku-mathml' display='inline' id='mathml_6006d5b14e05f738364b75503dffa610c4bb9b79_30' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math>-space is isomorphic to <math class='maruku-mathml' display='inline' id='mathml_6006d5b14e05f738364b75503dffa610c4bb9b79_31' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>G</mi><mo stretchy='false'>/</mo><mi>H</mi></mrow><annotation encoding='application/x-tex'>G/H</annotation></semantics></math>, where <math class='maruku-mathml' display='inline' id='mathml_6006d5b14e05f738364b75503dffa610c4bb9b79_32' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>H</mi></mrow><annotation encoding='application/x-tex'>H</annotation></semantics></math> is the <a class='existingWikiWord' href='/nlab/show/diff/stabilizer+group'>stabilizer subgroup</a> of <math class='maruku-mathml' display='inline' id='mathml_6006d5b14e05f738364b75503dffa610c4bb9b79_33' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math>.</p> <ins class='diffins'><h2 id='examples'>Examples</h2></ins><ins class='diffins'> </ins><ins class='diffins'><ul> <li>An orbit of a <a class='existingWikiWord' href='/nlab/show/diff/cyclic+group'>cyclic</a> <a class='existingWikiWord' href='/nlab/show/diff/subgroup'>subgroup</a> of a <a class='existingWikiWord' href='/nlab/show/diff/permutation+group'>permutation group</a> is called a <em><a class='existingWikiWord' href='/nlab/show/diff/cycle+of+a+permutation'>permutation cycle</a></em>.</li> </ul></ins><ins class='diffins'> </ins><h2 id='related_concepts'>Related concepts</h2> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/orbit+category'>orbit category</a>, <a class='existingWikiWord' href='/nlab/show/diff/orbit+type'>orbit type</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/coadjoint+orbit'>coadjoint orbit</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/coinvariant'>coinvariant</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/coset'>coset space</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/orbit+method'>orbit method</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/slice+theorem'>slice theorem</a></p> </li> </ul> <h2 id='references'>References</h2><ins class='diffins'> </ins><ins class='diffins'><p>Textbook accounts:</p></ins> <ul> <li id='Bredon72'><a class='existingWikiWord' href='/nlab/show/diff/Glen+Bredon'>Glen Bredon</a>, Sections I.3, I.4 of: <em><a class='existingWikiWord' href='/nlab/show/diff/Introduction+to+compact+transformation+groups'>Introduction to compact transformation groups</a></em>, Academic Press 1972 (<a href='https://www.elsevier.com/books/introduction-to-compact-transformation-groups/bredon/978-0-12-128850-1'>ISBN 9780080873596</a>, <a href='http://www.indiana.edu/~jfdavis/seminar/Bredon,Introduction_to_Compact_Transformation_Groups.pdf'>pdf</a>)</li> </ul> <p> </p> <p> </p> </div> <div class="revisedby"> <p> Last revised on April 18, 2021 at 16:22:18. See the <a href="/nlab/history/orbit" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/orbit" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/10043/#Item_4">Discuss</a><span class="backintime"><a href="/nlab/revision/diff/orbit/12" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/orbit" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Hide changes</a><a href="/nlab/history/orbit" accesskey="S" class="navlink" id="history" rel="nofollow">History (12 revisions)</a> <a href="/nlab/show/orbit/cite" style="color: black">Cite</a> <a href="/nlab/print/orbit" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/orbit" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10