CINXE.COM

Editing transgression in nLab

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> Editing transgression in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="noindex,nofollow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> Editing transgression </h1> <div id="MarkupHelp"> <h3 style="font-size: 1.1em; font-style: normal; text-align: center">Syntax tips</h3> <ol style="margin-left: 0em; padding-left: 0em"> <li style="font-size: 0.8em">The basic syntax is <a href="https://www.markdownguide.org/cheat-sheet/">extended Markdown</a>. </li> <li style="font-size: 0.8em">Links to other nLab pages should be made by surrounding the name of the page in double square brackets: [[ name of page ]]. To link to an nLab page but show a different link text, do the following: [[ name of page | link text to show ]].</li> <li style="font-size: 0.8em">LaTeX can be used inside single dollar signs (inline) or double dollar signs or \[ and \], as usual. </li> <li style="font-size: 0.8em">To create a table of contents, add \tableofcontents on its own line.</li> <li style="font-size: 0.8em">For a theorem or proof, use \begin{theorem} \end{theorem} as you would in LaTeX. Labelling and referencing is exactly as in LaTeX, with use of \label and \ref. The full list of supported environments can be found in the <a href="/nlab/show/HowTo#DefinitionTheoremProofEnvironments">HowTo</a>. </li> <li style="font-size: 0.8em">Tikz can be used for figures almost exactly as in LaTeX. Similarly, tikz-cd and xymatrix can be used for commutative diagrams. See the <a href="/nlab/show/HowTo#diagrams">HowTo</a>.</li> <li style="font-size: 0.8em">As an alternative to the Markdown syntax for sections (headings), one can use the usual LaTeX syntax \section, \subsection, etc.</li> <li style="font-size: 0.8em">For further help, see the <a href="/nlab/show/HowTo">HowTo</a>, or you are very welcome to ask at the <a href="https://nforum.ncatlab.org/">nForum</a>.</li> </ol> </div> <form accept-charset="utf-8" action="/nlab/save/transgression" id="editForm" method="post"> <div style="display: none;"> <input name="see_if_human" id="see_if_human" style="tabindex: -1; autocomplete: off"/> </div> <div> <textarea name="content" id="content" style="height: 45em; width: 70%;"> #Contents# * table of contents {:toc} ## Idea Transgression is a tool in [[algebraic topology]] to transfer [[cohomology]] classes from one [[space]] to another without needing a [[morphism]] between them. Rather, one has a third space with morphisms to each of the two spaces. Of course, not just _any_ third space will do. The topological set up is as follows. We have two [[topological space]]s, $X$ and $Y$, and a [[generalised cohomology theory]] $E^*(-)$. We want to be able to transfer ( _transgress_ ) $E^*$-classes from $X$ to $Y$. We find a third space, $Z$, which has morphisms to both $X$ and $Y$. We usually write this in the following way: $$ \begin{matrix} Z &amp; \to&amp; X \\ \downarrow \\ Y \end{matrix} $$ (Note to self: replace with SVG, write $f \colon Z \to X$ and $g \colon Z \to Y$.) An important example is that where we have some parameter space $\Sigma$ (for instance the circle $\Sigma = S^1$) and set $Z = \Sigma \times [\Sigma,X]$, the [[product]] of $\Sigma$ with the [[internal hom|mapping space]] $[\Sigma,X]$ of maps from $\Sigma$ to $X$ (for instance the [[loop space]] of $X$). Then the morphism on the right is taken to be evaluation and the morphism on the left is projection onto the mapping space $[\Sigma,X]$: $$ \array{ \Sigma \times [\Sigma, X] &amp;\stackrel{ev}{\to}&amp; X \\ \downarrow^{\mathrlap{p_2}} \\ [\Sigma,X] } \,. $$ This setup induces **transgression to mapping spaces** in the following. Now we apply the generalised cohomology theory to this diagram. As it is a cohomology theory, the arrows reverse. We have part of our route from $E^*(X)$ to $E^*(Y)$, namely from $E^*(X)$ to $E^*(Z)$. However, the way from $E^*(Y)$ to $E^*(Z)$ is blocked: it is a one-way street and we want to go the _wrong_ way. However, under certain special circumstances, cohomology theories admit push-forward maps. That is, if $g \colon Z \to Y$ is particularly nice, there is a map $g_! \colon E^*(Z) \to E^*(Y)$. The notation $g_!$ (pronounced &quot;g shriek&quot;) has the explanation that it is a surprise that there is a map in this direction[^shriek]. Note that the push-forward map, $g_! \colon E^*(Z) \to E^*(Y)$, often results in a change of degree. This is described at [[fiber integration]] and [[Pontrjagin-Thom collapse map]]. [^shriek]: To the best of [[Andrew Stacey|my]] knowledge, this remark is attributable to [[Ralph Cohen]]. Thus the key to transgression is to understand the conditions where the map $g \colon Z \to Y$ admits a push-forward map. The simplest case is where $Z$ is a product space, $Y \times W$, and $W$ is [[orientable]] for the generalised cohomology theory $E^*(-)$. This means that $W$ has a fundamental class in $E^*(W)$ and evaluation on this class gives a morphism $E^*(Y \times W) \to E^*(Y)$. ## Definition ### Transgression of differential forms See at _[[transgression of differential forms]]_, ### By pullback and fiber integration (...) ### Transgression of forms through fiber bundles A related construction called _transgression_ is the following For $P \to X$ a [[fiber bundle]] with typical fiber $i : F \hookrightarrow P $ and $[\omega] \in H_{dR}^n(F)$ a class in [[de Rham cohomology]] of the fiber, we say this is _transgressive_ if * there exists a form $cs \in \Omega^{n}(P)$ on the total space of the bundle; * such that restricted along $F \hookrightarrow P$ to the fiber it is $\sim \omega$; * and such that $d cs$ is the pull-back of a form $\kappa \in \Omega^{n+1}(X)$ on the base along the bundle projection . See for instance section 9 of ([Borel](#Borel)). This construction really exhibits transgression as a special case of the [[connecting homomorphism]] in cohomology $$ H^n(F) \to H^{n+1}(X) $$ that is induced from the [[short exact sequence]] of cocycles $$ ker(i^*) \hookrightarrow \Omega^\bullet(P) \stackrel{i^*}{\to} \Omega^\bullet(F) $$ by restricting to those elements for which it factors through $$ \Omega^\bullet(X) \hookrightarrow ker(i^*) \,. $$ For more on this see [[Chern-Simons element]]. ## Examples ### Transgression in de Rham Cohomology ### With a [[cohomology theory]] that has a good geometric model, such as [[de Rham cohomology]], there is often a similar geometric model for the push-forward map. In the case of de Rham cohomology, it goes by the name of _[[fiber integration|integration along the fibres]]_. Using the notation above, with the simple case of $Z = Y \times W$, we have the formula $$ \alpha \in H^k_{dR}(X) \mapsto \int_W f^* \alpha \in H^{k - \dim W}_{dR}(Y) $$ ### Transgression of de Rham cohomology to loop spaces A particular application of this is in respect to the cohomology of [[loop spaces]], and in particular to [[iterated integrals]]. The aim here is to transfer information from a space $X$ to its [[free loop space object|free loop space]], $L X$. The intermediate space in this situation is $S^1 \times L X$ with evaluation as the map to $X$ and projection to $L X$. Note that although $L X$ is rather large, the [[fibre]] is $S^1$ and it is that which needs to be controlled. If we worked in the realm of pure [[algebraic topology]] (i.e. didn&#39;t care about geometry) this transfer would be almost trivial. Indeed, if we worked with _based_ loops, it would be a tautology since then the push-forward $H^*(S^1 \wedge \Omega X) \to H^{*-1}(\Omega X)$ is simply the suspension isomorphism. (We use the [[smash product]] as we are working with _based_ spaces here.) However, we wish to have a geometric interpretation of this, and so work in the realm of [[differential topology]]: i.e. with smooth [[manifold]]s (albeit possibly infinite dimensional). We therefore have the diagram: $$ \array{ S^1 \times L M &amp; \to &amp; M \\ \downarrow \\ L M } $$ The general lore of transgression says that this induces a map in cohomology $H^k_{dR}(M) \to H^{k-1}_{dR}(L M)$ via $$ \alpha \mapsto \int_{S^1} ev^*\alpha. $$ As with any cohomological construction, there is always the question as to whether or not it is purely cohomological or whether or not it can be lifted to whatever-it-was that defined the cohomology theory. In this case, that is [[differential form]]s. In this case we are in the happy circumstance that the lift exists. Expressed purely in terms of differential forms, the formula doesn&#39;t change. However, we can think of differential forms as &quot;that which acts on [[tangent vector]]s&quot; and ask for a formulation that involves tangent vectors. This can make the integration step clearer. To reformulate transgression thus we need to understand tangent vectors on $L M$. The simplest way to view a tangent vector on $L M$ is to identify $T L M$ with $L T M$. That is, we view a tangent vector $x \in T_\gamma L M$ as a loop in $T M$ with the property that $x(t) \in T_{\gamma(t)} M$. In one view ($T L M$), $x$ tells $\gamma$ which direction to move in; in the other view ($L T M$), each $x(t)$ tells each $\gamma(t)$ which direction to move in. That done, we have an obvious evaluation map $S^1 \times T L M \to T M$, $x \mapsto x(t)$ and so, given a differential form on $M$, we can evaluate it on tangent vectors coming from $L M$. However, that&#39;s not all we need. There&#39;s a very special [[vector field]] on $L M$ which we want to throw into the mix. This is the vector field which assigns to $\gamma \in L M$ the tangent vector $\gamma&#39; \in L T M$. This is the rotation vector field: if we rotate the circle on $S^1 \times L M$ then to keep the evaluation map consistent, we have to rotate the loops in $L M$ as well. So starting with a $k$-form, say $\alpha$, on $M$, we fix a loop $\gamma \in L M$, $t \in S^1$, and take $k-1$ tangent vectors at $\gamma$, say $x_1, \dots, x_{k-1}$. We evaluate these at $t$ to get $x_1(t), \dots, x_{k-1}(t) \in T_{\gamma(t)} M$ and also throw in $\gamma&#39;(t)$. That gives $k$ vectors at $T_{\gamma(t)} M$ on which we can evaluate $\alpha$: $$ \alpha(x_1(t),x_2(t),\dots,x_{k-1}(t),\gamma&#39;(t)) $$ This is a number. Hence, by varying $t \in S^1$, it defines a function $S^1 \to \mathbb{R}$. Integrating this function around $S^1$ yields a number: $$ \int_{S^1} \alpha(x_1(t),x_2(t),\dots,x_{k-1}(t),\gamma&#39;(t)) dt $$ Thus we have a map $\bigotimes^{k-1} T(L M) \to \mathbb{R}$. It can be shown that it is alternating and $(k-1)$-linear, and that it varies smoothly over $L M$, hence defines an element of $\Omega^{k-1}(L M)$. The reason why $\int_{S^1} ev^*\alpha$ takes the form of the above formula is the following: $$ev^*: \Omega^k(M) \to \Omega^k(S^1\times LM)= \oplus_{i+j=k} \Omega^i(S^1) \otimes\Omega^j(LM) = \Omega^0(S^1) \otimes \Omega^k(LM) \oplus \Omega^1(S^1)\otimes \Omega^{k-1}(LM). $$ Thus we may write $$ev^*\alpha= \alpha_0\otimes \alpha_k + \alpha_{1}\otimes \alpha_{k-1}, $$ where $\alpha_k\in \Omega^k(LM)$, $\alpha^{k-1}\in \Omega^{k-1}(LM)$, and $\alpha_1\in \Omega^1(S^1)$, $\alpha^0\in \Omega^0(S^1)$. Then contracting with $S^1$ via $\int_{S^1}$, only the second term survives. Thus \[ \label{int} (\int_{S^1} ev^*\alpha)_{\gamma} (x_1, ..., x_{k-1}) =\int_{S^1} \alpha_{1} \otimes \alpha_{k-1} (x_1, ..., x_{k-1} ) .\] On the other hand, let $(v_i, x_i) \in T_t S^1 \times T_{\gamma}LM $ be tangent vectors of $T(S^1\times LM)$ for $i=1, \dots, k$. Then $$ev^*\alpha_{(t, \gamma)}((v_1, x_1), \dots, (v_k, x_k)) = \alpha_{k-1}|_{\gamma} \otimes \alpha_1 |_t((v_1, x_1), \dots, (v_k, x_k)) + \alpha_k|_{\gamma}\otimes \alpha_0|_t((v_1, x_1), \dots, (v_k, x_k)).$$ At the same time, $T_{\gamma} ev( v, x) = v \gamma&#39; + x$. This can be seen by taking a variation (a small path) $(t+v\epsilon, \gamma^\epsilon)$ representing $(v, x)$ (thus $\gamma^0=\gamma$). Then $$T_{\gamma} ev( v, x)= \frac{d}{d\epsilon}|_{\epsilon=0}(\gamma^\epsilon(t+v\epsilon))=\frac{d}{d\epsilon}|_{\epsilon=0}\gamma^0(t+v\epsilon)+ \frac{d}{d\epsilon}|_{\epsilon=0}\gamma^\epsilon(t) = v\gamma&#39;(t)+x(t),$$ which is a tangent vector at $\gamma(t)$. Thus $$ev^*\alpha|_{(t, \gamma)}((v_1, x_1), \dots, (v_k, x_k))= \alpha_{\gamma(t)}(T_\gamma ev (v_1, x_1), \dots, T_\gamma ev (v_k, x_k)) $$ $$ = \alpha_{\gamma(t)}(x_1(t), \dots, x_k(t)) + \alpha_{\gamma(t)}(v_1 \gamma&#39;(t), x_2(t), \dots, x_{k}(t)) + c.p. $$ Thus $\alpha_k=\alpha$, $\alpha_0=1$, $\alpha_{k-1}=\iota(\gamma&#39;)\alpha$, and $\alpha_1=dt$. Combining with equation \eqref{int}, we obtain the desired formula (might be up to a sign). There is much more to tell in this particular story. It is possible to replacing $S^1$ by a [[simplex]] (but keeping $L M$ the same) and so build up more complicated objects in $\Omega^*(L M)$. This is the starting point of Chen&#39;s theory of [[iterated integrals]] and further developments of the theory can be found in the work of Jones, Getzler, and Petrack. ### Transgression in group cohomology See at *[[transgression in group cohomology]]*. ### Transgression to mapping spaces in terms of internal homs {#InternalHom} &gt; just a rough remark, for the moment At least for some cases of transgression to [[mapping space]]s, the concept has an [[nPOV]] description in terms of [[internal hom]]s. This makes crucial use of the [[nPOV]] notion of [[cohomology]], as described there. Let $\mathbf{H} = $ [[Top]] $\simeq$ [[∞Grpd]]. For $X \in \mathbf{H}$ and for $\Sigma$ a $k$-dimensional closed oriented [[manifold]], and for $K$ an [[abelian group]] that is injective as a $\mathbb{Z}$-module, we may identify transgression to the mapping space $[\Sigma,X]$ as the composite $$ trans_\Sigma : \mathbf{H}(X,\mathbf{B}^n K) \stackrel{[\Sigma,-]}{\to} \mathbf{H}([\Sigma,X], [\Sigma, \mathbf{B}^n K]) \stackrel{(\tau_{n-k})_*}{\to} \mathbf{H}([\Sigma,X], \tau_{n-k} [\Sigma, \mathbf{B}^n K]) \simeq \mathbf{H}([\Sigma,X], \mathbf{B}^{n-k} K) \,. $$ Here the first step is application of the [[internal hom]], then the second is postcomposition with [[truncated|truncation]], and then the last step uses the [[universal coefficient theorem]]. Note that the transgression map $trans_\Sigma$ depends on the choice of an equivalence $\tau_{n-k} [\Sigma, \mathbf{B}^n K]\simeq \mathbf{B}^{n-k} K$. Up to homotopy, this choice is precisely the datum of the [[orientation]] on $\Sigma$. &gt; more details go here.... This plays a role in the [[quantization]] process that yields [[FQFT]]s. For an application see [[Dijkgraaf-Witten theory]]. &gt; more details, and more polishing later... ## Related entries * [[transgression of bundle gerbes]] ## References The classical notion of transgression of forms through fiber bundles is described in section 9 of * {#Borel} [[Armand Borel]], _Topology of Lie groups and characteristic classes_ Bull. Amer. Math. Soc. Volume 61, Number 5 (1955), 397-432. ([EUCLID](http://projecteuclid.org/euclid.bams/1183520007)) Transgression as [[pullback in cohomology]] along the [[evaluation map]] followed by [[fiber integration]] over the base space is considered in: for [[differential forms]]: * [[Jean-Luc Brylinski]], §3.5 in *Loop Spaces, Characteristic Classes, and Geometric Quantization*, Birkhäuser (1993) &amp;lbrack;[doi:10.1007/978-0-8176-4731-5](https://doi.org/10.1007/978-0-8176-4731-5)&amp;rbrack; for [[Deligne cohomology]] (and with an eye towards defining the [[higher holonomy]] of [[bundle gerbes with connection]]): * [[Ernesto Lupercio]], [[Bernardo Uribe]], p. 2 of: *Holonomy for Gerbes over Orbifolds*, J. Geom.Phys. **56** (2006) 1534-1560 &amp;lbrack;[arXiv:math/0307114](https://arxiv.org/abs/math/0307114), [doi:10.1016/j.geomphys.2005.08.006](https://doi.org/10.1016/j.geomphys.2005.08.006)&amp;rbrack; &gt; (over [[orbifolds]]) * [[Christian Bär]], [[Christian Becker]], Def. 9.1 in: *Differential Characters and Geometric Chains*, in: *Differential Characters*, Lecture Notes in Mathematics **2112**, Springer (2014) &amp;lbrack;[arXiv:1303.6457](https://arxiv.org/abs/1303.6457), [doi:10.1007/978-3-319-07034-6_1](https://doi.org/10.1007/978-3-319-07034-6_1)&amp;rbrack; Transgression of [[group cohomology]] for [[discrete groups]] to cohomology of [[inertia groupoids]] (see at *[[transgression in group cohomology]]*): * {#Willerton08} [[Simon Willerton]], Section 1 of: *The twisted Drinfeld double of a finite group via gerbes and finite groupoids*, Algebr. Geom. Topol. 8 (2008) 1419-1457 ([arXiv:math/0503266](https://arxiv.org/abs/math/0503266)) * [[Jean-Louis Tu]], [[Ping Xu]], Section 3 of: *The ring structure for equivariant twisted K-theory*, J. Reine Angew. Math. 635 (2009), 97–148 ([arXiv:math/0604160](https://arxiv.org/abs/math/0604160), [doi:10.1515/CRELLE.2009.077](https://doi.org/10.1515/CRELLE.2009.077)) * {#AdemRuanZhang07} [[Alejandro Adem]], [[Yongbin Ruan]], [[Bin Zhang]], Section 4 of: _A Stringy Product on Twisted Orbifold K-theory_, Morfismos (10th Anniversary Issue), **11** 2 (2007) 33-64 &amp;lbrack;[arXiv:math/0605534](https://arxiv.org/abs/math/0605534), [Morfismos pdf](www.morfismos.cinvestav.mx/Portals/morfismos/SiteDocs/Articulos/Volumen11/No2/Zhang/arz.pdf)&amp;rbrack; The [[image]] of the transgression operation from [[bundle gerbes]] ([[bundle gerbe with connection|with connection]]) to [[complex line bundles]] ([[connection on a vector bundle|with connection]]) on the [[free loop space]] of their base space is characterized (as consisting of the &quot;[[fusion bundle|fusion bundles]]&quot;) in: * [[Konrad Waldorf]], *Transgression to Loop Spaces and its Inverse, I: Diffeological Bundles and Fusion Maps*, Cah. Topol. Geom. Differ. Categ., 2012, Vol. LIII, 162-210 &amp;lbrack;[arXiv:0911.3212](https://arxiv.org/abs/0911.3212), [cahierstgdc:LIII](http://cahierstgdc.com/index.php/volumes/volume-liii-2012)&amp;rbrack; * [[Konrad Waldorf]], *Transgression to Loop Spaces and its Inverse, II: Gerbes and Fusion Bundles with Connection*, Asian Journal of Mathematics **20** 1 (2016) 59-116 &amp;lbrack;[arXiv:1004.0031](https://arxiv.org/abs/1004.0031), [doi:10.4310/AJM.2016.v20.n1.a4](https://dx.doi.org/10.4310/AJM.2016.v20.n1.a4)&amp;rbrack; * [[Konrad Waldorf]], *Transgression to Loop Spaces and its Inverse, III: Gerbes and Thin Fusion Bundles*, Advances in Mathematics **231** (2012) 3445-3472 &amp;lbrack;[arXiv:1109.0480](https://arxiv.org/abs/1109.0480), [doi:10.1016/j.aim.2012.08.016](https://doi.org/10.1016/j.aim.2012.08.016)&amp;rbrack; [[!redirects transgressions]] </textarea> <p> <input id="alter_title" name="alter_title" onchange="toggleVisibility();" type="checkbox" value="1" /> <label for="alter_title">Change page name.</label><br/> <span id="title_change" style="display:none"><label for="new_name">New name:</label> <input id="new_name" name="new_name" onblur="addRedirect();" type="text" value="transgression" /></span> </p> <div> <p style="font-size: 0.8em; width: 70%;"> For non-trivial edits, please briefly describe your changes below. Your comments will be added to the <a href="https://nforum.ncatlab.org/discussion/1155/#Item_89">nForum discussion thread</a> for this page, which can also be used for further discussion related to this page. For trivial edits, such as correcting typos, please leave the box below empty; feel free to ask for advice at the nForum if you are unsure. </p> </div> <div> <textarea name="announcement" id="announcement" style="height: 10em; width: 70%"></textarea> </div> <div id="editFormButtons"> <input type="submit" value="Submit" accesskey="s"/> as <input id="author" name="author" onblur="this.value == '' ? this.value = 'Anonymous' : true" onfocus="this.value == 'Anonymous' ? this.value = '' : true;" type="text" value="Anonymous" /> | <span> <a href="/nlab/cancel_edit/transgression" accesskey="c">Cancel</a> <span class="unlock">(unlocks page)</span> </span> </div> </div> </form> <script type="text/javascript"> <!--//--><![CDATA[//><!-- function toggleVisibility() { var span = document.getElementById('title_change'); if (span.style.display =='inline') { span.style.display ='none'; document.getElementById('new_name').value = "transgression"; var content = document.getElementById('content').value document.getElementById('content').value = content.replace(/\[\[!redirects transgression\]\]\n/, '') } else span.style.display ='inline' } function addRedirect(){ var e = document.getElementById('new_name').value; if ( e != "transgression" && e != '') { var content = document.getElementById('content'); content.value = '[[!redirects transgression]]\n' + content.value } } document.forms["editForm"].elements["content"].focus(); //--><!]]> </script> </div> <!-- Content --> </div> <!-- Container --> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10