CINXE.COM

Geometri - Wikipedia bahasa Indonesia, ensiklopedia bebas

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available" lang="id" dir="ltr"> <head> <meta charset="UTF-8"> <title>Geometri - Wikipedia bahasa Indonesia, ensiklopedia bebas</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )idwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t.",".\t,"],"wgDigitTransformTable":["",""], "wgDefaultDateFormat":"dmy","wgMonthNames":["","Januari","Februari","Maret","April","Mei","Juni","Juli","Agustus","September","Oktober","November","Desember"],"wgRequestId":"5bae3ba4-4cda-43ba-8176-c34840e07673","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Geometri","wgTitle":"Geometri","wgCurRevisionId":26563574,"wgRevisionId":26563574,"wgArticleId":3169,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Halaman dengan kesalahan referensi","Halaman dengan rujukan yang menggunakan parameter yang tidak didukung","CS1 sumber berbahasa Inggris (en)","Artikel yang dimintakan pemeriksaan atas penerjemahannya","Artikel yang perlu diperiksa terjemahannya November 2024","Artikel yang diterjemahkan secara kasar","Artikel Wikipedia yang memuat kutipan dari Encyclopaedia Britannica 1911 dengan rujukan Wikisource","Templat webarchive tautan wayback", "Artikel Wikipedia dengan penanda GND","Artikel Wikipedia dengan penanda BNF","Artikel Wikipedia dengan penanda EMU","Artikel Wikipedia dengan penanda LCCN","Artikel Wikipedia dengan penanda NDL","Artikel Wikipedia dengan penanda NKC","Artikel Wikipedia dengan kesalahan penanda NLK identifiers","Artikel Wikipedia dengan penanda MA","Artikel Wikipedia dengan penanda TDVİA","Halaman tanpa ISBN","Geometry","Geometri"],"wgPageViewLanguage":"id","wgPageContentLanguage":"id","wgPageContentModel":"wikitext","wgRelevantPageName":"Geometri","wgRelevantArticleId":3169,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"accuracy":{"levels":2}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"id","pageLanguageDir":"ltr","pageVariantFallbacks":"id"}, "wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":100000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q8087","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.gadget.charinsert-styles":"ready","ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready", "skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.watchlist-notice","ext.gadget.charinsert","ext.gadget.refToolbar","ext.gadget.AdvancedSiteNotices","ext.gadget.switcher","ext.gadget.Bagikan","ext.gadget.CurIDLink","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents", "ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","oojs-ui.styles.icons-media","oojs-ui-core.icons","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=id&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=id&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=id&amp;modules=ext.gadget.charinsert-styles&amp;only=styles&amp;skin=vector-2022"> <link rel="stylesheet" href="/w/load.php?lang=id&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/8/88/Stereographic_projection_in_3D.svg/1200px-Stereographic_projection_in_3D.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="881"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/8/88/Stereographic_projection_in_3D.svg/800px-Stereographic_projection_in_3D.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="588"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/8/88/Stereographic_projection_in_3D.svg/640px-Stereographic_projection_in_3D.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="470"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Geometri - Wikipedia bahasa Indonesia, ensiklopedia bebas"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//id.m.wikipedia.org/wiki/Geometri"> <link rel="alternate" type="application/x-wiki" title="Sunting" href="/w/index.php?title=Geometri&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (id)"> <link rel="EditURI" type="application/rsd+xml" href="//id.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://id.wikipedia.org/wiki/Geometri"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.id"> <link rel="alternate" type="application/atom+xml" title="Umpan Atom Wikipedia" href="/w/index.php?title=Istimewa:Perubahan_terbaru&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Geometri rootpage-Geometri skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Lompat ke isi</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Situs"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Menu utama" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Menu utama</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Menu utama</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">pindah ke bilah sisi</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">sembunyikan</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigasi </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage" class="mw-list-item"><a href="/wiki/Halaman_Utama" title="Kunjungi Halaman Utama [z]" accesskey="z"><span>Halaman Utama</span></a></li><li id="n-Daftar-isi" class="mw-list-item"><a href="/wiki/Wikipedia:Isi"><span>Daftar isi</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Istimewa:Perubahan_terbaru" title="Daftar perubahan terbaru dalam wiki. [r]" accesskey="r"><span>Perubahan terbaru</span></a></li><li id="n-Artikel-pilihan" class="mw-list-item"><a href="/wiki/Wikipedia:Artikel_pilihan/Topik"><span>Artikel pilihan</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Peristiwa_terkini" title="Temukan informasi tentang peristiwa terkini"><span>Peristiwa terkini</span></a></li><li id="n-newpage" class="mw-list-item"><a href="/wiki/Istimewa:Halaman_baru"><span>Halaman baru</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Istimewa:Halaman_sembarang" title="Tampilkan sembarang halaman [x]" accesskey="x"><span>Halaman sembarang</span></a></li> </ul> </div> </div> <div id="p-Komunitas" class="vector-menu mw-portlet mw-portlet-Komunitas" > <div class="vector-menu-heading"> Komunitas </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-Warung-Kopi" class="mw-list-item"><a href="/wiki/Wikipedia:Warung_Kopi"><span>Warung Kopi</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Portal:Komunitas" title="Tentang proyek, apa yang dapat Anda lakukan, di mana untuk mencari sesuatu"><span>Portal komunitas</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/Bantuan:Isi" title="Tempat mencari bantuan."><span>Bantuan</span></a></li> </ul> </div> </div> <div id="p-Wikipedia" class="vector-menu mw-portlet mw-portlet-Wikipedia" > <div class="vector-menu-heading"> Wikipedia </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:Perihal"><span>Tentang Wikipedia</span></a></li><li id="n-Pancapilar" class="mw-list-item"><a href="/wiki/Wikipedia:Pancapilar"><span>Pancapilar</span></a></li><li id="n-Kebijakan" class="mw-list-item"><a href="/wiki/Wikipedia:Kebijakan_dan_pedoman"><span>Kebijakan</span></a></li><li id="n-Hubungi-kami" class="mw-list-item"><a href="/wiki/Wikipedia:Hubungi_kami"><span>Hubungi kami</span></a></li><li id="n-Bak-pasir" class="mw-list-item"><a href="/wiki/Wikipedia:Bak_pasir"><span>Bak pasir</span></a></li> </ul> </div> </div> <div id="p-Bagikan" class="vector-menu mw-portlet mw-portlet-Bagikan emptyPortlet" > <div class="vector-menu-heading"> Bagikan </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Halaman_Utama" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="Ensiklopedia Bebas" src="/static/images/mobile/copyright/wikipedia-tagline-id.svg" width="120" height="14" style="width: 7.5em; height: 0.875em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Istimewa:Pencarian" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Cari di Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Pencarian</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Telusuri Wikipedia" aria-label="Telusuri Wikipedia" autocapitalize="sentences" title="Cari di Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Istimewa:Pencarian"> </div> <button class="cdx-button cdx-search-input__end-button">Cari</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Perkakas pribadi"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Tampilan"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Tampilan" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Tampilan</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_id.wikipedia.org&amp;uselang=id" class=""><span>Menyumbang</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Istimewa:Buat_akun&amp;returnto=Geometri" title="Anda dianjurkan untuk membuat akun dan masuk log; meskipun, hal itu tidak diwajibkan" class=""><span>Buat akun baru</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Istimewa:Masuk_log&amp;returnto=Geometri" title="Anda disarankan untuk masuk log, meskipun hal itu tidak diwajibkan. [o]" accesskey="o" class=""><span>Masuk log</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Opsi lainnya" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Perkakas pribadi" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Perkakas pribadi</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="Menu pengguna" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_id.wikipedia.org&amp;uselang=id"><span>Menyumbang</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Istimewa:Buat_akun&amp;returnto=Geometri" title="Anda dianjurkan untuk membuat akun dan masuk log; meskipun, hal itu tidak diwajibkan"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Buat akun baru</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Istimewa:Masuk_log&amp;returnto=Geometri" title="Anda disarankan untuk masuk log, meskipun hal itu tidak diwajibkan. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Masuk log</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Halaman penyunting yang telah keluar log <a href="/wiki/Bantuan:Pengantar" aria-label="Pelajari lebih lanjut tentang menyunting"><span>pelajari lebih lanjut</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Istimewa:Kontribusi_saya" title="Daftar suntingan yang dibuat dari alamat IP ini [y]" accesskey="y"><span>Kontribusi</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Istimewa:Pembicaraan_saya" title="Pembicaraan tentang suntingan dari alamat IP ini [n]" accesskey="n"><span>Pembicaraan</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Situs"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Daftar isi" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Daftar isi</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">pindah ke bilah sisi</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">sembunyikan</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">Awal</div> </a> </li> <li id="toc-Geometri_awal" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Geometri_awal"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Geometri awal</span> </div> </a> <ul id="toc-Geometri_awal-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sejarah" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Sejarah"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Sejarah</span> </div> </a> <ul id="toc-Sejarah-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Geometri_aljabar" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Geometri_aljabar"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Geometri aljabar</span> </div> </a> <ul id="toc-Geometri_aljabar-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Geometri_dalam_dimensi" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Geometri_dalam_dimensi"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Geometri dalam dimensi</span> </div> </a> <button aria-controls="toc-Geometri_dalam_dimensi-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Gulingkan subbagian Geometri dalam dimensi</span> </button> <ul id="toc-Geometri_dalam_dimensi-sublist" class="vector-toc-list"> <li id="toc-Dalam_dua_dimensi" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Dalam_dua_dimensi"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Dalam dua dimensi</span> </div> </a> <ul id="toc-Dalam_dua_dimensi-sublist" class="vector-toc-list"> <li id="toc-Persegi" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Persegi"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1.1</span> <span>Persegi</span> </div> </a> <ul id="toc-Persegi-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Persegi_panjang" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Persegi_panjang"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1.2</span> <span>Persegi panjang</span> </div> </a> <ul id="toc-Persegi_panjang-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Segitiga" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Segitiga"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1.3</span> <span>Segitiga</span> </div> </a> <ul id="toc-Segitiga-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Trapesium" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Trapesium"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1.4</span> <span>Trapesium</span> </div> </a> <ul id="toc-Trapesium-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Jajar_genjang" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Jajar_genjang"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1.5</span> <span>Jajar genjang</span> </div> </a> <ul id="toc-Jajar_genjang-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Lingkaran" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Lingkaran"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1.6</span> <span>Lingkaran</span> </div> </a> <ul id="toc-Lingkaran-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Elips" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Elips"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1.7</span> <span>Elips</span> </div> </a> <ul id="toc-Elips-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Dalam_tiga_dimensi" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Dalam_tiga_dimensi"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Dalam tiga dimensi</span> </div> </a> <ul id="toc-Dalam_tiga_dimensi-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Dalam_empat_dimensi" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Dalam_empat_dimensi"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Dalam empat dimensi</span> </div> </a> <ul id="toc-Dalam_empat_dimensi-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Konsep_penting_dalam_geometri" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Konsep_penting_dalam_geometri"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Konsep penting dalam geometri</span> </div> </a> <button aria-controls="toc-Konsep_penting_dalam_geometri-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Gulingkan subbagian Konsep penting dalam geometri</span> </button> <ul id="toc-Konsep_penting_dalam_geometri-sublist" class="vector-toc-list"> <li id="toc-Aksioma" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Aksioma"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Aksioma</span> </div> </a> <ul id="toc-Aksioma-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Titik" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Titik"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Titik</span> </div> </a> <ul id="toc-Titik-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Garis" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Garis"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3</span> <span>Garis</span> </div> </a> <ul id="toc-Garis-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Bidang" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Bidang"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.4</span> <span>Bidang</span> </div> </a> <ul id="toc-Bidang-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sudut" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Sudut"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.5</span> <span>Sudut</span> </div> </a> <ul id="toc-Sudut-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Kurva" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Kurva"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.6</span> <span>Kurva</span> </div> </a> <ul id="toc-Kurva-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Permukaan" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Permukaan"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.7</span> <span>Permukaan</span> </div> </a> <ul id="toc-Permukaan-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Manifold" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Manifold"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.8</span> <span>Manifold</span> </div> </a> <ul id="toc-Manifold-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Panjang,_luas,_dan_volume" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Panjang,_luas,_dan_volume"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.9</span> <span>Panjang, luas, dan volume</span> </div> </a> <ul id="toc-Panjang,_luas,_dan_volume-sublist" class="vector-toc-list"> <li id="toc-Metrik_dan_ukuran" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Metrik_dan_ukuran"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.9.1</span> <span>Metrik dan ukuran</span> </div> </a> <ul id="toc-Metrik_dan_ukuran-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Kekongruenan_dan_keserupaan" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Kekongruenan_dan_keserupaan"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.10</span> <span>Kekongruenan dan keserupaan</span> </div> </a> <ul id="toc-Kekongruenan_dan_keserupaan-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Lukisan_dengan_jangka_dan_mistar" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Lukisan_dengan_jangka_dan_mistar"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.11</span> <span>Lukisan dengan jangka dan mistar</span> </div> </a> <ul id="toc-Lukisan_dengan_jangka_dan_mistar-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Dimensi" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Dimensi"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.12</span> <span>Dimensi</span> </div> </a> <ul id="toc-Dimensi-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Simetri" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Simetri"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.13</span> <span>Simetri</span> </div> </a> <ul id="toc-Simetri-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Geometri_kompentasi" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Geometri_kompentasi"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Geometri kompentasi</span> </div> </a> <button aria-controls="toc-Geometri_kompentasi-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Gulingkan subbagian Geometri kompentasi</span> </button> <ul id="toc-Geometri_kompentasi-sublist" class="vector-toc-list"> <li id="toc-Geometri_Euklides" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Geometri_Euklides"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Geometri Euklides</span> </div> </a> <ul id="toc-Geometri_Euklides-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Geometri_diferensial" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Geometri_diferensial"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Geometri diferensial</span> </div> </a> <ul id="toc-Geometri_diferensial-sublist" class="vector-toc-list"> <li id="toc-Geometri_non-Euklides" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Geometri_non-Euklides"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2.1</span> <span>Geometri non-Euklides</span> </div> </a> <ul id="toc-Geometri_non-Euklides-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Topologi" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Topologi"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.3</span> <span>Topologi</span> </div> </a> <ul id="toc-Topologi-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Geometri_kompleks" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Geometri_kompleks"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.4</span> <span>Geometri kompleks</span> </div> </a> <ul id="toc-Geometri_kompleks-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Geometri_diskrit" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Geometri_diskrit"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.5</span> <span>Geometri diskrit</span> </div> </a> <ul id="toc-Geometri_diskrit-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Geometri_komputasi" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Geometri_komputasi"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.6</span> <span>Geometri komputasi</span> </div> </a> <ul id="toc-Geometri_komputasi-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Aplikasi" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Aplikasi"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Aplikasi</span> </div> </a> <button aria-controls="toc-Aplikasi-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Gulingkan subbagian Aplikasi</span> </button> <ul id="toc-Aplikasi-sublist" class="vector-toc-list"> <li id="toc-Seni" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Seni"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1</span> <span>Seni</span> </div> </a> <ul id="toc-Seni-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Arsitektur" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Arsitektur"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2</span> <span>Arsitektur</span> </div> </a> <ul id="toc-Arsitektur-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Fisika" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Fisika"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.3</span> <span>Fisika</span> </div> </a> <ul id="toc-Fisika-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Bidang_matematika_lainnya" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Bidang_matematika_lainnya"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.4</span> <span>Bidang matematika lainnya</span> </div> </a> <ul id="toc-Bidang_matematika_lainnya-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Lihat_pula" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Lihat_pula"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Lihat pula</span> </div> </a> <button aria-controls="toc-Lihat_pula-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Gulingkan subbagian Lihat pula</span> </button> <ul id="toc-Lihat_pula-sublist" class="vector-toc-list"> <li id="toc-Daftar" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Daftar"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.1</span> <span>Daftar</span> </div> </a> <ul id="toc-Daftar-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-topik-topik_terkait" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#topik-topik_terkait"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.2</span> <span>topik-topik terkait</span> </div> </a> <ul id="toc-topik-topik_terkait-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Bidang_lain" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Bidang_lain"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.3</span> <span>Bidang lain</span> </div> </a> <ul id="toc-Bidang_lain-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Catatan" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Catatan"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Catatan</span> </div> </a> <ul id="toc-Catatan-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sumber" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Sumber"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Sumber</span> </div> </a> <ul id="toc-Sumber-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Bacaan_lebih_lanjut" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Bacaan_lebih_lanjut"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>Bacaan lebih lanjut</span> </div> </a> <ul id="toc-Bacaan_lebih_lanjut-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Pranala_luar" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Pranala_luar"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>Pranala luar</span> </div> </a> <ul id="toc-Pranala_luar-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Daftar isi" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Gulingkan daftar isi" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Gulingkan daftar isi</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Geometri</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Pergi ke artikel dalam bahasa lain. Terdapat 179 bahasa" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-179" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">179 bahasa</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Meetkunde" title="Meetkunde – Afrikaans" lang="af" hreflang="af" data-title="Meetkunde" data-language-autonym="Afrikaans" data-language-local-name="Afrikaans" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-als mw-list-item"><a href="https://als.wikipedia.org/wiki/Geometrie" title="Geometrie – Jerman (Swiss)" lang="gsw" hreflang="gsw" data-title="Geometrie" data-language-autonym="Alemannisch" data-language-local-name="Jerman (Swiss)" class="interlanguage-link-target"><span>Alemannisch</span></a></li><li class="interlanguage-link interwiki-am mw-list-item"><a href="https://am.wikipedia.org/wiki/%E1%8C%82%E1%8B%8E%E1%88%9C%E1%89%B5%E1%88%AA" title="ጂዎሜትሪ – Amharik" lang="am" hreflang="am" data-title="ጂዎሜትሪ" data-language-autonym="አማርኛ" data-language-local-name="Amharik" class="interlanguage-link-target"><span>አማርኛ</span></a></li><li class="interlanguage-link interwiki-an mw-list-item"><a href="https://an.wikipedia.org/wiki/Cheometr%C3%ADa" title="Cheometría – Aragon" lang="an" hreflang="an" data-title="Cheometría" data-language-autonym="Aragonés" data-language-local-name="Aragon" class="interlanguage-link-target"><span>Aragonés</span></a></li><li class="interlanguage-link interwiki-anp mw-list-item"><a href="https://anp.wikipedia.org/wiki/%E0%A4%9C%E0%A5%8D%E0%A4%AF%E0%A4%BE%E0%A4%AE%E0%A4%BF%E0%A4%A4%E0%A4%BF" title="ज्यामिति – Angika" lang="anp" hreflang="anp" data-title="ज्यामिति" data-language-autonym="अंगिका" data-language-local-name="Angika" class="interlanguage-link-target"><span>अंगिका</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%87%D9%86%D8%AF%D8%B3%D8%A9_%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A%D8%A9" title="هندسة رياضية – Arab" lang="ar" hreflang="ar" data-title="هندسة رياضية" data-language-autonym="العربية" data-language-local-name="Arab" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ary mw-list-item"><a href="https://ary.wikipedia.org/wiki/%D8%AA%D8%B3%D8%B7%D8%A7%D8%B1" title="تسطار – Arab Maroko" lang="ary" hreflang="ary" data-title="تسطار" data-language-autonym="الدارجة" data-language-local-name="Arab Maroko" class="interlanguage-link-target"><span>الدارجة</span></a></li><li class="interlanguage-link interwiki-as mw-list-item"><a href="https://as.wikipedia.org/wiki/%E0%A6%9C%E0%A7%8D%E0%A6%AF%E0%A6%BE%E0%A6%AE%E0%A6%BF%E0%A6%A4%E0%A6%BF" title="জ্যামিতি – Assam" lang="as" hreflang="as" data-title="জ্যামিতি" data-language-autonym="অসমীয়া" data-language-local-name="Assam" class="interlanguage-link-target"><span>অসমীয়া</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Xeometr%C3%ADa" title="Xeometría – Asturia" lang="ast" hreflang="ast" data-title="Xeometría" data-language-autonym="Asturianu" data-language-local-name="Asturia" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/H%C9%99nd%C9%99s%C9%99" title="Həndəsə – Azerbaijani" lang="az" hreflang="az" data-title="Həndəsə" data-language-autonym="Azərbaycanca" data-language-local-name="Azerbaijani" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-azb mw-list-item"><a href="https://azb.wikipedia.org/wiki/%D9%87%D9%86%D8%AF%D8%B3%D9%87" title="هندسه – South Azerbaijani" lang="azb" hreflang="azb" data-title="هندسه" data-language-autonym="تۆرکجه" data-language-local-name="South Azerbaijani" class="interlanguage-link-target"><span>تۆرکجه</span></a></li><li class="interlanguage-link interwiki-ba mw-list-item"><a href="https://ba.wikipedia.org/wiki/%D0%93%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F" title="Геометрия – Bashkir" lang="ba" hreflang="ba" data-title="Геометрия" data-language-autonym="Башҡортса" data-language-local-name="Bashkir" class="interlanguage-link-target"><span>Башҡортса</span></a></li><li class="interlanguage-link interwiki-bat-smg mw-list-item"><a href="https://bat-smg.wikipedia.org/wiki/Geuometr%C4%97j%C4%97" title="Geuometrėjė – Samogitian" lang="sgs" hreflang="sgs" data-title="Geuometrėjė" data-language-autonym="Žemaitėška" data-language-local-name="Samogitian" class="interlanguage-link-target"><span>Žemaitėška</span></a></li><li class="interlanguage-link interwiki-bcl mw-list-item"><a href="https://bcl.wikipedia.org/wiki/Heometriya" title="Heometriya – Central Bikol" lang="bcl" hreflang="bcl" data-title="Heometriya" data-language-autonym="Bikol Central" data-language-local-name="Central Bikol" class="interlanguage-link-target"><span>Bikol Central</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%93%D0%B5%D0%B0%D0%BC%D0%B5%D1%82%D1%80%D1%8B%D1%8F" title="Геаметрыя – Belarusia" lang="be" hreflang="be" data-title="Геаметрыя" data-language-autonym="Беларуская" data-language-local-name="Belarusia" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-be-x-old mw-list-item"><a href="https://be-tarask.wikipedia.org/wiki/%D0%93%D0%B5%D0%B0%D0%BC%D1%8D%D1%82%D1%80%D1%8B%D1%8F" title="Геамэтрыя – Belarusian (Taraškievica orthography)" lang="be-tarask" hreflang="be-tarask" data-title="Геамэтрыя" data-language-autonym="Беларуская (тарашкевіца)" data-language-local-name="Belarusian (Taraškievica orthography)" class="interlanguage-link-target"><span>Беларуская (тарашкевіца)</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%93%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F" title="Геометрия – Bulgaria" lang="bg" hreflang="bg" data-title="Геометрия" data-language-autonym="Български" data-language-local-name="Bulgaria" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bh mw-list-item"><a href="https://bh.wikipedia.org/wiki/%E0%A4%9C%E0%A5%8D%E0%A4%AF%E0%A5%89%E0%A4%AE%E0%A5%87%E0%A4%9F%E0%A5%8D%E0%A4%B0%E0%A5%80" title="ज्यॉमेट्री – Bhojpuri" lang="bh" hreflang="bh" data-title="ज्यॉमेट्री" data-language-autonym="भोजपुरी" data-language-local-name="Bhojpuri" class="interlanguage-link-target"><span>भोजपुरी</span></a></li><li class="interlanguage-link interwiki-bi mw-list-item"><a href="https://bi.wikipedia.org/wiki/Jiometri" title="Jiometri – Bislama" lang="bi" hreflang="bi" data-title="Jiometri" data-language-autonym="Bislama" data-language-local-name="Bislama" class="interlanguage-link-target"><span>Bislama</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%9C%E0%A7%8D%E0%A6%AF%E0%A6%BE%E0%A6%AE%E0%A6%BF%E0%A6%A4%E0%A6%BF" title="জ্যামিতি – Bengali" lang="bn" hreflang="bn" data-title="জ্যামিতি" data-language-autonym="বাংলা" data-language-local-name="Bengali" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-bo mw-list-item"><a href="https://bo.wikipedia.org/wiki/%E0%BD%91%E0%BD%96%E0%BE%B1%E0%BD%B2%E0%BD%96%E0%BD%A6%E0%BC%8B%E0%BD%A2%E0%BE%A9%E0%BD%B2%E0%BD%A6%E0%BC%8B%E0%BD%A2%E0%BD%B2%E0%BD%82%E0%BC%8B%E0%BD%94%E0%BC%8D" title="དབྱིབས་རྩིས་རིག་པ། – Tibet" lang="bo" hreflang="bo" data-title="དབྱིབས་རྩིས་རིག་པ།" data-language-autonym="བོད་ཡིག" data-language-local-name="Tibet" class="interlanguage-link-target"><span>བོད་ཡིག</span></a></li><li class="interlanguage-link interwiki-br mw-list-item"><a href="https://br.wikipedia.org/wiki/Mentoniezh" title="Mentoniezh – Breton" lang="br" hreflang="br" data-title="Mentoniezh" data-language-autonym="Brezhoneg" data-language-local-name="Breton" class="interlanguage-link-target"><span>Brezhoneg</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Geometrija" title="Geometrija – Bosnia" lang="bs" hreflang="bs" data-title="Geometrija" data-language-autonym="Bosanski" data-language-local-name="Bosnia" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-bxr mw-list-item"><a href="https://bxr.wikipedia.org/wiki/%D0%93%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8" title="Геометри – Russia Buriat" lang="bxr" hreflang="bxr" data-title="Геометри" data-language-autonym="Буряад" data-language-local-name="Russia Buriat" class="interlanguage-link-target"><span>Буряад</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Geometria" title="Geometria – Katalan" lang="ca" hreflang="ca" data-title="Geometria" data-language-autonym="Català" data-language-local-name="Katalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-chr mw-list-item"><a href="https://chr.wikipedia.org/wiki/%E1%8F%97%E1%8F%8E%E1%8F%8D%E1%8F%97_%E1%8F%93%E1%8F%8D%E1%8F%93%E1%8F%85%E1%8F%85" title="ᏗᏎᏍᏗ ᏓᏍᏓᏅᏅ – Cherokee" lang="chr" hreflang="chr" data-title="ᏗᏎᏍᏗ ᏓᏍᏓᏅᏅ" data-language-autonym="ᏣᎳᎩ" data-language-local-name="Cherokee" class="interlanguage-link-target"><span>ᏣᎳᎩ</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%D8%A6%DB%95%D9%86%D8%AF%D8%A7%D8%B2%DB%95" title="ئەندازە – Kurdi Sorani" lang="ckb" hreflang="ckb" data-title="ئەندازە" data-language-autonym="کوردی" data-language-local-name="Kurdi Sorani" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-co mw-list-item"><a href="https://co.wikipedia.org/wiki/Geumitria" title="Geumitria – Korsika" lang="co" hreflang="co" data-title="Geumitria" data-language-autonym="Corsu" data-language-local-name="Korsika" class="interlanguage-link-target"><span>Corsu</span></a></li><li class="interlanguage-link interwiki-cs badge-Q17437798 badge-goodarticle mw-list-item" title="artikel bagus"><a href="https://cs.wikipedia.org/wiki/Geometrie" title="Geometrie – Cheska" lang="cs" hreflang="cs" data-title="Geometrie" data-language-autonym="Čeština" data-language-local-name="Cheska" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%93%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8" title="Геометри – Chuvash" lang="cv" hreflang="cv" data-title="Геометри" data-language-autonym="Чӑвашла" data-language-local-name="Chuvash" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Geometreg" title="Geometreg – Welsh" lang="cy" hreflang="cy" data-title="Geometreg" data-language-autonym="Cymraeg" data-language-local-name="Welsh" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Geometri" title="Geometri – Dansk" lang="da" hreflang="da" data-title="Geometri" data-language-autonym="Dansk" data-language-local-name="Dansk" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Geometrie" title="Geometrie – Jerman" lang="de" hreflang="de" data-title="Geometrie" data-language-autonym="Deutsch" data-language-local-name="Jerman" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-diq mw-list-item"><a href="https://diq.wikipedia.org/wiki/Geometri" title="Geometri – Zazaki" lang="diq" hreflang="diq" data-title="Geometri" data-language-autonym="Zazaki" data-language-local-name="Zazaki" class="interlanguage-link-target"><span>Zazaki</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%93%CE%B5%CF%89%CE%BC%CE%B5%CF%84%CF%81%CE%AF%CE%B1" title="Γεωμετρία – Yunani" lang="el" hreflang="el" data-title="Γεωμετρία" data-language-autonym="Ελληνικά" data-language-local-name="Yunani" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-eml mw-list-item"><a href="https://eml.wikipedia.org/wiki/Geometr%C3%AE" title="Geometrî – Emiliano-Romagnolo" lang="egl" hreflang="egl" data-title="Geometrî" data-language-autonym="Emiliàn e rumagnòl" data-language-local-name="Emiliano-Romagnolo" class="interlanguage-link-target"><span>Emiliàn e rumagnòl</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Geometry" title="Geometry – Inggris" lang="en" hreflang="en" data-title="Geometry" data-language-autonym="English" data-language-local-name="Inggris" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Geometrio" title="Geometrio – Esperanto" lang="eo" hreflang="eo" data-title="Geometrio" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Geometr%C3%ADa" title="Geometría – Spanyol" lang="es" hreflang="es" data-title="Geometría" data-language-autonym="Español" data-language-local-name="Spanyol" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Geomeetria" title="Geomeetria – Esti" lang="et" hreflang="et" data-title="Geomeetria" data-language-autonym="Eesti" data-language-local-name="Esti" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Geometria" title="Geometria – Basque" lang="eu" hreflang="eu" data-title="Geometria" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-ext mw-list-item"><a href="https://ext.wikipedia.org/wiki/Geometria" title="Geometria – Extremaduran" lang="ext" hreflang="ext" data-title="Geometria" data-language-autonym="Estremeñu" data-language-local-name="Extremaduran" class="interlanguage-link-target"><span>Estremeñu</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%87%D9%86%D8%AF%D8%B3%D9%87" title="هندسه – Persia" lang="fa" hreflang="fa" data-title="هندسه" data-language-autonym="فارسی" data-language-local-name="Persia" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Geometria" title="Geometria – Suomi" lang="fi" hreflang="fi" data-title="Geometria" data-language-autonym="Suomi" data-language-local-name="Suomi" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fiu-vro mw-list-item"><a href="https://fiu-vro.wikipedia.org/wiki/Geomeetri%C3%A4" title="Geomeetriä – Võro" lang="vro" hreflang="vro" data-title="Geomeetriä" data-language-autonym="Võro" data-language-local-name="Võro" class="interlanguage-link-target"><span>Võro</span></a></li><li class="interlanguage-link interwiki-fj mw-list-item"><a href="https://fj.wikipedia.org/wiki/Geometry" title="Geometry – Fiji" lang="fj" hreflang="fj" data-title="Geometry" data-language-autonym="Na Vosa Vakaviti" data-language-local-name="Fiji" class="interlanguage-link-target"><span>Na Vosa Vakaviti</span></a></li><li class="interlanguage-link interwiki-fo mw-list-item"><a href="https://fo.wikipedia.org/wiki/Geometri" title="Geometri – Faroe" lang="fo" hreflang="fo" data-title="Geometri" data-language-autonym="Føroyskt" data-language-local-name="Faroe" class="interlanguage-link-target"><span>Føroyskt</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/G%C3%A9om%C3%A9trie" title="Géométrie – Prancis" lang="fr" hreflang="fr" data-title="Géométrie" data-language-autonym="Français" data-language-local-name="Prancis" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-frr mw-list-item"><a href="https://frr.wikipedia.org/wiki/Geometrii" title="Geometrii – Frisia Utara" lang="frr" hreflang="frr" data-title="Geometrii" data-language-autonym="Nordfriisk" data-language-local-name="Frisia Utara" class="interlanguage-link-target"><span>Nordfriisk</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/Geoim%C3%A9adracht" title="Geoiméadracht – Irlandia" lang="ga" hreflang="ga" data-title="Geoiméadracht" data-language-autonym="Gaeilge" data-language-local-name="Irlandia" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gan mw-list-item"><a href="https://gan.wikipedia.org/wiki/%E5%B9%BE%E4%BD%95%E5%AD%B8" title="幾何學 – Gan" lang="gan" hreflang="gan" data-title="幾何學" data-language-autonym="贛語" data-language-local-name="Gan" class="interlanguage-link-target"><span>贛語</span></a></li><li class="interlanguage-link interwiki-gcr mw-list-item"><a href="https://gcr.wikipedia.org/wiki/J%C3%A9om%C3%A9tri" title="Jéométri – Guianan Creole" lang="gcr" hreflang="gcr" data-title="Jéométri" data-language-autonym="Kriyòl gwiyannen" data-language-local-name="Guianan Creole" class="interlanguage-link-target"><span>Kriyòl gwiyannen</span></a></li><li class="interlanguage-link interwiki-gd mw-list-item"><a href="https://gd.wikipedia.org/wiki/Geoimeatras" title="Geoimeatras – Gaelik Skotlandia" lang="gd" hreflang="gd" data-title="Geoimeatras" data-language-autonym="Gàidhlig" data-language-local-name="Gaelik Skotlandia" class="interlanguage-link-target"><span>Gàidhlig</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Xeometr%C3%ADa" title="Xeometría – Galisia" lang="gl" hreflang="gl" data-title="Xeometría" data-language-autonym="Galego" data-language-local-name="Galisia" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-gn mw-list-item"><a href="https://gn.wikipedia.org/wiki/Ysajarekokuaa" title="Ysajarekokuaa – Guarani" lang="gn" hreflang="gn" data-title="Ysajarekokuaa" data-language-autonym="Avañe&#039;ẽ" data-language-local-name="Guarani" class="interlanguage-link-target"><span>Avañe'ẽ</span></a></li><li class="interlanguage-link interwiki-gu mw-list-item"><a href="https://gu.wikipedia.org/wiki/%E0%AA%AD%E0%AB%82%E0%AA%AE%E0%AA%BF%E0%AA%A4%E0%AA%BF" title="ભૂમિતિ – Gujarat" lang="gu" hreflang="gu" data-title="ભૂમિતિ" data-language-autonym="ગુજરાતી" data-language-local-name="Gujarat" class="interlanguage-link-target"><span>ગુજરાતી</span></a></li><li class="interlanguage-link interwiki-gv mw-list-item"><a href="https://gv.wikipedia.org/wiki/Towse-oaylleeaght" title="Towse-oaylleeaght – Manx" lang="gv" hreflang="gv" data-title="Towse-oaylleeaght" data-language-autonym="Gaelg" data-language-local-name="Manx" class="interlanguage-link-target"><span>Gaelg</span></a></li><li class="interlanguage-link interwiki-hak mw-list-item"><a href="https://hak.wikipedia.org/wiki/K%C3%AD-h%C3%B2-ho%CC%8Dk" title="Kí-hò-ho̍k – Hakka Chinese" lang="hak" hreflang="hak" data-title="Kí-hò-ho̍k" data-language-autonym="客家語 / Hak-kâ-ngî" data-language-local-name="Hakka Chinese" class="interlanguage-link-target"><span>客家語 / Hak-kâ-ngî</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%92%D7%90%D7%95%D7%9E%D7%98%D7%A8%D7%99%D7%94" title="גאומטריה – Ibrani" lang="he" hreflang="he" data-title="גאומטריה" data-language-autonym="עברית" data-language-local-name="Ibrani" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%9C%E0%A5%8D%E0%A4%AF%E0%A4%BE%E0%A4%AE%E0%A4%BF%E0%A4%A4%E0%A4%BF" title="ज्यामिति – Hindi" lang="hi" hreflang="hi" data-title="ज्यामिति" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hif mw-list-item"><a href="https://hif.wikipedia.org/wiki/Geometry" title="Geometry – Hindi Fiji" lang="hif" hreflang="hif" data-title="Geometry" data-language-autonym="Fiji Hindi" data-language-local-name="Hindi Fiji" class="interlanguage-link-target"><span>Fiji Hindi</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Geometrija" title="Geometrija – Kroasia" lang="hr" hreflang="hr" data-title="Geometrija" data-language-autonym="Hrvatski" data-language-local-name="Kroasia" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-ht mw-list-item"><a href="https://ht.wikipedia.org/wiki/Jewometri" title="Jewometri – Kreol Haiti" lang="ht" hreflang="ht" data-title="Jewometri" data-language-autonym="Kreyòl ayisyen" data-language-local-name="Kreol Haiti" class="interlanguage-link-target"><span>Kreyòl ayisyen</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Geometria" title="Geometria – Hungaria" lang="hu" hreflang="hu" data-title="Geometria" data-language-autonym="Magyar" data-language-local-name="Hungaria" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D4%B5%D6%80%D5%AF%D6%80%D5%A1%D5%B9%D5%A1%D6%83%D5%B8%D6%82%D5%A9%D5%B5%D5%B8%D6%82%D5%B6" title="Երկրաչափություն – Armenia" lang="hy" hreflang="hy" data-title="Երկրաչափություն" data-language-autonym="Հայերեն" data-language-local-name="Armenia" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-ia badge-Q17437796 badge-featuredarticle mw-list-item" title="artikel pilihan"><a href="https://ia.wikipedia.org/wiki/Geometria" title="Geometria – Interlingua" lang="ia" hreflang="ia" data-title="Geometria" data-language-autonym="Interlingua" data-language-local-name="Interlingua" class="interlanguage-link-target"><span>Interlingua</span></a></li><li class="interlanguage-link interwiki-ie mw-list-item"><a href="https://ie.wikipedia.org/wiki/Geometrie" title="Geometrie – Interlingue" lang="ie" hreflang="ie" data-title="Geometrie" data-language-autonym="Interlingue" data-language-local-name="Interlingue" class="interlanguage-link-target"><span>Interlingue</span></a></li><li class="interlanguage-link interwiki-ilo mw-list-item"><a href="https://ilo.wikipedia.org/wiki/Heometria" title="Heometria – Iloko" lang="ilo" hreflang="ilo" data-title="Heometria" data-language-autonym="Ilokano" data-language-local-name="Iloko" class="interlanguage-link-target"><span>Ilokano</span></a></li><li class="interlanguage-link interwiki-io mw-list-item"><a href="https://io.wikipedia.org/wiki/Geometrio" title="Geometrio – Ido" lang="io" hreflang="io" data-title="Geometrio" data-language-autonym="Ido" data-language-local-name="Ido" class="interlanguage-link-target"><span>Ido</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/R%C3%BAmfr%C3%A6%C3%B0i" title="Rúmfræði – Islandia" lang="is" hreflang="is" data-title="Rúmfræði" data-language-autonym="Íslenska" data-language-local-name="Islandia" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Geometria" title="Geometria – Italia" lang="it" hreflang="it" data-title="Geometria" data-language-autonym="Italiano" data-language-local-name="Italia" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E5%B9%BE%E4%BD%95%E5%AD%A6" title="幾何学 – Jepang" lang="ja" hreflang="ja" data-title="幾何学" data-language-autonym="日本語" data-language-local-name="Jepang" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-jam mw-list-item"><a href="https://jam.wikipedia.org/wiki/Jaamichri" title="Jaamichri – Jamaican Creole English" lang="jam" hreflang="jam" data-title="Jaamichri" data-language-autonym="Patois" data-language-local-name="Jamaican Creole English" class="interlanguage-link-target"><span>Patois</span></a></li><li class="interlanguage-link interwiki-jv mw-list-item"><a href="https://jv.wikipedia.org/wiki/G%C3%A9om%C3%A8tri" title="Géomètri – Jawa" lang="jv" hreflang="jv" data-title="Géomètri" data-language-autonym="Jawa" data-language-local-name="Jawa" class="interlanguage-link-target"><span>Jawa</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%92%E1%83%94%E1%83%9D%E1%83%9B%E1%83%94%E1%83%A2%E1%83%A0%E1%83%98%E1%83%90" title="გეომეტრია – Georgia" lang="ka" hreflang="ka" data-title="გეომეტრია" data-language-autonym="ქართული" data-language-local-name="Georgia" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-kaa mw-list-item"><a href="https://kaa.wikipedia.org/wiki/Geometriya" title="Geometriya – Kara-Kalpak" lang="kaa" hreflang="kaa" data-title="Geometriya" data-language-autonym="Qaraqalpaqsha" data-language-local-name="Kara-Kalpak" class="interlanguage-link-target"><span>Qaraqalpaqsha</span></a></li><li class="interlanguage-link interwiki-kab mw-list-item"><a href="https://kab.wikipedia.org/wiki/Tanzeggit" title="Tanzeggit – Kabyle" lang="kab" hreflang="kab" data-title="Tanzeggit" data-language-autonym="Taqbaylit" data-language-local-name="Kabyle" class="interlanguage-link-target"><span>Taqbaylit</span></a></li><li class="interlanguage-link interwiki-kbd mw-list-item"><a href="https://kbd.wikipedia.org/wiki/%D0%93%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D0%B5" title="Геометрие – Kabardi" lang="kbd" hreflang="kbd" data-title="Геометрие" data-language-autonym="Адыгэбзэ" data-language-local-name="Kabardi" class="interlanguage-link-target"><span>Адыгэбзэ</span></a></li><li class="interlanguage-link interwiki-kbp mw-list-item"><a href="https://kbp.wikipedia.org/wiki/Sii%C5%8B_l%C9%A9z%CA%8A%CA%8A" title="Siiŋ lɩzʊʊ – Kabiye" lang="kbp" hreflang="kbp" data-title="Siiŋ lɩzʊʊ" data-language-autonym="Kabɩyɛ" data-language-local-name="Kabiye" class="interlanguage-link-target"><span>Kabɩyɛ</span></a></li><li class="interlanguage-link interwiki-ki mw-list-item"><a href="https://ki.wikipedia.org/wiki/M%C5%A9thun%C5%A9r%C5%A9rio_(geometry)" title="Mũthunũrũrio (geometry) – Kikuyu" lang="ki" hreflang="ki" data-title="Mũthunũrũrio (geometry)" data-language-autonym="Gĩkũyũ" data-language-local-name="Kikuyu" class="interlanguage-link-target"><span>Gĩkũyũ</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%93%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F" title="Геометрия – Kazakh" lang="kk" hreflang="kk" data-title="Геометрия" data-language-autonym="Қазақша" data-language-local-name="Kazakh" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-km mw-list-item"><a href="https://km.wikipedia.org/wiki/%E1%9E%92%E1%9E%9A%E1%9E%8E%E1%9E%B8%E1%9E%98%E1%9E%B6%E1%9E%8F%E1%9F%92%E1%9E%9A" title="ធរណីមាត្រ – Khmer" lang="km" hreflang="km" data-title="ធរណីមាត្រ" data-language-autonym="ភាសាខ្មែរ" data-language-local-name="Khmer" class="interlanguage-link-target"><span>ភាសាខ្មែរ</span></a></li><li class="interlanguage-link interwiki-kn mw-list-item"><a href="https://kn.wikipedia.org/wiki/%E0%B2%B0%E0%B3%87%E0%B2%96%E0%B2%BE%E0%B2%97%E0%B2%A3%E0%B2%BF%E0%B2%A4" title="ರೇಖಾಗಣಿತ – Kannada" lang="kn" hreflang="kn" data-title="ರೇಖಾಗಣಿತ" data-language-autonym="ಕನ್ನಡ" data-language-local-name="Kannada" class="interlanguage-link-target"><span>ಕನ್ನಡ</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EA%B8%B0%ED%95%98%ED%95%99" title="기하학 – Korea" lang="ko" hreflang="ko" data-title="기하학" data-language-autonym="한국어" data-language-local-name="Korea" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-ku mw-list-item"><a href="https://ku.wikipedia.org/wiki/Geometr%C3%AE" title="Geometrî – Kurdi" lang="ku" hreflang="ku" data-title="Geometrî" data-language-autonym="Kurdî" data-language-local-name="Kurdi" class="interlanguage-link-target"><span>Kurdî</span></a></li><li class="interlanguage-link interwiki-kw mw-list-item"><a href="https://kw.wikipedia.org/wiki/Mynsonieth" title="Mynsonieth – Kornish" lang="kw" hreflang="kw" data-title="Mynsonieth" data-language-autonym="Kernowek" data-language-local-name="Kornish" class="interlanguage-link-target"><span>Kernowek</span></a></li><li class="interlanguage-link interwiki-ky mw-list-item"><a href="https://ky.wikipedia.org/wiki/%D0%93%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F" title="Геометрия – Kirgiz" lang="ky" hreflang="ky" data-title="Геометрия" data-language-autonym="Кыргызча" data-language-local-name="Kirgiz" class="interlanguage-link-target"><span>Кыргызча</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Geometria" title="Geometria – Latin" lang="la" hreflang="la" data-title="Geometria" data-language-autonym="Latina" data-language-local-name="Latin" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-lb mw-list-item"><a href="https://lb.wikipedia.org/wiki/Geometrie" title="Geometrie – Luksemburg" lang="lb" hreflang="lb" data-title="Geometrie" data-language-autonym="Lëtzebuergesch" data-language-local-name="Luksemburg" class="interlanguage-link-target"><span>Lëtzebuergesch</span></a></li><li class="interlanguage-link interwiki-lfn mw-list-item"><a href="https://lfn.wikipedia.org/wiki/Jeometria" title="Jeometria – Lingua Franca Nova" lang="lfn" hreflang="lfn" data-title="Jeometria" data-language-autonym="Lingua Franca Nova" data-language-local-name="Lingua Franca Nova" class="interlanguage-link-target"><span>Lingua Franca Nova</span></a></li><li class="interlanguage-link interwiki-lg mw-list-item"><a href="https://lg.wikipedia.org/wiki/Essomampimo_(Geometry)" title="Essomampimo (Geometry) – Ganda" lang="lg" hreflang="lg" data-title="Essomampimo (Geometry)" data-language-autonym="Luganda" data-language-local-name="Ganda" class="interlanguage-link-target"><span>Luganda</span></a></li><li class="interlanguage-link interwiki-li mw-list-item"><a href="https://li.wikipedia.org/wiki/Maetk%C3%B3nde" title="Maetkónde – Limburgia" lang="li" hreflang="li" data-title="Maetkónde" data-language-autonym="Limburgs" data-language-local-name="Limburgia" class="interlanguage-link-target"><span>Limburgs</span></a></li><li class="interlanguage-link interwiki-lij mw-list-item"><a href="https://lij.wikipedia.org/wiki/Geometria" title="Geometria – Liguria" lang="lij" hreflang="lij" data-title="Geometria" data-language-autonym="Ligure" data-language-local-name="Liguria" class="interlanguage-link-target"><span>Ligure</span></a></li><li class="interlanguage-link interwiki-lmo mw-list-item"><a href="https://lmo.wikipedia.org/wiki/Geometr%C3%ACa" title="Geometrìa – Lombard" lang="lmo" hreflang="lmo" data-title="Geometrìa" data-language-autonym="Lombard" data-language-local-name="Lombard" class="interlanguage-link-target"><span>Lombard</span></a></li><li class="interlanguage-link interwiki-ln mw-list-item"><a href="https://ln.wikipedia.org/wiki/Zom%C9%9Bt%C9%9Bl%C3%AD" title="Zomɛtɛlí – Lingala" lang="ln" hreflang="ln" data-title="Zomɛtɛlí" data-language-autonym="Lingála" data-language-local-name="Lingala" class="interlanguage-link-target"><span>Lingála</span></a></li><li class="interlanguage-link interwiki-lo mw-list-item"><a href="https://lo.wikipedia.org/wiki/%E0%BB%80%E0%BA%A5%E0%BA%82%E0%BA%B2%E0%BA%84%E0%BA%B0%E0%BA%99%E0%BA%B4%E0%BA%94" title="ເລຂາຄະນິດ – Lao" lang="lo" hreflang="lo" data-title="ເລຂາຄະນິດ" data-language-autonym="ລາວ" data-language-local-name="Lao" class="interlanguage-link-target"><span>ລາວ</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Geometrija" title="Geometrija – Lituavi" lang="lt" hreflang="lt" data-title="Geometrija" data-language-autonym="Lietuvių" data-language-local-name="Lituavi" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/%C4%A2eometrija" title="Ģeometrija – Latvi" lang="lv" hreflang="lv" data-title="Ģeometrija" data-language-autonym="Latviešu" data-language-local-name="Latvi" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-mdf mw-list-item"><a href="https://mdf.wikipedia.org/wiki/%D0%93%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F%D1%81%D1%8C" title="Геометриясь – Moksha" lang="mdf" hreflang="mdf" data-title="Геометриясь" data-language-autonym="Мокшень" data-language-local-name="Moksha" class="interlanguage-link-target"><span>Мокшень</span></a></li><li class="interlanguage-link interwiki-mg mw-list-item"><a href="https://mg.wikipedia.org/wiki/Je%C3%B4metria" title="Jeômetria – Malagasi" lang="mg" hreflang="mg" data-title="Jeômetria" data-language-autonym="Malagasy" data-language-local-name="Malagasi" class="interlanguage-link-target"><span>Malagasy</span></a></li><li class="interlanguage-link interwiki-mhr mw-list-item"><a href="https://mhr.wikipedia.org/wiki/%D0%93%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D0%B9" title="Геометрий – Eastern Mari" lang="mhr" hreflang="mhr" data-title="Геометрий" data-language-autonym="Олык марий" data-language-local-name="Eastern Mari" class="interlanguage-link-target"><span>Олык марий</span></a></li><li class="interlanguage-link interwiki-min mw-list-item"><a href="https://min.wikipedia.org/wiki/Ilmu_ukua" title="Ilmu ukua – Minangkabau" lang="min" hreflang="min" data-title="Ilmu ukua" data-language-autonym="Minangkabau" data-language-local-name="Minangkabau" class="interlanguage-link-target"><span>Minangkabau</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%93%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%98%D0%B0" title="Геометрија – Makedonia" lang="mk" hreflang="mk" data-title="Геометрија" data-language-autonym="Македонски" data-language-local-name="Makedonia" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%9C%E0%B5%8D%E0%B4%AF%E0%B4%BE%E0%B4%AE%E0%B4%BF%E0%B4%A4%E0%B4%BF" title="ജ്യാമിതി – Malayalam" lang="ml" hreflang="ml" data-title="ജ്യാമിതി" data-language-autonym="മലയാളം" data-language-local-name="Malayalam" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-mn mw-list-item"><a href="https://mn.wikipedia.org/wiki/%D0%93%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80" title="Геометр – Mongolia" lang="mn" hreflang="mn" data-title="Геометр" data-language-autonym="Монгол" data-language-local-name="Mongolia" class="interlanguage-link-target"><span>Монгол</span></a></li><li class="interlanguage-link interwiki-mnw mw-list-item"><a href="https://mnw.wikipedia.org/wiki/%E1%80%82%E1%80%B1%E1%80%9E%E1%80%BC%E1%80%99%E1%80%B1%E1%80%90%E1%80%BC%E1%80%B3" title="ဂေသြမေတြဳ – Mon" lang="mnw" hreflang="mnw" data-title="ဂေသြမေတြဳ" data-language-autonym="ဘာသာမန်" data-language-local-name="Mon" class="interlanguage-link-target"><span>ဘာသာမန်</span></a></li><li class="interlanguage-link interwiki-mr mw-list-item"><a href="https://mr.wikipedia.org/wiki/%E0%A4%AD%E0%A5%82%E0%A4%AE%E0%A4%BF%E0%A4%A4%E0%A5%80" title="भूमिती – Marathi" lang="mr" hreflang="mr" data-title="भूमिती" data-language-autonym="मराठी" data-language-local-name="Marathi" class="interlanguage-link-target"><span>मराठी</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Geometri" title="Geometri – Melayu" lang="ms" hreflang="ms" data-title="Geometri" data-language-autonym="Bahasa Melayu" data-language-local-name="Melayu" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-mt mw-list-item"><a href="https://mt.wikipedia.org/wiki/%C4%A0eometrija" title="Ġeometrija – Malta" lang="mt" hreflang="mt" data-title="Ġeometrija" data-language-autonym="Malti" data-language-local-name="Malta" class="interlanguage-link-target"><span>Malti</span></a></li><li class="interlanguage-link interwiki-mwl mw-list-item"><a href="https://mwl.wikipedia.org/wiki/Geometrie" title="Geometrie – Miranda" lang="mwl" hreflang="mwl" data-title="Geometrie" data-language-autonym="Mirandés" data-language-local-name="Miranda" class="interlanguage-link-target"><span>Mirandés</span></a></li><li class="interlanguage-link interwiki-my mw-list-item"><a href="https://my.wikipedia.org/wiki/%E1%80%82%E1%80%BB%E1%80%AE%E1%80%A9%E1%80%99%E1%80%B1%E1%80%90%E1%80%BC%E1%80%AE" title="ဂျီဩမေတြီ – Burma" lang="my" hreflang="my" data-title="ဂျီဩမေတြီ" data-language-autonym="မြန်မာဘာသာ" data-language-local-name="Burma" class="interlanguage-link-target"><span>မြန်မာဘာသာ</span></a></li><li class="interlanguage-link interwiki-myv mw-list-item"><a href="https://myv.wikipedia.org/wiki/%D0%93%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F" title="Геометрия – Eryza" lang="myv" hreflang="myv" data-title="Геометрия" data-language-autonym="Эрзянь" data-language-local-name="Eryza" class="interlanguage-link-target"><span>Эрзянь</span></a></li><li class="interlanguage-link interwiki-nds mw-list-item"><a href="https://nds.wikipedia.org/wiki/Geometrie" title="Geometrie – Jerman Rendah" lang="nds" hreflang="nds" data-title="Geometrie" data-language-autonym="Plattdüütsch" data-language-local-name="Jerman Rendah" class="interlanguage-link-target"><span>Plattdüütsch</span></a></li><li class="interlanguage-link interwiki-ne mw-list-item"><a href="https://ne.wikipedia.org/wiki/%E0%A4%9C%E0%A5%8D%E0%A4%AF%E0%A4%BE%E0%A4%AE%E0%A4%BF%E0%A4%A4%E0%A4%BF" title="ज्यामिति – Nepali" lang="ne" hreflang="ne" data-title="ज्यामिति" data-language-autonym="नेपाली" data-language-local-name="Nepali" class="interlanguage-link-target"><span>नेपाली</span></a></li><li class="interlanguage-link interwiki-new mw-list-item"><a href="https://new.wikipedia.org/wiki/%E0%A4%B0%E0%A5%87%E0%A4%96%E0%A4%BE%E0%A4%97%E0%A4%A3%E0%A4%BF%E0%A4%A4" title="रेखागणित – Newari" lang="new" hreflang="new" data-title="रेखागणित" data-language-autonym="नेपाल भाषा" data-language-local-name="Newari" class="interlanguage-link-target"><span>नेपाल भाषा</span></a></li><li class="interlanguage-link interwiki-nia mw-list-item"><a href="https://nia.wikipedia.org/wiki/Geometris" title="Geometris – Nias" lang="nia" hreflang="nia" data-title="Geometris" data-language-autonym="Li Niha" data-language-local-name="Nias" class="interlanguage-link-target"><span>Li Niha</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Meetkunde" title="Meetkunde – Belanda" lang="nl" hreflang="nl" data-title="Meetkunde" data-language-autonym="Nederlands" data-language-local-name="Belanda" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Geometri" title="Geometri – Nynorsk Norwegia" lang="nn" hreflang="nn" data-title="Geometri" data-language-autonym="Norsk nynorsk" data-language-local-name="Nynorsk Norwegia" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Geometri" title="Geometri – Bokmål Norwegia" lang="nb" hreflang="nb" data-title="Geometri" data-language-autonym="Norsk bokmål" data-language-local-name="Bokmål Norwegia" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-nov mw-list-item"><a href="https://nov.wikipedia.org/wiki/Geometria" title="Geometria – Novial" lang="nov" hreflang="nov" data-title="Geometria" data-language-autonym="Novial" data-language-local-name="Novial" class="interlanguage-link-target"><span>Novial</span></a></li><li class="interlanguage-link interwiki-oc mw-list-item"><a href="https://oc.wikipedia.org/wiki/Geometria" title="Geometria – Ositania" lang="oc" hreflang="oc" data-title="Geometria" data-language-autonym="Occitan" data-language-local-name="Ositania" class="interlanguage-link-target"><span>Occitan</span></a></li><li class="interlanguage-link interwiki-om mw-list-item"><a href="https://om.wikipedia.org/wiki/Ji%27oomeetirii" title="Ji&#039;oomeetirii – Oromo" lang="om" hreflang="om" data-title="Ji&#039;oomeetirii" data-language-autonym="Oromoo" data-language-local-name="Oromo" class="interlanguage-link-target"><span>Oromoo</span></a></li><li class="interlanguage-link interwiki-or mw-list-item"><a href="https://or.wikipedia.org/wiki/%E0%AC%9C%E0%AD%8D%E0%AD%9F%E0%AC%BE%E0%AC%AE%E0%AC%BF%E0%AC%A4%E0%AC%BF" title="ଜ୍ୟାମିତି – Oriya" lang="or" hreflang="or" data-title="ଜ୍ୟାମିତି" data-language-autonym="ଓଡ଼ିଆ" data-language-local-name="Oriya" class="interlanguage-link-target"><span>ଓଡ଼ିଆ</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%B0%E0%A9%87%E0%A8%96%E0%A8%BE_%E0%A8%97%E0%A8%A3%E0%A8%BF%E0%A8%A4" title="ਰੇਖਾ ਗਣਿਤ – Punjabi" lang="pa" hreflang="pa" data-title="ਰੇਖਾ ਗਣਿਤ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="Punjabi" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Geometria" title="Geometria – Polski" lang="pl" hreflang="pl" data-title="Geometria" data-language-autonym="Polski" data-language-local-name="Polski" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pms mw-list-item"><a href="https://pms.wikipedia.org/wiki/Geometr%C3%ACa" title="Geometrìa – Piedmontese" lang="pms" hreflang="pms" data-title="Geometrìa" data-language-autonym="Piemontèis" data-language-local-name="Piedmontese" class="interlanguage-link-target"><span>Piemontèis</span></a></li><li class="interlanguage-link interwiki-pnb mw-list-item"><a href="https://pnb.wikipedia.org/wiki/%D8%AC%DB%8C%D9%88%D9%85%DB%8C%D9%B9%D8%B1%DB%8C" title="جیومیٹری – Western Punjabi" lang="pnb" hreflang="pnb" data-title="جیومیٹری" data-language-autonym="پنجابی" data-language-local-name="Western Punjabi" class="interlanguage-link-target"><span>پنجابی</span></a></li><li class="interlanguage-link interwiki-ps mw-list-item"><a href="https://ps.wikipedia.org/wiki/%D9%85%DB%90%DA%86%D9%BE%D9%88%D9%87%D9%86%D9%87" title="مېچپوهنه – Pashto" lang="ps" hreflang="ps" data-title="مېچپوهنه" data-language-autonym="پښتو" data-language-local-name="Pashto" class="interlanguage-link-target"><span>پښتو</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Geometria" title="Geometria – Portugis" lang="pt" hreflang="pt" data-title="Geometria" data-language-autonym="Português" data-language-local-name="Portugis" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-qu mw-list-item"><a href="https://qu.wikipedia.org/wiki/Pacha_tupuy" title="Pacha tupuy – Quechua" lang="qu" hreflang="qu" data-title="Pacha tupuy" data-language-autonym="Runa Simi" data-language-local-name="Quechua" class="interlanguage-link-target"><span>Runa Simi</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Geometrie" title="Geometrie – Rumania" lang="ro" hreflang="ro" data-title="Geometrie" data-language-autonym="Română" data-language-local-name="Rumania" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%93%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F" title="Геометрия – Rusia" lang="ru" hreflang="ru" data-title="Геометрия" data-language-autonym="Русский" data-language-local-name="Rusia" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-rue mw-list-item"><a href="https://rue.wikipedia.org/wiki/%D2%90%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D1%96%D1%8F" title="Ґеометрія – Rusyn" lang="rue" hreflang="rue" data-title="Ґеометрія" data-language-autonym="Русиньскый" data-language-local-name="Rusyn" class="interlanguage-link-target"><span>Русиньскый</span></a></li><li class="interlanguage-link interwiki-sah mw-list-item"><a href="https://sah.wikipedia.org/wiki/%D0%93%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F" title="Геометрия – Sakha" lang="sah" hreflang="sah" data-title="Геометрия" data-language-autonym="Саха тыла" data-language-local-name="Sakha" class="interlanguage-link-target"><span>Саха тыла</span></a></li><li class="interlanguage-link interwiki-scn mw-list-item"><a href="https://scn.wikipedia.org/wiki/Giometr%C3%ACa" title="Giometrìa – Sisilia" lang="scn" hreflang="scn" data-title="Giometrìa" data-language-autonym="Sicilianu" data-language-local-name="Sisilia" class="interlanguage-link-target"><span>Sicilianu</span></a></li><li class="interlanguage-link interwiki-sco mw-list-item"><a href="https://sco.wikipedia.org/wiki/Geometry" title="Geometry – Skotlandia" lang="sco" hreflang="sco" data-title="Geometry" data-language-autonym="Scots" data-language-local-name="Skotlandia" class="interlanguage-link-target"><span>Scots</span></a></li><li class="interlanguage-link interwiki-sd mw-list-item"><a href="https://sd.wikipedia.org/wiki/%D8%AC%D8%A7%D9%85%D9%8A%D9%BD%D8%B1%D9%8A" title="جاميٽري – Sindhi" lang="sd" hreflang="sd" data-title="جاميٽري" data-language-autonym="سنڌي" data-language-local-name="Sindhi" class="interlanguage-link-target"><span>سنڌي</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Geometrija" title="Geometrija – Serbo-Kroasia" lang="sh" hreflang="sh" data-title="Geometrija" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbo-Kroasia" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-shi mw-list-item"><a href="https://shi.wikipedia.org/wiki/As%C9%A3kl" title="Asɣkl – Tachelhit" lang="shi" hreflang="shi" data-title="Asɣkl" data-language-autonym="Taclḥit" data-language-local-name="Tachelhit" class="interlanguage-link-target"><span>Taclḥit</span></a></li><li class="interlanguage-link interwiki-si mw-list-item"><a href="https://si.wikipedia.org/wiki/%E0%B6%A2%E0%B7%8A%E2%80%8D%E0%B6%BA%E0%B7%8F%E0%B6%B8%E0%B7%92%E0%B6%AD%E0%B7%92%E0%B6%BA" title="ජ්‍යාමිතිය – Sinhala" lang="si" hreflang="si" data-title="ජ්‍යාමිතිය" data-language-autonym="සිංහල" data-language-local-name="Sinhala" class="interlanguage-link-target"><span>සිංහල</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Geometry" title="Geometry – Simple English" lang="en-simple" hreflang="en-simple" data-title="Geometry" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Geometria" title="Geometria – Slovak" lang="sk" hreflang="sk" data-title="Geometria" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Geometrija" title="Geometrija – Sloven" lang="sl" hreflang="sl" data-title="Geometrija" data-language-autonym="Slovenščina" data-language-local-name="Sloven" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-smn mw-list-item"><a href="https://smn.wikipedia.org/wiki/Geometria" title="Geometria – Inari Sami" lang="smn" hreflang="smn" data-title="Geometria" data-language-autonym="Anarâškielâ" data-language-local-name="Inari Sami" class="interlanguage-link-target"><span>Anarâškielâ</span></a></li><li class="interlanguage-link interwiki-sn mw-list-item"><a href="https://sn.wikipedia.org/wiki/Pimachisi" title="Pimachisi – Shona" lang="sn" hreflang="sn" data-title="Pimachisi" data-language-autonym="ChiShona" data-language-local-name="Shona" class="interlanguage-link-target"><span>ChiShona</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Gjeometria" title="Gjeometria – Albania" lang="sq" hreflang="sq" data-title="Gjeometria" data-language-autonym="Shqip" data-language-local-name="Albania" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%93%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%98%D0%B0" title="Геометрија – Serbia" lang="sr" hreflang="sr" data-title="Геометрија" data-language-autonym="Српски / srpski" data-language-local-name="Serbia" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-stq mw-list-item"><a href="https://stq.wikipedia.org/wiki/Geometrie" title="Geometrie – Saterland Frisian" lang="stq" hreflang="stq" data-title="Geometrie" data-language-autonym="Seeltersk" data-language-local-name="Saterland Frisian" class="interlanguage-link-target"><span>Seeltersk</span></a></li><li class="interlanguage-link interwiki-su mw-list-item"><a href="https://su.wikipedia.org/wiki/%C3%89lmu_ukur" title="Élmu ukur – Sunda" lang="su" hreflang="su" data-title="Élmu ukur" data-language-autonym="Sunda" data-language-local-name="Sunda" class="interlanguage-link-target"><span>Sunda</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Geometri" title="Geometri – Swedia" lang="sv" hreflang="sv" data-title="Geometri" data-language-autonym="Svenska" data-language-local-name="Swedia" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-sw mw-list-item"><a href="https://sw.wikipedia.org/wiki/Jiometri" title="Jiometri – Swahili" lang="sw" hreflang="sw" data-title="Jiometri" data-language-autonym="Kiswahili" data-language-local-name="Swahili" class="interlanguage-link-target"><span>Kiswahili</span></a></li><li class="interlanguage-link interwiki-szl mw-list-item"><a href="https://szl.wikipedia.org/wiki/Geometryjo" title="Geometryjo – Silesia" lang="szl" hreflang="szl" data-title="Geometryjo" data-language-autonym="Ślůnski" data-language-local-name="Silesia" class="interlanguage-link-target"><span>Ślůnski</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%B5%E0%AE%9F%E0%AE%BF%E0%AE%B5%E0%AE%B5%E0%AE%BF%E0%AE%AF%E0%AE%B2%E0%AF%8D" title="வடிவவியல் – Tamil" lang="ta" hreflang="ta" data-title="வடிவவியல்" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-te mw-list-item"><a href="https://te.wikipedia.org/wiki/%E0%B0%B0%E0%B1%87%E0%B0%96%E0%B0%BE%E0%B0%97%E0%B0%A3%E0%B0%BF%E0%B0%A4%E0%B0%82" title="రేఖాగణితం – Telugu" lang="te" hreflang="te" data-title="రేఖాగణితం" data-language-autonym="తెలుగు" data-language-local-name="Telugu" class="interlanguage-link-target"><span>తెలుగు</span></a></li><li class="interlanguage-link interwiki-tg mw-list-item"><a href="https://tg.wikipedia.org/wiki/%D2%B2%D0%B0%D0%BD%D0%B4%D0%B0%D1%81%D0%B0" title="Ҳандаса – Tajik" lang="tg" hreflang="tg" data-title="Ҳандаса" data-language-autonym="Тоҷикӣ" data-language-local-name="Tajik" class="interlanguage-link-target"><span>Тоҷикӣ</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B9%80%E0%B8%A3%E0%B8%82%E0%B8%B2%E0%B8%84%E0%B8%93%E0%B8%B4%E0%B8%95" title="เรขาคณิต – Thai" lang="th" hreflang="th" data-title="เรขาคณิต" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tk mw-list-item"><a href="https://tk.wikipedia.org/wiki/Geometri%C3%BDa" title="Geometriýa – Turkmen" lang="tk" hreflang="tk" data-title="Geometriýa" data-language-autonym="Türkmençe" data-language-local-name="Turkmen" class="interlanguage-link-target"><span>Türkmençe</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Heometriya" title="Heometriya – Tagalog" lang="tl" hreflang="tl" data-title="Heometriya" data-language-autonym="Tagalog" data-language-local-name="Tagalog" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Geometri" title="Geometri – Turki" lang="tr" hreflang="tr" data-title="Geometri" data-language-autonym="Türkçe" data-language-local-name="Turki" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-ts mw-list-item"><a href="https://ts.wikipedia.org/wiki/Tinhlayo-vupimi" title="Tinhlayo-vupimi – Tsonga" lang="ts" hreflang="ts" data-title="Tinhlayo-vupimi" data-language-autonym="Xitsonga" data-language-local-name="Tsonga" class="interlanguage-link-target"><span>Xitsonga</span></a></li><li class="interlanguage-link interwiki-tt mw-list-item"><a href="https://tt.wikipedia.org/wiki/%D0%93%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F" title="Геометрия – Tatar" lang="tt" hreflang="tt" data-title="Геометрия" data-language-autonym="Татарча / tatarça" data-language-local-name="Tatar" class="interlanguage-link-target"><span>Татарча / tatarça</span></a></li><li class="interlanguage-link interwiki-tyv mw-list-item"><a href="https://tyv.wikipedia.org/wiki/%D0%93%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F" title="Геометрия – Tuvinia" lang="tyv" hreflang="tyv" data-title="Геометрия" data-language-autonym="Тыва дыл" data-language-local-name="Tuvinia" class="interlanguage-link-target"><span>Тыва дыл</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%93%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D1%96%D1%8F" title="Геометрія – Ukraina" lang="uk" hreflang="uk" data-title="Геометрія" data-language-autonym="Українська" data-language-local-name="Ukraina" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%DB%81%D9%86%D8%AF%D8%B3%DB%81" title="ہندسہ – Urdu" lang="ur" hreflang="ur" data-title="ہندسہ" data-language-autonym="اردو" data-language-local-name="Urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Geometriya" title="Geometriya – Uzbek" lang="uz" hreflang="uz" data-title="Geometriya" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="Uzbek" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-vec mw-list-item"><a href="https://vec.wikipedia.org/wiki/Zeometria" title="Zeometria – Venesia" lang="vec" hreflang="vec" data-title="Zeometria" data-language-autonym="Vèneto" data-language-local-name="Venesia" class="interlanguage-link-target"><span>Vèneto</span></a></li><li class="interlanguage-link interwiki-vep mw-list-item"><a href="https://vep.wikipedia.org/wiki/Geometrii" title="Geometrii – Veps" lang="vep" hreflang="vep" data-title="Geometrii" data-language-autonym="Vepsän kel’" data-language-local-name="Veps" class="interlanguage-link-target"><span>Vepsän kel’</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/H%C3%ACnh_h%E1%BB%8Dc" title="Hình học – Vietnam" lang="vi" hreflang="vi" data-title="Hình học" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnam" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-war mw-list-item"><a href="https://war.wikipedia.org/wiki/Heyometriya" title="Heyometriya – Warai" lang="war" hreflang="war" data-title="Heyometriya" data-language-autonym="Winaray" data-language-local-name="Warai" class="interlanguage-link-target"><span>Winaray</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E5%87%A0%E4%BD%95%E5%AD%A6" title="几何学 – Wu Tionghoa" lang="wuu" hreflang="wuu" data-title="几何学" data-language-autonym="吴语" data-language-local-name="Wu Tionghoa" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-xmf mw-list-item"><a href="https://xmf.wikipedia.org/wiki/%E1%83%92%E1%83%94%E1%83%9D%E1%83%9B%E1%83%94%E1%83%A2%E1%83%A0%E1%83%98%E1%83%90" title="გეომეტრია – Mingrelian" lang="xmf" hreflang="xmf" data-title="გეომეტრია" data-language-autonym="მარგალური" data-language-local-name="Mingrelian" class="interlanguage-link-target"><span>მარგალური</span></a></li><li class="interlanguage-link interwiki-yi mw-list-item"><a href="https://yi.wikipedia.org/wiki/%D7%92%D7%A2%D7%90%D7%9E%D7%A2%D7%98%D7%A8%D7%99%D7%A2" title="געאמעטריע – Yiddish" lang="yi" hreflang="yi" data-title="געאמעטריע" data-language-autonym="ייִדיש" data-language-local-name="Yiddish" class="interlanguage-link-target"><span>ייִדיש</span></a></li><li class="interlanguage-link interwiki-za mw-list-item"><a href="https://za.wikipedia.org/wiki/Gijhozyoz" title="Gijhozyoz – Zhuang" lang="za" hreflang="za" data-title="Gijhozyoz" data-language-autonym="Vahcuengh" data-language-local-name="Zhuang" class="interlanguage-link-target"><span>Vahcuengh</span></a></li><li class="interlanguage-link interwiki-zgh mw-list-item"><a href="https://zgh.wikipedia.org/wiki/%E2%B5%9C%E2%B4%B0%E2%B5%8F%E2%B5%A3%E2%B4%B3%E2%B4%B3%E2%B5%89%E2%B5%9C" title="ⵜⴰⵏⵣⴳⴳⵉⵜ – Tamazight Maroko Standar" lang="zgh" hreflang="zgh" data-title="ⵜⴰⵏⵣⴳⴳⵉⵜ" data-language-autonym="ⵜⴰⵎⴰⵣⵉⵖⵜ ⵜⴰⵏⴰⵡⴰⵢⵜ" data-language-local-name="Tamazight Maroko Standar" class="interlanguage-link-target"><span>ⵜⴰⵎⴰⵣⵉⵖⵜ ⵜⴰⵏⴰⵡⴰⵢⵜ</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%87%A0%E4%BD%95%E5%AD%A6" title="几何学 – Tionghoa" lang="zh" hreflang="zh" data-title="几何学" data-language-autonym="中文" data-language-local-name="Tionghoa" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-zh-classical mw-list-item"><a href="https://zh-classical.wikipedia.org/wiki/%E5%B9%BE%E4%BD%95" title="幾何 – Literary Chinese" lang="lzh" hreflang="lzh" data-title="幾何" data-language-autonym="文言" data-language-local-name="Literary Chinese" class="interlanguage-link-target"><span>文言</span></a></li><li class="interlanguage-link interwiki-zh-min-nan mw-list-item"><a href="https://zh-min-nan.wikipedia.org/wiki/K%C3%AD-h%C3%B4-ha%CC%8Dk" title="Kí-hô-ha̍k – Minnan" lang="nan" hreflang="nan" data-title="Kí-hô-ha̍k" data-language-autonym="閩南語 / Bân-lâm-gú" data-language-local-name="Minnan" class="interlanguage-link-target"><span>閩南語 / Bân-lâm-gú</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E5%B9%BE%E4%BD%95%E5%AD%B8" title="幾何學 – Kanton" lang="yue" hreflang="yue" data-title="幾何學" data-language-autonym="粵語" data-language-local-name="Kanton" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zu mw-list-item"><a href="https://zu.wikipedia.org/wiki/Umchazabukhulu" title="Umchazabukhulu – Zulu" lang="zu" hreflang="zu" data-title="Umchazabukhulu" data-language-autonym="IsiZulu" data-language-local-name="Zulu" class="interlanguage-link-target"><span>IsiZulu</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q8087#sitelinks-wikipedia" title="Sunting pranala interwiki" class="wbc-editpage">Sunting pranala</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Ruang nama"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Geometri" title="Lihat halaman isi [c]" accesskey="c"><span>Halaman</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Pembicaraan:Geometri" rel="discussion" title="Pembicaraan halaman isi [t]" accesskey="t"><span>Pembicaraan</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Ubah varian bahasa" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Bahasa Indonesia</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Tampilan"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Geometri"><span>Baca</span></a></li><li id="ca-ve-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Geometri&amp;veaction=edit" title="Sunting halaman ini [v]" accesskey="v"><span>Sunting</span></a></li><li id="ca-edit" class="collapsible vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Geometri&amp;action=edit" title="Sunting kode sumber halaman ini [e]" accesskey="e"><span>Sunting sumber</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Geometri&amp;action=history" title="Revisi sebelumnya dari halaman ini. [h]" accesskey="h"><span>Lihat riwayat</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Peralatan halaman"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Perkakas" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Perkakas</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Perkakas</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">pindah ke bilah sisi</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">sembunyikan</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="Opsi lainnya" > <div class="vector-menu-heading"> Tindakan </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Geometri"><span>Baca</span></a></li><li id="ca-more-ve-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Geometri&amp;veaction=edit" title="Sunting halaman ini [v]" accesskey="v"><span>Sunting</span></a></li><li id="ca-more-edit" class="collapsible vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Geometri&amp;action=edit" title="Sunting kode sumber halaman ini [e]" accesskey="e"><span>Sunting sumber</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Geometri&amp;action=history"><span>Lihat riwayat</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> Umum </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Istimewa:Pranala_balik/Geometri" title="Daftar semua halaman wiki yang memiliki pranala ke halaman ini [j]" accesskey="j"><span>Pranala balik</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Istimewa:Perubahan_terkait/Geometri" rel="nofollow" title="Perubahan terbaru halaman-halaman yang memiliki pranala ke halaman ini [k]" accesskey="k"><span>Perubahan terkait</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Istimewa:Halaman_istimewa" title="Daftar semua halaman istimewa [q]" accesskey="q"><span>Halaman istimewa</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Geometri&amp;oldid=26563574" title="Pranala permanen untuk revisi halaman ini"><span>Pranala permanen</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Geometri&amp;action=info" title="Informasi lanjut tentang halaman ini"><span>Informasi halaman</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Istimewa:Kutip&amp;page=Geometri&amp;id=26563574&amp;wpFormIdentifier=titleform" title="Informasi tentang bagaimana mengutip halaman ini"><span>Kutip halaman ini</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Istimewa:UrlShortener&amp;url=https%3A%2F%2Fid.wikipedia.org%2Fwiki%2FGeometri"><span>Lihat URL pendek</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Istimewa:QrCode&amp;url=https%3A%2F%2Fid.wikipedia.org%2Fwiki%2FGeometri"><span>Unduh kode QR</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Cetak/ekspor </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=Istimewa:Buku&amp;bookcmd=book_creator&amp;referer=Geometri"><span>Buat buku</span></a></li><li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Istimewa:DownloadAsPdf&amp;page=Geometri&amp;action=show-download-screen"><span>Unduh versi PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Geometri&amp;printable=yes" title="Versi cetak halaman ini [p]" accesskey="p"><span>Versi cetak</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> Dalam proyek lain </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Geometry" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q8087" title="Pranala untuk menghubungkan butir pada ruang penyimpanan data [g]" accesskey="g"><span>Butir di Wikidata</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Peralatan halaman"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Tampilan"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Tampilan</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">pindah ke bilah sisi</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">sembunyikan</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">Dari Wikipedia bahasa Indonesia, ensiklopedia bebas</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="id" dir="ltr"><style data-mw-deduplicate="TemplateStyles:r26333525">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}html.client-js body.skin-minerva .mw-parser-output .mbox-text-span{margin-left:23px!important}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media print{body.ns-0 .mw-parser-output .ambox{display:none!important}}</style><table class="box-Periksaterjemahan plainlinks metadata ambox ambox-content ambox-rough_translation" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/Berkas:Translation_to_english_arrow.svg" class="mw-file-description" title="Translation arrow icon"><img alt="Translation arrow icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8a/Translation_to_english_arrow.svg/50px-Translation_to_english_arrow.svg.png" decoding="async" width="50" height="17" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8a/Translation_to_english_arrow.svg/75px-Translation_to_english_arrow.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8a/Translation_to_english_arrow.svg/100px-Translation_to_english_arrow.svg.png 2x" data-file-width="60" data-file-height="20" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">Artikel atau sebagian dari artikel ini mungkin diterjemahkan dari <i><a href="https://en.wikipedia.org/wiki/Geometry" class="extiw" title="en:Geometry">Geometry</a></i> di en.wikipedia.org. <b>Isinya masih belum akurat</b>, karena bagian yang diterjemahkan masih perlu diperhalus dan disempurnakan. Jika Anda menguasai bahasa aslinya, harap pertimbangkan untuk menelusuri referensinya dan menyempurnakan terjemahan ini. Anda juga dapat ikut bergotong royong pada <a href="/wiki/Wikipedia:ProyekWiki_Perbaikan_Terjemahan" title="Wikipedia:ProyekWiki Perbaikan Terjemahan">ProyekWiki Perbaikan Terjemahan</a>.<br /> <small>(Pesan ini dapat dihapus jika terjemahan dirasa sudah cukup tepat. Lihat pula: <a href="/wiki/Wikipedia:Panduan_dalam_menerjemahkan_artikel" title="Wikipedia:Panduan dalam menerjemahkan artikel">panduan penerjemahan artikel</a>)</small></div></td></tr></tbody></table> <style data-mw-deduplicate="TemplateStyles:r26333518">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><table class="sidebar sidebar-collapse plainlist" style="background:white;"><tbody><tr><th class="sidebar-title"><a class="mw-selflink selflink">Geometri</a></th></tr><tr><td class="sidebar-image"><span class="mw-default-size" typeof="mw:File/Frameless"><a href="/wiki/Berkas:Stereographic_projection_in_3D.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/88/Stereographic_projection_in_3D.svg/220px-Stereographic_projection_in_3D.svg.png" decoding="async" width="220" height="162" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/88/Stereographic_projection_in_3D.svg/330px-Stereographic_projection_in_3D.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/88/Stereographic_projection_in_3D.svg/440px-Stereographic_projection_in_3D.svg.png 2x" data-file-width="870" data-file-height="639" /></a></span><div class="sidebar-caption"><a href="/wiki/Geometri_projektif" class="mw-redirect" title="Geometri projektif">Proyeksi</a> sebuah <a href="/wiki/Lingkaran" title="Lingkaran">lingkaran</a> pada sebuah <a href="/wiki/Bidang_(geometri)" title="Bidang (geometri)">bidang</a></div></td></tr><tr><td class="sidebar-above" style="border:none; background:#ddf;padding:0 0 0.15em;text-align:center; display:block;margin:0 1px 0.4em;"> <style data-mw-deduplicate="TemplateStyles:r23782733">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><div class="hlist"><ul><li><a href="/wiki/Garis_besar_geometri" title="Garis besar geometri">Garis besar</a></li><li><a href="/w/index.php?title=Sejarah_geometri&amp;action=edit&amp;redlink=1" class="new" title="Sejarah geometri (halaman belum tersedia)">Sejarah</a></li></ul></div></td></tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:#ddf; text-align:center;"><a href="/wiki/Daftar_topik_geometri" title="Daftar topik geometri">Cabang</a></div><div class="sidebar-list-content mw-collapsible-content hlist"> <ul><li><a href="/wiki/Geometri_Euklides" title="Geometri Euklides">Euklides</a></li> <li><a href="/w/index.php?title=Geometri_takEuklides&amp;action=edit&amp;redlink=1" class="new" title="Geometri takEuklides (halaman belum tersedia)">takEuklides</a> <ul><li><a href="/w/index.php?title=Geometri_elips&amp;action=edit&amp;redlink=1" class="new" title="Geometri elips (halaman belum tersedia)">Elips</a> <ul><li><a href="/wiki/Geometri_bola" title="Geometri bola">Bola</a></li></ul></li> <li><a href="/w/index.php?title=Geometri_hiperbola&amp;action=edit&amp;redlink=1" class="new" title="Geometri hiperbola (halaman belum tersedia)">Hiperbola</a></li></ul></li> <li><a href="/w/index.php?title=Geometri_non-Archimedes&amp;action=edit&amp;redlink=1" class="new" title="Geometri non-Archimedes (halaman belum tersedia)">Geometri non-Archimedes</a></li> <li><a href="/wiki/Geometri_projektif" class="mw-redirect" title="Geometri projektif">Projektif</a></li> <li><a href="/wiki/Geometri_afin" title="Geometri afin">Afin</a></li> <li><a href="/w/index.php?title=Geometri_sintetis&amp;action=edit&amp;redlink=1" class="new" title="Geometri sintetis (halaman belum tersedia)">Sintetis</a></li> <li><a href="/wiki/Geometri_analitis" title="Geometri analitis">Analitis</a></li> <li><a href="/wiki/Geometri_aljabar" title="Geometri aljabar">Aljabar</a> <ul><li><a href="/wiki/Geometri_aritmetika" title="Geometri aritmetika">Aritmetika</a></li> <li><a href="/w/index.php?title=Geometri_Diophantus&amp;action=edit&amp;redlink=1" class="new" title="Geometri Diophantus (halaman belum tersedia)">Diophantus</a></li></ul></li> <li><a href="/wiki/Geometri_diferensial" title="Geometri diferensial">Diferensial</a> <ul><li><a href="/wiki/Geometri_Riemann" title="Geometri Riemann">Riemann</a></li> <li><a href="/wiki/Geometri_simplektik" title="Geometri simplektik">Simplektik</a></li> <li><a href="/w/index.php?title=Geometri_diferensial_diskret&amp;action=edit&amp;redlink=1" class="new" title="Geometri diferensial diskret (halaman belum tersedia)">Diferensial diskret</a></li></ul></li> <li><a href="/wiki/Geometri_kompleks" title="Geometri kompleks">Kompleks</a></li> <li><a href="/w/index.php?title=Geometri_tentu&amp;action=edit&amp;redlink=1" class="new" title="Geometri tentu (halaman belum tersedia)">Tentu</a></li> <li><a href="/wiki/Geometri_diskrit" title="Geometri diskrit">Diskrit</a> <ul><li><a href="/w/index.php?title=Geometri_digital&amp;action=edit&amp;redlink=1" class="new" title="Geometri digital (halaman belum tersedia)">Digital</a></li></ul></li> <li><a href="/w/index.php?title=Geometri_cembung&amp;action=edit&amp;redlink=1" class="new" title="Geometri cembung (halaman belum tersedia)">Cembung</a></li> <li><a href="/wiki/Geometri_komputasi" title="Geometri komputasi">Komputasi</a></li> <li><a href="/wiki/Fraktal" title="Fraktal">Fraktal</a></li> <li><a href="/w/index.php?title=Geometri_insidens&amp;action=edit&amp;redlink=1" class="new" title="Geometri insidens (halaman belum tersedia)">Insidens</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:#ddf; text-align:center;"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r23782733"><div class="hlist"><ul><li>Konsep</li><li>Tampilan</li></ul></div></div><div class="sidebar-list-content mw-collapsible-content hlist"><a href="/wiki/Dimensi" title="Dimensi">Dimensi</a> <ul><li><a href="/wiki/Lukisan_jangka_dan_mistar" title="Lukisan jangka dan mistar"> Melukis dengan penggaris dan jangka busur</a></li> <li><a href="/wiki/Sudut" class="mw-redirect mw-disambig" title="Sudut">Sudut</a></li> <li><a href="/wiki/Kurva" title="Kurva">Kurva</a></li> <li><a href="/wiki/Diagonal" title="Diagonal">Diagonal</a></li> <li><a href="/w/index.php?title=Ortogonalitas&amp;action=edit&amp;redlink=1" class="new" title="Ortogonalitas (halaman belum tersedia)">Ortogonalitas</a> (<a href="/wiki/Tegak_lurus" title="Tegak lurus">tegak lurus</a>)</li> <li><a href="/w/index.php?title=Garis_sejajar&amp;action=edit&amp;redlink=1" class="new" title="Garis sejajar (halaman belum tersedia)">Sejajar</a></li> <li><a href="/wiki/Titik_pojok" class="mw-redirect" title="Titik pojok">Titik pojok</a></li></ul> <ul><li><a href="/w/index.php?title=Kekongruenan_(geometri)&amp;action=edit&amp;redlink=1" class="new" title="Kekongruenan (geometri) (halaman belum tersedia)">Kekongruenan</a></li> <li><a href="/w/index.php?title=Keserupaan_(geometri)&amp;action=edit&amp;redlink=1" class="new" title="Keserupaan (geometri) (halaman belum tersedia)">Keserupaan</a></li> <li><a href="/wiki/Simetri" title="Simetri">Simetri</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:#ddf; text-align:center;"><a href="/w/index.php?title=Ruang_dimensi_nol&amp;action=edit&amp;redlink=1" class="new" title="Ruang dimensi nol (halaman belum tersedia)">Dimensi nol</a></div><div class="sidebar-list-content mw-collapsible-content hlist"> <ul><li><a href="/wiki/Titik_(geometri)" title="Titik (geometri)">Titik</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:#ddf; text-align:center;"><a href="/wiki/Ruang_dimensi_satu" title="Ruang dimensi satu">Dimensi satu</a></div><div class="sidebar-list-content mw-collapsible-content hlist"> <ul><li><a href="/wiki/Garis_(geometri)" title="Garis (geometri)">Garis</a> <ul><li><a href="/w/index.php?title=Segmen_garis&amp;action=edit&amp;redlink=1" class="new" title="Segmen garis (halaman belum tersedia)">segmen</a></li> <li><a href="/wiki/Garis_(geometri)#Sinar" title="Garis (geometri)">sinar</a></li></ul></li> <li><a href="/wiki/Panjang" title="Panjang">Panjang</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:#ddf; text-align:center;"><a href="/wiki/Ruang_dimensi_dua" class="mw-redirect" title="Ruang dimensi dua">Dimensi dua</a></div><div class="sidebar-list-content mw-collapsible-content hlist" style="padding-bottom:0;"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r26333518"><table class="sidebar" style="border-collapse: collapse; border-spacing: 0px; border:none; width:100%; margin:0px; font-size: 100%; clear:none; float:none;"><tbody><tr><td class="sidebar-content" style="padding:0.2em 0.4em 0.6em;"> <ul><li><a href="/wiki/Bidang_(geometri)" title="Bidang (geometri)">Bidang</a></li> <li><a href="/wiki/Luas" title="Luas">Luas</a></li> <li><a href="/wiki/Poligon" title="Poligon">Poligon</a></li></ul></td> </tr><tr><th class="sidebar-heading" style="background:#e6e6ff; font-weight:normal;"> <a href="/wiki/Segitiga" title="Segitiga">Segitiga</a></th></tr><tr><td class="sidebar-content" style="padding:0.2em 0.4em 0.6em;"> <ul><li><a href="/w/index.php?title=Tinggi_(segitiga)&amp;action=edit&amp;redlink=1" class="new" title="Tinggi (segitiga) (halaman belum tersedia)">Tinggi</a></li> <li><a href="/wiki/Hipotenusa" title="Hipotenusa">Hipotenusa</a></li> <li><a href="/w/index.php?title=Teorema_Phytagoras&amp;action=edit&amp;redlink=1" class="new" title="Teorema Phytagoras (halaman belum tersedia)">Teorema Phytagoras</a></li></ul></td> </tr><tr><th class="sidebar-heading" style="background:#e6e6ff; font-weight:normal;"> <a href="/wiki/Jajaran_genjang" class="mw-redirect" title="Jajaran genjang">Jajaran genjang</a></th></tr><tr><td class="sidebar-content" style="padding:0.2em 0.4em 0.6em;"> <ul><li><a href="/wiki/Persegi" title="Persegi">Persegi</a></li> <li><a href="/wiki/Persegi_panjang" title="Persegi panjang">Persegi panjang</a></li> <li><a href="/wiki/Belah_ketupat" title="Belah ketupat">Belah ketupat</a></li></ul></td> </tr><tr><th class="sidebar-heading" style="background:#e6e6ff; font-weight:normal;"> <a href="/wiki/Segi_empat" title="Segi empat">Segi empat</a></th></tr><tr><td class="sidebar-content" style="padding:0.2em 0.4em 0.6em;"> <ul><li><a href="/wiki/Trapesium_(geometri)" title="Trapesium (geometri)">Trapesium</a></li> <li><a href="/wiki/Layang-layang_(geometri)" title="Layang-layang (geometri)">Layang-layang</a></li></ul></td> </tr><tr><th class="sidebar-heading" style="background:#e6e6ff; font-weight:normal;"> <a href="/wiki/Lingkaran" title="Lingkaran">Lingkaran</a></th></tr><tr><td class="sidebar-content" style="padding:0.2em 0.4em 0.6em;"> <ul><li><a href="/wiki/Diameter" title="Diameter">Diameter</a></li> <li><a href="/wiki/Keliling" title="Keliling">Keliling</a></li> <li><a href="/wiki/Luas_lingkaran" title="Luas lingkaran">Luas</a></li></ul></td> </tr></tbody></table></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:#ddf; text-align:center;"><a href="/wiki/Ruang_dimensi_tiga" title="Ruang dimensi tiga">Dimensi tiga</a></div><div class="sidebar-list-content mw-collapsible-content hlist"> <ul><li><a href="/wiki/Volume" title="Volume">Volume</a></li></ul> <ul><li><a href="/wiki/Kubus" title="Kubus">Kubus</a> <ul><li><a href="/wiki/Balok" title="Balok">Balok</a></li></ul></li> <li><a href="/wiki/Tabung_(geometri)" title="Tabung (geometri)">Tabung</a></li> <li><a href="/wiki/Limas_(geometri)" class="mw-redirect" title="Limas (geometri)">Limas</a></li> <li><a href="/wiki/Bola_(geometri)" title="Bola (geometri)">Bola</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:#ddf; text-align:center;"><a href="/wiki/Ruang_dimensi_empat" title="Ruang dimensi empat">Dimensi empat</a> dan lainnya</div><div class="sidebar-list-content mw-collapsible-content hlist"> <ul><li><a href="/wiki/Tesseract_(geometri)" title="Tesseract (geometri)">Tesseract</a></li> <li><a href="/wiki/Hiperbola" title="Hiperbola">Hiperbola</a></li></ul></div></div></td> </tr><tr><th class="sidebar-heading" style="padding-bottom:0.2em;"> <a href="/w/index.php?title=Daftar_ahli_geometri&amp;action=edit&amp;redlink=1" class="new" title="Daftar ahli geometri (halaman belum tersedia)">Ahli geometri</a></th></tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:#ddf; text-align:center;">Berdasarkan nama</div><div class="sidebar-list-content mw-collapsible-content hlist"> <ul><li><a href="/w/index.php?title=Yasuaki_Aida&amp;action=edit&amp;redlink=1" class="new" title="Yasuaki Aida (halaman belum tersedia)">Aida</a></li> <li><a href="/wiki/Aryabhata" title="Aryabhata">Aryabhata</a></li> <li><a href="/wiki/Ahmes" title="Ahmes">Ahmes</a></li> <li><a href="/wiki/Alhazen" class="mw-redirect" title="Alhazen">Alhazen</a></li> <li><a href="/wiki/Apollonius_dari_Perga" title="Apollonius dari Perga">Apollonius</a></li> <li><a href="/wiki/Archimedes" title="Archimedes">Archimedes</a></li> <li><a href="/wiki/Michael_Atiyah" title="Michael Atiyah">Atiyah</a></li> <li><a href="/w/index.php?title=Baudhayana&amp;action=edit&amp;redlink=1" class="new" title="Baudhayana (halaman belum tersedia)">Baudhayana</a></li> <li><a href="/wiki/J%C3%A1nos_Bolyai" title="János Bolyai">Bolyai</a></li> <li><a href="/wiki/Brahmagupta" title="Brahmagupta">Brahmagupta</a></li> <li><a href="/wiki/%C3%89lie_Cartan" title="Élie Cartan">Cartan</a></li> <li><a href="/w/index.php?title=Harold_Scott_MacDonald_Coxeter&amp;action=edit&amp;redlink=1" class="new" title="Harold Scott MacDonald Coxeter (halaman belum tersedia)">Coxeter</a></li> <li><a href="/wiki/Ren%C3%A9_Descartes" title="René Descartes">Descartes</a></li> <li><a href="/wiki/Euklides" title="Euklides">Euklides</a></li> <li><a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Euler</a></li> <li><a href="/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss">Gauss</a></li> <li><a href="/wiki/Mikhail_Leonidovich_Gromov" class="mw-redirect" title="Mikhail Leonidovich Gromov">Gromov</a></li> <li><a href="/wiki/David_Hilbert" title="David Hilbert">Hilbert</a></li> <li><a href="/w/index.php?title=Jye%E1%B9%A3%E1%B9%ADhadeva&amp;action=edit&amp;redlink=1" class="new" title="Jyeṣṭhadeva (halaman belum tersedia)">Jyeṣṭhadeva</a></li> <li><a href="/w/index.php?title=K%C4%81ty%C4%81yana&amp;action=edit&amp;redlink=1" class="new" title="Kātyāyana (halaman belum tersedia)">Kātyāyana</a></li> <li><a href="/wiki/Omar_Khayy%C3%A1m" class="mw-redirect" title="Omar Khayyám">Khayyám</a></li> <li><a href="/wiki/Felix_Klein" title="Felix Klein">Klein</a></li> <li><a href="/wiki/Nikolai_Lobachevsky" title="Nikolai Lobachevsky">Lobachevsky</a></li> <li><a href="/wiki/Manava" title="Manava">Manava</a></li> <li><a href="/wiki/Hermann_Minkowski" title="Hermann Minkowski">Minkowski</a></li> <li><a href="/w/index.php?title=Minggatu&amp;action=edit&amp;redlink=1" class="new" title="Minggatu (halaman belum tersedia)">Minggatu</a></li> <li><a href="/wiki/Blaise_Pascal" title="Blaise Pascal">Pascal</a></li> <li><a href="/wiki/Pythagoras" title="Pythagoras">Pythagoras</a></li> <li><a href="/w/index.php?title=Parameshvara&amp;action=edit&amp;redlink=1" class="new" title="Parameshvara (halaman belum tersedia)">Parameshvara</a></li> <li><a href="/wiki/Henri_Poincar%C3%A9" title="Henri Poincaré">Poincaré</a></li> <li><a href="/wiki/Bernhard_Riemann" class="mw-redirect" title="Bernhard Riemann">Riemann</a></li> <li><a href="/w/index.php?title=Sakabe_K%C5%8Dhan&amp;action=edit&amp;redlink=1" class="new" title="Sakabe Kōhan (halaman belum tersedia)">Sakabe</a></li> <li><a href="/w/index.php?title=Sijzi&amp;action=edit&amp;redlink=1" class="new" title="Sijzi (halaman belum tersedia)">Sijzi</a></li> <li><a href="/wiki/Nasir_al-Din_al-Tusi" class="mw-redirect" title="Nasir al-Din al-Tusi">al-Tusi</a></li> <li><a href="/wiki/Oswald_Veblen" title="Oswald Veblen">Veblen</a></li> <li><a href="/w/index.php?title=Virasena&amp;action=edit&amp;redlink=1" class="new" title="Virasena (halaman belum tersedia)">Virasena</a></li> <li><a href="/wiki/Yang_Hui" title="Yang Hui">Yang Hui</a></li> <li><a href="/w/index.php?title=Ibn_al-Yasamin&amp;action=edit&amp;redlink=1" class="new" title="Ibn al-Yasamin (halaman belum tersedia)">al-Yasamin</a></li> <li><a href="/wiki/Zhang_Heng" title="Zhang Heng">Zhang</a></li> <li><a href="/w/index.php?title=Daftar_ahli_geometri&amp;action=edit&amp;redlink=1" class="new" title="Daftar ahli geometri (halaman belum tersedia)">Daftar ahli geometri</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:#ddf; text-align:center;">Berdasarkan waktu</div><div class="sidebar-list-content mw-collapsible-content hlist" style="padding-bottom:0;"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r26333518"><table class="sidebar" style="border-collapse: collapse; border-spacing: 0px; border:none; width:100%; margin:0px; font-size: 100%; clear:none; float:none;"><tbody><tr><th class="sidebar-heading" style="background:#e6e6ff; font-weight:normal;"> <a href="/w/index.php?title=Before_Common_Era&amp;action=edit&amp;redlink=1" class="new" title="Before Common Era (halaman belum tersedia)">BCE</a></th></tr><tr><td class="sidebar-content" style="padding:0.2em 0.4em 0.6em;"> <ul><li><a href="/wiki/Ahmes" title="Ahmes">Ahmes</a></li> <li><a href="/w/index.php?title=Baudhayana&amp;action=edit&amp;redlink=1" class="new" title="Baudhayana (halaman belum tersedia)">Baudhayana</a></li> <li><a href="/wiki/Manava" title="Manava">Manava</a></li> <li><a href="/wiki/Pythagoras" title="Pythagoras">Pythagoras</a></li> <li><a href="/wiki/Euclid" class="mw-redirect" title="Euclid">Euclid</a></li> <li><a href="/wiki/Archimedes" title="Archimedes">Archimedes</a></li> <li><a href="/wiki/Apollonius_dari_Perga" title="Apollonius dari Perga">Apollonius</a></li></ul></td> </tr><tr><th class="sidebar-heading" style="background:#e6e6ff; font-weight:normal;"> 1–1400-an</th></tr><tr><td class="sidebar-content" style="padding:0.2em 0.4em 0.6em;"> <ul><li><a href="/wiki/Zhang_Heng" title="Zhang Heng">Zhang</a></li> <li><a href="/w/index.php?title=K%C4%81ty%C4%81yana&amp;action=edit&amp;redlink=1" class="new" title="Kātyāyana (halaman belum tersedia)">Kātyāyana</a></li> <li><a href="/wiki/Aryabhata" title="Aryabhata">Aryabhata</a></li> <li><a href="/wiki/Brahmagupta" title="Brahmagupta">Brahmagupta</a></li> <li><a href="/w/index.php?title=Virasena&amp;action=edit&amp;redlink=1" class="new" title="Virasena (halaman belum tersedia)">Virasena</a></li> <li><a href="/wiki/Alhazen" class="mw-redirect" title="Alhazen">Alhazen</a></li> <li><a href="/w/index.php?title=Sijzi&amp;action=edit&amp;redlink=1" class="new" title="Sijzi (halaman belum tersedia)">Sijzi</a></li> <li><a href="/wiki/Omar_Khayy%C3%A1m" class="mw-redirect" title="Omar Khayyám">Khayyám</a></li> <li><a href="/w/index.php?title=Ibn_al-Yasamin&amp;action=edit&amp;redlink=1" class="new" title="Ibn al-Yasamin (halaman belum tersedia)">al-Yasamin</a></li> <li><a href="/wiki/Nasir_al-Din_al-Tusi" class="mw-redirect" title="Nasir al-Din al-Tusi">al-Tusi</a></li> <li><a href="/wiki/Yang_Hui" title="Yang Hui">Yang Hui</a></li> <li><a href="/w/index.php?title=Parameshvara&amp;action=edit&amp;redlink=1" class="new" title="Parameshvara (halaman belum tersedia)">Parameshvara</a></li></ul></td> </tr><tr><th class="sidebar-heading" style="background:#e6e6ff; font-weight:normal;"> 1400-an–1700-an</th></tr><tr><td class="sidebar-content" style="padding:0.2em 0.4em 0.6em;"> <ul><li><a href="/w/index.php?title=Jye%E1%B9%A3%E1%B9%ADhadeva&amp;action=edit&amp;redlink=1" class="new" title="Jyeṣṭhadeva (halaman belum tersedia)">Jyeṣṭhadeva</a></li> <li><a href="/wiki/Ren%C3%A9_Descartes" title="René Descartes">Descartes</a></li> <li><a href="/wiki/Blaise_Pascal" title="Blaise Pascal">Pascal</a></li> <li><a href="/w/index.php?title=Minggatu&amp;action=edit&amp;redlink=1" class="new" title="Minggatu (halaman belum tersedia)">Minggatu</a></li> <li><a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Euler</a></li> <li><a href="/w/index.php?title=Sakabe_K%C5%8Dhan&amp;action=edit&amp;redlink=1" class="new" title="Sakabe Kōhan (halaman belum tersedia)">Sakabe</a></li> <li><a href="/w/index.php?title=Yasuaki_Aida&amp;action=edit&amp;redlink=1" class="new" title="Yasuaki Aida (halaman belum tersedia)">Aida</a></li></ul></td> </tr><tr><th class="sidebar-heading" style="background:#e6e6ff; font-weight:normal;"> 1700an–1900an</th></tr><tr><td class="sidebar-content" style="padding:0.2em 0.4em 0.6em;"> <ul><li><a href="/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss">Gauss</a></li> <li><a href="/wiki/Nikolai_Lobachevsky" title="Nikolai Lobachevsky">Lobachevsky</a></li> <li><a href="/wiki/J%C3%A1nos_Bolyai" title="János Bolyai">Bolyai</a></li> <li><a href="/wiki/Bernhard_Riemann" class="mw-redirect" title="Bernhard Riemann">Riemann</a></li> <li><a href="/wiki/Felix_Klein" title="Felix Klein">Klein</a></li> <li><a href="/wiki/Henri_Poincar%C3%A9" title="Henri Poincaré">Poincaré</a></li> <li><a href="/wiki/David_Hilbert" title="David Hilbert">Hilbert</a></li> <li><a href="/wiki/Hermann_Minkowski" title="Hermann Minkowski">Minkowski</a></li> <li><a href="/wiki/%C3%89lie_Cartan" title="Élie Cartan">Cartan</a></li> <li><a href="/wiki/Oswald_Veblen" title="Oswald Veblen">Veblen</a></li> <li><a href="/w/index.php?title=Harold_Scott_MacDonald_Coxeter&amp;action=edit&amp;redlink=1" class="new" title="Harold Scott MacDonald Coxeter (halaman belum tersedia)">Coxeter</a></li></ul></td> </tr><tr><th class="sidebar-heading" style="background:#e6e6ff; font-weight:normal;"> Sekarang</th></tr><tr><td class="sidebar-content" style="padding:0.2em 0.4em 0.6em;"> <ul><li><a href="/wiki/Michael_Atiyah" title="Michael Atiyah">Atiyah</a></li> <li><a href="/wiki/Mikhail_Leonidovich_Gromov" class="mw-redirect" title="Mikhail Leonidovich Gromov">Gromov</a></li></ul></td> </tr></tbody></table></div></div></td> </tr><tr><td class="sidebar-navbar"><style data-mw-deduplicate="TemplateStyles:r18590415">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}.mw-parser-output .infobox .navbar{font-size:100%}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-lihat"><a href="/wiki/Templat:General_geometry" title="Templat:General geometry"><abbr title="Lihat templat ini">l</abbr></a></li><li class="nv-bicara"><a href="/wiki/Pembicaraan_Templat:General_geometry" title="Pembicaraan Templat:General geometry"><abbr title="Diskusikan templat ini">b</abbr></a></li><li class="nv-sunting"><a class="external text" href="https://id.wikipedia.org/w/index.php?title=Templat:General_geometry&amp;action=edit"><abbr title="Sunting templat ini">s</abbr></a></li></ul></div></td></tr></tbody></table> <style data-mw-deduplicate="TemplateStyles:r18844875">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}</style><div role="note" class="hatnote navigation-not-searchable">Untuk kegunaan lain, lihat <a href="/w/index.php?title=Geometri_(disambiguasi)&amp;action=edit&amp;redlink=1" class="new" title="Geometri (disambiguasi) (halaman belum tersedia)">Geometri (disambiguasi)</a>.</div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/Berkas:Teorema_de_desargues.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/13/Teorema_de_desargues.svg/220px-Teorema_de_desargues.svg.png" decoding="async" width="220" height="147" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/13/Teorema_de_desargues.svg/330px-Teorema_de_desargues.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/13/Teorema_de_desargues.svg/440px-Teorema_de_desargues.svg.png 2x" data-file-width="300" data-file-height="200" /></a><figcaption>Ilustrasi <a href="/w/index.php?title=Teorema_Desargues&amp;action=edit&amp;redlink=1" class="new" title="Teorema Desargues (halaman belum tersedia)">teorema Desargues</a>, hasil penting dalam <a href="/wiki/Geometri_Euclidean" class="mw-redirect" title="Geometri Euclidean">Euclidean</a> dan <a href="/wiki/Geometri_proyektif" title="Geometri proyektif">geometri proyektif</a></figcaption></figure> <figure typeof="mw:File/Thumb"><a href="/wiki/Berkas:Hypercube.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/22/Hypercube.svg/190px-Hypercube.svg.png" decoding="async" width="190" height="206" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/22/Hypercube.svg/285px-Hypercube.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/22/Hypercube.svg/380px-Hypercube.svg.png 2x" data-file-width="417" data-file-height="453" /></a><figcaption><a href="/w/index.php?title=Tersseract&amp;action=edit&amp;redlink=1" class="new" title="Tersseract (halaman belum tersedia)">Tersseract</a> atau <a href="/wiki/Hiperkubus" title="Hiperkubus">Hiperkubus</a> Salah satu bentuk geometri 4 Dimensi</figcaption></figure> <p><b>Geometri</b> adalah cabang <a href="/wiki/Matematika" title="Matematika">matematika</a> yang bersangkutan dengan pertanyaan <a href="/wiki/Bentuk" title="Bentuk">bentuk</a>. Seorang ahli matematika yang bekerja di bidang geometri disebut <i>ahli geometri</i>. Geometri muncul secara independen di sejumlah budaya awal sebagai ilmu pengetahuan praktis tentang <a href="/wiki/Panjang" title="Panjang">panjang</a>, <a href="/wiki/Luas" title="Luas">luas</a>, dan <a href="/wiki/Volume" title="Volume">volume</a>, dengan unsur-unsur dari ilmu matematika formal yang muncul di Barat sedini <a href="/wiki/Thales" title="Thales">Thales</a> (abad 6 SM). Pada abad ke-3 SM geometri dimasukkan ke dalam bentuk aksiomatik oleh <a href="/wiki/Euclid" class="mw-redirect" title="Euclid">Euclid</a>, yang dibantu oleh geometri Euclid, menjadi standar selama berabad-abad. <a href="/wiki/Archimedes" title="Archimedes">Archimedes</a> mengembangkan teknik cerdik untuk menghitung luas dan isi, dalam banyak cara mengantisipasi <a href="/wiki/Kalkulus_integral" class="mw-redirect" title="Kalkulus integral">kalkulus integral</a> yang modern. Bidang <a href="/wiki/Astronomi" title="Astronomi">astronomi</a>, terutama memetakan posisi bintang dan planet pada falak dan menggambarkan hubungan antara gerakan benda langit, menjabat sebagai sumber penting masalah geometrik selama satu berikutnya dan setengah milenium. Kedua geometri dan <a href="/wiki/Astronomi" title="Astronomi">astronomi</a> dianggap di dunia klasik untuk menjadi bagian dari <a href="/wiki/Quadrivium" class="mw-redirect" title="Quadrivium">Quadrivium</a> tersebut, subset dari tujuh seni liberal dianggap penting untuk warga negara bebas untuk menguasai. </p><p>Pengenalan <a href="/wiki/Koordinat" class="mw-redirect" title="Koordinat">koordinat</a> oleh <a href="/wiki/Ren%C3%A9_Descartes" title="René Descartes">René Descartes</a> dan perkembangan bersamaan aljabar menandai tahap baru untuk geometri, karena tokoh geometris, seperti <a href="/w/index.php?title=Kurva_pesawat&amp;action=edit&amp;redlink=1" class="new" title="Kurva pesawat (halaman belum tersedia)">kurva pesawat</a>, sekarang bisa diwakili analitis, yakni dengan fungsi dan persamaan. Hal ini memainkan peran penting dalam munculnya kalkulus pada abad ke-17. Selanjutnya, teori perspektif menunjukkan bahwa ada lebih banyak geometri dari sekadar sifat metrik angka: perspektif adalah asal geometri proyektif. Subyek geometri selanjutnya diperkaya oleh studi struktur intrinsik benda geometris yang berasal dengan Euler dan <a href="/wiki/Gauss" class="mw-redirect" title="Gauss">Gauss</a> dan menyebabkan penciptaan topologi dan geometri diferensial. </p><p>Dalam waktu Euclid tidak ada perbedaan yang jelas antara ruang fisik dan ruang geometris. Sejak penemuan abad ke-19 geometri non-Euclid, konsep ruang telah mengalami transformasi radikal, dan muncul pertanyaan: mana ruang geometris paling sesuai dengan ruang fisik? Dengan meningkatnya matematika formal dalam abad ke-20, juga 'ruang' (dan 'titik', 'garis', 'bidang') kehilangan isi intuitif, jadi hari ini kita harus membedakan antara ruang fisik, ruang geometris (di mana ' ruang ',' titik 'dll masih memiliki arti intuitif mereka) dan ruang abstrak. Geometri kontemporer menganggap manifold, ruang yang jauh lebih abstrak dari ruang Euclid yang kita kenal, yang mereka hanya sekitar menyerupai pada skala kecil. Ruang ini mungkin diberkahi dengan struktur tambahan, yang memungkinkan seseorang untuk berbicara tentang panjang. Geometri modern memiliki ikatan yang kuat dengan beberapa fisika, dicontohkan oleh hubungan antara geometri pseudo-Riemann dan relativitas umum. Salah satu teori fisika termuda, teori string, juga sangat geometris dalam rasa. </p><p>Sedangkan sifat visual geometri awalnya membuatnya lebih mudah diakses daripada bagian lain dari matematika, seperti aljabar atau teori bilangan, bahasa geometrik juga digunakan dalam konteks yang jauh dari tradisional, asal Euclidean nya (misalnya, dalam geometri fraktal dan geometri aljabar). </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Geometri_awal">Geometri awal</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometri&amp;veaction=edit&amp;section=1" title="Sunting bagian: Geometri awal" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometri&amp;action=edit&amp;section=1" title="Sunting kode sumber bagian: Geometri awal"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Berkas:Models_of_four_platonic_solids.JPG" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/04/Models_of_four_platonic_solids.JPG/220px-Models_of_four_platonic_solids.JPG" decoding="async" width="220" height="71" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/04/Models_of_four_platonic_solids.JPG/330px-Models_of_four_platonic_solids.JPG 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/04/Models_of_four_platonic_solids.JPG/440px-Models_of_four_platonic_solids.JPG 2x" data-file-width="2725" data-file-height="882" /></a><figcaption>Model empat padatan Platonik</figcaption></figure> <p>Catatan paling awal mengenai geometri dapat ditelusuri hingga ke zaman <a href="/wiki/Mesir_kuno" class="mw-redirect" title="Mesir kuno">Mesir kuno</a>, peradaban <a href="/wiki/Lembah_Sungai_Indus" class="mw-redirect" title="Lembah Sungai Indus">Lembah Sungai Indus</a> dan <a href="/wiki/Babilonia" title="Babilonia">Babilonia</a>. <a href="/wiki/Peradaban" title="Peradaban">Peradaban-peradaban</a> ini diketahui memiliki keahlian dalam <a href="/wiki/Drainase" title="Drainase">drainase</a> rawa, <a href="/wiki/Irigasi" title="Irigasi">irigasi</a>, pengendalian <a href="/wiki/Banjir" title="Banjir">banjir</a> dan pendirian bangunan-bangunan besar. Kebanyakan geometri Mesir kuno dan Babilonia terbatas hanya pada perhitungan <a href="/wiki/Panjang" title="Panjang">panjang</a> ruas-ruas <a href="/wiki/Garis_(geometri)" title="Garis (geometri)">garis</a>, <a href="/wiki/Luas" title="Luas">luas</a>, dan <a href="/wiki/Volume" title="Volume">volume</a>. </p><p>Salah satu teori awal mengenai geometri dikatakan oleh <a href="/wiki/Plato" title="Plato">Plato</a> dalam dialog <a href="/wiki/Timaeus" class="mw-disambig" title="Timaeus">Timaeus</a> (360SM) bahwa alam semesta terdiri dari 4 elemen: <a href="/wiki/Tanah" title="Tanah">tanah</a>, <a href="/wiki/Air" title="Air">air</a>, <a href="/wiki/Udara" title="Udara">udara</a> dan <a href="/wiki/Api" title="Api">api</a>. Hal tersebut tersebut dimaksud untuk menggambarkan kondisi material <a href="/wiki/Padat" title="Padat">padat</a>, <a href="/wiki/Cair" class="mw-redirect" title="Cair">cair</a>, <a href="/wiki/Gas" title="Gas">gas</a> dan <a href="/wiki/Plasma" class="mw-disambig" title="Plasma">plasma</a>. Hal ini mendasari bentuk-bentuk geometri: tetrahedron, <a href="/wiki/Kubus" title="Kubus">kubus</a>(hexahedron), octahedron, dan icosahedron di mana masing-masing bentuk tersebut menggambarkan elemen <a href="/wiki/Api" title="Api">api</a>, <a href="/wiki/Tanah" title="Tanah">tanah</a>, <a href="/wiki/Udara" title="Udara">udara</a> dan <a href="/wiki/Air" title="Air">air</a>. Bentuk-bentuk ini yang lalu lebih dikenal dengan nama <i>Platonic Solid</i>. Ada penambahan bentuk kelima yaitu Dodecahedron, yang menurut Aristoteles untuk menggambarkan elemen kelima yaitu <i><a href="/wiki/Ether" class="mw-disambig" title="Ether">ether</a></i>. </p> <div class="mw-heading mw-heading2"><h2 id="Sejarah">Sejarah</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometri&amp;veaction=edit&amp;section=2" title="Sunting bagian: Sejarah" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometri&amp;action=edit&amp;section=2" title="Sunting kode sumber bagian: Sejarah"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r18844875"><div role="note" class="hatnote navigation-not-searchable">Artikel utama: <a href="/w/index.php?title=Sejarah_geometri&amp;action=edit&amp;redlink=1" class="new" title="Sejarah geometri (halaman belum tersedia)">Sejarah geometri</a></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/Berkas:Westerner_and_Arab_practicing_geometry_15th_century_manuscript.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/45/Westerner_and_Arab_practicing_geometry_15th_century_manuscript.jpg/220px-Westerner_and_Arab_practicing_geometry_15th_century_manuscript.jpg" decoding="async" width="220" height="215" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/45/Westerner_and_Arab_practicing_geometry_15th_century_manuscript.jpg/330px-Westerner_and_Arab_practicing_geometry_15th_century_manuscript.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/45/Westerner_and_Arab_practicing_geometry_15th_century_manuscript.jpg/440px-Westerner_and_Arab_practicing_geometry_15th_century_manuscript.jpg 2x" data-file-width="2130" data-file-height="2083" /></a><figcaption>Salah satu <a href="/w/index.php?title=Kelompok_etnis_di_Eropa&amp;action=edit&amp;redlink=1" class="new" title="Kelompok etnis di Eropa (halaman belum tersedia)">Eropa</a> dan <a href="/wiki/Arab" class="mw-disambig" title="Arab">Arab</a> yang berlatih geometri pada abad ke-15</figcaption></figure> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/Berkas:Title_page_of_Sir_Henry_Billingsley%27s_first_English_version_of_Euclid%27s_Elements,_1570_(560x900).jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/cf/Title_page_of_Sir_Henry_Billingsley%27s_first_English_version_of_Euclid%27s_Elements%2C_1570_%28560x900%29.jpg/220px-Title_page_of_Sir_Henry_Billingsley%27s_first_English_version_of_Euclid%27s_Elements%2C_1570_%28560x900%29.jpg" decoding="async" width="220" height="337" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/cf/Title_page_of_Sir_Henry_Billingsley%27s_first_English_version_of_Euclid%27s_Elements%2C_1570_%28560x900%29.jpg/330px-Title_page_of_Sir_Henry_Billingsley%27s_first_English_version_of_Euclid%27s_Elements%2C_1570_%28560x900%29.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/cf/Title_page_of_Sir_Henry_Billingsley%27s_first_English_version_of_Euclid%27s_Elements%2C_1570_%28560x900%29.jpg/440px-Title_page_of_Sir_Henry_Billingsley%27s_first_English_version_of_Euclid%27s_Elements%2C_1570_%28560x900%29.jpg 2x" data-file-width="1766" data-file-height="2702" /></a><figcaption><a href="/w/index.php?title=Gambar_depan&amp;action=edit&amp;redlink=1" class="new" title="Gambar depan (halaman belum tersedia)">Gambar depan</a> versi bahasa Inggris pertama Sir Henry Billingsley dari Euclid <i><a href="/w/index.php?title=Element_(matematika)&amp;action=edit&amp;redlink=1" class="new" title="Element (matematika) (halaman belum tersedia)">Elemen</a></i>, 1570</figcaption></figure> <p>Permulaan geometri paling awal yang tercatat dapat ditelusuri ke <a href="/wiki/Mesopotamia" title="Mesopotamia">Mesopotamia</a> kuno dan <a href="/wiki/Mesir_Kuno" title="Mesir Kuno">Mesir</a> pada milenium ke-2 SM.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> Geometri pada awalnya adalah kumpulan prinsip yang ditemukan secara empiris mengenai panjang, sudut, luas, dan volume, yang dikembangkan untuk memenuhi beberapa kebutuhan praktis dalam <a href="/wiki/Survei" class="mw-redirect" title="Survei">survei</a>, dan <a href="/wiki/Konstruksi" title="Konstruksi">konstruksi</a>. Teks geometri paling awal yang diketahui adalah <a href="/w/index.php?title=Matematika_Mesir&amp;action=edit&amp;redlink=1" class="new" title="Matematika Mesir (halaman belum tersedia)">Mesir</a> <i><a href="/wiki/Papirus_Matematika_Rhind" title="Papirus Matematika Rhind">Papirus Rhind</a></i> (2000–1800 SM) dan <i><a href="/wiki/Papirus_Matematika_Moskow" title="Papirus Matematika Moskow">Papirus Moskow</a> </i> (sekitar 1890 SM), <a href="/wiki/Matematika_Babilonia" title="Matematika Babilonia">Tablet tanah liat Babilonia</a> seperti <a href="/w/index.php?title=Plimpton_322&amp;action=edit&amp;redlink=1" class="new" title="Plimpton 322 (halaman belum tersedia)">Plimpton 322</a> (1900 SM). Contohnya, Papirus Moskow memberikan rumus untuk menghitung volume piramida terpotong, atau <a href="/wiki/Frustum" title="Frustum">frustum</a>.<sup id="cite_ref-Boyer_1991_loc=Mesir_p._19_3-0" class="reference"><a href="#cite_note-Boyer_1991_loc=Mesir_p._19-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> Tablet tanah liat (350-50 SM) menunjukkan bahwa astronom Babilonia menerapkan prosedur <a href="/wiki/Trapesium" class="mw-disambig" title="Trapesium">trapesium</a> untuk menghitung posisi Jupiter dan <a href="/wiki/Perpindahan_(vektor)" class="mw-redirect" title="Perpindahan (vektor)">gerakan</a> dalam kecepatan waktu. Prosedur geometris tersebut mengantisipasi <a href="/w/index.php?title=Kalkulator_Oxford&amp;action=edit&amp;redlink=1" class="new" title="Kalkulator Oxford (halaman belum tersedia)">Kalkulator Oxford</a>, termasuk <a href="/w/index.php?title=Teorema_kecepatan_rata-rata&amp;action=edit&amp;redlink=1" class="new" title="Teorema kecepatan rata-rata (halaman belum tersedia)">teorema kecepatan rata-rata</a>, pada abad ke 14.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> Di selatan Mesir, <a href="/wiki/Nubia" title="Nubia">Nubia kuno</a> membangun sistem geometri termasuk versi awal <a href="/wiki/Jam_matahari" title="Jam matahari">jam matahari</a>.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> </p><p>Pada abad ke 7 SM, <a href="/wiki/Matematika_Yunani" title="Matematika Yunani">Yunani</a> ahli matematika <a href="/w/index.php?title=Thales_of_Miletus&amp;action=edit&amp;redlink=1" class="new" title="Thales of Miletus (halaman belum tersedia)">Thales of Miletus</a> menggunakan geometri untuk menyelesaikan masalah seperti menghitung tinggi piramida dan jarak kapal. Hal tersebut dikreditkan dengan penggunaan pertama dari penalaran deduktif yang diterapkan pada geometri, dengan menurunkan empat akibat wajar dari <a href="/w/index.php?title=Teorema_Thales&amp;action=edit&amp;redlink=1" class="new" title="Teorema Thales (halaman belum tersedia)">Teorema Thales</a>.<sup id="cite_ref-Boyer_1991_loc=Ionia_dan_Pythagoras_p._43_7-0" class="reference"><a href="#cite_note-Boyer_1991_loc=Ionia_dan_Pythagoras_p._43-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> Pythagoras mendirikan <a href="/wiki/Pythagoras" title="Pythagoras">Sekolah Pythagoras</a>, yang dikreditkan dengan bukti pertama dari <a href="/wiki/Teorema_Pythagoras" title="Teorema Pythagoras">Teorema Pythagoras</a>,<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> Padahal pernyataan teorema tersebut memiliki sejarah yang panjang.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Eudoxus_dari_Cnidus" class="mw-redirect" title="Eudoxus dari Cnidus">Eudoxus</a> (408–355 SM) mengembangkan <a href="/wiki/Metode" class="mw-disambig" title="Metode">metode</a>, yang memungkinkan perhitungan luas dan volume gambar lengkung,<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> serta teori rasio yang menghindari masalah <a href="/w/index.php?title=Besaran_yang_tidak_dapat_dibandingkan&amp;action=edit&amp;redlink=1" class="new" title="Besaran yang tidak dapat dibandingkan (halaman belum tersedia)">besaran yang tidak dapat dibandingkan</a>, yang memungkinkan geometer berikutnya untuk membuat kemajuan yang signifikan. Sekitar 300 SM, geometri direvolusi oleh Euclid, yang <i> <a href="/wiki/Elemen_Euklides" title="Elemen Euklides">Elemen</a> </i>, secara luas dianggap sebagai buku teks paling sukses dan berpengaruh sepanjang masa,<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> diperkenalkan <a href="/w/index.php?title=Ketelitian_matematika&amp;action=edit&amp;redlink=1" class="new" title="Ketelitian matematika (halaman belum tersedia)">ketelitian matematika</a> melalui <a href="/w/index.php?title=Metode_aksiomatik&amp;action=edit&amp;redlink=1" class="new" title="Metode aksiomatik (halaman belum tersedia)">metode aksiomatik</a> dan merupakan contoh paling awal dari format yang masih digunakan dalam matematika saat ini, bahwa definisi, aksioma, teorema, dan bukti. Meskipun sebagian besar konten <i> Elemen </i> sudah diketahui, Euclid mengatur menjadi satu kerangka kerja logis yang koheran.<sup id="cite_ref-Boyer_1991_loc=Euclid_of_Alexandria_p._104_13-0" class="reference"><a href="#cite_note-Boyer_1991_loc=Euclid_of_Alexandria_p._104-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> <i>Element</i> diketahui oleh semua orang terpelajar di Barat hingga pertengahan abad ke 20 dan isinya masih diajarkan di kelas geometri hingga saat ini..<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Archimedes" title="Archimedes">Archimedes</a> (c.&#160;287–212 SM) dari <a href="/w/index.php?title=Syracuse,_Italy&amp;action=edit&amp;redlink=1" class="new" title="Syracuse, Italy (halaman belum tersedia)">Syracuse</a> menggunakan <a href="/wiki/Metode" class="mw-disambig" title="Metode">metode tersebut</a> untuk menghitung <a href="/wiki/Luas" title="Luas">luas</a> di bawah busur dari <a href="/wiki/Parabola" title="Parabola">parabola</a> dengan <a href="/wiki/Deret_(matematika)" title="Deret (matematika)">penjumlahan dari tak terhingga pada deret</a>, dan memberikan perkiraan yang sangat akurat dari <a href="/wiki/Pi" title="Pi">Pi</a>.<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> Dia juga mempelajari <a href="/w/index.php?title=Archimedes_spiral&amp;action=edit&amp;redlink=1" class="new" title="Archimedes spiral (halaman belum tersedia)">spiral</a> yang menyandang namanya dan memperoleh rumus untuk <a href="/wiki/Volume" title="Volume">volume</a> dari <a href="/w/index.php?title=Permukaan_revolusi&amp;action=edit&amp;redlink=1" class="new" title="Permukaan revolusi (halaman belum tersedia)">permukaan revolusi</a>. </p> <figure class="mw-default-size mw-halign-left" typeof="mw:File/Thumb"><a href="/wiki/Berkas:Woman_teaching_geometry.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d4/Woman_teaching_geometry.jpg/190px-Woman_teaching_geometry.jpg" decoding="async" width="190" height="210" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d4/Woman_teaching_geometry.jpg/285px-Woman_teaching_geometry.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d4/Woman_teaching_geometry.jpg/380px-Woman_teaching_geometry.jpg 2x" data-file-width="1039" data-file-height="1148" /></a><figcaption><i>Wanita mengajar geometri</i>. Ilustrasi di awal terjemahan abad pertengahan <a href="/w/index.php?title=Euklides_Element&amp;action=edit&amp;redlink=1" class="new" title="Euklides Element (halaman belum tersedia)">Euklides Element</a>, (c.&#160;1310).</figcaption></figure> <p><br /> </p> <div class="mw-heading mw-heading2"><h2 id="Geometri_aljabar">Geometri aljabar</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometri&amp;veaction=edit&amp;section=3" title="Sunting bagian: Geometri aljabar" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometri&amp;action=edit&amp;section=3" title="Sunting kode sumber bagian: Geometri aljabar"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r18844875"><div role="note" class="hatnote navigation-not-searchable">Artikel utama: <a href="/wiki/Geometri_aljabar" title="Geometri aljabar">Geometri aljabar</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Berkas:Togliatti_surface.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e0/Togliatti_surface.png/220px-Togliatti_surface.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e0/Togliatti_surface.png/330px-Togliatti_surface.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e0/Togliatti_surface.png/440px-Togliatti_surface.png 2x" data-file-width="800" data-file-height="800" /></a><figcaption><a href="/w/index.php?title=Permukaan_Togliatti&amp;action=edit&amp;redlink=1" class="new" title="Permukaan Togliatti (halaman belum tersedia)">Permukaan Togliatti</a> ini adalah <a href="/w/index.php?title=Permukaan_aljabar&amp;action=edit&amp;redlink=1" class="new" title="Permukaan aljabar (halaman belum tersedia)">permukaan aljabar</a> derajat lima. Gambar tersebut mewakili sebagian dari <a href="/wiki/Lokus_(matematika)" title="Lokus (matematika)">lokus</a> aslinya.</figcaption></figure> <p><b>Geometri aljabar</b> merupakan cabang <a href="/wiki/Matematika" title="Matematika">matematika</a> yang mempelajari akar dari suatu <a href="/wiki/Polinomial" title="Polinomial">suku banyak</a>. Dalam kajian modern, digunakan berbagai alat dari <a href="/wiki/Aljabar_abstrak" title="Aljabar abstrak">aljabar abstrak</a> seperti aljabar komutatif dan <a href="/wiki/Teori_kategori" title="Teori kategori">teori kategori</a>. Studi geometri aljabar dilakukan dengan mengonstruksi suatu objek matematika (misalnya, skema dan sheaf) lalu kemudian meninjau hubungannya dengan struktur yang sudah dikenal. Berbagai alat ini dibuat untuk membantu memahami permasalahan mendasar terkait geometri.<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> </p><p>Salah satu objek fundamental dalam studi geometri aljabar adalah varietas aljabarik yang merupakan manifestasi geometris dari akar suatu sistem suku banyak. Dari struktur ini, dapat dikaji berbagai kurva aljabarik seperti <a href="/wiki/Garis" title="Garis">garis</a>, <a href="/wiki/Parabola" title="Parabola">parabola</a>, <a href="/wiki/Elips" title="Elips">elips</a>, kurva eliptik dan lain-lain. </p><p>Geometri aljabar merupakan salah satu topik sentral dalam matematika dengan berbagai topik terkait seperti analisis kompleks, <a href="/wiki/Topologi" title="Topologi">topologi</a>, <a href="/wiki/Teori_bilangan" title="Teori bilangan">teori bilangan</a>, <a href="/wiki/Teori_kategori" title="Teori kategori">teori kategori</a>, dan lain-lain. </p> <div class="mw-heading mw-heading2"><h2 id="Geometri_dalam_dimensi">Geometri dalam dimensi</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometri&amp;veaction=edit&amp;section=4" title="Sunting bagian: Geometri dalam dimensi" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometri&amp;action=edit&amp;section=4" title="Sunting kode sumber bagian: Geometri dalam dimensi"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Dalam_dua_dimensi">Dalam dua dimensi</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometri&amp;veaction=edit&amp;section=5" title="Sunting bagian: Dalam dua dimensi" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometri&amp;action=edit&amp;section=5" title="Sunting kode sumber bagian: Dalam dua dimensi"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r18844875"><div role="note" class="hatnote navigation-not-searchable">Lihat pula: <a href="/wiki/Dua_dimensi" class="mw-redirect" title="Dua dimensi">Dua dimensi</a></div><p>Geometri dalam dua dimensi adalah suatu bentuk yang berupa dua dimensi, yang berarti bangunan tersebut hanya melibatkan panjang dan lebar.<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> </p><div class="mw-heading mw-heading4"><h4 id="Persegi">Persegi</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometri&amp;veaction=edit&amp;section=6" title="Sunting bagian: Persegi" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometri&amp;action=edit&amp;section=6" title="Sunting kode sumber bagian: Persegi"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r18844875"><div role="note" class="hatnote navigation-not-searchable">Artikel utama: <a href="/wiki/Persegi" title="Persegi">Persegi</a></div> <p><b>Persegi</b> adalah bangun datar <a href="/wiki/Dua_dimensi" class="mw-redirect" title="Dua dimensi">dua dimensi</a> yang dibentuk oleh empat buah <a href="/wiki/Rusuk" class="mw-disambig" title="Rusuk">rusuk</a> <b><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a64873b3280e7364ad9047a172f57dbf009fa7d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.039ex; height:2.843ex;" alt="{\displaystyle (a)}"></span></b> yang sama panjang dan memiliki empat buah <a href="/wiki/Sudut" class="mw-redirect mw-disambig" title="Sudut">sudut</a> yang kesemuanya adalah <a href="/wiki/Sudut_siku-siku" title="Sudut siku-siku">sudut siku-siku</a>. Bangun ini disebut juga sebagai <b>bujur sangkar</b>. </p> <div class="mw-heading mw-heading4"><h4 id="Persegi_panjang">Persegi panjang</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometri&amp;veaction=edit&amp;section=7" title="Sunting bagian: Persegi panjang" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometri&amp;action=edit&amp;section=7" title="Sunting kode sumber bagian: Persegi panjang"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r18844875"><div role="note" class="hatnote navigation-not-searchable">Artikel utama: <a href="/wiki/Persegi_panjang" title="Persegi panjang">Persegi panjang</a></div> <p><b>Persegi panjang</b> adalah bangun datar <a href="/wiki/Dua_dimensi" class="mw-redirect" title="Dua dimensi">dua dimensi</a> yang dibentuk oleh dua pasang <a href="/wiki/Sisi" class="mw-redirect mw-disambig" title="Sisi">sisi</a> yang masing-masing sama panjang dan <a href="/w/index.php?title=Sejajar&amp;action=edit&amp;redlink=1" class="new" title="Sejajar (halaman belum tersedia)">sejajar</a> dengan pasangannya, dan memiliki empat buah <a href="/wiki/Sudut" class="mw-redirect mw-disambig" title="Sudut">sudut</a> yang kesemuanya adalah <a href="/wiki/Sudut_siku-siku" title="Sudut siku-siku">sudut siku-siku</a>. </p> <div class="mw-heading mw-heading4"><h4 id="Segitiga">Segitiga</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometri&amp;veaction=edit&amp;section=8" title="Sunting bagian: Segitiga" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometri&amp;action=edit&amp;section=8" title="Sunting kode sumber bagian: Segitiga"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r18844875"><div role="note" class="hatnote navigation-not-searchable">Artikel utama: <a href="/wiki/Segitiga" title="Segitiga">Segitiga</a></div> <p>Sebuah <b>segitiga</b> adalah <a href="/wiki/Poligon" title="Poligon">poligon</a> dengan tiga <a href="/w/index.php?title=Tepi_(geometri)&amp;action=edit&amp;redlink=1" class="new" title="Tepi (geometri) (halaman belum tersedia)">ujung</a> dan tiga simpul. Ini adalah salah satu <a href="/wiki/Bentuk" title="Bentuk">bentuk</a> dasar dalam geometri. Segitiga dengan simpul A, B, dan C dilambangkan <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \triangle ABC}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x25B3;<!-- △ --></mi> <mi>A</mi> <mi>B</mi> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \triangle ABC}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/821677f03b63c3c2e448dffc2ae9c8eea31d9d48" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.339ex; height:2.176ex;" alt="{\displaystyle \triangle ABC}"></span>. </p><p>Dalam <a href="/wiki/Geometri_Euclidean" class="mw-redirect" title="Geometri Euclidean">geometri Euclidean</a>, setiap tiga titik, ketika non-<a href="/w/index.php?title=Collinear&amp;action=edit&amp;redlink=1" class="new" title="Collinear (halaman belum tersedia)">collinear</a>, menentukan segitiga unik dan sekaligus, sebuah <a href="/w/index.php?title=Ilmu_ukur_bidang&amp;action=edit&amp;redlink=1" class="new" title="Ilmu ukur bidang (halaman belum tersedia)">bidang</a> unik (yaitu <a href="/wiki/Ruang_Euclidean" class="mw-redirect" title="Ruang Euclidean">ruang Euclidean</a> dua dimensi). Dengan kata lain, hanya ada satu bidang yang mengandung segitiga itu, dan setiap segitiga terkandung dalam beberapa bidang. Jika seluruh geometri hanya <a href="/w/index.php?title=Bidang_Euclidean&amp;action=edit&amp;redlink=1" class="new" title="Bidang Euclidean (halaman belum tersedia)">bidang Euclidean</a>, hanya ada satu bidang dan semua segitiga terkandung di dalamnya; namun, dalam ruang Euclidean berdimensi lebih tinggi, ini tidak lagi benar. </p> <div class="mw-heading mw-heading4"><h4 id="Trapesium">Trapesium</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometri&amp;veaction=edit&amp;section=9" title="Sunting bagian: Trapesium" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometri&amp;action=edit&amp;section=9" title="Sunting kode sumber bagian: Trapesium"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r18844875"><div role="note" class="hatnote navigation-not-searchable">Artikel utama: <a href="/wiki/Trapesium_(geometri)" title="Trapesium (geometri)">Trapesium (geometri)</a></div> <p><b>Trapesium</b> adalah bangun datar <a href="/wiki/Dua_dimensi" class="mw-redirect" title="Dua dimensi">dua dimensi</a> yang dibentuk oleh empat buah <a href="/wiki/Rusuk" class="mw-disambig" title="Rusuk">rusuk</a> yang dua di antaranya saling <a href="/w/index.php?title=Sejajar&amp;action=edit&amp;redlink=1" class="new" title="Sejajar (halaman belum tersedia)">sejajar</a> namun tidak sama panjang.Trapesium termasuk jenis <a href="/wiki/Bangun_datar" class="mw-redirect" title="Bangun datar">bangun datar</a> <a href="/wiki/Segi_empat" title="Segi empat">segi empat</a> yang mempunyai ciri khusus. </p> <div class="mw-heading mw-heading4"><h4 id="Jajar_genjang">Jajar genjang</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometri&amp;veaction=edit&amp;section=10" title="Sunting bagian: Jajar genjang" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometri&amp;action=edit&amp;section=10" title="Sunting kode sumber bagian: Jajar genjang"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r18844875"><div role="note" class="hatnote navigation-not-searchable">Artikel utama: <a href="/wiki/Jajar_genjang" title="Jajar genjang">Jajar genjang</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Berkas:Jajaran_genjang.JPG" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/id/thumb/9/90/Jajaran_genjang.JPG/220px-Jajaran_genjang.JPG" decoding="async" width="220" height="123" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/id/9/90/Jajaran_genjang.JPG 1.5x" data-file-width="299" data-file-height="167" /></a><figcaption>Jajar genjang<br />dengan alas <b><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span></b> dan tinggi <b><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span></b></figcaption></figure> <p><b>Jajar genjang</b> atau <b>jajaran genjang</b> (<a href="/wiki/Bahasa_Inggris" title="Bahasa Inggris">bahasa Inggris</a>&#58; <span lang="en"><i>parallelogram</i></span>) adalah bangun datar <a href="/wiki/Dua_dimensi" class="mw-redirect" title="Dua dimensi">dua dimensi</a> yang dibentuk oleh dua pasang <a href="/w/index.php?title=Rusuk_(geometri)&amp;action=edit&amp;redlink=1" class="new" title="Rusuk (geometri) (halaman belum tersedia)">rusuk</a> yang masing-masing sama panjang dan <a href="/w/index.php?title=Sejajar&amp;action=edit&amp;redlink=1" class="new" title="Sejajar (halaman belum tersedia)">sejajar</a> dengan pasangannya, dan memiliki dua pasang <a href="/wiki/Sudut" class="mw-redirect mw-disambig" title="Sudut">sudut</a> yang masing-masing sama besar dengan sudut di hadapannya. Jajar genjang termasuk turunan segiempat yang mempunyai ciri khusus. Jajar genjang dengan empat rusuk yang sama panjang disebut <a href="/wiki/Belah_ketupat" title="Belah ketupat">belah ketupat</a>. </p> <div class="mw-heading mw-heading4"><h4 id="Lingkaran">Lingkaran</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometri&amp;veaction=edit&amp;section=11" title="Sunting bagian: Lingkaran" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometri&amp;action=edit&amp;section=11" title="Sunting kode sumber bagian: Lingkaran"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r18844875"><div role="note" class="hatnote navigation-not-searchable">Artikel utama: <a href="/wiki/Lingkaran" title="Lingkaran">Lingkaran</a></div> <p><b>Lingkaran</b> adalah <a href="/wiki/Bentuk" title="Bentuk">bentuk</a> yang terdiri dari semua titik dalam <a href="/wiki/Bidang_(geometri)" title="Bidang (geometri)">bidang</a> yang berjarak tertentu dari titik tertentu, pusat; ekuivalennya adalah kurva yang dilacak oleh titik yang bergerak dalam bidang sehingga jaraknya dari titik tertentu adalah <a href="/w/index.php?title=Konstan_(matematika)&amp;action=edit&amp;redlink=1" class="new" title="Konstan (matematika) (halaman belum tersedia)">konstan</a>. Jarak antara titik mana pun dari lingkaran dan pusat disebut jari-jari. Artikel ini adalah tentang lingkaran dalam geometri Euclidean, dan, khususnya, bidang Euclidean, kecuali jika dinyatakan sebaliknya. </p><p>Secara khusus, sebuah lingkaran adalah <a href="/wiki/Kurva" title="Kurva">kurva</a> tertutup sederhana yang membagi pesawat menjadi dua wilayah: interior dan eksterior. Dalam penggunaan sehari-hari, istilah "lingkaran" dapat digunakan secara bergantian untuk merujuk pada batas gambar, atau keseluruhan gambar termasuk bagian dalamnya; dalam penggunaan teknis yang ketat, lingkaran hanyalah batas dan seluruh gambar disebut <a href="/wiki/Cakram_(matematika)" title="Cakram (matematika)">cakram</a>. </p><p>Lingkaran juga dapat didefinisikan sebagai jenis elips khusus di mana dua fokus bertepatan dan eksentrisitasnya adalah 0, atau bentuk dua dimensi yang melingkupi area per satuan perimeter kuadrat, menggunakan kalkulus variasi. </p> <div class="mw-heading mw-heading4"><h4 id="Elips">Elips</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometri&amp;veaction=edit&amp;section=12" title="Sunting bagian: Elips" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometri&amp;action=edit&amp;section=12" title="Sunting kode sumber bagian: Elips"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Berkas:Ellipse-conic.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/5f/Ellipse-conic.svg/220px-Ellipse-conic.svg.png" decoding="async" width="220" height="212" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/5f/Ellipse-conic.svg/330px-Ellipse-conic.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/5f/Ellipse-conic.svg/440px-Ellipse-conic.svg.png 2x" data-file-width="432" data-file-height="416" /></a><figcaption>Elips (merah) diperoleh sebagai persimpangan kerucut dengan bidang miring.</figcaption></figure> <figure typeof="mw:File/Thumb"><a href="/wiki/Berkas:Ellipse-def0.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/96/Ellipse-def0.svg/300px-Ellipse-def0.svg.png" decoding="async" width="300" height="232" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/96/Ellipse-def0.svg/450px-Ellipse-def0.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/96/Ellipse-def0.svg/600px-Ellipse-def0.svg.png 2x" data-file-width="331" data-file-height="256" /></a><figcaption>Elips: notasi</figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Berkas:Ellipse-var.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/78/Ellipse-var.svg/220px-Ellipse-var.svg.png" decoding="async" width="220" height="459" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/78/Ellipse-var.svg/330px-Ellipse-var.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/78/Ellipse-var.svg/440px-Ellipse-var.svg.png 2x" data-file-width="226" data-file-height="472" /></a><figcaption>Elips: contoh dengan eksentrisitas yang meningkat</figcaption></figure> <p><b>Elips</b> atau <b>oval yang beraturan</b> adalah gambar yang menyerupai <a href="/wiki/Lingkaran" title="Lingkaran">lingkaran</a> yang telah dipanjangkan ke satu arah. Elips adalah salah satu contoh dari <a href="/wiki/Irisan_kerucut" title="Irisan kerucut">irisan kerucut</a> dan dapat didefinisikan sebagai <a href="/wiki/Lokus_(matematika)" title="Lokus (matematika)">lokus</a> dari semua titik, dalam satu bidang, yang memiliki jumlah jarak yang sama dari dua titik tetap yang telah ditentukan sebelumnya (disebut <b><a href="/w/index.php?title=Fokus_(matematika)&amp;action=edit&amp;redlink=1" class="new" title="Fokus (matematika) (halaman belum tersedia)">fokus</a></b>). </p><p>Dalam bahasa Indonesia, elips atau oval yang beraturan juga sering dikenal istilah sepadan, yakni <i>bulat lonjong</i> (atau <i>lonjong</i><sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> saja)<i>, bulat bujur<sup id="cite_ref-:0_19-0" class="reference"><a href="#cite_note-:0-19"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup></i>, dan <i>bulat panjang</i>.<sup id="cite_ref-:0_19-1" class="reference"><a href="#cite_note-:0-19"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Dalam_tiga_dimensi">Dalam tiga dimensi</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometri&amp;veaction=edit&amp;section=13" title="Sunting bagian: Dalam tiga dimensi" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometri&amp;action=edit&amp;section=13" title="Sunting kode sumber bagian: Dalam tiga dimensi"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r18844875"><div role="note" class="hatnote navigation-not-searchable">Lihat pula: <a href="/wiki/Tiga_dimensi" class="mw-redirect mw-disambig" title="Tiga dimensi">Tiga dimensi</a></div> <div class="mw-heading mw-heading3"><h3 id="Dalam_empat_dimensi">Dalam empat dimensi</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometri&amp;veaction=edit&amp;section=14" title="Sunting bagian: Dalam empat dimensi" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometri&amp;action=edit&amp;section=14" title="Sunting kode sumber bagian: Dalam empat dimensi"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r18844875"><div role="note" class="hatnote navigation-not-searchable">Lihat pula: <a href="/w/index.php?title=Empat_dimensi&amp;action=edit&amp;redlink=1" class="new" title="Empat dimensi (halaman belum tersedia)">Empat dimensi</a></div> <div class="mw-heading mw-heading2"><h2 id="Konsep_penting_dalam_geometri">Konsep penting dalam geometri</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometri&amp;veaction=edit&amp;section=15" title="Sunting bagian: Konsep penting dalam geometri" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometri&amp;action=edit&amp;section=15" title="Sunting kode sumber bagian: Konsep penting dalam geometri"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Berikut ini adalah beberapa konsep terpenting dalam geometri.<sup id="cite_ref-Tabak_2014_xiv_20-0" class="reference"><a href="#cite_note-Tabak_2014_xiv-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Schmidt,_W._2002_21-0" class="reference"><a href="#cite_note-Schmidt,_W._2002-21"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Kline1990_22-0" class="reference"><a href="#cite_note-Kline1990-22"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Aksioma">Aksioma</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometri&amp;veaction=edit&amp;section=16" title="Sunting bagian: Aksioma" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometri&amp;action=edit&amp;section=16" title="Sunting kode sumber bagian: Aksioma"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/Berkas:Parallel_postulate_en.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/ed/Parallel_postulate_en.svg/220px-Parallel_postulate_en.svg.png" decoding="async" width="220" height="165" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/ed/Parallel_postulate_en.svg/330px-Parallel_postulate_en.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/ed/Parallel_postulate_en.svg/440px-Parallel_postulate_en.svg.png 2x" data-file-width="800" data-file-height="600" /></a><figcaption>Ilustrasi <a href="/w/index.php?title=Postulat_paralel&amp;action=edit&amp;redlink=1" class="new" title="Postulat paralel (halaman belum tersedia)">postulat paralel</a> Euclid</figcaption></figure> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r18844875"><div role="note" class="hatnote navigation-not-searchable">Lihat pula: <a href="/wiki/Geometri_Euklides" title="Geometri Euklides">Geometri Euklides</a> dan <a href="/wiki/Aksioma" title="Aksioma">Aksioma</a></div> <p><a href="/wiki/Euclid" class="mw-redirect" title="Euclid">Euclid</a> mengambil pendekatan abstrak untuk geometri di <a href="/wiki/Elemen_Euklides" title="Elemen Euklides">Elements</a>,<sup id="cite_ref-Katz2000_23-0" class="reference"><a href="#cite_note-Katz2000-23"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup> salah satu buku paling berpengaruh yang pernah ditulis.<sup id="cite_ref-Berlinski2014_24-0" class="reference"><a href="#cite_note-Berlinski2014-24"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> Euklides memperkenalkan <a href="/wiki/Aksioma" title="Aksioma">aksioma</a>, atau <a href="/wiki/Postulat" title="Postulat">postulat</a> tertentu, yang mengekspresikan sifat utama atau bukti dengan sendirinya dari titik, garis, dan bidang.<sup id="cite_ref-Hartshorne2013_25-0" class="reference"><a href="#cite_note-Hartshorne2013-25"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup> Untuk melanjutkan untuk secara ketat menyimpulkan properti lain dengan penalaran matematika. Ciri khas pendekatan geometri Euclid adalah ketelitiannya, dan kemudian dikenal sebagai geometri <i>aksiomatik</i> atau <i><a href="/w/index.php?title=Geometri_sintetik&amp;action=edit&amp;redlink=1" class="new" title="Geometri sintetik (halaman belum tersedia)">sintetik</a></i>.<sup id="cite_ref-HerbstFujita2017_26-0" class="reference"><a href="#cite_note-HerbstFujita2017-26"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup> Pada awal abad ke-19, penemuan <a href="/w/index.php?title=Geometri_non-Euclidean&amp;action=edit&amp;redlink=1" class="new" title="Geometri non-Euclidean (halaman belum tersedia)">geometri non-Euclidean</a> oleh <a href="/wiki/Nikolai_Ivanovich_Lobachevsky" class="mw-redirect" title="Nikolai Ivanovich Lobachevsky">Nikolai Ivanovich Lobachevsky</a> (1792–1856), <a href="/wiki/J%C3%A1nos_Bolyai" title="János Bolyai">János Bolyai</a> (1802–1860), <a href="/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss">Carl Friedrich Gauss</a> (1777–1855) dan yang lainnya<sup id="cite_ref-Yaglom2012_27-0" class="reference"><a href="#cite_note-Yaglom2012-27"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup> menyebabkan kebangkitan minat dalam disiplin tersebut pada abad ke-20, <a href="/wiki/David_Hilbert" title="David Hilbert">David Hilbert</a> (1862–1943) menggunakan penalaran aksiomatik dalam upaya untuk memberikan dasar geometri modern.<sup id="cite_ref-Holme2010_28-0" class="reference"><a href="#cite_note-Holme2010-28"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Titik">Titik</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometri&amp;veaction=edit&amp;section=17" title="Sunting bagian: Titik" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometri&amp;action=edit&amp;section=17" title="Sunting kode sumber bagian: Titik"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r18844875"><div role="note" class="hatnote navigation-not-searchable">Artikel utama: <a href="/wiki/Titik_(geometri)" title="Titik (geometri)">Titik (geometri)</a></div> <p>Titik yang dianggap sebagai objek fundamental dalam geometri Euclidean. Mereka telah didefinisikan dalam berbagai cara, termasuk definisi Euclid sebagai 'yang tidak memiliki bagian'<sup id="cite_ref-EuclidAll_29-0" class="reference"><a href="#cite_note-EuclidAll-29"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup> dan melalui penggunaan aljabar atau set bersarang.<sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup> Banyak bidang geometri, seperti geometri analitik, geometri diferensial, dan topologi, semua objek dianggap dibangun dari titik. Namun demikian, ada beberapa studi geometri tanpa mengacu pada titik.<sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Garis">Garis</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometri&amp;veaction=edit&amp;section=18" title="Sunting bagian: Garis" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometri&amp;action=edit&amp;section=18" title="Sunting kode sumber bagian: Garis"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r18844875"><div role="note" class="hatnote navigation-not-searchable">Artikel utama: <a href="/wiki/Garis_(geometri)" title="Garis (geometri)">Garis (geometri)</a></div> <p><a href="/wiki/Euclid" class="mw-redirect" title="Euclid">Euclid</a> mendeskripsikan sebuah garis sebagai "panjang tanpa lebar" yang "terletak sama terhadap titik-titik pada dirinya sendiri".<sup id="cite_ref-EuclidAll_29-1" class="reference"><a href="#cite_note-EuclidAll-29"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup> Dalam matematika modern, mengingat banyaknya geometri, konsep garis terkait erat dengan cara menggambarkan geometri. Misalnya, dalam <a href="/wiki/Geometri_analitik" class="mw-redirect" title="Geometri analitik">geometri analitik</a>, garis pada bidang sering didefinisikan sebagai himpunan titik yang koordinatnya memenuhi <a href="/wiki/Persamaan_linier" class="mw-redirect" title="Persamaan linier">persamaan linier</a> tertentu,<sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">&#91;</span>32<span class="cite-bracket">&#93;</span></a></sup> tetapi dalam pengaturan yang lebih abstrak, seperti <a href="/w/index.php?title=Geometri_kejadian&amp;action=edit&amp;redlink=1" class="new" title="Geometri kejadian (halaman belum tersedia)">geometri kejadian</a>, garis mungkin merupakan objek independen, berbeda dari kumpulan titik yang terletak di atasnya.<sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup> Dalam geometri diferensial, <a href="/wiki/Geodesik" title="Geodesik">geodesik</a> adalah generalisasi gagasan garis menjadi <a href="/w/index.php?title=Ruang_melengkung&amp;action=edit&amp;redlink=1" class="new" title="Ruang melengkung (halaman belum tersedia)">ruang melengkung</a>.<sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">&#91;</span>34<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Bidang">Bidang</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometri&amp;veaction=edit&amp;section=19" title="Sunting bagian: Bidang" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometri&amp;action=edit&amp;section=19" title="Sunting kode sumber bagian: Bidang"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r18844875"><div role="note" class="hatnote navigation-not-searchable">Artikel utama: <a href="/wiki/Bidang_(geometri)" title="Bidang (geometri)">Bidang (geometri)</a></div> <p><a href="/wiki/Bidang_(geometri)" title="Bidang (geometri)">Bidang</a> adalah permukaan datar dua dimensi yang memanjang jauh tak terhingga.<sup id="cite_ref-EuclidAll_29-2" class="reference"><a href="#cite_note-EuclidAll-29"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup> Bidang digunakan di setiap bidang geometri. Contohnya, bidang dapat dipelajari sebagai <a href="/wiki/Permukaan_(topologi)" title="Permukaan (topologi)">permukaan topologi</a> tanpa mengacu pada jarak atau sudut;<sup id="cite_ref-Munkres_35-0" class="reference"><a href="#cite_note-Munkres-35"><span class="cite-bracket">&#91;</span>35<span class="cite-bracket">&#93;</span></a></sup> dapat dipelajari sebagai <a href="/w/index.php?title=Ruang_affine&amp;action=edit&amp;redlink=1" class="new" title="Ruang affine (halaman belum tersedia)">ruang affine</a>, di mana collinearity dan rasio dapat dipelajari tetapi bukan jarak;<sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">&#91;</span>36<span class="cite-bracket">&#93;</span></a></sup> itu dapat dipelajari sebagai <a href="/wiki/Bidang_kompleks" title="Bidang kompleks">bidang kompleks</a> menggunakan teknik <a href="/wiki/Analisis_kompleks" title="Analisis kompleks">analisis kompleks</a>;<sup id="cite_ref-37" class="reference"><a href="#cite_note-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup> dan seterusnya. </p> <div class="mw-heading mw-heading3"><h3 id="Sudut">Sudut</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometri&amp;veaction=edit&amp;section=20" title="Sunting bagian: Sudut" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometri&amp;action=edit&amp;section=20" title="Sunting kode sumber bagian: Sudut"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r18844875"><div role="note" class="hatnote navigation-not-searchable">Artikel utama: <a href="/wiki/Sudut" class="mw-redirect mw-disambig" title="Sudut">Sudut</a></div> <p><a href="/wiki/Euclid" class="mw-redirect" title="Euclid">Euclid</a> mendefinisikan bidang <a href="/wiki/Sudut" class="mw-redirect mw-disambig" title="Sudut">sudut</a> sebagai kemiringan satu sama lain, dalam bidang, dari dua garis yang saling bertemu, dan tidak terletak lurus satu sama lain.<sup id="cite_ref-EuclidAll_29-3" class="reference"><a href="#cite_note-EuclidAll-29"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup> Dalam istilah modern, sudut adalah sosok yang dibentuk oleh dua <a href="/w/index.php?title=Sinar_(geometri)&amp;action=edit&amp;redlink=1" class="new" title="Sinar (geometri) (halaman belum tersedia)">sinar</a>, disebut <i>sisi</i> dari sudut, berbagi titik akhir yang sama, disebut <i><a href="/w/index.php?title=Simpul_(geometri)&amp;action=edit&amp;redlink=1" class="new" title="Simpul (geometri) (halaman belum tersedia)">simpul</a></i> dari sudut.<sup id="cite_ref-38" class="reference"><a href="#cite_note-38"><span class="cite-bracket">&#91;</span>38<span class="cite-bracket">&#93;</span></a></sup> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Berkas:Angle_obtuse_acute_straight.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/ee/Angle_obtuse_acute_straight.svg/220px-Angle_obtuse_acute_straight.svg.png" decoding="async" width="220" height="122" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/ee/Angle_obtuse_acute_straight.svg/330px-Angle_obtuse_acute_straight.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/ee/Angle_obtuse_acute_straight.svg/440px-Angle_obtuse_acute_straight.svg.png 2x" data-file-width="800" data-file-height="445" /></a><figcaption>Sudut tajam (a), tumpul (b), dan lurus (c). Sudut lancip dan tumpul juga dikenal sebagai sudut miring.</figcaption></figure> <p>Dalam <a href="/wiki/Geometri_Euklides" title="Geometri Euklides">geometri Euklides</a>, sudut digunakan untuk mempelajari <a href="/wiki/Poligon" title="Poligon">poligon</a> dan <a href="/wiki/Segitiga" title="Segitiga">segitiga</a>, serta membentuk sebuah objek belajar dengan sendirinya.<sup id="cite_ref-EuclidAll_29-4" class="reference"><a href="#cite_note-EuclidAll-29"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup> Studi tentang sudut segitiga atau <a href="/wiki/Sudut_dalam_dan_luar" title="Sudut dalam dan luar">sudut dalam</a> sebuah <a href="/wiki/Lingkaran_satuan" title="Lingkaran satuan">lingkaran satuan</a> membentuk dasar dari <a href="/wiki/Trigonometri" title="Trigonometri">trigonometri</a>.<sup id="cite_ref-39" class="reference"><a href="#cite_note-39"><span class="cite-bracket">&#91;</span>39<span class="cite-bracket">&#93;</span></a></sup> </p><p>Dalam <a href="/wiki/Geometri_diferensial" title="Geometri diferensial">geometri diferensial</a> dan <a href="/wiki/Kalkulus" title="Kalkulus">kalkulus</a>, sudut antara <a href="/w/index.php?title=Kurva_bidang&amp;action=edit&amp;redlink=1" class="new" title="Kurva bidang (halaman belum tersedia)">kurva bidang</a> atau <a href="/w/index.php?title=Kurva_ruang&amp;action=edit&amp;redlink=1" class="new" title="Kurva ruang (halaman belum tersedia)">kurva ruang</a> atau <a href="/w/index.php?title=Permukaan_(geometri)&amp;action=edit&amp;redlink=1" class="new" title="Permukaan (geometri) (halaman belum tersedia)">permukaan</a> dapat dihitung menggunakan <a href="/w/index.php?title=Turunan_(kalkulus)&amp;action=edit&amp;redlink=1" class="new" title="Turunan (kalkulus) (halaman belum tersedia)">turunan</a>.<sup id="cite_ref-Stewart_40-0" class="reference"><a href="#cite_note-Stewart-40"><span class="cite-bracket">&#91;</span>40<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-41" class="reference"><a href="#cite_note-41"><span class="cite-bracket">&#91;</span>41<span class="cite-bracket">&#93;</span></a></sup>--&gt; </p> <div class="mw-heading mw-heading3"><h3 id="Kurva">Kurva</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometri&amp;veaction=edit&amp;section=21" title="Sunting bagian: Kurva" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometri&amp;action=edit&amp;section=21" title="Sunting kode sumber bagian: Kurva"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r18844875"><div role="note" class="hatnote navigation-not-searchable">Artikel utama: <a href="/w/index.php?title=Kurva_(geometri)&amp;action=edit&amp;redlink=1" class="new" title="Kurva (geometri) (halaman belum tersedia)">Kurva (geometri)</a></div> <p><a href="/w/index.php?title=Kurva_(geometri)&amp;action=edit&amp;redlink=1" class="new" title="Kurva (geometri) (halaman belum tersedia)">Kurva</a> adalah objek 1 dimensi yang bisa lurus (seperti garis) atau tidak; kurva dalam ruang 2 dimensi disebut <a href="/w/index.php?title=Kurva_bidang&amp;action=edit&amp;redlink=1" class="new" title="Kurva bidang (halaman belum tersedia)">kurva bidang</a> dan kurva dalam ruang 3 dimensi disebut.<sup id="cite_ref-42" class="reference"><a href="#cite_note-42"><span class="cite-bracket">&#91;</span>42<span class="cite-bracket">&#93;</span></a></sup> </p><p>Dalam topologi, kurva didefinisikan dari fungsi pada interval bilangan real ke ruang lain.<sup id="cite_ref-Munkres_35-1" class="reference"><a href="#cite_note-Munkres-35"><span class="cite-bracket">&#91;</span>35<span class="cite-bracket">&#93;</span></a></sup> Dalam geometri diferensial, definisi yang sama digunakan, tetapi fungsi penentu harus dapat terdiferensiasi <sup id="cite_ref-Carmo_43-0" class="reference"><a href="#cite_note-Carmo-43"><span class="cite-bracket">&#91;</span>43<span class="cite-bracket">&#93;</span></a></sup> Studi geometri aljabar <a href="/w/index.php?title=Kurva_aljabar&amp;action=edit&amp;redlink=1" class="new" title="Kurva aljabar (halaman belum tersedia)">kurva aljabar</a>, yang didefinisikan sebagai <a href="/wiki/Varietas_aljabar" title="Varietas aljabar">varietas aljabar</a> dari <a href="/w/index.php?title=Dimensi_Variasi_Aljabar&amp;action=edit&amp;redlink=1" class="new" title="Dimensi Variasi Aljabar (halaman belum tersedia)">dimensi</a> satu.<sup id="cite_ref-mumford_44-0" class="reference"><a href="#cite_note-mumford-44"><span class="cite-bracket">&#91;</span>44<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Permukaan">Permukaan</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometri&amp;veaction=edit&amp;section=22" title="Sunting bagian: Permukaan" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometri&amp;action=edit&amp;section=22" title="Sunting kode sumber bagian: Permukaan"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r18844875"><div role="note" class="hatnote navigation-not-searchable">Artikel utama: <a href="/w/index.php?title=Permukaan_(matematika)&amp;action=edit&amp;redlink=1" class="new" title="Permukaan (matematika) (halaman belum tersedia)">Permukaan (matematika)</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Berkas:Sphere_wireframe.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/08/Sphere_wireframe.svg/190px-Sphere_wireframe.svg.png" decoding="async" width="190" height="190" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/08/Sphere_wireframe.svg/285px-Sphere_wireframe.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/08/Sphere_wireframe.svg/380px-Sphere_wireframe.svg.png 2x" data-file-width="400" data-file-height="400" /></a><figcaption>Bola adalah permukaan yang dapat didefinisikan secara parametrik (dengan <span class="nowrap"><i>x</i> = <i>r</i> sin <i>θ</i> cos <i>φ</i>,</span> <span class="nowrap"><i>y</i> = <i>r</i> sin <i>θ</i> sin <i>φ</i>,</span> <span class="nowrap"><i>z</i> = <i>r</i> cos <i>θ</i>)</span> atau secara implisit (by <span class="nowrap"><i>x</i><sup>2</sup> + <i>y</i><sup>2</sup> + <i>z</i><sup>2</sup> − <i>r</i><sup>2</sup> = 0</span>.)</figcaption></figure> <p><a href="/w/index.php?title=Permukaan_(matematika)&amp;action=edit&amp;redlink=1" class="new" title="Permukaan (matematika) (halaman belum tersedia)">Permukaan</a> adalah objek dua dimensi, seperti bola atau parabola.<sup id="cite_ref-45" class="reference"><a href="#cite_note-45"><span class="cite-bracket">&#91;</span>45<span class="cite-bracket">&#93;</span></a></sup> Dalam <a href="/wiki/Geometri_diferensial" title="Geometri diferensial">geometri diferensial</a><sup id="cite_ref-Carmo_43-1" class="reference"><a href="#cite_note-Carmo-43"><span class="cite-bracket">&#91;</span>43<span class="cite-bracket">&#93;</span></a></sup> dan <a href="/wiki/Topologi" title="Topologi">topologi</a>,<sup id="cite_ref-Munkres_35-2" class="reference"><a href="#cite_note-Munkres-35"><span class="cite-bracket">&#91;</span>35<span class="cite-bracket">&#93;</span></a></sup> permukaan dijelaskan oleh 'tambalan' dua dimensi (atau <a href="/w/index.php?title=Lingkungan_(topologi)&amp;action=edit&amp;redlink=1" class="new" title="Lingkungan (topologi) (halaman belum tersedia)">lingkungan</a>) yang dirangkai oleh <a href="/w/index.php?title=Diffeomorphism&amp;action=edit&amp;redlink=1" class="new" title="Diffeomorphism (halaman belum tersedia)">diffeomorphism</a> atau <a href="/w/index.php?title=Homeomorphism&amp;action=edit&amp;redlink=1" class="new" title="Homeomorphism (halaman belum tersedia)">homeomorphism</a>, masing-masing. Dalam geometri aljabar, permukaan dijelaskan oleh <a href="/w/index.php?title=Persamaan_polinomial&amp;action=edit&amp;redlink=1" class="new" title="Persamaan polinomial (halaman belum tersedia)">persamaan polinomial</a>.<sup id="cite_ref-mumford_44-1" class="reference"><a href="#cite_note-mumford-44"><span class="cite-bracket">&#91;</span>44<span class="cite-bracket">&#93;</span></a></sup>--&gt; </p> <div class="mw-heading mw-heading3"><h3 id="Manifold">Manifold</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometri&amp;veaction=edit&amp;section=23" title="Sunting bagian: Manifold" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometri&amp;action=edit&amp;section=23" title="Sunting kode sumber bagian: Manifold"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r18844875"><div role="note" class="hatnote navigation-not-searchable">Artikel utama: <a href="/wiki/Manifold" class="mw-redirect" title="Manifold">Manifold</a></div> <p><a href="/wiki/Manifold" class="mw-redirect" title="Manifold">manifold</a> adalah generalisasi dari konsep kurva dan permukaan. Dalam <a href="/wiki/Topologi" title="Topologi">topologi</a>, monifold adalah <a href="/wiki/Ruang_topologi" class="mw-redirect" title="Ruang topologi">ruang topologi</a> di mana setiap titik memiliki <a href="/w/index.php?title=Lingkungan_(topologi)&amp;action=edit&amp;redlink=1" class="new" title="Lingkungan (topologi) (halaman belum tersedia)">lingkungan</a> yaitu <a href="/wiki/Homeomorfisme" title="Homeomorfisme">homeomorfik</a> ke ruang Euklides.<sup id="cite_ref-Munkres_35-3" class="reference"><a href="#cite_note-Munkres-35"><span class="cite-bracket">&#91;</span>35<span class="cite-bracket">&#93;</span></a></sup> Dalam <a href="/wiki/Geometri_diferensial" title="Geometri diferensial">geometri diferensial</a>, <a href="/w/index.php?title=Monifold_terdiferensiasi&amp;action=edit&amp;redlink=1" class="new" title="Monifold terdiferensiasi (halaman belum tersedia)">monifold terdiferensiasi</a> adalah ruang di mana setiap tetangga <a href="/w/index.php?title=Diffeomorphism&amp;action=edit&amp;redlink=1" class="new" title="Diffeomorphism (halaman belum tersedia)">diffeomorphic</a> terhadap dimensi pada ruang Euklides.<sup id="cite_ref-Carmo_43-2" class="reference"><a href="#cite_note-Carmo-43"><span class="cite-bracket">&#91;</span>43<span class="cite-bracket">&#93;</span></a></sup> </p><p>Manifold digunakan secara luas dalam fisika, termasuk dalam <a href="/wiki/Relativitas_umum" title="Relativitas umum">relativitas umum</a> dan <a href="/w/index.php?title=Teori_string&amp;action=edit&amp;redlink=1" class="new" title="Teori string (halaman belum tersedia)">teori string</a>.<sup id="cite_ref-46" class="reference"><a href="#cite_note-46"><span class="cite-bracket">&#91;</span>46<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Panjang,_luas,_dan_volume"><span id="Panjang.2C_luas.2C_dan_volume"></span>Panjang, luas, dan volume</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometri&amp;veaction=edit&amp;section=24" title="Sunting bagian: Panjang, luas, dan volume" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometri&amp;action=edit&amp;section=24" title="Sunting kode sumber bagian: Panjang, luas, dan volume"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r18844875"><div role="note" class="hatnote navigation-not-searchable">Artikel utama: <a href="/wiki/Panjang" title="Panjang">Panjang</a>, <a href="/wiki/Luas" title="Luas">Luas</a>, dan <a href="/wiki/Volume" title="Volume">Volume</a></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r18844875"><div role="note" class="hatnote navigation-not-searchable">Lihat pula: <a href="/wiki/Luas#Daftar_rumus" title="Luas">Luas §&#160;Daftar rumus</a>, dan <a href="/wiki/Volume#Rumus_volume" title="Volume">Volume §&#160;Rumus volume</a></div> <p><a href="/wiki/Panjang" title="Panjang">Panjang</a>, <a href="/wiki/Luas" title="Luas">luas</a>, dan <a href="/wiki/Volume" title="Volume">volume</a> mendeskripsikan ukuran atau luas suatu objek masing-masing dalam satu dimensi, dua dimensi, dan tiga dimensi.<sup id="cite_ref-Treese2018_47-0" class="reference"><a href="#cite_note-Treese2018-47"><span class="cite-bracket">&#91;</span>47<span class="cite-bracket">&#93;</span></a></sup> </p><p>Dalam <a href="/wiki/Geometri_Euklides" title="Geometri Euklides">geometri Euklides</a> dan <a href="/wiki/Geometri_analitik" class="mw-redirect" title="Geometri analitik">geometri analitik</a>, panjang <a href="/wiki/Ruas_garis" title="Ruas garis">ruas garis</a> sering kali dapat dihitung dengan <a href="/wiki/Teorema_Pythagoras" title="Teorema Pythagoras">Teorema Pythagoras</a>.<sup id="cite_ref-Cannon2017_48-0" class="reference"><a href="#cite_note-Cannon2017-48"><span class="cite-bracket">&#91;</span>48<span class="cite-bracket">&#93;</span></a></sup> </p><p>Luas dan volume dapat didefinisikan sebagai besaran fundamental yang terpisah dari panjang, atau dapat dijelaskan dan dihitung dalam istilah panjang dalam bidang atau ruang 3 dimensi.<sup id="cite_ref-Treese2018_47-1" class="reference"><a href="#cite_note-Treese2018-47"><span class="cite-bracket">&#91;</span>47<span class="cite-bracket">&#93;</span></a></sup> Matematikawan telah menemukan banyak <a href="/wiki/Luas#Daftar_rumus" title="Luas">rumus untuk luas</a> dan <a href="/wiki/Volume#Rumus_volume" title="Volume">rumus untuk volume</a> dari berbagai objek geometri. Dalam <a href="/wiki/Kalkulus" title="Kalkulus">kalkulus</a>, luas dan volume dapat didefinisikan dalam <a href="/wiki/Integral" title="Integral">integral</a> s, seperti <a href="/wiki/Integral_Riemann" title="Integral Riemann">integral Riemann</a><sup id="cite_ref-Strang1991_49-0" class="reference"><a href="#cite_note-Strang1991-49"><span class="cite-bracket">&#91;</span>49<span class="cite-bracket">&#93;</span></a></sup> atau <a href="/wiki/Integral_Lebesgue" title="Integral Lebesgue">Integral Lebesgue</a>.<sup id="cite_ref-Bear2002_50-0" class="reference"><a href="#cite_note-Bear2002-50"><span class="cite-bracket">&#91;</span>50<span class="cite-bracket">&#93;</span></a></sup>--&gt; </p> <div class="mw-heading mw-heading4"><h4 id="Metrik_dan_ukuran">Metrik dan ukuran</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometri&amp;veaction=edit&amp;section=25" title="Sunting bagian: Metrik dan ukuran" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometri&amp;action=edit&amp;section=25" title="Sunting kode sumber bagian: Metrik dan ukuran"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r18844875"><div role="note" class="hatnote navigation-not-searchable">Artikel utama: <a href="/wiki/Metrik_(matematika)" class="mw-redirect" title="Metrik (matematika)">Metrik (matematika)</a> dan <a href="/w/index.php?title=Ukur_(matematika)&amp;action=edit&amp;redlink=1" class="new" title="Ukur (matematika) (halaman belum tersedia)">Ukur (matematika)</a></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/Berkas:Chinese_pythagoras.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c3/Chinese_pythagoras.jpg/220px-Chinese_pythagoras.jpg" decoding="async" width="220" height="120" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c3/Chinese_pythagoras.jpg/330px-Chinese_pythagoras.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c3/Chinese_pythagoras.jpg/440px-Chinese_pythagoras.jpg 2x" data-file-width="871" data-file-height="475" /></a><figcaption>Pemeriksaan visual <a href="/wiki/Teorema_Pythagoras" title="Teorema Pythagoras">Teorema Pythagoras</a> untuk (3, 4, 5) <a href="/wiki/Segitiga" title="Segitiga">segitiga</a> seperti pada <a href="/wiki/Zhoubi_Suanjing" title="Zhoubi Suanjing">Zhoubi Suanjing</a> 500–200&#160;SM. Teorema Pythagoras adalah konsekuensi dari <a href="/w/index.php?title=Metrik_Euklides&amp;action=edit&amp;redlink=1" class="new" title="Metrik Euklides (halaman belum tersedia)">metrik Euklides</a>.</figcaption></figure> <p>Konsep panjang atau jarak dapat digeneralisasikan, yang mengarah ke gagasan <a href="/wiki/Ruang_metrik" title="Ruang metrik">metrik</a>.<sup id="cite_ref-51" class="reference"><a href="#cite_note-51"><span class="cite-bracket">&#91;</span>51<span class="cite-bracket">&#93;</span></a></sup> Misalnya, <a href="/w/index.php?title=Metrik_Euclidean&amp;action=edit&amp;redlink=1" class="new" title="Metrik Euclidean (halaman belum tersedia)">metrik Euclidean</a> mengukur jarak antar titik di <a href="/w/index.php?title=Bidang_Euclidean&amp;action=edit&amp;redlink=1" class="new" title="Bidang Euclidean (halaman belum tersedia)">bidang Euclidean</a>, sedangkan <a href="/w/index.php?title=Metrik_hiperbolik&amp;action=edit&amp;redlink=1" class="new" title="Metrik hiperbolik (halaman belum tersedia)">metrik hiperbolik</a> mengukur jarak di <a href="/w/index.php?title=Bidang_hiperbolik&amp;action=edit&amp;redlink=1" class="new" title="Bidang hiperbolik (halaman belum tersedia)">bidang hiperbolik</a>. Contoh penting lainnya dari metrik termasuk <a href="/w/index.php?title=Metrik_Lorentz&amp;action=edit&amp;redlink=1" class="new" title="Metrik Lorentz (halaman belum tersedia)">metrik Lorentz</a> dari <a href="/wiki/Relativitas_khusus" title="Relativitas khusus">relativitas khusus</a> dan semi <a href="/w/index.php?title=Metrik_Riemannian&amp;action=edit&amp;redlink=1" class="new" title="Metrik Riemannian (halaman belum tersedia)">metrik Riemannian</a> dari <a href="/wiki/Relativitas_umum" title="Relativitas umum">relativitas umum</a>.<sup id="cite_ref-52" class="reference"><a href="#cite_note-52"><span class="cite-bracket">&#91;</span>52<span class="cite-bracket">&#93;</span></a></sup> </p><p><sup id="cite_ref-Tao2011_53-0" class="reference"><a href="#cite_note-Tao2011-53"><span class="cite-bracket">&#91;</span>53<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Kekongruenan_dan_keserupaan">Kekongruenan dan keserupaan</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometri&amp;veaction=edit&amp;section=26" title="Sunting bagian: Kekongruenan dan keserupaan" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometri&amp;action=edit&amp;section=26" title="Sunting kode sumber bagian: Kekongruenan dan keserupaan"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r18844875"><div role="note" class="hatnote navigation-not-searchable">Artikel utama: <a href="/w/index.php?title=Kesesuaian_(geometri)&amp;action=edit&amp;redlink=1" class="new" title="Kesesuaian (geometri) (halaman belum tersedia)">Kesesuaian (geometri)</a> dan <a href="/w/index.php?title=Kesamaan_(geometri)&amp;action=edit&amp;redlink=1" class="new" title="Kesamaan (geometri) (halaman belum tersedia)">Kesamaan (geometri)</a></div> <p><a href="/w/index.php?title=Kesamaan_(geometri)&amp;action=edit&amp;redlink=1" class="new" title="Kesamaan (geometri) (halaman belum tersedia)">Kesesuaian</a> dan <a href="/w/index.php?title=Kesamaan_(geometri)&amp;action=edit&amp;redlink=1" class="new" title="Kesamaan (geometri) (halaman belum tersedia)">kesamaan</a> adalah konsep yang mendeskripsikan jika dua bentuk memiliki karakteristik yang serupa.<sup id="cite_ref-Libeskind2008_54-0" class="reference"><a href="#cite_note-Libeskind2008-54"><span class="cite-bracket">&#91;</span>54<span class="cite-bracket">&#93;</span></a></sup> Dalam geometri Euclidean, kesamaan digunakan untuk mendeskripsikan objek yang memiliki bentuk yang sama, sedangkan congruence digunakan untuk mendeskripsikan objek yang memiliki ukuran dan bentuk yang sama.<sup id="cite_ref-Freitag2013_55-0" class="reference"><a href="#cite_note-Freitag2013-55"><span class="cite-bracket">&#91;</span>55<span class="cite-bracket">&#93;</span></a></sup>&lt;!-;<a href="/w/index.php?title=Hilbert&amp;action=edit&amp;redlink=1" class="new" title="Hilbert (halaman belum tersedia)">Hilbert</a>, in his work on creating a more rigorous foundation for geometry, treated congruence as an undefined term whose properties are defined by <a href="/w/index.php?title=Axiom&amp;action=edit&amp;redlink=1" class="new" title="Axiom (halaman belum tersedia)">axioms</a>.--&gt; </p><p>Kesamaan dan kesamaan digeneralisasikan dalam <a href="/wiki/Geometri_transformasi" title="Geometri transformasi">geometri transformasi</a>, yang mempelajari properti objek geometris yang dipertahankan oleh berbagai jenis transformasi.<sup id="cite_ref-Martin2012_56-0" class="reference"><a href="#cite_note-Martin2012-56"><span class="cite-bracket">&#91;</span>56<span class="cite-bracket">&#93;</span></a></sup>--&gt; </p> <div class="mw-heading mw-heading3"><h3 id="Lukisan_dengan_jangka_dan_mistar">Lukisan dengan jangka dan mistar</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometri&amp;veaction=edit&amp;section=27" title="Sunting bagian: Lukisan dengan jangka dan mistar" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometri&amp;action=edit&amp;section=27" title="Sunting kode sumber bagian: Lukisan dengan jangka dan mistar"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r18844875"><div role="note" class="hatnote navigation-not-searchable">Artikel utama: <a href="/wiki/Lukisan_jangka_dan_mistar" title="Lukisan jangka dan mistar">Lukisan jangka dan mistar</a></div> <p>Geometer klasik memberikan perhatian khusus untuk membangun objek geometris yang telah dijelaskan dengan cara lain. Secara klasik, satu-satunya instrumen yang diperbolehkan dalam konstruksi geometris adalah <a href="/wiki/Jangka" title="Jangka">kompas</a> dan <a href="/wiki/Penggaris" title="Penggaris">penggaris lurus</a>. Selain itu, setiap konstruksi harus diselesaikan dalam jumlah langkah yang terbatas. Namun, beberapa masalah ternyata sulit atau tidak mungkin diselesaikan dengan cara ini sendiri, dan konstruksi cerdik menggunakan parabola dan kurva lainnya, serta perangkat mekanis. </p> <div class="mw-heading mw-heading3"><h3 id="Dimensi">Dimensi</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometri&amp;veaction=edit&amp;section=28" title="Sunting bagian: Dimensi" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometri&amp;action=edit&amp;section=28" title="Sunting kode sumber bagian: Dimensi"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r18844875"><div role="note" class="hatnote navigation-not-searchable">Artikel utama: <a href="/wiki/Dimensi" title="Dimensi">Dimensi</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Berkas:Von_Koch_curve.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fd/Von_Koch_curve.gif/220px-Von_Koch_curve.gif" decoding="async" width="220" height="229" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/f/fd/Von_Koch_curve.gif 1.5x" data-file-width="300" data-file-height="312" /></a><figcaption><a href="/w/index.php?title=Kepingan_salju_Koch&amp;action=edit&amp;redlink=1" class="new" title="Kepingan salju Koch (halaman belum tersedia)">Kepingan salju Koch</a>, dengan <a href="/wiki/Dimensi_fraktal" title="Dimensi fraktal">dimensi fraktal</a>=log4/log3 dan <a href="/w/index.php?title=Dimensi_topologi&amp;action=edit&amp;redlink=1" class="new" title="Dimensi topologi (halaman belum tersedia)">dimensi topologi</a>=1</figcaption></figure> <p>Dimana geometri tradisional mengizinkan dimensi 1 (a <a href="/wiki/Garis_(geometri)" title="Garis (geometri)">garis</a>), 2 (a <a href="/wiki/Bidang_(matematika)" class="mw-redirect" title="Bidang (matematika)">bidang</a>) dan 3 (dunia ambien kita dipahami sebagai <a href="/w/index.php?title=Ruang_tiga_dimensi)&amp;action=edit&amp;redlink=1" class="new" title="Ruang tiga dimensi) (halaman belum tersedia)">ruang tiga dimensi)</a>), matematikawan dan fisikawan telah menggunakan <a href="/w/index.php?title=Dimensi_yang_lebih_tinggi&amp;action=edit&amp;redlink=1" class="new" title="Dimensi yang lebih tinggi (halaman belum tersedia)">dimensi yang lebih tinggi</a> selama hampir dua abad.<sup id="cite_ref-Blacklock2018_57-0" class="reference"><a href="#cite_note-Blacklock2018-57"><span class="cite-bracket">&#91;</span>57<span class="cite-bracket">&#93;</span></a></sup> Salah satu contoh penggunaan matematika untuk dimensi yang lebih tinggi adalah <a href="/w/index.php?title=Ruang_konfigurasi_(fisika)&amp;action=edit&amp;redlink=1" class="new" title="Ruang konfigurasi (fisika) (halaman belum tersedia)">ruang konfigurasi</a> dari sistem fisik, yang memiliki dimensi yang sama dengan <a href="/wiki/Derajat_bebas" class="mw-redirect mw-disambig" title="Derajat bebas">derajat bebas</a>. Misalnya, konfigurasi sekrup dapat digambarkan dengan lima koordinat.<sup id="cite_ref-Joly1895_58-0" class="reference"><a href="#cite_note-Joly1895-58"><span class="cite-bracket">&#91;</span>58<span class="cite-bracket">&#93;</span></a></sup> </p><p>Dalam <a href="/wiki/Topologi_umum" title="Topologi umum">topologi umum</a>, konsep dimensi telah diperpanjang dari <a href="/wiki/Bilangan_asli" title="Bilangan asli">bilangan asli</a>, menjadi dimensi tak hingga (<a href="/wiki/Ruang_Hilbert" title="Ruang Hilbert">ruang Hilbert</a> s, misalnya) dan positif <a href="/wiki/Bilangan_real" class="mw-redirect" title="Bilangan real">bilangan real</a> (dalam <a href="/wiki/Geometri_fraktal" class="mw-redirect" title="Geometri fraktal">geometri fraktal</a>).<sup id="cite_ref-Temam2013_59-0" class="reference"><a href="#cite_note-Temam2013-59"><span class="cite-bracket">&#91;</span>59<span class="cite-bracket">&#93;</span></a></sup> Dalam <a href="/wiki/Geometri_aljabar" title="Geometri aljabar">geometri aljabar</a>, <a href="/w/index.php?title=Dimensi_variasi_aljabar&amp;action=edit&amp;redlink=1" class="new" title="Dimensi variasi aljabar (halaman belum tersedia)">dimensi variasi aljabar</a> telah menerima sejumlah definisi yang tampaknya berbeda, yang semuanya setara dalam kasus yang paling umum.<sup id="cite_ref-JacobLam1994_60-0" class="reference"><a href="#cite_note-JacobLam1994-60"><span class="cite-bracket">&#91;</span>60<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Simetri">Simetri</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometri&amp;veaction=edit&amp;section=29" title="Sunting bagian: Simetri" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometri&amp;action=edit&amp;section=29" title="Sunting kode sumber bagian: Simetri"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r18844875"><div role="note" class="hatnote navigation-not-searchable">Artikel utama: <a href="/wiki/Simetri" title="Simetri">Simetri</a></div> <p><br /> </p> <div class="mw-heading mw-heading2"><h2 id="Geometri_kompentasi">Geometri kompentasi</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometri&amp;veaction=edit&amp;section=30" title="Sunting bagian: Geometri kompentasi" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometri&amp;action=edit&amp;section=30" title="Sunting kode sumber bagian: Geometri kompentasi"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Geometri_Euklides">Geometri Euklides</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometri&amp;veaction=edit&amp;section=31" title="Sunting bagian: Geometri Euklides" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometri&amp;action=edit&amp;section=31" title="Sunting kode sumber bagian: Geometri Euklides"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r18844875"><div role="note" class="hatnote navigation-not-searchable">Artikel utama: <a href="/wiki/Geometri_Euklides" title="Geometri Euklides">Geometri Euklides</a></div> <p><a href="/wiki/Geometri_Euklides" title="Geometri Euklides">Geometri Euklides</a> adalah geometri dalam pengertian klasiknya.<sup id="cite_ref-ButtsBrown2012_61-0" class="reference"><a href="#cite_note-ButtsBrown2012-61"><span class="cite-bracket">&#91;</span>61<span class="cite-bracket">&#93;</span></a></sup> Karena memodelkan ruang dunia fisik, ia menggunakan di banyak bidang ilmiah, seperti <a href="/wiki/Mekanika" title="Mekanika">mekanika</a>, <a href="/wiki/Astronomi" title="Astronomi">astronomi</a>, <a href="/wiki/Kristalografi" title="Kristalografi">kristalografi</a>,<sup id="cite_ref-62" class="reference"><a href="#cite_note-62"><span class="cite-bracket">&#91;</span>62<span class="cite-bracket">&#93;</span></a></sup> dan banyak bidang teknis, seperti <a href="/wiki/Teknik" class="mw-redirect" title="Teknik">teknik</a>,<sup id="cite_ref-Abbot2013_63-0" class="reference"><a href="#cite_note-Abbot2013-63"><span class="cite-bracket">&#91;</span>63<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Arsitektur" title="Arsitektur">Arsitektur</a>,<sup id="cite_ref-HerseyHersey2001_64-0" class="reference"><a href="#cite_note-HerseyHersey2001-64"><span class="cite-bracket">&#91;</span>64<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Geodesi" title="Geodesi">geodesi</a>,<sup id="cite_ref-VanícekKrakiwsky2015_65-0" class="reference"><a href="#cite_note-VanícekKrakiwsky2015-65"><span class="cite-bracket">&#91;</span>65<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Aerodinamika" title="Aerodinamika">aerodinamika</a>,<sup id="cite_ref-CummingsMorton2015_66-0" class="reference"><a href="#cite_note-CummingsMorton2015-66"><span class="cite-bracket">&#91;</span>66<span class="cite-bracket">&#93;</span></a></sup> and <a href="/wiki/Navigasi" title="Navigasi">navigasi</a>.<sup id="cite_ref-Williams1998_67-0" class="reference"><a href="#cite_note-Williams1998-67"><span class="cite-bracket">&#91;</span>67<span class="cite-bracket">&#93;</span></a></sup> Kurikulum pendidikan wajib dari sebagian besar negara mencakup studi tentang konsep Euklides seperti <a href="/wiki/Titik_(geometri)" title="Titik (geometri)">titik</a>, <a href="/wiki/Garis_(geometri)" title="Garis (geometri)">garis</a>, <a href="/wiki/Bidang_(matematika)" class="mw-redirect" title="Bidang (matematika)">bidang</a>, <a href="/wiki/Sudut" class="mw-redirect mw-disambig" title="Sudut">sudut</a>, <a href="/wiki/Segitiga" title="Segitiga">segitiga</a>, <a href="/w/index.php?title=Kesesuaian_(geometri)&amp;action=edit&amp;redlink=1" class="new" title="Kesesuaian (geometri) (halaman belum tersedia)">kongruensi</a>, <a href="/w/index.php?title=Kesamaan_(geometri)&amp;action=edit&amp;redlink=1" class="new" title="Kesamaan (geometri) (halaman belum tersedia)">kesamaan</a>.<sup id="cite_ref-Schmidt,_W._2002_21-1" class="reference"><a href="#cite_note-Schmidt,_W._2002-21"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Geometri_diferensial">Geometri diferensial</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometri&amp;veaction=edit&amp;section=32" title="Sunting bagian: Geometri diferensial" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometri&amp;action=edit&amp;section=32" title="Sunting kode sumber bagian: Geometri diferensial"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/Berkas:Hyperbolic_triangle.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/89/Hyperbolic_triangle.svg/220px-Hyperbolic_triangle.svg.png" decoding="async" width="220" height="152" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/89/Hyperbolic_triangle.svg/330px-Hyperbolic_triangle.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/89/Hyperbolic_triangle.svg/440px-Hyperbolic_triangle.svg.png 2x" data-file-width="809" data-file-height="559" /></a><figcaption><a href="/wiki/Geometri_diferensial" title="Geometri diferensial">Geometri diferensial</a> menggunakan alat dari <a href="/wiki/Kalkulus" title="Kalkulus">kalkulus</a> untuk mempelajari masalah yang melibatkan kelengkungan.</figcaption></figure> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r18844875"><div role="note" class="hatnote navigation-not-searchable">Artikel utama: <a href="/wiki/Geometri_diferensial" title="Geometri diferensial">Geometri diferensial</a></div> <p><a href="/w/index.php?title=Geometri_Diferensial&amp;action=edit&amp;redlink=1" class="new" title="Geometri Diferensial (halaman belum tersedia)">Geometri Diferensial</a> menggunakan teknik <a href="/wiki/Kalkulus" title="Kalkulus">kalkulus</a> dan <a href="/wiki/Aljabar_linier" class="mw-redirect" title="Aljabar linier">aljabar linier</a> untuk mempelajari masalah dalam geometri.<sup id="cite_ref-Walschap2015_68-0" class="reference"><a href="#cite_note-Walschap2015-68"><span class="cite-bracket">&#91;</span>68<span class="cite-bracket">&#93;</span></a></sup> Hal tersebut memiliki aplikasi dalam <a href="/wiki/Fisika" title="Fisika">fisika</a>,<sup id="cite_ref-Flanders2012_69-0" class="reference"><a href="#cite_note-Flanders2012-69"><span class="cite-bracket">&#91;</span>69<span class="cite-bracket">&#93;</span></a></sup> <a href="/w/index.php?title=Ekonometrik&amp;action=edit&amp;redlink=1" class="new" title="Ekonometrik (halaman belum tersedia)">ekonometrik</a>,<sup id="cite_ref-MarriottSalmon2000_70-0" class="reference"><a href="#cite_note-MarriottSalmon2000-70"><span class="cite-bracket">&#91;</span>70<span class="cite-bracket">&#93;</span></a></sup> dan <a href="/wiki/Bioinformatika" title="Bioinformatika">bioinformatika</a>,<sup id="cite_ref-HePetoukhov2011_71-0" class="reference"><a href="#cite_note-HePetoukhov2011-71"><span class="cite-bracket">&#91;</span>71<span class="cite-bracket">&#93;</span></a></sup> diantara yang lain. </p><p>Khususnya, geometri diferensial penting bagi <a href="/wiki/Fisika_matematika" class="mw-redirect" title="Fisika matematika">fisika matematika</a> karena postulasi <a href="/wiki/Relativitas_umum" title="Relativitas umum">relativitas umum</a> <a href="/wiki/Albert_Einstein" title="Albert Einstein">Albert Einstein</a> bahwa <a href="/wiki/Alam_semesta" title="Alam semesta">alam semesta</a> adalah <a href="/w/index.php?title=Kelengkungan&amp;action=edit&amp;redlink=1" class="new" title="Kelengkungan (halaman belum tersedia)">lengkung</a>.<sup id="cite_ref-Dirac2016_72-0" class="reference"><a href="#cite_note-Dirac2016-72"><span class="cite-bracket">&#91;</span>72<span class="cite-bracket">&#93;</span></a></sup> Geometri diferensial dapat berupa <i>intrinsik</i> (artinya ruang yang dianggapnya adalah <a href="/w/index.php?title=Lipatan_halus&amp;action=edit&amp;redlink=1" class="new" title="Lipatan halus (halaman belum tersedia)">lipatan halus</a> yang struktur geometrisnya diatur oleh <a href="/w/index.php?title=Metrik_Riemannian&amp;action=edit&amp;redlink=1" class="new" title="Metrik Riemannian (halaman belum tersedia)">metrik Riemannian</a>, yang menentukan bagaimana jarak diukur di dekat setiap titik) atau <i>ekstrinsik</i> (di mana objek yang diteliti adalah bagian dari beberapa ruang Euclide datar ambien).<sup id="cite_ref-AyJost2017_73-0" class="reference"><a href="#cite_note-AyJost2017-73"><span class="cite-bracket">&#91;</span>73<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Geometri_non-Euklides">Geometri non-Euklides</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometri&amp;veaction=edit&amp;section=33" title="Sunting bagian: Geometri non-Euklides" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometri&amp;action=edit&amp;section=33" title="Sunting kode sumber bagian: Geometri non-Euklides"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r18844875"><div role="note" class="hatnote navigation-not-searchable">Artikel utama: <a href="/wiki/Geometri_non-Euklides" title="Geometri non-Euklides">Geometri non-Euklides</a></div> <p>Geometri Euklides bukanlah satu-satunya bentuk geometri historis yang dipelajari. <a href="/wiki/Geometri_bola" title="Geometri bola">Geometri bola</a> telah lama digunakan oleh astronom, astrolog, dan navigator.<sup id="cite_ref-Rosenfeld2012_74-0" class="reference"><a href="#cite_note-Rosenfeld2012-74"><span class="cite-bracket">&#91;</span>74<span class="cite-bracket">&#93;</span></a></sup> </p><p><a href="/wiki/Immanuel_Kant" title="Immanuel Kant">Immanuel Kant</a> berpendapat bahwa hanya ada satu, <i>mutlak</i>, geometri, yang diketahui benar <i>a priori</i> oleh fakultas pikiran batin: Geometri Euklides adalah <a href="/w/index.php?title=Sintetik_a_priori&amp;action=edit&amp;redlink=1" class="new" title="Sintetik a priori (halaman belum tersedia)">sintetik a priori</a>.<sup id="cite_ref-75" class="reference"><a href="#cite_note-75"><span class="cite-bracket">&#91;</span>75<span class="cite-bracket">&#93;</span></a></sup> Pandangan ini pada awalnya agak ditantang oleh para pemikir seperti <a href="/w/index.php?title=Saccheri&amp;action=edit&amp;redlink=1" class="new" title="Saccheri (halaman belum tersedia)">Saccheri</a>, kemudian akhirnya dibatalkan oleh penemuan revolusioner <a href="/wiki/Geometri_non-Euklides" title="Geometri non-Euklides">geometri non-Euklides</a> dalam karya-karya Bolyai, Lobachevsky, dan Gauss (yang tidak pernah menerbitkan teorinya).<sup id="cite_ref-Sommerville1919_76-0" class="reference"><a href="#cite_note-Sommerville1919-76"><span class="cite-bracket">&#91;</span>76<span class="cite-bracket">&#93;</span></a></sup> They demonstrated that ordinary <a href="/w/index.php?title=Euclidean_space&amp;action=edit&amp;redlink=1" class="new" title="Euclidean space (halaman belum tersedia)">Euclidean space</a> is only one possibility for development of geometry. A broad vision of the subject of geometry was then expressed by <a href="/wiki/Riemann" class="mw-disambig" title="Riemann">Riemann</a> in his 1867 inauguration lecture <i>Über die Hypothesen, welche der Geometrie zu Grunde liegen</i> (<i>On the hypotheses on which geometry is based</i>),<sup id="cite_ref-77" class="reference"><a href="#cite_note-77"><span class="cite-bracket">&#91;</span>77<span class="cite-bracket">&#93;</span></a></sup> hanya setelah kematiannya. Ide baru Riemann tentang ruang terbukti penting dalam <a href="/wiki/Teori_relativitas_umum" class="mw-redirect" title="Teori relativitas umum">teori relativitas umum</a> <a href="/wiki/Albert_Einstein" title="Albert Einstein">Albert Einstein</a>. <a href="/wiki/Geometri_Riemannian" class="mw-redirect" title="Geometri Riemannian">Geometri Riemannian</a>, yang mempertimbangkan ruang yang sangat umum di mana pengertian panjang didefinisikan, adalah andalan geometri modern.<sup id="cite_ref-Pesic2007_78-0" class="reference"><a href="#cite_note-Pesic2007-78"><span class="cite-bracket">&#91;</span>78<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Topologi">Topologi</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometri&amp;veaction=edit&amp;section=34" title="Sunting bagian: Topologi" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometri&amp;action=edit&amp;section=34" title="Sunting kode sumber bagian: Topologi"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r18844875"><div role="note" class="hatnote navigation-not-searchable">Artikel utama: <a href="/wiki/Topologi" title="Topologi">Topologi</a></div> <div class="mw-heading mw-heading3"><h3 id="Geometri_kompleks">Geometri kompleks</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometri&amp;veaction=edit&amp;section=35" title="Sunting bagian: Geometri kompleks" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometri&amp;action=edit&amp;section=35" title="Sunting kode sumber bagian: Geometri kompleks"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r18844875"><div role="note" class="hatnote navigation-not-searchable">Artikel utama: <a href="/wiki/Geometri_kompleks" title="Geometri kompleks">Geometri kompleks</a></div> <div class="mw-heading mw-heading3"><h3 id="Geometri_diskrit">Geometri diskrit</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometri&amp;veaction=edit&amp;section=36" title="Sunting bagian: Geometri diskrit" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometri&amp;action=edit&amp;section=36" title="Sunting kode sumber bagian: Geometri diskrit"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r18844875"><div role="note" class="hatnote navigation-not-searchable">Artikel utama: <a href="/wiki/Geometri_diskrit" title="Geometri diskrit">Geometri diskrit</a></div> <div class="mw-heading mw-heading3"><h3 id="Geometri_komputasi">Geometri komputasi</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometri&amp;veaction=edit&amp;section=37" title="Sunting bagian: Geometri komputasi" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometri&amp;action=edit&amp;section=37" title="Sunting kode sumber bagian: Geometri komputasi"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r18844875"><div role="note" class="hatnote navigation-not-searchable">Artikel utama: <a href="/wiki/Geometri_komputasi" title="Geometri komputasi">Geometri komputasi</a></div> <div class="mw-heading mw-heading2"><h2 id="Aplikasi">Aplikasi</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometri&amp;veaction=edit&amp;section=38" title="Sunting bagian: Aplikasi" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometri&amp;action=edit&amp;section=38" title="Sunting kode sumber bagian: Aplikasi"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Geometri telah menemukan aplikasi di banyak bidang, beberapa di antaranya dijelaskan di bawah ini. </p> <div class="mw-heading mw-heading3"><h3 id="Seni">Seni</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometri&amp;veaction=edit&amp;section=39" title="Sunting bagian: Seni" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometri&amp;action=edit&amp;section=39" title="Sunting kode sumber bagian: Seni"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r18844875"><div role="note" class="hatnote navigation-not-searchable">Artikel utama: <a href="/wiki/Matematika_dan_seni" title="Matematika dan seni">Matematika dan seni</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Berkas:Fes_Medersa_Bou_Inania_Mosaique2.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b5/Fes_Medersa_Bou_Inania_Mosaique2.jpg/220px-Fes_Medersa_Bou_Inania_Mosaique2.jpg" decoding="async" width="220" height="293" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b5/Fes_Medersa_Bou_Inania_Mosaique2.jpg/330px-Fes_Medersa_Bou_Inania_Mosaique2.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b5/Fes_Medersa_Bou_Inania_Mosaique2.jpg/440px-Fes_Medersa_Bou_Inania_Mosaique2.jpg 2x" data-file-width="1536" data-file-height="2048" /></a><figcaption>Bou Inania Madrasa, Fes, Maroko, ubin mosaik zellige membentuk tessellations geometris yang rumit</figcaption></figure> <p>Matematika dan seni terkait dalam berbagai cara. Contohnya, teori <a href="/wiki/Perspektif_(grafis)" title="Perspektif (grafis)">perspektif</a> menunjukkan bahwa geometri lebih dari sekadar properti metrik dari sebuah figur.: perspektif adalah asal mula <a href="/wiki/Geometri_proyektif" title="Geometri proyektif">geometri proyektif</a>.<sup id="cite_ref-Richter-Gebert2011_79-0" class="reference"><a href="#cite_note-Richter-Gebert2011-79"><span class="cite-bracket">&#91;</span>79<span class="cite-bracket">&#93;</span></a></sup> </p><p>Seniman telah lama menggunakan konsep <a href="/wiki/Proporsionalitas_(matematika)" class="mw-redirect" title="Proporsionalitas (matematika)">proporsi</a> dalam desain. <a href="/wiki/Vitruvius" title="Vitruvius">Vitruvius</a> mengembangkan teori rumit tentang <i>proporsi ideal</i> untuk sosok manusia.<sup id="cite_ref-Elam2001_80-0" class="reference"><a href="#cite_note-Elam2001-80"><span class="cite-bracket">&#91;</span>80<span class="cite-bracket">&#93;</span></a></sup> Konsep tersebut telah digunakan dan diadaptasi oleh seniman dari <a href="/wiki/Michelangelo" class="mw-redirect" title="Michelangelo">Michelangelo</a> hingga seniman komik modern.<sup id="cite_ref-Guigar2004_81-0" class="reference"><a href="#cite_note-Guigar2004-81"><span class="cite-bracket">&#91;</span>81<span class="cite-bracket">&#93;</span></a></sup> </p><p><a href="/wiki/Rasio_emas" title="Rasio emas">Rasio emas</a> adalah proporsi tertentu yang memiliki peran kontroversial dalam seni. Sering diklaim sebagai rasio panjang yang paling estetis, sering dikatakan sebagai rasio panjang karya seni terkenal, meskipun contoh yang paling dapat diandalkan dan tidak ambigu dibuat dengan sengaja oleh seniman yang mengetahui legenda tersebut.<sup id="cite_ref-Livio2008_82-0" class="reference"><a href="#cite_note-Livio2008-82"><span class="cite-bracket">&#91;</span>82<span class="cite-bracket">&#93;</span></a></sup> </p><p><a href="/w/index.php?title=Ubin_(geometri)&amp;action=edit&amp;redlink=1" class="new" title="Ubin (geometri) (halaman belum tersedia)">Ubin</a>, atau tessellations, telah digunakan dalam seni sepanjang sejarah. <a href="/wiki/Seni_Islam" class="mw-redirect" title="Seni Islam">Seni Islam</a> sering menggunakan tessellation, seperti halnya seni <a href="/w/index.php?title=Escher&amp;action=edit&amp;redlink=1" class="new" title="Escher (halaman belum tersedia)">Escher</a>.<sup id="cite_ref-EmmerSchattschneider2007_83-0" class="reference"><a href="#cite_note-EmmerSchattschneider2007-83"><span class="cite-bracket">&#91;</span>83<span class="cite-bracket">&#93;</span></a></sup> Karya Escher juga memanfaatkan <a href="/wiki/Geometri_hiperbolik" title="Geometri hiperbolik">geometri hiperbolik</a>. </p><p><a href="/wiki/C%C3%A9zanne" class="mw-redirect" title="Cézanne">Cézanne</a> mengajukan teori bahwa semua gambar dapat dibangun dari <a href="/wiki/Bola" title="Bola">bola</a>, <a href="/wiki/Kerucut" title="Kerucut">kerucut</a>, dan <a href="/wiki/Tabung_(geometri)" title="Tabung (geometri)">tabung</a>. Ini masih digunakan dalam teori seni hari ini, meskipun daftar pasti bentuk bervariasi dari penulis ke penulis.<sup id="cite_ref-CapitoloSchwab2004_84-0" class="reference"><a href="#cite_note-CapitoloSchwab2004-84"><span class="cite-bracket">&#91;</span>84<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Gelineau2011_85-0" class="reference"><a href="#cite_note-Gelineau2011-85"><span class="cite-bracket">&#91;</span>85<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Arsitektur">Arsitektur</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometri&amp;veaction=edit&amp;section=40" title="Sunting bagian: Arsitektur" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometri&amp;action=edit&amp;section=40" title="Sunting kode sumber bagian: Arsitektur"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r18844875"><div role="note" class="hatnote navigation-not-searchable">Artikel utama: <a href="/wiki/Matematika_dan_arsitektur" title="Matematika dan arsitektur">Matematika dan arsitektur</a> dan <a href="/w/index.php?title=Geometri_arsitektur&amp;action=edit&amp;redlink=1" class="new" title="Geometri arsitektur (halaman belum tersedia)">Geometri arsitektur</a></div> <p>Geometri memiliki banyak aplikasi dalam arsitektur. Faktanya, telah dikatakan bahwa geometri merupakan inti dari desain arsitektur.<sup id="cite_ref-CeccatoHesselgren2016_86-0" class="reference"><a href="#cite_note-CeccatoHesselgren2016-86"><span class="cite-bracket">&#91;</span>86<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Pottmann2007_87-0" class="reference"><a href="#cite_note-Pottmann2007-87"><span class="cite-bracket">&#91;</span>87<span class="cite-bracket">&#93;</span></a></sup> Aplikasi geometri pada arsitektur mencakup penggunaan <a href="/wiki/Geometri_proyektif" title="Geometri proyektif">geometri proyektif</a> untuk membuat <a href="/wiki/Perspektif_paksa" title="Perspektif paksa">perspektif paksa</a>,<sup id="cite_ref-MoffettFazio2003_88-0" class="reference"><a href="#cite_note-MoffettFazio2003-88"><span class="cite-bracket">&#91;</span>88<span class="cite-bracket">&#93;</span></a></sup> penggunaan <a href="/w/index.php?title=Bagian_berbentuk_kerucut&amp;action=edit&amp;redlink=1" class="new" title="Bagian berbentuk kerucut (halaman belum tersedia)">bagian berbentuk kerucut</a> dalam membangun kubah dan benda serupa,<sup id="cite_ref-HerseyHersey2001_64-1" class="reference"><a href="#cite_note-HerseyHersey2001-64"><span class="cite-bracket">&#91;</span>64<span class="cite-bracket">&#93;</span></a></sup> penggunaan <a href="/w/index.php?title=Tessellations&amp;action=edit&amp;redlink=1" class="new" title="Tessellations (halaman belum tersedia)">tessellations</a>,<sup id="cite_ref-HerseyHersey2001_64-2" class="reference"><a href="#cite_note-HerseyHersey2001-64"><span class="cite-bracket">&#91;</span>64<span class="cite-bracket">&#93;</span></a></sup> dan penggunaan simetri.<sup id="cite_ref-HerseyHersey2001_64-3" class="reference"><a href="#cite_note-HerseyHersey2001-64"><span class="cite-bracket">&#91;</span>64<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Fisika">Fisika</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometri&amp;veaction=edit&amp;section=41" title="Sunting bagian: Fisika" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometri&amp;action=edit&amp;section=41" title="Sunting kode sumber bagian: Fisika"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r18844875"><div role="note" class="hatnote navigation-not-searchable">Artikel utama: <a href="/wiki/Fisika_matematika" class="mw-redirect" title="Fisika matematika">Fisika matematika</a></div> <p>Bidang <a href="/wiki/Astronomi" title="Astronomi">astronomi</a>, terutama yang berkaitan dengan pemetaan posisi <a href="/wiki/Bintang" title="Bintang">bintang</a> dan <a href="/wiki/Planet" title="Planet">planet</a> pada <a href="/wiki/Bola_langit" title="Bola langit">bola langit</a> dan menjelaskan hubungan antara pergerakan benda-benda langit, telah menjadi sumber penting masalah geometris sepanjang sejarah.<sup id="cite_ref-GreenGreen1985_89-0" class="reference"><a href="#cite_note-GreenGreen1985-89"><span class="cite-bracket">&#91;</span>89<span class="cite-bracket">&#93;</span></a></sup> </p><p>Geometri <a href="/wiki/Geometri_Riemannian" class="mw-redirect" title="Geometri Riemannian">geometri Riemannian</a> dan <a href="/w/index.php?title=Pseudo-Riemannian&amp;action=edit&amp;redlink=1" class="new" title="Pseudo-Riemannian (halaman belum tersedia)">pseudo-Riemannian</a> digunakan dalam <a href="/wiki/Relativitas_umum" title="Relativitas umum">relativitas umum</a>.<sup id="cite_ref-Alekseevskiĭ2008_90-0" class="reference"><a href="#cite_note-Alekseevskiĭ2008-90"><span class="cite-bracket">&#91;</span>90<span class="cite-bracket">&#93;</span></a></sup> <a href="/w/index.php?title=Teori_string&amp;action=edit&amp;redlink=1" class="new" title="Teori string (halaman belum tersedia)">Teori string</a> menggunakan beberapa varian geometri,<sup id="cite_ref-YauNadis2010_91-0" class="reference"><a href="#cite_note-YauNadis2010-91"><span class="cite-bracket">&#91;</span>91<span class="cite-bracket">&#93;</span></a></sup> seperti halnya <a href="/wiki/Teori_informasi_kuantum" class="mw-redirect" title="Teori informasi kuantum">teori informasi kuantum</a>.<sup id="cite_ref-92" class="reference"><a href="#cite_note-92"><span class="cite-bracket">&#91;</span>92<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Bidang_matematika_lainnya">Bidang matematika lainnya</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometri&amp;veaction=edit&amp;section=42" title="Sunting bagian: Bidang matematika lainnya" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometri&amp;action=edit&amp;section=42" title="Sunting kode sumber bagian: Bidang matematika lainnya"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/Berkas:Square_root_of_2_triangle.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a6/Square_root_of_2_triangle.svg/220px-Square_root_of_2_triangle.svg.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a6/Square_root_of_2_triangle.svg/330px-Square_root_of_2_triangle.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a6/Square_root_of_2_triangle.svg/440px-Square_root_of_2_triangle.svg.png 2x" data-file-width="500" data-file-height="500" /></a><figcaption>Pythagoras menemukan bahwa sisi-sisi segitiga bisa memiliki panjang <a href="/w/index.php?title=Kesesuaian_(matematika)&amp;action=edit&amp;redlink=1" class="new" title="Kesesuaian (matematika) (halaman belum tersedia)">yang tak dapat dibandingkan</a>.</figcaption></figure> <p><a href="/wiki/Kalkulus" title="Kalkulus">Kalkulus</a> sangat dipengaruhi oleh geometri.<sup id="cite_ref-Boyer2012_93-0" class="reference"><a href="#cite_note-Boyer2012-93"><span class="cite-bracket">&#91;</span>93<span class="cite-bracket">&#93;</span></a></sup> Misalnya, pengenalan <a href="/wiki/Koordinat" class="mw-redirect" title="Koordinat">koordinat</a> oleh <a href="/wiki/Ren%C3%A9_Descartes" title="René Descartes">René Descartes</a> dan perkembangan bersamaan <a href="/wiki/Aljabar" title="Aljabar">aljabar</a> menandai tahapan baru untuk geometri, karena figur geometris seperti <a href="/w/index.php?title=Kurva_bidang&amp;action=edit&amp;redlink=1" class="new" title="Kurva bidang (halaman belum tersedia)">kurva bidang</a> dari sekarang dapat direpresentasikan <a href="/wiki/Geometri_analitik" class="mw-redirect" title="Geometri analitik">secara analitis</a> dalam bentuk fungsi dan persamaan. Ini memainkan peran kunci dalam munculnya <a href="/w/index.php?title=Kalkulus_sangat_kecil&amp;action=edit&amp;redlink=1" class="new" title="Kalkulus sangat kecil (halaman belum tersedia)">kalkulus sangat kecil</a> pada abad ke-17. Geometri analitik terus menjadi andalan dalam kurikulum pra-kalkulus dan kalkulus.<sup id="cite_ref-FlandersPrice2014_94-0" class="reference"><a href="#cite_note-FlandersPrice2014-94"><span class="cite-bracket">&#91;</span>94<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-RogawskiAdams2015_95-0" class="reference"><a href="#cite_note-RogawskiAdams2015-95"><span class="cite-bracket">&#91;</span>95<span class="cite-bracket">&#93;</span></a></sup> </p><p>Area aplikasi penting lainnya adalah <a href="/wiki/Teori_bilangan" title="Teori bilangan">teori bilangan</a>.<sup id="cite_ref-Lozano-Robledo2019_96-0" class="reference"><a href="#cite_note-Lozano-Robledo2019-96"><span class="cite-bracket">&#91;</span>96<span class="cite-bracket">&#93;</span></a></sup> Di <a href="/wiki/Yunani_kuno" class="mw-redirect" title="Yunani kuno">Yunani kuno</a> <a href="/wiki/Pythagoras" title="Pythagoras">Pythagoras</a> menganggap peran angka dalam geometri. Namun, penemuan panjang yang tak dapat dibandingkan itu bertentangan dengan pandangan filosofis mereka.<sup id="cite_ref-Sangalli2009_97-0" class="reference"><a href="#cite_note-Sangalli2009-97"><span class="cite-bracket">&#91;</span>97<span class="cite-bracket">&#93;</span></a></sup> Sejak abad ke-19, geometri telah digunakan untuk menyelesaikan masalah dalam teori bilangan, misalnya melalui <a href="/w/index.php?title=Geometri_bilangan&amp;action=edit&amp;redlink=1" class="new" title="Geometri bilangan (halaman belum tersedia)">geometri bilangan</a> atau, yang lebih baru, <a href="/w/index.php?title=Teori_skema&amp;action=edit&amp;redlink=1" class="new" title="Teori skema (halaman belum tersedia)">teori skema</a>, yang digunakan dalam <a href="/w/index.php?title=Bukti_Wiles_tentang_Teorema_Terakhir_Fermat&amp;action=edit&amp;redlink=1" class="new" title="Bukti Wiles tentang Teorema Terakhir Fermat (halaman belum tersedia)">bukti Wiles tentang Teorema Terakhir Fermat</a>.<sup id="cite_ref-CornellSilverman2013_98-0" class="reference"><a href="#cite_note-CornellSilverman2013-98"><span class="cite-bracket">&#91;</span>98<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Lihat_pula">Lihat pula</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometri&amp;veaction=edit&amp;section=43" title="Sunting bagian: Lihat pula" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometri&amp;action=edit&amp;section=43" title="Sunting kode sumber bagian: Lihat pula"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Daftar">Daftar</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometri&amp;veaction=edit&amp;section=44" title="Sunting bagian: Daftar" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometri&amp;action=edit&amp;section=44" title="Sunting kode sumber bagian: Daftar"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/w/index.php?title=Daftar_geometer&amp;action=edit&amp;redlink=1" class="new" title="Daftar geometer (halaman belum tersedia)">Daftar geometer</a> <ul><li><a href="/w/index.php?title=Kategori:Geometer_aljabar&amp;action=edit&amp;redlink=1" class="new" title="Kategori:Geometer aljabar (halaman belum tersedia)">Kategori:Geometer aljabar</a></li> <li><a href="/w/index.php?title=Kategori:Geometer_Diferensial&amp;action=edit&amp;redlink=1" class="new" title="Kategori:Geometer Diferensial (halaman belum tersedia)">Kategori:Geometer Diferensial</a></li> <li><a href="/wiki/Kategori:Geometer" title="Kategori:Geometer">Kategori:Geometer</a></li> <li><a href="/w/index.php?title=Kategori:Ahli_topologi&amp;action=edit&amp;redlink=1" class="new" title="Kategori:Ahli topologi (halaman belum tersedia)">Kategori:Ahli topologi</a></li></ul></li> <li><a href="/w/index.php?title=Daftar_rumus_dalam_geometri_dasar&amp;action=edit&amp;redlink=1" class="new" title="Daftar rumus dalam geometri dasar (halaman belum tersedia)">Daftar rumus dalam geometri dasar</a></li> <li><a href="/wiki/Daftar_topik_geometri" title="Daftar topik geometri">Daftar topik geometri</a></li> <li><a href="/w/index.php?title=Daftar_publikasi_penting_dalam_matematika&amp;action=edit&amp;redlink=1" class="new" title="Daftar publikasi penting dalam matematika (halaman belum tersedia)">Daftar publikasi penting dalam geometri</a></li> <li><a href="/wiki/Daftar_topik_matematika" class="mw-redirect" title="Daftar topik matematika">Daftar topik matematika</a></li></ul> <div class="mw-heading mw-heading3"><h3 id="topik-topik_terkait">topik-topik terkait</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometri&amp;veaction=edit&amp;section=45" title="Sunting bagian: topik-topik terkait" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometri&amp;action=edit&amp;section=45" title="Sunting kode sumber bagian: topik-topik terkait"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/w/index.php?title=Daftar_topik_Geometri&amp;action=edit&amp;redlink=1" class="new" title="Daftar topik Geometri (halaman belum tersedia)">Daftar topik Geometri</a></li> <li><a href="/w/index.php?title=Geometri_deskriptif&amp;action=edit&amp;redlink=1" class="new" title="Geometri deskriptif (halaman belum tersedia)">Geometri deskriptif</a></li> <li><a href="/wiki/Geometri_hingga" title="Geometri hingga">Geometri hingga</a></li> <li><i><a href="/wiki/Tanah_Datar" class="mw-redirect" title="Tanah Datar">Tanah Datar</a></i>, sebuah buku yang ditulis oleh <a href="/wiki/Edwin_Abbott" class="mw-disambig" title="Edwin Abbott">Edwin Abbott</a> tentang dua dan <a href="/wiki/Ruang_tiga_dimensi" class="mw-redirect mw-disambig" title="Ruang tiga dimensi">ruang tiga dimensi</a>, untuk memahami konsep empat dimensi</li> <li><a href="/w/index.php?title=Daftar_perangkat_lunak_geometri_interaktif&amp;action=edit&amp;redlink=1" class="new" title="Daftar perangkat lunak geometri interaktif (halaman belum tersedia)">Daftar perangkat lunak geometri interaktif</a></li></ul> <div class="mw-heading mw-heading3"><h3 id="Bidang_lain">Bidang lain</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometri&amp;veaction=edit&amp;section=46" title="Sunting bagian: Bidang lain" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometri&amp;action=edit&amp;section=46" title="Sunting kode sumber bagian: Bidang lain"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/w/index.php?title=Geometri_molekuler&amp;action=edit&amp;redlink=1" class="new" title="Geometri molekuler (halaman belum tersedia)">Geometri molekuler</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Catatan">Catatan</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometri&amp;veaction=edit&amp;section=47" title="Sunting bagian: Catatan" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometri&amp;action=edit&amp;section=47" title="Sunting kode sumber bagian: Catatan"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r18833634">.mw-parser-output .reflist{font-size:90%;margin-bottom:0.5em;list-style-type:decimal}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width" style="column-width: 40em;"> <ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text">J. Friberg, "Metode dan tradisi matematika Babilonia. Plimpton 322, Pythagoras tiga kali lipat, dan persamaan parameter segitiga Babilonia", <i>Historia Mathematica</i>, 8, 1981, pp. 277–318.</span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><cite class="citation book"><a href="/w/index.php?title=Otto_E._Neugebauer&amp;action=edit&amp;redlink=1" class="new" title="Otto E. Neugebauer (halaman belum tersedia)">Neugebauer, Otto</a> (1969) [1957]. "Chap. IV Matematika dan Astronomi Mesir". <a rel="nofollow" class="external text" href="https://books.google.com/?id=JVhTtVA2zr8C"><i>Ilmu Tepat di Zaman Kuno</i></a> (edisi ke-2). <a href="/w/index.php?title=Dover_Publications&amp;action=edit&amp;redlink=1" class="new" title="Dover Publications (halaman belum tersedia)">Dover Publications</a>. hlm.&#160;71–96. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/978-0-486-22332-2" title="Istimewa:Sumber buku/978-0-486-22332-2">978-0-486-22332-2</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Chap.+IV+Matematika+dan+Astronomi+Mesir&amp;rft.btitle=Ilmu+Tepat+di+Zaman+Kuno&amp;rft.pages=71-96&amp;rft.edition=2&amp;rft.pub=Dover+Publications&amp;rft.date=1969&amp;rft.isbn=978-0-486-22332-2&amp;rft.aulast=Neugebauer&amp;rft.aufirst=Otto&amp;rft_id=https%3A%2F%2Fbooks.google.com%2F%3Fid%3DJVhTtVA2zr8C&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span>.</span> </li> <li id="cite_note-Boyer_1991_loc=Mesir_p._19-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-Boyer_1991_loc=Mesir_p._19_3-0">^</a></b></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "Mesir" p. 19)</span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><cite class="citation journal">Ossendrijver, Mathieu (29 Januari 2016). "Para astronom Babilonia kuno menghitung posisi Jupiter dari area di bawah grafik kecepatan waktu". <i>Ilmu</i>. <b>351</b> (6272): 482–484. <a href="/wiki/Bibcode" title="Bibcode">Bibcode</a>:<a rel="nofollow" class="external text" href="http://adsabs.harvard.edu/abs/2016Sci...351..482O">2016Sci...351..482O</a>. <a href="/wiki/Digital_object_identifier" class="mw-redirect" title="Digital object identifier">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.aad8085">10.1126/science.aad8085</a>. <a href="/wiki/PubMed_Identifier" class="mw-redirect" title="PubMed Identifier">PMID</a>&#160;<a rel="nofollow" class="external text" href="//www.ncbi.nlm.nih.gov/pubmed/26823423">26823423</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Ilmu&amp;rft.atitle=Para+astronom+Babilonia+kuno+menghitung+posisi+Jupiter+dari+area+di+bawah+grafik+kecepatan+waktu&amp;rft.volume=351&amp;rft.issue=6272&amp;rft.pages=482-484&amp;rft.date=2016-01-29&amp;rft_id=info%3Apmid%2F26823423&amp;rft_id=info%3Adoi%2F10.1126%2Fscience.aad8085&amp;rft_id=info%3Abibcode%2F2016Sci...351..482O&amp;rft.aulast=Ossendrijver&amp;rft.aufirst=Mathieu&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><cite class="citation journal">Depuydt, Leo (1 Januari 1998). "Gnomons di Meroë dan Trigonometri Awal". <i>The Journal of Egyptian Archaeology</i>. <b>84</b>: 171–180. <a href="/wiki/Digital_object_identifier" class="mw-redirect" title="Digital object identifier">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F3822211">10.2307/3822211</a>. <a href="/wiki/JSTOR" title="JSTOR">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="//www.jstor.org/stable/3822211">3822211</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Journal+of+Egyptian+Archaeology&amp;rft.atitle=Gnomons+di+Mero%C3%AB+dan+Trigonometri+Awal&amp;rft.volume=84&amp;rft.pages=171-180&amp;rft.date=1998-01-01&amp;rft_id=info%3Adoi%2F10.2307%2F3822211&amp;rft_id=%2F%2Fwww.jstor.org%2Fstable%2F3822211&amp;rft.aulast=Depuydt&amp;rft.aufirst=Leo&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><cite class="citation web">Slayman, Andrew (27 Mei 1998). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20110605234044/http://www.archaeology.org/online/news/nubia.html">"Neolithic Skywatchers"</a>. <i>Archaeology Magazine Archive</i>. Diarsipkan dari <a rel="nofollow" class="external text" href="http://www.archaeology.org/online/news/nubia.html">versi asli</a> tanggal 5 Juni 2011<span class="reference-accessdate">. Diakses tanggal <span class="nowrap">17 April</span> 2011</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Archaeology+Magazine+Archive&amp;rft.atitle=Neolithic+Skywatchers&amp;rft.date=1998-05-27&amp;rft.aulast=Slayman&amp;rft.aufirst=Andrew&amp;rft_id=http%3A%2F%2Fwww.archaeology.org%2Fonline%2Fnews%2Fnubia.html&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span> <span style="display:none;font-size:100%" class="error citation-comment">Parameter <code style="color:inherit; border:inherit; padding:inherit;">&#124;url-status=</code> yang tidak diketahui akan diabaikan (<a href="/wiki/Bantuan:Galat_CS1#parameter_ignored" title="Bantuan:Galat CS1">bantuan</a>)</span></span> </li> <li id="cite_note-Boyer_1991_loc=Ionia_dan_Pythagoras_p._43-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-Boyer_1991_loc=Ionia_dan_Pythagoras_p._43_7-0">^</a></b></span> <span class="error mw-ext-cite-error" lang="id" dir="ltr">Kesalahan pengutipan: Tag <code>&lt;ref&gt;</code> tidak sah; tidak ditemukan teks untuk ref bernama <code>Boyer 1991 loc=Ionia dan Pythagoras p. 43</code></span></li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text">Eves, Howard, Pengantar Sejarah Matematika, Saunders, 1990, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/0-03-029558-0" title="Istimewa:Sumber buku/0-03-029558-0">0-03-029558-0</a>.</span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><cite class="citation journal">Kurt Von Fritz (1945). "Penemuan Ketidakbandingan oleh Hippasus dari Metapontum". <i>The Annals of Mathematics</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Annals+of+Mathematics&amp;rft.atitle=Penemuan+Ketidakbandingan+oleh+Hippasus+dari+Metapontum&amp;rft.date=1945&amp;rft.au=Kurt+Von+Fritz&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><cite class="citation journal">James R. Choike (1980). "Pentagram dan Penemuan Bilangan Irasional". <i>The Two-Year College Mathematics Journal</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Two-Year+College+Mathematics+Journal&amp;rft.atitle=Pentagram+dan+Penemuan+Bilangan+Irasional&amp;rft.date=1980&amp;rft.au=James+R.+Choike&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "Zaman Plato dan Aristoteles" p. 92)</span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "Euclid dari Alexandria" p. 119)</span> </li> <li id="cite_note-Boyer_1991_loc=Euclid_of_Alexandria_p._104-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-Boyer_1991_loc=Euclid_of_Alexandria_p._104_13-0">^</a></b></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "Euclid of Alexandria" p. 104)</span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text">Howard Eves, <i>Pengantar Sejarah Matematika</i>, Saunders, 1990, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/0-03-029558-0" title="Istimewa:Sumber buku/0-03-029558-0">0-03-029558-0</a> p. 141: "Tidak ada karya, kecuali <a href="/wiki/Bible" class="mw-redirect" title="Bible">Bible</a>, yang telah digunakan secara lebih luas...."</span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><cite class="citation web">O'Connor, J.J.; Robertson, E.F. (February 1996). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20070715191704/http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/The_rise_of_calculus.html">"Sejarah kalkulus"</a>. <a href="/w/index.php?title=University_of_St_Andrews&amp;action=edit&amp;redlink=1" class="new" title="University of St Andrews (halaman belum tersedia)">University of St Andrews</a>. Diarsipkan dari <a rel="nofollow" class="external text" href="http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/The_rise_of_calculus.html">versi asli</a> tanggal 15 July 2007<span class="reference-accessdate">. Diakses tanggal <span class="nowrap">7 August</span> 2007</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Sejarah+kalkulus&amp;rft.pub=University+of+St+Andrews&amp;rft.date=1996-02&amp;rft.au=O%27Connor%2C+J.J.&amp;rft.au=Robertson%2C+E.F.&amp;rft_id=http%3A%2F%2Fwww-groups.dcs.st-and.ac.uk%2F~history%2FHistTopics%2FThe_rise_of_calculus.html&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span> <span style="display:none;font-size:100%" class="error citation-comment">Parameter <code style="color:inherit; border:inherit; padding:inherit;">&#124;url-status=</code> yang tidak diketahui akan diabaikan (<a href="/wiki/Bantuan:Galat_CS1#parameter_ignored" title="Bantuan:Galat CS1">bantuan</a>)</span></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><cite class="citation book">Vakil, Ravi (2017). <i>Foundations of Algebraic Geometry</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Foundations+of+Algebraic+Geometry&amp;rft.date=2017&amp;rft.aulast=Vakil&amp;rft.aufirst=Ravi&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span> <span style="display:none;font-size:100%" class="error citation-comment">Parameter <code style="color:inherit; border:inherit; padding:inherit;">&#124;url-status=</code> yang tidak diketahui akan diabaikan (<a href="/wiki/Bantuan:Galat_CS1#parameter_ignored" title="Bantuan:Galat CS1">bantuan</a>)</span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><cite class="citation web"><a rel="nofollow" class="external text" href="https://www.splashlearn.com/math-vocabulary/geometry/2-dimensional">"What is 2 Dimensional? - Definition, Facts &amp; Example"</a>. <i>www.splashlearn.com</i> (dalam bahasa Inggris). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230324200506/https://www.splashlearn.com/math-vocabulary/geometry/2-dimensional">Diarsipkan</a> dari versi asli tanggal 2023-03-24<span class="reference-accessdate">. Diakses tanggal <span class="nowrap">2021-12-29</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=www.splashlearn.com&amp;rft.atitle=What+is+2+Dimensional%3F+-+Definition%2C+Facts+%26+Example&amp;rft_id=https%3A%2F%2Fwww.splashlearn.com%2Fmath-vocabulary%2Fgeometry%2F2-dimensional&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><cite class="citation web"><a rel="nofollow" class="external text" href="https://kbbi.web.id/lonjong">"Arti kata lonjong - Kamus Besar Bahasa Indonesia (KBBI) Online"</a>. <i>kbbi.web.id</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230731131945/https://kbbi.web.id/lonjong">Diarsipkan</a> dari versi asli tanggal 2023-07-31<span class="reference-accessdate">. Diakses tanggal <span class="nowrap">2021-12-29</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=kbbi.web.id&amp;rft.atitle=Arti+kata+lonjong+-+Kamus+Besar+Bahasa+Indonesia+%28KBBI%29+Online&amp;rft_id=https%3A%2F%2Fkbbi.web.id%2Flonjong&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-:0-19"><span class="mw-cite-backlink">^ <a href="#cite_ref-:0_19-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:0_19-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><cite class="citation web"><a rel="nofollow" class="external text" href="https://kbbi.web.id/bulat">"Arti kata bulat - Kamus Besar Bahasa Indonesia (KBBI) Online"</a>. <i>kbbi.web.id</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230611014225/https://www.kbbi.web.id/bulat">Diarsipkan</a> dari versi asli tanggal 2023-06-11<span class="reference-accessdate">. Diakses tanggal <span class="nowrap">2021-12-29</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=kbbi.web.id&amp;rft.atitle=Arti+kata+bulat+-+Kamus+Besar+Bahasa+Indonesia+%28KBBI%29+Online&amp;rft_id=https%3A%2F%2Fkbbi.web.id%2Fbulat&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Tabak_2014_xiv-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-Tabak_2014_xiv_20-0">^</a></b></span> <span class="error mw-ext-cite-error" lang="id" dir="ltr">Kesalahan pengutipan: Tag <code>&lt;ref&gt;</code> tidak sah; tidak ditemukan teks untuk ref bernama <code>Tabak 2014 xiv</code></span></li> <li id="cite_note-Schmidt,_W._2002-21"><span class="mw-cite-backlink">^ <a href="#cite_ref-Schmidt,_W._2002_21-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Schmidt,_W._2002_21-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">Schmidt, W., Houang, R., &amp; Cogan, L. (2002). "Kurikulum yang koheren". <i>Pendidik Amerika</i>, 26(2), 1–18.</span> </li> <li id="cite_note-Kline1990-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-Kline1990_22-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Morris Kline (Maret 1990). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=8YaBuGcmLb0C&amp;pg=PA1010"><i>Pemikiran Matematika Dari Zaman Kuno ke Modern: Volume 3</i></a>. Oxford University Press, USA. hlm.&#160;1010–. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/978-0-19-506137-6" title="Istimewa:Sumber buku/978-0-19-506137-6">978-0-19-506137-6</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230301145216/https://books.google.com/books?id=8YaBuGcmLb0C&amp;pg=PA1010">Diarsipkan</a> dari versi asli tanggal 2023-03-01<span class="reference-accessdate">. Diakses tanggal <span class="nowrap">2020-08-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Pemikiran+Matematika+Dari+Zaman+Kuno+ke+Modern%3A+Volume+3&amp;rft.pages=1010-&amp;rft.pub=Oxford+University+Press%2C+USA&amp;rft.date=1990-03&amp;rft.isbn=978-0-19-506137-6&amp;rft.au=Morris+Kline&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D8YaBuGcmLb0C%26pg%3DPA1010&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Katz2000-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-Katz2000_23-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Victor J. Katz (21 September 2000). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=CbZ_YsdCmP0C&amp;pg=PA45"><i>Menggunakan Sejarah untuk Mengajar Matematika: Perspektif Internasional</i></a>. Cambridge University Press. hlm.&#160;45–. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/978-0-88385-163-0" title="Istimewa:Sumber buku/978-0-88385-163-0">978-0-88385-163-0</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230301145221/https://books.google.com/books?id=CbZ_YsdCmP0C&amp;pg=PA45">Diarsipkan</a> dari versi asli tanggal 2023-03-01<span class="reference-accessdate">. Diakses tanggal <span class="nowrap">2020-08-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Menggunakan+Sejarah+untuk+Mengajar+Matematika%3A+Perspektif+Internasional&amp;rft.pages=45-&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2000-09-21&amp;rft.isbn=978-0-88385-163-0&amp;rft.au=Victor+J.+Katz&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DCbZ_YsdCmP0C%26pg%3DPA45&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Berlinski2014-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-Berlinski2014_24-0">^</a></b></span> <span class="reference-text"><cite class="citation book">David Berlinski (8 April 2014). <span class="plainlinks"><a rel="nofollow" class="external text" href="https://archive.org/details/kingofinfinitesp00davi"><i>Raja Ruang Tak Terbatas: Euclid dan Elemen-elemennya</i><span style="padding-left:0.15em"><span typeof="mw:File"><span title="Perlu mendaftar (gratis)"><img alt="Perlu mendaftar (gratis)" src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Lock-blue-alt-2.svg/9px-Lock-blue-alt-2.svg.png" decoding="async" width="9" height="14" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Lock-blue-alt-2.svg/14px-Lock-blue-alt-2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Lock-blue-alt-2.svg/18px-Lock-blue-alt-2.svg.png 2x" data-file-width="512" data-file-height="813" /></span></span></span></a></span>. Basic Books. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/978-0-465-03863-3" title="Istimewa:Sumber buku/978-0-465-03863-3">978-0-465-03863-3</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Raja+Ruang+Tak+Terbatas%3A+Euclid+dan+Elemen-elemennya&amp;rft.pub=Basic+Books&amp;rft.date=2014-04-08&amp;rft.isbn=978-0-465-03863-3&amp;rft.au=David+Berlinski&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fkingofinfinitesp00davi&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Hartshorne2013-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-Hartshorne2013_25-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Robin Hartshorne (11 November 2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=C5fSBwAAQBAJ&amp;pg=PA29"><i>Geometri: Euclid and Beyond</i></a>. Springer Science &amp; Business Media. hlm.&#160;29–. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/978-0-387-22676-7" title="Istimewa:Sumber buku/978-0-387-22676-7">978-0-387-22676-7</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230301145229/https://books.google.com/books?id=C5fSBwAAQBAJ&amp;pg=PA29">Diarsipkan</a> dari versi asli tanggal 2023-03-01<span class="reference-accessdate">. Diakses tanggal <span class="nowrap">2020-08-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Geometri%3A+Euclid+and+Beyond&amp;rft.pages=29-&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2013-11-11&amp;rft.isbn=978-0-387-22676-7&amp;rft.au=Robin+Hartshorne&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DC5fSBwAAQBAJ%26pg%3DPA29&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-HerbstFujita2017-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-HerbstFujita2017_26-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Pat Herbst; Taro Fujita; Stefan Halverscheid; Michael Weiss (16 March 2017). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=6DAlDwAAQBAJ&amp;pg=PA20"><i>Pembelajaran dan Pengajaran Geometri di Sekolah Menengah: Perspektif Modeling</i></a>. Taylor &amp; Francis. hlm.&#160;20–. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/978-1-351-97353-3" title="Istimewa:Sumber buku/978-1-351-97353-3">978-1-351-97353-3</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Pembelajaran+dan+Pengajaran+Geometri+di+Sekolah+Menengah%3A+Perspektif+Modeling&amp;rft.pages=20-&amp;rft.pub=Taylor+%26+Francis&amp;rft.date=2017-03-16&amp;rft.isbn=978-1-351-97353-3&amp;rft.au=Pat+Herbst&amp;rft.au=Taro+Fujita&amp;rft.au=Stefan+Halverscheid&amp;rft.au=Michael+Weiss&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D6DAlDwAAQBAJ%26pg%3DPA20&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Yaglom2012-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-Yaglom2012_27-0">^</a></b></span> <span class="reference-text"><cite class="citation book">I.M. Yaglom (6 December 2012). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=FyToBwAAQBAJ&amp;pg=PR6"><i>Geometri Non-Euclidean Sederhana dan Dasar Fisiknya: Catatan Dasar Geometri Galilea dan Prinsip Relativitas Galilea</i></a>. Springer Science &amp; Business Media. hlm.&#160;6–. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/978-1-4612-6135-3" title="Istimewa:Sumber buku/978-1-4612-6135-3">978-1-4612-6135-3</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230301145221/https://books.google.com/books?id=FyToBwAAQBAJ&amp;pg=PR6">Diarsipkan</a> dari versi asli tanggal 2023-03-01<span class="reference-accessdate">. Diakses tanggal <span class="nowrap">2020-08-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Geometri+Non-Euclidean+Sederhana+dan+Dasar+Fisiknya%3A+Catatan+Dasar+Geometri+Galilea+dan+Prinsip+Relativitas+Galilea&amp;rft.pages=6-&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2012-12-06&amp;rft.isbn=978-1-4612-6135-3&amp;rft.au=I.M.+Yaglom&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DFyToBwAAQBAJ%26pg%3DPR6&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Holme2010-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-Holme2010_28-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Audun Holme (23 September 2010). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=zXwQGo8jyHUC&amp;pg=PA254"><i>Geometri: Warisan Budaya Kami</i></a>. Springer Science &amp; Business Media. hlm.&#160;254–. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/978-3-642-14441-7" title="Istimewa:Sumber buku/978-3-642-14441-7">978-3-642-14441-7</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230301145144/https://books.google.com/books?id=zXwQGo8jyHUC&amp;pg=PA254">Diarsipkan</a> dari versi asli tanggal 2023-03-01<span class="reference-accessdate">. Diakses tanggal <span class="nowrap">2020-08-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Geometri%3A+Warisan+Budaya+Kami&amp;rft.pages=254-&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2010-09-23&amp;rft.isbn=978-3-642-14441-7&amp;rft.au=Audun+Holme&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DzXwQGo8jyHUC%26pg%3DPA254&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-EuclidAll-29"><span class="mw-cite-backlink">^ <a href="#cite_ref-EuclidAll_29-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-EuclidAll_29-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-EuclidAll_29-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-EuclidAll_29-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-EuclidAll_29-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><i>Elemen Euclid - Semua tiga belas buku dalam satu volume</i>, Berdasarkan terjemahan Heath, Green Lion Press <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/1-888009-18-7" title="Istimewa:Sumber buku/1-888009-18-7">1-888009-18-7</a>.</span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-30">^</a></b></span> <span class="reference-text"><cite class="citation journal">Clark, Bowman L. (Jan 1985). "Individu dan Titik geometri". <i>Notre Dame Journal of Formal Logic</i>. <b>26</b> (1): 61–75. <a href="/wiki/Digital_object_identifier" class="mw-redirect" title="Digital object identifier">doi</a>:<span class="plainlinks"><a rel="nofollow" class="external text" href="https://doi.org/10.1305%2Fndjfl%2F1093870761">10.1305/ndjfl/1093870761</a>&#8239;<span typeof="mw:File"><span title="Dapat diakses gratis"><img alt="alt=Dapat diakses gratis" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png" decoding="async" width="9" height="14" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/14px-Lock-green.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/18px-Lock-green.svg.png 2x" data-file-width="512" data-file-height="813" /></span></span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Notre+Dame+Journal+of+Formal+Logic&amp;rft.atitle=Individu+dan+Titik+geometri&amp;rft.volume=26&amp;rft.issue=1&amp;rft.pages=61-75&amp;rft.date=1985-01&amp;rft_id=info%3Adoi%2F10.1305%2Fndjfl%2F1093870761&amp;rft.aulast=Clark&amp;rft.aufirst=Bowman+L.&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-31">^</a></b></span> <span class="reference-text"><cite class="citation book">Gerla, G. (1995). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20110717210751/http://www.dmi.unisa.it/people/gerla/www/Down/point-free.pdf">"Pointless Geometries"</a> <span style="font-size:85%;">(PDF)</span>. Dalam Buekenhout, F.; Kantor, W. <i>Buku Pegangan geometri insiden: bangunan dan fondasi</i>. North-Holland. hlm.&#160;1015–1031. Diarsipkan dari <a rel="nofollow" class="external text" href="http://www.dmi.unisa.it/people/gerla/www/Down/point-free.pdf">versi asli</a> <span style="font-size:85%;">(PDF)</span> tanggal 17 July 2011.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Pointless+Geometries&amp;rft.btitle=Buku+Pegangan+geometri+insiden%3A+bangunan+dan+fondasi&amp;rft.pages=1015-1031&amp;rft.pub=North-Holland&amp;rft.date=1995&amp;rft.au=Gerla%2C+G.&amp;rft_id=http%3A%2F%2Fwww.dmi.unisa.it%2Fpeople%2Fgerla%2Fwww%2FDown%2Fpoint-free.pdf&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span> <span style="display:none;font-size:100%" class="error citation-comment">Parameter <code style="color:inherit; border:inherit; padding:inherit;">&#124;url-status=</code> yang tidak diketahui akan diabaikan (<a href="/wiki/Bantuan:Galat_CS1#parameter_ignored" title="Bantuan:Galat CS1">bantuan</a>)</span></span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text"><cite class="citation book"><a href="/w/index.php?title=John_Casey_(mathematician)&amp;action=edit&amp;redlink=1" class="new" title="John Casey (mathematician) (halaman belum tersedia)">John Casey</a> (1885). <a rel="nofollow" class="external text" href="https://archive.org/details/cu31924001520455"><i>Geometri Analitik Bagian Titik, Garis, Lingkaran, dan Kerucut</i></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Geometri+Analitik+Bagian+Titik%2C+Garis%2C+Lingkaran%2C+dan+Kerucut&amp;rft.date=1885&amp;rft.au=John+Casey&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fcu31924001520455&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text">Buekenhout, Francis (1995), <i>Buku Pegangan Geometri Insiden: Bangunan dan Fondasi</i>, Elsevier B.V.</span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text"><cite class="citation web"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20160715034047/http://www.oxforddictionaries.com/definition/english/geodesic">"geodesik - definisi geodesik dalam bahasa Inggris dari kamus Oxford"</a>. <a href="/w/index.php?title=OxfordDictionaries.com&amp;action=edit&amp;redlink=1" class="new" title="OxfordDictionaries.com (halaman belum tersedia)">OxfordDictionaries.com</a>. Diarsipkan dari <a rel="nofollow" class="external text" href="https://www.oxforddictionaries.com/definition/english/geodesic">versi asli</a> tanggal 15 July 2016<span class="reference-accessdate">. Diakses tanggal <span class="nowrap">2016-01-20</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=geodesik+-+definisi+geodesik+dalam+bahasa+Inggris+dari+kamus+Oxford&amp;rft.pub=OxfordDictionaries.com&amp;rft_id=https%3A%2F%2Fwww.oxforddictionaries.com%2Fdefinition%2Fenglish%2Fgeodesic&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span> <span style="display:none;font-size:100%" class="error citation-comment">Parameter <code style="color:inherit; border:inherit; padding:inherit;">&#124;url-status=</code> yang tidak diketahui akan diabaikan (<a href="/wiki/Bantuan:Galat_CS1#parameter_ignored" title="Bantuan:Galat CS1">bantuan</a>)</span></span> </li> <li id="cite_note-Munkres-35"><span class="mw-cite-backlink">^ <a href="#cite_ref-Munkres_35-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Munkres_35-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Munkres_35-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Munkres_35-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text">Munkres, James R. Topology. Vol. 2. Upper Saddle River: Prentice Hall, 2000.</span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-36">^</a></b></span> <span class="reference-text">Szmielew, Wanda. 'Dari affine ke geometri Euclidean: Pendekatan aksiomatik.' Springer, 1983.</span> </li> <li id="cite_note-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-37">^</a></b></span> <span class="reference-text">Ahlfors, Lars V. <i>Analisis kompleks: pengantar teori fungsi analitik dari satu variabel kompleks.</i> New York, London (1953).</span> </li> <li id="cite_note-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-38">^</a></b></span> <span class="reference-text"><cite id="CITEREFSidorov2001" class="citation">Sidorov, L.A. (2001) [1994], <a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=Angle&amp;oldid=13323">"Angle"</a>, dalam <a href="/wiki/Michiel_Hazewinkel" title="Michiel Hazewinkel">Hazewinkel, Michiel</a>, <i><a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>, Springer Science+Business Media B.V. / Kluwer Academic Publishers, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/978-1-55608-010-4" title="Istimewa:Sumber buku/978-1-55608-010-4">978-1-55608-010-4</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Angle&amp;rft.btitle=Encyclopedia+of+Mathematics&amp;rft.pub=Springer+Science%2BBusiness+Media+B.V.+%2F+Kluwer+Academic+Publishers&amp;rft.date=2001&amp;rft.isbn=978-1-55608-010-4&amp;rft.aulast=Sidorov&amp;rft.aufirst=L.A.&amp;rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DAngle%26oldid%3D13323&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-39">^</a></b></span> <span class="reference-text">Gelʹfand, Izrailʹ Moiseevič, dan Mark Saul. "Trigonometri." 'Trigonometri'. Birkhäuser Boston, 2001. 1–20.</span> </li> <li id="cite_note-Stewart-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-Stewart_40-0">^</a></b></span> <span class="reference-text"><a href="/w/index.php?title=James_Stewart_(matematikawan)&amp;action=edit&amp;redlink=1" class="new" title="James Stewart (matematikawan) (halaman belum tersedia)">Stewart, James</a> (2012). <i>Kalkulus: Transendental Awal</i>, 7th ed., Brooks Cole Cengage Learning. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-0-538-49790-9" title="Istimewa:Sumber buku/978-0-538-49790-9">978-0-538-49790-9</a></span> </li> <li id="cite_note-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-41">^</a></b></span> <span class="reference-text"><cite id="CITEREFJost2002" class="citation">Jost, Jürgen (2002), <i>Analisis Geometri dan Geometri Riemannian</i>, Berlin: Springer-Verlag, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/978-3-540-42627-1" title="Istimewa:Sumber buku/978-3-540-42627-1">978-3-540-42627-1</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Analisis+Geometri+dan+Geometri+Riemannian&amp;rft.place=Berlin&amp;rft.pub=Springer-Verlag&amp;rft.date=2002&amp;rft.isbn=978-3-540-42627-1&amp;rft.aulast=Jost&amp;rft.aufirst=J%C3%BCrgen&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span>.</span> </li> <li id="cite_note-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-42">^</a></b></span> <span class="reference-text">Baker, Henry Frederick. Prinsip geometri. Vol. 2. CUP Archive, 1954.</span> </li> <li id="cite_note-Carmo-43"><span class="mw-cite-backlink">^ <a href="#cite_ref-Carmo_43-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Carmo_43-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Carmo_43-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text">Do Carmo, Manfredo Perdigao, dan Manfredo Perdigao Do Carmo. Geometri diferensial dari kurva dan permukaan. Vol. 2. Englewood Cliffs: Prentice-hall, 1976.</span> </li> <li id="cite_note-mumford-44"><span class="mw-cite-backlink">^ <a href="#cite_ref-mumford_44-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-mumford_44-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><cite class="citation book"><a href="/w/index.php?title=David_Mumford&amp;action=edit&amp;redlink=1" class="new" title="David Mumford (halaman belum tersedia)">Mumford, David</a> (1999). <a rel="nofollow" class="external text" href="https://archive.org/details/redbookofvarieti0002mumf"><i>Buku Merah Varietas dan Skema Termasuk Ceramah Michigan tentang Kurva dan Jacobian Mereka</i></a> (edisi ke-2nd). <a href="/wiki/Springer_Science%2BBusiness_Media" title="Springer Science+Business Media">Springer-Verlag</a>. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/978-3-540-63293-1" title="Istimewa:Sumber buku/978-3-540-63293-1">978-3-540-63293-1</a>. <a href="/w/index.php?title=Zentralblatt_MATH&amp;action=edit&amp;redlink=1" class="new" title="Zentralblatt MATH (halaman belum tersedia)">Zbl</a>&#160;<a rel="nofollow" class="external text" href="//zbmath.org/?format=complete&amp;q=an:0945.14001">0945.14001</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Buku+Merah+Varietas+dan+Skema+Termasuk+Ceramah+Michigan+tentang+Kurva+dan+Jacobian+Mereka&amp;rft.edition=2nd&amp;rft.pub=Springer-Verlag&amp;rft.date=1999&amp;rft_id=%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A0945.14001&amp;rft.isbn=978-3-540-63293-1&amp;rft.aulast=Mumford&amp;rft.aufirst=David&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fredbookofvarieti0002mumf&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-45">^</a></b></span> <span class="reference-text">Briggs, William L., and Lyle Cochran Calculus. "Early Transcendentals." <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-0321570567" title="Istimewa:Sumber buku/978-0321570567">978-0321570567</a>.</span> </li> <li id="cite_note-46"><span class="mw-cite-backlink"><b><a href="#cite_ref-46">^</a></b></span> <span class="reference-text">Yau, Shing-Tung; Nadis, Steve (2010). Bentuk Ruang Dalam: Teori String dan Geometri Dimensi Tersembunyi Alam Semesta. Buku Dasar. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/978-0-465-02023-2" title="Istimewa:Sumber buku/978-0-465-02023-2">978-0-465-02023-2</a>.</span> </li> <li id="cite_note-Treese2018-47"><span class="mw-cite-backlink">^ <a href="#cite_ref-Treese2018_47-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Treese2018_47-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><cite class="citation book">Steven A. Treese (17 May 2018). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=bi1bDwAAQBAJ&amp;pg=PA101"><i>Sejarah dan Pengukuran Basis dan Unit Turunan</i></a>. Springer International Publishing. hlm.&#160;101–. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/978-3-319-77577-7" title="Istimewa:Sumber buku/978-3-319-77577-7">978-3-319-77577-7</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230301145145/https://books.google.com/books?id=bi1bDwAAQBAJ&amp;pg=PA101">Diarsipkan</a> dari versi asli tanggal 2023-03-01<span class="reference-accessdate">. Diakses tanggal <span class="nowrap">2020-08-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Sejarah+dan+Pengukuran+Basis+dan+Unit+Turunan&amp;rft.pages=101-&amp;rft.pub=Springer+International+Publishing&amp;rft.date=2018-05-17&amp;rft.isbn=978-3-319-77577-7&amp;rft.au=Steven+A.+Treese&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dbi1bDwAAQBAJ%26pg%3DPA101&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Cannon2017-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-Cannon2017_48-0">^</a></b></span> <span class="reference-text"><cite class="citation book">James W. Cannon (16 November 2017). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=sSI_DwAAQBAJ&amp;pg=PA11"><i>Geometri Panjang, Luas, dan Volume</i></a>. American Mathematical Soc. hlm.&#160;11. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/978-1-4704-3714-5" title="Istimewa:Sumber buku/978-1-4704-3714-5">978-1-4704-3714-5</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230301145145/https://books.google.com/books?id=sSI_DwAAQBAJ&amp;pg=PA11">Diarsipkan</a> dari versi asli tanggal 2023-03-01<span class="reference-accessdate">. Diakses tanggal <span class="nowrap">2020-08-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Geometri+Panjang%2C+Luas%2C+dan+Volume&amp;rft.pages=11&amp;rft.pub=American+Mathematical+Soc.&amp;rft.date=2017-11-16&amp;rft.isbn=978-1-4704-3714-5&amp;rft.au=James+W.+Cannon&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DsSI_DwAAQBAJ%26pg%3DPA11&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Strang1991-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-Strang1991_49-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Gilbert Strang (1 January 1991). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=OisInC1zvEMC"><i>Kalkulus</i></a>. SIAM. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/978-0-9614088-2-4" title="Istimewa:Sumber buku/978-0-9614088-2-4">978-0-9614088-2-4</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230301145146/https://books.google.com/books?id=OisInC1zvEMC">Diarsipkan</a> dari versi asli tanggal 2023-03-01<span class="reference-accessdate">. Diakses tanggal <span class="nowrap">2020-08-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Kalkulus&amp;rft.pub=SIAM&amp;rft.date=1991-01-01&amp;rft.isbn=978-0-9614088-2-4&amp;rft.au=Gilbert+Strang&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DOisInC1zvEMC&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Bear2002-50"><span class="mw-cite-backlink"><b><a href="#cite_ref-Bear2002_50-0">^</a></b></span> <span class="reference-text"><cite class="citation book">H. S. Bear (2002). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=__AmiGnEEewC"><i>Primer Integrasi Lebesgue</i></a>. Academic Press. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/978-0-12-083971-1" title="Istimewa:Sumber buku/978-0-12-083971-1">978-0-12-083971-1</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230301145156/https://books.google.com/books?id=__AmiGnEEewC">Diarsipkan</a> dari versi asli tanggal 2023-03-01<span class="reference-accessdate">. Diakses tanggal <span class="nowrap">2020-08-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Primer+Integrasi+Lebesgue&amp;rft.pub=Academic+Press&amp;rft.date=2002&amp;rft.isbn=978-0-12-083971-1&amp;rft.au=H.+S.+Bear&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D&#95;_AmiGnEEewC&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-51"><span class="mw-cite-backlink"><b><a href="#cite_ref-51">^</a></b></span> <span class="reference-text">Dmitri Burago, <a href="/w/index.php?title=Yuri_Dmitrievich_Burago&amp;action=edit&amp;redlink=1" class="new" title="Yuri Dmitrievich Burago (halaman belum tersedia)">Yu D Burago</a>, Sergei Ivanov, <i>Kursus dalam Geometri Metrik</i>, American Mathematical Society, 2001, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a> <a href="/wiki/Istimewa:Sumber_buku/0-8218-2129-6" title="Istimewa:Sumber buku/0-8218-2129-6">0-8218-2129-6</a>.</span> </li> <li id="cite_note-52"><span class="mw-cite-backlink"><b><a href="#cite_ref-52">^</a></b></span> <span class="reference-text"><cite id="CITEREFWald1984" class="citation"><a href="/w/index.php?title=Robert_Wald&amp;action=edit&amp;redlink=1" class="new" title="Robert Wald (halaman belum tersedia)">Wald, Robert M.</a> (1984), <i><a href="/w/index.php?title=General_Relativity_(buku)&amp;action=edit&amp;redlink=1" class="new" title="General Relativity (buku) (halaman belum tersedia)">Relativitas umum</a></i>, University of Chicago Press, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/978-0-226-87033-5" title="Istimewa:Sumber buku/978-0-226-87033-5">978-0-226-87033-5</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Relativitas+umum&amp;rft.pub=University+of+Chicago+Press&amp;rft.date=1984&amp;rft.isbn=978-0-226-87033-5&amp;rft.aulast=Wald&amp;rft.aufirst=Robert+M.&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Tao2011-53"><span class="mw-cite-backlink"><b><a href="#cite_ref-Tao2011_53-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Terence Tao (14 September 2011). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=HoGDAwAAQBAJ"><i>An Introduction to Measure Theory</i></a>. American Mathematical Soc. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/978-0-8218-6919-2" title="Istimewa:Sumber buku/978-0-8218-6919-2">978-0-8218-6919-2</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230301145156/https://books.google.com/books?id=HoGDAwAAQBAJ">Diarsipkan</a> dari versi asli tanggal 2023-03-01<span class="reference-accessdate">. Diakses tanggal <span class="nowrap">2020-08-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=An+Introduction+to+Measure+Theory&amp;rft.pub=American+Mathematical+Soc.&amp;rft.date=2011-09-14&amp;rft.isbn=978-0-8218-6919-2&amp;rft.au=Terence+Tao&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DHoGDAwAAQBAJ&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Libeskind2008-54"><span class="mw-cite-backlink"><b><a href="#cite_ref-Libeskind2008_54-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Shlomo Libeskind (12 February 2008). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=et6WMlkQlFcC&amp;pg=PA255"><i>Euklides dan Geometri Transformasional: Penyelidikan Deduktif</i></a>. Jones &amp; Bartlett Learning. hlm.&#160;255. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/978-0-7637-4366-6" title="Istimewa:Sumber buku/978-0-7637-4366-6">978-0-7637-4366-6</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230301145232/https://books.google.com/books?id=et6WMlkQlFcC&amp;pg=PA255">Diarsipkan</a> dari versi asli tanggal 2023-03-01<span class="reference-accessdate">. Diakses tanggal <span class="nowrap">2020-08-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Euklides+dan+Geometri+Transformasional%3A+Penyelidikan+Deduktif&amp;rft.pages=255&amp;rft.pub=Jones+%26+Bartlett+Learning&amp;rft.date=2008-02-12&amp;rft.isbn=978-0-7637-4366-6&amp;rft.au=Shlomo+Libeskind&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Det6WMlkQlFcC%26pg%3DPA255&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Freitag2013-55"><span class="mw-cite-backlink"><b><a href="#cite_ref-Freitag2013_55-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Mark A. Freitag (1 January 2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=G4BVGFiVKG0C&amp;pg=PA614"><i>Matematika untuk Guru Sekolah Dasar: Pendekatan Proses</i></a>. Cengage Learning. hlm.&#160;614. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/978-0-618-61008-2" title="Istimewa:Sumber buku/978-0-618-61008-2">978-0-618-61008-2</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230301145159/https://books.google.com/books?id=G4BVGFiVKG0C&amp;pg=PA614">Diarsipkan</a> dari versi asli tanggal 2023-03-01<span class="reference-accessdate">. Diakses tanggal <span class="nowrap">2020-08-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Matematika+untuk+Guru+Sekolah+Dasar%3A+Pendekatan+Proses&amp;rft.pages=614&amp;rft.pub=Cengage+Learning&amp;rft.date=2013-01-01&amp;rft.isbn=978-0-618-61008-2&amp;rft.au=Mark+A.+Freitag&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DG4BVGFiVKG0C%26pg%3DPA614&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Martin2012-56"><span class="mw-cite-backlink"><b><a href="#cite_ref-Martin2012_56-0">^</a></b></span> <span class="reference-text"><cite class="citation book">George E. Martin (6 December 2012). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=gevlBwAAQBAJ"><i>Transformasi Geometri: Pengantar Simetri</i></a>. Springer Science &amp; Business Media. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/978-1-4612-5680-9" title="Istimewa:Sumber buku/978-1-4612-5680-9">978-1-4612-5680-9</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230301145158/https://books.google.com/books?id=gevlBwAAQBAJ">Diarsipkan</a> dari versi asli tanggal 2023-03-01<span class="reference-accessdate">. Diakses tanggal <span class="nowrap">2020-08-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Transformasi+Geometri%3A+Pengantar+Simetri&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2012-12-06&amp;rft.isbn=978-1-4612-5680-9&amp;rft.au=George+E.+Martin&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DgevlBwAAQBAJ&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Blacklock2018-57"><span class="mw-cite-backlink"><b><a href="#cite_ref-Blacklock2018_57-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Mark Blacklock (2018). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=nrNSDwAAQBAJ"><i>Munculnya Dimensi Keempat: Pemikiran Spasial yang Lebih Tinggi di Fin de Siècle</i></a>. Oxford University Press. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/978-0-19-875548-7" title="Istimewa:Sumber buku/978-0-19-875548-7">978-0-19-875548-7</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230301145202/https://books.google.com/books?id=nrNSDwAAQBAJ">Diarsipkan</a> dari versi asli tanggal 2023-03-01<span class="reference-accessdate">. Diakses tanggal <span class="nowrap">2020-08-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Munculnya+Dimensi+Keempat%3A+Pemikiran+Spasial+yang+Lebih+Tinggi+di+Fin+de+Si%C3%A8cle&amp;rft.pub=Oxford+University+Press&amp;rft.date=2018&amp;rft.isbn=978-0-19-875548-7&amp;rft.au=Mark+Blacklock&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DnrNSDwAAQBAJ&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Joly1895-58"><span class="mw-cite-backlink"><b><a href="#cite_ref-Joly1895_58-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Charles Jasper Joly (1895). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=cOTuAAAAMAAJ&amp;pg=PA62"><i>Papers</i></a>. The Academy. hlm.&#160;62–. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230301145206/https://books.google.com/books?id=cOTuAAAAMAAJ&amp;pg=PA62">Diarsipkan</a> dari versi asli tanggal 2023-03-01<span class="reference-accessdate">. Diakses tanggal <span class="nowrap">2020-08-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Papers&amp;rft.pages=62-&amp;rft.pub=The+Academy&amp;rft.date=1895&amp;rft.au=Charles+Jasper+Joly&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DcOTuAAAAMAAJ%26pg%3DPA62&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Temam2013-59"><span class="mw-cite-backlink"><b><a href="#cite_ref-Temam2013_59-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Roger Temam (11 December 2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=OB_vBwAAQBAJ&amp;pg=PA367"><i>Sistem Dinamika Dimensi Tak Terbatas dalam Mekanika dan Fisika</i></a>. Springer Science &amp; Business Media. hlm.&#160;367. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/978-1-4612-0645-3" title="Istimewa:Sumber buku/978-1-4612-0645-3">978-1-4612-0645-3</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230301145146/https://books.google.com/books?id=OB_vBwAAQBAJ&amp;pg=PA367">Diarsipkan</a> dari versi asli tanggal 2023-03-01<span class="reference-accessdate">. Diakses tanggal <span class="nowrap">2020-08-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Sistem+Dinamika+Dimensi+Tak+Terbatas+dalam+Mekanika+dan+Fisika&amp;rft.pages=367&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2013-12-11&amp;rft.isbn=978-1-4612-0645-3&amp;rft.au=Roger+Temam&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DOB_vBwAAQBAJ%26pg%3DPA367&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-JacobLam1994-60"><span class="mw-cite-backlink"><b><a href="#cite_ref-JacobLam1994_60-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Bill Jacob; Tsit-Yuen Lam (1994). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=mHwcCAAAQBAJ&amp;pg=PA111"><i>Kemajuan Terbaru dalam Geometri Aljabar Nyata dan Bentuk Kuadrat: Prosiding Tahun RAGSQUAD, Berkeley, 1990-1991</i></a>. American Mathematical Soc. hlm.&#160;111. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/978-0-8218-5154-8" title="Istimewa:Sumber buku/978-0-8218-5154-8">978-0-8218-5154-8</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230301145147/https://books.google.com/books?id=mHwcCAAAQBAJ&amp;pg=PA111">Diarsipkan</a> dari versi asli tanggal 2023-03-01<span class="reference-accessdate">. Diakses tanggal <span class="nowrap">2020-08-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Kemajuan+Terbaru+dalam+Geometri+Aljabar+Nyata+dan+Bentuk+Kuadrat%3A+Prosiding+Tahun+RAGSQUAD%2C+Berkeley%2C+1990-1991&amp;rft.pages=111&amp;rft.pub=American+Mathematical+Soc.&amp;rft.date=1994&amp;rft.isbn=978-0-8218-5154-8&amp;rft.au=Bill+Jacob&amp;rft.au=Tsit-Yuen+Lam&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DmHwcCAAAQBAJ%26pg%3DPA111&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-ButtsBrown2012-61"><span class="mw-cite-backlink"><b><a href="#cite_ref-ButtsBrown2012_61-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Robert E. Butts; J.R. Brown (6 December 2012). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=vzTqCAAAQBAJ&amp;pg=PA127"><i>Konstruktivisme dan Sains: Esai dalam Filsafat Jerman Terbaru</i></a>. Springer Science &amp; Business Media. hlm.&#160;127–. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/978-94-009-0959-5" title="Istimewa:Sumber buku/978-94-009-0959-5">978-94-009-0959-5</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230301145201/https://books.google.com/books?id=vzTqCAAAQBAJ&amp;pg=PA127">Diarsipkan</a> dari versi asli tanggal 2023-03-01<span class="reference-accessdate">. Diakses tanggal <span class="nowrap">2020-08-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Konstruktivisme+dan+Sains%3A+Esai+dalam+Filsafat+Jerman+Terbaru&amp;rft.pages=127-&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2012-12-06&amp;rft.isbn=978-94-009-0959-5&amp;rft.au=Robert+E.+Butts&amp;rft.au=J.R.+Brown&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DvzTqCAAAQBAJ%26pg%3DPA127&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-62"><span class="mw-cite-backlink"><b><a href="#cite_ref-62">^</a></b></span> <span class="reference-text"><cite class="citation book"><a rel="nofollow" class="external text" href="https://books.google.com/books?id=xfNRAQAAMAAJ&amp;pg=PA181"><i>Science</i></a>. Moses King. 1886. hlm.&#160;181–. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230301145202/https://books.google.com/books?id=xfNRAQAAMAAJ&amp;pg=PA181">Diarsipkan</a> dari versi asli tanggal 2023-03-01<span class="reference-accessdate">. Diakses tanggal <span class="nowrap">2020-08-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Science&amp;rft.pages=181-&amp;rft.pub=Moses+King&amp;rft.date=1886&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DxfNRAQAAMAAJ%26pg%3DPA181&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Abbot2013-63"><span class="mw-cite-backlink"><b><a href="#cite_ref-Abbot2013_63-0">^</a></b></span> <span class="reference-text"><cite class="citation book">W. Abbot (11 November 2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=1LDsCAAAQBAJ&amp;pg=PP6"><i>Geometri Praktis dan Grafis Teknik: Buku Ajar untuk Mahasiswa Teknik dan Lainnya</i></a>. Springer Science &amp; Business Media. hlm.&#160;6–. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/978-94-017-2742-6" title="Istimewa:Sumber buku/978-94-017-2742-6">978-94-017-2742-6</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230301145205/https://books.google.com/books?id=1LDsCAAAQBAJ&amp;pg=PP6">Diarsipkan</a> dari versi asli tanggal 2023-03-01<span class="reference-accessdate">. Diakses tanggal <span class="nowrap">2020-08-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Geometri+Praktis+dan+Grafis+Teknik%3A+Buku+Ajar+untuk+Mahasiswa+Teknik+dan+Lainnya&amp;rft.pages=6-&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2013-11-11&amp;rft.isbn=978-94-017-2742-6&amp;rft.au=W.+Abbot&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D1LDsCAAAQBAJ%26pg%3DPP6&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-HerseyHersey2001-64"><span class="mw-cite-backlink">^ <a href="#cite_ref-HerseyHersey2001_64-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-HerseyHersey2001_64-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-HerseyHersey2001_64-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-HerseyHersey2001_64-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><cite class="citation book">George L. Hersey (March 2001). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=F1Tl9ok-7_IC"><i>Arsitektur dan Geometri di Zaman Barok</i></a>. University of Chicago Press. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/978-0-226-32783-9" title="Istimewa:Sumber buku/978-0-226-32783-9">978-0-226-32783-9</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230301145217/https://books.google.com/books?id=F1Tl9ok-7_IC">Diarsipkan</a> dari versi asli tanggal 2023-03-01<span class="reference-accessdate">. Diakses tanggal <span class="nowrap">2020-08-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Arsitektur+dan+Geometri+di+Zaman+Barok&amp;rft.pub=University+of+Chicago+Press&amp;rft.date=2001-03&amp;rft.isbn=978-0-226-32783-9&amp;rft.au=George+L.+Hersey&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DF1Tl9ok-7_IC&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-VanícekKrakiwsky2015-65"><span class="mw-cite-backlink"><b><a href="#cite_ref-VanícekKrakiwsky2015_65-0">^</a></b></span> <span class="reference-text"><cite class="citation book">P. Vanícek; E.J. Krakiwsky (3 June 2015). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=1Mz-BAAAQBAJ"><i>Geodesi: Konsep</i></a>. Elsevier. hlm.&#160;23. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/978-1-4832-9079-9" title="Istimewa:Sumber buku/978-1-4832-9079-9">978-1-4832-9079-9</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230301145205/https://books.google.com/books?id=1Mz-BAAAQBAJ">Diarsipkan</a> dari versi asli tanggal 2023-03-01<span class="reference-accessdate">. Diakses tanggal <span class="nowrap">2020-08-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Geodesi%3A+Konsep&amp;rft.pages=23&amp;rft.pub=Elsevier&amp;rft.date=2015-06-03&amp;rft.isbn=978-1-4832-9079-9&amp;rft.au=P.+Van%C3%ADcek&amp;rft.au=E.J.+Krakiwsky&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D1Mz-BAAAQBAJ&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-CummingsMorton2015-66"><span class="mw-cite-backlink"><b><a href="#cite_ref-CummingsMorton2015_66-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Russell M. Cummings; Scott A. Morton; William H. Mason; David R. McDaniel (27 April 2015). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=gwzUBwAAQBAJ&amp;pg=PA449"><i>Aerodinamika Komputasi Terapan</i></a>. Cambridge University Press. hlm.&#160;449. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/978-1-107-05374-8" title="Istimewa:Sumber buku/978-1-107-05374-8">978-1-107-05374-8</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230301145206/https://books.google.com/books?id=gwzUBwAAQBAJ&amp;pg=PA449">Diarsipkan</a> dari versi asli tanggal 2023-03-01<span class="reference-accessdate">. Diakses tanggal <span class="nowrap">2020-08-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Aerodinamika+Komputasi+Terapan&amp;rft.pages=449&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2015-04-27&amp;rft.isbn=978-1-107-05374-8&amp;rft.au=Russell+M.+Cummings&amp;rft.au=Scott+A.+Morton&amp;rft.au=William+H.+Mason&amp;rft.au=David+R.+McDaniel&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DgwzUBwAAQBAJ%26pg%3DPA449&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Williams1998-67"><span class="mw-cite-backlink"><b><a href="#cite_ref-Williams1998_67-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Roy Williams (1998). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=yNzf7OKGLxIC"><i>Geometri Navigasi</i></a>. Horwood Pub. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/978-1-898563-46-4" title="Istimewa:Sumber buku/978-1-898563-46-4">978-1-898563-46-4</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230301145150/https://books.google.com/books?id=yNzf7OKGLxIC">Diarsipkan</a> dari versi asli tanggal 2023-03-01<span class="reference-accessdate">. Diakses tanggal <span class="nowrap">2020-08-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Geometri+Navigasi&amp;rft.pub=Horwood+Pub.&amp;rft.date=1998&amp;rft.isbn=978-1-898563-46-4&amp;rft.au=Roy+Williams&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DyNzf7OKGLxIC&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Walschap2015-68"><span class="mw-cite-backlink"><b><a href="#cite_ref-Walschap2015_68-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Gerard Walschap (1 July 2015). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=cXPyCQAAQBAJ"><i>Kalkulus Multivariabel dan Geometri Diferensial</i></a>. De Gruyter. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/978-3-11-036954-0" title="Istimewa:Sumber buku/978-3-11-036954-0">978-3-11-036954-0</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230301145212/https://books.google.com/books?id=cXPyCQAAQBAJ">Diarsipkan</a> dari versi asli tanggal 2023-03-01<span class="reference-accessdate">. Diakses tanggal <span class="nowrap">2020-08-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Kalkulus+Multivariabel+dan+Geometri+Diferensial&amp;rft.pub=De+Gruyter&amp;rft.date=2015-07-01&amp;rft.isbn=978-3-11-036954-0&amp;rft.au=Gerard+Walschap&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DcXPyCQAAQBAJ&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Flanders2012-69"><span class="mw-cite-backlink"><b><a href="#cite_ref-Flanders2012_69-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Harley Flanders (26 April 2012). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=U_GLN1eOKaMC"><i>Bentuk Diferensial dengan Aplikasi untuk Ilmu Fisika</i></a>. Courier Corporation. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/978-0-486-13961-6" title="Istimewa:Sumber buku/978-0-486-13961-6">978-0-486-13961-6</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230301145212/https://books.google.com/books?id=U_GLN1eOKaMC">Diarsipkan</a> dari versi asli tanggal 2023-03-01<span class="reference-accessdate">. Diakses tanggal <span class="nowrap">2020-08-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Bentuk+Diferensial+dengan+Aplikasi+untuk+Ilmu+Fisika&amp;rft.pub=Courier+Corporation&amp;rft.date=2012-04-26&amp;rft.isbn=978-0-486-13961-6&amp;rft.au=Harley+Flanders&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DU_GLN1eOKaMC&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-MarriottSalmon2000-70"><span class="mw-cite-backlink"><b><a href="#cite_ref-MarriottSalmon2000_70-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Paul Marriott; Mark Salmon (31 Agustus 2000). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=1Jjm4I5tqkUC"><i>Aplikasi Geometri Diferensial ke Ekonometrika</i></a>. Cambridge University Press. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/978-0-521-65116-5" title="Istimewa:Sumber buku/978-0-521-65116-5">978-0-521-65116-5</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230301145157/https://books.google.com/books?id=1Jjm4I5tqkUC">Diarsipkan</a> dari versi asli tanggal 2023-03-01<span class="reference-accessdate">. Diakses tanggal <span class="nowrap">2020-08-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Aplikasi+Geometri+Diferensial+ke+Ekonometrika&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2000-08-31&amp;rft.isbn=978-0-521-65116-5&amp;rft.au=Paul+Marriott&amp;rft.au=Mark+Salmon&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D1Jjm4I5tqkUC&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-HePetoukhov2011-71"><span class="mw-cite-backlink"><b><a href="#cite_ref-HePetoukhov2011_71-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Matthew He; Sergey Petoukhov (16 March 2011). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Skov-LJ1mmQC&amp;pg=PA106"><i>Matematika Bioinformatika: Teori, Metode dan Aplikasi</i></a>. John Wiley &amp; Sons. hlm.&#160;106. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/978-1-118-09952-0" title="Istimewa:Sumber buku/978-1-118-09952-0">978-1-118-09952-0</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230301145147/https://books.google.com/books?id=Skov-LJ1mmQC&amp;pg=PA106">Diarsipkan</a> dari versi asli tanggal 2023-03-01<span class="reference-accessdate">. Diakses tanggal <span class="nowrap">2020-08-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Matematika+Bioinformatika%3A+Teori%2C+Metode+dan+Aplikasi&amp;rft.pages=106&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=2011-03-16&amp;rft.isbn=978-1-118-09952-0&amp;rft.au=Matthew+He&amp;rft.au=Sergey+Petoukhov&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DSkov-LJ1mmQC%26pg%3DPA106&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Dirac2016-72"><span class="mw-cite-backlink"><b><a href="#cite_ref-Dirac2016_72-0">^</a></b></span> <span class="reference-text"><cite class="citation book">P.A.M. Dirac (10 August 2016). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=qkWPDAAAQBAJ"><i>Teori Relativitas Umum</i></a>. Princeton University Press. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/978-1-4008-8419-3" title="Istimewa:Sumber buku/978-1-4008-8419-3">978-1-4008-8419-3</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230301145158/https://books.google.com/books?id=qkWPDAAAQBAJ">Diarsipkan</a> dari versi asli tanggal 2023-03-01<span class="reference-accessdate">. Diakses tanggal <span class="nowrap">2020-08-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Teori+Relativitas+Umum&amp;rft.pub=Princeton+University+Press&amp;rft.date=2016-08-10&amp;rft.isbn=978-1-4008-8419-3&amp;rft.au=P.A.M.+Dirac&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DqkWPDAAAQBAJ&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-AyJost2017-73"><span class="mw-cite-backlink"><b><a href="#cite_ref-AyJost2017_73-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Nihat Ay; Jürgen Jost; Hông Vân Lê; Lorenz Schwachhöfer (25 August 2017). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=pLsyDwAAQBAJ&amp;pg=PA185"><i>Geometri Informasi</i></a>. Springer. hlm.&#160;185. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/978-3-319-56478-4" title="Istimewa:Sumber buku/978-3-319-56478-4">978-3-319-56478-4</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230301145148/https://books.google.com/books?id=pLsyDwAAQBAJ&amp;pg=PA185">Diarsipkan</a> dari versi asli tanggal 2023-03-01<span class="reference-accessdate">. Diakses tanggal <span class="nowrap">2020-08-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Geometri+Informasi&amp;rft.pages=185&amp;rft.pub=Springer&amp;rft.date=2017-08-25&amp;rft.isbn=978-3-319-56478-4&amp;rft.au=Nihat+Ay&amp;rft.au=J%C3%BCrgen+Jost&amp;rft.au=H%C3%B4ng+V%C3%A2n+L%C3%AA&amp;rft.au=Lorenz+Schwachh%C3%B6fer&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DpLsyDwAAQBAJ%26pg%3DPA185&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Rosenfeld2012-74"><span class="mw-cite-backlink"><b><a href="#cite_ref-Rosenfeld2012_74-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Boris A. Rosenfeld (8 September 2012). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=3wzSBwAAQBAJ"><i>Sejarah Geometri Non-Euclidean: Evolusi Konsep Ruang Geometri</i></a>. Springer Science &amp; Business Media. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/978-1-4419-8680-1" title="Istimewa:Sumber buku/978-1-4419-8680-1">978-1-4419-8680-1</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230301145148/https://books.google.com/books?id=3wzSBwAAQBAJ">Diarsipkan</a> dari versi asli tanggal 2023-03-01<span class="reference-accessdate">. Diakses tanggal <span class="nowrap">2020-08-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Sejarah+Geometri+Non-Euclidean%3A+Evolusi+Konsep+Ruang+Geometri&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2012-09-08&amp;rft.isbn=978-1-4419-8680-1&amp;rft.au=Boris+A.+Rosenfeld&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D3wzSBwAAQBAJ&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-75"><span class="mw-cite-backlink"><b><a href="#cite_ref-75">^</a></b></span> <span class="reference-text">Kline (1972) "Pemikiran matematis dari zaman kuno hingga modern", Oxford University Press, p. 1032. Kant tidak menolak 'kemungkinan' logis (analitik a priori) dari geometri non-Euklides, lihat <a href="/w/index.php?title=Jeremy_Gray&amp;action=edit&amp;redlink=1" class="new" title="Jeremy Gray (halaman belum tersedia)">Jeremy Gray</a>, "Ide Ruang Euclidean, Non-Euklides, dan Relativistik", Oxford, 1989; p. 85. Beberapa menyiratkan bahwa, dalam terang ini, Kant sebenarnya telah <i>meramalkan</i> perkembangan geometri non-Euklides, lih. Leonard Nelson, "Filsafat dan Aksioma," Socratic Method and Critical Philosophy, Dover, 1965, p. 164.</span> </li> <li id="cite_note-Sommerville1919-76"><span class="mw-cite-backlink"><b><a href="#cite_ref-Sommerville1919_76-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Duncan M'Laren Young Sommerville (1919). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=6eASAQAAMAAJ&amp;pg=PA15"><i>Elemen Geometri Non-Euklides ...</i></a> Open Court. hlm.&#160;15ff. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230301145217/https://books.google.com/books?id=6eASAQAAMAAJ&amp;pg=PA15">Diarsipkan</a> dari versi asli tanggal 2023-03-01<span class="reference-accessdate">. Diakses tanggal <span class="nowrap">2020-08-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Elemen+Geometri+Non-Euklides+...&amp;rft.pages=15ff&amp;rft.pub=Open+Court&amp;rft.date=1919&amp;rft.au=Duncan+M%27Laren+Young+Sommerville&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D6eASAQAAMAAJ%26pg%3DPA15&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-77"><span class="mw-cite-backlink"><b><a href="#cite_ref-77">^</a></b></span> <span class="reference-text"><cite class="citation web"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20160318034045/http://www.maths.tcd.ie/pub/HistMath/People/Riemann/Geom/">"Ueber die Hypothesen, welche der Geometrie zu Grunde liegen"</a>. Diarsipkan dari <a rel="nofollow" class="external text" href="http://www.maths.tcd.ie/pub/HistMath/People/Riemann/Geom/">versi asli</a> tanggal 18 March 2016.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Ueber+die+Hypothesen%2C+welche+der+Geometrie+zu+Grunde+liegen&amp;rft_id=http%3A%2F%2Fwww.maths.tcd.ie%2Fpub%2FHistMath%2FPeople%2FRiemann%2FGeom%2F&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span> <span style="display:none;font-size:100%" class="error citation-comment">Parameter <code style="color:inherit; border:inherit; padding:inherit;">&#124;url-status=</code> yang tidak diketahui akan diabaikan (<a href="/wiki/Bantuan:Galat_CS1#parameter_ignored" title="Bantuan:Galat CS1">bantuan</a>)</span></span> </li> <li id="cite_note-Pesic2007-78"><span class="mw-cite-backlink"><b><a href="#cite_ref-Pesic2007_78-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Peter Pesic (1 January 2007). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Z67x6IOuOUAC"><i>Di luar Geometri: Makalah Klasik dari Riemann hingga Einstein</i></a>. Courier Corporation. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/978-0-486-45350-7" title="Istimewa:Sumber buku/978-0-486-45350-7">978-0-486-45350-7</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230301145149/https://books.google.com/books?id=Z67x6IOuOUAC">Diarsipkan</a> dari versi asli tanggal 2023-03-01<span class="reference-accessdate">. Diakses tanggal <span class="nowrap">2020-08-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Di+luar+Geometri%3A+Makalah+Klasik+dari+Riemann+hingga+Einstein&amp;rft.pub=Courier+Corporation&amp;rft.date=2007-01-01&amp;rft.isbn=978-0-486-45350-7&amp;rft.au=Peter+Pesic&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DZ67x6IOuOUAC&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Richter-Gebert2011-79"><span class="mw-cite-backlink"><b><a href="#cite_ref-Richter-Gebert2011_79-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Jürgen Richter-Gebert (4 February 2011). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=F_NP8Kub2XYC"><i>Perspektif tentang Geometri Proyektif: Tur Terpandu Melalui Geometri Nyata dan Kompleks</i></a>. Springer Science &amp; Business Media. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/978-3-642-17286-1" title="Istimewa:Sumber buku/978-3-642-17286-1">978-3-642-17286-1</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230301145147/https://books.google.com/books?id=F_NP8Kub2XYC">Diarsipkan</a> dari versi asli tanggal 2023-03-01<span class="reference-accessdate">. Diakses tanggal <span class="nowrap">2020-08-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Perspektif+tentang+Geometri+Proyektif%3A+Tur+Terpandu+Melalui+Geometri+Nyata+dan+Kompleks&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2011-02-04&amp;rft.isbn=978-3-642-17286-1&amp;rft.au=J%C3%BCrgen+Richter-Gebert&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DF_NP8Kub2XYC&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Elam2001-80"><span class="mw-cite-backlink"><b><a href="#cite_ref-Elam2001_80-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Kimberly Elam (2001). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=JXIEz2XYnp8C"><i>Geometri Desain: Studi dalam Proporsi dan Komposisi</i></a>. Princeton Architectural Press. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/978-1-56898-249-6" title="Istimewa:Sumber buku/978-1-56898-249-6">978-1-56898-249-6</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230301145149/https://books.google.com/books?id=JXIEz2XYnp8C">Diarsipkan</a> dari versi asli tanggal 2023-03-01<span class="reference-accessdate">. Diakses tanggal <span class="nowrap">2020-08-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Geometri+Desain%3A+Studi+dalam+Proporsi+dan+Komposisi&amp;rft.pub=Princeton+Architectural+Press&amp;rft.date=2001&amp;rft.isbn=978-1-56898-249-6&amp;rft.au=Kimberly+Elam&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DJXIEz2XYnp8C&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Guigar2004-81"><span class="mw-cite-backlink"><b><a href="#cite_ref-Guigar2004_81-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Brad J. Guigar (4 November 2004). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=7gftDQAAQBAJ&amp;pg=PT82"><i>The Everything Cartooning Book: Buat Kartun Unik Dan Terinspirasi Untuk Kesenangan Dan Untung</i></a>. Adams Media. hlm.&#160;82–. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/978-1-4405-2305-2" title="Istimewa:Sumber buku/978-1-4405-2305-2">978-1-4405-2305-2</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230301145157/https://books.google.com/books?id=7gftDQAAQBAJ&amp;pg=PT82">Diarsipkan</a> dari versi asli tanggal 2023-03-01<span class="reference-accessdate">. Diakses tanggal <span class="nowrap">2020-08-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Everything+Cartooning+Book%3A+Buat+Kartun+Unik+Dan+Terinspirasi+Untuk+Kesenangan+Dan+Untung&amp;rft.pages=82-&amp;rft.pub=Adams+Media&amp;rft.date=2004-11-04&amp;rft.isbn=978-1-4405-2305-2&amp;rft.au=Brad+J.+Guigar&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D7gftDQAAQBAJ%26pg%3DPT82&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Livio2008-82"><span class="mw-cite-backlink"><b><a href="#cite_ref-Livio2008_82-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Mario Livio (12 November 2008). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=bUARfgWRH14C&amp;pg=PA166"><i>Rasio Emas: Kisah PHI, Angka Paling Mengagumkan di Dunia</i></a>. Crown/Archetype. hlm.&#160;166. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/978-0-307-48552-6" title="Istimewa:Sumber buku/978-0-307-48552-6">978-0-307-48552-6</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230301145159/https://books.google.com/books?id=bUARfgWRH14C&amp;pg=PA166">Diarsipkan</a> dari versi asli tanggal 2023-03-01<span class="reference-accessdate">. Diakses tanggal <span class="nowrap">2020-08-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Rasio+Emas%3A+Kisah+PHI%2C+Angka+Paling+Mengagumkan+di+Dunia&amp;rft.pages=166&amp;rft.pub=Crown%2FArchetype&amp;rft.date=2008-11-12&amp;rft.isbn=978-0-307-48552-6&amp;rft.au=Mario+Livio&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DbUARfgWRH14C%26pg%3DPA166&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-EmmerSchattschneider2007-83"><span class="mw-cite-backlink"><b><a href="#cite_ref-EmmerSchattschneider2007_83-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Michele Emmer; Doris Schattschneider (8 Mei 2007). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=5DDyBwAAQBAJ&amp;pg=PA107"><i>M.C. Warisan Escher: Perayaan Seratus Tahun</i></a>. Springer. hlm.&#160;107. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/978-3-540-28849-7" title="Istimewa:Sumber buku/978-3-540-28849-7">978-3-540-28849-7</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230301145200/https://books.google.com/books?id=5DDyBwAAQBAJ&amp;pg=PA107">Diarsipkan</a> dari versi asli tanggal 2023-03-01<span class="reference-accessdate">. Diakses tanggal <span class="nowrap">2020-08-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=M.C.+Warisan+Escher%3A+Perayaan+Seratus+Tahun&amp;rft.pages=107&amp;rft.pub=Springer&amp;rft.date=2007-05-08&amp;rft.isbn=978-3-540-28849-7&amp;rft.au=Michele+Emmer&amp;rft.au=Doris+Schattschneider&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D5DDyBwAAQBAJ%26pg%3DPA107&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-CapitoloSchwab2004-84"><span class="mw-cite-backlink"><b><a href="#cite_ref-CapitoloSchwab2004_84-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Robert Capitolo; Ken Schwab (2004). <span class="plainlinks"><a rel="nofollow" class="external text" href="https://archive.org/details/drawingcourse1010000capi"><i>Kursus Menggambar 101</i><span style="padding-left:0.15em"><span typeof="mw:File"><span title="Perlu mendaftar (gratis)"><img alt="Perlu mendaftar (gratis)" src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Lock-blue-alt-2.svg/9px-Lock-blue-alt-2.svg.png" decoding="async" width="9" height="14" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Lock-blue-alt-2.svg/14px-Lock-blue-alt-2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Lock-blue-alt-2.svg/18px-Lock-blue-alt-2.svg.png 2x" data-file-width="512" data-file-height="813" /></span></span></span></a></span>. Sterling Publishing Company, Inc. hlm.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/drawingcourse1010000capi/page/22">22</a>. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/978-1-4027-0383-6" title="Istimewa:Sumber buku/978-1-4027-0383-6">978-1-4027-0383-6</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Kursus+Menggambar+101&amp;rft.pages=22&amp;rft.pub=Sterling+Publishing+Company%2C+Inc.&amp;rft.date=2004&amp;rft.isbn=978-1-4027-0383-6&amp;rft.au=Robert+Capitolo&amp;rft.au=Ken+Schwab&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fdrawingcourse1010000capi&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Gelineau2011-85"><span class="mw-cite-backlink"><b><a href="#cite_ref-Gelineau2011_85-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Phyllis Gelineau (1 January 2011). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=1Ib0mUl_VhwC&amp;pg=PA55"><i>Mengintegrasikan Seni di Seluruh Kurikulum Sekolah Dasar</i></a>. Cengage Learning. hlm.&#160;55. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/978-1-111-30126-2" title="Istimewa:Sumber buku/978-1-111-30126-2">978-1-111-30126-2</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230301145200/https://books.google.com/books?id=1Ib0mUl_VhwC&amp;pg=PA55">Diarsipkan</a> dari versi asli tanggal 2023-03-01<span class="reference-accessdate">. Diakses tanggal <span class="nowrap">2020-08-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Mengintegrasikan+Seni+di+Seluruh+Kurikulum+Sekolah+Dasar&amp;rft.pages=55&amp;rft.pub=Cengage+Learning&amp;rft.date=2011-01-01&amp;rft.isbn=978-1-111-30126-2&amp;rft.au=Phyllis+Gelineau&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D1Ib0mUl_VhwC%26pg%3DPA55&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-CeccatoHesselgren2016-86"><span class="mw-cite-backlink"><b><a href="#cite_ref-CeccatoHesselgren2016_86-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Cristiano Ceccato; Lars Hesselgren; Mark Pauly; Helmut Pottmann, Johannes Wallner (5 December 2016). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=q45sDwAAQBAJ&amp;pg=PA6"><i>Kemajuan dalam Geometri Arsitektur 2010</i></a>. Birkhäuser. hlm.&#160;6. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/978-3-99043-371-3" title="Istimewa:Sumber buku/978-3-99043-371-3">978-3-99043-371-3</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230301145200/https://books.google.com/books?id=q45sDwAAQBAJ&amp;pg=PA6">Diarsipkan</a> dari versi asli tanggal 2023-03-01<span class="reference-accessdate">. Diakses tanggal <span class="nowrap">2020-08-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Kemajuan+dalam+Geometri+Arsitektur+2010&amp;rft.pages=6&amp;rft.pub=Birkh%C3%A4user&amp;rft.date=2016-12-05&amp;rft.isbn=978-3-99043-371-3&amp;rft.au=Cristiano+Ceccato&amp;rft.au=Lars+Hesselgren&amp;rft.au=Mark+Pauly&amp;rft.au=Helmut+Pottmann%2C+Johannes+Wallner&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dq45sDwAAQBAJ%26pg%3DPA6&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Pottmann2007-87"><span class="mw-cite-backlink"><b><a href="#cite_ref-Pottmann2007_87-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Helmut Pottmann (2007). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=bIceAQAAIAAJ"><i>Geometri arsitektur</i></a>. Bentley Institute Press. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230301145202/https://books.google.com/books?id=bIceAQAAIAAJ">Diarsipkan</a> dari versi asli tanggal 2023-03-01<span class="reference-accessdate">. Diakses tanggal <span class="nowrap">2020-08-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Geometri+arsitektur&amp;rft.pub=Bentley+Institute+Press&amp;rft.date=2007&amp;rft.au=Helmut+Pottmann&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DbIceAQAAIAAJ&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-MoffettFazio2003-88"><span class="mw-cite-backlink"><b><a href="#cite_ref-MoffettFazio2003_88-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Marian Moffett; Michael W. Fazio; Lawrence Wodehouse (2003). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=IFMohetegAcC&amp;pg=PT371"><i>Sejarah Arsitektur Dunia</i></a>. Laurence King Publishing. hlm.&#160;371. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/978-1-85669-371-4" title="Istimewa:Sumber buku/978-1-85669-371-4">978-1-85669-371-4</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230301145232/https://books.google.com/books?id=IFMohetegAcC&amp;pg=PT371">Diarsipkan</a> dari versi asli tanggal 2023-03-01<span class="reference-accessdate">. Diakses tanggal <span class="nowrap">2020-08-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Sejarah+Arsitektur+Dunia&amp;rft.pages=371&amp;rft.pub=Laurence+King+Publishing&amp;rft.date=2003&amp;rft.isbn=978-1-85669-371-4&amp;rft.au=Marian+Moffett&amp;rft.au=Michael+W.+Fazio&amp;rft.au=Lawrence+Wodehouse&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DIFMohetegAcC%26pg%3DPT371&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-GreenGreen1985-89"><span class="mw-cite-backlink"><b><a href="#cite_ref-GreenGreen1985_89-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Robin M. Green; Robin Michael Green (31 October 1985). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=wOpaUFQFwTwC&amp;pg=PA1"><i>Astronomi Bulat</i></a>. Cambridge University Press. hlm.&#160;1. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/978-0-521-31779-5" title="Istimewa:Sumber buku/978-0-521-31779-5">978-0-521-31779-5</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230301145206/https://books.google.com/books?id=wOpaUFQFwTwC&amp;pg=PA1">Diarsipkan</a> dari versi asli tanggal 2023-03-01<span class="reference-accessdate">. Diakses tanggal <span class="nowrap">2020-08-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Astronomi+Bulat&amp;rft.pages=1&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1985-10-31&amp;rft.isbn=978-0-521-31779-5&amp;rft.au=Robin+M.+Green&amp;rft.au=Robin+Michael+Green&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DwOpaUFQFwTwC%26pg%3DPA1&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Alekseevskiĭ2008-90"><span class="mw-cite-backlink"><b><a href="#cite_ref-Alekseevskiĭ2008_90-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Dmitriĭ Vladimirovich Alekseevskiĭ (2008). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=K6-TgxMKu4QC"><i>Perkembangan Terbaru dalam Geometri Pseudo-Riemannian</i></a>. Masyarakat Matematika Eropa. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/978-3-03719-051-7" title="Istimewa:Sumber buku/978-3-03719-051-7">978-3-03719-051-7</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230301145210/https://books.google.com/books?id=K6-TgxMKu4QC">Diarsipkan</a> dari versi asli tanggal 2023-03-01<span class="reference-accessdate">. Diakses tanggal <span class="nowrap">2020-08-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Perkembangan+Terbaru+dalam+Geometri+Pseudo-Riemannian&amp;rft.pub=Masyarakat+Matematika+Eropa&amp;rft.date=2008&amp;rft.isbn=978-3-03719-051-7&amp;rft.au=Dmitri%C4%AD+Vladimirovich+Alekseevski%C4%AD&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DK6-TgxMKu4QC&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-YauNadis2010-91"><span class="mw-cite-backlink"><b><a href="#cite_ref-YauNadis2010_91-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Shing-Tung Yau; Steve Nadis (7 September 2010). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=M40Ytp8Os_gC"><i>Bentuk Ruang Dalam: Teori String dan Geometri Dimensi Tersembunyi Alam Semesta</i></a>. Basic Books. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/978-0-465-02266-3" title="Istimewa:Sumber buku/978-0-465-02266-3">978-0-465-02266-3</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230301145212/https://books.google.com/books?id=M40Ytp8Os_gC">Diarsipkan</a> dari versi asli tanggal 2023-03-01<span class="reference-accessdate">. Diakses tanggal <span class="nowrap">2020-08-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Bentuk+Ruang+Dalam%3A+Teori+String+dan+Geometri+Dimensi+Tersembunyi+Alam+Semesta&amp;rft.pub=Basic+Books&amp;rft.date=2010-09-07&amp;rft.isbn=978-0-465-02266-3&amp;rft.au=Shing-Tung+Yau&amp;rft.au=Steve+Nadis&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DM40Ytp8Os_gC&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-92"><span class="mw-cite-backlink"><b><a href="#cite_ref-92">^</a></b></span> <span class="reference-text"><cite class="citation book">Bengtsson, Ingemar; <a href="/w/index.php?title=Karol_%C5%BByczkowski&amp;action=edit&amp;redlink=1" class="new" title="Karol Życzkowski (halaman belum tersedia)">Życzkowski, Karol</a> (2017). <i>Geometri Status Kuantum: Pengantar Keterikatan Kuantum</i> (edisi ke-2nd). <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a>. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/9781107026254" title="Istimewa:Sumber buku/9781107026254">9781107026254</a>. <a href="/wiki/OCLC" class="mw-redirect" title="OCLC">OCLC</a>&#160;<a rel="nofollow" class="external text" href="//www.worldcat.org/oclc/1004572791">1004572791</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Geometri+Status+Kuantum%3A+Pengantar+Keterikatan+Kuantum&amp;rft.edition=2nd&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2017&amp;rft_id=info%3Aoclcnum%2F1004572791&amp;rft.isbn=9781107026254&amp;rft.aulast=Bengtsson&amp;rft.aufirst=Ingemar&amp;rft.au=%C5%BByczkowski%2C+Karol&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Boyer2012-93"><span class="mw-cite-backlink"><b><a href="#cite_ref-Boyer2012_93-0">^</a></b></span> <span class="error mw-ext-cite-error" lang="id" dir="ltr">Kesalahan pengutipan: Tag <code>&lt;ref&gt;</code> tidak sah; tidak ditemukan teks untuk ref bernama <code>Boyer2012</code></span></li> <li id="cite_note-FlandersPrice2014-94"><span class="mw-cite-backlink"><b><a href="#cite_ref-FlandersPrice2014_94-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Harley Flanders; Justin J. Price (10 May 2014). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=5abiBQAAQBAJ"><i>Kalkulus dengan Geometri Analitik</i></a>. Elsevier Science. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/978-1-4832-6240-6" title="Istimewa:Sumber buku/978-1-4832-6240-6">978-1-4832-6240-6</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230301145212/https://books.google.com/books?id=5abiBQAAQBAJ">Diarsipkan</a> dari versi asli tanggal 2023-03-01<span class="reference-accessdate">. Diakses tanggal <span class="nowrap">2020-08-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Kalkulus+dengan+Geometri+Analitik&amp;rft.pub=Elsevier+Science&amp;rft.date=2014-05-10&amp;rft.isbn=978-1-4832-6240-6&amp;rft.au=Harley+Flanders&amp;rft.au=Justin+J.+Price&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D5abiBQAAQBAJ&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-RogawskiAdams2015-95"><span class="mw-cite-backlink"><b><a href="#cite_ref-RogawskiAdams2015_95-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Jon Rogawski; Colin Adams (30 January 2015). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=OWeZBgAAQBAJ"><i>Kalkulus</i></a>. W. H. Freeman. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/978-1-4641-7499-5" title="Istimewa:Sumber buku/978-1-4641-7499-5">978-1-4641-7499-5</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230301145214/https://books.google.com/books?id=OWeZBgAAQBAJ">Diarsipkan</a> dari versi asli tanggal 2023-03-01<span class="reference-accessdate">. Diakses tanggal <span class="nowrap">2020-08-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Kalkulus&amp;rft.pub=W.+H.+Freeman&amp;rft.date=2015-01-30&amp;rft.isbn=978-1-4641-7499-5&amp;rft.au=Jon+Rogawski&amp;rft.au=Colin+Adams&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DOWeZBgAAQBAJ&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Lozano-Robledo2019-96"><span class="mw-cite-backlink"><b><a href="#cite_ref-Lozano-Robledo2019_96-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Álvaro Lozano-Robledo (21 March 2019). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=ESiODwAAQBAJ"><i>Teori Bilangan dan Geometri: Pengantar Geometri Aritmatika</i></a>. American Mathematical Soc. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/978-1-4704-5016-8" title="Istimewa:Sumber buku/978-1-4704-5016-8">978-1-4704-5016-8</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230301145213/https://books.google.com/books?id=ESiODwAAQBAJ">Diarsipkan</a> dari versi asli tanggal 2023-03-01<span class="reference-accessdate">. Diakses tanggal <span class="nowrap">2020-08-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Teori+Bilangan+dan+Geometri%3A+Pengantar+Geometri+Aritmatika&amp;rft.pub=American+Mathematical+Soc.&amp;rft.date=2019-03-21&amp;rft.isbn=978-1-4704-5016-8&amp;rft.au=%C3%81lvaro+Lozano-Robledo&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DESiODwAAQBAJ&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Sangalli2009-97"><span class="mw-cite-backlink"><b><a href="#cite_ref-Sangalli2009_97-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Arturo Sangalli (10 May 2009). <span class="plainlinks"><a rel="nofollow" class="external text" href="https://archive.org/details/pythagorasreveng0000sang"><i>Balas Dendam Pythagoras: Misteri Matematika</i><span style="padding-left:0.15em"><span typeof="mw:File"><span title="Perlu mendaftar (gratis)"><img alt="Perlu mendaftar (gratis)" src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Lock-blue-alt-2.svg/9px-Lock-blue-alt-2.svg.png" decoding="async" width="9" height="14" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Lock-blue-alt-2.svg/14px-Lock-blue-alt-2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Lock-blue-alt-2.svg/18px-Lock-blue-alt-2.svg.png 2x" data-file-width="512" data-file-height="813" /></span></span></span></a></span>. Princeton University Press. hlm.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/pythagorasreveng0000sang/page/57">57</a>. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/978-0-691-04955-7" title="Istimewa:Sumber buku/978-0-691-04955-7">978-0-691-04955-7</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Balas+Dendam+Pythagoras%3A+Misteri+Matematika&amp;rft.pages=57&amp;rft.pub=Princeton+University+Press&amp;rft.date=2009-05-10&amp;rft.isbn=978-0-691-04955-7&amp;rft.au=Arturo+Sangalli&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fpythagorasreveng0000sang&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-CornellSilverman2013-98"><span class="mw-cite-backlink"><b><a href="#cite_ref-CornellSilverman2013_98-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Gary Cornell; Joseph H. Silverman; Glenn Stevens (1 December 2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=jD3TBwAAQBAJ"><i>Bentuk Modular dan Teorema Terakhir Fermat</i></a>. Springer Science &amp; Business Media. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/978-1-4612-1974-3" title="Istimewa:Sumber buku/978-1-4612-1974-3">978-1-4612-1974-3</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230301145214/https://books.google.com/books?id=jD3TBwAAQBAJ">Diarsipkan</a> dari versi asli tanggal 2023-03-01<span class="reference-accessdate">. Diakses tanggal <span class="nowrap">2020-08-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Bentuk+Modular+dan+Teorema+Terakhir+Fermat&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2013-12-01&amp;rft.isbn=978-1-4612-1974-3&amp;rft.au=Gary+Cornell&amp;rft.au=Joseph+H.+Silverman&amp;rft.au=Glenn+Stevens&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DjD3TBwAAQBAJ&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="Sumber">Sumber</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometri&amp;veaction=edit&amp;section=48" title="Sunting bagian: Sumber" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometri&amp;action=edit&amp;section=48" title="Sunting kode sumber bagian: Sumber"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><cite class="citation book"><a href="/w/index.php?title=Carl_Benjamin_Boyer&amp;action=edit&amp;redlink=1" class="new" title="Carl Benjamin Boyer (halaman belum tersedia)">Boyer, C.B.</a> (1991) [1989]. <span class="plainlinks"><a rel="nofollow" class="external text" href="https://archive.org/details/historyofmathema00boye"><i>A History of Mathematics</i><span style="padding-left:0.15em"><span typeof="mw:File"><span title="Perlu mendaftar (gratis)"><img alt="Perlu mendaftar (gratis)" src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Lock-blue-alt-2.svg/9px-Lock-blue-alt-2.svg.png" decoding="async" width="9" height="14" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Lock-blue-alt-2.svg/14px-Lock-blue-alt-2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Lock-blue-alt-2.svg/18px-Lock-blue-alt-2.svg.png 2x" data-file-width="512" data-file-height="813" /></span></span></span></a></span> (edisi ke-Second edition, revised by <a href="/w/index.php?title=Uta_Merzbach&amp;action=edit&amp;redlink=1" class="new" title="Uta Merzbach (halaman belum tersedia)">Uta C. Merzbach</a>). New York: Wiley. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/978-0-471-54397-8" title="Istimewa:Sumber buku/978-0-471-54397-8">978-0-471-54397-8</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+History+of+Mathematics&amp;rft.place=New+York&amp;rft.edition=Second+edition%2C+revised+by+Uta+C.+Merzbach&amp;rft.pub=Wiley&amp;rft.date=1991&amp;rft.isbn=978-0-471-54397-8&amp;rft.aulast=Boyer&amp;rft.aufirst=C.B.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fhistoryofmathema00boye&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li><cite class="citation book">Cooke, Roger (2005). <a rel="nofollow" class="external text" href="https://archive.org/details/historyofmathema0000cook_o3g3"><i>The History of Mathematics</i></a>. New York: Wiley-Interscience. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/978-0-471-44459-6" title="Istimewa:Sumber buku/978-0-471-44459-6">978-0-471-44459-6</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+History+of+Mathematics&amp;rft.place=New+York&amp;rft.pub=Wiley-Interscience&amp;rft.date=2005&amp;rft.isbn=978-0-471-44459-6&amp;rft.aulast=Cooke&amp;rft.aufirst=Roger&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fhistoryofmathema0000cook_o3g3&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li><cite class="citation book">Hayashi, Takao (2003). "Indian Mathematics". Dalam Grattan-Guinness, Ivor. <i>Companion Encyclopedia of the History and Philosophy of the Mathematical Sciences</i>. <b>1</b>. Baltimore, MD: The <a href="/wiki/Johns_Hopkins_University_Press" title="Johns Hopkins University Press">Johns Hopkins University Press</a>. hlm.&#160;118–130. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/978-0-8018-7396-6" title="Istimewa:Sumber buku/978-0-8018-7396-6">978-0-8018-7396-6</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Indian+Mathematics&amp;rft.btitle=Companion+Encyclopedia+of+the+History+and+Philosophy+of+the+Mathematical+Sciences&amp;rft.place=Baltimore%2C+MD&amp;rft.pages=118-130&amp;rft.pub=The+Johns+Hopkins+University+Press&amp;rft.date=2003&amp;rft.isbn=978-0-8018-7396-6&amp;rft.aulast=Hayashi&amp;rft.aufirst=Takao&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li><cite class="citation book">Hayashi, Takao (2005). "Indian Mathematics". Dalam Flood, Gavin. <i>The Blackwell Companion to Hinduism</i>. Oxford: <a href="/w/index.php?title=Basil_Blackwell&amp;action=edit&amp;redlink=1" class="new" title="Basil Blackwell (halaman belum tersedia)">Basil Blackwell</a>. hlm.&#160;360–375. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/978-1-4051-3251-0" title="Istimewa:Sumber buku/978-1-4051-3251-0">978-1-4051-3251-0</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Indian+Mathematics&amp;rft.btitle=The+Blackwell+Companion+to+Hinduism&amp;rft.place=Oxford&amp;rft.pages=360-375&amp;rft.pub=Basil+Blackwell&amp;rft.date=2005&amp;rft.isbn=978-1-4051-3251-0&amp;rft.aulast=Hayashi&amp;rft.aufirst=Takao&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li><cite class="citation book">Nikolai I. Lobachevsky (2010). <i>Pangeometry</i>. Heritage of European Mathematics Series. <b>4</b>. translator and editor: A. Papadopoulos. European Mathematical Society.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Pangeometry&amp;rft.series=Heritage+of+European+Mathematics+Series&amp;rft.pub=European+Mathematical+Society&amp;rft.date=2010&amp;rft.au=Nikolai+I.+Lobachevsky&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="Bacaan_lebih_lanjut">Bacaan lebih lanjut</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometri&amp;veaction=edit&amp;section=49" title="Sunting bagian: Bacaan lebih lanjut" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometri&amp;action=edit&amp;section=49" title="Sunting kode sumber bagian: Bacaan lebih lanjut"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><cite class="citation book"><a href="/w/index.php?title=Jay_Kappraff&amp;action=edit&amp;redlink=1" class="new" title="Jay Kappraff (halaman belum tersedia)">Jay Kappraff</a> (2014). <a rel="nofollow" class="external text" href="http://www.worldscientific.com/worldscibooks/10.1142/8952"><i>A Participatory Approach to Modern Geometry</i></a>. World Scientific Publishing. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/978-981-4556-70-5" title="Istimewa:Sumber buku/978-981-4556-70-5">978-981-4556-70-5</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230209215011/https://www.worldscientific.com/worldscibooks/10.1142/8952">Diarsipkan</a> dari versi asli tanggal 2023-02-09<span class="reference-accessdate">. Diakses tanggal <span class="nowrap">2020-08-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Participatory+Approach+to+Modern+Geometry&amp;rft.pub=World+Scientific+Publishing&amp;rft.date=2014&amp;rft.isbn=978-981-4556-70-5&amp;rft.au=Jay+Kappraff&amp;rft_id=http%3A%2F%2Fwww.worldscientific.com%2Fworldscibooks%2F10.1142%2F8952&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li><cite class="citation book"><a href="/w/index.php?title=Leonard_Mlodinow&amp;action=edit&amp;redlink=1" class="new" title="Leonard Mlodinow (halaman belum tersedia)">Leonard Mlodinow</a> (1992). <i>Euclid's Window – The Story of Geometry from Parallel Lines to Hyperspace</i> (edisi ke-UK). Allen Lane.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Euclid%27s+Window+%E2%80%93+The+Story+of+Geometry+from+Parallel+Lines+to+Hyperspace&amp;rft.edition=UK&amp;rft.pub=Allen+Lane&amp;rft.date=1992&amp;rft.au=Leonard+Mlodinow&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span> <sup class="noprint Inline-Template"><span title="Beri &#73;SBN untuk buku ini." style="white-space: nowrap;">&#91;<i><a href="/wiki/Wikipedia:Mengutip_sumber" class="mw-redirect" title="Wikipedia:Mengutip sumber">tanpa&#160;ISBN</a></i>&#93;</span></sup></li></ul> <div class="mw-heading mw-heading2"><h2 id="Pranala_luar">Pranala luar</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometri&amp;veaction=edit&amp;section=50" title="Sunting bagian: Pranala luar" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometri&amp;action=edit&amp;section=50" title="Sunting kode sumber bagian: Pranala luar"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <table class="metadata plainlinks mbox-small" style="border:1px solid #aaa; background-color:#f9f9f9;padding:3px;"> <tbody><tr style="height:25px;"> <td colspan="2" style="margin: auto; text-align: center;padding-bottom:5px;"><b>Cari tahu mengenai Geometry pada proyek-proyek Wikimedia lainnya:</b> </td></tr> <tr style="height:25px;"> <td><span typeof="mw:File"><a href="//id.wiktionary.org/wiki/Special:Search/Geometry" title="Cari di Wiktionary"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/7f/Wiktionary-logo-id.svg/21px-Wiktionary-logo-id.svg.png" decoding="async" width="21" height="25" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/7f/Wiktionary-logo-id.svg/31px-Wiktionary-logo-id.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/7f/Wiktionary-logo-id.svg/41px-Wiktionary-logo-id.svg.png 2x" data-file-width="391" data-file-height="474" /></a></span></td> <td><a href="https://id.wiktionary.org/wiki/Special:Search/Geometry" class="extiw" title="wikt:Special:Search/Geometry">Definisi dan terjemahan</a> dari Wiktionary<br /> </td></tr> <tr style="height:25px;"> <td><span typeof="mw:File"><a href="//commons.wikimedia.org/wiki/Special:Search/Geometry" title="Cari di Commons"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png" decoding="async" width="18" height="25" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/28px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/37px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></a></span></td> <td><a href="https://commons.wikimedia.org/wiki/Special:Search/Geometry" class="extiw" title="commons:Special:Search/Geometry">Gambar dan media</a> dari Commons<br /> </td></tr> <tr style="height:25px;"> <td><span typeof="mw:File"><a href="//id.wikinews.org/wiki/Special:Search/Geometry" title="Cari di Wikinews"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/24/Wikinews-logo.svg/25px-Wikinews-logo.svg.png" decoding="async" width="25" height="14" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/24/Wikinews-logo.svg/38px-Wikinews-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/24/Wikinews-logo.svg/50px-Wikinews-logo.svg.png 2x" data-file-width="759" data-file-height="415" /></a></span></td> <td><a href="https://id.wikinews.org/wiki/Special:Search/Geometry" class="extiw" title="n:Special:Search/Geometry">Berita</a> dari Wikinews<br /> </td></tr> <tr style="height:25px;"> <td><span typeof="mw:File"><a href="//id.wikiquote.org/wiki/Special:Search/Geometry" title="Cari di Wikiquote"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/21px-Wikiquote-logo.svg.png" decoding="async" width="21" height="25" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/32px-Wikiquote-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/42px-Wikiquote-logo.svg.png 2x" data-file-width="300" data-file-height="355" /></a></span></td> <td><a href="https://id.wikiquote.org/wiki/Special:Search/Geometry" class="extiw" title="q:Special:Search/Geometry">Kutipan</a> dari Wikiquote<br /> </td></tr> <tr style="height:25px;"> <td><span typeof="mw:File"><a href="//id.wikisource.org/wiki/Special:Search/Geometry" title="Cari di Wikisource"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/24px-Wikisource-logo.svg.png" decoding="async" width="24" height="25" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/36px-Wikisource-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/48px-Wikisource-logo.svg.png 2x" data-file-width="410" data-file-height="430" /></a></span></td> <td><a href="https://id.wikisource.org/wiki/Special:Search/Geometry" class="extiw" title="s:Special:Search/Geometry">Teks sumber</a> dari Wikisource<br /> </td></tr> <tr style="height:25px;"> <td><span typeof="mw:File"><a href="//id.wikibooks.org/wiki/Special:Search/Geometry" title="Cari di Wikibuku"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikibooks-logo.svg/25px-Wikibooks-logo.svg.png" decoding="async" width="25" height="25" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikibooks-logo.svg/38px-Wikibooks-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikibooks-logo.svg/50px-Wikibooks-logo.svg.png 2x" data-file-width="300" data-file-height="300" /></a></span></td> <td><a href="https://id.wikibooks.org/wiki/Special:Search/Geometry" class="extiw" title="b:Special:Search/Geometry">Buku</a> dari Wikibuku<br /> </td></tr> </tbody></table> <style data-mw-deduplicate="TemplateStyles:r23035139">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:#f9f9f9}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><div class="side-box side-box-right plainlinks sistersitebox"><style data-mw-deduplicate="TemplateStyles:r23782729">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="side-box-flex"> <div class="side-box-image"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/40px-Wikibooks-logo-en-noslogan.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/60px-Wikibooks-logo-en-noslogan.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/80px-Wikibooks-logo-en-noslogan.svg.png 2x" data-file-width="400" data-file-height="400" /></span></span></div> <div class="side-box-text plainlist"><a href="/wiki/Wikibooks" class="mw-redirect" title="Wikibooks">Wikibooks</a> memiliki informasi lebih lanjut di: <div style="margin-left:10px;"><i><a href="https://id.wikibooks.org/wiki/id:Special:Search/Geometri" class="extiw" title="b:id:Special:Search/Geometri">Geometri</a></i></div></div></div> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r26333518"><table class="sidebar" style="width:auto;text-align:left;"><tbody><tr><td class="sidebar-pretitle"><a href="https://en.wikipedia.org/wiki/Wikipedia:The_Wikipedia_Library" class="extiw" title="en:Wikipedia:The Wikipedia Library">Sumber pustaka</a> mengenai <br /> <b>Geometry</b> <hr /></td></tr><tr><td class="sidebar-content plainlist"> <ul><li><a rel="nofollow" class="external text" href="http://onlinebooks.library.upenn.edu/webbin/ftl?st=wp&amp;su=Geometri">Sumber di perpustakaan Anda</a></li></ul></td> </tr></tbody></table> <p><span typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png" decoding="async" width="12" height="13" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/18px-Wikisource-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/24px-Wikisource-logo.svg.png 2x" data-file-width="410" data-file-height="430" /></span></span>&#160;<cite class="citation encyclopaedia">"<a href="https://en.wikisource.org/wiki/1911_Encyclop%C3%A6dia_Britannica/Geometry" class="extiw" title="wikisource:1911 Encyclopædia Britannica/Geometry">Geometry</a>". <i><a href="/wiki/Encyclop%C3%A6dia_Britannica_Eleventh_Edition" title="Encyclopædia Britannica Eleventh Edition">Encyclopædia Britannica</a></i>. <b>11</b> (edisi ke-11). 1911. hlm.&#160;675–736.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Geometry&amp;rft.btitle=Encyclop%C3%A6dia+Britannica&amp;rft.pages=675-736&amp;rft.edition=11&amp;rft.date=1911&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AGeometri" class="Z3988"><span style="display:none;">&#160;</span></span> </p> <ul><li>A <a href="https://id.wikiversity.org/wiki/Geometry" class="extiw" title="v:Geometry">geometry</a> course from <a href="https://id.wikiversity.org/wiki/" class="extiw" title="v:">Wikiversity</a></li> <li><a rel="nofollow" class="external text" href="http://www.8foxes.com/"><i>Unusual Geometry Problems</i></a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20221105050516/https://www.8foxes.com/">Diarsipkan</a> 2022-11-05 di <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>.</li> <li><a rel="nofollow" class="external text" href="http://mathforum.org/library/topics/geometry/"><i>The Math Forum</i> – Geometry</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220128062957/http://mathforum.org/library/topics/geometry/">Diarsipkan</a> 2022-01-28 di <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>. <ul><li><a rel="nofollow" class="external text" href="http://mathforum.org/geometry/k12.geometry.html"><i>The Math Forum</i> – K–12 Geometry</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20080415225526/http://mathforum.org/geometry/k12.geometry.html">Diarsipkan</a> 2008-04-15 di <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>.</li> <li><a rel="nofollow" class="external text" href="http://mathforum.org/geometry/coll.geometry.html"><i>The Math Forum</i> – College Geometry</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20080415055232/http://mathforum.org/geometry/coll.geometry.html">Diarsipkan</a> 2008-04-15 di <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>.</li> <li><a rel="nofollow" class="external text" href="http://mathforum.org/advanced/geom.html"><i>The Math Forum</i> – Advanced Geometry</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20080416182158/http://mathforum.org/advanced/geom.html">Diarsipkan</a> 2008-04-16 di <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>.</li></ul></li> <li><a rel="nofollow" class="external text" href="http://precedings.nature.com/documents/2153/version/1/">Nature Precedings – <i>Pegs and Ropes Geometry at Stonehenge</i></a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20200226022808/http://precedings.nature.com/documents/2153/version/1">Diarsipkan</a> 2020-02-26 di <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>.</li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20060906203141/http://www.math.niu.edu/~rusin/known-math/index/tour_geo.html"><i>The Mathematical Atlas</i> – Geometric Areas of Mathematics</a></li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20071004174210/http://www.gresham.ac.uk/event.asp?PageId=45&amp;EventId=618">"4000 Years of Geometry"</a>, lecture by Robin Wilson given at <a href="/w/index.php?title=Gresham_College&amp;action=edit&amp;redlink=1" class="new" title="Gresham College (halaman belum tersedia)">Gresham College</a>, 3 October 2007 (available for MP3 and MP4 download as well as a text file) <ul><li><a rel="nofollow" class="external text" href="http://plato.stanford.edu/entries/geometry-finitism/">Finitism in Geometry</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20080512012132/http://plato.stanford.edu/entries/geometry-finitism/">Diarsipkan</a> 2008-05-12 di <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>. at the Stanford Encyclopedia of Philosophy</li></ul></li> <li><a rel="nofollow" class="external text" href="http://www.ics.uci.edu/~eppstein/junkyard/topic.html">The Geometry Junkyard</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20080225234940/http://www.ics.uci.edu/~eppstein/junkyard/topic.html">Diarsipkan</a> 2008-02-25 di <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>.</li> <li><a rel="nofollow" class="external text" href="http://www.mathopenref.com">Interactive geometry reference with hundreds of applets</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20110208113043/http://mathopenref.com/">Diarsipkan</a> 2011-02-08 di <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>.</li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20090321024112/http://math.kennesaw.edu/~mdevilli/JavaGSPLinks.htm">Dynamic Geometry Sketches (with some Student Explorations)</a></li> <li><a rel="nofollow" class="external text" href="https://www.khanacademy.org/?video=ca-geometry--area--pythagorean-theorem#california-standards-test-geometry">Geometry classes</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230531130702/https://www.khanacademy.org/?video=ca-geometry--area--pythagorean-theorem#california-standards-test-geometry">Diarsipkan</a> 2023-05-31 di <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>. at <a href="/wiki/Khan_Academy" title="Khan Academy">Khan Academy</a></li></ul> <p><a href="/w/index.php?title=Templat:Geometry-footer&amp;action=edit&amp;redlink=1" class="new" title="Templat:Geometry-footer (halaman belum tersedia)">Templat:Geometry-footer</a> <a href="/w/index.php?title=Templat:Areas_of_mathematics&amp;action=edit&amp;redlink=1" class="new" title="Templat:Areas of mathematics (halaman belum tersedia)">Templat:Areas of mathematics</a> </p> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r23782733"><style data-mw-deduplicate="TemplateStyles:r25847331">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}</style></div><div role="navigation" class="navbox authority-control" aria-labelledby="Pengawasan_otoritas_frameless_&amp;#124;text-top_&amp;#124;10px_&amp;#124;alt=Sunting_ini_di_Wikidata_&amp;#124;link=https&amp;#58;//www.wikidata.org/wiki/Q8087#identifiers&amp;#124;Sunting_ini_di_Wikidata" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Pengawasan_otoritas_frameless_&amp;#124;text-top_&amp;#124;10px_&amp;#124;alt=Sunting_ini_di_Wikidata_&amp;#124;link=https&amp;#58;//www.wikidata.org/wiki/Q8087#identifiers&amp;#124;Sunting_ini_di_Wikidata" style="font-size:114%;margin:0 4em"><a href="/wiki/Bantuan:Pengawasan_otoritas" title="Bantuan:Pengawasan otoritas">Pengawasan otoritas</a> <span class="mw-valign-text-top" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q8087#identifiers" title="Sunting ini di Wikidata"><img alt="Sunting ini di Wikidata" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Umum</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4020236-7">Integrated Authority File (Jerman)</a></span></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Perpustakaan nasional</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb119315301">Prancis</a> <a rel="nofollow" class="external text" href="https://data.bnf.fr/ark:/12148/cb119315301">(data)</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="http://esu.com.ua/search_articles.php?id=29142">Ukraina</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/subjects/sh85054133">Amerika Serikat</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="https://id.ndl.go.jp/auth/ndlna/00565738">Jepang</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="https://aleph.nkp.cz/F/?func=find-c&amp;local_base=aut&amp;ccl_term=ica=ph114624&amp;CON_LNG=ENG">Republik Ceko</a></span></li> <li><span class="error">The NLK id KSH1998005448 is not valid.</span></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Lain-lain</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://academic.microsoft.com/v2/detail/2524010">Microsoft Academic</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="https://islamansiklopedisi.org.tr/hendese">Encyclopedia of Islam</a></span></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r23782733"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r25847331"></div><div role="navigation" class="navbox" aria-labelledby="Matematika_(Bidang_matematika)" style="padding:3px"><table class="nowraplinks mw-collapsible expanded navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r18590415"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-lihat"><a href="/wiki/Templat:Bidang_matematika" title="Templat:Bidang matematika"><abbr title="Lihat templat ini">l</abbr></a></li><li class="nv-bicara"><a href="/wiki/Pembicaraan_Templat:Bidang_matematika" title="Pembicaraan Templat:Bidang matematika"><abbr title="Diskusikan templat ini">b</abbr></a></li><li class="nv-sunting"><a class="external text" href="https://id.wikipedia.org/w/index.php?title=Templat:Bidang_matematika&amp;action=edit"><abbr title="Sunting templat ini">s</abbr></a></li></ul></div><div id="Matematika_(Bidang_matematika)" style="font-size:114%;margin:0 4em"><a href="/wiki/Matematika" title="Matematika">Matematika</a> (<a href="/wiki/Bidang_matematika" class="mw-redirect" title="Bidang matematika">Bidang matematika</a>)</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Fondasi_matematika" title="Fondasi matematika">Fondasi</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Filsafat_matematika" title="Filsafat matematika">Filsafat matematika</a></li> <li><a href="/wiki/Logika_matematika" title="Logika matematika">Logika matematika</a></li> <li><a href="/wiki/Teori_himpunan" title="Teori himpunan">Teori himpunan</a></li> <li><a href="/wiki/Teori_informasi" title="Teori informasi">Teori informasi</a></li> <li><a href="/wiki/Teori_kategori" title="Teori kategori">Teori kategori</a></li> <li><a href="/w/index.php?title=Teori_tipe&amp;action=edit&amp;redlink=1" class="new" title="Teori tipe (halaman belum tersedia)">Teori tipe</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Aljabar" title="Aljabar">Aljabar</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Aljabar_abstrak" title="Aljabar abstrak">Abstrak</a></li> <li><a href="/wiki/Aljabar_elementer" title="Aljabar elementer">Elementer</a></li> <li><a href="/wiki/Aljabar_homologis" title="Aljabar homologis">Homologis</a></li> <li><a href="/w/index.php?title=Aljabar_komutatif&amp;action=edit&amp;redlink=1" class="new" title="Aljabar komutatif (halaman belum tersedia)">Komutatif</a></li> <li><a href="/wiki/Aljabar_linear" title="Aljabar linear">Linear</a></li> <li><a href="/wiki/Aljabar_multilinear" title="Aljabar multilinear">Multilinear</a></li> <li><a href="/wiki/Aljabar_universal" title="Aljabar universal">Universal</a></li> <li><a href="/wiki/Teori_grup" title="Teori grup">Teori grup</a></li> <li><a href="/wiki/Teori_representasi" title="Teori representasi">Teori representasi</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Analisis_matematis" title="Analisis matematis">Analisis</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Kalkulus" title="Kalkulus">Kalkulus</a></li> <li><a href="/wiki/Analisis_fungsional" title="Analisis fungsional">Analisis fungsional</a></li> <li><a href="/w/index.php?title=Analisis_harmonik&amp;action=edit&amp;redlink=1" class="new" title="Analisis harmonik (halaman belum tersedia)">Analisis harmonik</a></li> <li><a href="/wiki/Analisis_kompleks" title="Analisis kompleks">Analisis kompleks</a></li> <li><a href="/wiki/Analisis_real" class="mw-redirect" title="Analisis real">Analisis real</a></li> <li><a href="/wiki/Persamaan_diferensial" title="Persamaan diferensial">Persamaan diferensial</a></li> <li><a href="/wiki/Ukuran_(matematika)" title="Ukuran (matematika)">Teori ukuran</a></li> <li><a href="/wiki/Teori_sistem_dinamis" class="mw-redirect" title="Teori sistem dinamis">Teori sistem dinamis</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Matematika_diskret" class="mw-redirect" title="Matematika diskret">Diskret</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Kombinatorika" title="Kombinatorika">Kombinatorika</a></li> <li><a href="/wiki/Teori_graf" title="Teori graf">Teori graf</a></li> <li><a href="/wiki/Teori_order" title="Teori order">Teori order</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a class="mw-selflink selflink">Geometri</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Geometri_aljabar" title="Geometri aljabar">Aljabar</a></li> <li><a href="/wiki/Geometri_analitis" title="Geometri analitis">Analitis</a></li> <li><a href="/wiki/Geometri_diferensial" title="Geometri diferensial">Diferensial</a></li> <li><a href="/wiki/Geometri_diskrit" title="Geometri diskrit">Diskrit</a></li> <li><a href="/wiki/Geometri_Euklides" title="Geometri Euklides">Euklides</a></li> <li><a href="/wiki/Geometri_hingga" title="Geometri hingga">Hingga</a></li> <li><a href="/wiki/Trigonometri" title="Trigonometri">Trigonometri</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Matematika_komputasi" title="Matematika komputasi">Komputasi</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Analisis_numerik" title="Analisis numerik">Analisis numerik</a> (<a href="/wiki/Daftar_topik_analisis_numerik" title="Daftar topik analisis numerik">Topik</a>)</li> <li><a href="/wiki/Ilmu_komputer" title="Ilmu komputer">Ilmu komputer</a></li> <li><a href="/w/index.php?title=Komputasi_simbolik&amp;action=edit&amp;redlink=1" class="new" title="Komputasi simbolik (halaman belum tersedia)">Komputasi simbolik</a></li> <li><a href="/wiki/Teori_komputasi" title="Teori komputasi">Teori komputasi</a></li> <li><a href="/w/index.php?title=Teori_kompleksitas_komputasi&amp;action=edit&amp;redlink=1" class="new" title="Teori kompleksitas komputasi (halaman belum tersedia)">Teori kompleksitas komputasi</a></li> <li><a href="/wiki/Optimisasi" title="Optimisasi">Optimisasi matematika</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Teori_bilangan" title="Teori bilangan">Teori bilangan</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Aritmetika" title="Aritmetika">Aritmetika</a></li> <li><a href="/w/index.php?title=Geometri_Diophantine&amp;action=edit&amp;redlink=1" class="new" title="Geometri Diophantine (halaman belum tersedia)">Geometri Diophantine</a></li> <li><a href="/wiki/Teori_bilangan_aljabar" title="Teori bilangan aljabar">Teori bilangan aljabar</a></li> <li><a href="/w/index.php?title=Teori_bilangan_analitis&amp;action=edit&amp;redlink=1" class="new" title="Teori bilangan analitis (halaman belum tersedia)">Teori bilangan analitis</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Topologi" title="Topologi">Topologi</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/w/index.php?title=Teori_homotopi&amp;action=edit&amp;redlink=1" class="new" title="Teori homotopi (halaman belum tersedia)">Teori homotopi</a></li> <li><a href="/wiki/Topologi_aljabar" title="Topologi aljabar">Aljabar</a></li> <li><a href="/w/index.php?title=Topologi_diferensial&amp;action=edit&amp;redlink=1" class="new" title="Topologi diferensial (halaman belum tersedia)">Diferensial</a></li> <li><a href="/w/index.php?title=Topologi_geometris&amp;action=edit&amp;redlink=1" class="new" title="Topologi geometris (halaman belum tersedia)">Geometris</a></li> <li><a href="/wiki/Topologi_umum" title="Topologi umum">Umum</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Matematika_terapan" title="Matematika terapan">Terapan</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Biologi_matematika_dan_teori" title="Biologi matematika dan teori">Matematika biologi</a></li> <li><a href="/wiki/Matematika_ekonomi" title="Matematika ekonomi">Matematika ekonomi</a></li> <li><a href="/wiki/Matematika_keuangan" title="Matematika keuangan">Matematika keuangan</a></li> <li><a href="/wiki/Fisika_matematis" title="Fisika matematis">Fisika matematis</a></li> <li><a href="/wiki/Kimia_matematika" title="Kimia matematika">Kimia matematika</a></li> <li><a href="/w/index.php?title=Psikologi_matematis&amp;action=edit&amp;redlink=1" class="new" title="Psikologi matematis (halaman belum tersedia)">Psikologi matematis</a></li> <li><a href="/wiki/Statistika" title="Statistika">Statistika</a></li> <li><a href="/wiki/Statistika_matematika" title="Statistika matematika">Statistika matematika</a></li> <li><a href="/wiki/Teori_peluang" title="Teori peluang">Teori peluang</a></li> <li><a href="/wiki/Ilmu_sistem" title="Ilmu sistem">Ilmu sistem</a> (<a href="/w/index.php?title=Teori_kendali&amp;action=edit&amp;redlink=1" class="new" title="Teori kendali (halaman belum tersedia)">Teori kendali</a>, <a href="/wiki/Teori_permainan" title="Teori permainan">Teori permainan</a>, <a href="/wiki/Riset_operasi" title="Riset operasi">Riset operasi</a>)</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Divisi</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Matematika_murni" title="Matematika murni">Matematika murni</a></li> <li><a href="/wiki/Matematika_terapan" title="Matematika terapan">Matematika terapan</a></li> <li><a href="/wiki/Matematika_diskret" class="mw-redirect" title="Matematika diskret">Matematika diskret</a></li> <li><a href="/wiki/Matematika_komputasi" title="Matematika komputasi">Matematika komputasi</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Topik terkait</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Matematika_dan_seni" title="Matematika dan seni">Matematika dan seni</a></li> <li><a href="/wiki/Matematika_rekreasi" title="Matematika rekreasi">Matematika rekreasi</a></li> <li><a href="/wiki/Pendidikan_matematika" title="Pendidikan matematika">Pendidikan matematika</a></li> <li><a href="/wiki/Sejarah_matematika" title="Sejarah matematika">Sejarah matematika</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow hlist" colspan="2"><div> <ul><li><span typeof="mw:File"><a href="/wiki/Berkas:Symbol_category_class.svg" class="mw-file-description" title="Category"><img alt="Category" src="//upload.wikimedia.org/wikipedia/commons/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></a></span> <b><a href="/wiki/Kategori:Matematika" title="Kategori:Matematika">Kategori</a></b></li> <li><span typeof="mw:File"><a href="/wiki/Berkas:Symbol_portal_class.svg" class="mw-file-description" title="Portal"><img alt="Portal" src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e2/Symbol_portal_class.svg/16px-Symbol_portal_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e2/Symbol_portal_class.svg/23px-Symbol_portal_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e2/Symbol_portal_class.svg/31px-Symbol_portal_class.svg.png 2x" data-file-width="180" data-file-height="185" /></a></span> <b><a href="/wiki/Portal:Matematika" title="Portal:Matematika">Portal matematika</a></b></li> <li><a href="/w/index.php?title=Kerangka_matematika&amp;action=edit&amp;redlink=1" class="new" title="Kerangka matematika (halaman belum tersedia)">Kerangka</a></li> <li><a href="/wiki/Daftar_topik_matematika" class="mw-redirect" title="Daftar topik matematika">Daftar</a></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐api‐ext.codfw.main‐7556f8b5dd‐4c48v Cached time: 20241125053605 Cache expiry: 2592000 Reduced expiry: false Complications: [show‐toc] CPU time usage: 0.942 seconds Real time usage: 1.154 seconds Preprocessor visited node count: 7045/1000000 Post‐expand include size: 252064/2097152 bytes Template argument size: 2911/2097152 bytes Highest expansion depth: 13/100 Expensive parser function count: 9/500 Unstrip recursion depth: 0/20 Unstrip post‐expand size: 170233/5000000 bytes Lua time usage: 0.457/10.000 seconds Lua memory usage: 4778413/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 865.156 1 -total 42.05% 363.808 1 Templat:Reflist 26.84% 232.209 66 Templat:Cite_book 12.26% 106.090 1 Templat:General_geometry 11.79% 102.033 1 Templat:Sidebar_with_collapsible_lists 8.61% 74.471 1 Templat:Authority_control 5.57% 48.147 1 Templat:Periksaterjemahan 5.18% 44.834 1 Templat:Ambox 4.53% 39.169 2 Templat:Sidebar 4.27% 36.966 2 Templat:Hlist --> <!-- Saved in parser cache with key idwiki:pcache:idhash:3169-0!canonical and timestamp 20241125053608 and revision id 26563574. Rendering was triggered because: edit-page --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Diperoleh dari "<a dir="ltr" href="https://id.wikipedia.org/w/index.php?title=Geometri&amp;oldid=26563574">https://id.wikipedia.org/w/index.php?title=Geometri&amp;oldid=26563574</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Istimewa:Daftar_kategori" title="Istimewa:Daftar kategori">Kategori</a>: <ul><li><a href="/w/index.php?title=Kategori:Halaman_tanpa_ISBN&amp;action=edit&amp;redlink=1" class="new" title="Kategori:Halaman tanpa ISBN (halaman belum tersedia)">Halaman tanpa ISBN</a></li><li><a href="/w/index.php?title=Kategori:Geometry&amp;action=edit&amp;redlink=1" class="new" title="Kategori:Geometry (halaman belum tersedia)">Geometry</a></li><li><a href="/wiki/Kategori:Geometri" title="Kategori:Geometri">Geometri</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Kategori tersembunyi: <ul><li><a href="/wiki/Kategori:Halaman_dengan_kesalahan_referensi" title="Kategori:Halaman dengan kesalahan referensi">Halaman dengan kesalahan referensi</a></li><li><a href="/wiki/Kategori:Halaman_dengan_rujukan_yang_menggunakan_parameter_yang_tidak_didukung" title="Kategori:Halaman dengan rujukan yang menggunakan parameter yang tidak didukung">Halaman dengan rujukan yang menggunakan parameter yang tidak didukung</a></li><li><a href="/wiki/Kategori:CS1_sumber_berbahasa_Inggris_(en)" title="Kategori:CS1 sumber berbahasa Inggris (en)">CS1 sumber berbahasa Inggris (en)</a></li><li><a href="/wiki/Kategori:Artikel_yang_dimintakan_pemeriksaan_atas_penerjemahannya" title="Kategori:Artikel yang dimintakan pemeriksaan atas penerjemahannya">Artikel yang dimintakan pemeriksaan atas penerjemahannya</a></li><li><a href="/wiki/Kategori:Artikel_yang_perlu_diperiksa_terjemahannya_November_2024" title="Kategori:Artikel yang perlu diperiksa terjemahannya November 2024">Artikel yang perlu diperiksa terjemahannya November 2024</a></li><li><a href="/wiki/Kategori:Artikel_yang_diterjemahkan_secara_kasar" title="Kategori:Artikel yang diterjemahkan secara kasar">Artikel yang diterjemahkan secara kasar</a></li><li><a href="/wiki/Kategori:Artikel_Wikipedia_yang_memuat_kutipan_dari_Encyclopaedia_Britannica_1911_dengan_rujukan_Wikisource" title="Kategori:Artikel Wikipedia yang memuat kutipan dari Encyclopaedia Britannica 1911 dengan rujukan Wikisource">Artikel Wikipedia yang memuat kutipan dari Encyclopaedia Britannica 1911 dengan rujukan Wikisource</a></li><li><a href="/wiki/Kategori:Templat_webarchive_tautan_wayback" title="Kategori:Templat webarchive tautan wayback">Templat webarchive tautan wayback</a></li><li><a href="/wiki/Kategori:Artikel_Wikipedia_dengan_penanda_GND" title="Kategori:Artikel Wikipedia dengan penanda GND">Artikel Wikipedia dengan penanda GND</a></li><li><a href="/wiki/Kategori:Artikel_Wikipedia_dengan_penanda_BNF" title="Kategori:Artikel Wikipedia dengan penanda BNF">Artikel Wikipedia dengan penanda BNF</a></li><li><a href="/wiki/Kategori:Artikel_Wikipedia_dengan_penanda_EMU" title="Kategori:Artikel Wikipedia dengan penanda EMU">Artikel Wikipedia dengan penanda EMU</a></li><li><a href="/wiki/Kategori:Artikel_Wikipedia_dengan_penanda_LCCN" title="Kategori:Artikel Wikipedia dengan penanda LCCN">Artikel Wikipedia dengan penanda LCCN</a></li><li><a href="/wiki/Kategori:Artikel_Wikipedia_dengan_penanda_NDL" title="Kategori:Artikel Wikipedia dengan penanda NDL">Artikel Wikipedia dengan penanda NDL</a></li><li><a href="/wiki/Kategori:Artikel_Wikipedia_dengan_penanda_NKC" title="Kategori:Artikel Wikipedia dengan penanda NKC">Artikel Wikipedia dengan penanda NKC</a></li><li><a href="/wiki/Kategori:Artikel_Wikipedia_dengan_kesalahan_penanda_NLK_identifiers" title="Kategori:Artikel Wikipedia dengan kesalahan penanda NLK identifiers">Artikel Wikipedia dengan kesalahan penanda NLK identifiers</a></li><li><a href="/wiki/Kategori:Artikel_Wikipedia_dengan_penanda_MA" title="Kategori:Artikel Wikipedia dengan penanda MA">Artikel Wikipedia dengan penanda MA</a></li><li><a href="/wiki/Kategori:Artikel_Wikipedia_dengan_penanda_TDV%C4%B0A" title="Kategori:Artikel Wikipedia dengan penanda TDVİA">Artikel Wikipedia dengan penanda TDVİA</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> Halaman ini terakhir diubah pada 25 November 2024, pukul 05.36.</li> <li id="footer-info-copyright">Teks tersedia di bawah <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en">Lisensi Atribusi-BerbagiSerupa Creative Commons</a>; ketentuan tambahan mungkin berlaku. Lihat <a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use">Ketentuan Penggunaan</a> untuk rincian lebih lanjut.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Kebijakan privasi</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:Tentang">Tentang Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:Penyangkalan_umum">Penyangkalan</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Kode Etik</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Pengembang</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/id.wikipedia.org">Statistik</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Pernyataan kuki</a></li> <li id="footer-places-mobileview"><a href="//id.m.wikipedia.org/w/index.php?title=Geometri&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Tampilan seluler</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-68775984f6-wx76l","wgBackendResponseTime":168,"wgPageParseReport":{"limitreport":{"cputime":"0.942","walltime":"1.154","ppvisitednodes":{"value":7045,"limit":1000000},"postexpandincludesize":{"value":252064,"limit":2097152},"templateargumentsize":{"value":2911,"limit":2097152},"expansiondepth":{"value":13,"limit":100},"expensivefunctioncount":{"value":9,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":170233,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 865.156 1 -total"," 42.05% 363.808 1 Templat:Reflist"," 26.84% 232.209 66 Templat:Cite_book"," 12.26% 106.090 1 Templat:General_geometry"," 11.79% 102.033 1 Templat:Sidebar_with_collapsible_lists"," 8.61% 74.471 1 Templat:Authority_control"," 5.57% 48.147 1 Templat:Periksaterjemahan"," 5.18% 44.834 1 Templat:Ambox"," 4.53% 39.169 2 Templat:Sidebar"," 4.27% 36.966 2 Templat:Hlist"]},"scribunto":{"limitreport-timeusage":{"value":"0.457","limit":"10.000"},"limitreport-memusage":{"value":4778413,"limit":52428800}},"cachereport":{"origin":"mw-api-ext.codfw.main-7556f8b5dd-4c48v","timestamp":"20241125053605","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Geometri","url":"https:\/\/id.wikipedia.org\/wiki\/Geometri","sameAs":"http:\/\/www.wikidata.org\/entity\/Q8087","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q8087","author":{"@type":"Organization","name":"Kontributor dari proyek Wikimedia."},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2004-03-07T17:06:18Z","dateModified":"2024-11-25T05:36:04Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/8\/88\/Stereographic_projection_in_3D.svg","headline":"cabang matematika yang mengukur bentuk, ukuran, dan posisi objek"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10