CINXE.COM

Search results for: Winkler foundation

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Winkler foundation</title> <meta name="description" content="Search results for: Winkler foundation"> <meta name="keywords" content="Winkler foundation"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Winkler foundation" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Winkler foundation"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1357</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Winkler foundation</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1357</span> Solution for Thick Plate Resting on Winkler Foundation by Symplectic Geometry Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mei-Jie%20Xu">Mei-Jie Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Zhong"> Yang Zhong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Based on the symplectic geometry method, the theory of Hamilton system can be applied in the analysis of problem solved using the theory of elasticity and in the solution of elliptic partial differential equations. With this technique, this paper derives the theoretical solution for a thick rectangular plate with four free edges supported on a Winkler foundation by variable separation method. In this method, the governing equation of thick plate was first transformed into state equations in the Hamilton space. The theoretical solution of this problem was next obtained by applying the method of variable separation based on the Hamilton system. Compared with traditional theoretical solutions for rectangular plates, this method has the advantage of not having to assume the form of deflection functions in the solution process. Numerical examples are presented to verify the validity of the proposed solution method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=symplectic%20geometry%20method" title="symplectic geometry method">symplectic geometry method</a>, <a href="https://publications.waset.org/abstracts/search?q=Winkler%20foundation" title=" Winkler foundation"> Winkler foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=thick%20rectangular%20plate" title=" thick rectangular plate"> thick rectangular plate</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20separation%20method" title=" variable separation method"> variable separation method</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamilton%20system" title=" Hamilton system "> Hamilton system </a> </p> <a href="https://publications.waset.org/abstracts/6000/solution-for-thick-plate-resting-on-winkler-foundation-by-symplectic-geometry-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6000.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1356</span> Forced Vibration of a Planar Curved Beam on Pasternak Foundation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akif%20Kutlu">Akif Kutlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Merve%20Ermis"> Merve Ermis</a>, <a href="https://publications.waset.org/abstracts/search?q=Nihal%20Eratl%C4%B1"> Nihal Eratlı</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20H.%20Omurtag"> Mehmet H. Omurtag</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study is to investigate the forced vibration analysis of a planar curved beam lying on elastic foundation by using the mixed finite element method. The finite element formulation is based on the Timoshenko beam theory. In order to solve the problems in frequency domain, the element matrices of two nodded curvilinear elements are transformed into Laplace space. The results are transformed back to the time domain by the well-known numerical Modified Durbin’s transformation algorithm. First, the presented finite element formulation is verified through the forced vibration analysis of a planar curved Timoshenko beam resting on Winkler foundation and the finite element results are compared with the results available in the literature. Then, the forced vibration analysis of a planar curved beam resting on Winkler-Pasternak foundation is conducted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curved%20beam" title="curved beam">curved beam</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20analysis" title=" dynamic analysis"> dynamic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20foundation" title=" elastic foundation"> elastic foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a> </p> <a href="https://publications.waset.org/abstracts/73716/forced-vibration-of-a-planar-curved-beam-on-pasternak-foundation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1355</span> Using the Nonlocal Theory of Free Vibrations Nanobeam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Oveysi%20Sarabi">Ali Oveysi Sarabi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The dimensions of nanostructures are in the range of inter-atomic spacing of the structures which makes them impossible to be modeled as a continuum. Nanoscale size-effects on vibration analysis of nanobeams embedded in an elastic medium is investigated using different types of beam theory. To this end, Eringen’s nonlocal elasticity is incorporated to various beam theories namely as Euler-Bernoulli beam theory (EBT), Timoshenko beam theory (TBT), Reddy beam theory (RBT), and Levinson beam theory (LBT). The surrounding elastic medium is simulated with both Winkler and Pasternak foundation models and the difference between them is studies. Explicit formulas are presented to obtain the natural frequencies of nanobeam corresponding to each nonlocal beam theory. Selected numerical results are given for different values of the non-local parameter, Winkler modulus parameter, Pasternak modulus parameter and aspect ratio of the beam that imply the effects of them, separately. It is observed that the values of natural frequency are strongly dependent on the stiffness of elastic medium and the value of the non-local parameter and these dependencies varies with the value of aspect ratio and mode number. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanobeams" title="nanobeams">nanobeams</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20vibration" title=" free vibration"> free vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlocal%20elasticity" title=" nonlocal elasticity"> nonlocal elasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=winkler%20foundation%20model" title=" winkler foundation model"> winkler foundation model</a>, <a href="https://publications.waset.org/abstracts/search?q=Pasternak%20foundation%20model" title=" Pasternak foundation model"> Pasternak foundation model</a>, <a href="https://publications.waset.org/abstracts/search?q=beam%20theories" title=" beam theories "> beam theories </a> </p> <a href="https://publications.waset.org/abstracts/19886/using-the-nonlocal-theory-of-free-vibrations-nanobeam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19886.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">536</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1354</span> C Vibration Analysis of a Beam on Elastic Foundation with Elastically Restrained Ends Using Spectral Element Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamioud%20Saida">Hamioud Saida</a>, <a href="https://publications.waset.org/abstracts/search?q=Khalfallah%20Salah"> Khalfallah Salah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a spectral element method is employed to predict the free vibration of a Euler-Bernoulli beam resting on a Winkler foundation with elastically restrained ends. The formulation of the dynamic stiffness matrix has been established by solving the differential equation of motion, which was transformed to frequency domain. Non-dimensional natural frequencies and shape modes are obtained by solving the partial differential equations, numerically. Numerical comparisons and examples are performed to show the effectiveness of the SEM and to investigate the effects of various parameters, such as the springs at the boundaries and the elastic foundation parameter on the vibration frequencies. The obtained results demonstrate that the present method can also be applied to solve the more general problem of the dynamic analysis of structures with higher order precision. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastically%20supported%20Euler-Bernoulli%20beam" title="elastically supported Euler-Bernoulli beam">elastically supported Euler-Bernoulli beam</a>, <a href="https://publications.waset.org/abstracts/search?q=free-vibration" title=" free-vibration"> free-vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20element%20method" title=" spectral element method"> spectral element method</a>, <a href="https://publications.waset.org/abstracts/search?q=Winkler%20foundation" title=" Winkler foundation"> Winkler foundation</a> </p> <a href="https://publications.waset.org/abstracts/110401/c-vibration-analysis-of-a-beam-on-elastic-foundation-with-elastically-restrained-ends-using-spectral-element-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110401.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1353</span> Nonlinear Analysis of Shear Deformable Deep Beam Resting on Nonlinear Two-Parameter Random Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Seguini">M. Seguini</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Nedjar"> D. Nedjar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the nonlinear analysis of Timoshenko beam undergoing moderate large deflections and resting on nonlinear two-parameter random foundation is presented, taking into account the effects of shear deformation, beam’s properties variation and the spatial variability of soil characteristics. The finite element probabilistic analysis has been performed by using Timoshenko beam theory with the Von Kàrmàn nonlinear strain-displacement relationships combined to Vanmarcke theory and Monte Carlo simulations, which is implemented in a Matlab program. Numerical examples of the newly developed model is conducted to confirm the efficiency and accuracy of this later and the importance of accounting for the foundation second parameter (Winkler-Pasternak). Thus, the results obtained from the developed model are presented and compared with those available in the literature to examine how the consideration of the shear and spatial variability of soil’s characteristics affects the response of the system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20analysis" title="nonlinear analysis">nonlinear analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=soil-structure%20interaction" title=" soil-structure interaction"> soil-structure interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20deflection" title=" large deflection"> large deflection</a>, <a href="https://publications.waset.org/abstracts/search?q=Timoshenko%20beam" title=" Timoshenko beam"> Timoshenko beam</a>, <a href="https://publications.waset.org/abstracts/search?q=Euler-Bernoulli%20beam" title=" Euler-Bernoulli beam"> Euler-Bernoulli beam</a>, <a href="https://publications.waset.org/abstracts/search?q=Winkler%20foundation" title=" Winkler foundation"> Winkler foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=Pasternak%20foundation" title=" Pasternak foundation"> Pasternak foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20variability" title=" spatial variability"> spatial variability</a> </p> <a href="https://publications.waset.org/abstracts/61881/nonlinear-analysis-of-shear-deformable-deep-beam-resting-on-nonlinear-two-parameter-random-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61881.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1352</span> Vibration of Nonhomogeneous Timoshenko Nanobeam Resting on Winkler-Pasternak Foundation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Somnath%20Karmakar">Somnath Karmakar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Chakraverty"> S. Chakraverty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work investigates the vibration of nonhomogeneous Timoshenko nanobeam resting on the Winkler-Pasternak foundation. Eringen’s nonlocal theory has been used to investigate small-scale effects. The Differential Quadrature method is used to obtain the frequency parameters with various classical boundary conditions. The nonhomogeneous beam model has been considered, where Young’s modulus and density of the beam material vary linearly and quadratically. Convergence of frequency parameters is also discussed. The influence of mechanical properties and scaling parameters on vibration frequencies are investigated for different boundary conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Timoshenko%20beam" title="Timoshenko beam">Timoshenko beam</a>, <a href="https://publications.waset.org/abstracts/search?q=Eringen%27s%20nonlocal%20theory" title=" Eringen&#039;s nonlocal theory"> Eringen&#039;s nonlocal theory</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20quadrature%20method" title=" differential quadrature method"> differential quadrature method</a>, <a href="https://publications.waset.org/abstracts/search?q=nonhomogeneous%20nanobeam" title=" nonhomogeneous nanobeam"> nonhomogeneous nanobeam</a> </p> <a href="https://publications.waset.org/abstracts/153025/vibration-of-nonhomogeneous-timoshenko-nanobeam-resting-on-winkler-pasternak-foundation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153025.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1351</span> Dynamic Analysis of Turbo Machinery Foundation for Different Rotating Speed</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sungyani%20Tripathy">Sungyani Tripathy</a>, <a href="https://publications.waset.org/abstracts/search?q=Atul%20Desai"> Atul Desai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Turbo machinery Frame Foundation is very important for power generation, gas, steam, hydro, geothermal and nuclear power plants. The Turbo machinery Foundation system was simulated in SAP: 2000 software and dynamic response of foundation was analysed. In this paper, the detailed study of turbo machinery foundation with different running speed has considered. The different revolution per minute considered in this study is 4000 rpm, 6000 rpm, 8000 rpm, 1000 rpm and 12000 rpm. The above analysis has been carried out considering Winkler spring soil model, solid finite element modelling and dynamic analysis of Turbo machinery foundations. The comparison of frequency and time periods at various mode shapes are addressed in this study. Current work investigates the effect of damping on the response spectra curve at the foundation top deck, considering the dynamic machine load. It has been found that turbo generator foundation with haunches remains more elastic during seismic action for different running speeds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=turbo%20machinery" title="turbo machinery">turbo machinery</a>, <a href="https://publications.waset.org/abstracts/search?q=SAP%3A%202000" title=" SAP: 2000"> SAP: 2000</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20spectra" title=" response spectra"> response spectra</a>, <a href="https://publications.waset.org/abstracts/search?q=running%20speeds" title=" running speeds"> running speeds</a> </p> <a href="https://publications.waset.org/abstracts/59715/dynamic-analysis-of-turbo-machinery-foundation-for-different-rotating-speed" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59715.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1350</span> Application of Double Side Approach Method on Super Elliptical Winkler Plate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hsiang-Wen%20Tang">Hsiang-Wen Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng-Ying%20Lo"> Cheng-Ying Lo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the static behavior of super elliptical Winkler plate is analyzed by applying the double side approach method. The lack of information about super elliptical Winkler plates is the motivation of this study and we use the double side approach method to solve this problem because of its superior ability on efficiently treating problems with complex boundary shape. The double side approach method has the advantages of high accuracy, easy calculation procedure and less calculation load required. Most important of all, it can give the error bound of the approximate solution. The numerical results not only show that the double side approach method works well on this problem but also provide us the knowledge of static behavior of super elliptical Winkler plate in practical use. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=super%20elliptical%20winkler%20plate" title="super elliptical winkler plate">super elliptical winkler plate</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20side%20approach%20method" title=" double side approach method"> double side approach method</a>, <a href="https://publications.waset.org/abstracts/search?q=error%20bound" title=" error bound"> error bound</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanic" title=" mechanic"> mechanic</a> </p> <a href="https://publications.waset.org/abstracts/12635/application-of-double-side-approach-method-on-super-elliptical-winkler-plate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12635.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1349</span> Effect of Boundary Retaining Walls Properties on the Raft Foundations Behaviour</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Hussein">Mohamed Hussein</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper studies the effect of boundary retaining walls properties on the behavior of the raft foundation. Commercial software program Sap2000 was used in this study. The soil was presented as continuous media (follows the Winkler assumption). Shell elements were employed to model the raft plate. A parametric study has been carried out to examine the effect of boundary retaining walls properties on the behavior of raft plate. These parameters namely, height of the boundary retaining walls, thickness of the boundary retaining walls, flexural rigidity of raft plate, bearing capacity of supporting soil and the earth pressure of boundary soil. The main results which were obtained from this study are positive, negative bending moment, shear stress and deflection in raft plate, where these parameters are considered the main parameters used in design of raft foundation. It was concluded that the boundary retaining walls have a significant effect on the straining actions in raft plate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sap2000" title="Sap2000">Sap2000</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20retaining%20walls" title=" boundary retaining walls"> boundary retaining walls</a>, <a href="https://publications.waset.org/abstracts/search?q=raft%20foundations" title=" raft foundations"> raft foundations</a>, <a href="https://publications.waset.org/abstracts/search?q=Winkler%20model" title=" Winkler model"> Winkler model</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20rigidity" title=" flexural rigidity"> flexural rigidity</a> </p> <a href="https://publications.waset.org/abstracts/87502/effect-of-boundary-retaining-walls-properties-on-the-raft-foundations-behaviour" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87502.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1348</span> Effect of Hybridization of Composite Material on Buckling Analysis with Elastic Foundation Using the High Order Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benselama%20Khadidja">Benselama Khadidja</a>, <a href="https://publications.waset.org/abstracts/search?q=El%20Meiche%20Noureddine"> El Meiche Noureddine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the effect of hybridization material on the variation of non-dimensional critical buckling load with different cross-ply laminates plate resting on elastic foundations of Winkler and Pasternak types subjected to combine uniaxial and biaxial loading by using two variable refined plate theories. Governing equations are derived from the Principle of Virtual Displacement; the formulation is based on a new function of shear deformation theory taking into account transverse shear deformation effects vary parabolically across the thickness satisfying shear stress-free surface conditions. These equations are solved analytically using the Navier solution of a simply supported. The influence of the various parameters geometric and material, the thickness ratio, and the number of layers symmetric and antisymmetric hybrid laminates material has been investigated to find the critical buckling loads. The numerical results obtained through the present study with several examples are presented to verify and compared with other models with the ones available in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=buckling" title="buckling">buckling</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20cross-ply%20laminates" title=" hybrid cross-ply laminates"> hybrid cross-ply laminates</a>, <a href="https://publications.waset.org/abstracts/search?q=Winkler%20and%20Pasternak" title=" Winkler and Pasternak"> Winkler and Pasternak</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20foundation" title=" elastic foundation"> elastic foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=two%20variables%20plate%20theory" title=" two variables plate theory"> two variables plate theory</a> </p> <a href="https://publications.waset.org/abstracts/20046/effect-of-hybridization-of-composite-material-on-buckling-analysis-with-elastic-foundation-using-the-high-order-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20046.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">483</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1347</span> Influence of Pile Radius on Inertial Response of Pile Group in Fundamental Frequency of Homogeneous Soil Medium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faghihnia%20Torshizi%20Mostafa">Faghihnia Torshizi Mostafa</a>, <a href="https://publications.waset.org/abstracts/search?q=Saitoh%20Masato"> Saitoh Masato</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An efficient method is developed for the response of a group of vertical, cylindrical fixed-head, finite length piles embedded in a homogeneous elastic stratum, subjected to harmonic force atop the pile group cap. Pile to pile interaction is represented through simplified beam-on-dynamic-Winkler-foundation (BDWF) with realistic frequency-dependent springs and dashpots. Pile group effect is considered through interaction factors. New closed-form expressions for interaction factors and curvature ratios atop the pile are extended by considering different boundary conditions at the tip of the piles (fixed, hinged). In order to investigate the fundamental characteristics of inertial bending strains in pile groups, inertial bending strains at the head of each pile are expressed in terms of slenderness ratio. The results of parametric study give valuable insight in understanding the behavior of fixed head pile groups in fundamental natural frequency of soil stratum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Winkler-foundation" title="Winkler-foundation">Winkler-foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=fundamental%20frequency%20of%20soil%20stratum" title=" fundamental frequency of soil stratum"> fundamental frequency of soil stratum</a>, <a href="https://publications.waset.org/abstracts/search?q=normalized%20inertial%20bending%20strain" title=" normalized inertial bending strain"> normalized inertial bending strain</a>, <a href="https://publications.waset.org/abstracts/search?q=harmonic%20excitation" title=" harmonic excitation"> harmonic excitation</a> </p> <a href="https://publications.waset.org/abstracts/66823/influence-of-pile-radius-on-inertial-response-of-pile-group-in-fundamental-frequency-of-homogeneous-soil-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66823.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1346</span> Influence of P-Y Curves on Buckling Capacity of Pile Foundation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Praveen%20Huded">Praveen Huded</a>, <a href="https://publications.waset.org/abstracts/search?q=Suresh%20Dash"> Suresh Dash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pile foundations are one of the most preferred deep foundation system for high rise or heavily loaded structures. In many instances, the failure of the pile founded structures in liquefiable soils had been observed even in many recent earthquakes. Recent centrifuge and shake table experiments on two layered soil system have credibly shown that failure of pile foundation can occur because of buckling, as the pile behaves as an unsupported slender structural element once the surrounding soil liquefies. However the buckling capacity depends on largely on the depth of soil liquefied and its residual strength. Hence it is essential to check the pile against the possible buckling failure. Beam on non-linear Winkler Foundation is one of the efficient method to model the pile-soil behavior in liquefiable soil. The pile-soil interaction is modelled through p-y springs, different author have proposed different types of p-y curves for the liquefiable soil. In the present paper the influence two such p-y curves on the buckling capacity of pile foundation is studied considering initial geometric and non-linear behavior of pile foundation. The proposed method is validated against experimental results. Significant difference in the buckling capacity is observed for the two p-y curves used in the analysis. A parametric study is conducted to understand the influence of pile diameter, pile flexural rigidity, different initial geometric imperfections, and different soil relative densities on buckling capacity of pile foundation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pile%20foundation" title="Pile foundation ">Pile foundation </a>, <a href="https://publications.waset.org/abstracts/search?q=Liquefaction" title=" Liquefaction"> Liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=Buckling%20load" title=" Buckling load"> Buckling load</a>, <a href="https://publications.waset.org/abstracts/search?q=non-linear%20py%20curve" title=" non-linear py curve"> non-linear py curve</a>, <a href="https://publications.waset.org/abstracts/search?q=Opensees" title=" Opensees"> Opensees</a> </p> <a href="https://publications.waset.org/abstracts/130562/influence-of-p-y-curves-on-buckling-capacity-of-pile-foundation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130562.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1345</span> Deep Foundations: Analysis of the Lateral Response of Closed Ended Steel Tubular Piles Embedded in Sandy Soil Using P-Y Curves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ameer%20A.%20Jebur">Ameer A. Jebur</a>, <a href="https://publications.waset.org/abstracts/search?q=William%20Atherton"> William Atherton</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafid%20M.%20Alkhaddar"> Rafid M. Alkhaddar</a>, <a href="https://publications.waset.org/abstracts/search?q=Edward%20Loffill"> Edward Loffill</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding the behaviour of the piles under the action of the independent lateral loads and the precise prediction of the capacity of piles subjected to different lateral loads are vital topics in foundation design and analysis. Moreover, the laterally loaded behaviour of deep foundations penetrated in cohesive and non-cohesive soils is basically analysed by the Winkler Model (beam on elastic foundation), in which the interaction between the pile embedded depth and contacted soil is simulated by nonlinear p–y curves. The presence of many approaches to interpret the behaviour of soil-pile interaction has resulted in numerous outputs and indicates that no general approach has yet been adopted. The current study presents the result of numerical modelling of the behaviour of steel tubular piles (25.4mm) outside diameter with various embedment depth-to-diameter ratios (L/d) embedded in a sand calibrated chamber of known relative density. The study revealed that the shear strength parameters of the sand specimens and the (L/d) ratios are the most significant factor influencing the response of the pile and its capacity while taking into consideration the complex interaction between the pile and soil. Good agreement has been achieved when comparing the application of this modelling approach with experimental physical modelling carried out by another researcher. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20foundations" title="deep foundations">deep foundations</a>, <a href="https://publications.waset.org/abstracts/search?q=slenderness%20ratio" title=" slenderness ratio"> slenderness ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=soil-pile%20interaction" title=" soil-pile interaction"> soil-pile interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=winkler%20model%20%28beam%20on%20elastic%20foundation%29" title=" winkler model (beam on elastic foundation)"> winkler model (beam on elastic foundation)</a>, <a href="https://publications.waset.org/abstracts/search?q=non-cohesive%20soil" title=" non-cohesive soil"> non-cohesive soil</a> </p> <a href="https://publications.waset.org/abstracts/46589/deep-foundations-analysis-of-the-lateral-response-of-closed-ended-steel-tubular-piles-embedded-in-sandy-soil-using-p-y-curves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46589.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1344</span> Comprehensive Critical Review for Static and Dynamic Soil-Structure Interaction Between Winkler, Pasternak and Three-Dimensional Method of Buried Pipelines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20E.Sam">N. E.Sam</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20R.Singh"> S. R.Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pipeline infrastructure are a valuable asset to the country that help in transporting fluid and gas from one place to another and contribute in keeping the country functioning both physically and economically. During seismic activity, additional loads are acted on the buried pipelines becoming a salient parameter to be studied in soil pipe interaction. Winkler Beam Theory is a commonly used approach for design of underground buried structures however this theory does not take into account shear and dynamic loading parameters in consideration. Shear can be addressed in Pasternak Theory – an improved model of Winkler Theory. However dynamic loading condition and horizontal displacement is not considered in either method. A comprehensive critical review between Winkler Beam Method, Pasternak Method and Three-Dimensional Method in finite element analysis is to be done in this paper for seismic forces. Study of the influence of depth and displacement of soil in correspondence to stiffness value and influence of horizontal displacement for design of underground structures is considered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title="finite element">finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=pasternak%20theory" title=" pasternak theory"> pasternak theory</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic" title=" seismic"> seismic</a>, <a href="https://publications.waset.org/abstracts/search?q=soil-structure%20interaction" title=" soil-structure interaction"> soil-structure interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=three-dimensional%20theory" title=" three-dimensional theory"> three-dimensional theory</a>, <a href="https://publications.waset.org/abstracts/search?q=winkler%20theory" title=" winkler theory"> winkler theory</a> </p> <a href="https://publications.waset.org/abstracts/165830/comprehensive-critical-review-for-static-and-dynamic-soil-structure-interaction-between-winkler-pasternak-and-three-dimensional-method-of-buried-pipelines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165830.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1343</span> Vibration Control of a Functionally Graded Carbon Nanotube-Reinforced Composites Beam Resting on Elastic Foundation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gholamhosein%20Khosravi">Gholamhosein Khosravi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Azadi"> Mohammad Azadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamidreza%20Ghezavati"> Hamidreza Ghezavati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, vibration of a nonlinear composite beam is analyzed and then an active controller is used to control the vibrations of the system. The beam is resting on a Winkler-Pasternak elastic foundation. The composite beam is reinforced by single walled carbon nanotubes. Using the rule of mixture, the material properties of functionally graded carbon nanotube-reinforced composites (FG-CNTRCs) are determined. The beam is cantilever and the free end of the beam is under follower force. Piezoelectric layers are attached to the both sides of the beam to control vibrations as sensors and actuators. The governing equations of the FG-CNTRC beam are derived based on Euler-Bernoulli beam theory Lagrange- Rayleigh-Ritz method. The simulation results are presented and the effects of some parameters on stability of the beam are analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes" title="carbon nanotubes">carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20control" title=" vibration control"> vibration control</a>, <a href="https://publications.waset.org/abstracts/search?q=piezoelectric%20layers" title=" piezoelectric layers"> piezoelectric layers</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20foundation" title=" elastic foundation"> elastic foundation</a> </p> <a href="https://publications.waset.org/abstracts/53457/vibration-control-of-a-functionally-graded-carbon-nanotube-reinforced-composites-beam-resting-on-elastic-foundation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53457.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1342</span> Soil-Structure Interaction Models for the Reinforced Foundation System – A State-of-the-Art Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashwini%20V.%20Chavan">Ashwini V. Chavan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sukhanand%20S.%20Bhosale"> Sukhanand S. Bhosale</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Challenges of weak soil subgrade are often resolved either by stabilization or reinforcing it. However, it is also practiced to reinforce the granular fill to improve the load-settlement behavior of over weak soil strata. The inclusion of reinforcement in the engineered granular fill provided a new impetus for the development of enhanced Soil-Structure Interaction (SSI) models, also known as mechanical foundation models or lumped parameter models. Several researchers have been working in this direction to understand the mechanism of granular fill-reinforcement interaction and the response of weak soil under the application of load. These models have been developed by extending available SSI models such as the Winkler Model, Pasternak Model, Hetenyi Model, Kerr Model etc., and are helpful to visualize the load-settlement behavior of a physical system through 1-D and 2-D analysis considering beam and plate resting on the foundation respectively. Based on the literature survey, these models are categorized as ‘Reinforced Pasternak Model,’ ‘Double Beam Model,’ ‘Reinforced Timoshenko Beam Model,’ and ‘Reinforced Kerr Model.’ The present work reviews the past 30+ years of research in the field of SSI models for reinforced foundation systems, presenting the conceptual development of these models systematically and discussing their limitations. Special efforts are taken to tabulate the parameters and their significance in the load-settlement analysis, which may be helpful in future studies for the comparison and enhancement of results and findings of physical models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geosynthetics" title="geosynthetics">geosynthetics</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modeling" title=" mathematical modeling"> mathematical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20foundation" title=" reinforced foundation"> reinforced foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=soil-structure%20interaction" title=" soil-structure interaction"> soil-structure interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20improvement" title=" ground improvement"> ground improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20soil" title=" soft soil"> soft soil</a> </p> <a href="https://publications.waset.org/abstracts/140460/soil-structure-interaction-models-for-the-reinforced-foundation-system-a-state-of-the-art-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140460.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1341</span> Construction of Pile Foundation Using Slow and Old Equipments at Srinagar, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azmat%20Hussain">Azmat Hussain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Great Taj Mahal is built on well foundation. Well foundation can be constructed on the dry bed or after making sand Island. Cassions are relatively easy to construct provide sinking operations are smooth without much hindrance. Well foundation have many constructional difficulties, viz prolonged sinking period, tilting etc. These problems become worse and take more time when working season is winter. Especially in Indian Areas like Jammu & Kashmir (Srinagar) where technology lacks. The only thing Engineers can do is to wait till working conditions become suitable. A case study is presented in the paper exploring the feasibility of pile foundation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=well%20foundation" title="well foundation">well foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=pile%20foundation" title=" pile foundation"> pile foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=equipments%20used" title=" equipments used"> equipments used</a>, <a href="https://publications.waset.org/abstracts/search?q=pile%20construction" title=" pile construction"> pile construction</a> </p> <a href="https://publications.waset.org/abstracts/26095/construction-of-pile-foundation-using-slow-and-old-equipments-at-srinagar-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26095.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1340</span> Simulation of Soil-Pile Interaction of Steel Batter Piles Penetrated in Sandy Soil Subjected to Pull-Out Loads </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ameer%20A.%20Jebur">Ameer A. Jebur</a>, <a href="https://publications.waset.org/abstracts/search?q=William%20Atherton"> William Atherton</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafid%20M.%20Alkhaddar"> Rafid M. Alkhaddar</a>, <a href="https://publications.waset.org/abstracts/search?q=Edward%20Loffill"> Edward Loffill </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Superstructures like offshore platforms, tall buildings, transition towers, skyscrapers and bridges are normally designed to resist compression, uplift and lateral forces from wind waves, negative skin friction, ship impact and other applied loads. Better understanding and the precise simulation of the response of batter piles under the action of independent uplift loads is a vital topic and an area of active research in the field of geotechnical engineering. This paper investigates the use of finite element code (FEC) to examine the behaviour of model batter piles penetrated in dense sand, subjected to pull-out pressure by means of numerical modelling. The concept of the Winkler Model (beam on elastic foundation) has been used in which the interaction between the pile embedded depth and adjacent soil in the bearing zone is simulated by nonlinear p-y curves. The analysis was conducted on different pile slenderness ratios (lc&frasl;d) ranging from 7.5, 15.22 and 30 respectively. In addition, the optimum batter angle for a model steel pile penetrated in dense sand has been chosen to be 20&deg; as this is the best angle for this simulation as demonstrated by other researcher published in literature. In this numerical analysis, the soil response is idealized as elasto-plastic and the model piles are described as elastic materials for the purpose of simulation. The results revealed that the applied loads affect the pullout pile capacity as well as the lateral pile response for dense sand together with varying shear strength parameters linked to the pile critical depth. Furthermore, the pile pull-out capacity increases with increasing the pile aspect ratios. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=slenderness%20ratio" title="slenderness ratio">slenderness ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=soil-pile%20interaction" title=" soil-pile interaction"> soil-pile interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=winkler%20model%20%28beam%20on%20elastic%20foundation%29" title=" winkler model (beam on elastic foundation)"> winkler model (beam on elastic foundation)</a>, <a href="https://publications.waset.org/abstracts/search?q=pull-out%20capacity" title=" pull-out capacity"> pull-out capacity</a> </p> <a href="https://publications.waset.org/abstracts/49411/simulation-of-soil-pile-interaction-of-steel-batter-piles-penetrated-in-sandy-soil-subjected-to-pull-out-loads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49411.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1339</span> Dynamic Analysis of Turbine Foundation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mogens%20Saberi">Mogens Saberi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents different design approaches for the design of turbine foundations. In the design process, several unknown factors must be considered such as the soil stiffness at the site. The main static and dynamic loads are presented and the results of a dynamic simulation are presented for a turbine foundation that is currently being built. A turbine foundation is an important part of a power plant since a non-optimal behavior of the foundation can damage the turbine itself and thereby stop the power production with large consequences. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20turbine%20design" title="dynamic turbine design">dynamic turbine design</a>, <a href="https://publications.waset.org/abstracts/search?q=harmonic%20response%20analysis" title=" harmonic response analysis"> harmonic response analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=practical%20turbine%20design%20experience" title=" practical turbine design experience"> practical turbine design experience</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20foundation" title=" concrete foundation"> concrete foundation</a> </p> <a href="https://publications.waset.org/abstracts/52233/dynamic-analysis-of-turbine-foundation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52233.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1338</span> Seismic Behavior of Steel Moment-Resisting Frames for Uplift Permitted in Near-Fault Regions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Tehranizadeh">M. Tehranizadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Shoushtari%20Rezvani"> E. Shoushtari Rezvani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seismic performance of steel moment-resisting frame structures is investigated considering nonlinear soil-structure interaction (SSI) effects. 10-, 15-, and 20-story planar building frames with aspect ratio of 3 are designed in accordance with current building codes. Inelastic seismic demands of the superstructure are considered using concentrated plasticity model. The raft foundation system is designed for different soil types. Beam-on-nonlinear Winkler foundation (BNWF) is used to represent dynamic impedance of the underlying soil. Two sets of pulse-like as well as no-pulse near-fault earthquakes are used as input ground motions. The results show that the reduction in drift demands due to nonlinear SSI is characterized by a more uniform distribution pattern along the height when compared to the fixed-base and linear SSI condition. It is also concluded that beneficial effects of nonlinear SSI on displacement demands is more significant in case of pulse-like ground motions and performance level of the steel moment-resisting frames can be enhanced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil-structure%20interaction" title="soil-structure interaction">soil-structure interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=uplifting" title=" uplifting"> uplifting</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20plasticity" title=" soil plasticity"> soil plasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=near-fault%20earthquake" title=" near-fault earthquake"> near-fault earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=tall%20building" title=" tall building"> tall building</a> </p> <a href="https://publications.waset.org/abstracts/21997/seismic-behavior-of-steel-moment-resisting-frames-for-uplift-permitted-in-near-fault-regions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21997.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">549</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1337</span> Winkler Springs for Embedded Beams Subjected to S-Waves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Franco%20Primo%20Soffietti">Franco Primo Soffietti</a>, <a href="https://publications.waset.org/abstracts/search?q=Diego%20Fernando%20Turello"> Diego Fernando Turello</a>, <a href="https://publications.waset.org/abstracts/search?q=Federico%20Pinto"> Federico Pinto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shear waves that propagate through the ground impose deformations that must be taken into account in the design and assessment of buried longitudinal structures such as tunnels, pipelines, and piles. Conventional engineering approaches for seismic evaluation often rely on a Euler-Bernoulli beam models supported by a Winkler foundation. This approach, however, falls short in capturing the distortions induced when the structure is subjected to shear waves. To overcome these limitations, in the present work an analytical solution is proposed considering a Timoshenko beam and including transverse and rotational springs. The present research proposes ground springs derived as closed-form analytical solutions of the equations of elasticity including the seismic wavelength. These proposed springs extend the applicability of previous plane-strain models. By considering variations in displacements along the longitudinal direction, the presented approach ensures the springs do not approach zero at low frequencies. This characteristic makes them suitable for assessing pseudo-static cases, which typically govern structural forces in kinematic interaction analyses. The results obtained, validated against existing literature and a 3D Finite Element model, reveal several key insights: i) the cutoff frequency significantly influences transverse and rotational springs; ii) neglecting displacement variations along the structure axis (i.e., assuming plane-strain deformation) results in unrealistically low transverse springs, particularly for wavelengths shorter than the structure length; iii) disregarding lateral displacement components in rotational springs and neglecting variations along the structure axis leads to inaccurately low spring values, misrepresenting interaction phenomena; iv) transverse springs exhibit a notable drop in resonance frequency, followed by increasing damping as frequency rises; v) rotational springs show minor frequency-dependent variations, with radiation damping occurring beyond resonance frequencies, starting from negative values. This comprehensive analysis sheds light on the complex behavior of embedded longitudinal structures when subjected to shear waves and provides valuable insights for the seismic assessment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shear%20waves" title="shear waves">shear waves</a>, <a href="https://publications.waset.org/abstracts/search?q=Timoshenko%20beams" title=" Timoshenko beams"> Timoshenko beams</a>, <a href="https://publications.waset.org/abstracts/search?q=Winkler%20springs" title=" Winkler springs"> Winkler springs</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-structure%20interaction" title=" sol-structure interaction"> sol-structure interaction</a> </p> <a href="https://publications.waset.org/abstracts/173963/winkler-springs-for-embedded-beams-subjected-to-s-waves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173963.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1336</span> Practical Guide To Design Dynamic Block-Type Shallow Foundation Supporting Vibrating Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dodi%20Ikhsanshaleh">Dodi Ikhsanshaleh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When subjected to dynamic load, foundation oscillates in the way that depends on the soil behaviour, the geometry and inertia of the foundation and the dynamic exctation. The practical guideline to analysis block-type foundation excitated by dynamic load from vibrating machine is presented. The analysis use Lumped Mass Parameter Method to express dynamic properties such as stiffness and damping of soil. The numerical examples are performed on design block-type foundation supporting gas turbine compressor which is important equipment package in gas processing plant <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=block%20foundation" title="block foundation">block foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20load" title=" dynamic load"> dynamic load</a>, <a href="https://publications.waset.org/abstracts/search?q=lumped%20mass%20parameter" title=" lumped mass parameter"> lumped mass parameter</a> </p> <a href="https://publications.waset.org/abstracts/16239/practical-guide-to-design-dynamic-block-type-shallow-foundation-supporting-vibrating-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16239.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">490</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1335</span> Bearing Behavior of a Hybrid Monopile Foundation for Offshore Wind Turbines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zicheng%20Wang">Zicheng Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Offshore wind energy provides a huge potential for the expansion of renewable energies to the coastal countries. High demands are required concerning the shape and type of foundations for offshore wind turbines (OWTs) to find an economically, technically and environmentally-friendly optimal solution. A promising foundation concept is the hybrid foundation system, which consists of a steel plate attached to the outer side of a hollow steel pipe pile. In this study, the bearing behavior of a large diameter foundation is analyzed using a 3-dimensional finite element (FE) model. Non-linear plastic soil behavior is considered. The results of the numerical simulations are compared to highlight the priority of the hybrid foundation to the conventional monopile foundation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20foundation%20system" title="hybrid foundation system">hybrid foundation system</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20parameters" title=" mechanical parameters"> mechanical parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20soil%20behaviors" title=" plastic soil behaviors"> plastic soil behaviors</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulations" title=" numerical simulations"> numerical simulations</a> </p> <a href="https://publications.waset.org/abstracts/129922/bearing-behavior-of-a-hybrid-monopile-foundation-for-offshore-wind-turbines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129922.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1334</span> Development of Interaction Factors Charts for Piled Raft Foundation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelazim%20Makki%20Ibrahim">Abdelazim Makki Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Esamaldeen%20Ali"> Esamaldeen Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims at analysing the load settlement behavior and predict the bearing capacity of piled raft foundation a series of finite element models with different foundation configurations and stiffness were established. Numerical modeling is used to study the behavior of the piled raft foundation due to the complexity of piles, raft, and soil interaction and also due to the lack of reliable analytical method that can predict the behavior of the piled raft foundation system. Simple analytical models are developed to predict the average settlement and the load sharing between the piles and the raft in piled raft foundation system. A simple example to demonstrate the applications of these charts is included. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title="finite element">finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=pile-raft%20foundation" title=" pile-raft foundation"> pile-raft foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=method" title=" method"> method</a>, <a href="https://publications.waset.org/abstracts/search?q=PLAXIS%20software" title=" PLAXIS software"> PLAXIS software</a>, <a href="https://publications.waset.org/abstracts/search?q=settlement" title=" settlement"> settlement</a> </p> <a href="https://publications.waset.org/abstracts/35331/development-of-interaction-factors-charts-for-piled-raft-foundation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35331.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">557</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1333</span> Assessment of Pier Foundations for Onshore Wind Turbines in Non-cohesive Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mauricio%20Terceros">Mauricio Terceros</a>, <a href="https://publications.waset.org/abstracts/search?q=Jann-Eike%20Saathoff"> Jann-Eike Saathoff</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Achmus"> Martin Achmus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In non-cohesive soil, onshore wind turbines are often found on shallow foundations with a circular or octagonal shape. For the current generation of wind turbines, shallow foundations with very large breadths are required. The foundation support costs thus represent a considerable portion of the total construction costs. Therefore, an economic optimization of the type of foundation is highly desirable. A conceivable alternative foundation type would be a pier foundation, which combines the load transfer over the foundation area at the pier base with the transfer of horizontal loads over the shaft surface of the pier. The present study aims to evaluate the load-bearing behavior of a pier foundation based on comprehensive parametric studies. Thereby, three-dimensional numerical simulations of both pier and shallow foundations are developed. The evaluation of the results focuses on the rotational stiffnesses of the proposed soil-foundation systems. In the design, the initial rotational stiffness is decisive for consideration of natural frequencies, whereas the rotational secant stiffness for a maximum load is decisive for serviceability considerations. A systematic analysis of the results at different load levels shows that the application of the typical pier foundation is presumably limited to relatively small onshore wind turbines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=onshore%20wind%20foundation" title="onshore wind foundation">onshore wind foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=pier%20foundation" title=" pier foundation"> pier foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=rotational%20stiffness%20of%20soil-foundation%20system" title=" rotational stiffness of soil-foundation system"> rotational stiffness of soil-foundation system</a>, <a href="https://publications.waset.org/abstracts/search?q=shallow%20foundation" title=" shallow foundation"> shallow foundation</a> </p> <a href="https://publications.waset.org/abstracts/101482/assessment-of-pier-foundations-for-onshore-wind-turbines-in-non-cohesive-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101482.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1332</span> Effect of the Soil-Foundation Interface Condition in the Determination of the Resistance Domain of Rigid Shallow Foundations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nivine%20Abbas">Nivine Abbas</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergio%20Lagomarsino"> Sergio Lagomarsino</a>, <a href="https://publications.waset.org/abstracts/search?q=Serena%20Cattari"> Serena Cattari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The resistance domain of a generally loaded rigid shallow foundation is normally represented as an interaction diagram limited by a failure surface in the three dimensional (3D) load space (N, V, M), where N is the vertical centric load component, V is the horizontal load component and M is the bending moment component. Usually, this resistance domain is constructed neglecting the foundation sliding mechanism that take place at the level of soil-foundation interface once the applied horizontal load exceeds the interface frictional resistance of the foundation. This issue is translated in the literature by the fact that the failure limit in the (2D) load space (N, V) is constructed as a parabola having an initial slope, at the center of the coordinate system, that depends, in some works, only of the soil friction angle, and in other works, has an empirical value. However, considering a given geometry of the foundation lying on a given soil type, the initial slope of the failure limit must change, for instance, when varying the roughness of the foundation surface at its interface with the soil. The present study discusses the effect of the soil-foundation interface condition on the construction of the resistance domain, and proposes a correction to be applied to the failure limit in order to overcome this effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil-foundation%20interface" title="soil-foundation interface">soil-foundation interface</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20mechanism" title=" sliding mechanism"> sliding mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20shearing" title=" soil shearing"> soil shearing</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance%20domain" title=" resistance domain"> resistance domain</a>, <a href="https://publications.waset.org/abstracts/search?q=rigid%20shallow%20foundation" title=" rigid shallow foundation"> rigid shallow foundation</a> </p> <a href="https://publications.waset.org/abstracts/28877/effect-of-the-soil-foundation-interface-condition-in-the-determination-of-the-resistance-domain-of-rigid-shallow-foundations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28877.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1331</span> Nonlinear Response of Infinite Beams on a Multilayer Tensionless Extensible Geosynthetic – Reinforced Earth Bed under Moving Load</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Karuppasamy">K. Karuppasamy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper analysis of an infinite beam resting on multilayer tensionless extensible geosynthetic reinforced granular fill - poor soil system overlying soft soil strata under moving the load with constant velocity is presented. The beam is subjected to a concentrated load moving with constant velocity. The upper reinforced granular bed is modeled by a rough membrane embedded in Pasternak shear layer overlying a series of compressible nonlinear Winkler springs representing the underlying the very poor soil. The multilayer tensionless extensible geosynthetic layer has been assumed to deform such that at the interface the geosynthetic and the soil have some deformation. Nonlinear behavior of granular fill and the very poor soil has been considered in the analysis by means of hyperbolic constitutive relationships. Governing differential equations of the soil foundation system have been obtained and solved with the help of appropriate boundary conditions. The solution has been obtained by employing finite difference method by means of Gauss-Siedel iterative scheme. Detailed parametric study has been conducted to study the influence of various parameters on the response of soil – foundation system under consideration by means of deflection and bending moment in the beam and tension mobilized in the geosynthetic layer. These parameters include the magnitude of applied load, the velocity of the load, damping, the ultimate resistance of the poor soil and granular fill layer. The range of values of parameters has been considered as per Indian Railways conditions. This study clearly observed that the comparisons of multilayer tensionless extensible geosynthetic reinforcement with poor foundation soil and magnitude of applied load, relative compressibility of granular fill and ultimate resistance of poor soil has significant influence on the response of soil – foundation system. However, for the considered range of velocity, the response has been found to be insensitive towards velocity. The ultimate resistance of granular fill layer has also been found to have no significant influence on the response of the system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=infinite%20beams" title="infinite beams">infinite beams</a>, <a href="https://publications.waset.org/abstracts/search?q=multilayer%20tensionless%20extensible%20geosynthetic" title=" multilayer tensionless extensible geosynthetic"> multilayer tensionless extensible geosynthetic</a>, <a href="https://publications.waset.org/abstracts/search?q=granular%20layer" title=" granular layer"> granular layer</a>, <a href="https://publications.waset.org/abstracts/search?q=moving%20load%20and%20nonlinear%20behavior%20of%20poor%20soil" title=" moving load and nonlinear behavior of poor soil"> moving load and nonlinear behavior of poor soil</a> </p> <a href="https://publications.waset.org/abstracts/30763/nonlinear-response-of-infinite-beams-on-a-multilayer-tensionless-extensible-geosynthetic-reinforced-earth-bed-under-moving-load" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30763.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">437</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1330</span> Application of Proper Foundation in Building Construction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chukwuma%20Anya">Chukwuma Anya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Foundation is popularly defined as the lowest load-bearing part of a building typically below the ground level. It serves as an underlying base which acts as the principle on which every building stands. There are various types of foundations in practice which includes the strip, pile, pad, and raft foundations, and each of these have their various applications in building construction. However due to lack of professional knowledge, cost, or scheduled time frame to complete a certain project, some of these foundation types are some times neglected or used interchangeably resulting to a misuse or abuse of the building materials, man power, and sometimes altering the stability, balance and aesthetics of most buildings. This research work is aimed at educating the academic community on the proper application of the various foundation types to suit different environments such as the rain forest, desert, swampy area, rocky area etc. A proper application of the foundation will ensure the safety of the building from acid grounds, damping and weakening of the foundation, and even building settlement and stability. In addition to those, it will improve aesthetics and maintain cost effectiveness, both construction cost and maintenance cost. Finally, it will ensure the safety of the building and its inhabitants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=foundation" title="foundation">foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=balance" title=" balance"> balance</a>, <a href="https://publications.waset.org/abstracts/search?q=aesthetic" title=" aesthetic"> aesthetic</a> </p> <a href="https://publications.waset.org/abstracts/195389/application-of-proper-foundation-in-building-construction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/195389.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1329</span> Theoretical Bearing Capacity of Modified Kacapuri Foundation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Afief%20Maruf">Muhammad Afief Maruf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kacapuri foundation is the traditional shallow foundation of building which has been used since long by traditional communities in Borneo, Indonesia. Kacapuri foundation is a foundation that uses a combination of ironwood (eusideroxylon zwageri) as a column and truss and softwood (Melaleuca leucadendra syn. M. leucadendron) as a raft. In today's modern era, ironwood happened to be a rare item, and it is protected by the Indonesian government. This condition then triggers the idea to maintain the shape of the traditional foundation by modifying the material. The suggestion is replacing the ironwood column with reinforced concrete column. In addition, the number of stem softwood is added to sustain the burden of replacing the column material. Although this modified form of Kacapuri foundation is currently still not been tested in applications in society, some research on the modified Kacapuri foundation has been conducted by some researchers and government unit. This paper will try to give an overview of the theoretical foundation bearing capacity Kacapuri modifications applied to the soft alluvial soil located in Borneo, Indonesia, where the original form of Kacapuri is implemented this whole time. The foundation is modeled buried depth in 2m below the ground surface and also below the ground water level. The calculation of the theoretical bearing capacity and then is calculated based on the bearing capacity equation suggested Skempton, Terzaghi and Ohsuki using the data of soft alluvial soil in Borneo. The result will then compared with the bearing capacity of the Kacapuri foundation original design from some previous research. The results show that the ultimate bearing capacity of the Modified Kacapuri foundation using Skempton equation amounted to 329,26 kN, Terzaghi for 456,804kN, and according Ohsaki amounted to 491,972 kN. The ultimate bearing capacity of the original Kacapuri foundation model based on Skempton equation is 18,23 kN. This result shows that the modification added the ultimate bearing capacity of the foundation, although the replacement of ironwood to reinforced concrete will also add some dead load to the total load itself. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bearing%20capacity" title="bearing capacity">bearing capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=Kacapuri" title=" Kacapuri"> Kacapuri</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20foundation" title=" modified foundation"> modified foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=shallow%20foundation" title=" shallow foundation"> shallow foundation</a> </p> <a href="https://publications.waset.org/abstracts/67251/theoretical-bearing-capacity-of-modified-kacapuri-foundation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67251.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1328</span> Seismic Soil-Pile Interaction Considering Nonlinear Soil Column Behavior in Saturated and Dry Soil Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Moeini">Mohammad Moeini</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehrdad%20Ghyabi"> Mehrdad Ghyabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kiarash%20Mohtasham%20Dolatshahi"> Kiarash Mohtasham Dolatshahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates seismic soil-pile interaction using the Beam on Nonlinear Winkler Foundation (BNWF) approach. Three soil types are considered to cover all the possible responses, as well as nonlinear site response analysis using finite element method in OpenSees platform. Excitations at each elevation that are output of the site response analysis are used as the input excitation to the soil pile system implementing multi-support excitation method. Spectral intensities of acceleration show that the extent of the response in sand is more severe than that of clay, in addition, increasing the PGA of ground strong motion will affect the sandy soil more, in comparison with clayey medium, which is an indicator of the sensitivity of soil-pile systems in sandy soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BNWF%20method" title="BNWF method">BNWF method</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-support%20excitation" title=" multi-support excitation"> multi-support excitation</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20site%20response%20analysis" title=" nonlinear site response analysis"> nonlinear site response analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20soil-pile%20interaction" title=" seismic soil-pile interaction"> seismic soil-pile interaction</a> </p> <a href="https://publications.waset.org/abstracts/64350/seismic-soil-pile-interaction-considering-nonlinear-soil-column-behavior-in-saturated-and-dry-soil-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64350.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Winkler%20foundation&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Winkler%20foundation&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Winkler%20foundation&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Winkler%20foundation&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Winkler%20foundation&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Winkler%20foundation&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Winkler%20foundation&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Winkler%20foundation&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Winkler%20foundation&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Winkler%20foundation&amp;page=45">45</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Winkler%20foundation&amp;page=46">46</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Winkler%20foundation&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10