CINXE.COM

Search results for: embedded sensors

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: embedded sensors</title> <meta name="description" content="Search results for: embedded sensors"> <meta name="keywords" content="embedded sensors"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="embedded sensors" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="embedded sensors"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2270</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: embedded sensors</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2270</span> Multimodal Deep Learning for Human Activity Recognition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ons%20Slimene">Ons Slimene</a>, <a href="https://publications.waset.org/abstracts/search?q=Aroua%20Taamallah"> Aroua Taamallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Maha%20Khemaja"> Maha Khemaja</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, human activity recognition (HAR) has been a key area of research due to its diverse applications. It has garnered increasing attention in the field of computer vision. HAR plays an important role in people’s daily lives as it has the ability to learn advanced knowledge about human activities from data. In HAR, activities are usually represented by exploiting different types of sensors, such as embedded sensors or visual sensors. However, these sensors have limitations, such as local obstacles, image-related obstacles, sensor unreliability, and consumer concerns. Recently, several deep learning-based approaches have been proposed for HAR and these approaches are classified into two categories based on the type of data used: vision-based approaches and sensor-based approaches. This research paper highlights the importance of multimodal data fusion from skeleton data obtained from videos and data generated by embedded sensors using deep neural networks for achieving HAR. We propose a deep multimodal fusion network based on a twostream architecture. These two streams use the Convolutional Neural Network combined with the Bidirectional LSTM (CNN BILSTM) to process skeleton data and data generated by embedded sensors and the fusion at the feature level is considered. The proposed model was evaluated on a public OPPORTUNITY++ dataset and produced a accuracy of 96.77%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=human%20activity%20recognition" title="human activity recognition">human activity recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=action%20recognition" title=" action recognition"> action recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=sensors" title=" sensors"> sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=vision" title=" vision"> vision</a>, <a href="https://publications.waset.org/abstracts/search?q=human-centric%20sensing" title=" human-centric sensing"> human-centric sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=context-awareness" title=" context-awareness"> context-awareness</a> </p> <a href="https://publications.waset.org/abstracts/162633/multimodal-deep-learning-for-human-activity-recognition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162633.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2269</span> A Real-time Classification of Lying Bodies for Care Application of Elderly Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Vazquez-Santacruz">E. Vazquez-Santacruz</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Gamboa-Zuniga"> M. Gamboa-Zuniga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we show a methodology for bodies classification in lying state using HOG descriptors and pressures sensors positioned in a matrix form (14 x 32 sensors) on the surface where bodies lie down. it will be done in real time. Our system is embedded in a care robot that can assist the elderly patient and medical staff around to get a better quality of life in and out of hospitals. Due to current technology a limited number of sensors is used, wich results in low-resolution data array, that will be used as image of 14 x 32 pixels. Our work considers the problem of human posture classification with few information (sensors), applying digital process to expand the original data of the sensors and so get more significant data for the classification, however, this is done with low-cost algorithms to ensure the real-time execution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=real-time%20classification" title="real-time classification">real-time classification</a>, <a href="https://publications.waset.org/abstracts/search?q=sensors" title=" sensors"> sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=robots" title=" robots"> robots</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20care" title=" health care"> health care</a>, <a href="https://publications.waset.org/abstracts/search?q=elderly%20patients" title=" elderly patients"> elderly patients</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title=" artificial intelligence "> artificial intelligence </a> </p> <a href="https://publications.waset.org/abstracts/24235/a-real-time-classification-of-lying-bodies-for-care-application-of-elderly-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24235.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">866</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2268</span> Flicker Detection with Motion Tolerance for Embedded Camera</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jianrong%20Wu">Jianrong Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xuan%20Fu"> Xuan Fu</a>, <a href="https://publications.waset.org/abstracts/search?q=Akihiro%20Higashi"> Akihiro Higashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhiming%20Tan"> Zhiming Tan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> CMOS image sensors with a rolling shutter are used broadly in the digital cameras embedded in mobile devices. The rolling shutter suffers the flicker artifacts from the fluorescent lamp, and it could be observed easily. In this paper, the characteristics of illumination flicker in motion case were analyzed, and two efficient detection methods based on matching fragment selection were proposed. According to the experimental results, our methods could achieve as high as 100% accuracy in static scene, and at least 97% in motion scene. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=illumination%20flicker" title="illumination flicker">illumination flicker</a>, <a href="https://publications.waset.org/abstracts/search?q=embedded%20camera" title=" embedded camera"> embedded camera</a>, <a href="https://publications.waset.org/abstracts/search?q=rolling%20shutter" title=" rolling shutter"> rolling shutter</a>, <a href="https://publications.waset.org/abstracts/search?q=detection" title=" detection"> detection</a> </p> <a href="https://publications.waset.org/abstracts/14449/flicker-detection-with-motion-tolerance-for-embedded-camera" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14449.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2267</span> Health Monitoring of Composite Pile Construction Using Fiber Bragg Gratings Sensor Arrays</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Atli-Veltin">B. Atli-Veltin</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Vosteen"> A. Vosteen</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Megan"> D. Megan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Jedynska"> A. Jedynska</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20K.%20Cheng"> L. K. Cheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Composite materials combine the advantages of being lightweight and possessing high strength. This is in particular of interest for the development of large constructions, e.g., aircraft, space applications, wind turbines, etc. One of the shortcomings of using composite materials is the complex nature of the failure mechanisms which makes it difficult to predict the remaining lifetime. Therefore, condition and health monitoring are essential for using composite material for critical parts of a construction. Different types of sensors are used/developed to monitor composite structures. These include ultrasonic, thermography, shearography and fiber optic. The first 3 technologies are complex and mostly used for measurement in laboratory or during maintenance of the construction. Optical fiber sensor can be surface mounted or embedded in the composite construction to provide the unique advantage of in-operation measurement of mechanical strain and other parameters of interest. This is identified to be a promising technology for Structural Health Monitoring (SHM) or Prognostic Health Monitoring (PHM) of composite constructions. Among the different fiber optic sensing technologies, Fiber Bragg Grating (FBG) sensor is the most mature and widely used. FBG sensors can be realized in an array configuration with many FBGs in a single optical fiber. In the current project, different aspects of using embedded FBG for composite wind turbine monitoring are investigated. The activities are divided into two parts. Firstly, FBG embedded carbon composite laminate is subjected to tensile and bending loading to investigate the response of FBG which are placed in different orientations with respect to the fiber. Secondly, the demonstration of using FBG sensor array for temperature and strain sensing and monitoring of a 5 m long scale model of a glass fiber mono-pile is investigated. Two different FBG types are used; special in-house fibers and off-the-shelf ones. The results from the first part of the study are showing that the FBG sensors survive the conditions during the production of the laminate. The test results from the tensile and the bending experiments are indicating that the sensors successfully response to the change of strain. The measurements from the sensors will be correlated with the strain gauges that are placed on the surface of the laminates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fiber%20Bragg%20Gratings" title="Fiber Bragg Gratings">Fiber Bragg Gratings</a>, <a href="https://publications.waset.org/abstracts/search?q=embedded%20sensors" title=" embedded sensors"> embedded sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20monitoring" title=" health monitoring"> health monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine%20towers" title=" wind turbine towers"> wind turbine towers</a> </p> <a href="https://publications.waset.org/abstracts/86923/health-monitoring-of-composite-pile-construction-using-fiber-bragg-gratings-sensor-arrays" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">243</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2266</span> Advanced Humidity Sensors Using Cobalt and Iron-Doped ZnO-rGO Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wallia%20Majeed">Wallia Majeed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Humidity sensors based on doped ZnO-rGO composites have shown promise due to their sensitivity to humidity changes. Here, it report on the hydrothermal synthesis of ZnO-rGO and doped ZnO-rGO nanocomposites, incorporating cobalt and iron dopants at 2% concentration. X-ray diffraction confirmed successful doping, while scanning electron microscopy revealed the composite's layered structure with embedded ZnO rods. To evaluate their performance, humidity sensors were fabricated by depositing aluminum electrodes on silicon substrates coated with the composites. The Fe-doped ZnO-rGO sensor exhibited rapid response (27 s) and recovery times (24 s) across a wide humidity range (11% to 97% RH), surpassing ZnO-rGO and Co-doped ZnO-rGO variants in sensitivity (2.2k at 100 Hz). These findings highlight Fe-doped ZnO-rGO composites as ideal candidates for humidity sensing applications, offering enhanced performance crucial for environmental monitoring and industrial processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=humidity%20sensors" title="humidity sensors">humidity sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrothermal%20synthesis" title=" hydrothermal synthesis"> hydrothermal synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity" title=" sensitivity"> sensitivity</a> </p> <a href="https://publications.waset.org/abstracts/187356/advanced-humidity-sensors-using-cobalt-and-iron-doped-zno-rgo-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187356.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">35</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2265</span> Volatile Organic Compounds Detection by Surface Acoustic Wave Sensors with Nanoparticles Embedded in Polymer Sensitive Layers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cristian%20Viespe">Cristian Viespe</a>, <a href="https://publications.waset.org/abstracts/search?q=Dana%20Miu"> Dana Miu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Surface acoustic wave (SAW) sensors with nanoparticles (NPs) of various dimensions and concentrations embedded in different types of polymer sensing films for detecting volatile organic compounds (VOCs) were studied. The sensors were ‘delay line’ type with a center frequency of 69.4 MHz on ST-X quartz substrates. NPs with different diameters of 7 nm or 13 nm were obtained by laser ablation with lasers having 5 ns or 10 ps pulse durations, respectively. The influence of NPs dimensions and concentrations on sensor properties such as frequency shift, sensitivity, noise and response time were investigated. To the best of our knowledge, the influence of NP dimensions on SAW sensor properties with has not been investigated. The frequency shift and sensitivity increased with increasing NP concentration in the polymer for a given NP dimension and with decreasing NP diameter for a given concentration. The best performances were obtained for the smallest NPs used. The SAW sensor with NPs of 7 nm had a limit of detection (LOD) of 65 ppm (almost five times better than the sensor with polymer alone), and a response time of about 9 s for ethanol. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surface%20acoustic%20wave%20sensor" title="surface acoustic wave sensor">surface acoustic wave sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=volatile%20organic%20compounds" title=" volatile organic compounds"> volatile organic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20ablation" title=" laser ablation"> laser ablation</a> </p> <a href="https://publications.waset.org/abstracts/100929/volatile-organic-compounds-detection-by-surface-acoustic-wave-sensors-with-nanoparticles-embedded-in-polymer-sensitive-layers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100929.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2264</span> System for Electromyography Signal Emulation Through the Use of Embedded Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Valentina%20Narvaez%20Gaitan">Valentina Narvaez Gaitan</a>, <a href="https://publications.waset.org/abstracts/search?q=Laura%20Valentina%20Rodriguez%20Leguizamon"> Laura Valentina Rodriguez Leguizamon</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruben%20Dario%20Hernandez%20B."> Ruben Dario Hernandez B.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work describes a physiological signal emulation system that uses electromyography (EMG) signals obtained from muscle sensors in the first instance. These signals are used to extract their characteristics to model and emulate specific arm movements. The main objective of this effort is to develop a new biomedical software system capable of generating physiological signals through the use of embedded systems by establishing the characteristics of the acquired signals. The acquisition system used was Biosignals, which contains two EMG electrodes used to acquire signals from the forearm muscles placed on the extensor and flexor muscles. Processing algorithms were implemented to classify the signals generated by the arm muscles when performing specific movements such as wrist flexion extension, palmar grip, and wrist pronation-supination. Matlab software was used to condition and preprocess the signals for subsequent classification. Subsequently, the mathematical modeling of each signal is performed to be generated by the embedded system, with a validation of the accuracy of the obtained signal using the percentage of cross-correlation, obtaining a precision of 96%. The equations are then discretized to be emulated in the embedded system, obtaining a system capable of generating physiological signals according to the characteristics of medical analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=classification" title="classification">classification</a>, <a href="https://publications.waset.org/abstracts/search?q=electromyography" title=" electromyography"> electromyography</a>, <a href="https://publications.waset.org/abstracts/search?q=embedded%20system" title=" embedded system"> embedded system</a>, <a href="https://publications.waset.org/abstracts/search?q=emulation" title=" emulation"> emulation</a>, <a href="https://publications.waset.org/abstracts/search?q=physiological%20signals" title=" physiological signals"> physiological signals</a> </p> <a href="https://publications.waset.org/abstracts/165468/system-for-electromyography-signal-emulation-through-the-use-of-embedded-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165468.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2263</span> Development of the Maturity Sensor Prototype and Method of Its Placement in the Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yelbek%20B.%20Utepov">Yelbek B. Utepov</a>, <a href="https://publications.waset.org/abstracts/search?q=Assel%20S.%20Tulebekova"> Assel S. Tulebekova</a>, <a href="https://publications.waset.org/abstracts/search?q=Alizhan%20B.%20Kazkeyev"> Alizhan B. Kazkeyev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Maturity sensors are used to determine concrete strength by the non-destructive method. The method of placement of the maturity sensors determines their number required for a certain frame of a monolithic building. Previous studies weakly describe this aspect, giving only logical assumptions. This paper proposes a cheap prototype of an embedded wireless sensor for monitoring concrete structures, as well as an alternative strategy for placing sensors based on the transitional boundaries of the temperature distribution of concrete curing, which were determined by building a heat map of the temperature distribution, where unknown values are calculated by the method of inverse distance weighing. The developed prototype can simultaneously measure temperature and relative humidity over a smartphone-controlled time interval. It implements a maturity method to assess the in-situ strength of concrete, which is considered an alternative to the traditional shock impulse and compression testing method used in Kazakhstan. The prototype was tested in laboratory and field conditions. The tests were aimed at studying the effect of internal and external temperature and relative humidity on concrete's strength gain. Based on an experimentally poured concrete slab with randomly integrated maturity sensors, it was determined that the transition boundaries form elliptical forms. Temperature distribution over the largest diameter of the ellipses was plotted, resulting in correct and inverted parabolas. As a result, the distance between the closest opposite crossing points of the parabolas is accepted as the maximum permissible step for setting the maturity sensors. The proposed placement strategy can be applied to sensors that measure various continuous phenomena such as relative humidity. Prototype testing has also revealed Bluetooth inconvenience due to weak signal and inability to access multiple prototypes simultaneously. For this reason, further prototype upgrades are planned in future work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20map" title="heat map">heat map</a>, <a href="https://publications.waset.org/abstracts/search?q=placement%20strategy" title=" placement strategy"> placement strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20and%20relative%20humidity" title=" temperature and relative humidity"> temperature and relative humidity</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20embedded%20sensor" title=" wireless embedded sensor"> wireless embedded sensor</a> </p> <a href="https://publications.waset.org/abstracts/129345/development-of-the-maturity-sensor-prototype-and-method-of-its-placement-in-the-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129345.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2262</span> Supporting Embedded Medical Software Development with MDevSPICE® and Agile Practices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Surafel%20Demissie">Surafel Demissie</a>, <a href="https://publications.waset.org/abstracts/search?q=Frank%20Keenan"> Frank Keenan</a>, <a href="https://publications.waset.org/abstracts/search?q=Fergal%20McCaffery"> Fergal McCaffery</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Emerging medical devices are highly relying on embedded software that runs on the specific platform in real time. The development of embedded software is different from ordinary software development due to the hardware-software dependency. MDevSPICE<sup>&reg;</sup> has been developed to provide guidance to support such development. To increase the flexibility of this framework agile practices have been introduced. This paper outlines the challenges for embedded medical device software development and the structure of MDevSPICE<sup>&reg; </sup>and suggests a suitable combination of agile practices that will help to add flexibility and address corresponding challenges of embedded medical device software development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agile%20practices" title="agile practices">agile practices</a>, <a href="https://publications.waset.org/abstracts/search?q=challenges" title=" challenges"> challenges</a>, <a href="https://publications.waset.org/abstracts/search?q=embedded%20software" title=" embedded software"> embedded software</a>, <a href="https://publications.waset.org/abstracts/search?q=MDevSPICE%C2%AE" title=" MDevSPICE®"> MDevSPICE®</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20device" title=" medical device"> medical device</a> </p> <a href="https://publications.waset.org/abstracts/61039/supporting-embedded-medical-software-development-with-mdevspice-and-agile-practices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61039.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2261</span> Identification of Force Vector on an Elastic Solid Using an Embeded PVDF Senor Array</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Youssef">Andrew Youssef</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20%20Matthews"> David Matthews</a>, <a href="https://publications.waset.org/abstracts/search?q=Jie%20Pan"> Jie Pan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Identifying the magnitude and direction of a force on an elastic solid is highly desirable, as this allows for investigation and continual monitoring of the dynamic loading. This was traditionally conducted by connecting the solid to the supporting structure by multi-axial force transducer, providing that the transducer will not change the mounting conditions. Polyvinylidene fluoride (PVDF) film is a versatile force transducer that can be easily embedded in structures. Here a PVDF sensor array is embedded inside a simple structure in an effort to determine the force vector applied to the structure is an inverse problem. In this paper, forces of different magnitudes and directions where applied to the structure with an impact hammer, and the output of the PVDF was captured and processed to gain an estimate of the forces applied by the hammer. The outcome extends the scope of application of PVDF sensors for measuring the external or contact force vectors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=embedded%20sensor" title="embedded sensor">embedded sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=monitoring" title=" monitoring"> monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=PVDF" title=" PVDF"> PVDF</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration" title=" vibration"> vibration</a> </p> <a href="https://publications.waset.org/abstracts/77890/identification-of-force-vector-on-an-elastic-solid-using-an-embeded-pvdf-senor-array" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77890.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2260</span> Analysis the Different Types of Nano Sensors on Based of Structure and It’s Applications on Nano Electronics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hefzollah%20Mohammadiyan">Hefzollah Mohammadiyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Bagher%20Heidari"> Mohammad Bagher Heidari</a>, <a href="https://publications.waset.org/abstracts/search?q=Ensiyeh%20Hajeb"> Ensiyeh Hajeb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper investigates and analyses the structure of nano sensors will be discussed. The structure can be classified based of nano sensors: quantum points, carbon nanotubes and nano tools, which details into each other and in turn are analyzed. Then will be fully examined to the Carbon nanotubes as chemical and mechanical sensors. The following discussion, be examined compares the advantages and disadvantages as different types of sensors and also it has feature and a wide range of applications in various industries. Finally, the structure and application of Chemical sensor transistors and the sensors will be discussed in air pollution control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes" title="carbon nanotubes">carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20points" title=" quantum points"> quantum points</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20sensors" title=" chemical sensors"> chemical sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20sensors" title=" mechanical sensors"> mechanical sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20sensor%20transistors" title=" chemical sensor transistors"> chemical sensor transistors</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20walled%20nanotube%20%28SWNT%29" title=" single walled nanotube (SWNT)"> single walled nanotube (SWNT)</a>, <a href="https://publications.waset.org/abstracts/search?q=atomic%20force%20microscope%20%28AFM%29" title=" atomic force microscope (AFM)"> atomic force microscope (AFM)</a> </p> <a href="https://publications.waset.org/abstracts/36405/analysis-the-different-types-of-nano-sensors-on-based-of-structure-and-its-applications-on-nano-electronics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36405.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">450</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2259</span> Structural Health Monitoring using Fibre Bragg Grating Sensors in Slab and Beams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pierre%20van%20Tonder">Pierre van Tonder</a>, <a href="https://publications.waset.org/abstracts/search?q=Dinesh%20Muthoo"> Dinesh Muthoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Kim%20twiname"> Kim twiname</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many existing and newly built structures are constructed on the design basis of the engineer and the workmanship of the construction company. However, when considering larger structures where more people are exposed to the building, its structural integrity is of great importance considering the safety of its occupants (Raghu, 2013). But how can the structural integrity of a building be monitored efficiently and effectively. This is where the fourth industrial revolution step in, and with minimal human interaction, data can be collected, analysed, and stored, which could also give an indication of any inconsistencies found in the data collected, this is where the Fibre Bragg Grating (FBG) monitoring system is introduced. This paper illustrates how data can be collected and converted to develop stress – strain behaviour and to produce bending moment diagrams for the utilisation and prediction of the structure’s integrity. Embedded fibre optic sensors were used in this study– fibre Bragg grating sensors in particular. The procedure entailed making use of the shift in wavelength demodulation technique and an inscription process of the phase mask technique. The fibre optic sensors considered in this report were photosensitive and embedded in the slab and beams for data collection and analysis. Two sets of fibre cables have been inserted, one purposely to collect temperature recordings and the other to collect strain and temperature. The data was collected over a time period and analysed used to produce bending moment diagrams to make predictions of the structure’s integrity. The data indicated the fibre Bragg grating sensing system proved to be useful and can be used for structural health monitoring in any environment. From the experimental data for the slab and beams, the moments were found to be64.33 kN.m, 64.35 kN.m and 45.20 kN.m (from the experimental bending moment diagram), and as per the idealistic (Ultimate Limit State), the data of 133 kN.m and 226.2 kN.m were obtained. The difference in values gave room for an early warning system, in other words, a reserve capacity of approximately 50% to failure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fibre%20bragg%20grating" title="fibre bragg grating">fibre bragg grating</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20health%20monitoring" title=" structural health monitoring"> structural health monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=fibre%20optic%20sensors" title=" fibre optic sensors"> fibre optic sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=beams" title=" beams"> beams</a> </p> <a href="https://publications.waset.org/abstracts/143913/structural-health-monitoring-using-fibre-bragg-grating-sensors-in-slab-and-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143913.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2258</span> Mechanical Design of External Pressure Vessel to an AUV</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Artur%20Siqueira%20N%C3%B3brega%20de%20Freitas">Artur Siqueira Nóbrega de Freitas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Autonomous Underwater Vehicles (AUV), as well the Remotely Operated Vehicles (ROV), are unmanned technologies used in oceanographic investigations, offshore oil extraction, military applications, among others. Differently from AUVs, ROVs uses a physical connection with the surface for energy supply e data traffic. The AUVs use batteries and embedded data acquisition systems. These technologies have progressed, supported by studies in the areas of robotics, embedded systems, naval engineering, etc. This work presents a methodology for external pressure vessel design, responsible for contain and keep the internal components of the vehicle, such as on-board electronics and sensors, isolated from contact with water, creating a pressure differential between the inner and external regions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vessel" title="vessel">vessel</a>, <a href="https://publications.waset.org/abstracts/search?q=external%20pressure" title=" external pressure"> external pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=AUV" title=" AUV"> AUV</a>, <a href="https://publications.waset.org/abstracts/search?q=buckling" title=" buckling"> buckling</a> </p> <a href="https://publications.waset.org/abstracts/28324/mechanical-design-of-external-pressure-vessel-to-an-auv" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28324.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">523</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2257</span> Embedded Hardware and Software Design of Omnidirectional Autonomous Robotic Platform Suitable for Advanced Driver Assistance Systems Testing with Focus on Modularity and Safety</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ondrej%20Lufinka">Ondrej Lufinka</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Kaderabek"> Jan Kaderabek</a>, <a href="https://publications.waset.org/abstracts/search?q=Juraj%20Prstek"> Juraj Prstek</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiri%20Skala"> Jiri Skala</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamil%20Kosturik"> Kamil Kosturik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with the problem of using Autonomous Robotic Platforms (ARP) for the ADAS (Advanced Driver Assistance Systems) testing in automotive. There are different possibilities of the testing already in development, and lately, the autonomous robotic platforms are beginning to be used more and more widely. Autonomous Robotic Platform discussed in this paper explores the hardware and software design possibilities related to the field of embedded systems. The paper focuses on its chapters on the introduction of the problem in general; then, it describes the proposed prototype concept and its principles from the embedded HW and SW point of view. It talks about the key features that can be used for the innovation of these platforms (e.g., modularity, omnidirectional movement, common and non-traditional sensors used for localization, synchronization of more platforms and cars together, or safety mechanisms). In the end, the future possible development of the project is discussed as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=advanced%20driver%20assistance%20systems" title="advanced driver assistance systems">advanced driver assistance systems</a>, <a href="https://publications.waset.org/abstracts/search?q=ADAS" title=" ADAS"> ADAS</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20robotic%20platform" title=" autonomous robotic platform"> autonomous robotic platform</a>, <a href="https://publications.waset.org/abstracts/search?q=embedded%20systems" title=" embedded systems"> embedded systems</a>, <a href="https://publications.waset.org/abstracts/search?q=hardware" title=" hardware"> hardware</a>, <a href="https://publications.waset.org/abstracts/search?q=localization" title=" localization"> localization</a>, <a href="https://publications.waset.org/abstracts/search?q=modularity" title=" modularity"> modularity</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20robots%20synchronization" title=" multiple robots synchronization"> multiple robots synchronization</a>, <a href="https://publications.waset.org/abstracts/search?q=omnidirectional%20movement" title=" omnidirectional movement"> omnidirectional movement</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20mechanisms" title=" safety mechanisms"> safety mechanisms</a>, <a href="https://publications.waset.org/abstracts/search?q=software" title=" software"> software</a> </p> <a href="https://publications.waset.org/abstracts/130591/embedded-hardware-and-software-design-of-omnidirectional-autonomous-robotic-platform-suitable-for-advanced-driver-assistance-systems-testing-with-focus-on-modularity-and-safety" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130591.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2256</span> Performance and Damage Detection of Composite Structural Insulated Panels Subjected to Shock Wave Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anupoju%20Rajeev">Anupoju Rajeev</a>, <a href="https://publications.waset.org/abstracts/search?q=Joanne%20Mathew"> Joanne Mathew</a>, <a href="https://publications.waset.org/abstracts/search?q=Amit%20Shelke"> Amit Shelke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the current study, a new type of Composite Structural Insulated Panels (CSIPs) is developed and investigated its performance against shock loading which can replace the conventional wooden structural materials. The CSIPs is made of Fibre Cement Board (FCB)/aluminum as the facesheet and the expanded polystyrene foam as the core material. As tornadoes are very often in the western countries, it is suggestable to monitor the health of the CSIPs during its lifetime. So, the composite structure is installed with three smart sensors located randomly at definite locations. Each smart sensor is fabricated with an embedded half stainless phononic crystal sensor attached to both ends of the nylon shaft that can resist the shock and impact on facesheet as well as polystyrene foam core and safeguards the system. In addition to the granular crystal sensors, the accelerometers are used in the horizontal spanning and vertical spanning with a definite offset distance. To estimate the health and damage of the CSIP panel using granular crystal sensor, shock wave loading experiments are conducted. During the experiments, the time of flight response from the granular sensors is measured. The main objective of conducting shock wave loading experiments on the CSIP panels is to study the effect and the sustaining capacity of the CSIP panels in the extreme hazardous situations like tornados and hurricanes which are very common in western countries. The effects have been replicated using a shock tube, an instrument that can be used to create the same wind and pressure intensity of tornado for the experimental study. Numerous experiments have been conducted to investigate the flexural strength of the CSIP. Furthermore, the study includes the damage detection using three smart sensors embedded in the CSIPs during the shock wave loading. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20structural%20insulated%20panels" title="composite structural insulated panels">composite structural insulated panels</a>, <a href="https://publications.waset.org/abstracts/search?q=damage%20detection" title=" damage detection"> damage detection</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20strength" title=" flexural strength"> flexural strength</a>, <a href="https://publications.waset.org/abstracts/search?q=sandwich%20structures" title=" sandwich structures"> sandwich structures</a>, <a href="https://publications.waset.org/abstracts/search?q=shock%20wave%20loading" title=" shock wave loading"> shock wave loading</a> </p> <a href="https://publications.waset.org/abstracts/96316/performance-and-damage-detection-of-composite-structural-insulated-panels-subjected-to-shock-wave-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96316.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2255</span> Real Time Lidar and Radar High-Level Fusion for Obstacle Detection and Tracking with Evaluation on a Ground Truth</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hatem%20Hajri">Hatem Hajri</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed-Cherif%20Rahal"> Mohamed-Cherif Rahal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Both Lidars and Radars are sensors for obstacle detection. While Lidars are very accurate on obstacles positions and less accurate on their velocities, Radars are more precise on obstacles velocities and less precise on their positions. Sensor fusion between Lidar and Radar aims at improving obstacle detection using advantages of the two sensors. The present paper proposes a real-time Lidar/Radar data fusion algorithm for obstacle detection and tracking based on the global nearest neighbour standard filter (GNN). This algorithm is implemented and embedded in an automative vehicle as a component generated by a real-time multisensor software. The benefits of data fusion comparing with the use of a single sensor are illustrated through several tracking scenarios (on a highway and on a bend) and using real-time kinematic sensors mounted on the ego and tracked vehicles as a ground truth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ground%20truth" title="ground truth">ground truth</a>, <a href="https://publications.waset.org/abstracts/search?q=Hungarian%20algorithm" title=" Hungarian algorithm"> Hungarian algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=lidar%20Radar%20data%20fusion" title=" lidar Radar data fusion"> lidar Radar data fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20nearest%20neighbor%20filter" title=" global nearest neighbor filter"> global nearest neighbor filter</a> </p> <a href="https://publications.waset.org/abstracts/95451/real-time-lidar-and-radar-high-level-fusion-for-obstacle-detection-and-tracking-with-evaluation-on-a-ground-truth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95451.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2254</span> Restructuring of Embedded System Design Course: Making It Industry Compliant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Geetishree%20Mishra">Geetishree Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Akhila"> S. Akhila</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Embedded System Design, the most challenging course of electronics engineering has always been appreciated and well acclaimed by the students of electronics and its related branches of engineering. Embedded system, being a product of multiple application domains, necessitates skilled man power to be well designed and tested in every important aspect of both hardware and software. In the current industrial scenario, the requirements are even more rigorous and highly demanding and needs to be to be on par with the advanced technologies. Fresh engineers are expected to be thoroughly groomed by the academic system and the teaching community. Graduates with the ability to understand both complex technological processes and technical skills are increasingly sought after in today's embedded industry. So, the need of the day is to restructure the under-graduate course- both theory and lab practice along with the teaching methodologies to meet the industrial requirements. This paper focuses on the importance of such a need in the present education system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=embedded%20system%20design" title="embedded system design">embedded system design</a>, <a href="https://publications.waset.org/abstracts/search?q=industry%20requirement" title=" industry requirement"> industry requirement</a>, <a href="https://publications.waset.org/abstracts/search?q=syllabus%20restructuring" title=" syllabus restructuring"> syllabus restructuring</a>, <a href="https://publications.waset.org/abstracts/search?q=project-based%20learning" title=" project-based learning"> project-based learning</a>, <a href="https://publications.waset.org/abstracts/search?q=teaching%20methodology" title=" teaching methodology"> teaching methodology</a> </p> <a href="https://publications.waset.org/abstracts/20533/restructuring-of-embedded-system-design-course-making-it-industry-compliant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20533.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">661</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2253</span> Development of a Serial Signal Monitoring Program for Educational Purposes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jungho%20Moon">Jungho Moon</a>, <a href="https://publications.waset.org/abstracts/search?q=Lae-Jeong%20Park"> Lae-Jeong Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper introduces a signal monitoring program developed with a view to helping electrical engineering students get familiar with sensors with digital output. Because the output of digital sensors cannot be simply monitored by a measuring instrument such as an oscilloscope, students tend to have a hard time dealing with digital sensors. The monitoring program runs on a PC and communicates with an MCU that reads the output of digital sensors via an asynchronous communication interface. Receiving the sensor data from the MCU, the monitoring program shows time and/or frequency domain plots of the data in real time. In addition, the monitoring program provides a serial terminal that enables the user to exchange text information with the MCU while the received data is plotted. The user can easily observe the output of digital sensors and configure the digital sensors in real time, which helps students who do not have enough experiences with digital sensors. Though the monitoring program was programmed in the Matlab programming language, it runs without the Matlab since it was compiled as a standalone executable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20sensor" title="digital sensor">digital sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=MATLAB" title=" MATLAB"> MATLAB</a>, <a href="https://publications.waset.org/abstracts/search?q=MCU" title=" MCU"> MCU</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20monitoring%20program" title=" signal monitoring program"> signal monitoring program</a> </p> <a href="https://publications.waset.org/abstracts/41706/development-of-a-serial-signal-monitoring-program-for-educational-purposes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41706.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">496</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2252</span> Force Feedback Enabled Syringe for Aspiration and Biopsy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pelin%20Su%20Firat">Pelin Su Firat</a>, <a href="https://publications.waset.org/abstracts/search?q=Sohyung%20Cho"> Sohyung Cho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biopsy or aspiration procedures are known to be complicated as they involve the penetration of a needle through human tissues, including vital organs. This research presents the design of a force sensor-guided device to be used with syringes and needles for aspiration and biopsy. The development of the device was aimed to help accomplish accurate needle placement and increase the performance of the surgeon in navigating the tool and tracking the target. Specifically, a prototype for a force-sensor embedded syringe has been created using 3D (3-Dimensional) modeling and printing techniques in which two different force sensors were used to provide significant force feedback to users during the operations when needles pernitrate different tissues. From the extensive tests using synthetic tissues, it is shown that the proposed syringe design has accomplished the desired accuracy, efficiency, repeatability, and effectiveness. Further development is desirable through usability tests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biopsy" title="biopsy">biopsy</a>, <a href="https://publications.waset.org/abstracts/search?q=syringe" title=" syringe"> syringe</a>, <a href="https://publications.waset.org/abstracts/search?q=force%20sensors" title=" force sensors"> force sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=haptic%20feedback" title=" haptic feedback"> haptic feedback</a> </p> <a href="https://publications.waset.org/abstracts/183278/force-feedback-enabled-syringe-for-aspiration-and-biopsy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183278.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2251</span> Development of 3D Laser Scanner for Robot Navigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Emre%20%C3%96zt%C3%BCrk">Ali Emre Öztürk</a>, <a href="https://publications.waset.org/abstracts/search?q=Ergun%20Ercelebi"> Ergun Ercelebi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Autonomous robotic systems needs an equipment like a human eye for their movement. Robotic camera systems, distance sensors and 3D laser scanners have been used in the literature. In this study a 3D laser scanner has been produced for those autonomous robotic systems. In general 3D laser scanners are using 2 dimension laser range finders that are moving on one-axis (1D) to generate the model. In this study, the model has been obtained by a one-dimensional laser range finder that is moving in two –axis (2D) and because of this the laser scanner has been produced cheaper. Furthermore for the laser scanner a motor driver, an embedded system control board has been used and at the same time a user interface card has been used to make the communication between those cards and computer. Due to this laser scanner, the density of the objects, the distance between the objects and the necessary path ways for the robot can be calculated. The data collected by the laser scanner system is converted in to cartesian coordinates to be modeled in AutoCAD program. This study shows also the synchronization between the computer user interface, AutoCAD and the embedded systems. As a result it makes the solution cheaper for such systems. The scanning results are enough for an autonomous robot but the scan cycle time should be developed. This study makes also contribution for further studies between the hardware and software needs since it has a powerful performance and a low cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20laser%20scanner" title="3D laser scanner">3D laser scanner</a>, <a href="https://publications.waset.org/abstracts/search?q=embedded%20system" title=" embedded system"> embedded system</a>, <a href="https://publications.waset.org/abstracts/search?q=1D%20laser%20range%20finder" title=" 1D laser range finder"> 1D laser range finder</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20model" title=" 3D model"> 3D model</a> </p> <a href="https://publications.waset.org/abstracts/3355/development-of-3d-laser-scanner-for-robot-navigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3355.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2250</span> Design and Implementation Wireless System by Using Microcontrollers.Application for Drive Acquisition System with Multiple Sensors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Fekhar">H. Fekhar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Design and implementation acquisition system using radio frequency (RF) ASK module and micro controllers PIC is proposed in this work. The paper includes hardware and software design. The design tools are divided into two units , namely the sender MCU and receiver.The system was designed to measure temperatures of two furnaces and pressure pneumatic process. The wireless transmitter unit use the 433.95 MHz band directly interfaced to micro controller PIC18F4620. The sender unit consists of temperatures-pressure sensors , conditioning circuits , keypad GLCD display and RF module.Signal conditioner converts the output of the sensors into an electric quantity suitable for operation of the display and recording system.The measurements circuits are connected directly to 10 bits multiplexed A/D converter.The graphic liquid crystal display (GLCD) is used . The receiver (RF) module connected to a second microcontroller ,receive the signal via RF receiver , decode the Address/data and reproduces the original data . The strategy adopted for establishing communication between the sender MCU and receiver uses the specific protocol “Header, Address and data”.The communication protocol dealing with transmission and reception have been successfully implemented . Some experimental results are provided to demonstrate the effectiveness of the proposed wireless system. This embedded system track temperatures – pressure signal reasonably well with a small error. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microcontrollers" title="microcontrollers">microcontrollers</a>, <a href="https://publications.waset.org/abstracts/search?q=sensors" title=" sensors"> sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=graphic%20liquid%20cristal%20display" title=" graphic liquid cristal display"> graphic liquid cristal display</a>, <a href="https://publications.waset.org/abstracts/search?q=protocol" title=" protocol"> protocol</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure" title=" pressure"> pressure</a> </p> <a href="https://publications.waset.org/abstracts/16552/design-and-implementation-wireless-system-by-using-microcontrollersapplication-for-drive-acquisition-system-with-multiple-sensors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16552.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2249</span> Discussing Embedded versus Central Machine Learning in Wireless Sensor Networks </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anne-Lena%20Kampen">Anne-Lena Kampen</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%98ivind%20Kure"> Øivind Kure</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Machine learning (ML) can be implemented in Wireless Sensor Networks (WSNs) as a central solution or distributed solution where the ML is embedded in the nodes. Embedding improves privacy and may reduce prediction delay. In addition, the number of transmissions is reduced. However, quality factors such as prediction accuracy, fault detection efficiency and coordinated control of the overall system suffer. Here, we discuss and highlight the trade-offs that should be considered when choosing between embedding and centralized ML, especially for multihop networks. In addition, we present estimations that demonstrate the energy trade-offs between embedded and centralized ML. Although the total network energy consumption is lower with central prediction, it makes the network more prone for partitioning due to the high forwarding load on the one-hop nodes. Moreover, the continuous improvements in the number of operations per joule for embedded devices will move the energy balance toward embedded prediction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=central%20machine%20learning" title="central machine learning">central machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=embedded%20machine%20learning" title=" embedded machine learning"> embedded machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title=" energy consumption"> energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20machine%20learning" title=" local machine learning"> local machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20sensor%20networks" title=" wireless sensor networks"> wireless sensor networks</a>, <a href="https://publications.waset.org/abstracts/search?q=WSN" title=" WSN"> WSN</a> </p> <a href="https://publications.waset.org/abstracts/127522/discussing-embedded-versus-central-machine-learning-in-wireless-sensor-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127522.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2248</span> Textile Based Physical Wearable Sensors for Healthcare Monitoring in Medical and Protective Garments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sejuti%20Malakar">Sejuti Malakar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Textile sensors have gained a lot of interest in recent years as it is instrumental in monitoring physiological and environmental changes, for a better diagnosis that can be useful in various fields like medical textiles, sports textiles, protective textiles, agro textiles, and geo-textiles. Moreover, with the development of flexible textile-based wearable sensors, the functionality of smart clothing is augmented for a more improved user experience when it comes to technical textiles. In this context, conductive textiles using new composites and nanomaterials are being developed while considering its compatibility with the textile manufacturing processes. This review aims to provide a comprehensive and detailed overview of the contemporary advancements in textile-based wearable physical sensors, used in the field of medical, security, surveillance, and protection, from a global perspective. The methodology used is through analysing various examples of integration of wearable textile-based sensors with clothing for daily use, keeping in mind the technological advances in the same. By comparing various case studies, we come across various challenges textile sensors, in terms of stability, the comfort of movement, and reliable sensing components to enable accurate measurements, in spite of progress in the engineering of the wearable. Addressing such concerns is critical for the future success of wearable sensors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flexible%20textile-based%20wearable%20sensors" title="flexible textile-based wearable sensors">flexible textile-based wearable sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=contemporary%20advancements" title=" contemporary advancements"> contemporary advancements</a>, <a href="https://publications.waset.org/abstracts/search?q=conductive%20textiles" title=" conductive textiles"> conductive textiles</a>, <a href="https://publications.waset.org/abstracts/search?q=body%20conformal%20design" title=" body conformal design"> body conformal design</a> </p> <a href="https://publications.waset.org/abstracts/130601/textile-based-physical-wearable-sensors-for-healthcare-monitoring-in-medical-and-protective-garments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130601.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2247</span> Coal Mining Safety Monitoring Using Wsn</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Somdatta%20Saha">Somdatta Saha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main purpose was to provide an implementable design scenario for underground coal mines using wireless sensor networks (WSNs). The main reason being that given the intricacies in the physical structure of a coal mine, only low power WSN nodes can produce accurate surveillance and accident detection data. The work mainly concentrated on designing and simulating various alternate scenarios for a typical mine and comparing them based on the obtained results to arrive at a final design. In the Era of embedded technology, the Zigbee protocols are used in more and more applications. Because of the rapid development of sensors, microcontrollers, and network technology, a reliable technological condition has been provided for our automatic real-time monitoring of coal mine. The underground system collects temperature, humidity and methane values of coal mine through sensor nodes in the mine; it also collects the number of personnel inside the mine with the help of an IR sensor, and then transmits the data to information processing terminal based on ARM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ARM" title="ARM">ARM</a>, <a href="https://publications.waset.org/abstracts/search?q=embedded%20board" title=" embedded board"> embedded board</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20sensor%20network%20%28Zigbee%29" title=" wireless sensor network (Zigbee)"> wireless sensor network (Zigbee)</a> </p> <a href="https://publications.waset.org/abstracts/23028/coal-mining-safety-monitoring-using-wsn" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23028.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2246</span> Model Based Fault Diagnostic Approach for Limit Switches</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zafar%20Mahmood">Zafar Mahmood</a>, <a href="https://publications.waset.org/abstracts/search?q=Surayya%20Naz"> Surayya Naz</a>, <a href="https://publications.waset.org/abstracts/search?q=Nazir%20Shah%20Khattak"> Nazir Shah Khattak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The degree of freedom relates to our capability to observe or model the energy paths within the system. Higher the number of energy paths being modeled leaves to us a higher degree of freedom, but increasing the time and modeling complexity rendering it useless for today’s world’s need for minimum time to market. Since the number of residuals that can be uniquely isolated are dependent on the number of independent outputs of the system, increasing the number of sensors required. The examples of discrete position sensors that may be used to form an array include limit switches, Hall effect sensors, optical sensors, magnetic sensors, etc. Their mechanical design can usually be tailored to fit in the transitional path of an STME in a variety of mechanical configurations. The case studies into multi-sensor system were carried out and actual data from sensors is used to test this generic framework. It is being investigated, how the proper modeling of limit switches as timing sensors, could lead to unified and neutral residual space while keeping the implementation cost reasonably low. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low-cost%20limit%20sensors" title="low-cost limit sensors">low-cost limit sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20diagnostics" title=" fault diagnostics"> fault diagnostics</a>, <a href="https://publications.waset.org/abstracts/search?q=Single%20Throw%20Mechanical%20Equipment%20%28STME%29" title=" Single Throw Mechanical Equipment (STME)"> Single Throw Mechanical Equipment (STME)</a>, <a href="https://publications.waset.org/abstracts/search?q=parameter%20estimation" title=" parameter estimation"> parameter estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=parity-space" title=" parity-space"> parity-space</a> </p> <a href="https://publications.waset.org/abstracts/25825/model-based-fault-diagnostic-approach-for-limit-switches" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25825.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">617</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2245</span> Design and Implementation of Embedded FM Transmission Control SW for Low Power Battery System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Young-Su%20Ryu">Young-Su Ryu</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyung-Won%20Park"> Kyung-Won Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae-Hoon%20Song"> Jae-Hoon Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Ki-Won%20Kwon"> Ki-Won Kwon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, an embedded frequency modulation (FM) transmission control software (SW) for a low power battery system is designed and implemented. The simultaneous translation systems for various languages are needed as so many international conferences and festivals are held in world wide. Especially in portable transmitting and receiving systems, the ability of long operation life is used for a measure of value. This paper proposes an embedded FM transmission control SW for low power battery system and shows the results of the SW implemented on a portable FM transmission system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FM%20transmission" title="FM transmission">FM transmission</a>, <a href="https://publications.waset.org/abstracts/search?q=simultaneous%20translation%20system" title=" simultaneous translation system"> simultaneous translation system</a>, <a href="https://publications.waset.org/abstracts/search?q=portable%20transmitting%20and%20receiving%20systems" title=" portable transmitting and receiving systems"> portable transmitting and receiving systems</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20power%20embedded%20control%20SW" title=" low power embedded control SW"> low power embedded control SW</a> </p> <a href="https://publications.waset.org/abstracts/67493/design-and-implementation-of-embedded-fm-transmission-control-sw-for-low-power-battery-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67493.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2244</span> Hand Gesture Interpretation Using Sensing Glove Integrated with Machine Learning Algorithms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aqsa%20Ali">Aqsa Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleem%20Mushtaq"> Aleem Mushtaq</a>, <a href="https://publications.waset.org/abstracts/search?q=Attaullah%20Memon"> Attaullah Memon</a>, <a href="https://publications.waset.org/abstracts/search?q=Monna"> Monna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present a low cost design for a smart glove that can perform sign language recognition to assist the speech impaired people. Specifically, we have designed and developed an Assistive Hand Gesture Interpreter that recognizes hand movements relevant to the American Sign Language (ASL) and translates them into text for display on a Thin-Film-Transistor Liquid Crystal Display (<em>TFT</em>&nbsp;LCD) screen as well as synthetic speech. Linear Bayes Classifiers and Multilayer Neural Networks have been used to classify 11 feature vectors obtained from the sensors on the glove into one of the 27 ASL alphabets and a predefined gesture for space. Three types of features are used; bending using six bend sensors, orientation in three dimensions using accelerometers and contacts at vital points using contact sensors. To gauge the performance of the presented design, the training database was prepared using five volunteers. The accuracy of the current version on the prepared dataset was found to be up to 99.3% for target user. The solution combines electronics, e-textile technology, sensor technology, embedded system and machine learning techniques to build a low cost wearable glove that is scrupulous, elegant and portable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=American%20sign%20language" title="American sign language">American sign language</a>, <a href="https://publications.waset.org/abstracts/search?q=assistive%20hand%20gesture%20interpreter" title=" assistive hand gesture interpreter"> assistive hand gesture interpreter</a>, <a href="https://publications.waset.org/abstracts/search?q=human-machine%20interface" title=" human-machine interface"> human-machine interface</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=sensing%20glove" title=" sensing glove"> sensing glove</a> </p> <a href="https://publications.waset.org/abstracts/52683/hand-gesture-interpretation-using-sensing-glove-integrated-with-machine-learning-algorithms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52683.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2243</span> Evaluation of Polymerisation Shrinkage of Randomly Oriented Micro-Sized Fibre Reinforced Dental Composites Using Fibre-Bragg Grating Sensors and Their Correlation with Degree of Conversion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sonam%20Behl">Sonam Behl</a>, <a href="https://publications.waset.org/abstracts/search?q=Raju"> Raju</a>, <a href="https://publications.waset.org/abstracts/search?q=Ginu%20Rajan"> Ginu Rajan</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Farrar"> Paul Farrar</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Gangadhara%20Prusty"> B. Gangadhara Prusty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reinforcing dental composites with micro-sized fibres can significantly improve the physio-mechanical properties of dental composites. The short fibres can be oriented randomly within dental composites, thus providing quasi-isotropic reinforcing efficiency unlike unidirectional/bidirectional fibre reinforced composites enhancing anisotropic properties. Thus, short fibres reinforced dental composites are getting popular among practitioners. However, despite their popularity, resin-based dental composites are prone to failure on account of shrinkage during photo polymerisation. The shrinkage in the structure may lead to marginal gap formation, causing secondary caries, thus ultimately inducing failure of the restoration. The traditional methods to evaluate polymerisation shrinkage using strain gauges, density-based measurements, dilatometer, or bonded-disk focuses on average value of volumetric shrinkage. Moreover, the results obtained from traditional methods are sensitive to the specimen geometry. The present research aims to evaluate the real-time shrinkage strain at selected locations in the material with the help of optical fibre Bragg grating (FBG) sensors. Due to the miniature size (diameter 250 µm) of FBG sensors, they can be easily embedded into small samples of dental composites. Furthermore, an FBG array into the system can map the real-time shrinkage strain at different regions of the composite. The evaluation of real-time monitoring of shrinkage values may help to optimise the physio-mechanical properties of composites. Previously, FBG sensors have been able to rightfully measure polymerisation strains of anisotropic (unidirectional or bidirectional) reinforced dental composites. However, very limited study exists to establish the validity of FBG based sensors to evaluate volumetric shrinkage for randomly oriented fibres reinforced composites. The present study aims to fill this research gap and is focussed on establishing the usage of FBG based sensors for evaluating the shrinkage of dental composites reinforced with randomly oriented fibres. Three groups of specimens were prepared by mixing the resin (80% UDMA/20% TEGDMA) with 55% of silane treated BaAlSiO₂ particulate fillers or by adding 5% of micro-sized fibres of diameter 5 µm, and length 250/350 µm along with 50% of silane treated BaAlSiO₂ particulate fillers into the resin. For measurement of polymerisation shrinkage strain, an array of three fibre Bragg grating sensors was embedded at a depth of 1 mm into a circular Teflon mould of diameter 15 mm and depth 2 mm. The results obtained are compared with the traditional method for evaluation of the volumetric shrinkage using density-based measurements. Degree of conversion was measured using FTIR spectroscopy (Spotlight 400 FT-IR from PerkinElmer). It is expected that the average polymerisation shrinkage strain values for dental composites reinforced with micro-sized fibres can directly correlate with the measured degree of conversion values, implying that more C=C double bond conversion to C-C single bond values also leads to higher shrinkage strain within the composite. Moreover, it could be established the photonics approach could help assess the shrinkage at any point of interest in the material, suggesting that fibre-Bragg grating sensors are a suitable means for measuring real-time polymerisation shrinkage strain for randomly fibre reinforced dental composites as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dental%20composite" title="dental composite">dental composite</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20fibre" title=" glass fibre"> glass fibre</a>, <a href="https://publications.waset.org/abstracts/search?q=polymerisation%20shrinkage%20strain" title=" polymerisation shrinkage strain"> polymerisation shrinkage strain</a>, <a href="https://publications.waset.org/abstracts/search?q=fibre-Bragg%20grating%20sensors" title=" fibre-Bragg grating sensors"> fibre-Bragg grating sensors</a> </p> <a href="https://publications.waset.org/abstracts/109428/evaluation-of-polymerisation-shrinkage-of-randomly-oriented-micro-sized-fibre-reinforced-dental-composites-using-fibre-bragg-grating-sensors-and-their-correlation-with-degree-of-conversion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109428.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2242</span> Development of a Miniature and Low-Cost IoT-Based Remote Health Monitoring Device</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sreejith%20Jayachandran">Sreejith Jayachandran</a>, <a href="https://publications.waset.org/abstracts/search?q=Mojtaba%20Ghods"> Mojtaba Ghods</a>, <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Mohammadzaheri"> Morteza Mohammadzaheri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The modern busy world is running behind new embedded technologies based on computers and software; meanwhile, some people forget to do their health condition and regular medical check-ups. Some of them postpone medical check-ups due to a lack of time and convenience, while others skip these regular evaluations and medical examinations due to huge medical bills and hospital expenses. Engineers and medical experts have come together to give birth to a new device in the telemonitoring system capable of monitoring, checking, and evaluating the health status of the human body remotely through the internet for the needs of all kinds of people. The remote health monitoring device is a microcontroller-based embedded unit. Various types of sensors in this device are connected to the human body, and with the help of an Arduino UNO board, the required analogue data is collected from the sensors. The microcontroller on the Arduino board processes the analogue data collected in this way into digital data and transfers that information to the cloud, and stores it there, and the processed digital data is instantly displayed through the LCD attached to the machine. By accessing the cloud storage with a username and password, the concerned person’s health care teams/doctors and other health staff can collect this data for the assessment and follow-up of that patient. Besides that, the family members/guardians can use and evaluate this data for awareness of the patient's current health status. Moreover, the system is connected to a Global Positioning System (GPS) module. In emergencies, the concerned team can position the patient or the person with this device. The setup continuously evaluates and transfers the data to the cloud, and also the user can prefix a normal value range for the evaluation. For example, the blood pressure normal value is universally prefixed between 80/120 mmHg. Similarly, the RHMS is also allowed to fix the range of values referred to as normal coefficients. This IoT-based miniature system (11×10×10) cm³ with a low weight of 500 gr only consumes 10 mW. This smart monitoring system is manufactured with 100 GBP, which can be used not only for health systems, it can be used for numerous other uses including aerospace and transportation sections. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=embedded%20technology" title="embedded technology">embedded technology</a>, <a href="https://publications.waset.org/abstracts/search?q=telemonitoring%20system" title=" telemonitoring system"> telemonitoring system</a>, <a href="https://publications.waset.org/abstracts/search?q=microcontroller" title=" microcontroller"> microcontroller</a>, <a href="https://publications.waset.org/abstracts/search?q=Arduino%20UNO" title=" Arduino UNO"> Arduino UNO</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20storage" title=" cloud storage"> cloud storage</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20positioning%20system" title=" global positioning system"> global positioning system</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20health%20monitoring%20system" title=" remote health monitoring system"> remote health monitoring system</a>, <a href="https://publications.waset.org/abstracts/search?q=alert%20system" title=" alert system"> alert system</a> </p> <a href="https://publications.waset.org/abstracts/158265/development-of-a-miniature-and-low-cost-iot-based-remote-health-monitoring-device" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158265.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2241</span> Recognition of Cursive Arabic Handwritten Text Using Embedded Training Based on Hidden Markov Models (HMMs)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rabi%20Mouhcine">Rabi Mouhcine</a>, <a href="https://publications.waset.org/abstracts/search?q=Amrouch%20Mustapha"> Amrouch Mustapha</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahani%20Zouhir"> Mahani Zouhir</a>, <a href="https://publications.waset.org/abstracts/search?q=Mammass%20Driss"> Mammass Driss</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present a system for offline recognition cursive Arabic handwritten text based on Hidden Markov Models (HMMs). The system is analytical without explicit segmentation used embedded training to perform and enhance the character models. Extraction features preceded by baseline estimation are statistical and geometric to integrate both the peculiarities of the text and the pixel distribution characteristics in the word image. These features are modelled using hidden Markov models and trained by embedded training. The experiments on images of the benchmark IFN/ENIT database show that the proposed system improves recognition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=recognition" title="recognition">recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=handwriting" title=" handwriting"> handwriting</a>, <a href="https://publications.waset.org/abstracts/search?q=Arabic%20text" title=" Arabic text"> Arabic text</a>, <a href="https://publications.waset.org/abstracts/search?q=HMMs" title=" HMMs"> HMMs</a>, <a href="https://publications.waset.org/abstracts/search?q=embedded%20training" title=" embedded training"> embedded training</a> </p> <a href="https://publications.waset.org/abstracts/54405/recognition-of-cursive-arabic-handwritten-text-using-embedded-training-based-on-hidden-markov-models-hmms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54405.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=embedded%20sensors&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=embedded%20sensors&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=embedded%20sensors&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=embedded%20sensors&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=embedded%20sensors&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=embedded%20sensors&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=embedded%20sensors&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=embedded%20sensors&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=embedded%20sensors&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=embedded%20sensors&amp;page=75">75</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=embedded%20sensors&amp;page=76">76</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=embedded%20sensors&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10