CINXE.COM
Search results for: coherent forecasts
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: coherent forecasts</title> <meta name="description" content="Search results for: coherent forecasts"> <meta name="keywords" content="coherent forecasts"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="coherent forecasts" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="coherent forecasts"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 431</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: coherent forecasts</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">431</span> Forecasting Age-Specific Mortality Rates and Life Expectancy at Births for Malaysian Sub-Populations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syazreen%20N.%20Shair">Syazreen N. Shair</a>, <a href="https://publications.waset.org/abstracts/search?q=Saiful%20A.%20Ishak"> Saiful A. Ishak</a>, <a href="https://publications.waset.org/abstracts/search?q=Aida%20Y.%20Yusof"> Aida Y. Yusof</a>, <a href="https://publications.waset.org/abstracts/search?q=Azizah%20Murad"> Azizah Murad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we forecast age-specific Malaysian mortality rates and life expectancy at births by gender and ethnic groups including Malay, Chinese and Indian. Two mortality forecasting models are adopted the original Lee-Carter model and its recent modified version, the product ratio coherent model. While the first forecasts the mortality rates for each subpopulation independently, the latter accounts for the relationship between sub-populations. The evaluation of both models is performed using the out-of-sample forecast errors which are mean absolute percentage errors (MAPE) for mortality rates and mean forecast errors (MFE) for life expectancy at births. The best model is then used to perform the long-term forecasts up to the year 2030, the year when Malaysia is expected to become an aged nation. Results suggest that in terms of overall accuracy, the product ratio model performs better than the original Lee-Carter model. The association of lower mortality group (Chinese) in the subpopulation model can improve the forecasts of high mortality groups (Malay and Indian). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coherent%20forecasts" title="coherent forecasts">coherent forecasts</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20expectancy%20at%20births" title=" life expectancy at births"> life expectancy at births</a>, <a href="https://publications.waset.org/abstracts/search?q=Lee-Carter%20model" title=" Lee-Carter model"> Lee-Carter model</a>, <a href="https://publications.waset.org/abstracts/search?q=product-ratio%20model" title=" product-ratio model"> product-ratio model</a>, <a href="https://publications.waset.org/abstracts/search?q=mortality%20rates" title=" mortality rates"> mortality rates</a> </p> <a href="https://publications.waset.org/abstracts/61574/forecasting-age-specific-mortality-rates-and-life-expectancy-at-births-for-malaysian-sub-populations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61574.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">430</span> Currency Exchange Rate Forecasts Using Quantile Regression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuzhi%20Cai">Yuzhi Cai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we discuss a Bayesian approach to quantile autoregressive (QAR) time series model estimation and forecasting. Together with a combining forecasts technique, we then predict USD to GBP currency exchange rates. Combined forecasts contain all the information captured by the fitted QAR models at different quantile levels and are therefore better than those obtained from individual models. Our results show that an unequally weighted combining method performs better than other forecasting methodology. We found that a median AR model can perform well in point forecasting when the predictive density functions are symmetric. However, in practice, using the median AR model alone may involve the loss of information about the data captured by other QAR models. We recommend that combined forecasts should be used whenever possible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combining%20forecasts" title="combining forecasts">combining forecasts</a>, <a href="https://publications.waset.org/abstracts/search?q=MCMC" title=" MCMC"> MCMC</a>, <a href="https://publications.waset.org/abstracts/search?q=predictive%20density%20functions" title=" predictive density functions"> predictive density functions</a>, <a href="https://publications.waset.org/abstracts/search?q=quantile%20forecasting" title=" quantile forecasting"> quantile forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=quantile%20modelling" title=" quantile modelling"> quantile modelling</a> </p> <a href="https://publications.waset.org/abstracts/45531/currency-exchange-rate-forecasts-using-quantile-regression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45531.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">429</span> Spin Coherent States Without Squeezing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Dehghani">A. Dehghani</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Shirin"> S. Shirin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We propose in this article a new configuration of quantum states, |α, β> := |α>×|β>. Which are composed of vector products of two different copies of spin coherent states, |α> and |β>. Some mathematical as well as physical properties of such states are discussed. For instance, it has been shown that the cross products of two coherent vectors remain coherent again. They admit a resolution of the identity through positive definite measures on the complex plane. They represent packets similar to the true coherent states, in other words we would not expect to take spin squeezing in any of the field quadratures Lˆx, Lˆy and Lˆz. Depending on the particular choice of parameters in the above scenarios, they can be converted into the so-called Dicke states which minimize the uncertainty relations of each pair of the angular momentum components. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vector%20%28Cross-%29products" title="vector (Cross-)products">vector (Cross-)products</a>, <a href="https://publications.waset.org/abstracts/search?q=minimum%20uncertainty" title=" minimum uncertainty"> minimum uncertainty</a>, <a href="https://publications.waset.org/abstracts/search?q=angular%20momentum" title=" angular momentum"> angular momentum</a>, <a href="https://publications.waset.org/abstracts/search?q=measurement" title=" measurement"> measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=Dicke%20states" title=" Dicke states"> Dicke states</a> </p> <a href="https://publications.waset.org/abstracts/30477/spin-coherent-states-without-squeezing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30477.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">428</span> The Reliability of Management Earnings Forecasts in IPO Prospectuses: A Study of Managers’ Forecasting Preferences</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maha%20Hammami">Maha Hammami</a>, <a href="https://publications.waset.org/abstracts/search?q=Olfa%20Benouda%20Sioud"> Olfa Benouda Sioud </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the reliability of management earnings forecasts with reference to these two ingredients: verifiability and neutrality. Specifically, we examine the biasedness (or accuracy) of management earnings forecasts and company specific characteristics that can be associated with accuracy. Based on sample of 102 IPO prospectuses published for admission on NYSE Euronext Paris from 2002 to 2010, we found that these forecasts are on average optimistic and two of the five test variables, earnings variability and financial leverage are significant in explaining ex post bias. Acknowledging the possibility that the bias is the result of the managers’ forecasting behavior, we then examine whether managers decide to under-predict, over-predict or forecast accurately for self-serving purposes. Explicitly, we examine the role of financial distress, operating performance, ownership by insiders and the economy state in influencing managers’ forecasting preferences. We find that managers of distressed firms seem to over-predict future earnings. We also find that when managers are given more stock options, they tend to under-predict future earnings. Finally, we conclude that the management earnings forecasts are affected by an intentional bias due to managers’ forecasting preferences. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intentional%20bias" title="intentional bias">intentional bias</a>, <a href="https://publications.waset.org/abstracts/search?q=management%20earnings%20forecasts" title=" management earnings forecasts"> management earnings forecasts</a>, <a href="https://publications.waset.org/abstracts/search?q=neutrality" title=" neutrality"> neutrality</a>, <a href="https://publications.waset.org/abstracts/search?q=verifiability" title=" verifiability"> verifiability</a> </p> <a href="https://publications.waset.org/abstracts/6243/the-reliability-of-management-earnings-forecasts-in-ipo-prospectuses-a-study-of-managers-forecasting-preferences" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6243.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">427</span> Temporally Coherent 3D Animation Reconstruction from RGB-D Video Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salam%20Khalifa">Salam Khalifa</a>, <a href="https://publications.waset.org/abstracts/search?q=Naveed%20Ahmed"> Naveed Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present a new method to reconstruct a temporally coherent 3D animation from single or multi-view RGB-D video data using unbiased feature point sampling. Given RGB-D video data, in form of a 3D point cloud sequence, our method first extracts feature points using both color and depth information. In the subsequent steps, these feature points are used to match two 3D point clouds in consecutive frames independent of their resolution. Our new motion vectors based dynamic alignment method then fully reconstruct a spatio-temporally coherent 3D animation. We perform extensive quantitative validation using novel error functions to analyze the results. We show that despite the limiting factors of temporal and spatial noise associated to RGB-D data, it is possible to extract temporal coherence to faithfully reconstruct a temporally coherent 3D animation from RGB-D video data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20video" title="3D video">3D video</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20animation" title=" 3D animation"> 3D animation</a>, <a href="https://publications.waset.org/abstracts/search?q=RGB-D%20video" title=" RGB-D video"> RGB-D video</a>, <a href="https://publications.waset.org/abstracts/search?q=temporally%20coherent%203D%20animation" title=" temporally coherent 3D animation"> temporally coherent 3D animation</a> </p> <a href="https://publications.waset.org/abstracts/12034/temporally-coherent-3d-animation-reconstruction-from-rgb-d-video-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">426</span> The Impact of Corporate Social Responsibility Information Disclosure on the Accuracy of Analysts' Earnings Forecasts </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xin-Hua%20Zhao">Xin-Hua Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, the growth rate of social responsibility reports disclosed by Chinese corporations has grown rapidly. The economic effects of the growing corporate social responsibility reports have become a hot topic. The article takes the chemical listed engineering corporations that disclose social responsibility reports in China as a sample, and based on the information asymmetry theory, examines the economic effect generated by corporate social responsibility disclosure with the method of ordinary least squares. The research is conducted from the perspective of analysts’ earnings forecasts and studies the impact of corporate social responsibility information disclosure on improving the accuracy of analysts' earnings forecasts. The results show that there is a statistically significant negative correlation between corporate social responsibility disclosure index and analysts’ earnings forecast error. The conclusions confirm that enterprises can reduce the asymmetry of social and environmental information by disclosing social responsibility reports, and thus improve the accuracy of analysts’ earnings forecasts. It can promote the effective allocation of resources in the market. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analysts%27%20earnings%20forecasts" title="analysts' earnings forecasts">analysts' earnings forecasts</a>, <a href="https://publications.waset.org/abstracts/search?q=corporate%20social%20responsibility%20disclosure" title=" corporate social responsibility disclosure"> corporate social responsibility disclosure</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20effect" title=" economic effect"> economic effect</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20asymmetry" title=" information asymmetry"> information asymmetry</a> </p> <a href="https://publications.waset.org/abstracts/114447/the-impact-of-corporate-social-responsibility-information-disclosure-on-the-accuracy-of-analysts-earnings-forecasts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114447.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">425</span> On the Added Value of Probabilistic Forecasts Applied to the Optimal Scheduling of a PV Power Plant with Batteries in French Guiana</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rafael%20Alvarenga">Rafael Alvarenga</a>, <a href="https://publications.waset.org/abstracts/search?q=Hubert%20Herbaux"> Hubert Herbaux</a>, <a href="https://publications.waset.org/abstracts/search?q=Laurent%20Linguet"> Laurent Linguet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The uncertainty concerning the power production of intermittent renewable energy is one of the main barriers to the integration of such assets into the power grid. Efforts have thus been made to develop methods to quantify this uncertainty, allowing producers to ensure more reliable and profitable engagements related to their future power delivery. Even though a diversity of probabilistic approaches was proposed in the literature giving promising results, the added value of adopting such methods for scheduling intermittent power plants is still unclear. In this study, the profits obtained by a decision-making model used to optimally schedule an existing PV power plant connected to batteries are compared when the model is fed with deterministic and probabilistic forecasts generated with two of the most recent methods proposed in the literature. Moreover, deterministic forecasts with different accuracy levels were used in the experiments, testing the utility and the capability of probabilistic methods of modeling the progressively increasing uncertainty. Even though probabilistic approaches are unquestionably developed in the recent literature, the results obtained through a study case show that deterministic forecasts still provide the best performance if accurate, ensuring a gain of 14% on final profits compared to the average performance of probabilistic models conditioned to the same forecasts. When the accuracy of deterministic forecasts progressively decreases, probabilistic approaches start to become competitive options until they completely outperform deterministic forecasts when these are very inaccurate, generating 73% more profits in the case considered compared to the deterministic approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PV%20power%20forecasting" title="PV power forecasting">PV power forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty%20quantification" title=" uncertainty quantification"> uncertainty quantification</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20scheduling" title=" optimal scheduling"> optimal scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20systems" title=" power systems"> power systems</a> </p> <a href="https://publications.waset.org/abstracts/162797/on-the-added-value-of-probabilistic-forecasts-applied-to-the-optimal-scheduling-of-a-pv-power-plant-with-batteries-in-french-guiana" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">424</span> Forecasting Container Throughput: Using Aggregate or Terminal-Specific Data?</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gu%20Pang">Gu Pang</a>, <a href="https://publications.waset.org/abstracts/search?q=Bartosz%20Gebka"> Bartosz Gebka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We forecast the demand of total container throughput at the Indonesia’s largest seaport, Tanjung Priok Port. We propose four univariate forecasting models, including SARIMA, the additive Seasonal Holt-Winters, the multiplicative Seasonal Holt-Winters and the Vector Error Correction Model. Our aim is to provide insights into whether forecasting the total container throughput obtained by historical aggregated port throughput time series is superior to the forecasts of the total throughput obtained by summing up the best individual terminal forecasts. We test the monthly port/individual terminal container throughput time series between 2003 and 2013. The performance of forecasting models is evaluated based on Mean Absolute Error and Root Mean Squared Error. Our results show that the multiplicative Seasonal Holt-Winters model produces the most accurate forecasts of total container throughput, whereas SARIMA generates the worst in-sample model fit. The Vector Error Correction Model provides the best model fits and forecasts for individual terminals. Our results report that the total container throughput forecasts based on modelling the total throughput time series are consistently better than those obtained by combining those forecasts generated by terminal-specific models. The forecasts of total throughput until the end of 2018 provide an essential insight into the strategic decision-making on the expansion of port's capacity and construction of new container terminals at Tanjung Priok Port. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SARIMA" title="SARIMA">SARIMA</a>, <a href="https://publications.waset.org/abstracts/search?q=Seasonal%20Holt-Winters" title=" Seasonal Holt-Winters"> Seasonal Holt-Winters</a>, <a href="https://publications.waset.org/abstracts/search?q=Vector%20Error%20Correction%20Model" title=" Vector Error Correction Model"> Vector Error Correction Model</a>, <a href="https://publications.waset.org/abstracts/search?q=container%20throughput" title=" container throughput"> container throughput</a> </p> <a href="https://publications.waset.org/abstracts/24832/forecasting-container-throughput-using-aggregate-or-terminal-specific-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24832.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">504</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">423</span> Long Wavelength Coherent Pulse of Sound Propagating in Granular Media</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rohit%20Kumar%20Shrivastava">Rohit Kumar Shrivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=Amalia%20Thomas"> Amalia Thomas</a>, <a href="https://publications.waset.org/abstracts/search?q=Nathalie%20Vriend"> Nathalie Vriend</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefan%20Luding"> Stefan Luding</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A mechanical wave or vibration propagating through granular media exhibits a specific signature in time. A coherent pulse or wavefront arrives first with multiply scattered waves (coda) arriving later. The coherent pulse is micro-structure independent i.e. it depends only on the bulk properties of the disordered granular sample, the sound wave velocity of the granular sample and hence bulk and shear moduli. The coherent wavefront attenuates (decreases in amplitude) and broadens with distance from its source. The pulse attenuation and broadening effects are affected by disorder (polydispersity; contrast in size of the granules) and have often been attributed to dispersion and scattering. To study the effect of disorder and initial amplitude (non-linearity) of the pulse imparted to the system on the coherent wavefront, numerical simulations have been carried out on one-dimensional sets of particles (granular chains). The interaction force between the particles is given by a Hertzian contact model. The sizes of particles have been selected randomly from a Gaussian distribution, where the standard deviation of this distribution is the relevant parameter that quantifies the effect of disorder on the coherent wavefront. Since, the coherent wavefront is system configuration independent, ensemble averaging has been used for improving the signal quality of the coherent pulse and removing the multiply scattered waves. The results concerning the width of the coherent wavefront have been formulated in terms of scaling laws. An experimental set-up of photoelastic particles constituting a granular chain is proposed to validate the numerical results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discrete%20elements" title="discrete elements">discrete elements</a>, <a href="https://publications.waset.org/abstracts/search?q=Hertzian%20contact" title=" Hertzian contact"> Hertzian contact</a>, <a href="https://publications.waset.org/abstracts/search?q=polydispersity" title=" polydispersity"> polydispersity</a>, <a href="https://publications.waset.org/abstracts/search?q=weakly%20nonlinear" title=" weakly nonlinear"> weakly nonlinear</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20propagation" title=" wave propagation"> wave propagation</a> </p> <a href="https://publications.waset.org/abstracts/73014/long-wavelength-coherent-pulse-of-sound-propagating-in-granular-media" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73014.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">422</span> Searching the Efficient Frontier for the Coherent Covering Location Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Felipe%20Azocar%20Simonet">Felipe Azocar Simonet</a>, <a href="https://publications.waset.org/abstracts/search?q=Luis%20Acosta%20Espejo"> Luis Acosta Espejo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article, we will try to find an efficient boundary approximation for the bi-objective location problem with coherent coverage for two levels of hierarchy (CCLP). We present the mathematical formulation of the model used. Supported efficient solutions and unsupported efficient solutions are obtained by solving the bi-objective combinatorial problem through the weights method using a Lagrangean heuristic. Subsequently, the results are validated through the DEA analysis with the GEM index (Global efficiency measurement). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coherent%20covering%20location%20problem" title="coherent covering location problem">coherent covering location problem</a>, <a href="https://publications.waset.org/abstracts/search?q=efficient%20frontier" title=" efficient frontier"> efficient frontier</a>, <a href="https://publications.waset.org/abstracts/search?q=lagragian%20relaxation" title=" lagragian relaxation"> lagragian relaxation</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20envelopment%20analysis" title=" data envelopment analysis"> data envelopment analysis</a> </p> <a href="https://publications.waset.org/abstracts/74509/searching-the-efficient-frontier-for-the-coherent-covering-location-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74509.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">421</span> The Term Structure of Government Bond Yields in an Emerging Market: Empirical Evidence from Pakistan Bond Market</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wali%20Ullah">Wali Ullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Nishat"> Muhammad Nishat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study investigates the extent to which the so called Nelson-Siegel model (DNS) and its extended version that accounts for time varying volatility (DNS-EGARCH) can optimally fit the yield curve and predict its future path in the context of an emerging economy. For the in-sample fit, both models fit the curve remarkably well even in the emerging markets. However, the DNS-EGARCH model fits the curve slightly better than the DNS. Moreover, both specifications of yield curve that are based on the Nelson-Siegel functional form outperform the benchmark VAR forecasts at all forecast horizons. The DNS-EGARCH comes with more precise forecasts than the DNS for the 6- and 12-month ahead forecasts, while the two have almost similar performance in terms of RMSE for the very short forecast horizons. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=yield%20curve" title="yield curve">yield curve</a>, <a href="https://publications.waset.org/abstracts/search?q=forecasting" title=" forecasting"> forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=emerging%20markets" title=" emerging markets"> emerging markets</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalman%20filter" title=" Kalman filter"> Kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=EGARCH" title=" EGARCH"> EGARCH</a> </p> <a href="https://publications.waset.org/abstracts/17242/the-term-structure-of-government-bond-yields-in-an-emerging-market-empirical-evidence-from-pakistan-bond-market" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17242.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">539</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">420</span> Estimation and Forecasting with a Quantile AR Model for Financial Returns </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuzhi%20Cai">Yuzhi Cai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This talk presents a Bayesian approach to quantile autoregressive (QAR) time series model estimation and forecasting. We establish that the joint posterior distribution of the model parameters and future values is well defined. The associated MCMC algorithm for parameter estimation and forecasting converges to the posterior distribution quickly. We also present a combining forecasts technique to produce more accurate out-of-sample forecasts by using a weighted sequence of fitted QAR models. A moving window method to check the quality of the estimated conditional quantiles is developed. We verify our methodology using simulation studies and then apply it to currency exchange rate data. An application of the method to the USD to GBP daily currency exchange rates will also be discussed. The results obtained show that an unequally weighted combining method performs better than other forecasting methodology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combining%20forecasts" title="combining forecasts">combining forecasts</a>, <a href="https://publications.waset.org/abstracts/search?q=MCMC" title=" MCMC"> MCMC</a>, <a href="https://publications.waset.org/abstracts/search?q=quantile%20modelling" title=" quantile modelling"> quantile modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=quantile%20forecasting" title=" quantile forecasting"> quantile forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=predictive%20density%20functions" title=" predictive density functions"> predictive density functions</a> </p> <a href="https://publications.waset.org/abstracts/33437/estimation-and-forecasting-with-a-quantile-ar-model-for-financial-returns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33437.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">419</span> Downscaling Seasonal Sea Surface Temperature Forecasts over the Mediterranean Sea Using Deep Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Redouane%20Larbi%20Boufeniza">Redouane Larbi Boufeniza</a>, <a href="https://publications.waset.org/abstracts/search?q=Jing-Jia%20Luo"> Jing-Jia Luo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study assesses the suitability of deep learning (DL) for downscaling sea surface temperature (SST) over the Mediterranean Sea in the context of seasonal forecasting. We design a set of experiments that compare different DL configurations and deploy the best-performing architecture to downscale one-month lead forecasts of June–September (JJAS) SST from the Nanjing University of Information Science and Technology Climate Forecast System version 1.0 (NUIST-CFS1.0) for the period of 1982–2020. We have also introduced predictors over a larger area to include information about the main large-scale circulations that drive SST over the Mediterranean Sea region, which improves the downscaling results. Finally, we validate the raw model and downscaled forecasts in terms of both deterministic and probabilistic verification metrics, as well as their ability to reproduce the observed precipitation extreme and spell indicator indices. The results showed that the convolutional neural network (CNN)-based downscaling consistently improves the raw model forecasts, with lower bias and more accurate representations of the observed mean and extreme SST spatial patterns. Besides, the CNN-based downscaling yields a much more accurate forecast of extreme SST and spell indicators and reduces the significant relevant biases exhibited by the raw model predictions. Moreover, our results show that the CNN-based downscaling yields better skill scores than the raw model forecasts over most portions of the Mediterranean Sea. The results demonstrate the potential usefulness of CNN in downscaling seasonal SST predictions over the Mediterranean Sea, particularly in providing improved forecast products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mediterranean%20Sea" title="Mediterranean Sea">Mediterranean Sea</a>, <a href="https://publications.waset.org/abstracts/search?q=sea%20surface%20temperature" title=" sea surface temperature"> sea surface temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=seasonal%20forecasting" title=" seasonal forecasting"> seasonal forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=downscaling" title=" downscaling"> downscaling</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a> </p> <a href="https://publications.waset.org/abstracts/166824/downscaling-seasonal-sea-surface-temperature-forecasts-over-the-mediterranean-sea-using-deep-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166824.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">418</span> Unsupervised Learning of Spatiotemporally Coherent Metrics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ross%20Goroshin">Ross Goroshin</a>, <a href="https://publications.waset.org/abstracts/search?q=Joan%20Bruna"> Joan Bruna</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonathan%20Tompson"> Jonathan Tompson</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Eigen"> David Eigen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yann%20LeCun"> Yann LeCun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Current state-of-the-art classification and detection algorithms rely on supervised training. In this work we study unsupervised feature learning in the context of temporally coherent video data. We focus on feature learning from unlabeled video data, using the assumption that adjacent video frames contain semantically similar information. This assumption is exploited to train a convolutional pooling auto-encoder regularized by slowness and sparsity. We establish a connection between slow feature learning to metric learning and show that the trained encoder can be used to define a more temporally and semantically coherent metric. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title="machine learning">machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=pattern%20clustering" title=" pattern clustering"> pattern clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=pooling" title=" pooling"> pooling</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification "> classification </a> </p> <a href="https://publications.waset.org/abstracts/29488/unsupervised-learning-of-spatiotemporally-coherent-metrics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29488.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">417</span> How Participatory Climate Information Services Assist Farmers to Uptake Rice Disease Forecasts and Manage Diseases in Advance: Evidence from Coastal Bangladesh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moriom%20Akter%20Mousumi">Moriom Akter Mousumi</a>, <a href="https://publications.waset.org/abstracts/search?q=Spyridon%20Paparrizos"> Spyridon Paparrizos</a>, <a href="https://publications.waset.org/abstracts/search?q=Fulco%20Ludwig"> Fulco Ludwig</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rice yield reduction due to climate change-induced disease occurrence is becoming a great concern for coastal farmers of Bangladesh. The development of participatory climate information services (CIS) based on farmers’ needs could implicitly facilitate farmers to get disease forecasts and make better decisions to manage diseases. Therefore, this study aimed to investigate how participatory climate information services assist coastal rice farmers to take up rice disease forecasts and better manage rice diseases by improving their informed decision-making. Through participatory approaches, we developed a tailor-made agrometeorological service through the DROP app to forecast rice diseases and manage them in advance. During farmers field schools (FFS) we communicated 7-day disease forecasts during face-to-face weekly meetings using printed paper and, messenger app derived from DROP app. Results show that the majority of the farmers understand disease forecasts through visualization, symbols, and text. The majority of them use disease forecast information directly from the DROP app followed by face-to-face meetings, messenger app, and printed paper. Farmers participation and engagement during capacity building training at FFS also assist them in making more informed decisions and improved management of diseases using both preventive measures and chemical measures throughout the rice cultivation period. We conclude that the development of participatory CIS and the associated capacity-building and training of farmers has increased farmers' understanding and uptake of disease forecasts to better manage of rice diseases. Participatory services such as the DROP app offer great potential as an adaptation option for climate-smart rice production under changing climatic conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=participatory%20climate%20service" title="participatory climate service">participatory climate service</a>, <a href="https://publications.waset.org/abstracts/search?q=disease%20forecast" title=" disease forecast"> disease forecast</a>, <a href="https://publications.waset.org/abstracts/search?q=disease%20management" title=" disease management"> disease management</a>, <a href="https://publications.waset.org/abstracts/search?q=informed%20decision%20making" title=" informed decision making"> informed decision making</a>, <a href="https://publications.waset.org/abstracts/search?q=coastal%20Bangladesg" title=" coastal Bangladesg"> coastal Bangladesg</a> </p> <a href="https://publications.waset.org/abstracts/184557/how-participatory-climate-information-services-assist-farmers-to-uptake-rice-disease-forecasts-and-manage-diseases-in-advance-evidence-from-coastal-bangladesh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184557.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">46</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">416</span> Evaluation of Football Forecasting Models: 2021 Brazilian Championship Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Flavio%20Cordeiro%20Fontanella">Flavio Cordeiro Fontanella</a>, <a href="https://publications.waset.org/abstracts/search?q=Asla%20Medeiros%20e%20S%C3%A1"> Asla Medeiros e Sá</a>, <a href="https://publications.waset.org/abstracts/search?q=Moacyr%20Alvim%20Horta%20Barbosa%20da%20Silva"> Moacyr Alvim Horta Barbosa da Silva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present work, we analyse the performance of football results forecasting models. In order to do so, we have performed the data collection from eight different forecasting models during the 2021 Brazilian football season. First, we guide the analysis through visual representations of the data, designed to highlight the most prominent features and enhance the interpretation of differences and similarities between the models. We propose using a 2-simplex triangle to investigate visual patterns from the results forecasting models. Next, we compute the expected points for every team playing in the championship and compare them to the final league standings, revealing interesting contrasts between actual to expected performances. Then, we evaluate forecasts’ accuracy using the Ranked Probability Score (RPS); models comparison accounts for tiny scale differences that may become consistent in time. Finally, we observe that the Wisdom of Crowds principle can be appropriately applied in the context, driving into a discussion of results forecasts usage in practice. This paper’s primary goal is to encourage football forecasts’ performance discussion. We hope to accomplish it by presenting appropriate criteria and easy-to-understand visual representations that can point out the relevant factors of the subject. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accuracy%20evaluation" title="accuracy evaluation">accuracy evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=Brazilian%20championship" title=" Brazilian championship"> Brazilian championship</a>, <a href="https://publications.waset.org/abstracts/search?q=football%20results%20forecasts" title=" football results forecasts"> football results forecasts</a>, <a href="https://publications.waset.org/abstracts/search?q=forecasting%20models" title=" forecasting models"> forecasting models</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20analysis" title=" visual analysis"> visual analysis</a> </p> <a href="https://publications.waset.org/abstracts/146056/evaluation-of-football-forecasting-models-2021-brazilian-championship-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146056.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">415</span> Two-Sided Information Dissemination in Takeovers: Disclosure and Media</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eda%20Orhun">Eda Orhun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: This paper analyzes a target firm’s decision to voluntarily disclose information during a takeover event and the effect of such disclosures on the outcome of the takeover. Such voluntary disclosures especially in the form of earnings forecasts made around takeover events may affect shareholders’ decisions about the target firm’s value and in return takeover result. This study aims to shed light on this question. Design/methodology/approach: The paper tries to understand the role of voluntary disclosures by target firms during a takeover event in the likelihood of takeover success both theoretically and empirically. A game-theoretical model is set up to analyze the voluntary disclosure decision of a target firm to inform the shareholders about its real worth. The empirical implication of model is tested by employing binary outcome models where the disclosure variable is obtained by identifying the target firms in the sample that provide positive news by issuing increasing management earnings forecasts. Findings: The model predicts that a voluntary disclosure of positive information by the target decreases the likelihood that the takeover succeeds. The empirical analysis confirms this prediction by showing that positive earnings forecasts by target firms during takeover events increase the probability of takeover failure. Overall, it is shown that information dissemination through voluntary disclosures by target firms is an important factor affecting takeover outcomes. Originality/Value: This study is the first to the author's knowledge that studies the impact of voluntary disclosures by the target firm during a takeover event on the likelihood of takeover success. The results contribute to information economics, corporate finance and M&As literatures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=takeovers" title="takeovers">takeovers</a>, <a href="https://publications.waset.org/abstracts/search?q=target%20firm" title=" target firm"> target firm</a>, <a href="https://publications.waset.org/abstracts/search?q=voluntary%20disclosures" title=" voluntary disclosures"> voluntary disclosures</a>, <a href="https://publications.waset.org/abstracts/search?q=earnings%20forecasts" title=" earnings forecasts"> earnings forecasts</a>, <a href="https://publications.waset.org/abstracts/search?q=takeover%20success" title=" takeover success"> takeover success</a> </p> <a href="https://publications.waset.org/abstracts/21649/two-sided-information-dissemination-in-takeovers-disclosure-and-media" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">414</span> Coherent Ku-Band Radar for Monitoring Ocean Waves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Richard%20Mitchell">Richard Mitchell</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Mitchell"> Robert Mitchell</a>, <a href="https://publications.waset.org/abstracts/search?q=Thai%20Duong"> Thai Duong</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyungbin%20Bae"> Kyungbin Bae</a>, <a href="https://publications.waset.org/abstracts/search?q=Daegon%20Kim"> Daegon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Youngsub%20Lee"> Youngsub Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Inho%20Kim"> Inho Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Inho%20Park"> Inho Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyungseok%20Lee"> Hyungseok Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although X-band radar is commonly used to measure the properties of ocean waves, the use of a higher frequency has several advantages, such as increased backscatter coefficient, better Doppler sensitivity, lower power, and a smaller package. A low-power Ku-band radar system was developed to demonstrate these advantages. It is fully coherent, and it interleaves short and long pulses to achieve a transmit duty ratio of 25%, which makes the best use of solid-state amplifiers. The range scales are 2 km, 4 km, and 8 km. The minimum range is 100 m, 200 m, and 400 m for the three range scales, and the range resolution is 4 m, 8 m, and 16 m for the three range scales. Measurements of the significant wave height, wavelength, wave period, and wave direction have been made using traditional 3D-FFT methods. Radar and ultrasonic sensor results collected over an extended period of time at a coastal site in South Korea are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=measurement%20of%20ocean%20wave%20parameters" title="measurement of ocean wave parameters">measurement of ocean wave parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=Ku-band%20radar" title=" Ku-band radar"> Ku-band radar</a>, <a href="https://publications.waset.org/abstracts/search?q=coherent%20radar" title=" coherent radar"> coherent radar</a>, <a href="https://publications.waset.org/abstracts/search?q=compact%20radar" title=" compact radar"> compact radar</a> </p> <a href="https://publications.waset.org/abstracts/146057/coherent-ku-band-radar-for-monitoring-ocean-waves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146057.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">413</span> Decision Tree Modeling in Emergency Logistics Planning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yousef%20Abu%20Nahleh">Yousef Abu Nahleh</a>, <a href="https://publications.waset.org/abstracts/search?q=Arun%20Kumar"> Arun Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Fugen%20Daver"> Fugen Daver</a>, <a href="https://publications.waset.org/abstracts/search?q=Reham%20Al-Hindawi"> Reham Al-Hindawi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Despite the availability of natural disaster related time series data for last 110 years, there is no forecasting tool available to humanitarian relief organizations to determine forecasts for emergency logistics planning. This study develops a forecasting tool based on identifying probability of disaster for each country in the world by using decision tree modeling. Further, the determination of aggregate forecasts leads to efficient pre-disaster planning. Based on the research findings, the relief agencies can optimize the various resources allocation in emergency logistics planning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=decision%20tree%20modeling" title="decision tree modeling">decision tree modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=forecasting" title=" forecasting"> forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=humanitarian%20relief" title=" humanitarian relief"> humanitarian relief</a>, <a href="https://publications.waset.org/abstracts/search?q=emergency%20supply%20chain" title=" emergency supply chain"> emergency supply chain</a> </p> <a href="https://publications.waset.org/abstracts/7989/decision-tree-modeling-in-emergency-logistics-planning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7989.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">483</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">412</span> Forecasting 24-Hour Ahead Electricity Load Using Time Series Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramin%20Vafadary">Ramin Vafadary</a>, <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Khanbaghi"> Maryam Khanbaghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Forecasting electricity load is important for various purposes like planning, operation, and control. Forecasts can save operating and maintenance costs, increase the reliability of power supply and delivery systems, and correct decisions for future development. This paper compares various time series methods to forecast 24 hours ahead of electricity load. The methods considered are the Holt-Winters smoothing, SARIMA Modeling, LSTM Network, Fbprophet, and Tensorflow probability. The performance of each method is evaluated by using the forecasting accuracy criteria, namely, the mean absolute error and root mean square error. The National Renewable Energy Laboratory (NREL) residential energy consumption data is used to train the models. The results of this study show that the SARIMA model is superior to the others for 24 hours ahead forecasts. Furthermore, a Bagging technique is used to make the predictions more robust. The obtained results show that by Bagging multiple time-series forecasts, we can improve the robustness of the models for 24 hours ahead of electricity load forecasting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bagging" title="bagging">bagging</a>, <a href="https://publications.waset.org/abstracts/search?q=Fbprophet" title=" Fbprophet"> Fbprophet</a>, <a href="https://publications.waset.org/abstracts/search?q=Holt-Winters" title=" Holt-Winters"> Holt-Winters</a>, <a href="https://publications.waset.org/abstracts/search?q=LSTM" title=" LSTM"> LSTM</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20forecast" title=" load forecast"> load forecast</a>, <a href="https://publications.waset.org/abstracts/search?q=SARIMA" title=" SARIMA"> SARIMA</a>, <a href="https://publications.waset.org/abstracts/search?q=TensorFlow%20probability" title=" TensorFlow probability"> TensorFlow probability</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20series" title=" time series"> time series</a> </p> <a href="https://publications.waset.org/abstracts/147192/forecasting-24-hour-ahead-electricity-load-using-time-series-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147192.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">411</span> Creating Coherence: Lessons from Bali on Achieving a Coherent Life Through Service</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Veronica%20Basilio">Veronica Basilio</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuting%20Palomo"> Shuting Palomo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research paper explores the psychological concept of coherence and wellbeing. In particular, we focus on the relationship between individual well-being and community development. The focus setting for the research is Bali, Indonesia. The major finding of our research is: a coherent life can be achieved through living a life motivated by service to others, which contributes to community development and wellbeing. Coherence occurs when values are consistent with one’s thoughts, words, and actions. According to Antonovsky’s salutogenic theory, a sense of coherence is significant to psychological well-being. The ability to cope with life’s stressors is based on how comprehensive, manageable, and meaningful one’s sense of coherence is. The methodology for the research draws on an ethnographic approach with particular attention to participant observation and in-depth interviews within the context of village and family life in Bali. The research highlights Viktor Frankl’s ideas on self-actualization that is achieved through a life of service to others. The research also focuses on the individual’s ability to shift their perspective in the face of adversity, which contributes to individual development. Through personal transformation, one can be committed to serving others, which in the end, is the foundation of a coherent life and community development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=psychology" title="psychology">psychology</a>, <a href="https://publications.waset.org/abstracts/search?q=bali" title=" bali"> bali</a>, <a href="https://publications.waset.org/abstracts/search?q=coherence" title=" coherence"> coherence</a>, <a href="https://publications.waset.org/abstracts/search?q=well-being" title=" well-being"> well-being</a>, <a href="https://publications.waset.org/abstracts/search?q=sociology" title=" sociology"> sociology</a> </p> <a href="https://publications.waset.org/abstracts/167015/creating-coherence-lessons-from-bali-on-achieving-a-coherent-life-through-service" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167015.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">410</span> Transport and Mixing Phenomena Developed by Vortex Formation in Flow around Airfoil Using Lagrangian Coherent Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Riaz%20Ahmad">Riaz Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiazhong%20Zhang"> Jiazhong Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Asma%20Farooqi"> Asma Farooqi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, mass transport between separation bubbles and the flow around a two-dimensional airfoil are numerically investigated using Lagrangian Coherent Structures (LCSs). Finite Time Lyapunov Exponent (FTLE) technique is used for the computation to identify invariant manifolds and LCSs. Moreover, the Characteristic Base Split (CBS) scheme combined with dual time stepping technique is applied to simulate such transient flow at low Reynolds number. We then investigate the evolution of vortex structures during the transport process with the aid of LCSs. To explore the vortex formation at the surface of the airfoil, the dynamics of separatrix is also taken into account which is formed by the combination of stable-unstable manifolds. The Lagrangian analysis gives a detailed understanding of vortex dynamics and separation bubbles which plays a significant role to explore the performance of the unsteady flow generated by the airfoil. Transport process and flow separation phenomena are studied extensively to analyze the flow pattern by Lagrangian point of view. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transport%20phenomena" title="transport phenomena">transport phenomena</a>, <a href="https://publications.waset.org/abstracts/search?q=CBS%20Method" title=" CBS Method"> CBS Method</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20formation" title=" vortex formation"> vortex formation</a>, <a href="https://publications.waset.org/abstracts/search?q=Lagrangian%20Coherent%20Structures" title=" Lagrangian Coherent Structures"> Lagrangian Coherent Structures</a> </p> <a href="https://publications.waset.org/abstracts/108807/transport-and-mixing-phenomena-developed-by-vortex-formation-in-flow-around-airfoil-using-lagrangian-coherent-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108807.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">409</span> Improvement of Environment and Climate Change Canada’s Gem-Hydro Streamflow Forecasting System </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Etienne%20Gaborit">Etienne Gaborit</a>, <a href="https://publications.waset.org/abstracts/search?q=Dorothy%20Durnford"> Dorothy Durnford</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Deacu"> Daniel Deacu</a>, <a href="https://publications.waset.org/abstracts/search?q=Marco%20Carrera"> Marco Carrera</a>, <a href="https://publications.waset.org/abstracts/search?q=Nathalie%20Gauthier"> Nathalie Gauthier</a>, <a href="https://publications.waset.org/abstracts/search?q=Camille%20Garnaud"> Camille Garnaud</a>, <a href="https://publications.waset.org/abstracts/search?q=Vincent%20Fortin"> Vincent Fortin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new experimental streamflow forecasting system was recently implemented at the Environment and Climate Change Canada’s (ECCC) Canadian Centre for Meteorological and Environmental Prediction (CCMEP). It relies on CaLDAS (Canadian Land Data Assimilation System) for the assimilation of surface variables, and on a surface prediction system that feeds a routing component. The surface energy and water budgets are simulated with the SVS (Soil, Vegetation, and Snow) Land-Surface Scheme (LSS) at 2.5-km grid spacing over Canada. The routing component is based on the Watroute routing scheme at 1-km grid spacing for the Great Lakes and Nelson River watersheds. The system is run in two distinct phases: an analysis part and a forecast part. During the analysis part, CaLDAS outputs are used to force the routing system, which performs streamflow assimilation. In forecast mode, the surface component is forced with the Canadian GEM atmospheric forecasts and is initialized with a CaLDAS analysis. Streamflow performances of this new system are presented over 2019. Performances are compared to the current ECCC’s operational streamflow forecasting system, which is different from the new experimental system in many aspects. These new streamflow forecasts are also compared to persistence. Overall, the new streamflow forecasting system presents promising results, highlighting the need for an elaborated assimilation phase before performing the forecasts. However, the system is still experimental and is continuously being improved. Some major recent improvements are presented here and include, for example, the assimilation of snow cover data from remote sensing, a backward propagation of assimilated flow observations, a new numerical scheme for the routing component, and a new reservoir model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=assimilation%20system" title="assimilation system">assimilation system</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20physical%20model" title=" distributed physical model"> distributed physical model</a>, <a href="https://publications.waset.org/abstracts/search?q=offline%20hydro-meteorological%20chain" title=" offline hydro-meteorological chain"> offline hydro-meteorological chain</a>, <a href="https://publications.waset.org/abstracts/search?q=short-term%20streamflow%20forecasts" title=" short-term streamflow forecasts"> short-term streamflow forecasts</a> </p> <a href="https://publications.waset.org/abstracts/116891/improvement-of-environment-and-climate-change-canadas-gem-hydro-streamflow-forecasting-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116891.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">408</span> Predicting Returns Volatilities and Correlations of Stock Indices Using Multivariate Conditional Autoregressive Range and Return Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shay%20Kee%20Tan">Shay Kee Tan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kok%20Haur%20Ng"> Kok Haur Ng</a>, <a href="https://publications.waset.org/abstracts/search?q=Jennifer%20So-Kuen%20Chan"> Jennifer So-Kuen Chan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper extends the conditional autoregressive range (CARR) model to multivariate CARR (MCARR) model and further to the two-stage MCARR-return model to model and forecast volatilities, correlations and returns of multiple financial assets. The first stage model fits the scaled realised Parkinson volatility measures using individual series and their pairwise sums of indices to the MCARR model to obtain in-sample estimates and forecasts of volatilities for these individual and pairwise sum series. Then covariances are calculated to construct the fitted variance-covariance matrix of returns which are imputed into the stage-two return model to capture the heteroskedasticity of assets’ returns. We investigate different choices of mean functions to describe the volatility dynamics. Empirical applications are based on the Standard and Poor 500, Dow Jones Industrial Average and Dow Jones United States Financial Service Indices. Results show that the stage-one MCARR models using asymmetric mean functions give better in-sample model fits than those based on symmetric mean functions. They also provide better out-of-sample volatility forecasts than those using CARR models based on two robust loss functions with the scaled realised open-to-close volatility measure as the proxy for the unobserved true volatility. We also find that the stage-two return models with constant means and multivariate Student-t errors give better in-sample fits than the Baba, Engle, Kraft, and Kroner type of generalized autoregressive conditional heteroskedasticity (BEKK-GARCH) models. The estimates and forecasts of value-at-risk (VaR) and conditional VaR based on the best MCARR-return models for each asset are provided and tested using Kupiec test to confirm the accuracy of the VaR forecasts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=range-based%20volatility" title="range-based volatility">range-based volatility</a>, <a href="https://publications.waset.org/abstracts/search?q=correlation" title=" correlation"> correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=multivariate%20CARR-return%20model" title=" multivariate CARR-return model"> multivariate CARR-return model</a>, <a href="https://publications.waset.org/abstracts/search?q=value-at-risk" title=" value-at-risk"> value-at-risk</a>, <a href="https://publications.waset.org/abstracts/search?q=conditional%20value-at-risk" title=" conditional value-at-risk"> conditional value-at-risk</a> </p> <a href="https://publications.waset.org/abstracts/159359/predicting-returns-volatilities-and-correlations-of-stock-indices-using-multivariate-conditional-autoregressive-range-and-return-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159359.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">407</span> Forecasting Issues in Energy Markets within a Reg-ARIMA Framework</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ilaria%20Lucrezia%20Amerise">Ilaria Lucrezia Amerise</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electricity markets throughout the world have undergone substantial changes. Accurate, reliable, clear and comprehensible modeling and forecasting of different variables (loads and prices in the first instance) have achieved increasing importance. In this paper, we describe the actual state of the art focusing on reg-SARMA methods, which have proven to be flexible enough to accommodate the electricity price/load behavior satisfactory. More specifically, we will discuss: 1) The dichotomy between point and interval forecasts; 2) The difficult choice between stochastic (e.g. climatic variation) and non-deterministic predictors (e.g. calendar variables); 3) The confrontation between modelling a single aggregate time series or creating separated and potentially different models of sub-series. The noteworthy point that we would like to make it emerge is that prices and loads require different approaches that appear irreconcilable even though must be made reconcilable for the interests and activities of energy companies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interval%20forecasts" title="interval forecasts">interval forecasts</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20series" title=" time series"> time series</a>, <a href="https://publications.waset.org/abstracts/search?q=electricity%20prices" title=" electricity prices"> electricity prices</a>, <a href="https://publications.waset.org/abstracts/search?q=reg-SARIMA%20methods" title=" reg-SARIMA methods"> reg-SARIMA methods</a> </p> <a href="https://publications.waset.org/abstracts/104049/forecasting-issues-in-energy-markets-within-a-reg-arima-framework" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104049.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">406</span> Experimental Investigation of the Aeroacoustics Field for a Rectangular Jet Impinging on a Slotted Plate: Stereoscopic Particle Image Velocimetry Measurement before and after the Plate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nour%20Eldin%20Afyouni">Nour Eldin Afyouni</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Assoum"> Hassan Assoum</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamel%20Abed-Meraim"> Kamel Abed-Meraim</a>, <a href="https://publications.waset.org/abstracts/search?q=Anas%20Sakout"> Anas Sakout</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The acoustic of an impinging jet holds significant importance in the engineering field. In HVAC systems, the jet impingement, in some cases, generates noise that destroys acoustic comfort. This paper presents an experimental study of a rectangular air jet impinging on a slotted plate to investigate the correlation between sound emission and turbulence dynamics. The experiment was conducted with an impact ratio L/H = 4 and a Reynolds number Re = 4700. The survey shows that coherent structures within the impinging jet are responsible for self-sustaining tone production. To achieve this, a specific experimental setup consisting of two simultaneous Stereoscopic Particle Image Velocimetry (S-PIV) measurements was developed to track vortical structures both before and after the plate, in addition to acoustic measurements. The results reveal a significant correlation between acoustic waves and the passage of coherent structures. Variations in the arrangement of vortical structures between the upstream and downstream sides of the plate were observed. This analysis of flow dynamics can enhance our understanding of slot noise. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=impinging%20jet" title="impinging jet">impinging jet</a>, <a href="https://publications.waset.org/abstracts/search?q=coherent%20structures" title=" coherent structures"> coherent structures</a>, <a href="https://publications.waset.org/abstracts/search?q=SPIV" title=" SPIV"> SPIV</a>, <a href="https://publications.waset.org/abstracts/search?q=aeroacoustics" title=" aeroacoustics"> aeroacoustics</a> </p> <a href="https://publications.waset.org/abstracts/172777/experimental-investigation-of-the-aeroacoustics-field-for-a-rectangular-jet-impinging-on-a-slotted-plate-stereoscopic-particle-image-velocimetry-measurement-before-and-after-the-plate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172777.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">405</span> Pure and Mixed Nash Equilibria Domain of a Discrete Game Model with Dichotomous Strategy Space</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Mousa">A. S. Mousa</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Shoman"> F. Shoman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present a discrete game theoretical model with homogeneous individuals who make simultaneous decisions. In this model the strategy space of all individuals is a discrete and dichotomous set which consists of two strategies. We fully characterize the coherent, split and mixed strategies that form Nash equilibria and we determine the corresponding Nash domains for all individuals. We find all strategic thresholds in which individuals can change their mind if small perturbations in the parameters of the model occurs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coherent%20strategy" title="coherent strategy">coherent strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=split%20strategy" title=" split strategy"> split strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=pure%20strategy" title=" pure strategy"> pure strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20strategy" title=" mixed strategy"> mixed strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=Nash%20equilibrium" title=" Nash equilibrium"> Nash equilibrium</a>, <a href="https://publications.waset.org/abstracts/search?q=game%20theory" title=" game theory"> game theory</a> </p> <a href="https://publications.waset.org/abstracts/128019/pure-and-mixed-nash-equilibria-domain-of-a-discrete-game-model-with-dichotomous-strategy-space" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128019.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">404</span> Dynamic Mode Decomposition and Wake Flow Modelling of a Wind Turbine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nor%20Mazlin%20Zahari">Nor Mazlin Zahari</a>, <a href="https://publications.waset.org/abstracts/search?q=Lian%20Gan"> Lian Gan</a>, <a href="https://publications.waset.org/abstracts/search?q=Xuerui%20Mao"> Xuerui Mao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The power production in wind farms and the mechanical loads on the turbines are strongly impacted by the wake of the wind turbine. Thus, there is a need for understanding and modelling the turbine wake dynamic in the wind farm and the layout optimization. Having a good wake model is important in predicting plant performance and understanding fatigue loads. In this paper, the Dynamic Mode Decomposition (DMD) was applied to the simulation data generated by a Direct Numerical Simulation (DNS) of flow around a turbine, perturbed by upstream inflow noise. This technique is useful in analyzing the wake flow, to predict its future states and to reflect flow dynamics associated with the coherent structures behind wind turbine wake flow. DMD was employed to describe the dynamic of the flow around turbine from the DNS data. Since the DNS data comes with the unstructured meshes and non-uniform grid, the interpolation of each occurring within each element in the data to obtain an evenly spaced mesh was performed before the DMD was applied. DMD analyses were able to tell us characteristics of the travelling waves behind the turbine, e.g. the dominant helical flow structures and the corresponding frequencies. As the result, the dominant frequency will be detected, and the associated spatial structure will be identified. The dynamic mode which represented the coherent structure will be presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coherent%20structure" title="coherent structure">coherent structure</a>, <a href="https://publications.waset.org/abstracts/search?q=Direct%20Numerical%20Simulation%20%28DNS%29" title=" Direct Numerical Simulation (DNS)"> Direct Numerical Simulation (DNS)</a>, <a href="https://publications.waset.org/abstracts/search?q=dominant%20frequency" title=" dominant frequency"> dominant frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=Dynamic%20Mode%20Decomposition%20%28DMD%29" title=" Dynamic Mode Decomposition (DMD)"> Dynamic Mode Decomposition (DMD)</a> </p> <a href="https://publications.waset.org/abstracts/72480/dynamic-mode-decomposition-and-wake-flow-modelling-of-a-wind-turbine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72480.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">403</span> Multi-Impairment Compensation Based Deep Neural Networks for 16-QAM Coherent Optical Orthogonal Frequency Division Multiplexing System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ying%20Han">Ying Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuanxiang%20Chen"> Yuanxiang Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongtao%20Huang"> Yongtao Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jia%20Fu"> Jia Fu</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaile%20Li"> Kaile Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Shangjing%20Lin"> Shangjing Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianguo%20Yu"> Jianguo Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In long-haul and high-speed optical transmission system, the orthogonal frequency division multiplexing (OFDM) signal suffers various linear and non-linear impairments. In recent years, researchers have proposed compensation schemes for specific impairment, and the effects are remarkable. However, different impairment compensation algorithms have caused an increase in transmission delay. With the widespread application of deep neural networks (DNN) in communication, multi-impairment compensation based on DNN will be a promising scheme. In this paper, we propose and apply DNN to compensate multi-impairment of 16-QAM coherent optical OFDM signal, thereby improving the performance of the transmission system. The trained DNN models are applied in the offline digital signal processing (DSP) module of the transmission system. The models can optimize the constellation mapping signals at the transmitter and compensate multi-impairment of the OFDM decoded signal at the receiver. Furthermore, the models reduce the peak to average power ratio (PAPR) of the transmitted OFDM signal and the bit error rate (BER) of the received signal. We verify the effectiveness of the proposed scheme for 16-QAM Coherent Optical OFDM signal and demonstrate and analyze transmission performance in different transmission scenarios. The experimental results show that the PAPR and BER of the transmission system are significantly reduced after using the trained DNN. It shows that the DNN with specific loss function and network structure can optimize the transmitted signal and learn the channel feature and compensate for multi-impairment in fiber transmission effectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coherent%20optical%20OFDM" title="coherent optical OFDM">coherent optical OFDM</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20neural%20network" title=" deep neural network"> deep neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-impairment%20compensation" title=" multi-impairment compensation"> multi-impairment compensation</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20transmission" title=" optical transmission"> optical transmission</a> </p> <a href="https://publications.waset.org/abstracts/134219/multi-impairment-compensation-based-deep-neural-networks-for-16-qam-coherent-optical-orthogonal-frequency-division-multiplexing-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134219.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">402</span> Copula Markov Switching Multifractal Models for Forecasting Value-at-Risk </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Giriraj%20Achari">Giriraj Achari</a>, <a href="https://publications.waset.org/abstracts/search?q=Malay%20Bhattacharyya"> Malay Bhattacharyya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the effectiveness of Copula Markov Switching Multifractal (MSM) models at forecasting Value-at-Risk of a two-stock portfolio is studied. The innovations are allowed to be drawn from distributions that can capture skewness and leptokurtosis, which are well documented empirical characteristics observed in financial returns. The candidate distributions considered for this purpose are Johnson-SU, Pearson Type-IV and α-Stable distributions. The two univariate marginal distributions are combined using the Student-t copula. The estimation of all parameters is performed by Maximum Likelihood Estimation. Finally, the models are compared in terms of accurate Value-at-Risk (VaR) forecasts using tests of unconditional coverage and independence. It is found that Copula-MSM-models with leptokurtic innovation distributions perform slightly better than Copula-MSM model with Normal innovations. Copula-MSM models, in general, produce better VaR forecasts as compared to traditional methods like Historical Simulation method, Variance-Covariance approach and Copula-Generalized Autoregressive Conditional Heteroscedasticity (Copula-GARCH) models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Copula" title="Copula">Copula</a>, <a href="https://publications.waset.org/abstracts/search?q=Markov%20Switching" title=" Markov Switching"> Markov Switching</a>, <a href="https://publications.waset.org/abstracts/search?q=multifractal" title=" multifractal"> multifractal</a>, <a href="https://publications.waset.org/abstracts/search?q=value-at-risk" title=" value-at-risk"> value-at-risk</a> </p> <a href="https://publications.waset.org/abstracts/115727/copula-markov-switching-multifractal-models-for-forecasting-value-at-risk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115727.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=coherent%20forecasts&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=coherent%20forecasts&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=coherent%20forecasts&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=coherent%20forecasts&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=coherent%20forecasts&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=coherent%20forecasts&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=coherent%20forecasts&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=coherent%20forecasts&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=coherent%20forecasts&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=coherent%20forecasts&page=14">14</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=coherent%20forecasts&page=15">15</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=coherent%20forecasts&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>