CINXE.COM

Search results for: XOR gate

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: XOR gate</title> <meta name="description" content="Search results for: XOR gate"> <meta name="keywords" content="XOR gate"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="XOR gate" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="XOR gate"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 270</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: XOR gate</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">270</span> Practical Simulation Model of Floating-Gate MOS Transistor in Sub 100 nm Technologies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zina%20Saheb">Zina Saheb</a>, <a href="https://publications.waset.org/abstracts/search?q=Ezz%20El-Masry"> Ezz El-Masry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As CMOS technology scaling down, Silicon oxide thickness (SiO2) become very thin (few Nano meters). When SiO2 is less than 3nm, gate direct tunneling (DT) leakage current becomes a dormant problem that impacts the transistor performance. Floating gate MOSFET (FGMOSFET) has been used in many low-voltage and low-power applications. Most of the available simulation models of FGMOSFET for analog circuit design does not account for gate DT current and there is no accurate analysis for the gate DT. It is a crucial to use an accurate mode in order to get a realistic simulation result that account for that DT impact on FGMOSFET performance effectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CMOS%20transistor" title="CMOS transistor">CMOS transistor</a>, <a href="https://publications.waset.org/abstracts/search?q=direct-tunneling%20current" title=" direct-tunneling current"> direct-tunneling current</a>, <a href="https://publications.waset.org/abstracts/search?q=floating-gate" title=" floating-gate"> floating-gate</a>, <a href="https://publications.waset.org/abstracts/search?q=gate-leakage%20current" title=" gate-leakage current"> gate-leakage current</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation%20model" title=" simulation model"> simulation model</a> </p> <a href="https://publications.waset.org/abstracts/30655/practical-simulation-model-of-floating-gate-mos-transistor-in-sub-100-nm-technologies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30655.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">529</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">269</span> Spin-Dependent Transport Signatures of Bound States: From Finger to Top Gates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yun-Hsuan%20Yu">Yun-Hsuan Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chi-Shung%20Tang"> Chi-Shung Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Nzar%20Rauf%20Abdullah"> Nzar Rauf Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Vidar%20Gudmundsson"> Vidar Gudmundsson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spin-orbit gap feature in energy dispersion of one-dimensional devices is revealed via strong spin-orbit interaction (SOI) effects under Zeeman field. We describe the utilization of a finger-gate or a top-gate to control the spin-dependent transport characteristics in the SOI-Zeeman influenced split-gate devices by means of a generalized spin-mixed propagation matrix method. For the finger-gate system, we find a bound state in continuum for incident electrons within the ultra-low energy regime. For the top-gate system, we observe more bound-state features in conductance associated with the formation of spin-associated hole-like or electron-like quasi-bound states around band thresholds, as well as hole bound states around the reverse point of the energy dispersion. We demonstrate that the spin-dependent transport behavior of a top-gate system is similar to that of a finger-gate system only if the top-gate length is less than the effective Fermi wavelength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spin-orbit" title="spin-orbit">spin-orbit</a>, <a href="https://publications.waset.org/abstracts/search?q=zeeman" title=" zeeman"> zeeman</a>, <a href="https://publications.waset.org/abstracts/search?q=top-gate" title=" top-gate"> top-gate</a>, <a href="https://publications.waset.org/abstracts/search?q=finger-gate" title=" finger-gate"> finger-gate</a>, <a href="https://publications.waset.org/abstracts/search?q=bound%20state" title=" bound state"> bound state</a> </p> <a href="https://publications.waset.org/abstracts/82686/spin-dependent-transport-signatures-of-bound-states-from-finger-to-top-gates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82686.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">268</span> Performance Improvement of SOI-Tri Gate FinFET Transistor Using High-K Dielectric with Metal Gate </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatima%20Zohra%20Rahou">Fatima Zohra Rahou</a>, <a href="https://publications.waset.org/abstracts/search?q=A.Guen%20Bouazza"> A.Guen Bouazza</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Bouazza"> B. Bouazza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> SOI TRI GATE FinFET transistors have emerged as novel devices due to its simple architecture and better performance: better control over short channel effects (SCEs) and reduced power dissipation due to reduced gate leakage currents. As the oxide thickness scales below 2 nm, leakage currents due to tunneling increase drastically, leading to high power consumption and reduced device reliability. Replacing the SiO2 gate oxide with a high-κ material allows increased gate capacitance without the associated leakage effects. In this paper, SOI TRI-GATE FinFET structure with use of high K dielectric materials (HfO2) and SiO2 dielectric are simulated using the 3-D device simulator Devedit and Atlas of TCAD Silvaco. The simulated results exhibits significant improvements in the performances of SOI TRI GATE FinFET with gate oxide HfO2 compared with conventional gate oxide SiO2 for the same structure. SOI TRI-GATE FinFET structure with the use of high K materials (HfO2) in gate oxide results into the increase in saturation current, threshold voltage, on-state current and Ion/Ioff ratio while off-state current, subthreshold slope and DIBL effect are decreased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=technology%20SOI" title="technology SOI">technology SOI</a>, <a href="https://publications.waset.org/abstracts/search?q=short-channel%20effects%20%28SCEs%29" title=" short-channel effects (SCEs)"> short-channel effects (SCEs)</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-gate%20SOI%20MOSFET" title=" multi-gate SOI MOSFET"> multi-gate SOI MOSFET</a>, <a href="https://publications.waset.org/abstracts/search?q=SOI-TRI%20Gate%20FinFET" title=" SOI-TRI Gate FinFET"> SOI-TRI Gate FinFET</a>, <a href="https://publications.waset.org/abstracts/search?q=high-K%20dielectric" title=" high-K dielectric"> high-K dielectric</a>, <a href="https://publications.waset.org/abstracts/search?q=Silvaco%20software" title=" Silvaco software"> Silvaco software</a> </p> <a href="https://publications.waset.org/abstracts/31441/performance-improvement-of-soi-tri-gate-finfet-transistor-using-high-k-dielectric-with-metal-gate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31441.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">267</span> Capacitance Models of AlGaN/GaN High Electron Mobility Transistors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Douara">A. Douara</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Kermas"> N. Kermas</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Djellouli"> B. Djellouli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we report calculations of gate capacitance of AlGaN/GaN HEMTs with nextnano device simulation software. We have used a physical gate capacitance model for III-V FETs that incorporates quantum capacitance and centroid capacitance in the channel. These simulations explore various device structures with different values of barrier thickness and channel thickness. A detailed understanding of the impact of gate capacitance in HEMTs will allow us to determine their role in future 10 nm physical gate length node. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gate%20capacitance" title="gate capacitance">gate capacitance</a>, <a href="https://publications.waset.org/abstracts/search?q=AlGaN%2FGaN" title=" AlGaN/GaN"> AlGaN/GaN</a>, <a href="https://publications.waset.org/abstracts/search?q=HEMTs" title=" HEMTs"> HEMTs</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20%20capacitance" title=" quantum capacitance"> quantum capacitance</a>, <a href="https://publications.waset.org/abstracts/search?q=centroid%20capacitance" title=" centroid capacitance"> centroid capacitance</a> </p> <a href="https://publications.waset.org/abstracts/39564/capacitance-models-of-algangan-high-electron-mobility-transistors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39564.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">266</span> Area Efficient Carry Select Adder Using XOR Gate Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahendrapal%20Singh%20Pachlaniya">Mahendrapal Singh Pachlaniya</a>, <a href="https://publications.waset.org/abstracts/search?q=Laxmi%20Kumre"> Laxmi Kumre</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The AOI (AND – OR- INVERTER) based design of XOR gate is proposed in this paper with less number of gates. This new XOR gate required four basic gates and basic gate include only AND, OR, Inverter (AOI). Conventional XOR gate required five basic gates. Ripple Carry Adder (RCA) used in parallel addition but propagation delay time is large. RCA replaced with Carry Select Adder (CSLA) to reduce propagation delay time. CSLA design with dual RCA considering carry = ‘0’ and carry = ‘1’, so it is not an area efficient adder. To make area efficient, modified CSLA is designed with single RCA considering carry = ‘0’ and another RCA considering carry = ‘1’ replaced with Binary to Excess 1 Converter (BEC). Now replacement of conventional XOR gate by new design of XOR gate in modified CSLA reduces much area compared to regular CSLA and modified CSLA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CSLA" title="CSLA">CSLA</a>, <a href="https://publications.waset.org/abstracts/search?q=BEC" title=" BEC"> BEC</a>, <a href="https://publications.waset.org/abstracts/search?q=XOR%20gate" title=" XOR gate"> XOR gate</a>, <a href="https://publications.waset.org/abstracts/search?q=area%20efficient" title=" area efficient"> area efficient</a> </p> <a href="https://publications.waset.org/abstracts/41782/area-efficient-carry-select-adder-using-xor-gate-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41782.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">265</span> Transient Performance Analysis of Gate Inside Junctionless Transistor (GI-JLT)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sangeeta%20Singh">Sangeeta Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Pankaj%20Kumar"> Pankaj Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20N.%20Kondekar"> P. N. Kondekar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the transient device performance analysis of n-type Gate Inside Junctionless Transistor (GIJLT)has been evaluated. 3-D Bohm Quantum Potential (BQP)transport device simulation has been used to evaluate the delay and power dissipation performance. GI-JLT has a number of desirable device parameters such as reduced propagation delay, dynamic power dissipation, power and delay product, intrinsic gate delay and energy delay product as compared to Gate-all-around transistors GAA-JLT. In addition to this, various other device performance parameters namely, on/off current ratio, short channel effects (SCE), transconductance Generation Factor(TGF) and unity gain cut-off frequency (fT) and subthreshold slope (SS) of the GI-JLT and Gate-all-around junctionless transistor(GAA-JLT) have been analyzed and compared. GI-JLT shows better device performance characteristics than GAA-JLT for low power and high frequency applications, because of its larger gate electrostatic control on the device operation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gate-inside%20junctionless%20transistor%20GI-JLT" title="gate-inside junctionless transistor GI-JLT">gate-inside junctionless transistor GI-JLT</a>, <a href="https://publications.waset.org/abstracts/search?q=gate-all-around%20junctionless%20transistor%20GAA-JLT" title=" gate-all-around junctionless transistor GAA-JLT"> gate-all-around junctionless transistor GAA-JLT</a>, <a href="https://publications.waset.org/abstracts/search?q=propagation%20delay" title=" propagation delay"> propagation delay</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20delay%20product" title=" power delay product"> power delay product</a> </p> <a href="https://publications.waset.org/abstracts/9662/transient-performance-analysis-of-gate-inside-junctionless-transistor-gi-jlt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9662.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">579</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">264</span> Performance Analysis of BPJLT with Different Gate and Spacer Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Porag%20Jyoti%20Ligira">Porag Jyoti Ligira</a>, <a href="https://publications.waset.org/abstracts/search?q=Gargi%20Khanna"> Gargi Khanna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents a simulation study of the electrical characteristic of Bulk Planar Junctionless Transistor (BPJLT) using spacer. The BPJLT is a transistor without any PN junctions in the vertical direction. It is a gate controlled variable resistor. The characteristics of BPJLT are analyzed by varying the oxide material under the gate. It can be shown from the simulation that an ideal subthreshold slope of ~60 mV/decade can be achieved by using highk dielectric. The effects of variation of spacer length and material on the electrical characteristic of BPJLT are also investigated in the paper. The ION / IOFF ratio improvement is of the order of 107 and the OFF current reduction of 10-4 is obtained by using gate dielectric of HfO2 instead of SiO2. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spacer" title="spacer">spacer</a>, <a href="https://publications.waset.org/abstracts/search?q=BPJLT" title=" BPJLT"> BPJLT</a>, <a href="https://publications.waset.org/abstracts/search?q=high-k" title=" high-k"> high-k</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20gate" title=" double gate"> double gate</a> </p> <a href="https://publications.waset.org/abstracts/11775/performance-analysis-of-bpjlt-with-different-gate-and-spacer-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11775.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">263</span> Analysis of Scaling Effects on Analog/RF Performance of Nanowire Gate-All-Around MOSFET</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dheeraj%20Sharma">Dheeraj Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Santosh%20Kumar%20Vishvakarma"> Santosh Kumar Vishvakarma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present a detailed analysis of analog and radiofrequency (RF) performance with different gate lengths for nanowire cylindrical gate (CylG) gate-all-around (GAA) MOSFET. CylG GAA MOSFET not only suppresses the short channel effects (SCEs), it is also a good candidate for analog/RF device due to its high transconductance (gm) and high cutoff frequency (fT ). The presented work would be beneficial for a new generation of RF circuits and systems in a broad range of applications and operating frequency covering the RF spectrum. For this purpose, the analog/RF figures of merit for CylG GAA MOSFET is analyzed in terms of gate to source capacitance (Cgs), gate to drain capacitance (Cgd), transconductance generation factor gm = Id (where Id represents drain current), intrinsic gain, output resistance, fT, maximum frequency of oscillation (fmax) and gain bandwidth (GBW) product. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gate-All-Around%20MOSFET" title="Gate-All-Around MOSFET">Gate-All-Around MOSFET</a>, <a href="https://publications.waset.org/abstracts/search?q=GAA" title=" GAA"> GAA</a>, <a href="https://publications.waset.org/abstracts/search?q=output%20resistance" title=" output resistance"> output resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=transconductance%20generation%20factor" title=" transconductance generation factor"> transconductance generation factor</a>, <a href="https://publications.waset.org/abstracts/search?q=intrinsic%20gain" title=" intrinsic gain"> intrinsic gain</a>, <a href="https://publications.waset.org/abstracts/search?q=cutoff%20frequency" title=" cutoff frequency"> cutoff frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=fT" title=" fT"> fT</a> </p> <a href="https://publications.waset.org/abstracts/28209/analysis-of-scaling-effects-on-analogrf-performance-of-nanowire-gate-all-around-mosfet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28209.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">262</span> A Connected Structure of All-Optical Logic Gate “NOT-AND”</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roumaissa%20Derdour">Roumaissa Derdour</a>, <a href="https://publications.waset.org/abstracts/search?q=Lebbal%20Mohamed%20Redha"> Lebbal Mohamed Redha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present a study of the transmission of the all-optical logic gate using a structure connected with a triangular photonic crystal lattice that is improved. The proposed logic gate consists of a photonic crystal nano-resonator formed by changing the size of the air holes. In addition to the simplicity, the response time is very short, and the designed nano-resonator increases the bit rate of the logic gate. The two-dimensional finite difference time domain (2DFDTD) method is used to simulate the structure; the transmission obtained is about 98% with very negligible losses. The proposed photonic crystal AND logic gate is widely used in future integrated optical microelectronics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=logic%20gates" title="logic gates">logic gates</a>, <a href="https://publications.waset.org/abstracts/search?q=photonic%20crystals" title=" photonic crystals"> photonic crystals</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20integrated%20circuits" title=" optical integrated circuits"> optical integrated circuits</a>, <a href="https://publications.waset.org/abstracts/search?q=resonant%20cavities" title=" resonant cavities"> resonant cavities</a> </p> <a href="https://publications.waset.org/abstracts/161597/a-connected-structure-of-all-optical-logic-gate-not-and" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161597.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">261</span> Gate Voltage Controlled Humidity Sensing Using MOSFET of VO2 Particles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Akande">A. A. Akande</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20P.%20Dhonge"> B. P. Dhonge</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20W.%20Mwakikunga"> B. W. Mwakikunga</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20G.%20J.%20Machatine"> A. G. J. Machatine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article presents gate-voltage controlled humidity sensing performance of vanadium dioxide nanoparticles prepared from NH<sub>4</sub>VO<sub>3</sub> precursor using microwave irradiation technique. The X-ray diffraction, transmission electron diffraction, and Raman analyses reveal the formation of VO<sub>2</sub> (B) with V<sub>2</sub>O<sub>5 </sub>and an amorphous phase. The BET surface area is found to be 67.67 m<sup>2</sup>/g. The humidity sensing measurements using the patented lateral-gate MOSFET configuration was carried out. The results show the optimum response at 5 V up to 8 V of gate voltages for 10 to 80% of relative humidity. The dose-response equation reveals the enhanced resilience of the gated VO<sub>2</sub> sensor which may saturate above 272% humidity. The response and recovery times are remarkably much faster (about 60 s) than in non-gated VO<sub>2</sub> sensors which normally show response and recovery times of the order of 5 minutes (300 s). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=VO2" title="VO2">VO2</a>, <a href="https://publications.waset.org/abstracts/search?q=VO2%28B%29" title=" VO2(B)"> VO2(B)</a>, <a href="https://publications.waset.org/abstracts/search?q=MOSFET" title=" MOSFET"> MOSFET</a>, <a href="https://publications.waset.org/abstracts/search?q=gate%20voltage" title=" gate voltage"> gate voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=humidity%20sensor" title=" humidity sensor"> humidity sensor</a> </p> <a href="https://publications.waset.org/abstracts/60921/gate-voltage-controlled-humidity-sensing-using-mosfet-of-vo2-particles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60921.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">260</span> High Performance of Square GAA SOI MOSFET Using High-k Dielectric with Metal Gate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatima%20Zohra%20Rahou">Fatima Zohra Rahou</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Guen%20Bouazza"> A. Guen Bouazza</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Bouazza"> B. Bouazza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multi-gate SOI MOSFETs has shown better results in subthreshold performances. The replacement of SiO2 by high-k dielectric can fulfill the requirements of Multi-gate MOSFETS with a scaling trend in device dimensions. The advancement in fabrication technology has also boosted the use of different high -k dielectric materials as oxide layer at different places in MOSFET structures. One of the most important multi-gate structures is square GAA SOI MOSFET that is a strong candidate for the next generation nanoscale devices; show an even stronger control of short channel effects. In this paper, GAA SOI MOSFET structure with using high -k dielectrics materials Al2O3 (k~9), HfO2 (k~20), La2O3 (k~30) and metal gate TiN are simulated by using 3-D device simulator DevEdit and Atlas of SILVACO TCAD tools. Square GAA SOI MOSFET transistor with High-k HfO2 gate dielectrics and TiN metal gate exhibits significant improvements performances compared to Al2O3 and La2O3 dielectrics for the same structure. Simulation results of GAA SOI MOSFET transistor with HfO2 dielectric show the increase in saturation current and Ion/Ioff ratio while leakage current, subthreshold slope and DIBL effect are decreased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=technology%20SOI" title="technology SOI">technology SOI</a>, <a href="https://publications.waset.org/abstracts/search?q=short-channel%20effects%20%28SCEs%29" title=" short-channel effects (SCEs)"> short-channel effects (SCEs)</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-gate%20SOI%20MOSFET" title=" multi-gate SOI MOSFET"> multi-gate SOI MOSFET</a>, <a href="https://publications.waset.org/abstracts/search?q=square%20GAA%20SOI%20MOSFET" title=" square GAA SOI MOSFET"> square GAA SOI MOSFET</a>, <a href="https://publications.waset.org/abstracts/search?q=high-k%20dielectric" title=" high-k dielectric"> high-k dielectric</a>, <a href="https://publications.waset.org/abstracts/search?q=Silvaco%20software" title=" Silvaco software "> Silvaco software </a> </p> <a href="https://publications.waset.org/abstracts/38250/high-performance-of-square-gaa-soi-mosfet-using-high-k-dielectric-with-metal-gate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38250.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">259</span> Designing Equivalent Model of Floating Gate Transistor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Birinderjit%20Singh%20Kalyan">Birinderjit Singh Kalyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Inderpreet%20Kaur"> Inderpreet Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Balwinder%20Singh%20Sohi"> Balwinder Singh Sohi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, an equivalent model for floating gate transistor has been proposed. Using the floating gate voltage value, capacitive coupling coefficients has been found at different bias conditions. The amount of charge present on the gate has been then calculated using the transient models of hot electron programming and Fowler-Nordheim Tunnelling. The proposed model can be extended to the transient conditions as well. The SPICE equivalent model is designed and current-voltage characteristics and Transfer characteristics are comparatively analysed. The dc current-voltage characteristics, as well as dc transfer characteristics, have been plotted for an FGMOS with W/L=0.25μm/0.375μm, the inter-poly capacitance of 0.8fF for both programmed and erased states. The Comparative analysis has been made between the present model and capacitive coefficient coupling methods which were already available. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FGMOS" title="FGMOS">FGMOS</a>, <a href="https://publications.waset.org/abstracts/search?q=floating%20gate%20transistor" title=" floating gate transistor"> floating gate transistor</a>, <a href="https://publications.waset.org/abstracts/search?q=capacitive%20coupling%20coefficient" title=" capacitive coupling coefficient"> capacitive coupling coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=SPICE%20model" title=" SPICE model"> SPICE model</a> </p> <a href="https://publications.waset.org/abstracts/30822/designing-equivalent-model-of-floating-gate-transistor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30822.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">545</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">258</span> Validity of a Timing System in the Alpine Ski Field: A Magnet-Based Timing System Using the Magnetometer Built into an Inertial Measurement Units</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carla%20P%C3%A9rez-Chirinos%20Buxad%C3%A9">Carla Pérez-Chirinos Buxadé</a>, <a href="https://publications.waset.org/abstracts/search?q=Bruno%20Fern%C3%A1ndez-Vald%C3%A9s"> Bruno Fernández-Valdés</a>, <a href="https://publications.waset.org/abstracts/search?q=M%C3%B3nica%20Morral-Yepes"> Mónica Morral-Yepes</a>, <a href="https://publications.waset.org/abstracts/search?q=S%C3%ADlvia%20Tuy%C3%A0%20Vi%C3%B1as"> Sílvia Tuyà Viñas</a>, <a href="https://publications.waset.org/abstracts/search?q=Josep%20Maria%20Padull%C3%A9s%20Riu"> Josep Maria Padullés Riu</a>, <a href="https://publications.waset.org/abstracts/search?q=Gerard%20Moras%20Feliu"> Gerard Moras Feliu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is a long way to explore all the possible applications inertial measurement units (IMUs) have in the sports field. The aim of this study was to evaluate the validity of a new application on the use of these wearable sensors, specifically it was to evaluate a magnet-based timing system (M-BTS) for timing gate-to-gate in an alpine ski slalom using the magnetometer embedded in an IMU. This was a validation study. The criterion validity of time measured by the M-BTS was assessed using the 95% error range against actual time obtained from photocells. The experiment was carried out with first-and second-year junior skiers performing a ski slalom on a ski training slope. Eight alpine skiers (17.4 ± 0.8 years, 176.4 ± 4.9 cm, 67.7 ± 2.0 kg, 128.8 ± 26.6 slalom FIS-Points) participated in the study. An IMU device was attached to the skier’s lower back. Skiers performed a 40-gate slalom from which four gates were assessed. The M-BTS consisted of placing four bar magnets buried into the snow surface on the inner side of each gate’s turning pole; the magnetometer built into the IMU detected the peak-shaped magnetic field when passing near the magnets at a certain speed. Four magnetic peaks were detected. The time compressed between peaks was calculated. Three inter-gate times were obtained for each system: photocells and M-BTS. The total time was defined as the time sum of the inter-gate times. The 95% error interval for the total time was 0.050 s for the ski slalom. The M-BTS is valid for timing gate-to-gate in an alpine ski slalom. Inter-gate times can provide additional data for analyzing a skier’s performance, such as asymmetries between left and right foot. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gate%20crossing%20time" title="gate crossing time">gate crossing time</a>, <a href="https://publications.waset.org/abstracts/search?q=inertial%20measurement%20unit" title=" inertial measurement unit"> inertial measurement unit</a>, <a href="https://publications.waset.org/abstracts/search?q=timing%20system" title=" timing system"> timing system</a>, <a href="https://publications.waset.org/abstracts/search?q=wearable%20sensor" title=" wearable sensor"> wearable sensor</a> </p> <a href="https://publications.waset.org/abstracts/141904/validity-of-a-timing-system-in-the-alpine-ski-field-a-magnet-based-timing-system-using-the-magnetometer-built-into-an-inertial-measurement-units" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141904.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">257</span> Graphene Transistor Employing Multilayer Hexagonal Boron Nitride as Substrate and Gate Insulator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nikhil%20Jain">Nikhil Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Bin%20Yu"> Bin Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We explore the potential of using ultra-thin hexagonal boron nitride (h-BN) as both supporting substrate and gate dielectric for graphene-channel field effect transistors (GFETs). Different from commonly used oxide-based dielectric materials which are typically amorphous, very rough in surface, and rich with surface traps, h-BN is layered insulator free of dangling bonds and surface states, featuring atomically smooth surface. In a graphene-channel-last device structure with local buried metal gate electrode (TiN), thin h-BN multilayer is employed as both supporting “substrate” and gate dielectric for graphene active channel. We observed superior carrier mobility and electrical conduction, significantly improved from that in GFETs with SiO2 as substrate/gate insulator. In addition, we report excellent dielectric behavior of layered h-BN, including ultra-low leakage current and high critical electric field for breakdown. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene" title="graphene">graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=field-effect%20transistors" title=" field-effect transistors"> field-effect transistors</a>, <a href="https://publications.waset.org/abstracts/search?q=hexagonal%20boron%20nitride" title=" hexagonal boron nitride"> hexagonal boron nitride</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20strength" title=" dielectric strength"> dielectric strength</a>, <a href="https://publications.waset.org/abstracts/search?q=tunneling" title=" tunneling"> tunneling</a> </p> <a href="https://publications.waset.org/abstracts/21724/graphene-transistor-employing-multilayer-hexagonal-boron-nitride-as-substrate-and-gate-insulator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21724.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">256</span> Suppressing Ambipolar Conduction Using Dual Material Gate in Tunnel-FETs Having Heavily Doped Drain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dawit%20Burusie%20Abdi">Dawit Burusie Abdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mamidala%20Jagadesh%20Kumar"> Mamidala Jagadesh Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, using 2D TCAD simulations, the application of a dual material gate (DMG) for suppressing ambipolar conduction in a tunnel field effect transistor (TFET) is demonstrated. Using the proposed DMG concept, the ambipolar conduction can be effectively suppressed even if the drain doping is as high as that of the source doping. Achieving this symmetrical doping, without the ambipolar conduction in TFETs, gives the advantage of realizing both n-type and p-type devices with the same doping sequences. Furthermore, the output characteristics of the DMG TFET exhibit a good saturation when compared to that of the gate-drain underlap approach. This improved behavior of the DMG TFET makes it a good candidate for inverter based logic circuits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dual%20material%20gate" title="dual material gate">dual material gate</a>, <a href="https://publications.waset.org/abstracts/search?q=suppressing%20ambipolar%20current" title=" suppressing ambipolar current"> suppressing ambipolar current</a>, <a href="https://publications.waset.org/abstracts/search?q=symmetrically%20doped%20TFET" title=" symmetrically doped TFET"> symmetrically doped TFET</a>, <a href="https://publications.waset.org/abstracts/search?q=tunnel%20FETs" title=" tunnel FETs"> tunnel FETs</a>, <a href="https://publications.waset.org/abstracts/search?q=PNPN%20TFET" title=" PNPN TFET"> PNPN TFET</a> </p> <a href="https://publications.waset.org/abstracts/42462/suppressing-ambipolar-conduction-using-dual-material-gate-in-tunnel-fets-having-heavily-doped-drain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42462.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">255</span> Dynamic Degradation Mechanism of SiC VDMOS under Proton Irradiation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Junhong%20Feng">Junhong Feng</a>, <a href="https://publications.waset.org/abstracts/search?q=Wenyu%20Lu"> Wenyu Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinhong%20Cheng"> Xinhong Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Zheng"> Li Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuehui%20Yu"> Yuehui Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effects of proton irradiation on the properties of gate oxide were evaluated by monitoring the static parameters (such as threshold voltage and on-resistance) and dynamic parameters (Miller plateau time) of 1700V SiC VDMOS before and after proton irradiation. The incident proton energy was 3MeV, and the doses were 5 × 10¹² P / cm², 1 × 10¹³ P / cm², respectively. The results show that the threshold voltage of MOS exhibits negative drift under proton irradiation, and the near-interface traps in the gate oxide layer are occupied by holes generated by the ionization effect of irradiation, thus forming more positive charges. The basis for selecting TMiller is that the change time of Vgs is the time when Vds just shows an upward trend until it rises to a stable value. The degradation of the turn-off time of the Miller platform verifies that the capacitance Cgd becomes larger, reflecting that the gate oxide layer is introduced into the trap by the displacement effect caused by proton irradiation, and the interface state deteriorates. As a more sensitive area in the irradiation process, the gate oxide layer will be optimized for its parameters (such as thickness, type, etc.) in subsequent studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SiC%20VDMOS" title="SiC VDMOS">SiC VDMOS</a>, <a href="https://publications.waset.org/abstracts/search?q=proton%20radiation" title=" proton radiation"> proton radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=Miller%20time" title=" Miller time"> Miller time</a>, <a href="https://publications.waset.org/abstracts/search?q=gate%20oxide" title=" gate oxide"> gate oxide</a> </p> <a href="https://publications.waset.org/abstracts/168374/dynamic-degradation-mechanism-of-sic-vdmos-under-proton-irradiation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168374.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">254</span> Comparative Study of Al₂O₃ and HfO₂ as Gate Dielectric on AlGaN/GaN Metal Oxide Semiconductor High-Electron Mobility Transistors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaivan%20%20Karami">Kaivan Karami</a>, <a href="https://publications.waset.org/abstracts/search?q=Sahalu%20Hassan"> Sahalu Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanna%20Taking"> Sanna Taking</a>, <a href="https://publications.waset.org/abstracts/search?q=Afesome%20Ofiare"> Afesome Ofiare</a>, <a href="https://publications.waset.org/abstracts/search?q=Aniket%20Dhongde"> Aniket Dhongde</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Al-Khalidi"> Abdullah Al-Khalidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Edward%20Wasige"> Edward Wasige</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have made a comparative study on the influence of Al₂O₃ and HfO₂ grown using atomic layer deposition (ALD) technique as dielectric in the AlGaN/GaN metal oxide semiconductor high electron mobility transistor (MOS-HEMT) structure. Five samples consisting of 20 nm and 10 nm each of Al₂O₃ and HfO₂ respectively and a Schottky gate HEMT, were fabricated and measured. The threshold voltage shifts towards negative by 0.1 V and 1.8 V for 10 nm thick HfO2 and 10 nm thick Al₂O₃ gate dielectric layers respectively. The negative shift for the 20 nm HfO2 and 20 nm Al₂O₃ were 1.2 V and 4.9 V respectively. Higher gm/IDS (transconductance to drain current) ratio was also obtained in HfO₂ than Al₂O₃. With both materials as dielectric, a significant reduction in the gate leakage current in the order of 10^4 was obtained compared to the sample without the dielectric material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AlGaN%2FGaN%20HEMTs" title="AlGaN/GaN HEMTs">AlGaN/GaN HEMTs</a>, <a href="https://publications.waset.org/abstracts/search?q=Al2O3" title=" Al2O3"> Al2O3</a>, <a href="https://publications.waset.org/abstracts/search?q=HfO2" title=" HfO2"> HfO2</a>, <a href="https://publications.waset.org/abstracts/search?q=MOSHEMTs." title=" MOSHEMTs."> MOSHEMTs.</a> </p> <a href="https://publications.waset.org/abstracts/155167/comparative-study-of-al2o3-and-hfo2-as-gate-dielectric-on-algangan-metal-oxide-semiconductor-high-electron-mobility-transistors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155167.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">253</span> Study of Transport in Electronic Devices with Stochastic Monte Carlo Method: Modeling and Simulation along with Submicron Gate (Lg=0.5um)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Massoum">N. Massoum</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Bouazza"> B. Bouazza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we have developed a numerical simulation model to describe the electrical properties of GaInP MESFET with submicron gate (Lg = 0.5 µm). This model takes into account the three-dimensional (3D) distribution of the load in the short channel and the law effect of mobility as a function of electric field. Simulation software based on a stochastic method such as Monte Carlo has been established. The results are discussed and compared with those of the experiment. The result suggests experimentally that, in a very small gate length in our devices (smaller than 40 nm), short-channel tunneling explains the degradation of transistor performance, which was previously enhanced by velocity overshoot. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20simulation" title="Monte Carlo simulation">Monte Carlo simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20electron%20transport" title=" transient electron transport"> transient electron transport</a>, <a href="https://publications.waset.org/abstracts/search?q=MESFET%20device" title=" MESFET device"> MESFET device</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation%20software" title=" simulation software"> simulation software</a> </p> <a href="https://publications.waset.org/abstracts/19931/study-of-transport-in-electronic-devices-with-stochastic-monte-carlo-method-modeling-and-simulation-along-with-submicron-gate-lg05um" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19931.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">513</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">252</span> A Schema of Building an Efficient Quality Gate throughout the Software Development with Tools</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Le%20Chen">Le Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an efficient tool platform scheme to ensure quality protection throughout the software development process. The main principle is to manage the information of requirements, design, development, testing, operation and maintenance process with proper tools, and to set up the quality standards of each process. Through the tools’ display and summary of quality standards, the quality standards can be visualizad and ready for policy decision, which is called Quality Gate in this paper. In addition, the tools are also integrated to achieve the exchange and relation of information which highly improving operational efficiency. In this paper, the feasibility of the scheme is verified by practical application of development projects, and the overall information display and data mining are proposed to be further improved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=efficiency" title="efficiency">efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20gate" title=" quality gate"> quality gate</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20process" title=" software process"> software process</a>, <a href="https://publications.waset.org/abstracts/search?q=tools" title=" tools"> tools</a> </p> <a href="https://publications.waset.org/abstracts/62858/a-schema-of-building-an-efficient-quality-gate-throughout-the-software-development-with-tools" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62858.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">251</span> Pin Count Aware Volumetric Error Detection in Arbitrary Microfluidic Bio-Chip</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kunal%20Das">Kunal Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Priya%20Sengupta"> Priya Sengupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhishek%20K.%20Singh"> Abhishek K. Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pin assignment, scheduling, routing and error detection for arbitrary biochemical protocols in Digital Microfluidic Biochip have been reported in this paper. The research work is concentrating on pin assignment for 2 or 3 droplets routing in the arbitrary biochemical protocol, scheduling and routing in m × n biochip. The volumetric error arises due to droplet split in the biochip. The volumetric error detection is also addressed using biochip AND logic gate which is known as microfluidic AND or mAND gate. The algorithm for pin assignment for m × n biochip required m+n-1 numbers of pins. The basic principle of this algorithm is that no same pin will be allowed to be placed in the same column, same row and diagonal and adjacent cells. The same pin should be placed a distance apart such that interference becomes less. A case study also reported in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20microfludic%20biochip" title="digital microfludic biochip">digital microfludic biochip</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-contamination" title=" cross-contamination"> cross-contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=pin%20assignment" title=" pin assignment"> pin assignment</a>, <a href="https://publications.waset.org/abstracts/search?q=microfluidic%20AND%20gate" title=" microfluidic AND gate"> microfluidic AND gate</a> </p> <a href="https://publications.waset.org/abstracts/91627/pin-count-aware-volumetric-error-detection-in-arbitrary-microfluidic-bio-chip" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91627.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">250</span> In₀.₁₈Al₀.₈₂N/AlN/GaN/Si Metal-Oxide-Semiconductor Heterostructure Field-Effect Transistors with Backside Metal-Trench Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20S%20Lee">C. S Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20C.%20Hsu"> W. C. Hsu</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Y.%20Liu"> H. Y. Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20J.%20Lin"> C. J. Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20C.%20Yao"> S. C. Yao</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20T.%20Shen"> Y. T. Shen</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20C.%20Lin"> Y. C. Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In₀.₁₈Al₀.₈₂N/AlN/GaN metal-oxide-semiconductor heterostructure field-effect transistors (MOS-HFETs) having Al₂O₃ gate-dielectric and backside metal-trench structure are investigated. The Al₂O₃ gate oxide was formed by using a cost-effective non-vacuum ultrasonic spray pyrolysis deposition (USPD) method. In order to enhance the heat dissipation efficiency, metal trenches were etched 3-µm deep and evaporated with a 150-nm thick Ni film on the backside of the Si substrate. The present In₀.₁₈Al₀.₈₂N/AlN/GaN MOS-HFET (Schottky-gate HFET) has demonstrated improved maximum drain-source current density (IDS, max) of 1.08 (0.86) A/mm at VDS = 8 V, gate-voltage swing (GVS) of 4 (2) V, on/off-current ratio (Ion/Ioff) of 8.9 × 10⁸ (7.4 × 10⁴), subthreshold swing (SS) of 140 (244) mV/dec, two-terminal off-state gate-drain breakdown voltage (BVGD) of -191.1 (-173.8) V, turn-on voltage (Von) of 4.2 (1.2) V, and three-terminal on-state drain-source breakdown voltage (BVDS) of 155.9 (98.5) V. Enhanced power performances, including saturated output power (Pout) of 27.9 (21.5) dBm, power gain (Gₐ) of 20.3 (15.5) dB, and power-added efficiency (PAE) of 44.3% (34.8%), are obtained. Superior breakdown and RF power performances are achieved. The present In₀.₁₈Al₀.₈₂N/AlN/GaN MOS-HFET design with backside metal-trench is advantageous for high-power circuit applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=backside%20metal-trench" title="backside metal-trench">backside metal-trench</a>, <a href="https://publications.waset.org/abstracts/search?q=InAlN%2FAlN%2FGaN" title=" InAlN/AlN/GaN"> InAlN/AlN/GaN</a>, <a href="https://publications.waset.org/abstracts/search?q=MOS-HFET" title=" MOS-HFET"> MOS-HFET</a>, <a href="https://publications.waset.org/abstracts/search?q=non-vacuum%20ultrasonic%20spray%20pyrolysis%20deposition" title=" non-vacuum ultrasonic spray pyrolysis deposition"> non-vacuum ultrasonic spray pyrolysis deposition</a> </p> <a href="https://publications.waset.org/abstracts/85398/in018al082nalngansi-metal-oxide-semiconductor-heterostructure-field-effect-transistors-with-backside-metal-trench-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85398.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">249</span> Low Voltage and High Field-Effect Mobility Thin Film Transistor Using Crystalline Polymer Nanocomposite as Gate Dielectric</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Debabrata%20Bhadra">Debabrata Bhadra</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20K.%20Chaudhuri"> B. K. Chaudhuri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The operation of organic thin film transistors (OFETs) with low voltage is currently a prevailing issue. We have fabricated anthracene thin-film transistor (TFT) with an ultrathin layer (~450nm) of Poly-vinylidene fluoride (PVDF)/CuO nanocomposites as a gate insulator. We obtained a device with excellent electrical characteristics at low operating voltages (<1V). Different layers of the film were also prepared to achieve the best optimization of ideal gate insulator with various static dielectric constant (εr ). Capacitance density, leakage current at 1V gate voltage and electrical characteristics of OFETs with a single and multi layer films were investigated. This device was found to have highest field effect mobility of 2.27 cm2/Vs, a threshold voltage of 0.34V, an exceptionally low sub threshold slope of 380 mV/decade and an on/off ratio of 106. Such favorable combination of properties means that these OFETs can be utilized successfully as voltages below 1V. A very simple fabrication process has been used along with step wise poling process for enhancing the pyroelectric effects on the device performance. The output characteristic of OFET after poling were changed and exhibited linear current-voltage relationship showing the evidence of large polarization. The temperature dependent response of the device was also investigated. The stable performance of the OFET after poling operation makes it reliable in temperature sensor applications. Such High-ε CuO/PVDF gate dielectric appears to be highly promising candidates for organic non-volatile memory and sensor field-effect transistors (FETs). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organic%20field%20effect%20transistors" title="organic field effect transistors">organic field effect transistors</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20film%20transistor" title=" thin film transistor"> thin film transistor</a>, <a href="https://publications.waset.org/abstracts/search?q=gate%20dielectric" title=" gate dielectric"> gate dielectric</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20semiconductor" title=" organic semiconductor"> organic semiconductor</a> </p> <a href="https://publications.waset.org/abstracts/53924/low-voltage-and-high-field-effect-mobility-thin-film-transistor-using-crystalline-polymer-nanocomposite-as-gate-dielectric" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53924.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">248</span> Quantum Computing with Qudits on a Graph</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aleksey%20Fedorov">Aleksey Fedorov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Building a scalable platform for quantum computing remains one of the most challenging tasks in quantum science and technologies. However, the implementation of most important quantum operations with qubits (quantum analogues of classical bits), such as multiqubit Toffoli gate, requires either a polynomial number of operation or a linear number of operations with the use of ancilla qubits. Therefore, the reduction of the number of operations in the presence of scalability is a crucial goal in quantum information processing. One of the most elegant ideas in this direction is to use qudits (multilevel systems) instead of qubits and rely on additional levels of qudits instead of ancillas. Although some of the already obtained results demonstrate a reduction of the number of operation, they suffer from high complexity and/or of the absence of scalability. We show a strong reduction of the number of operations for the realization of the Toffoli gate by using qudits for a scalable multi-qudit processor. This is done on the basis of a general relation between the dimensionality of qudits and their topology of connections, that we derived. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20computing" title="quantum computing">quantum computing</a>, <a href="https://publications.waset.org/abstracts/search?q=qudits" title=" qudits"> qudits</a>, <a href="https://publications.waset.org/abstracts/search?q=Toffoli%20gates" title=" Toffoli gates"> Toffoli gates</a>, <a href="https://publications.waset.org/abstracts/search?q=gate%20decomposition" title=" gate decomposition"> gate decomposition</a> </p> <a href="https://publications.waset.org/abstracts/126171/quantum-computing-with-qudits-on-a-graph" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126171.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">247</span> Risk Assessment of Reinforcement System on Fractured Rock Mass, Gate Shaft Project, Jatigede Dam, Sumedang, West Java, Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Ardianto">A. Ardianto</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Putera%20Agung"> M. A. Putera Agung</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Pramusandi"> S. Pramusandi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Power waterway is one of dam structures and as an intake vertical tunnel or well function for hydroelectric power plants in Jatigede area, Sumedang, West Java. Gate shaft is also one of parts the power waterway system. The paper concerns some consideration in determining a critical state parameter on the back stability analysis of gate shaft or excavation wall stability during excavation. Study analysis was carried out using without and with reinforcement system. Results study showed that reinforcement shaft could reduce the total displacement and safety factor could increases significantly. Based on the back calculation results, it was recommended to install some reinforcement materials and drainage system to reduce pore water pressure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=power%20waterway" title="power waterway">power waterway</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforcement" title=" reinforcement"> reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=displacement" title=" displacement"> displacement</a>, <a href="https://publications.waset.org/abstracts/search?q=safety" title=" safety "> safety </a> </p> <a href="https://publications.waset.org/abstracts/12686/risk-assessment-of-reinforcement-system-on-fractured-rock-mass-gate-shaft-project-jatigede-dam-sumedang-west-java-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12686.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">246</span> Rediscovery of Important Elements Contributing to Cultural Interchange Values Made during Restoration of Khanpur Gate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Poonam%20A.%20Trambadia">Poonam A. Trambadia</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashish%20V.%20Trambadia"> Ashish V. Trambadia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The architecture of sultanate period of Ahmedabad had evolved just before the establishment of Mughal rule in North India. After shifting the capital of the kingdom from Patan to Ahmedabad, when the buildings and structures were being built, an interesting cultural blend happened in architecture. Many sultanate buildings in Ahmedabad historic city have resemblance with Patan including the names. Outer fortification walls and Gates were built during the rule of the third ruler in the late 15th century. All the gates had sandstone slabs supported by three arched entrance in sandstone with wooden shutter. A restoration project of Khanpur Gate was initiated in 2016. The paper identifies some evidences and some hidden layers of structures as important elements of cultural interchange while some were just forgotten in the process. The recycling of pre-existing elements of structures are examined and compared. There were layers uncovered that were hidden behind later repairs using traditional brick arch, which was taken out in the process. As the gate had partially collapsed, the restoration included piece by piece dismantling and restoring in the same sequence wherever required. The recycled materials found in the process were recorded and provided the basis for this study. The gate after this discovery sets a new example of fortification Gate built in Sultanate era. The comparison excludes Maratha and British Period Gates to avoid further confusion and focuses on 15th – 16th century sultanate architecture of Ahmedabad. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmedabad%20World%20Heritage" title="Ahmedabad World Heritage">Ahmedabad World Heritage</a>, <a href="https://publications.waset.org/abstracts/search?q=fortification" title=" fortification"> fortification</a>, <a href="https://publications.waset.org/abstracts/search?q=Indo-Islamic%20style" title=" Indo-Islamic style"> Indo-Islamic style</a>, <a href="https://publications.waset.org/abstracts/search?q=Sultanate%20architecture" title=" Sultanate architecture"> Sultanate architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=cultural%20interchange" title=" cultural interchange"> cultural interchange</a> </p> <a href="https://publications.waset.org/abstracts/111411/rediscovery-of-important-elements-contributing-to-cultural-interchange-values-made-during-restoration-of-khanpur-gate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111411.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">245</span> Investigation and Analysis of Vortex-Induced Vibrations in Sliding Gate Valves Using Computational Fluid Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kianoosh%20Ahadi">Kianoosh Ahadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Ergil"> Mustafa Ergil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the event of vibrations caused by vortexes and the distribution of induced hydrodynamic forces due to vortexes on the sliding gate valves has been investigated. For this reason, a sliding valve with the help of computational fluid dynamics (CFD) software was simulated in two-dimensional )2D(, where the flow and turbulence equations were solved for three different valve openings (full, half, and 16.7 %) models. The variety of vortexes formed within the vicinity of the valve structure was investigated based on time where the trend of fluctuations and their occurrence regions have been detected. From the gathered solution dataset of the numerical simulations, the pressure coefficient (CP), the lift force coefficient (CL), the drag force coefficient (CD), and the momentum coefficient due to hydrodynamic forces (CM) were examined, and relevant figures were generated were from these results, the vortex-induced vibrations were analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=induced%20vibrations" title="induced vibrations">induced vibrations</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20gate%20valves" title=" sliding gate valves"> sliding gate valves</a>, <a href="https://publications.waset.org/abstracts/search?q=vortexes" title=" vortexes"> vortexes</a> </p> <a href="https://publications.waset.org/abstracts/150365/investigation-and-analysis-of-vortex-induced-vibrations-in-sliding-gate-valves-using-computational-fluid-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150365.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">244</span> Dielectric Behavior of 2D Layered Insulator Hexagonal Boron Nitride</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nikhil%20Jain">Nikhil Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Xu"> Yang Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Bin%20Yu"> Bin Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hexagonal boron nitride (h-BN) has been used as a substrate and gate dielectric for graphene field effect transistors (GFETs). Using a graphene/h-BN/TiN (channel/dielectric/gate) stack, key material properties of h-BN were investigated i.e. dielectric strength and tunneling behavior. Work function difference between graphene and TiN results in spontaneous p-doping of graphene through a multi-layer h-BN flake. However, at high levels of current stress, n-doping of graphene is observed, possibly due to the charge transfer across the thin h-BN multi layer. Neither Direct Tunneling (DT) nor Fowler-Nordheim Tunneling (FNT) was observed in TiN/h-BN/Au hetero structures with h-BN showing two distinct volatile conduction states before breakdown. Hexagonal boron nitride emerges as a material of choice for gate dielectrics in GFETs because of robust dielectric properties and high tunneling barrier. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene" title="graphene">graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=transistors" title=" transistors"> transistors</a>, <a href="https://publications.waset.org/abstracts/search?q=conduction" title=" conduction"> conduction</a>, <a href="https://publications.waset.org/abstracts/search?q=hexagonal%20boron%20nitride" title=" hexagonal boron nitride"> hexagonal boron nitride</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20strength" title=" dielectric strength"> dielectric strength</a>, <a href="https://publications.waset.org/abstracts/search?q=tunneling" title=" tunneling"> tunneling</a> </p> <a href="https://publications.waset.org/abstracts/22593/dielectric-behavior-of-2d-layered-insulator-hexagonal-boron-nitride" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22593.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">243</span> Design Ultra Fast Gate Drive Board for Silicon Carbide MOSFET Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syakirin%20O.%20Yong">Syakirin O. Yong</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasrudin%20A.%20Rahim"> Nasrudin A. Rahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Bilal%20M.%20Eid"> Bilal M. Eid</a>, <a href="https://publications.waset.org/abstracts/search?q=Buray%20Tankut"> Buray Tankut</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper is to develop an ultra-fast gate driver for Silicon Carbide (SiC) based switching device applications such as AC/DC DC/AC converters. Wide bandgap semiconductors such as SiC switches are growing rapidly nowadays due to their numerous capabilities such as faster switching, higher power density and higher voltage level. Wide band-gap switches can work properly on high frequencies such 50-250 kHz which is very useful for many power electronic applications such as solar inverters. Increasing the frequency minimizes the output filter size and system complexity however, this causes huge spike between MOSFET’s drain and source leg which leads to the failure of MOSFET if the voltage rating is exceeded. This paper investigates and concludes the optimum design for a gate drive board for SiC MOSFET switches without causing spikes and noises. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PV%20system" title="PV system">PV system</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium-ion" title=" lithium-ion"> lithium-ion</a>, <a href="https://publications.waset.org/abstracts/search?q=charger" title=" charger"> charger</a>, <a href="https://publications.waset.org/abstracts/search?q=constant%20current" title=" constant current"> constant current</a>, <a href="https://publications.waset.org/abstracts/search?q=constant%20voltage" title=" constant voltage"> constant voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a> </p> <a href="https://publications.waset.org/abstracts/146295/design-ultra-fast-gate-drive-board-for-silicon-carbide-mosfet-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146295.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">242</span> Stage-Gate Framework Application for Innovation Assessment among Small and Medium-Sized Enterprises</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Indre%20Brazauskaite">Indre Brazauskaite</a>, <a href="https://publications.waset.org/abstracts/search?q=Vilte%20Auruskeviciene"> Vilte Auruskeviciene</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper explores the Stage-Gate framework application for innovation maturity among small and medium-sized enterprises (SMEs). Innovation management becomes an essential business survival process for all sizes of organizations that can be evaluated and audited systemically. This research systemically defines and assesses the innovation process from the perspective of the company’s top management. Empirical research explores attitudes and existing practices of innovation management in SMEs in Baltic countries. It structurally investigates the current innovation management practices, level of standardization, and potential challenges in the area. Findings allow to structure of existing practices based on an institutionalized model and contribute to a more advanced understanding of the innovation process among SMEs. Practically, findings contribute to advanced decision-making and business planning in the process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=innovation%20measure" title="innovation measure">innovation measure</a>, <a href="https://publications.waset.org/abstracts/search?q=innovation%20process" title=" innovation process"> innovation process</a>, <a href="https://publications.waset.org/abstracts/search?q=SMEs" title=" SMEs"> SMEs</a>, <a href="https://publications.waset.org/abstracts/search?q=stage-gate%20framework" title=" stage-gate framework"> stage-gate framework</a> </p> <a href="https://publications.waset.org/abstracts/160118/stage-gate-framework-application-for-innovation-assessment-among-small-and-medium-sized-enterprises" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160118.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">241</span> Environmental Impact Assessment of Conventional Tyre Manufacturing Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20S.%20Dangayach">G. S. Dangayach</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaurav%20Gaurav"> Gaurav Gaurav</a>, <a href="https://publications.waset.org/abstracts/search?q=Alok%20Bihari%20Singh"> Alok Bihari Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The popularity of vehicles in both industrialized and developing economies led to a rise in the production of tyres. People have become increasingly concerned about the tyre industry's possible environmental impact in the last two decades. The life cycle assessment (LCA) methodology was used to assess the environmental impacts of industrial tyres throughout their life cycle, which included four stages: manufacture, transportation, consumption, and end-of-life. The majority of prior studies focused on tyre recycling and disposal. Only a few studies have been conducted on the environmental impact of tyre production process. LCA methodology was employed to determine the environmental impact of tyre manufacture process (gate to gate) at an Indian firm. Comparative analysis was also conducted to identify the environmental hotspots in various stages of tire manufacturing. This study is limited to gate-to-gate analysis of manufacturing processes with the functional unit of a single tyre weighing 50 kg. GaBi software was used to do both qualitative and quantitative analysis. Different environmental impact indicators are measured in terms of CO2, SO2, NOx, GWP (global warming potential), AP (acidification potential), EP (eutrophication potential), POCP (photochemical oxidant formation potential), and HTP (toxic human potential). The results demonstrate that the major contributor to environmental pollution is electricity. The Banbury process has a very high negative environmental impact, which causes respiratory problems to workers and operators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment%20%28LCA%29" title="life cycle assessment (LCA)">life cycle assessment (LCA)</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20impact%20indicators" title=" environmental impact indicators"> environmental impact indicators</a>, <a href="https://publications.waset.org/abstracts/search?q=tyre%20manufacturing%20process" title=" tyre manufacturing process"> tyre manufacturing process</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20impact%20assessment" title=" environmental impact assessment"> environmental impact assessment</a> </p> <a href="https://publications.waset.org/abstracts/147144/environmental-impact-assessment-of-conventional-tyre-manufacturing-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147144.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=XOR%20gate&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=XOR%20gate&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=XOR%20gate&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=XOR%20gate&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=XOR%20gate&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=XOR%20gate&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=XOR%20gate&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=XOR%20gate&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=XOR%20gate&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10