CINXE.COM

Search results for: fractional partial differential equations

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: fractional partial differential equations</title> <meta name="description" content="Search results for: fractional partial differential equations"> <meta name="keywords" content="fractional partial differential equations"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="fractional partial differential equations" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="fractional partial differential equations"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4153</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: fractional partial differential equations</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4153</span> Reduced Differential Transform Methods for Solving the Fractional Diffusion Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yildiray%20Keskin">Yildiray Keskin</a>, <a href="https://publications.waset.org/abstracts/search?q=Omer%20Acan"> Omer Acan</a>, <a href="https://publications.waset.org/abstracts/search?q=Murat%20Akkus"> Murat Akkus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the solution of fractional diffusion equations is presented by means of the reduced differential transform method. Fractional partial differential equations have special importance in engineering and sciences. Application of reduced differential transform method to this problem shows the rapid convergence of the sequence constructed by this method to the exact solution. The numerical results show that the approach is easy to implement and accurate when applied to fractional diffusion equations. The method introduces a promising tool for solving many fractional partial differential equations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fractional%20diffusion%20equations" title="fractional diffusion equations">fractional diffusion equations</a>, <a href="https://publications.waset.org/abstracts/search?q=Caputo%20fractional%20derivative" title=" Caputo fractional derivative"> Caputo fractional derivative</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced%20differential%20transform%20method" title=" reduced differential transform method"> reduced differential transform method</a>, <a href="https://publications.waset.org/abstracts/search?q=partial" title=" partial"> partial</a> </p> <a href="https://publications.waset.org/abstracts/17526/reduced-differential-transform-methods-for-solving-the-fractional-diffusion-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17526.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">525</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4152</span> An Efficient Collocation Method for Solving the Variable-Order Time-Fractional Partial Differential Equations Arising from the Physical Phenomenon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haniye%20Dehestani">Haniye Dehestani</a>, <a href="https://publications.waset.org/abstracts/search?q=Yadollah%20Ordokhani"> Yadollah Ordokhani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we present an efficient approach for solving variable-order time-fractional partial differential equations, which are based on Legendre and Laguerre polynomials. First, we introduced the pseudo-operational matrices of integer and variable fractional order of integration by use of some properties of Riemann-Liouville fractional integral. Then, applied together with collocation method and Legendre-Laguerre functions for solving variable-order time-fractional partial differential equations. Also, an estimation of the error is presented. At last, we investigate numerical examples which arise in physics to demonstrate the accuracy of the present method. In comparison results obtained by the present method with the exact solution and the other methods reveals that the method is very effective. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=collocation%20method" title="collocation method">collocation method</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional%20partial%20differential%20equations" title=" fractional partial differential equations"> fractional partial differential equations</a>, <a href="https://publications.waset.org/abstracts/search?q=legendre-laguerre%20functions" title=" legendre-laguerre functions"> legendre-laguerre functions</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudo-operational%20matrix%20of%20integration" title=" pseudo-operational matrix of integration"> pseudo-operational matrix of integration</a> </p> <a href="https://publications.waset.org/abstracts/97195/an-efficient-collocation-method-for-solving-the-variable-order-time-fractional-partial-differential-equations-arising-from-the-physical-phenomenon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97195.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4151</span> Weak Solutions Of Stochastic Fractional Differential Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lev%20Idels">Lev Idels</a>, <a href="https://publications.waset.org/abstracts/search?q=Arcady%20Ponosov"> Arcady Ponosov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stochastic fractional differential equations have recently attracted considerable attention, as they have been used to model real-world processes, which are subject to natural memory effects and measurement uncertainties. Compared to conventional hereditary differential equations, one of the advantages of fractional differential equations is related to more realistic geometric properties of their trajectories that do not intersect in the phase space. In this report, a Peano-like existence theorem for nonlinear stochastic fractional differential equations is proven under very general hypotheses. Several specific classes of equations are checked to satisfy these hypotheses, including delay equations driven by the fractional Brownian motion, stochastic fractional neutral equations and many others. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=delay%20equations" title="delay equations">delay equations</a>, <a href="https://publications.waset.org/abstracts/search?q=operator%20methods" title=" operator methods"> operator methods</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20noise" title=" stochastic noise"> stochastic noise</a>, <a href="https://publications.waset.org/abstracts/search?q=weak%20solutions" title=" weak solutions"> weak solutions</a> </p> <a href="https://publications.waset.org/abstracts/146592/weak-solutions-of-stochastic-fractional-differential-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4150</span> Solutions of Fractional Reaction-Diffusion Equations Used to Model the Growth and Spreading of Biological Species</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamel%20Al-Khaled">Kamel Al-Khaled</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reaction-diffusion equations are commonly used in population biology to model the spread of biological species. In this paper, we propose a fractional reaction-diffusion equation, where the classical second derivative diffusion term is replaced by a fractional derivative of order less than two. Based on the symbolic computation system Mathematica, Adomian decomposition method, developed for fractional differential equations, is directly extended to derive explicit and numerical solutions of space fractional reaction-diffusion equations. The fractional derivative is described in the Caputo sense. Finally, the recent appearance of fractional reaction-diffusion equations as models in some fields such as cell biology, chemistry, physics, and finance, makes it necessary to apply the results reported here to some numerical examples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fractional%20partial%20differential%20equations" title="fractional partial differential equations">fractional partial differential equations</a>, <a href="https://publications.waset.org/abstracts/search?q=reaction-di%EF%AC%80usion%20equations" title=" reaction-diffusion equations"> reaction-diffusion equations</a>, <a href="https://publications.waset.org/abstracts/search?q=adomian%20decomposition" title=" adomian decomposition"> adomian decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20species" title=" biological species"> biological species</a> </p> <a href="https://publications.waset.org/abstracts/55994/solutions-of-fractional-reaction-diffusion-equations-used-to-model-the-growth-and-spreading-of-biological-species" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55994.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4149</span> Fractional Euler Method and Finite Difference Formula Using Conformable Fractional Derivative</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramzi%20B.%20Albadarneh">Ramzi B. Albadarneh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we use the new definition of fractional derivative called conformable fractional derivative to derive some finite difference formulas and its error terms which are used to solve fractional differential equations and fractional partial differential equations, also to derive fractional Euler method and its error terms which can be applied to solve fractional differential equations. To provide the contribution of our work some applications on finite difference formulas and Euler Method are given. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conformable%20fractional%20derivative" title="conformable fractional derivative">conformable fractional derivative</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20difference%20formula" title=" finite difference formula"> finite difference formula</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional%20derivative" title=" fractional derivative"> fractional derivative</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20difference%20formula" title=" finite difference formula"> finite difference formula</a> </p> <a href="https://publications.waset.org/abstracts/37072/fractional-euler-method-and-finite-difference-formula-using-conformable-fractional-derivative" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37072.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">439</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4148</span> Caputo-Type Fuzzy Fractional Riccati Differential Equations with Fuzzy Initial Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Trilok%20Mathur">Trilok Mathur</a>, <a href="https://publications.waset.org/abstracts/search?q=Shivi%20Agarwal"> Shivi Agarwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with the solutions of fuzzy-fractional-order Riccati equations under Caputo-type fuzzy fractional derivatives. The Caputo-type fuzzy fractional derivatives are defined based on Hukuhura difference and strongly generalized fuzzy differentiability. The Laplace-Adomian-Pade method is used for solving fractional Riccati-type initial value differential equations of fractional order. Moreover, we also displayed some examples to illustrate our methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Caputo-type%20fuzzy%20fractional%20derivative" title="Caputo-type fuzzy fractional derivative">Caputo-type fuzzy fractional derivative</a>, <a href="https://publications.waset.org/abstracts/search?q=Fractional%20Riccati%20differential%20equations" title=" Fractional Riccati differential equations"> Fractional Riccati differential equations</a>, <a href="https://publications.waset.org/abstracts/search?q=Laplace-Adomian-Pade%20method" title=" Laplace-Adomian-Pade method"> Laplace-Adomian-Pade method</a>, <a href="https://publications.waset.org/abstracts/search?q=Mittag%20Leffler%20function" title=" Mittag Leffler function"> Mittag Leffler function</a> </p> <a href="https://publications.waset.org/abstracts/51080/caputo-type-fuzzy-fractional-riccati-differential-equations-with-fuzzy-initial-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51080.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4147</span> On the Relation between λ-Symmetries and μ-Symmetries of Partial Differential Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Teoman%20Ozer">Teoman Ozer</a>, <a href="https://publications.waset.org/abstracts/search?q=Ozlem%20Orhan"> Ozlem Orhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study deals with symmetry group properties and conservation laws of partial differential equations. We give a geometrical interpretation of notion of μ-prolongations of vector fields and of the related concept of μ-symmetry for partial differential equations. We show that these are in providing symmetry reduction of partial differential equations and systems and invariant solutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%CE%BB-symmetry" title="λ-symmetry">λ-symmetry</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%BC-symmetry" title=" μ-symmetry"> μ-symmetry</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=invariant%20solution" title=" invariant solution"> invariant solution</a> </p> <a href="https://publications.waset.org/abstracts/59662/on-the-relation-between-l-symmetries-and-m-symmetries-of-partial-differential-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59662.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4146</span> Analytical Solutions of Time Space Fractional, Advection-Dispersion and Whitham-Broer-Kaup Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Danish%20Khan">Muhammad Danish Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Imran%20Naeem"> Imran Naeem</a>, <a href="https://publications.waset.org/abstracts/search?q=Mudassar%20Imran"> Mudassar Imran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article, we study time-space Fractional Advection-Dispersion (FADE) equation and time-space Fractional Whitham-Broer-Kaup (FWBK) equation that have a significant role in hydrology. We introduce suitable transformations to convert fractional order derivatives to integer order derivatives and as a result these equations transform into Partial Differential Equations (PDEs). Then the Lie symmetries and corresponding optimal systems of the resulting PDEs are derived. The symmetry reductions and exact independent solutions based on optimal system are investigated which constitute the exact solutions of original fractional differential equations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modified%20Riemann-Liouville%20fractional%20derivative" title="modified Riemann-Liouville fractional derivative">modified Riemann-Liouville fractional derivative</a>, <a href="https://publications.waset.org/abstracts/search?q=lie-symmetries" title=" lie-symmetries"> lie-symmetries</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20system" title=" optimal system"> optimal system</a>, <a href="https://publications.waset.org/abstracts/search?q=invariant%20solutions" title=" invariant solutions"> invariant solutions</a> </p> <a href="https://publications.waset.org/abstracts/2191/analytical-solutions-of-time-space-fractional-advection-dispersion-and-whitham-broer-kaup-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2191.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4145</span> On Boundary Value Problems of Fractional Differential Equations Involving Stieltjes Derivatives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Baghdad%20Said">Baghdad Said</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Differential equations of fractional order have proved to be important tools to describe many physical phenomena and have been used in diverse fields such as engineering, mathematics as well as other applied sciences. On the other hand, the theory of differential equations involving the Stieltjes derivative (SD) with respect to a non-decreasing function is a new class of differential equations and has many applications as a unified framework for dynamic equations on time scales and differential equations with impulses at fixed times. The aim of this paper is to investigate the existence, uniqueness, and generalized Ulam-Hyers-Rassias stability (UHRS) of solutions for a boundary value problem of sequential fractional differential equations (SFDE) containing (SD). This study is based on the technique of noncompactness measures (MNCs) combined with Monch-Krasnoselski fixed point theorems (FPT), and the results are proven in an appropriate Banach space under sufficient hypotheses. We also give an illustrative example. In this work, we introduced a class of (SFDE) and the results are obtained under a few hypotheses. Future directions connected to this work could focus on another problem with different types of fractional integrals and derivatives, and the (SD) will be assumed under a more general hypothesis in more general functional spaces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SFDE" title="SFDE">SFDE</a>, <a href="https://publications.waset.org/abstracts/search?q=SD" title=" SD"> SD</a>, <a href="https://publications.waset.org/abstracts/search?q=UHRS" title=" UHRS"> UHRS</a>, <a href="https://publications.waset.org/abstracts/search?q=MNCs" title=" MNCs"> MNCs</a>, <a href="https://publications.waset.org/abstracts/search?q=FPT" title=" FPT"> FPT</a> </p> <a href="https://publications.waset.org/abstracts/187408/on-boundary-value-problems-of-fractional-differential-equations-involving-stieltjes-derivatives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187408.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">40</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4144</span> Linear fractional differential equations for second kind modified Bessel functions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jorge%20Olivares">Jorge Olivares</a>, <a href="https://publications.waset.org/abstracts/search?q=Fernando%20Maass"> Fernando Maass</a>, <a href="https://publications.waset.org/abstracts/search?q=Pablo%20Martin"> Pablo Martin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fractional derivatives have been considered recently as a way to solve different problems in Engineering. In this way, second kind modified Bessel functions are considered here. The order α fractional differential equations of second kind Bessel functions, Kᵥ(x), are studied with simple initial conditions. The Laplace transform and Caputo definition of fractional derivatives are considered. Solutions have been found for ν=1/3, 1/2, 2/3, -1/3, -1/2 and (-2/3). In these cases, the solutions are the sum of two hypergeometric functions. The α fractional derivatives have been for α=1/3, 1/2 and 2/3, and the above values of ν. No convergence has been found for the integer values of ν Furthermore when α has been considered as a rational found m/p, no general solution has been found. Clearly, this case is more difficult to treat than those of first kind Bessel Function. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Caputo" title="Caputo">Caputo</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20Bessel%20functions" title=" modified Bessel functions"> modified Bessel functions</a>, <a href="https://publications.waset.org/abstracts/search?q=hypergeometric" title=" hypergeometric"> hypergeometric</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20fractional%20differential%20equations" title=" linear fractional differential equations"> linear fractional differential equations</a>, <a href="https://publications.waset.org/abstracts/search?q=transform%20Laplace" title=" transform Laplace"> transform Laplace</a> </p> <a href="https://publications.waset.org/abstracts/91374/linear-fractional-differential-equations-for-second-kind-modified-bessel-functions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91374.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4143</span> Algorithms Utilizing Wavelet to Solve Various Partial Differential Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20P.%20Mredula">K. P. Mredula</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20C.%20Vakaskar"> D. C. Vakaskar </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The article traces developments and evolution of various algorithms developed for solving partial differential equations using the significant combination of wavelet with few already explored solution procedures. The approach depicts a study over a decade of traces and remarks on the modifications in implementing multi-resolution of wavelet, finite difference approach, finite element method and finite volume in dealing with a variety of partial differential equations in the areas like plasma physics, astrophysics, shallow water models, modified Burger equations used in optical fibers, biology, fluid dynamics, chemical kinetics etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-resolution" title="multi-resolution">multi-resolution</a>, <a href="https://publications.waset.org/abstracts/search?q=Haar%20Wavelet" title=" Haar Wavelet"> Haar Wavelet</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20differential%20equation" title=" partial differential equation"> partial differential equation</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20methods" title=" numerical methods"> numerical methods</a> </p> <a href="https://publications.waset.org/abstracts/59280/algorithms-utilizing-wavelet-to-solve-various-partial-differential-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59280.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4142</span> Nonhomogeneous Linear Fractional Differential Equations Will Bessel Functions of the First Kind Giving Hypergeometric Functions Solutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fernando%20Maass">Fernando Maass</a>, <a href="https://publications.waset.org/abstracts/search?q=Pablo%20Martin"> Pablo Martin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jorge%20Olivares"> Jorge Olivares</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fractional derivatives have become very important in several areas of Engineering, however, the solutions of simple differential equations are not known. Here we are considering the simplest first order nonhomogeneous differential equations with Bessel regular functions of the first kind, in this way the solutions have been found which are hypergeometric solutions for any fractional derivative of order α, where α is rational number α=m/p, between zero and one. The way to find this result is by using Laplace transform and the Caputo definitions of fractional derivatives. This method is for values longer than one. However for α entire number the hypergeometric functions are Kumer type, no integer values of alpha, the hypergeometric function is more complicated is type ₂F₃(a,b,c, t2/2). The argument of the hypergeometric changes sign when we go from the regular Bessel functions to the modified Bessel functions of the first kind, however it integer seems that using precise values of α and considering no integers values of α, a solution can be obtained in terms of two hypergeometric functions. Further research is required for future papers in order to obtain the general solution for any rational value of α. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Caputo" title="Caputo">Caputo</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional%20calculation" title=" fractional calculation"> fractional calculation</a>, <a href="https://publications.waset.org/abstracts/search?q=hypergeometric" title=" hypergeometric"> hypergeometric</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20differential%20equations" title=" linear differential equations"> linear differential equations</a> </p> <a href="https://publications.waset.org/abstracts/91373/nonhomogeneous-linear-fractional-differential-equations-will-bessel-functions-of-the-first-kind-giving-hypergeometric-functions-solutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91373.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4141</span> Hypergeometric Solutions to Linear Nonhomogeneous Fractional Equations with Spherical Bessel Functions of the First Kind</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pablo%20Martin">Pablo Martin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jorge%20Olivares"> Jorge Olivares</a>, <a href="https://publications.waset.org/abstracts/search?q=Fernando%20Maass"> Fernando Maass</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of fractional derivatives to different problems in Engineering and Physics has been increasing in the last decade. For this reason, we have here considered partial derivatives when the integral is a spherical Bessel function of the first kind in both regular and modified ones simple initial conditions have been also considered. In this way, the solution has been found as a combination of hypergeometric functions. The case of a general rational value for α of the fractional derivative α has been solved in a general way for alpha between zero and two. The modified spherical Bessel functions of the first kind have been also considered and how to go from the regular case to the modified one will be also shown. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=caputo%20fractional%20derivatives" title="caputo fractional derivatives">caputo fractional derivatives</a>, <a href="https://publications.waset.org/abstracts/search?q=hypergeometric%20functions" title=" hypergeometric functions"> hypergeometric functions</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20differential%20equations" title=" linear differential equations"> linear differential equations</a>, <a href="https://publications.waset.org/abstracts/search?q=spherical%20Bessel%20functions" title=" spherical Bessel functions"> spherical Bessel functions</a> </p> <a href="https://publications.waset.org/abstracts/91343/hypergeometric-solutions-to-linear-nonhomogeneous-fractional-equations-with-spherical-bessel-functions-of-the-first-kind" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91343.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4140</span> A Coupled System of Caputo-Type Katugampola Fractional Differential Equations with Integral Boundary Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yacine%20Arioua">Yacine Arioua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we investigate the existence and uniqueness of solutions for a coupled system of nonlinear Caputo-type Katugampola fractional differential equations with integral boundary conditions. Based upon a contraction mapping principle, Schauders fixed point theorems, some new existence and uniqueness results of solutions for the given problems are obtained. For application, some examples are given to illustrate the usefulness of our main results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fractional%20differential%20equations" title="fractional differential equations">fractional differential equations</a>, <a href="https://publications.waset.org/abstracts/search?q=coupled%20system" title=" coupled system"> coupled system</a>, <a href="https://publications.waset.org/abstracts/search?q=Caputo-Katugampola%20derivative" title=" Caputo-Katugampola derivative"> Caputo-Katugampola derivative</a>, <a href="https://publications.waset.org/abstracts/search?q=fixed%20point%20theorems" title=" fixed point theorems"> fixed point theorems</a>, <a href="https://publications.waset.org/abstracts/search?q=existence" title=" existence"> existence</a>, <a href="https://publications.waset.org/abstracts/search?q=uniqueness" title=" uniqueness"> uniqueness</a> </p> <a href="https://publications.waset.org/abstracts/124953/a-coupled-system-of-caputo-type-katugampola-fractional-differential-equations-with-integral-boundary-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124953.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4139</span> B Spline Finite Element Method for Drifted Space Fractional Tempered Diffusion Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayan%20Chakraborty">Ayan Chakraborty</a>, <a href="https://publications.waset.org/abstracts/search?q=BV.%20Rathish%20Kumar"> BV. Rathish Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Off-late many models in viscoelasticity, signal processing or anomalous diffusion equations are formulated in fractional calculus. Tempered fractional calculus is the generalization of fractional calculus and in the last few years several important partial differential equations occurring in the different field of science have been reconsidered in this term like diffusion wave equations, Schr$\ddot{o}$dinger equation and so on. In the present paper, a time-dependent tempered fractional diffusion equation of order $\gamma \in (0,1)$ with forcing function is considered. Existence, uniqueness, stability, and regularity of the solution has been proved. Crank-Nicolson discretization is used in the time direction. B spline finite element approximation is implemented. Generally, B-splines basis are useful for representing the geometry of a finite element model, interfacing a finite element analysis program. By utilizing this technique a priori space-time estimate in finite element analysis has been derived and we proved that the convergent order is $\mathcal{O}(h²+T²)$ where $h$ is the space step size and $T$ is the time. A couple of numerical examples have been presented to confirm the accuracy of theoretical results. Finally, we conclude that the studied method is useful for solving tempered fractional diffusion equations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=B-spline%20finite%20element" title="B-spline finite element">B-spline finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=error%20estimates" title=" error estimates"> error estimates</a>, <a href="https://publications.waset.org/abstracts/search?q=Gronwall%27s%20lemma" title=" Gronwall&#039;s lemma"> Gronwall&#039;s lemma</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=tempered%20fractional" title=" tempered fractional"> tempered fractional</a> </p> <a href="https://publications.waset.org/abstracts/99835/b-spline-finite-element-method-for-drifted-space-fractional-tempered-diffusion-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99835.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4138</span> Operational Matrix Method for Fuzzy Fractional Reaction Diffusion Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sachin%20Kumar">Sachin Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fuzzy fractional diffusion equation is widely useful to depict different physical processes arising in physics, biology, and hydrology. The motive of this article is to deal with the fuzzy fractional diffusion equation. We study a mathematical model of fuzzy space-time fractional diffusion equation in which unknown function, coefficients, and initial-boundary conditions are fuzzy numbers. First, we find out a fuzzy operational matrix of Legendre polynomial of Caputo type fuzzy fractional derivative having a non-singular Mittag-Leffler kernel. The main advantages of this method are that it reduces the fuzzy fractional partial differential equation (FFPDE) to a system of fuzzy algebraic equations from which we can find the solution of the problem. The feasibility of our approach is shown by some numerical examples. Hence, our method is suitable to deal with FFPDE and has good accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fractional%20PDE" title="fractional PDE">fractional PDE</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20valued%20function" title=" fuzzy valued function"> fuzzy valued function</a>, <a href="https://publications.waset.org/abstracts/search?q=diffusion%20equation" title=" diffusion equation"> diffusion equation</a>, <a href="https://publications.waset.org/abstracts/search?q=Legendre%20polynomial" title=" Legendre polynomial"> Legendre polynomial</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20method" title=" spectral method"> spectral method</a> </p> <a href="https://publications.waset.org/abstracts/125273/operational-matrix-method-for-fuzzy-fractional-reaction-diffusion-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125273.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4137</span> The Non-Uniqueness of Partial Differential Equations Options Price Valuation Formula for Heston Stochastic Volatility Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20D.%20Ibrahim">H. D. Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20C.%20Chinwenyi"> H. C. Chinwenyi</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Danjuma"> T. Danjuma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An option is defined as a financial contract that provides the holder the right but not the obligation to buy or sell a specified quantity of an underlying asset in the future at a fixed price (called a strike price) on or before the expiration date of the option. This paper examined two approaches for derivation of Partial Differential Equation (PDE) options price valuation formula for the Heston stochastic volatility model. We obtained various PDE option price valuation formulas using the riskless portfolio method and the application of Feynman-Kac theorem respectively. From the results obtained, we see that the two derived PDEs for Heston model are distinct and non-unique. This establishes the fact of incompleteness in the model for option price valuation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Black-Scholes%20partial%20differential%20equations" title="Black-Scholes partial differential equations">Black-Scholes partial differential equations</a>, <a href="https://publications.waset.org/abstracts/search?q=Ito%20process" title=" Ito process"> Ito process</a>, <a href="https://publications.waset.org/abstracts/search?q=option%20price%20valuation" title=" option price valuation"> option price valuation</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20differential%20equations" title=" partial differential equations"> partial differential equations</a> </p> <a href="https://publications.waset.org/abstracts/131307/the-non-uniqueness-of-partial-differential-equations-options-price-valuation-formula-for-heston-stochastic-volatility-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131307.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4136</span> Modified Fractional Curl Operator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rawhy%20Ismail">Rawhy Ismail </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Applying fractional calculus in the field of electromagnetics shows significant results. The fractionalization of the conventional curl operator leads to having additional solutions to an electromagnetic problem. This work restudies the concept of the fractional curl operator considering fractional time derivatives in Maxwell’s curl equations. In that sense, a general scheme for the wave loss term is introduced and the degree of freedom of the system is affected through imposing the new fractional parameters. The conventional case is recovered by setting all fractional derivatives to unity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curl%20operator" title="curl operator">curl operator</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional%20calculus" title=" fractional calculus"> fractional calculus</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional%20curl%20operators" title=" fractional curl operators"> fractional curl operators</a>, <a href="https://publications.waset.org/abstracts/search?q=Maxwell%20equations" title=" Maxwell equations"> Maxwell equations</a> </p> <a href="https://publications.waset.org/abstracts/35772/modified-fractional-curl-operator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">487</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4135</span> Study and Solving Partial Differential Equation of Danel Equation in the Vibration Shells </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hesamoddin%20Abdollahpour">Hesamoddin Abdollahpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Roghayeh%20Abdollahpour"> Roghayeh Abdollahpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Elham%20Rahgozar"> Elham Rahgozar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper we deal with an analysis of the free vibrations of the governing partial differential equation that it is Danel equation in the shells. The problem considered represents the governing equation of the nonlinear, large amplitude free vibrations of the hinged shell. A new implementation of the new method is presented to obtain natural frequency and corresponding displacement on the shell. Our purpose is to enhance the ability to solve the mentioned complicated partial differential equation (PDE) with a simple and innovative approach. The results reveal that this new method to solve Danel equation is very effective and simple, and can be applied to other nonlinear partial differential equations. It is necessary to mention that there are some valuable advantages in this way of solving nonlinear differential equations and also most of the sets of partial differential equations can be answered in this manner which in the other methods they have not had acceptable solutions up to now. We can solve equation(s), and consequently, there is no need to utilize similarity solutions which make the solution procedure a time-consuming task. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=large%20amplitude" title="large amplitude">large amplitude</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20vibrations" title=" free vibrations"> free vibrations</a>, <a href="https://publications.waset.org/abstracts/search?q=analytical%20solution" title=" analytical solution"> analytical solution</a>, <a href="https://publications.waset.org/abstracts/search?q=Danell%20Equation" title=" Danell Equation"> Danell Equation</a>, <a href="https://publications.waset.org/abstracts/search?q=diagram%20of%20phase%20plane" title=" diagram of phase plane "> diagram of phase plane </a> </p> <a href="https://publications.waset.org/abstracts/66849/study-and-solving-partial-differential-equation-of-danel-equation-in-the-vibration-shells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66849.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4134</span> Magnetohydrodynamic Couette Flow of Fractional Burger’s Fluid in an Annulus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sani%20Isa">Sani Isa</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Musa"> Ali Musa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Burgers’ fluid with a fractional derivatives model in an annulus was analyzed. Combining appropriately the basic equations, with the fractionalized fractional Burger’s fluid model allow us to determine the velocity field, temperature and shear stress. The governing partial differential equation was solved using the combine Laplace transformation method and Riemann sum approximation to give velocity field, temperature and shear stress on the fluid flow. The influence of various parameters like fractional parameters, relaxation time and retardation time, are drawn. The results obtained are simulated using Mathcad software and presented graphically. From the graphical results, we observed that the relaxation time and time helps the flow pattern, on the other hand, other material constants resist the fluid flow while fractional parameters effect on fluid flow is opposite to each other. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sani%20isa" title="sani isa">sani isa</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20musaburger%E2%80%99s%20fluid" title=" Ali musaburger’s fluid"> Ali musaburger’s fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=Laplace%20transform" title=" Laplace transform"> Laplace transform</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional%20derivatives" title=" fractional derivatives"> fractional derivatives</a>, <a href="https://publications.waset.org/abstracts/search?q=annulus" title=" annulus"> annulus</a> </p> <a href="https://publications.waset.org/abstracts/190150/magnetohydrodynamic-couette-flow-of-fractional-burgers-fluid-in-an-annulus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190150.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">24</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4133</span> Analytical Soliton Solutions of the Fractional Jaulent-Miodek System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sajeda%20Elbashabsheh">Sajeda Elbashabsheh</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamel%20Al-Khaled"> Kamel Al-Khaled</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper applies a modified Laplace Adomian decomposition method to solve the time-fractional JaulentMiodek system. The method produce convergent series solutions with easily compatible components. This paper considers the Caputo fractional derivative. The effectiveness and applicability of the method are demonstrated by comparing its results with those of prior studies. Results are presented in tables and figures. These solutions might be imperative and significant for the explanation of some practical physical phenomena. All computations and figures in the work are done using MATHEMATICA. The numerical results demonstrate that the current methods are effective, reliable, and simple to i implement for nonlinear fractional partial differential equations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=approximate%20solutions" title="approximate solutions">approximate solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaulent-Miodek%20system" title=" Jaulent-Miodek system"> Jaulent-Miodek system</a>, <a href="https://publications.waset.org/abstracts/search?q=Adomian%20decomposition%20method" title=" Adomian decomposition method"> Adomian decomposition method</a>, <a href="https://publications.waset.org/abstracts/search?q=solitons" title=" solitons"> solitons</a> </p> <a href="https://publications.waset.org/abstracts/186620/analytical-soliton-solutions-of-the-fractional-jaulent-miodek-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186620.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">44</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4132</span> Numerical Solution of Space Fractional Order Linear/Nonlinear Reaction-Advection Diffusion Equation Using Jacobi Polynomial</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shubham%20Jaiswal">Shubham Jaiswal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During modelling of many physical problems and engineering processes, fractional calculus plays an important role. Those are greatly described by fractional differential equations (FDEs). So a reliable and efficient technique to solve such types of FDEs is needed. In this article, a numerical solution of a class of fractional differential equations namely space fractional order reaction-advection dispersion equations subject to initial and boundary conditions is derived. In the proposed approach shifted Jacobi polynomials are used to approximate the solutions together with shifted Jacobi operational matrix of fractional order and spectral collocation method. The main advantage of this approach is that it converts such problems in the systems of algebraic equations which are easier to be solved. The proposed approach is effective to solve the linear as well as non-linear FDEs. To show the reliability, validity and high accuracy of proposed approach, the numerical results of some illustrative examples are reported, which are compared with the existing analytical results already reported in the literature. The error analysis for each case exhibited through graphs and tables confirms the exponential convergence rate of the proposed method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=space%20fractional%20order%20linear%2Fnonlinear%20reaction-advection%20diffusion%20equation" title="space fractional order linear/nonlinear reaction-advection diffusion equation">space fractional order linear/nonlinear reaction-advection diffusion equation</a>, <a href="https://publications.waset.org/abstracts/search?q=shifted%20Jacobi%20polynomials" title=" shifted Jacobi polynomials"> shifted Jacobi polynomials</a>, <a href="https://publications.waset.org/abstracts/search?q=operational%20matrix" title=" operational matrix"> operational matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=collocation%20method" title=" collocation method"> collocation method</a>, <a href="https://publications.waset.org/abstracts/search?q=Caputo%20derivative" title=" Caputo derivative"> Caputo derivative</a> </p> <a href="https://publications.waset.org/abstracts/79521/numerical-solution-of-space-fractional-order-linearnonlinear-reaction-advection-diffusion-equation-using-jacobi-polynomial" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79521.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">445</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4131</span> A Study on the Solutions of the 2-Dimensional and Forth-Order Partial Differential Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Acan">O. Acan</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Keskin"> Y. Keskin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we will carry out a comparative study between the reduced differential transform method, the adomian decomposition method, the variational iteration method and the homotopy analysis method. These methods are used in many fields of engineering. This is been achieved by handling a kind of 2-Dimensional and forth-order partial differential equations called the Kuramoto–Sivashinsky equations. Three numerical examples have also been carried out to validate and demonstrate efficiency of the four methods. Furthermost, it is shown that the reduced differential transform method has advantage over other methods. This method is very effective and simple and could be applied for nonlinear problems which used in engineering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reduced%20differential%20transform%20method" title="reduced differential transform method">reduced differential transform method</a>, <a href="https://publications.waset.org/abstracts/search?q=adomian%20decomposition%20method" title=" adomian decomposition method"> adomian decomposition method</a>, <a href="https://publications.waset.org/abstracts/search?q=variational%20iteration%20method" title=" variational iteration method"> variational iteration method</a>, <a href="https://publications.waset.org/abstracts/search?q=homotopy%20analysis%20method" title=" homotopy analysis method"> homotopy analysis method</a> </p> <a href="https://publications.waset.org/abstracts/17555/a-study-on-the-solutions-of-the-2-dimensional-and-forth-order-partial-differential-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17555.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4130</span> Development of a Model Based on Wavelets and Matrices for the Treatment of Weakly Singular Partial Integro-Differential Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Somveer%20Singh">Somveer Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Vineet%20Kumar%20Singh"> Vineet Kumar Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present a new model based on viscoelasticity for the Non-Newtonian fluids.We use a matrix formulated algorithm to approximate solutions of a class of partial integro-differential equations with the given initial and boundary conditions. Some numerical results are presented to simplify application of operational matrix formulation and reduce the computational cost. Convergence analysis, error estimation and numerical stability of the method are also investigated. Finally, some test examples are given to demonstrate accuracy and efficiency of the proposed method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Legendre%20Wavelets" title="Legendre Wavelets">Legendre Wavelets</a>, <a href="https://publications.waset.org/abstracts/search?q=operational%20matrices" title=" operational matrices"> operational matrices</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20integro-differential%20equation" title=" partial integro-differential equation"> partial integro-differential equation</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelasticity" title=" viscoelasticity"> viscoelasticity</a> </p> <a href="https://publications.waset.org/abstracts/58007/development-of-a-model-based-on-wavelets-and-matrices-for-the-treatment-of-weakly-singular-partial-integro-differential-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58007.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4129</span> Analytical Solution for Thermo-Hydro-Mechanical Analysis of Unsaturated Porous Media Using AG Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Davood%20Yazdani%20Cherati">Davood Yazdani Cherati</a>, <a href="https://publications.waset.org/abstracts/search?q=Hussein%20Hashemi%20Senejani"> Hussein Hashemi Senejani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a convenient analytical solution for a system of coupled differential equations, derived from thermo-hydro-mechanical analysis of three-phase porous media such as unsaturated soils is developed. This kind of analysis can be used in various fields such as geothermal energy systems and seepage of leachate from buried municipal and domestic waste in geomaterials. Initially, a system of coupled differential equations, including energy, mass, and momentum conservation equations is considered, and an analytical method called AGM is employed to solve the problem. The method is straightforward and comprehensible and can be used to solve various nonlinear partial differential equations (PDEs). Results indicate the accuracy of the applied method for solving nonlinear partial differential equations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AGM" title="AGM">AGM</a>, <a href="https://publications.waset.org/abstracts/search?q=analytical%20solution" title=" analytical solution"> analytical solution</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20media" title=" porous media"> porous media</a>, <a href="https://publications.waset.org/abstracts/search?q=thermo-hydro-mechanical" title=" thermo-hydro-mechanical"> thermo-hydro-mechanical</a>, <a href="https://publications.waset.org/abstracts/search?q=unsaturated%20soils" title=" unsaturated soils"> unsaturated soils</a> </p> <a href="https://publications.waset.org/abstracts/111390/analytical-solution-for-thermo-hydro-mechanical-analysis-of-unsaturated-porous-media-using-ag-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111390.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4128</span> Modeling the Compound Interest Dynamics Using Fractional Differential Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muath%20Awadalla">Muath Awadalla</a>, <a href="https://publications.waset.org/abstracts/search?q=Maen%20Awadallah"> Maen Awadallah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Banking sector covers different activities including lending money to customers. However, it is commonly known that customers pay money they have borrowed including an added amount called interest. Compound interest rate is an approach used in determining the interest to be paid. The instant compounded amount to be paid by a debtor is obtained through a differential equation whose main parameters are the rate and the time. The rate used by banks in a country is often defined by the government of the said country. In Switzerland, for instance, a negative rate was once applied. In this work, a new approach of modeling the compound interest is proposed using Hadamard fractional derivative. As a result, it appears that depending on the fraction value used in derivative the amount to be paid by a debtor might either be higher or lesser than the amount determined using the classical approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compound%20interest" title="compound interest">compound interest</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional%20differential%20equation" title=" fractional differential equation"> fractional differential equation</a>, <a href="https://publications.waset.org/abstracts/search?q=hadamard%20fractional%20derivative" title=" hadamard fractional derivative"> hadamard fractional derivative</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/110859/modeling-the-compound-interest-dynamics-using-fractional-differential-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110859.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4127</span> Large Amplitude Vibration of Sandwich Beam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Youssef%20Abdelli">Youssef Abdelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachid%20Nasri"> Rachid Nasri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The large amplitude free vibration analysis of three-layered symmetric sandwich beams is carried out using two different approaches. The governing nonlinear partial differential equations of motion in free natural vibration are derived using Hamilton's principle. The formulation leads to two nonlinear partial differential equations that are coupled both in axial and binding deformations. In the first approach, the method of multiple scales is applied directly to the governing equation that is a nonlinear partial differential equation. In the second approach, we discretize the governing equation by using Galerkin's procedure and then apply the shooting method to the obtained ordinary differential equations. In order to check the validity of the solutions obtained by the two approaches, they are compared with the solutions obtained by two approaches; they are compared with the solutions obtained numerically by the finite difference method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20difference%20method" title="finite difference method">finite difference method</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20amplitude%20vibration" title=" large amplitude vibration"> large amplitude vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20scales" title=" multiple scales"> multiple scales</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20vibration" title=" nonlinear vibration"> nonlinear vibration</a> </p> <a href="https://publications.waset.org/abstracts/35464/large-amplitude-vibration-of-sandwich-beam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35464.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">463</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4126</span> Fundamental Solutions for Discrete Dynamical Systems Involving the Fractional Laplacian</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jorge%20Gonzalez%20Camus">Jorge Gonzalez Camus</a>, <a href="https://publications.waset.org/abstracts/search?q=Valentin%20Keyantuo"> Valentin Keyantuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahamadi%20Warma"> Mahamadi Warma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we obtain representation results for solutions of a time-fractional differential equation involving the discrete fractional Laplace operator in terms of generalized Wright functions. Such equations arise in the modeling of many physical systems, for example, chain processes in chemistry and radioactivity. The focus is on the linear problem of the simplified Moore - Gibson - Thompson equation, where the discrete fractional Laplacian and the Caputo fractional derivate of order on (0,2] are involved. As a particular case, we obtain the explicit solution for the discrete heat equation and discrete wave equation. Furthermore, we show the explicit solution for the equation involving the perturbed Laplacian by the identity operator. The main tool for obtaining the explicit solution are the Laplace and discrete Fourier transforms, and Stirling's formula. The methodology mainly is to apply both transforms in the equation, to find the inverse of each transform, and to prove that this solution is well defined, using Stirling´s formula. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discrete%20fractional%20Laplacian" title="discrete fractional Laplacian">discrete fractional Laplacian</a>, <a href="https://publications.waset.org/abstracts/search?q=explicit%20representation%20of%20solutions" title=" explicit representation of solutions"> explicit representation of solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional%20heat%20and%20wave%20equations" title=" fractional heat and wave equations"> fractional heat and wave equations</a>, <a href="https://publications.waset.org/abstracts/search?q=fundamental" title=" fundamental"> fundamental</a> </p> <a href="https://publications.waset.org/abstracts/99922/fundamental-solutions-for-discrete-dynamical-systems-involving-the-fractional-laplacian" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99922.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4125</span> Multiple Positive Solutions for Boundary Value Problem of Nonlinear Fractional Differential Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Guezane-Lakoud">A. Guezane-Lakoud</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bensebaa"> S. Bensebaa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we study a boundary value problem of nonlinear fractional differential equation. Existence and positivity results of solutions are obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=positive%20solution" title="positive solution">positive solution</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional%20caputo%20derivative" title=" fractional caputo derivative"> fractional caputo derivative</a>, <a href="https://publications.waset.org/abstracts/search?q=Banach%20contraction%20principle" title=" Banach contraction principle"> Banach contraction principle</a>, <a href="https://publications.waset.org/abstracts/search?q=Avery%20and%20Peterson%20fixed%20point%20theorem" title=" Avery and Peterson fixed point theorem"> Avery and Peterson fixed point theorem</a> </p> <a href="https://publications.waset.org/abstracts/17545/multiple-positive-solutions-for-boundary-value-problem-of-nonlinear-fractional-differential-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17545.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">414</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4124</span> Development of Extended Trapezoidal Method for Numerical Solution of Volterra Integro-Differential Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fuziyah%20Ishak">Fuziyah Ishak</a>, <a href="https://publications.waset.org/abstracts/search?q=Siti%20Norazura%20Ahmad"> Siti Norazura Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Volterra integro-differential equations appear in many models for real life phenomena. Since analytical solutions for this type of differential equations are hard and at times impossible to attain, engineers and scientists resort to numerical solutions that can be made as accurately as possible. Conventionally, numerical methods for ordinary differential equations are adapted to solve Volterra integro-differential equations. In this paper, numerical solution for solving Volterra integro-differential equation using extended trapezoidal method is described. Formulae for the integral and differential parts of the equation are presented. Numerical results show that the extended method is suitable for solving first order Volterra integro-differential equations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accuracy" title="accuracy">accuracy</a>, <a href="https://publications.waset.org/abstracts/search?q=extended%20trapezoidal%20method" title=" extended trapezoidal method"> extended trapezoidal method</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20solution" title=" numerical solution"> numerical solution</a>, <a href="https://publications.waset.org/abstracts/search?q=Volterra%20integro-differential%20equations" title=" Volterra integro-differential equations"> Volterra integro-differential equations</a> </p> <a href="https://publications.waset.org/abstracts/52856/development-of-extended-trapezoidal-method-for-numerical-solution-of-volterra-integro-differential-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52856.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fractional%20partial%20differential%20equations&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fractional%20partial%20differential%20equations&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fractional%20partial%20differential%20equations&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fractional%20partial%20differential%20equations&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fractional%20partial%20differential%20equations&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fractional%20partial%20differential%20equations&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fractional%20partial%20differential%20equations&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fractional%20partial%20differential%20equations&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fractional%20partial%20differential%20equations&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fractional%20partial%20differential%20equations&amp;page=138">138</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fractional%20partial%20differential%20equations&amp;page=139">139</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fractional%20partial%20differential%20equations&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10