CINXE.COM

Optimal Coverage Path Planningin a Wireless Sensor Network for Intelligent Transportation System

<!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head><meta http-equiv="Content-Type" content="text/html; charset=utf-8"> <title>Optimal Coverage Path Planningin a Wireless Sensor Network for Intelligent Transportation System</title> <!-- common meta tags --> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <meta name="title" content="Optimal Coverage Path Planningin a Wireless Sensor Network for Intelligent Transportation System"> <meta name="description" content="With the enhancement of the intelligent and communication technology, an intelligent transportation plays a vital role to facilitate an essential service to many people, allowing them to travel quickly and conveniently from place to place. Wireless sensor networks (WSNs) are well-known for their ability to detect physical significant barriers due to their diverse movement, self-organizing capabilities, and the integration of this mobile node on the intelligent transportation system to gather data in WSN contexts is becoming more and more popular as these vehicles proliferate. Although these mobile devices might enhance network performance, however it is difficult to design a suitable transportation path with the limited energy resources with network connectivity. To solve this problem, we have proposed a novel itinerary planning schema data gatherer (IPS-DG) model. Furthermore, we use the path planning module (PPM) which finds the transportation path to travel the shortest distance. We have compared our results under different aspect such as life span, energy consumption, and path length with Low Energy Adaptive Clustering Hierarchy (LEACH), Multi-Hop Weighted Revenue (MWR), Single-Hop Data Gathering Procedure (SHDGP). Our model outperforms in terms of energy usage, shortest path, and longest life span of with LEACH, MWR, SHDGP routing protocols."/> <meta name="keywords" content="Wireless Sensor Network, Intelligent Transportation System, Path Planning, Routing protocol."/> <!-- Dublin Core(DC) meta tags --> <meta name="dc.title" content="Optimal Coverage Path Planning in a Wireless Sensor Network for Intelligent Transportation System"> <meta name="citation_authors" content="Saureng Kumar"> <meta name="citation_authors" content="S C Sharma"> <meta name="dc.type" content="Article"> <meta name="dc.source" content=" International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.05,"> <meta name="dc.date" content="2023/09/30"> <meta name="dc.identifier" content="10.5121/ijcnc.2023.15504"> <meta name="dc.publisher" content="AIRCC Publishing Corporation"> <meta name="dc.rights" content="http://creativecommons.org/licenses/by/3.0/"> <meta name="dc.format" content="application/pdf"> <meta name="dc.language" content="en"> <meta name="dc.description" content="With the enhancement of the intelligent and communication technology, an intelligent transportation plays a vital role to facilitate an essential service to many people, allowing them to travel quickly and conveniently from place to place. Wireless sensor networks (WSNs) are well-known for their ability to detect physical significant barriers due to their diverse movement, self-organizing capabilities, and the integration of this mobile node on the intelligent transportation system to gather data in WSN contexts is becoming more and more popular as these vehicles proliferate. Although these mobile devices might enhance network performance, however it is difficult to design a suitable transportation path with the limited energy resources with network connectivity. To solve this problem, we have proposed a novel itinerary planning schema data gatherer (IPS-DG) model. Furthermore, we use the path planning module (PPM) which finds the transportation path to travel the shortest distance. We have compared our results under different aspect such as life span, energy consumption, and path length with Low Energy Adaptive Clustering Hierarchy (LEACH), Multi-Hop Weighted Revenue (MWR), Single-Hop Data Gathering Procedure (SHDGP). Our model outperforms in terms of energy usage, shortest path, and longest life span of with LEACH, MWR, SHDGP routing protocols."/> <meta name="dc.subject" content="Wireless Sensor Network"> <meta name="dc.subject" content="Intelligent Transportation System"> <meta name="dc.subject" content="Path Planning"> <meta name="dc.subject" content="Routing protocol"> <!-- End Dublin Core(DC) meta tags --> <!-- Prism meta tags --> <meta name="prism.publicationName" content=" International Journal of Computer Networks & Communications (IJCNC)"> <meta name="prism.publicationDate" content="2023/09/30"> <meta name="prism.volume" content="15"> <meta name="prism.number" content="05"> <meta name="prism.section" content="Article"> <meta name="prism.startingPage" content="55"> <!-- End Prism meta tags --> <!-- citation meta tags --> <meta name="citation_journal_title" content="International Journal of Computer Networks & Communications (IJCNC)"> <meta name="citation_publisher" content="AIRCC Publishing Corporation"> <meta name="citation_authors" content="Saureng Kumar and S C Sharma"> <meta name="citation_title" content="Optimal Coverage Path Planning in a Wireless Sensor Network for Intelligent Transportation System"> <meta name="citation_online_date" content="2023/09/30"> <meta name="citation_issue" content="15"> <meta name="citation_firstpage" content="55"> <meta name="citation_authors" content="Saureng Kumar"> <meta name="citation_authors" content="S C Sharma"> <meta name="citation_doi" content="10.5121/ijcnc.2023.15504"> <meta name="citation_abstract_html_url" content="https://aircconline.com/abstract/ijcnc/v15n5/15523cnc04.html"> <meta name="citation_pdf_url" content="https://aircconline.com/ijcnc/V15N5/15523cnc04.pdf"> <!-- end citation meta tags --> <!-- Og meta tags --> <meta property="og:site_name" content="AIRCC" /> <meta property="og:type" content="article" /> <meta property="og:url" content="https://aircconline.com/abstract/ijcnc/v15n5/15523cnc04.html"> <meta property="og:title" content="Optimal Coverage Path Planning in a Wireless Sensor Network for Intelligent Transportation System"> <meta property="og:description" content="With the enhancement of the intelligent and communication technology, an intelligent transportation plays a vital role to facilitate an essential service to many people, allowing them to travel quickly and conveniently from place to place. Wireless sensor networks (WSNs) are well-known for their ability to detect physical significant barriers due to their diverse movement, self-organizing capabilities, and the integration of this mobile node on the intelligent transportation system to gather data in WSN contexts is becoming more and more popular as these vehicles proliferate. Although these mobile devices might enhance network performance, however it is difficult to design a suitable transportation path with the limited energy resources with network connectivity. To solve this problem, we have proposed a novel itinerary planning schema data gatherer (IPS-DG) model. Furthermore, we use the path planning module (PPM) which finds the transportation path to travel the shortest distance. We have compared our results under different aspect such as life span, energy consumption, and path length with Low Energy Adaptive Clustering Hierarchy (LEACH), Multi-Hop Weighted Revenue (MWR), Single-Hop Data Gathering Procedure (SHDGP). Our model outperforms in terms of energy usage, shortest path, and longest life span of with LEACH, MWR, SHDGP routing protocols."/> <!-- end og meta tags --> <!-- Start of twitter tags --> <meta name="twitter:card" content="Proceedings" /> <meta name="twitter:site" content="AIRCC" /> <meta name="twitter:title" content="Optimal Coverage Path Planning in a Wireless Sensor Network for Intelligent Transportation System" /> <meta name="twitter:description" content="With the enhancement of the intelligent and communication technology, an intelligent transportation plays a vital role to facilitate an essential service to many people, allowing them to travel quickly and conveniently from place to place. Wireless sensor networks (WSNs) are well-known for their ability to detect physical significant barriers due to their diverse movement, self-organizing capabilities, and the integration of this mobile node on the intelligent transportation system to gather data in WSN contexts is becoming more and more popular as these vehicles proliferate. Although these mobile devices might enhance network performance, however it is difficult to design a suitable transportation path with the limited energy resources with network connectivity. To solve this problem, we have proposed a novel itinerary planning schema data gatherer (IPS-DG) model. Furthermore, we use the path planning module (PPM) which finds the transportation path to travel the shortest distance. We have compared our results under different aspect such as life span, energy consumption, and path length with Low Energy Adaptive Clustering Hierarchy (LEACH), Multi-Hop Weighted Revenue (MWR), Single-Hop Data Gathering Procedure (SHDGP). Our model outperforms in terms of energy usage, shortest path, and longest life span of with LEACH, MWR, SHDGP routing protocols."/> <meta name="twitter:image" content="https://airccse.org/img/aircc-logo1.jpg" /> <!-- End of twitter tags --> <!-- INDEX meta tags --> <meta name="google-site-verification" content="t8rHIcM8EfjIqfQzQ0IdYIiA9JxDD0uUZAitBCzsOIw" /> <meta name="yandex-verification" content="e3d2d5a32c7241f4" /> <!-- end INDEX meta tags --> <style type="text/css"> a{ color:white; text-decoration:none; } ul li a{ font-weight:bold; color:#000; list-style:none; text-decoration:none; size:10px;} .imagess { height:90px; text-align:left; margin:0px 5px 2px 8px; float:right; border:none; } #left p { font-family:CALIBRI; font-size:0.90pc; margin-left: 20px; } .right { margin-right: 20px; } #button{ float: left; font-size: 17px; margin-left: 10px; height: 28px; width: 100px; background-color: #1e86c6; } </style> <link rel="icon" type="image/ico" href="../fav.ico"/> <link rel="stylesheet" type="text/css" href="../current.css" /> </head> <body> <div id="wap"> <div id="page"> <div id="top"> <table width="100%" cellspacing="0" cellpadding="0" > <tr><td colspan="3" valign="top"><img src="../top1.gif" /></td></tr> </table> </div> <div id="menu"> <a href="http://airccse.org/journal/ijcnc.html">Home</a> <a href="http://airccse.org/journal/j2editorial.html">Editorial</a> <a href="http://airccse.org/journal/j2paper.html">Submission</a> <a href="http://airccse.org/journal/j2indexing.html">Indexing</a> <a href="http://airccse.org/journal/j2special.html">Special Issue</a> <a href="http://airccse.org/journal/j2contact.html">Contacts</a> <a href="http://airccse.org" target="_blank">AIRCC</a></div> <div id="content"> <div id="left"> <h2>Volume 15, Number 5</h2> <h4 style="text-align:center;height:auto"><a>Optimal Coverage Path Planning in a Wireless Sensor Network for Intelligent Transportation System</a></h4> <h3>&nbsp;&nbsp;Authors</h3> <p class="#left">Saureng Kumar and S C Sharma, IIT Roorkee, India </p> <h3>&nbsp;&nbsp;Abstract</h3> <p class="#left right" style="text-align:justify">With the enhancement of the intelligent and communication technology, an intelligent transportation plays a vital role to facilitate an essential service to many people, allowing them to travel quickly and conveniently from place to place. Wireless sensor networks (WSNs) are well-known for their ability to detect physical significant barriers due to their diverse movement, self-organizing capabilities, and the integration of this mobile node on the intelligent transportation system to gather data in WSN contexts is becoming more and more popular as these vehicles proliferate. Although these mobile devices might enhance network performance, however it is difficult to design a suitable transportation path with the limited energy resources with network connectivity. To solve this problem, we have proposed a novel itinerary planning schema data gatherer (IPS-DG) model. Furthermore, we use the path planning module (PPM) which finds the transportation path to travel the shortest distance. We have compared our results under different aspect such as life span, energy consumption, and path length with Low Energy Adaptive Clustering Hierarchy (LEACH), Multi-Hop Weighted Revenue (MWR), Single-Hop Data Gathering Procedure (SHDGP). Our model outperforms in terms of energy usage, shortest path, and longest life span of with LEACH, MWR, SHDGP routing protocols. </p> <h3>&nbsp;&nbsp;Keywords</h3> <p class="#left right" style="text-align:justify">Wireless Sensor Network, Intelligent Transportation System, Path Planning, Routing protocol. </p><br> <button type="button" id="button"><a target="blank" href="/ijcnc/V15N5/15523cnc04.pdf">Full Text</a></button> &nbsp;&nbsp;<button type="button" id="button"><a href="http://airccse.org/journal/ijc2023.html">Volume 15</a></button> <br><br><br><br><br> </div> <div id="right"> <div class="menu_right"> <ul> <li><a href="http://airccse.org/journal/jcnc_arch.html">Archives</a></li> </ul> </div><br /> <p align="center">&nbsp;</p> <p align="center">&nbsp;</p> </div> <div class="clear"></div> <div id="footer"><table width="100%" ><tr><td height="25" colspan="2"><br /><p align="center">&reg; All Rights Reserved - AIRCC</p></td></table> </div> </div> </div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10