CINXE.COM
Simon's problem - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Simon's problem - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"8fd3bf88-7e1d-4acb-9910-f8841e3006fe","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Simon's_problem","wgTitle":"Simon's problem","wgCurRevisionId":1229697296,"wgRevisionId":1229697296,"wgArticleId":11876741,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description matches Wikidata","Quantum algorithms"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Simon's_problem","wgRelevantArticleId":11876741,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgRedirectedFrom":"Simon's_algorithm","wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false, "wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":20000,"wgInternalRedirectTargetUrl":"/wiki/Simon%27s_problem","wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q5763587","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser": false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["mediawiki.action.view.redirect","ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init", "ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.5"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Simon's problem - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Simon%27s_problem"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Simon%27s_problem&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Simon%27s_problem"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Simon_s_problem rootpage-Simon_s_problem skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Simon%27s+problem" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Simon%27s+problem" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Simon%27s+problem" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Simon%27s+problem" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Problem_description" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Problem_description"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Problem description</span> </div> </a> <button aria-controls="toc-Problem_description-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Problem description subsection</span> </button> <ul id="toc-Problem_description-sublist" class="vector-toc-list"> <li id="toc-Example" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Example"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Example</span> </div> </a> <ul id="toc-Example-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Problem_hardness" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Problem_hardness"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>Problem hardness</span> </div> </a> <ul id="toc-Problem_hardness-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Simon's_algorithm" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Simon's_algorithm"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Simon's algorithm</span> </div> </a> <button aria-controls="toc-Simon's_algorithm-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Simon's algorithm subsection</span> </button> <ul id="toc-Simon's_algorithm-sublist" class="vector-toc-list"> <li id="toc-Quantum_subroutine" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Quantum_subroutine"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Quantum subroutine</span> </div> </a> <ul id="toc-Quantum_subroutine-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Classical_post-processing" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Classical_post-processing"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Classical post-processing</span> </div> </a> <ul id="toc-Classical_post-processing-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Explicit_examples_of_Simon's_algorithm_for_few_qubits" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Explicit_examples_of_Simon's_algorithm_for_few_qubits"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Explicit examples of Simon's algorithm for few qubits</span> </div> </a> <button aria-controls="toc-Explicit_examples_of_Simon's_algorithm_for_few_qubits-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Explicit examples of Simon's algorithm for few qubits subsection</span> </button> <ul id="toc-Explicit_examples_of_Simon's_algorithm_for_few_qubits-sublist" class="vector-toc-list"> <li id="toc-One_qubit" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#One_qubit"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>One qubit</span> </div> </a> <ul id="toc-One_qubit-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Two_qubits" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Two_qubits"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Two qubits</span> </div> </a> <ul id="toc-Two_qubits-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Complexity" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Complexity"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Complexity</span> </div> </a> <ul id="toc-Complexity-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Simon's problem</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 7 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-7" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">7 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Problema_de_Simon" title="Problema de Simon – Spanish" lang="es" hreflang="es" data-title="Problema de Simon" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%A7%D9%84%DA%AF%D9%88%D8%B1%DB%8C%D8%AA%D9%85_%D8%B3%D8%A7%DB%8C%D9%85%D9%88%D9%86" title="الگوریتم سایمون – Persian" lang="fa" hreflang="fa" data-title="الگوریتم سایمون" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Problema_di_Simon" title="Problema di Simon – Italian" lang="it" hreflang="it" data-title="Problema di Simon" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Simono_algoritmas" title="Simono algoritmas – Lithuanian" lang="lt" hreflang="lt" data-title="Simono algoritmas" data-language-autonym="Lietuvių" data-language-local-name="Lithuanian" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Algorytm_Simona" title="Algorytm Simona – Polish" lang="pl" hreflang="pl" data-title="Algorytm Simona" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Problema_de_Simon" title="Problema de Simon – Portuguese" lang="pt" hreflang="pt" data-title="Problema de Simon" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Thu%E1%BA%ADt_to%C3%A1n_Simon" title="Thuật toán Simon – Vietnamese" lang="vi" hreflang="vi" data-title="Thuật toán Simon" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q5763587#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Simon%27s_problem" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Simon%27s_problem" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Simon%27s_problem"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Simon%27s_problem&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Simon%27s_problem&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Simon%27s_problem"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Simon%27s_problem&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Simon%27s_problem&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Simon%27s_problem" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Simon%27s_problem" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Simon%27s_problem&oldid=1229697296" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Simon%27s_problem&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Simon%27s_problem&id=1229697296&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FSimon%2527s_problem"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FSimon%2527s_problem"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Simon%27s_problem&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Simon%27s_problem&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q5763587" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"><span class="mw-redirectedfrom">(Redirected from <a href="/w/index.php?title=Simon%27s_algorithm&redirect=no" class="mw-redirect" title="Simon's algorithm">Simon's algorithm</a>)</span></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Problem in computer science</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Not to be confused with <a href="/wiki/Simon_problems" title="Simon problems">Simon problems</a> in mathematical physics.</div> <p>In <a href="/wiki/Computational_complexity_theory" title="Computational complexity theory">computational complexity theory</a> and <a href="/wiki/Quantum_computing" title="Quantum computing">quantum computing</a>, <b>Simon's problem</b> is a <a href="/wiki/Computational_problem" title="Computational problem">computational problem</a> that is proven to be solved exponentially faster on a <a href="/wiki/Quantum_computer" class="mw-redirect" title="Quantum computer">quantum computer</a> than on a classical (that is, traditional) computer. The quantum algorithm solving Simon's problem, usually called <b>Simon's algorithm</b>, served as the inspiration for <a href="/wiki/Shor%27s_algorithm" title="Shor's algorithm">Shor's algorithm</a>.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> Both problems are special cases of the abelian <a href="/wiki/Hidden_subgroup_problem" title="Hidden subgroup problem">hidden subgroup problem</a>, which is now known to have efficient quantum algorithms. </p><p>The problem is set in the model of <a href="/wiki/Decision_tree_complexity" class="mw-redirect" title="Decision tree complexity">decision tree complexity</a> or query complexity and was conceived by <a href="/w/index.php?title=Daniel_R._Simon&action=edit&redlink=1" class="new" title="Daniel R. Simon (page does not exist)">Daniel R. Simon</a> in 1994.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> Simon exhibited a <a href="/wiki/Quantum_algorithm" title="Quantum algorithm">quantum algorithm</a> that solves Simon's problem exponentially faster with exponentially fewer queries than the best <a href="/wiki/Probabilistic_algorithms" class="mw-redirect" title="Probabilistic algorithms">probabilistic</a> (or deterministic) classical algorithm. In particular, Simon's algorithm uses a linear number of queries and any classical probabilistic algorithm must use an exponential number of queries. </p><p>This problem yields an <a href="/w/index.php?title=Oracle_separation&action=edit&redlink=1" class="new" title="Oracle separation (page does not exist)">oracle separation</a> between the complexity classes <a href="/wiki/BPP_(complexity)" title="BPP (complexity)">BPP</a> (bounded-error classical query complexity) and <a href="/wiki/BQP" title="BQP">BQP</a> (bounded-error quantum query complexity).<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> This is the same separation that the <a href="/wiki/Bernstein%E2%80%93Vazirani_algorithm" title="Bernstein–Vazirani algorithm">Bernstein–Vazirani algorithm</a> achieves, and different from the separation provided by the <a href="/wiki/Deutsch%E2%80%93Jozsa_algorithm" title="Deutsch–Jozsa algorithm">Deutsch–Jozsa algorithm</a>, which separates <a href="/wiki/P_(complexity)" title="P (complexity)">P</a> and <a href="/wiki/EQP_(complexity)" class="mw-redirect" title="EQP (complexity)">EQP</a>. Unlike the Bernstein–Vazirani algorithm, Simon's algorithm's separation is <i>exponential</i>. </p><p>Because this problem assumes the existence of a highly-structured "black box" oracle to achieve its speedup, this problem has little practical value.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> However, without such an oracle, exponential speedups cannot easily be proven, since this would prove that <a href="/wiki/P_(complexity)" title="P (complexity)">P</a> is different from <a href="/wiki/PSPACE" title="PSPACE">PSPACE</a>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Problem_description">Problem description</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Simon%27s_problem&action=edit&section=1" title="Edit section: Problem description"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Given a function (implemented by a <a href="/wiki/Black_box" title="Black box">black box</a> or oracle) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:\{0,1\}^{n}\rightarrow \{0,1\}^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <msup> <mo fence="false" stretchy="false">}</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">→<!-- → --></mo> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <msup> <mo fence="false" stretchy="false">}</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:\{0,1\}^{n}\rightarrow \{0,1\}^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b30257cc5d85dda0b39b0d639174efca895becbc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.634ex; height:2.843ex;" alt="{\displaystyle f:\{0,1\}^{n}\rightarrow \{0,1\}^{n}}"></span> with the promise that, for some unknown <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s\in \{0,1\}^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>∈<!-- ∈ --></mo> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <msup> <mo fence="false" stretchy="false">}</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s\in \{0,1\}^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b54972dd62a648b6a813dc34515e3b362866087" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.833ex; height:2.843ex;" alt="{\displaystyle s\in \{0,1\}^{n}}"></span>, for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x,y\in \{0,1\}^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>∈<!-- ∈ --></mo> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <msup> <mo fence="false" stretchy="false">}</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x,y\in \{0,1\}^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b902be09bc6f2f336d88988b7282c0081a5d298a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.262ex; height:2.843ex;" alt="{\displaystyle x,y\in \{0,1\}^{n}}"></span>, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=f(y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=f(y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c45b4d507fbe420cf82e042d6f32f7aed7f8a12" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.759ex; height:2.843ex;" alt="{\displaystyle f(x)=f(y)}"></span> if and only if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\oplus y\in \{0^{n},s\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>⊕<!-- ⊕ --></mo> <mi>y</mi> <mo>∈<!-- ∈ --></mo> <mo fence="false" stretchy="false">{</mo> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>,</mo> <mi>s</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\oplus y\in \{0^{n},s\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c594f9e12d3e3fb901e10bfdc2cd275f73cde94" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.996ex; height:2.843ex;" alt="{\displaystyle x\oplus y\in \{0^{n},s\}}"></span>,</dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \oplus }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>⊕<!-- ⊕ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \oplus }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b16e2bdaefee9eed86d866e6eba3ac47c710f60" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \oplus }"></span> denotes bitwise <a href="/wiki/Exclusive_or" title="Exclusive or">XOR</a>. The goal is to identify <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01d131dfd7673938b947072a13a9744fe997e632" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:1.676ex;" alt="{\displaystyle s}"></span> by making as few queries to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span> as possible. Note that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\oplus b=0^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>⊕<!-- ⊕ --></mo> <mi>b</mi> <mo>=</mo> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\oplus b=0^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23f523285250dba2ad1f60f6cf548a5045e21a26" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.547ex; height:2.509ex;" alt="{\displaystyle a\oplus b=0^{n}}"></span> if and only if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a=b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>=</mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a=b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1956b03d1314c7071ac1f45ed7b1e29422dcfcc4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.326ex; height:2.176ex;" alt="{\displaystyle a=b}"></span></dd></dl> <p>Furthermore, for some <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01d131dfd7673938b947072a13a9744fe997e632" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:1.676ex;" alt="{\displaystyle s}"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\oplus y=s}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>⊕<!-- ⊕ --></mo> <mi>y</mi> <mo>=</mo> <mi>s</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\oplus y=s}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4bfec19080d6ba2432873774bec7db7adba92cf5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.514ex; height:2.343ex;" alt="{\displaystyle x\oplus y=s}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> is unique (not equal to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>) if and only if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s\neq 0^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>≠<!-- ≠ --></mo> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s\neq 0^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/77677ccf3b43752c663efdb311dec341a3150d68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.57ex; height:2.843ex;" alt="{\displaystyle s\neq 0^{n}}"></span>. This means that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> is two-to-one when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s\neq 0^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>≠<!-- ≠ --></mo> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s\neq 0^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/77677ccf3b43752c663efdb311dec341a3150d68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.57ex; height:2.843ex;" alt="{\displaystyle s\neq 0^{n}}"></span>, and <a href="/wiki/Injective_function" title="Injective function">one-to-one</a> when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s=0^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>=</mo> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s=0^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f54f4e79e802bec83e4d974c6065904b6d3e0f48" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.57ex; height:2.343ex;" alt="{\displaystyle s=0^{n}}"></span>. It is also the case that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\oplus y=s}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>⊕<!-- ⊕ --></mo> <mi>y</mi> <mo>=</mo> <mi>s</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\oplus y=s}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4bfec19080d6ba2432873774bec7db7adba92cf5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.514ex; height:2.343ex;" alt="{\displaystyle x\oplus y=s}"></span> implies <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=s\oplus x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>=</mo> <mi>s</mi> <mo>⊕<!-- ⊕ --></mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y=s\oplus x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d11c313bf9fffc5eaf81dabc41e340018aa129a1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.514ex; height:2.343ex;" alt="{\displaystyle y=s\oplus x}"></span>, meaning that<span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=f(y)=f(x\oplus {s})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>⊕<!-- ⊕ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=f(y)=f(x\oplus {s})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/557ad56d7aafa4ef682eee7e2ff40356d85345ce" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.206ex; height:2.843ex;" alt="{\displaystyle f(x)=f(y)=f(x\oplus {s})}"></span>which shows how <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> is periodic. </p><p>The associated <a href="/wiki/Decision_problem" title="Decision problem">decision problem</a> formulation of Simon's problem is to distinguish when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s=0^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>=</mo> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s=0^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f54f4e79e802bec83e4d974c6065904b6d3e0f48" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.57ex; height:2.343ex;" alt="{\displaystyle s=0^{n}}"></span> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> is one-to-one), and when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s\neq 0^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>≠<!-- ≠ --></mo> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s\neq 0^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/77677ccf3b43752c663efdb311dec341a3150d68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.57ex; height:2.843ex;" alt="{\displaystyle s\neq 0^{n}}"></span> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> is two-to-one). </p> <div class="mw-heading mw-heading3"><h3 id="Example">Example</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Simon%27s_problem&action=edit&section=2" title="Edit section: Example"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The following function is an example of a function that satisfies the required property for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c5a5a42ced00df920fad4ab2d4acdb960a4105b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\displaystyle n=3}"></span>: </p> <table class="wikitable"> <tbody><tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span> </th></tr> <tr> <td>000 </td> <td>101 </td></tr> <tr> <td>001 </td> <td>010 </td></tr> <tr> <td>010 </td> <td>000 </td></tr> <tr> <td>011 </td> <td>110 </td></tr> <tr> <td>100 </td> <td>000 </td></tr> <tr> <td>101 </td> <td>110 </td></tr> <tr> <td>110 </td> <td>101 </td></tr> <tr> <td>111 </td> <td>010 </td></tr></tbody></table> <p>In this case, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s=110}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>=</mo> <mn>110</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s=110}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c67af163dd96719cefee4bbd5e22aa0db31de685" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.676ex; height:2.176ex;" alt="{\displaystyle s=110}"></span> (i.e. the solution). Every output of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> occurs twice, and the two input strings corresponding to any one given output have bitwise XOR equal to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s=110}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>=</mo> <mn>110</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s=110}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c67af163dd96719cefee4bbd5e22aa0db31de685" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.676ex; height:2.176ex;" alt="{\displaystyle s=110}"></span>. </p><p>For example, the input strings <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 010}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>010</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 010}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3180a39e7c7e0d3db5ba787cf150f12c160a5997" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.487ex; height:2.176ex;" alt="{\displaystyle 010}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 100}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>100</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 100}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0572cd017c6d7936a12737c9d614a2f801f94a36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.487ex; height:2.176ex;" alt="{\displaystyle 100}"></span> are both mapped (by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>) to the same output string <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 000}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>000</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 000}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e4fc6c26318e380f08d4ace964300ab36ebc789" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.487ex; height:2.176ex;" alt="{\displaystyle 000}"></span>. That is, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\displaystyle f(010)=000}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mn>010</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>000</mn> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\displaystyle f(010)=000}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/12086860e29e3e42d462dd01de6a7280616c4da6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.161ex; height:2.843ex;" alt="{\displaystyle {\displaystyle f(010)=000}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\displaystyle f(100)=000}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mn>100</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>000</mn> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\displaystyle f(100)=000}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39fec3153f224e375f3d33afc7f86f5a7a327e20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.161ex; height:2.843ex;" alt="{\displaystyle {\displaystyle f(100)=000}}"></span>. Applying XOR to 010 and 100 obtains 110, that is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\displaystyle 010\oplus 100=110=s}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>010</mn> <mo>⊕<!-- ⊕ --></mo> <mn>100</mn> <mo>=</mo> <mn>110</mn> <mo>=</mo> <mi>s</mi> </mstyle> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\displaystyle 010\oplus 100=110=s}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72ff479c7112c5f30896ab754d8399ccc202cfe6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:21.237ex; height:2.343ex;" alt="{\displaystyle {\displaystyle 010\oplus 100=110=s}.}"></span> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s=110}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>=</mo> <mn>110</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s=110}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c67af163dd96719cefee4bbd5e22aa0db31de685" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.676ex; height:2.176ex;" alt="{\displaystyle s=110}"></span> can also be verified using input strings 001 and 111 that are both mapped (by f) to the same output string 010. Applying XOR to 001 and 111 obtains 110, that is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 001\oplus 111=110=s}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>001</mn> <mo>⊕<!-- ⊕ --></mo> <mn>111</mn> <mo>=</mo> <mn>110</mn> <mo>=</mo> <mi>s</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 001\oplus 111=110=s}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee2b2ce78daa99fa1003286eae70f0da4c86ce40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:20.59ex; height:2.343ex;" alt="{\displaystyle 001\oplus 111=110=s}"></span>. This gives the same solution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s=110}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>=</mo> <mn>110</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s=110}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c67af163dd96719cefee4bbd5e22aa0db31de685" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.676ex; height:2.176ex;" alt="{\displaystyle s=110}"></span> as before. </p><p>In this example the function <i>f</i> is indeed a two-to-one function where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\displaystyle s\neq 0^{n}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>≠<!-- ≠ --></mo> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\displaystyle s\neq 0^{n}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/154122b07494a2a4d737b4b130322a0f289315f7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.57ex; height:2.843ex;" alt="{\displaystyle {\displaystyle s\neq 0^{n}}}"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Problem_hardness">Problem hardness</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Simon%27s_problem&action=edit&section=3" title="Edit section: Problem hardness"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Intuitively, this is a hard problem to solve in a "classical" way, even if one uses randomness and accepts a small probability of error. The intuition behind the hardness is reasonably simple: if you want to solve the problem classically, you need to find two different inputs <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> for which <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=f(y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=f(y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c45b4d507fbe420cf82e042d6f32f7aed7f8a12" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.759ex; height:2.843ex;" alt="{\displaystyle f(x)=f(y)}"></span>. There is not necessarily any structure in the function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> that would help us to find two such inputs: more specifically, we can discover something about <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> (or what it does) only when, for two different inputs, we obtain the same output. In any case, we would need to guess <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\displaystyle \Omega ({\sqrt {2^{n}}})}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Ω<!-- Ω --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </msqrt> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\displaystyle \Omega ({\sqrt {2^{n}}})}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d84d9b93a5fbab6c3bdd5aae3618c83ff5bebc8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.804ex; height:3.176ex;" alt="{\displaystyle {\displaystyle \Omega ({\sqrt {2^{n}}})}}"></span> different inputs before being likely to find a pair on which <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> takes the same output, as per the <a href="/wiki/Birthday_problem" title="Birthday problem">birthday problem</a>. Since, classically to find <i>s</i> with a 100% certainty it would require checking <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\displaystyle \Theta ({\sqrt {2^{n}}})}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Θ<!-- Θ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </msqrt> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\displaystyle \Theta ({\sqrt {2^{n}}})}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fcfb5c87016289dc80d1b77cef298d7ecf2ec183" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.934ex; height:3.176ex;" alt="{\displaystyle {\displaystyle \Theta ({\sqrt {2^{n}}})}}"></span> inputs, Simon's problem seeks to find <i>s</i> using fewer queries than this classical method. </p> <div class="mw-heading mw-heading2"><h2 id="Simon's_algorithm"><span id="Simon.27s_algorithm"></span>Simon's algorithm</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Simon%27s_problem&action=edit&section=4" title="Edit section: Simon's algorithm"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Simons_algorithm.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fb/Simons_algorithm.svg/300px-Simons_algorithm.svg.png" decoding="async" width="300" height="65" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fb/Simons_algorithm.svg/450px-Simons_algorithm.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fb/Simons_algorithm.svg/600px-Simons_algorithm.svg.png 2x" data-file-width="230" data-file-height="50" /></a><figcaption>Quantum circuit representing/implementing Simon's algorithm</figcaption></figure><p>The algorithm as a whole uses a subroutine to execute the following two steps: </p><ol><li>Run the quantum subroutine an expected <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O(n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O(n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34109fe397fdcff370079185bfdb65826cb5565a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.977ex; height:2.843ex;" alt="{\displaystyle O(n)}"></span> times to get a list of <a href="/wiki/Linear_independence" title="Linear independence">linearly independent</a> bitstrings <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{1},...,y_{n-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y_{1},...,y_{n-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef7d9b90c608f8b4a9d92412ec61ec87bd83e6b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.821ex; height:2.009ex;" alt="{\displaystyle y_{1},...,y_{n-1}}"></span>.</li> <li>Each <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b2ab0248723a410cc2c67ce06ad5c043dcbb933" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.228ex; height:2.009ex;" alt="{\displaystyle y_{k}}"></span> satisfies <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{k}\cdot s=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <mi>s</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y_{k}\cdot s=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4580452d1a495eff6341c995f6a8c46409a07ec6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.258ex; height:2.509ex;" alt="{\displaystyle y_{k}\cdot s=0}"></span>, so we can solve the system of equations this produces to get <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01d131dfd7673938b947072a13a9744fe997e632" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:1.676ex;" alt="{\displaystyle s}"></span>.</li></ol> <div class="mw-heading mw-heading3"><h3 id="Quantum_subroutine">Quantum subroutine</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Simon%27s_problem&action=edit&section=5" title="Edit section: Quantum subroutine"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The quantum circuit (see the picture) is the implementation of the quantum part of Simon's algorithm. The quantum subroutine of the algorithm makes use of the <a href="/wiki/Hadamard_transform" title="Hadamard transform">Hadamard transform</a><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H^{\otimes n}|k\rangle ={\frac {1}{\sqrt {2^{n}}}}\sum _{j=0}^{2^{n}-1}(-1)^{k\cdot j}|j\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>⊗<!-- ⊗ --></mo> <mi>n</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>k</mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </msqrt> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>⋅<!-- ⋅ --></mo> <mi>j</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>j</mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H^{\otimes n}|k\rangle ={\frac {1}{\sqrt {2^{n}}}}\sum _{j=0}^{2^{n}-1}(-1)^{k\cdot j}|j\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0817994eb7191dae88c2dc09b61b8c55f63aa74a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:29.402ex; height:7.676ex;" alt="{\displaystyle H^{\otimes n}|k\rangle ={\frac {1}{\sqrt {2^{n}}}}\sum _{j=0}^{2^{n}-1}(-1)^{k\cdot j}|j\rangle }"></span>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k\cdot j=k_{1}j_{1}\oplus \ldots \oplus k_{n}j_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>⋅<!-- ⋅ --></mo> <mi>j</mi> <mo>=</mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>⊕<!-- ⊕ --></mo> <mo>…<!-- … --></mo> <mo>⊕<!-- ⊕ --></mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k\cdot j=k_{1}j_{1}\oplus \ldots \oplus k_{n}j_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1fe146bb3c23c243ca632f381603fef0f1c52804" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:24.235ex; height:2.509ex;" alt="{\displaystyle k\cdot j=k_{1}j_{1}\oplus \ldots \oplus k_{n}j_{n}}"></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \oplus }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>⊕<!-- ⊕ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \oplus }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b16e2bdaefee9eed86d866e6eba3ac47c710f60" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \oplus }"></span> denotes XOR. </p><p>First, the algorithm starts with two registers, initialized to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |0\rangle ^{\otimes n}|0\rangle ^{\otimes n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <msup> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>⊗<!-- ⊗ --></mo> <mi>n</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <msup> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>⊗<!-- ⊗ --></mo> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |0\rangle ^{\otimes n}|0\rangle ^{\otimes n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2fc10168a55f1ae1f87c17963fc059bad55099b4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.422ex; height:3.009ex;" alt="{\displaystyle |0\rangle ^{\otimes n}|0\rangle ^{\otimes n}}"></span>. Then, we apply the Hadamard transform to the first register, which gives the state </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{\sqrt {2^{n}}}}\sum _{k=0}^{2^{n}-1}|k\rangle |0\rangle ^{\otimes n}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </msqrt> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>k</mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <msup> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>⊗<!-- ⊗ --></mo> <mi>n</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{\sqrt {2^{n}}}}\sum _{k=0}^{2^{n}-1}|k\rangle |0\rangle ^{\otimes n}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0f9d1c2f21ae288e31112b3dadd74550b3afeaeb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:18.435ex; height:7.509ex;" alt="{\displaystyle {\frac {1}{\sqrt {2^{n}}}}\sum _{k=0}^{2^{n}-1}|k\rangle |0\rangle ^{\otimes n}.}"></span></dd></dl> <p>Query the oracle <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U_{f}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U_{f}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f7be3c3c86d5d87a48bec069e8477dd5a4823fcc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.724ex; height:2.843ex;" alt="{\displaystyle U_{f}}"></span> to get the state </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{\sqrt {2^{n}}}}\sum _{k=0}^{2^{n}-1}|k\rangle |f(k)\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </msqrt> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>k</mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{\sqrt {2^{n}}}}\sum _{k=0}^{2^{n}-1}|k\rangle |f(k)\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ba8a827702beb34324cce865c2f42976054b91c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:18.428ex; height:7.509ex;" alt="{\displaystyle {\frac {1}{\sqrt {2^{n}}}}\sum _{k=0}^{2^{n}-1}|k\rangle |f(k)\rangle }"></span>.</dd></dl> <p>Apply another Hadamard transform to the first register. This will produce the state </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{\sqrt {2^{n}}}}\sum _{k=0}^{2^{n}-1}\left[{\frac {1}{\sqrt {2^{n}}}}\sum _{j=0}^{2^{n}-1}(-1)^{j\cdot k}|j\rangle \right]|f(k)\rangle =\sum _{j=0}^{2^{n}-1}|j\rangle \left[{\frac {1}{2^{n}}}\sum _{k=0}^{2^{n}-1}(-1)^{j\cdot k}|f(k)\rangle \right].}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </msqrt> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mrow> <mo>[</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </msqrt> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>⋅<!-- ⋅ --></mo> <mi>k</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>j</mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mrow> <mo>]</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>j</mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mrow> <mo>[</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>⋅<!-- ⋅ --></mo> <mi>k</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mrow> <mo>]</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{\sqrt {2^{n}}}}\sum _{k=0}^{2^{n}-1}\left[{\frac {1}{\sqrt {2^{n}}}}\sum _{j=0}^{2^{n}-1}(-1)^{j\cdot k}|j\rangle \right]|f(k)\rangle =\sum _{j=0}^{2^{n}-1}|j\rangle \left[{\frac {1}{2^{n}}}\sum _{k=0}^{2^{n}-1}(-1)^{j\cdot k}|f(k)\rangle \right].}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/847a7b468c5c15ed2b3216f03f13618cd31d0f33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:72.063ex; height:7.676ex;" alt="{\displaystyle {\frac {1}{\sqrt {2^{n}}}}\sum _{k=0}^{2^{n}-1}\left[{\frac {1}{\sqrt {2^{n}}}}\sum _{j=0}^{2^{n}-1}(-1)^{j\cdot k}|j\rangle \right]|f(k)\rangle =\sum _{j=0}^{2^{n}-1}|j\rangle \left[{\frac {1}{2^{n}}}\sum _{k=0}^{2^{n}-1}(-1)^{j\cdot k}|f(k)\rangle \right].}"></span> </dd></dl> <p>Finally, we measure the first register (the algorithm also works if the second register is measured before the first, but this is unnecessary). The probability of measuring a state <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |j\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>j</mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |j\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3188b18f9e6f5b83f91e557f0e08a20e4bea3286" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.51ex; height:2.843ex;" alt="{\displaystyle |j\rangle }"></span> is<span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left|\left|{\frac {1}{2^{n}}}\sum _{k=0}^{2^{n}-1}(-1)^{j\cdot k}|f(k)\rangle \right|\right|^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow> <mo>|</mo> <mrow> <mo>|</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>⋅<!-- ⋅ --></mo> <mi>k</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mrow> <mo>|</mo> </mrow> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left|\left|{\frac {1}{2^{n}}}\sum _{k=0}^{2^{n}-1}(-1)^{j\cdot k}|f(k)\rangle \right|\right|^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f7263ea0fafd7a1e6b37fcdcc90eba51c5c12f30" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:23.987ex; height:8.009ex;" alt="{\displaystyle \left|\left|{\frac {1}{2^{n}}}\sum _{k=0}^{2^{n}-1}(-1)^{j\cdot k}|f(k)\rangle \right|\right|^{2}}"></span>This is due to the fact that taking the magnitude of this vector and squaring it sums up all the probabilities of all the possible measurements of the second register that must have the first register as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |j\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>j</mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |j\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3188b18f9e6f5b83f91e557f0e08a20e4bea3286" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.51ex; height:2.843ex;" alt="{\displaystyle |j\rangle }"></span>. There are two cases for our measurement: </p> <ol><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s=0^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>=</mo> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s=0^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f54f4e79e802bec83e4d974c6065904b6d3e0f48" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.57ex; height:2.343ex;" alt="{\displaystyle s=0^{n}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> is one-to-one.</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s\neq 0^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>≠<!-- ≠ --></mo> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s\neq 0^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/77677ccf3b43752c663efdb311dec341a3150d68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.57ex; height:2.843ex;" alt="{\displaystyle s\neq 0^{n}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> is two-to-one.</li></ol> <p>For the first case, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left|\left|{\frac {1}{2^{n}}}\sum _{k=0}^{2^{n}-1}(-1)^{j\cdot k}|f(k)\rangle \right|\right|^{2}={\frac {1}{2^{n}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow> <mo>|</mo> <mrow> <mo>|</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>⋅<!-- ⋅ --></mo> <mi>k</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mrow> <mo>|</mo> </mrow> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left|\left|{\frac {1}{2^{n}}}\sum _{k=0}^{2^{n}-1}(-1)^{j\cdot k}|f(k)\rangle \right|\right|^{2}={\frac {1}{2^{n}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/14aaed2b9bd817570e2f97908ca1e804aa86a523" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:30.303ex; height:8.009ex;" alt="{\displaystyle \left|\left|{\frac {1}{2^{n}}}\sum _{k=0}^{2^{n}-1}(-1)^{j\cdot k}|f(k)\rangle \right|\right|^{2}={\frac {1}{2^{n}}}}"></span>since in this case, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> is one-to-one, implying that the range of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{0,1\}^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <msup> <mo fence="false" stretchy="false">}</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{0,1\}^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3cc07e486d73e18382d0d8d205149f0923ed0586" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.902ex; height:2.843ex;" alt="{\displaystyle \{0,1\}^{n}}"></span>, meaning that the summation is over every basis vector. For the second case, note that there exist two strings, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a8788bf85d532fa88d1fb25eff6ae382a601c308" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{1}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7af1b928f06e4c7e3e8ebfd60704656719bd766" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{2}}"></span>, such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x_{1})=f(x_{2})=z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x_{1})=f(x_{2})=z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db2bbdfff713ab5a30823cca1f5274d71dc216a6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.229ex; height:2.843ex;" alt="{\displaystyle f(x_{1})=f(x_{2})=z}"></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z\in \mathrm {range} (f)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>∈<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">n</mi> <mi mathvariant="normal">g</mi> <mi mathvariant="normal">e</mi> </mrow> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z\in \mathrm {range} (f)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/08498fdbfc4fa40082ebb9e21e303ef2519cf1ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.578ex; height:2.843ex;" alt="{\displaystyle z\in \mathrm {range} (f)}"></span>. Thus, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left|\left|{\frac {1}{2^{n}}}\sum _{k=0}^{2^{n}-1}(-1)^{j\cdot k}|f(k)\rangle \right|\right|^{2}=\left|\left|{\frac {1}{2^{n}}}\sum _{z\,\in \,\mathrm {range} (f)}((-1)^{j\cdot x_{1}}+(-1)^{j\cdot x_{2}})|z\rangle \right|\right|^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow> <mo>|</mo> <mrow> <mo>|</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>⋅<!-- ⋅ --></mo> <mi>k</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mrow> <mo>|</mo> </mrow> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mrow> <mo>|</mo> <mrow> <mo>|</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mfrac> </mrow> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> <mspace width="thinmathspace" /> <mo>∈<!-- ∈ --></mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">n</mi> <mi mathvariant="normal">g</mi> <mi mathvariant="normal">e</mi> </mrow> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> </mrow> </munder> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>⋅<!-- ⋅ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msup> <mo>+</mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>⋅<!-- ⋅ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>z</mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mrow> <mo>|</mo> </mrow> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left|\left|{\frac {1}{2^{n}}}\sum _{k=0}^{2^{n}-1}(-1)^{j\cdot k}|f(k)\rangle \right|\right|^{2}=\left|\left|{\frac {1}{2^{n}}}\sum _{z\,\in \,\mathrm {range} (f)}((-1)^{j\cdot x_{1}}+(-1)^{j\cdot x_{2}})|z\rangle \right|\right|^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3232aa7db3e3890a475530afb821e4e80ef99cf7" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:66.214ex; height:8.676ex;" alt="{\displaystyle \left|\left|{\frac {1}{2^{n}}}\sum _{k=0}^{2^{n}-1}(-1)^{j\cdot k}|f(k)\rangle \right|\right|^{2}=\left|\left|{\frac {1}{2^{n}}}\sum _{z\,\in \,\mathrm {range} (f)}((-1)^{j\cdot x_{1}}+(-1)^{j\cdot x_{2}})|z\rangle \right|\right|^{2}}"></span>Furthermore, since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{1}\oplus x_{2}=s}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>⊕<!-- ⊕ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mi>s</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{1}\oplus x_{2}=s}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3f0822dbe36c31e03dea07077053fb4d66607687" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.797ex; height:2.343ex;" alt="{\displaystyle x_{1}\oplus x_{2}=s}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{2}=x_{1}\oplus s}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>⊕<!-- ⊕ --></mo> <mi>s</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{2}=x_{1}\oplus s}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c2e1ca725a08e2d9c5a97f8a9cb35b16b3df4d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.797ex; height:2.343ex;" alt="{\displaystyle x_{2}=x_{1}\oplus s}"></span>, and so<span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\left|\left|{\frac {1}{2^{n}}}\sum _{z\,\in \,\mathrm {range} (f)}((-1)^{j\cdot x_{1}}+(-1)^{j\cdot x_{2}})|z\rangle \right|\right|^{2}&=\left|\left|{\frac {1}{2^{n}}}\sum _{z\,\in \,\mathrm {range} (f)}((-1)^{j\cdot x_{1}}+(-1)^{j\cdot (x_{1}\oplus s)})|z\rangle \right|\right|^{2}\\&=\left|\left|{\frac {1}{2^{n}}}\sum _{z\,\in \,\mathrm {range} (f)}((-1)^{j\cdot x_{1}}+(-1)^{j\cdot x_{1}\oplus j\cdot s})|z\rangle \right|\right|^{2}\\&=\left|\left|{\frac {1}{2^{n}}}\sum _{z\,\in \,\mathrm {range} (f)}(-1)^{j\cdot x_{1}}(1+(-1)^{j\cdot s})|z\rangle \right|\right|^{2}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mrow> <mo>|</mo> <mrow> <mo>|</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mfrac> </mrow> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> <mspace width="thinmathspace" /> <mo>∈<!-- ∈ --></mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">n</mi> <mi mathvariant="normal">g</mi> <mi mathvariant="normal">e</mi> </mrow> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> </mrow> </munder> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>⋅<!-- ⋅ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msup> <mo>+</mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>⋅<!-- ⋅ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>z</mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mrow> <mo>|</mo> </mrow> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mrow> <mo>|</mo> <mrow> <mo>|</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mfrac> </mrow> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> <mspace width="thinmathspace" /> <mo>∈<!-- ∈ --></mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">n</mi> <mi mathvariant="normal">g</mi> <mi mathvariant="normal">e</mi> </mrow> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> </mrow> </munder> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>⋅<!-- ⋅ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msup> <mo>+</mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>⊕<!-- ⊕ --></mo> <mi>s</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>z</mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mrow> <mo>|</mo> </mrow> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msup> <mrow> <mo>|</mo> <mrow> <mo>|</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mfrac> </mrow> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> <mspace width="thinmathspace" /> <mo>∈<!-- ∈ --></mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">n</mi> <mi mathvariant="normal">g</mi> <mi mathvariant="normal">e</mi> </mrow> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> </mrow> </munder> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>⋅<!-- ⋅ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msup> <mo>+</mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>⋅<!-- ⋅ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>⊕<!-- ⊕ --></mo> <mi>j</mi> <mo>⋅<!-- ⋅ --></mo> <mi>s</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>z</mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mrow> <mo>|</mo> </mrow> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msup> <mrow> <mo>|</mo> <mrow> <mo>|</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mfrac> </mrow> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> <mspace width="thinmathspace" /> <mo>∈<!-- ∈ --></mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">n</mi> <mi mathvariant="normal">g</mi> <mi mathvariant="normal">e</mi> </mrow> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> </mrow> </munder> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>⋅<!-- ⋅ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msup> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>⋅<!-- ⋅ --></mo> <mi>s</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>z</mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mrow> <mo>|</mo> </mrow> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\left|\left|{\frac {1}{2^{n}}}\sum _{z\,\in \,\mathrm {range} (f)}((-1)^{j\cdot x_{1}}+(-1)^{j\cdot x_{2}})|z\rangle \right|\right|^{2}&=\left|\left|{\frac {1}{2^{n}}}\sum _{z\,\in \,\mathrm {range} (f)}((-1)^{j\cdot x_{1}}+(-1)^{j\cdot (x_{1}\oplus s)})|z\rangle \right|\right|^{2}\\&=\left|\left|{\frac {1}{2^{n}}}\sum _{z\,\in \,\mathrm {range} (f)}((-1)^{j\cdot x_{1}}+(-1)^{j\cdot x_{1}\oplus j\cdot s})|z\rangle \right|\right|^{2}\\&=\left|\left|{\frac {1}{2^{n}}}\sum _{z\,\in \,\mathrm {range} (f)}(-1)^{j\cdot x_{1}}(1+(-1)^{j\cdot s})|z\rangle \right|\right|^{2}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/19ee121a68d9d658a1156e6bac2086ad827bb594" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -12.671ex; width:85.436ex; height:26.509ex;" alt="{\displaystyle {\begin{aligned}\left|\left|{\frac {1}{2^{n}}}\sum _{z\,\in \,\mathrm {range} (f)}((-1)^{j\cdot x_{1}}+(-1)^{j\cdot x_{2}})|z\rangle \right|\right|^{2}&=\left|\left|{\frac {1}{2^{n}}}\sum _{z\,\in \,\mathrm {range} (f)}((-1)^{j\cdot x_{1}}+(-1)^{j\cdot (x_{1}\oplus s)})|z\rangle \right|\right|^{2}\\&=\left|\left|{\frac {1}{2^{n}}}\sum _{z\,\in \,\mathrm {range} (f)}((-1)^{j\cdot x_{1}}+(-1)^{j\cdot x_{1}\oplus j\cdot s})|z\rangle \right|\right|^{2}\\&=\left|\left|{\frac {1}{2^{n}}}\sum _{z\,\in \,\mathrm {range} (f)}(-1)^{j\cdot x_{1}}(1+(-1)^{j\cdot s})|z\rangle \right|\right|^{2}\end{aligned}}}"></span>This expression is now easy to evaluate. Recall that we are measuring <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>j</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle j}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f461e54f5c093e92a55547b9764291390f0b5d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.027ex; width:0.985ex; height:2.509ex;" alt="{\displaystyle j}"></span>. When <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j\cdot s=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>j</mi> <mo>⋅<!-- ⋅ --></mo> <mi>s</mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle j\cdot s=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59b2d4d96db9262337cd4c4894813c8eb87162ee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.027ex; width:8.015ex; height:2.509ex;" alt="{\displaystyle j\cdot s=1}"></span>, then this expression will evaluate to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span>, and when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j\cdot s=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>j</mi> <mo>⋅<!-- ⋅ --></mo> <mi>s</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle j\cdot s=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c2eab908eaf45908275aa3804aaf73d6d9ac6acd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.027ex; width:8.015ex; height:2.509ex;" alt="{\displaystyle j\cdot s=0}"></span>, then this expression will be <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{-n+1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{-n+1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/706fd650e90ea62eb861b8c72b87b650580ca320" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.76ex; height:2.676ex;" alt="{\displaystyle 2^{-n+1}}"></span>. </p><p>Thus, both when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s=0^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>=</mo> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s=0^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f54f4e79e802bec83e4d974c6065904b6d3e0f48" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.57ex; height:2.343ex;" alt="{\displaystyle s=0^{n}}"></span> and when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s\neq 0^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>≠<!-- ≠ --></mo> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s\neq 0^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/77677ccf3b43752c663efdb311dec341a3150d68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.57ex; height:2.843ex;" alt="{\displaystyle s\neq 0^{n}}"></span>, our measured <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>j</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle j}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f461e54f5c093e92a55547b9764291390f0b5d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.027ex; width:0.985ex; height:2.509ex;" alt="{\displaystyle j}"></span> satisfies <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j\cdot s=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>j</mi> <mo>⋅<!-- ⋅ --></mo> <mi>s</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle j\cdot s=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c2eab908eaf45908275aa3804aaf73d6d9ac6acd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.027ex; width:8.015ex; height:2.509ex;" alt="{\displaystyle j\cdot s=0}"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Classical_post-processing">Classical post-processing</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Simon%27s_problem&action=edit&section=6" title="Edit section: Classical post-processing"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>We run the quantum part of the algorithm until we have a linearly independent list of bitstrings <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{1},\ldots ,y_{n-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y_{1},\ldots ,y_{n-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/de383f5593a7fc0b4764f3883225d5640d6c4584" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.83ex; height:2.009ex;" alt="{\displaystyle y_{1},\ldots ,y_{n-1}}"></span>, and each <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b2ab0248723a410cc2c67ce06ad5c043dcbb933" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.228ex; height:2.009ex;" alt="{\displaystyle y_{k}}"></span> satisfies <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{k}\cdot s=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <mi>s</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y_{k}\cdot s=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4580452d1a495eff6341c995f6a8c46409a07ec6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.258ex; height:2.509ex;" alt="{\displaystyle y_{k}\cdot s=0}"></span>. Thus, we can efficiently solve this system of equations classically to find <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01d131dfd7673938b947072a13a9744fe997e632" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:1.676ex;" alt="{\displaystyle s}"></span>. </p><p>The probability that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{1},y_{2},\dots ,y_{n-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y_{1},y_{2},\dots ,y_{n-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a4f0516e729cb028b25985e429364870cea86503" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:15.057ex; height:2.009ex;" alt="{\displaystyle y_{1},y_{2},\dots ,y_{n-1}}"></span> are linearly independent is at least<span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \prod _{k=1}^{\infty }\left(1-{\frac {1}{2^{k}}}\right)=0.288788\dots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∏<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>0.288788</mn> <mo>…<!-- … --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \prod _{k=1}^{\infty }\left(1-{\frac {1}{2^{k}}}\right)=0.288788\dots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/147f1a0f2ce95d8eac16c644ec884e313abd12af" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:28.861ex; height:6.843ex;" alt="{\displaystyle \prod _{k=1}^{\infty }\left(1-{\frac {1}{2^{k}}}\right)=0.288788\dots }"></span>Once we solve the system of equations, and produce a solution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>s</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5136680c63706cfd17ceddb4acddbfdd0ba5ef2d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.775ex; height:2.509ex;" alt="{\displaystyle s'}"></span>, we can test if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(0^{n})=f(s')}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <msup> <mi>s</mi> <mo>′</mo> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(0^{n})=f(s')}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ce5cf2f7859cd7733f3df06cffaa203603991ac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.43ex; height:3.009ex;" alt="{\displaystyle f(0^{n})=f(s')}"></span>. If this is true, then we know <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s'=s}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>s</mi> <mo>′</mo> </msup> <mo>=</mo> <mi>s</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s'=s}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d5e32fc3e13efe39332708cea85423e7197b33c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.964ex; height:2.509ex;" alt="{\displaystyle s'=s}"></span>, since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(0^{n})=f(0^{n}\oplus s)=f(s)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>⊕<!-- ⊕ --></mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(0^{n})=f(0^{n}\oplus s)=f(s)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35f2043e213188cdc39edc4868890078efa517fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.244ex; height:2.843ex;" alt="{\displaystyle f(0^{n})=f(0^{n}\oplus s)=f(s)}"></span>. If it is the case that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(0^{n})\neq f(s')}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>≠<!-- ≠ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <msup> <mi>s</mi> <mo>′</mo> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(0^{n})\neq f(s')}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/002daecc70845e08aece18ca9a01dd40f9f773ff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.43ex; height:3.009ex;" alt="{\displaystyle f(0^{n})\neq f(s')}"></span>, then that means that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s=0^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>=</mo> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s=0^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f54f4e79e802bec83e4d974c6065904b6d3e0f48" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.57ex; height:2.343ex;" alt="{\displaystyle s=0^{n}}"></span>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(0^{n})\neq f(s')}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>≠<!-- ≠ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <msup> <mi>s</mi> <mo>′</mo> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(0^{n})\neq f(s')}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/002daecc70845e08aece18ca9a01dd40f9f773ff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.43ex; height:3.009ex;" alt="{\displaystyle f(0^{n})\neq f(s')}"></span> since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> is one-to-one. </p><p>We can repeat Simon's algorithm a constant number of times to increase the probability of success arbitrarily, while still having the same time complexity. </p> <div class="mw-heading mw-heading2"><h2 id="Explicit_examples_of_Simon's_algorithm_for_few_qubits"><span id="Explicit_examples_of_Simon.27s_algorithm_for_few_qubits"></span>Explicit examples of Simon's algorithm for few qubits</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Simon%27s_problem&action=edit&section=7" title="Edit section: Explicit examples of Simon's algorithm for few qubits"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="One_qubit">One qubit</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Simon%27s_problem&action=edit&section=8" title="Edit section: One qubit"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Consider the simplest instance of the algorithm, with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d9ec7e1edc2e6d98f5aec2a39ae5f1c99d1e1425" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\displaystyle n=1}"></span>. In this case evolving the input state through an Hadamard gate and the oracle results in the state (up to renormalization): </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |0\rangle |f(0)\rangle +|1\rangle |f(1)\rangle .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |0\rangle |f(0)\rangle +|1\rangle |f(1)\rangle .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a04462d4d5897aebc1780aa5df8b7d271b96d8e7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.519ex; height:2.843ex;" alt="{\displaystyle |0\rangle |f(0)\rangle +|1\rangle |f(1)\rangle .}"></span></dd></dl> <p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bac386d8f227fb823cede9b3e33d706cad3ed306" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.351ex; height:2.176ex;" alt="{\displaystyle s=1}"></span>, that is, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(0)=f(1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(0)=f(1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc37ee05542c1472c465dd6441c3d3a8a1adfa6d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.599ex; height:2.843ex;" alt="{\displaystyle f(0)=f(1)}"></span>, then measuring the second register always gives the outcome <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |f(0)\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |f(0)\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39e17c11e7a8547c98cbdc41a41956e90144f187" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.802ex; height:2.843ex;" alt="{\displaystyle |f(0)\rangle }"></span>, and always results in the first register collapsing to the state (up to renormalization): </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |0\rangle +|1\rangle .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |0\rangle +|1\rangle .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92f3b24b132a28dec7c8feac8e82b8ad946956ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.915ex; height:2.843ex;" alt="{\displaystyle |0\rangle +|1\rangle .}"></span></dd></dl> <p>Thus applying an Hadamard and measuring the first register always gives the outcome <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |0\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |0\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed066a3ad158da0ad6d6a421a606b1c8a35eb95b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.714ex; height:2.843ex;" alt="{\displaystyle |0\rangle }"></span>. On the other hand, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> is one-to-one, that is, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7903b8069a44c70f6f96511675bdd9a4ff200ed7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.351ex; height:2.176ex;" alt="{\displaystyle s=0}"></span>, then measuring the first register after the second Hadamard can result in both <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |0\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |0\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed066a3ad158da0ad6d6a421a606b1c8a35eb95b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.714ex; height:2.843ex;" alt="{\displaystyle |0\rangle }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |1\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |1\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f53021ca18e77477ee5bd3c1523e5830189ec5c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.714ex; height:2.843ex;" alt="{\displaystyle |1\rangle }"></span>, with equal probability. </p><p>We recover <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01d131dfd7673938b947072a13a9744fe997e632" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:1.676ex;" alt="{\displaystyle s}"></span> from the measurement outcomes by looking at whether we measured always <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |0\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |0\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed066a3ad158da0ad6d6a421a606b1c8a35eb95b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.714ex; height:2.843ex;" alt="{\displaystyle |0\rangle }"></span>, in which case <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bac386d8f227fb823cede9b3e33d706cad3ed306" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.351ex; height:2.176ex;" alt="{\displaystyle s=1}"></span>, or we measured both <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |0\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |0\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed066a3ad158da0ad6d6a421a606b1c8a35eb95b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.714ex; height:2.843ex;" alt="{\displaystyle |0\rangle }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |1\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |1\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f53021ca18e77477ee5bd3c1523e5830189ec5c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.714ex; height:2.843ex;" alt="{\displaystyle |1\rangle }"></span> with equal probability, in which case we infer that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7903b8069a44c70f6f96511675bdd9a4ff200ed7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.351ex; height:2.176ex;" alt="{\displaystyle s=0}"></span>. This scheme will fail if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7903b8069a44c70f6f96511675bdd9a4ff200ed7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.351ex; height:2.176ex;" alt="{\displaystyle s=0}"></span> but we nonetheless always found the outcome <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |0\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |0\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed066a3ad158da0ad6d6a421a606b1c8a35eb95b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.714ex; height:2.843ex;" alt="{\displaystyle |0\rangle }"></span>, but the probability of this event is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{-N}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>N</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{-N}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/842b0ef6cc28e9e7e4bf3d4a8f999ea8fc6afd04" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.132ex; height:2.676ex;" alt="{\displaystyle 2^{-N}}"></span> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span> the number of performed measurements, and can thus be made exponentially small by increasing the statistics. </p> <div class="mw-heading mw-heading3"><h3 id="Two_qubits">Two qubits</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Simon%27s_problem&action=edit&section=9" title="Edit section: Two qubits"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Consider now the case with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a02c8bd752d2cc859747ca1f3a508281bdbc3b34" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\displaystyle n=2}"></span>. The initial part of the algorithm results in the state (up to renormalization):<span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |00\rangle |f(00)\rangle +|01\rangle |f(01)\rangle +|10\rangle |f(10)\rangle +|11\rangle |f(11)\rangle .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>00</mn> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mn>00</mn> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>01</mn> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mn>01</mn> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>10</mn> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mn>10</mn> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>11</mn> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mn>11</mn> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |00\rangle |f(00)\rangle +|01\rangle |f(01)\rangle +|10\rangle |f(10)\rangle +|11\rangle |f(11)\rangle .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/876b84ef34c1fb40c57c02f9e4e07c8882499d05" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:52.531ex; height:2.843ex;" alt="{\displaystyle |00\rangle |f(00)\rangle +|01\rangle |f(01)\rangle +|10\rangle |f(10)\rangle +|11\rangle |f(11)\rangle .}"></span>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s=(00)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mn>00</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s=(00)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a5d304ab8065486fd77a7de6f7620f6f09fb404d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.323ex; height:2.843ex;" alt="{\displaystyle s=(00)}"></span>, meaning <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> is injective, then finding <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |f(x)\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |f(x)\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/50fc4f686cc08acae5e6c36dc41b9d0222621f7e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.969ex; height:2.843ex;" alt="{\displaystyle |f(x)\rangle }"></span> on the second register always collapses the first register to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |x\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |x\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48004887d8f9dfc489bd2bc793780b7f1d8039ad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.881ex; height:2.843ex;" alt="{\displaystyle |x\rangle }"></span>, for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in \{0,1\}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <msup> <mo fence="false" stretchy="false">}</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in \{0,1\}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f92cbcf6220d2a2d0945d1bfd74aa86cf18d2b69" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.908ex; height:3.176ex;" alt="{\displaystyle x\in \{0,1\}^{2}}"></span>. In other words, applying Hadamard gates and measuring the first register the four outcomes <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 00,01,10,11}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>00</mn> <mo>,</mo> <mn>01</mn> <mo>,</mo> <mn>10</mn> <mo>,</mo> <mn>11</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 00,01,10,11}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3cc6aebb06f4611bb3835100b5f0ccd846cd73af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.401ex; height:2.509ex;" alt="{\displaystyle 00,01,10,11}"></span> are thus found with equal probability. </p><p>Suppose on the other hand <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s\neq (00)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>≠<!-- ≠ --></mo> <mo stretchy="false">(</mo> <mn>00</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s\neq (00)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b0fae6f3b493e7ce7158f049709fa172018ef13" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.323ex; height:2.843ex;" alt="{\displaystyle s\neq (00)}"></span>, for example, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s=(01)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mn>01</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s=(01)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fd829b3a58904f7be3fe9a096d0740e398e34c4b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.323ex; height:2.843ex;" alt="{\displaystyle s=(01)}"></span>. Then measuring <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |f(00)\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mn>00</mn> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |f(00)\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4c459b1f4fffbe318d49019e9fdc688e4503ed5b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.964ex; height:2.843ex;" alt="{\displaystyle |f(00)\rangle }"></span> on the second register collapses the first register to the state <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |00\rangle +|10\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>00</mn> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>10</mn> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |00\rangle +|10\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ad512b846406299705b6a74136ae41b9c5c192b4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.593ex; height:2.843ex;" alt="{\displaystyle |00\rangle +|10\rangle }"></span>. And more generally, measuring <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |f(xy)\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mi>y</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |f(xy)\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e4d04c74eef4fff142524b5e18dcb49c4aa2fa33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.125ex; height:2.843ex;" alt="{\displaystyle |f(xy)\rangle }"></span> gives <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |x,y\rangle +|x,y\oplus 1\rangle =|x\rangle (|0\rangle +|1\rangle )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>⊕<!-- ⊕ --></mo> <mn>1</mn> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |x,y\rangle +|x,y\oplus 1\rangle =|x\rangle (|0\rangle +|1\rangle )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b621e1615d9b81aa9a96d4a4f3d5e83b7df1ee2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:33.042ex; height:2.843ex;" alt="{\displaystyle |x,y\rangle +|x,y\oplus 1\rangle =|x\rangle (|0\rangle +|1\rangle )}"></span> on the first register. Applying Hadamard gates and measuring on the first register can thus result in the outcomes <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 00}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>00</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 00}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f2ceb80fb1bce390c5819835569f4a5df37290ee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.325ex; height:2.176ex;" alt="{\displaystyle 00}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 10}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>10</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 10}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4ec811eb07dcac7ea67b413c5665390a1671ecb0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.325ex; height:2.176ex;" alt="{\displaystyle 10}"></span> with equal probabilities. </p><p>Similar reasoning applies to the other cases: if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s=(10)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mn>10</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s=(10)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/30e32d7416b2cfb0a4b158c7dacee5bdf0a0cdcb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.323ex; height:2.843ex;" alt="{\displaystyle s=(10)}"></span> then the possible outcomes are <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 00}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>00</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 00}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f2ceb80fb1bce390c5819835569f4a5df37290ee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.325ex; height:2.176ex;" alt="{\displaystyle 00}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 01}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>01</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 01}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac8deb85e579248e3f9c4f3cef7ee37f9d3769d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.325ex; height:2.176ex;" alt="{\displaystyle 01}"></span>, while if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s=(11)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mn>11</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s=(11)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d5b4e3a3da08b8fe85c8fc2e6587c37a7e124e3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.323ex; height:2.843ex;" alt="{\displaystyle s=(11)}"></span> the possible outcomes are <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 00}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>00</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 00}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f2ceb80fb1bce390c5819835569f4a5df37290ee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.325ex; height:2.176ex;" alt="{\displaystyle 00}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 11}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>11</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 11}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da6aabe7c6af49fe640b2d401cb2dbe909bb7475" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.325ex; height:2.176ex;" alt="{\displaystyle 11}"></span>, compatibly with the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j\cdot s=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>j</mi> <mo>⋅<!-- ⋅ --></mo> <mi>s</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle j\cdot s=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c2eab908eaf45908275aa3804aaf73d6d9ac6acd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.027ex; width:8.015ex; height:2.509ex;" alt="{\displaystyle j\cdot s=0}"></span> rule discussed in the general case. </p><p>To recover <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01d131dfd7673938b947072a13a9744fe997e632" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:1.676ex;" alt="{\displaystyle s}"></span> we thus only need to distinguish between these four cases, collecting enough statistics to ensure that the probability of mistaking one outcome probability distribution for another is sufficiently small. </p> <div class="mw-heading mw-heading2"><h2 id="Complexity">Complexity</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Simon%27s_problem&action=edit&section=10" title="Edit section: Complexity"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Simon's algorithm requires <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O(n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O(n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34109fe397fdcff370079185bfdb65826cb5565a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.977ex; height:2.843ex;" alt="{\displaystyle O(n)}"></span> queries to the black box, whereas a classical algorithm would need at least <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega (2^{n/2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Ω<!-- Ω --></mi> <mo stretchy="false">(</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega (2^{n/2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc79b0c9a96cb7891d043f44ac450441d33a211f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.512ex; height:3.343ex;" alt="{\displaystyle \Omega (2^{n/2})}"></span> queries. It is also known that Simon's algorithm is optimal in the sense that <i>any</i> quantum algorithm to solve this problem requires <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega (n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Ω<!-- Ω --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega (n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6becc31c61ad3420a1e4ee9e39c28baf73bda24d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.882ex; height:2.843ex;" alt="{\displaystyle \Omega (n)}"></span> queries.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Simon%27s_problem&action=edit&section=11" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Deutsch%E2%80%93Jozsa_algorithm" title="Deutsch–Jozsa algorithm">Deutsch–Jozsa algorithm</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Simon%27s_problem&action=edit&section=12" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFShor1999" class="citation journal cs1">Shor, Peter W. (1999-01-01). <a rel="nofollow" class="external text" href="https://epubs.siam.org/doi/10.1137/S0036144598347011">"Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer"</a>. <i>SIAM Review</i>. <b>41</b> (2): 303–332. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/9508027">quant-ph/9508027</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1137%2FS0036144598347011">10.1137/S0036144598347011</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0036-1445">0036-1445</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=SIAM+Review&rft.atitle=Polynomial-Time+Algorithms+for+Prime+Factorization+and+Discrete+Logarithms+on+a+Quantum+Computer&rft.volume=41&rft.issue=2&rft.pages=303-332&rft.date=1999-01-01&rft_id=info%3Aarxiv%2Fquant-ph%2F9508027&rft.issn=0036-1445&rft_id=info%3Adoi%2F10.1137%2FS0036144598347011&rft.aulast=Shor&rft.aufirst=Peter+W.&rft_id=https%3A%2F%2Fepubs.siam.org%2Fdoi%2F10.1137%2FS0036144598347011&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASimon%27s+problem" class="Z3988"></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSimon1997" class="citation journal cs1">Simon, Daniel R. (1997-10-01). <a rel="nofollow" class="external text" href="https://epubs.siam.org/doi/10.1137/S0097539796298637">"On the Power of Quantum Computation"</a>. <i>SIAM Journal on Computing</i>. <b>26</b> (5): 1474–1483. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1137%2FS0097539796298637">10.1137/S0097539796298637</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0097-5397">0097-5397</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=SIAM+Journal+on+Computing&rft.atitle=On+the+Power+of+Quantum+Computation&rft.volume=26&rft.issue=5&rft.pages=1474-1483&rft.date=1997-10-01&rft_id=info%3Adoi%2F10.1137%2FS0097539796298637&rft.issn=0097-5397&rft.aulast=Simon&rft.aufirst=Daniel+R.&rft_id=https%3A%2F%2Fepubs.siam.org%2Fdoi%2F10.1137%2FS0097539796298637&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASimon%27s+problem" class="Z3988"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPreskill1998" class="citation book cs1">Preskill, John (1998). <a rel="nofollow" class="external text" href="http://theory.caltech.edu/~preskill/ph229/"><i>Lecture Notes for Physics 229: Quantum Information and Computation</i></a>. pp. 273–275.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Lecture+Notes+for+Physics+229%3A+Quantum+Information+and+Computation&rft.pages=273-275&rft.date=1998&rft.aulast=Preskill&rft.aufirst=John&rft_id=http%3A%2F%2Ftheory.caltech.edu%2F~preskill%2Fph229%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASimon%27s+problem" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAaronson2018" class="citation book cs1">Aaronson, Scott (2018). <a rel="nofollow" class="external text" href="https://www.scottaaronson.com/qclec.pdf"><i>Introduction to Quantum Information Science Lecture Notes</i></a> <span class="cs1-format">(PDF)</span>. pp. 144–151.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Introduction+to+Quantum+Information+Science+Lecture+Notes&rft.pages=144-151&rft.date=2018&rft.aulast=Aaronson&rft.aufirst=Scott&rft_id=https%3A%2F%2Fwww.scottaaronson.com%2Fqclec.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASimon%27s+problem" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKoiranNesmePortier2007" class="citation cs2">Koiran, P.; Nesme, V.; Portier, N. (2007), <a rel="nofollow" class="external text" href="http://perso.ens-lyon.fr/pascal.koiran/Publis/lip.05-17.ps">"The quantum query complexity of the Abelian hidden subgroup problem"</a>, <i>Theoretical Computer Science</i>, <b>380</b> (1–2): 115–126, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.tcs.2007.02.057">10.1016/j.tcs.2007.02.057</a></span><span class="reference-accessdate">, retrieved <span class="nowrap">2011-06-06</span></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Theoretical+Computer+Science&rft.atitle=The+quantum+query+complexity+of+the+Abelian+hidden+subgroup+problem&rft.volume=380&rft.issue=1%E2%80%932&rft.pages=115-126&rft.date=2007&rft_id=info%3Adoi%2F10.1016%2Fj.tcs.2007.02.057&rft.aulast=Koiran&rft.aufirst=P.&rft.au=Nesme%2C+V.&rft.au=Portier%2C+N.&rft_id=http%3A%2F%2Fperso.ens-lyon.fr%2Fpascal.koiran%2FPublis%2Flip.05-17.ps&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASimon%27s+problem" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKoiranNesmePortier2005" class="citation cs2">Koiran, P.; Nesme, V.; Portier, N. (2005), <a rel="nofollow" class="external text" href="http://perso.ens-lyon.fr/pascal.koiran/Publis/icalp05.ps">"A quantum lower bound for the query complexity of Simon's Problem"</a>, <i>Proc. ICALP</i>, <b>3580</b>: 1287–1298, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0501060">quant-ph/0501060</a></span>, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2005quant.ph..1060K">2005quant.ph..1060K</a><span class="reference-accessdate">, retrieved <span class="nowrap">2011-06-06</span></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proc.+ICALP&rft.atitle=A+quantum+lower+bound+for+the+query+complexity+of+Simon%27s+Problem&rft.volume=3580&rft.pages=1287-1298&rft.date=2005&rft_id=info%3Aarxiv%2Fquant-ph%2F0501060&rft_id=info%3Abibcode%2F2005quant.ph..1060K&rft.aulast=Koiran&rft.aufirst=P.&rft.au=Nesme%2C+V.&rft.au=Portier%2C+N.&rft_id=http%3A%2F%2Fperso.ens-lyon.fr%2Fpascal.koiran%2FPublis%2Ficalp05.ps&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASimon%27s+problem" class="Z3988"></span></span> </li> </ol></div></div> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Quantum_information_science" style="padding:3px"><table class="nowraplinks hlist mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Quantum_information" title="Template:Quantum information"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Quantum_information" title="Template talk:Quantum information"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Quantum_information" title="Special:EditPage/Template:Quantum information"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Quantum_information_science" style="font-size:114%;margin:0 4em"><a href="/wiki/Quantum_information_science" title="Quantum information science">Quantum information science</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">General</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/DiVincenzo%27s_criteria" title="DiVincenzo's criteria">DiVincenzo's criteria</a></li> <li><a href="/wiki/Noisy_intermediate-scale_quantum_era" title="Noisy intermediate-scale quantum era">NISQ era</a></li> <li><a href="/wiki/Quantum_computing" title="Quantum computing">Quantum computing</a> <ul><li><a href="/wiki/Timeline_of_quantum_computing_and_communication" title="Timeline of quantum computing and communication">timeline</a></li></ul></li> <li><a href="/wiki/Quantum_information" title="Quantum information">Quantum information</a></li> <li><a href="/wiki/Quantum_programming" title="Quantum programming">Quantum programming</a></li> <li><a href="/wiki/Quantum_simulator" title="Quantum simulator">Quantum simulation</a></li> <li><a href="/wiki/Qubit" title="Qubit">Qubit</a> <ul><li><a href="/wiki/Physical_and_logical_qubits" title="Physical and logical qubits">physical vs. logical</a></li></ul></li> <li><a href="/wiki/List_of_quantum_processors" title="List of quantum processors">Quantum processors</a> <ul><li><a href="/wiki/Cloud-based_quantum_computing" title="Cloud-based quantum computing">cloud-based</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Theorems</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bell%27s_theorem" title="Bell's theorem">Bell's</a></li> <li><a href="/wiki/Eastin%E2%80%93Knill_theorem" title="Eastin–Knill theorem">Eastin–Knill</a></li> <li><a href="/wiki/Gleason%27s_theorem" title="Gleason's theorem">Gleason's</a></li> <li><a href="/wiki/Gottesman%E2%80%93Knill_theorem" title="Gottesman–Knill theorem">Gottesman–Knill</a></li> <li><a href="/wiki/Holevo%27s_theorem" title="Holevo's theorem">Holevo's</a></li> <li><a href="/wiki/No-broadcasting_theorem" title="No-broadcasting theorem">No-broadcasting</a></li> <li><a href="/wiki/No-cloning_theorem" title="No-cloning theorem">No-cloning</a></li> <li><a href="/wiki/No-communication_theorem" title="No-communication theorem">No-communication</a></li> <li><a href="/wiki/No-deleting_theorem" title="No-deleting theorem">No-deleting</a></li> <li><a href="/wiki/No-hiding_theorem" title="No-hiding theorem">No-hiding</a></li> <li><a href="/wiki/No-teleportation_theorem" title="No-teleportation theorem">No-teleportation</a></li> <li><a href="/wiki/PBR_theorem" class="mw-redirect" title="PBR theorem">PBR</a></li> <li><a href="/wiki/Quantum_speed_limit_theorems" class="mw-redirect" title="Quantum speed limit theorems">Quantum speed limit</a></li> <li><a href="/wiki/Threshold_theorem" title="Threshold theorem">Threshold</a></li> <li><a href="/wiki/Solovay%E2%80%93Kitaev_theorem" title="Solovay–Kitaev theorem">Solovay–Kitaev</a></li> <li><a href="/wiki/Schr%C3%B6dinger%E2%80%93HJW_theorem" title="Schrödinger–HJW theorem">Purification</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Quantum<br />communication</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Classical_capacity" title="Classical capacity">Classical capacity</a> <ul><li><a href="/wiki/Entanglement-assisted_classical_capacity" title="Entanglement-assisted classical capacity">entanglement-assisted</a></li> <li><a href="/wiki/Quantum_capacity" title="Quantum capacity">quantum capacity</a></li></ul></li> <li><a href="/wiki/Entanglement_distillation" title="Entanglement distillation">Entanglement distillation</a></li> <li><a href="/wiki/Monogamy_of_entanglement" title="Monogamy of entanglement">Monogamy of entanglement</a></li> <li><a href="/wiki/LOCC" title="LOCC">LOCC</a></li> <li><a href="/wiki/Quantum_channel" title="Quantum channel">Quantum channel</a> <ul><li><a href="/wiki/Quantum_network" title="Quantum network">quantum network</a></li></ul></li> <li><a href="/wiki/Quantum_teleportation" title="Quantum teleportation">Quantum teleportation</a> <ul><li><a href="/wiki/Quantum_gate_teleportation" title="Quantum gate teleportation">quantum gate teleportation</a></li></ul></li> <li><a href="/wiki/Superdense_coding" title="Superdense coding">Superdense coding</a></li></ul> </div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th id="Quantum_cryptography" scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Quantum_cryptography" title="Quantum cryptography">Quantum cryptography</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Post-quantum_cryptography" title="Post-quantum cryptography">Post-quantum cryptography</a></li> <li><a href="/wiki/Quantum_coin_flipping" title="Quantum coin flipping">Quantum coin flipping</a></li> <li><a href="/wiki/Quantum_money" title="Quantum money">Quantum money</a></li> <li><a href="/wiki/Quantum_key_distribution" title="Quantum key distribution">Quantum key distribution</a> <ul><li><a href="/wiki/BB84" title="BB84">BB84</a></li> <li><a href="/wiki/SARG04" title="SARG04">SARG04</a></li> <li><a href="/wiki/List_of_quantum_key_distribution_protocols" title="List of quantum key distribution protocols">other protocols</a></li></ul></li> <li><a href="/wiki/Quantum_secret_sharing" title="Quantum secret sharing">Quantum secret sharing</a></li></ul> </div></td></tr></tbody></table><div> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Quantum_algorithm" title="Quantum algorithm">Quantum algorithms</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Amplitude_amplification" title="Amplitude amplification">Amplitude amplification</a></li> <li><a href="/wiki/Bernstein%E2%80%93Vazirani_algorithm" title="Bernstein–Vazirani algorithm">Bernstein–Vazirani</a></li> <li><a href="/wiki/BHT_algorithm" title="BHT algorithm">BHT</a></li> <li><a href="/wiki/Boson_sampling" title="Boson sampling">Boson sampling</a></li> <li><a href="/wiki/Deutsch%E2%80%93Jozsa_algorithm" title="Deutsch–Jozsa algorithm">Deutsch–Jozsa</a></li> <li><a href="/wiki/Grover%27s_algorithm" title="Grover's algorithm">Grover's</a></li> <li><a href="/wiki/HHL_algorithm" title="HHL algorithm">HHL</a></li> <li><a href="/wiki/Hidden_subgroup_problem" title="Hidden subgroup problem">Hidden subgroup</a></li> <li><a href="/wiki/Quantum_annealing" title="Quantum annealing">Quantum annealing</a></li> <li><a href="/wiki/Quantum_counting_algorithm" title="Quantum counting algorithm">Quantum counting</a></li> <li><a href="/wiki/Quantum_Fourier_transform" title="Quantum Fourier transform">Quantum Fourier transform</a></li> <li><a href="/wiki/Quantum_optimization_algorithms" title="Quantum optimization algorithms">Quantum optimization</a></li> <li><a href="/wiki/Quantum_phase_estimation_algorithm" title="Quantum phase estimation algorithm">Quantum phase estimation</a></li> <li><a href="/wiki/Shor%27s_algorithm" title="Shor's algorithm">Shor's</a></li> <li><a class="mw-selflink selflink">Simon's</a></li> <li><a href="/wiki/Variational_quantum_eigensolver" title="Variational quantum eigensolver">VQE</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Quantum_complexity_theory" title="Quantum complexity theory">Quantum<br />complexity theory</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/BQP" title="BQP">BQP</a></li> <li><a href="/wiki/Exact_quantum_polynomial_time" title="Exact quantum polynomial time">EQP</a></li> <li><a href="/wiki/QIP_(complexity)" title="QIP (complexity)">QIP</a></li> <li><a href="/wiki/QMA" title="QMA">QMA</a></li> <li><a href="/wiki/PostBQP" title="PostBQP">PostBQP</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Quantum <br /> processor benchmarks</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Quantum_supremacy" title="Quantum supremacy">Quantum supremacy</a></li> <li><a href="/wiki/Quantum_volume" title="Quantum volume">Quantum volume</a></li> <li><a href="/wiki/Randomized_benchmarking" title="Randomized benchmarking">Randomized benchmarking</a> <ul><li><a href="/wiki/Cross-entropy_benchmarking" title="Cross-entropy benchmarking">XEB</a></li></ul></li> <li><a href="/wiki/Relaxation_(NMR)" title="Relaxation (NMR)">Relaxation times</a> <ul><li><a href="/wiki/Spin%E2%80%93lattice_relaxation" title="Spin–lattice relaxation"><i>T</i><sub>1</sub></a></li> <li><a href="/wiki/Spin%E2%80%93spin_relaxation" title="Spin–spin relaxation"><i>T</i><sub>2</sub></a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Quantum<br /><a href="/wiki/Model_of_computation" title="Model of computation">computing models</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Adiabatic_quantum_computation" title="Adiabatic quantum computation">Adiabatic quantum computation</a></li> <li><a href="/wiki/Continuous-variable_quantum_information" title="Continuous-variable quantum information">Continuous-variable quantum information</a></li> <li><a href="/wiki/One-way_quantum_computer" title="One-way quantum computer">One-way quantum computer</a> <ul><li><a href="/wiki/Cluster_state" title="Cluster state">cluster state</a></li></ul></li> <li><a href="/wiki/Quantum_circuit" title="Quantum circuit">Quantum circuit</a> <ul><li><a href="/wiki/Quantum_logic_gate" title="Quantum logic gate">quantum logic gate</a></li></ul></li> <li><a href="/wiki/Quantum_machine_learning" title="Quantum machine learning">Quantum machine learning</a> <ul><li><a href="/wiki/Quantum_neural_network" title="Quantum neural network">quantum neural network</a></li></ul></li> <li><a href="/wiki/Quantum_Turing_machine" title="Quantum Turing machine">Quantum Turing machine</a></li> <li><a href="/wiki/Topological_quantum_computer" title="Topological quantum computer">Topological quantum computer</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Quantum_error_correction" title="Quantum error correction">Quantum<br />error correction</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li>Codes <ul><li><a href="/wiki/CSS_code" title="CSS code">CSS</a></li> <li><a href="/wiki/Quantum_convolutional_code" title="Quantum convolutional code">quantum convolutional</a></li> <li><a href="/wiki/Stabilizer_code" title="Stabilizer code">stabilizer</a></li> <li><a href="/wiki/Shor_code" class="mw-redirect" title="Shor code">Shor</a></li> <li><a href="/wiki/Bacon%E2%80%93Shor_code" title="Bacon–Shor code">Bacon–Shor</a></li> <li><a href="/wiki/Steane_code" title="Steane code">Steane</a></li> <li><a href="/wiki/Toric_code" title="Toric code">Toric</a></li> <li><a href="/wiki/Gnu_code" title="Gnu code"><i>gnu</i></a></li></ul></li> <li><a href="/wiki/Entanglement-assisted_stabilizer_formalism" title="Entanglement-assisted stabilizer formalism">Entanglement-assisted</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Physical<br />implementations</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Quantum_optics" title="Quantum optics">Quantum optics</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cavity_quantum_electrodynamics" title="Cavity quantum electrodynamics">Cavity QED</a></li> <li><a href="/wiki/Circuit_quantum_electrodynamics" title="Circuit quantum electrodynamics">Circuit QED</a></li> <li><a href="/wiki/Linear_optical_quantum_computing" title="Linear optical quantum computing">Linear optical QC</a></li> <li><a href="/wiki/KLM_protocol" title="KLM protocol">KLM protocol</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Ultracold_atom" title="Ultracold atom">Ultracold atoms</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Neutral_atom_quantum_computer" title="Neutral atom quantum computer">Neutral atom QC</a></li> <li><a href="/wiki/Trapped-ion_quantum_computer" title="Trapped-ion quantum computer">Trapped-ion QC</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Spin_(physics)" title="Spin (physics)">Spin</a>-based</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Kane_quantum_computer" title="Kane quantum computer">Kane QC</a></li> <li><a href="/wiki/Spin_qubit_quantum_computer" title="Spin qubit quantum computer">Spin qubit QC</a></li> <li><a href="/wiki/Nitrogen-vacancy_center" title="Nitrogen-vacancy center">NV center</a></li> <li><a href="/wiki/Nuclear_magnetic_resonance_quantum_computer" title="Nuclear magnetic resonance quantum computer">NMR QC</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Superconducting_quantum_computing" title="Superconducting quantum computing">Superconducting</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Charge_qubit" title="Charge qubit">Charge qubit</a></li> <li><a href="/wiki/Flux_qubit" title="Flux qubit">Flux qubit</a></li> <li><a href="/wiki/Phase_qubit" title="Phase qubit">Phase qubit</a></li> <li><a href="/wiki/Transmon" title="Transmon">Transmon</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Quantum_programming" title="Quantum programming">Quantum<br />programming</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/OpenQASM" title="OpenQASM">OpenQASM</a>–<a href="/wiki/Qiskit" title="Qiskit">Qiskit</a>–<a href="/wiki/IBM_Quantum_Experience" class="mw-redirect" title="IBM Quantum Experience">IBM QX</a></li> <li><a href="/wiki/Quil_(instruction_set_architecture)" title="Quil (instruction set architecture)">Quil</a>–<a href="/wiki/Rigetti_Computing" title="Rigetti Computing">Forest/Rigetti QCS</a></li> <li><a href="/wiki/Cirq" title="Cirq">Cirq</a></li> <li><a href="/wiki/Q_Sharp" title="Q Sharp">Q#</a></li> <li><a href="/wiki/Libquantum" title="Libquantum">libquantum</a></li> <li><a href="/wiki/Quantum_programming" title="Quantum programming">many others...</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:Quantum_information_science" title="Category:Quantum information science">Quantum information science</a></li> <li><span class="noviewer" typeof="mw:File"><span title="Template"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Symbol_template_class_pink.svg/16px-Symbol_template_class_pink.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Symbol_template_class_pink.svg/23px-Symbol_template_class_pink.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/83/Symbol_template_class_pink.svg/31px-Symbol_template_class_pink.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Template:Quantum_mechanics_topics" title="Template:Quantum mechanics topics">Quantum mechanics topics</a></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐559c9fd9f4‐4lfkg Cached time: 20241126125543 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.360 seconds Real time usage: 0.631 seconds Preprocessor visited node count: 1516/1000000 Post‐expand include size: 45302/2097152 bytes Template argument size: 440/2097152 bytes Highest expansion depth: 8/100 Expensive parser function count: 1/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 37086/5000000 bytes Lua time usage: 0.173/10.000 seconds Lua memory usage: 5221611/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 293.830 1 -total 34.83% 102.345 1 Template:Reflist 27.89% 81.944 1 Template:Quantum_computing 27.81% 81.727 1 Template:Short_description 27.01% 79.363 3 Template:Navbox 24.08% 70.760 2 Template:Cite_journal 17.41% 51.149 2 Template:Pagetype 7.45% 21.879 1 Template:Distinguish 6.32% 18.569 3 Template:Main_other 5.51% 16.179 1 Template:SDcat --> <!-- Saved in parser cache with key enwiki:pcache:11876741:|#|:idhash:canonical and timestamp 20241126125543 and revision id 1229697296. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&useformat=desktop" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Simon%27s_problem&oldid=1229697296">https://en.wikipedia.org/w/index.php?title=Simon%27s_problem&oldid=1229697296</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Category</a>: <ul><li><a href="/wiki/Category:Quantum_algorithms" title="Category:Quantum algorithms">Quantum algorithms</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_matches_Wikidata" title="Category:Short description matches Wikidata">Short description matches Wikidata</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 18 June 2024, at 07:01<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Simon%27s_problem&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-5c59558b9d-sf7pf","wgBackendResponseTime":153,"wgPageParseReport":{"limitreport":{"cputime":"0.360","walltime":"0.631","ppvisitednodes":{"value":1516,"limit":1000000},"postexpandincludesize":{"value":45302,"limit":2097152},"templateargumentsize":{"value":440,"limit":2097152},"expansiondepth":{"value":8,"limit":100},"expensivefunctioncount":{"value":1,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":37086,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 293.830 1 -total"," 34.83% 102.345 1 Template:Reflist"," 27.89% 81.944 1 Template:Quantum_computing"," 27.81% 81.727 1 Template:Short_description"," 27.01% 79.363 3 Template:Navbox"," 24.08% 70.760 2 Template:Cite_journal"," 17.41% 51.149 2 Template:Pagetype"," 7.45% 21.879 1 Template:Distinguish"," 6.32% 18.569 3 Template:Main_other"," 5.51% 16.179 1 Template:SDcat"]},"scribunto":{"limitreport-timeusage":{"value":"0.173","limit":"10.000"},"limitreport-memusage":{"value":5221611,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-559c9fd9f4-4lfkg","timestamp":"20241126125543","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Simon's problem","url":"https:\/\/en.wikipedia.org\/wiki\/Simon%27s_problem","sameAs":"http:\/\/www.wikidata.org\/entity\/Q5763587","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q5763587","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2007-06-21T03:33:17Z","dateModified":"2024-06-18T07:01:33Z","headline":"problem in computer science"}</script> </body> </html>