CINXE.COM

Grupa – Wikipedie

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available" lang="cs" dir="ltr"> <head> <meta charset="UTF-8"> <title>Grupa – Wikipedie</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )cswikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t."," \t,"],"wgDigitTransformTable":["",""], "wgDefaultDateFormat":"ČSN basic dt","wgMonthNames":["","leden","únor","březen","duben","květen","červen","červenec","srpen","září","říjen","listopad","prosinec"],"wgRequestId":"d1c43072-cda1-419d-80fe-99fd48a0e0f6","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Grupa","wgTitle":"Grupa","wgCurRevisionId":24277163,"wgRevisionId":24277163,"wgArticleId":13666,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Údržba:Články s dočasně použitou šablonou","Monitoring:Články přeložené z enwiki","Údržba:Články obsahující odkazy na nedostupné zdroje","Monitoring:Články s identifikátorem NKC","Monitoring:Články s identifikátorem GND","Wikipedie:Dobré články","Teorie grup","Algebraické struktury","Symetrie"],"wgPageViewLanguage":"cs","wgPageContentLanguage":"cs","wgPageContentModel":"wikitext","wgRelevantPageName":"Grupa","wgRelevantArticleId": 13666,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgRedirectedFrom":"Řád_grupy","wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"cs","pageLanguageDir":"ltr","pageVariantFallbacks":"cs"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":100000,"wgInternalRedirectTargetUrl":"/wiki/Grupa#Řád_prvku_a_grupy","wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q83478","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile", "model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":true,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["mediawiki.action.view.redirect","ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.WikiMiniAtlas","ext.gadget.OSMmapa", "ext.gadget.direct-links-to-commons","ext.gadget.ReferenceTooltips","ext.gadget.courses","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=cs&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=cs&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=cs&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/a/a6/Rubik%27s_cube.svg/1200px-Rubik%27s_cube.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1250"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/a/a6/Rubik%27s_cube.svg/800px-Rubik%27s_cube.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="833"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/a/a6/Rubik%27s_cube.svg/640px-Rubik%27s_cube.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="667"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Grupa – Wikipedie"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//cs.m.wikipedia.org/wiki/Grupa#Řád_prvku_a_grupy"> <link rel="alternate" type="application/x-wiki" title="Editovat" href="/w/index.php?title=Grupa&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedie (cs)"> <link rel="EditURI" type="application/rsd+xml" href="//cs.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://cs.wikipedia.org/wiki/Grupa#Řád_prvku_a_grupy"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.cs"> <link rel="alternate" type="application/atom+xml" title="Atom kanál Wikipedie." href="/w/index.php?title=Speci%C3%A1ln%C3%AD:Posledn%C3%AD_zm%C4%9Bny&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Grupa rootpage-Grupa skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Přeskočit na obsah</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Projekt"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Hlavní menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Hlavní menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Hlavní menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">přesunout do postranního panelu</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">skrýt</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigace </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage" class="mw-list-item"><a href="/wiki/Hlavn%C3%AD_strana" title="Navštívit Hlavní stranu [z]" accesskey="z"><span>Hlavní strana</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/N%C3%A1pov%C4%9Bda:Obsah" title="Místo, kde najdete pomoc"><span>Nápověda</span></a></li><li id="n-helpdesk" class="mw-list-item"><a href="/wiki/Wikipedie:Pot%C5%99ebuji_pomoc" title="Pokud si nevíte rady, zeptejte se ostatních"><span>Potřebuji pomoc</span></a></li><li id="n-featuredcontent" class="mw-list-item"><a href="/wiki/Wikipedie:Nejlep%C5%A1%C3%AD_%C4%8Dl%C3%A1nky" title="Přehled článků, které jsou považovány za nejlepší na české Wikipedii"><span>Nejlepší články</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Speci%C3%A1ln%C3%AD:N%C3%A1hodn%C3%A1_str%C3%A1nka" title="Přejít na náhodně vybranou stránku [x]" accesskey="x"><span>Náhodný článek</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Speci%C3%A1ln%C3%AD:Posledn%C3%AD_zm%C4%9Bny" title="Seznam posledních změn na této wiki [r]" accesskey="r"><span>Poslední změny</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedie:Port%C3%A1l_Wikipedie" title="O projektu, jak můžete pomoci, kde hledat"><span>Komunitní portál</span></a></li><li id="n-villagepump" class="mw-list-item"><a href="/wiki/Wikipedie:Pod_l%C3%ADpou" title="Hlavní diskusní fórum"><span>Pod lípou</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Hlavn%C3%AD_strana" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedie" src="/static/images/mobile/copyright/wikipedia-wordmark-cs.svg" style="width: 7.5em; height: 1.1875em;"> <img class="mw-logo-tagline" alt="Wikipedie: Otevřená encyklopedie" src="/static/images/mobile/copyright/wikipedia-tagline-cs.svg" width="118" height="13" style="width: 7.375em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Speci%C3%A1ln%C3%AD:Hled%C3%A1n%C3%AD" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Prohledat tuto wiki [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Hledání</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Hledat na Wikipedii" aria-label="Hledat na Wikipedii" autocapitalize="sentences" title="Prohledat tuto wiki [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Speciální:Hledání"> </div> <button class="cdx-button cdx-search-input__end-button">Hledat</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Osobní nástroje"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Vzhled"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Změnit vzhled velikosti písma, šířky stránky a barvy" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Vzhled" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Vzhled</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_cs.wikipedia.org&amp;uselang=cs" class=""><span>Podpořte Wikipedii</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Speci%C3%A1ln%C3%AD:Vytvo%C5%99it_%C3%BA%C4%8Det&amp;returnto=Grupa" title="Doporučujeme vytvořit si účet a přihlásit se, ovšem není to povinné" class=""><span>Vytvoření účtu</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Speci%C3%A1ln%C3%AD:P%C5%99ihl%C3%A1sit&amp;returnto=Grupa" title="Doporučujeme vám přihlásit se, ovšem není to povinné. [o]" accesskey="o" class=""><span>Přihlášení</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Další možnosti" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Osobní nástroje" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Osobní nástroje</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="Uživatelské menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_cs.wikipedia.org&amp;uselang=cs"><span>Podpořte Wikipedii</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Speci%C3%A1ln%C3%AD:Vytvo%C5%99it_%C3%BA%C4%8Det&amp;returnto=Grupa" title="Doporučujeme vytvořit si účet a přihlásit se, ovšem není to povinné"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Vytvoření účtu</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Speci%C3%A1ln%C3%AD:P%C5%99ihl%C3%A1sit&amp;returnto=Grupa" title="Doporučujeme vám přihlásit se, ovšem není to povinné. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Přihlášení</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Stránky pro odhlášené editory <a href="/wiki/N%C3%A1pov%C4%9Bda:%C3%9Avod" aria-label="Více informací o editování"><span>dozvědět se více</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Speci%C3%A1ln%C3%AD:Moje_p%C5%99%C3%ADsp%C4%9Bvky" title="Seznam editací provedených z této IP adresy [y]" accesskey="y"><span>Příspěvky</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Speci%C3%A1ln%C3%AD:Moje_diskuse" title="Diskuse o editacích provedených z této IP adresy [n]" accesskey="n"><span>Diskuse</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Projekt"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Obsah" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Obsah</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">přesunout do postranního panelu</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">skrýt</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(úvod)</div> </a> </li> <li id="toc-Definice_grupy" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Definice_grupy"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Definice grupy</span> </div> </a> <button aria-controls="toc-Definice_grupy-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Přepnout podsekci Definice grupy</span> </button> <ul id="toc-Definice_grupy-sublist" class="vector-toc-list"> <li id="toc-Definice_pomocí_tří_operací" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Definice_pomocí_tří_operací"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Definice pomocí tří operací</span> </div> </a> <ul id="toc-Definice_pomocí_tří_operací-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Ilustrativní_příklady" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Ilustrativní_příklady"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Ilustrativní příklady</span> </div> </a> <button aria-controls="toc-Ilustrativní_příklady-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Přepnout podsekci Ilustrativní příklady</span> </button> <ul id="toc-Ilustrativní_příklady-sublist" class="vector-toc-list"> <li id="toc-Celá_čísla" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Celá_čísla"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Celá čísla</span> </div> </a> <ul id="toc-Celá_čísla-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Dihedrální_grupa_D4" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Dihedrální_grupa_D4"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Dihedrální grupa D<sub>4</sub></span> </div> </a> <ul id="toc-Dihedrální_grupa_D4-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Dějiny" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Dějiny"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Dějiny</span> </div> </a> <ul id="toc-Dějiny-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Základní_pojmy" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Základní_pojmy"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Základní pojmy</span> </div> </a> <button aria-controls="toc-Základní_pojmy-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Přepnout podsekci Základní pojmy</span> </button> <ul id="toc-Základní_pojmy-sublist" class="vector-toc-list"> <li id="toc-Řád_prvku_a_grupy" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Řád_prvku_a_grupy"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Řád prvku a grupy</span> </div> </a> <ul id="toc-Řád_prvku_a_grupy-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Cyklická_grupa" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Cyklická_grupa"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Cyklická grupa</span> </div> </a> <ul id="toc-Cyklická_grupa-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Abelova_grupa" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Abelova_grupa"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Abelova grupa</span> </div> </a> <ul id="toc-Abelova_grupa-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Podgrupa" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Podgrupa"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4</span> <span>Podgrupa</span> </div> </a> <ul id="toc-Podgrupa-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Homomorfismus_a_izomorfismus_grup" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Homomorfismus_a_izomorfismus_grup"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.5</span> <span>Homomorfismus a izomorfismus grup</span> </div> </a> <ul id="toc-Homomorfismus_a_izomorfismus_grup-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Rozkladové_třídy" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Rozkladové_třídy"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.6</span> <span>Rozkladové třídy</span> </div> </a> <ul id="toc-Rozkladové_třídy-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Normální_podgrupa_a_faktorová_grupa" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Normální_podgrupa_a_faktorová_grupa"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.7</span> <span>Normální podgrupa a faktorová grupa</span> </div> </a> <ul id="toc-Normální_podgrupa_a_faktorová_grupa-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Jednoduchá_a_polojednoduchá_grupa" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Jednoduchá_a_polojednoduchá_grupa"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.8</span> <span>Jednoduchá a polojednoduchá grupa</span> </div> </a> <ul id="toc-Jednoduchá_a_polojednoduchá_grupa-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Generování_a_prezentace_grupy" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Generování_a_prezentace_grupy"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.9</span> <span>Generování a prezentace grupy</span> </div> </a> <ul id="toc-Generování_a_prezentace_grupy-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Řešitelná_grupa" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Řešitelná_grupa"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.10</span> <span>Řešitelná grupa</span> </div> </a> <ul id="toc-Řešitelná_grupa-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Příklady_a_aplikace" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Příklady_a_aplikace"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Příklady a aplikace</span> </div> </a> <button aria-controls="toc-Příklady_a_aplikace-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Přepnout podsekci Příklady a aplikace</span> </button> <ul id="toc-Příklady_a_aplikace-sublist" class="vector-toc-list"> <li id="toc-Čísla" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Čísla"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Čísla</span> </div> </a> <ul id="toc-Čísla-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Grupy_symetrií" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Grupy_symetrií"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Grupy symetrií</span> </div> </a> <ul id="toc-Grupy_symetrií-sublist" class="vector-toc-list"> <li id="toc-Symetrie_dláždění_roviny" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Symetrie_dláždění_roviny"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2.1</span> <span>Symetrie dláždění roviny</span> </div> </a> <ul id="toc-Symetrie_dláždění_roviny-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Symetrie_v_krystalografii" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Symetrie_v_krystalografii"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2.2</span> <span>Symetrie v krystalografii</span> </div> </a> <ul id="toc-Symetrie_v_krystalografii-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Transformační_grupy_v_geometrii" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Transformační_grupy_v_geometrii"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2.3</span> <span>Transformační grupy v geometrii</span> </div> </a> <ul id="toc-Transformační_grupy_v_geometrii-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Obecná_lineární_grupa_a_teorie_reprezentací" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Obecná_lineární_grupa_a_teorie_reprezentací"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3</span> <span>Obecná lineární grupa a teorie reprezentací</span> </div> </a> <ul id="toc-Obecná_lineární_grupa_a_teorie_reprezentací-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Galoisova_grupa" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Galoisova_grupa"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.4</span> <span>Galoisova grupa</span> </div> </a> <ul id="toc-Galoisova_grupa-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Grupy_v_algebraické_topologii" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Grupy_v_algebraické_topologii"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.5</span> <span>Grupy v algebraické topologii</span> </div> </a> <ul id="toc-Grupy_v_algebraické_topologii-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Další_využití" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Další_využití"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.6</span> <span>Další využití</span> </div> </a> <ul id="toc-Další_využití-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Konečné_grupy" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Konečné_grupy"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Konečné grupy</span> </div> </a> <button aria-controls="toc-Konečné_grupy-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Přepnout podsekci Konečné grupy</span> </button> <ul id="toc-Konečné_grupy-sublist" class="vector-toc-list"> <li id="toc-Klasifikace_jednoduchých_konečných_grup" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Klasifikace_jednoduchých_konečných_grup"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Klasifikace jednoduchých konečných grup</span> </div> </a> <ul id="toc-Klasifikace_jednoduchých_konečných_grup-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Grupy_s_dodatečnou_strukturou" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Grupy_s_dodatečnou_strukturou"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Grupy s dodatečnou strukturou</span> </div> </a> <button aria-controls="toc-Grupy_s_dodatečnou_strukturou-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Přepnout podsekci Grupy s dodatečnou strukturou</span> </button> <ul id="toc-Grupy_s_dodatečnou_strukturou-sublist" class="vector-toc-list"> <li id="toc-Topologické_grupy" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Topologické_grupy"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1</span> <span>Topologické grupy</span> </div> </a> <ul id="toc-Topologické_grupy-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Lieovy_grupy" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Lieovy_grupy"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2</span> <span>Lieovy grupy</span> </div> </a> <ul id="toc-Lieovy_grupy-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Zobecnění" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Zobecnění"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Zobecnění</span> </div> </a> <ul id="toc-Zobecnění-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Odkazy" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Odkazy"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Odkazy</span> </div> </a> <button aria-controls="toc-Odkazy-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Přepnout podsekci Odkazy</span> </button> <ul id="toc-Odkazy-sublist" class="vector-toc-list"> <li id="toc-Poznámky" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Poznámky"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.1</span> <span>Poznámky</span> </div> </a> <ul id="toc-Poznámky-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Reference" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Reference"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.2</span> <span>Reference</span> </div> </a> <ul id="toc-Reference-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Literatura" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Literatura"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.3</span> <span>Literatura</span> </div> </a> <ul id="toc-Literatura-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Externí_odkazy" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Externí_odkazy"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.4</span> <span>Externí odkazy</span> </div> </a> <ul id="toc-Externí_odkazy-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Obsah" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Přepnout obsah" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Přepnout obsah</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Grupa</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Přejděte k článku v jiném jazyce. Je dostupný v 83 jazycích" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-83" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">83 jazyků</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Groep_(wiskunde)" title="Groep (wiskunde) – afrikánština" lang="af" hreflang="af" data-title="Groep (wiskunde)" data-language-autonym="Afrikaans" data-language-local-name="afrikánština" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%B2%D9%85%D8%B1%D8%A9_(%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A%D8%A7%D8%AA)" title="زمرة (رياضيات) – arabština" lang="ar" hreflang="ar" data-title="زمرة (رياضيات)" data-language-autonym="العربية" data-language-local-name="arabština" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ba mw-list-item"><a href="https://ba.wikipedia.org/wiki/%D0%A2%D3%A9%D1%80%D0%BA%D3%A9%D0%BC_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Төркөм (математика) – baškirština" lang="ba" hreflang="ba" data-title="Төркөм (математика)" data-language-autonym="Башҡортса" data-language-local-name="baškirština" class="interlanguage-link-target"><span>Башҡортса</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%93%D1%80%D1%83%D0%BF%D0%B0_(%D0%B0%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0)" title="Група (алгебра) – běloruština" lang="be" hreflang="be" data-title="Група (алгебра)" data-language-autonym="Беларуская" data-language-local-name="běloruština" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%93%D1%80%D1%83%D0%BF%D0%B0_(%D0%B0%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0)" title="Група (алгебра) – bulharština" lang="bg" hreflang="bg" data-title="Група (алгебра)" data-language-autonym="Български" data-language-local-name="bulharština" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%97%E0%A7%8D%E0%A6%B0%E0%A7%81%E0%A6%AA_(%E0%A6%97%E0%A6%A3%E0%A6%BF%E0%A6%A4)" title="গ্রুপ (গণিত) – bengálština" lang="bn" hreflang="bn" data-title="গ্রুপ (গণিত)" data-language-autonym="বাংলা" data-language-local-name="bengálština" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Grup_(matem%C3%A0tiques)" title="Grup (matemàtiques) – katalánština" lang="ca" hreflang="ca" data-title="Grup (matemàtiques)" data-language-autonym="Català" data-language-local-name="katalánština" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%DA%AF%D8%B1%D9%88%D9%88%D9%BE_(%D9%85%D8%A7%D8%AA%D9%85%D8%A7%D8%AA%DB%8C%DA%A9)" title="گرووپ (ماتماتیک) – kurdština (sorání)" lang="ckb" hreflang="ckb" data-title="گرووپ (ماتماتیک)" data-language-autonym="کوردی" data-language-local-name="kurdština (sorání)" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%A3%D1%88%D0%BA%C4%83%D0%BD_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Ушкăн (математика) – čuvaština" lang="cv" hreflang="cv" data-title="Ушкăн (математика)" data-language-autonym="Чӑвашла" data-language-local-name="čuvaština" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Gr%C5%B5p_(mathemateg)" title="Grŵp (mathemateg) – velština" lang="cy" hreflang="cy" data-title="Grŵp (mathemateg)" data-language-autonym="Cymraeg" data-language-local-name="velština" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Gruppe_(matematik)" title="Gruppe (matematik) – dánština" lang="da" hreflang="da" data-title="Gruppe (matematik)" data-language-autonym="Dansk" data-language-local-name="dánština" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Gruppe_(Mathematik)" title="Gruppe (Mathematik) – němčina" lang="de" hreflang="de" data-title="Gruppe (Mathematik)" data-language-autonym="Deutsch" data-language-local-name="němčina" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%9F%CE%BC%CE%AC%CE%B4%CE%B1" title="Ομάδα – řečtina" lang="el" hreflang="el" data-title="Ομάδα" data-language-autonym="Ελληνικά" data-language-local-name="řečtina" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-en badge-Q17437796 badge-featuredarticle mw-list-item" title="nejlepší článek"><a href="https://en.wikipedia.org/wiki/Group_(mathematics)" title="Group (mathematics) – angličtina" lang="en" hreflang="en" data-title="Group (mathematics)" data-language-autonym="English" data-language-local-name="angličtina" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Grupo_(algebro)" title="Grupo (algebro) – esperanto" lang="eo" hreflang="eo" data-title="Grupo (algebro)" data-language-autonym="Esperanto" data-language-local-name="esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Grupo_(matem%C3%A1tica)" title="Grupo (matemática) – španělština" lang="es" hreflang="es" data-title="Grupo (matemática)" data-language-autonym="Español" data-language-local-name="španělština" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/R%C3%BChm_(matemaatika)" title="Rühm (matemaatika) – estonština" lang="et" hreflang="et" data-title="Rühm (matemaatika)" data-language-autonym="Eesti" data-language-local-name="estonština" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Talde_(matematika)" title="Talde (matematika) – baskičtina" lang="eu" hreflang="eu" data-title="Talde (matematika)" data-language-autonym="Euskara" data-language-local-name="baskičtina" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%DA%AF%D8%B1%D9%88%D9%87_(%D8%B1%DB%8C%D8%A7%D8%B6%DB%8C%D8%A7%D8%AA)" title="گروه (ریاضیات) – perština" lang="fa" hreflang="fa" data-title="گروه (ریاضیات)" data-language-autonym="فارسی" data-language-local-name="perština" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Ryhm%C3%A4_(algebra)" title="Ryhmä (algebra) – finština" lang="fi" hreflang="fi" data-title="Ryhmä (algebra)" data-language-autonym="Suomi" data-language-local-name="finština" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Groupe_(math%C3%A9matiques)" title="Groupe (mathématiques) – francouzština" lang="fr" hreflang="fr" data-title="Groupe (mathématiques)" data-language-autonym="Français" data-language-local-name="francouzština" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-frr mw-list-item"><a href="https://frr.wikipedia.org/wiki/Sk%C3%B6%C3%B6l_(Matematiik)" title="Skööl (Matematiik) – fríština (severní)" lang="frr" hreflang="frr" data-title="Skööl (Matematiik)" data-language-autonym="Nordfriisk" data-language-local-name="fríština (severní)" class="interlanguage-link-target"><span>Nordfriisk</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/Gr%C3%BApa_(matamaitic)" title="Grúpa (matamaitic) – irština" lang="ga" hreflang="ga" data-title="Grúpa (matamaitic)" data-language-autonym="Gaeilge" data-language-local-name="irština" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Grupo_(matem%C3%A1ticas)" title="Grupo (matemáticas) – galicijština" lang="gl" hreflang="gl" data-title="Grupo (matemáticas)" data-language-autonym="Galego" data-language-local-name="galicijština" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%97%D7%91%D7%95%D7%A8%D7%94_(%D7%9E%D7%91%D7%A0%D7%94_%D7%90%D7%9C%D7%92%D7%91%D7%A8%D7%99)" title="חבורה (מבנה אלגברי) – hebrejština" lang="he" hreflang="he" data-title="חבורה (מבנה אלגברי)" data-language-autonym="עברית" data-language-local-name="hebrejština" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%B8%E0%A4%AE%E0%A5%82%E0%A4%B9_(%E0%A4%97%E0%A4%A3%E0%A4%BF%E0%A4%A4%E0%A4%B6%E0%A4%BE%E0%A4%B8%E0%A5%8D%E0%A4%A4%E0%A5%8D%E0%A4%B0)" title="समूह (गणितशास्त्र) – hindština" lang="hi" hreflang="hi" data-title="समूह (गणितशास्त्र)" data-language-autonym="हिन्दी" data-language-local-name="hindština" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Grupa_(matematika)" title="Grupa (matematika) – chorvatština" lang="hr" hreflang="hr" data-title="Grupa (matematika)" data-language-autonym="Hrvatski" data-language-local-name="chorvatština" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Csoport_(matematika)" title="Csoport (matematika) – maďarština" lang="hu" hreflang="hu" data-title="Csoport (matematika)" data-language-autonym="Magyar" data-language-local-name="maďarština" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D4%BD%D5%B8%D6%82%D5%B4%D5%A2_(%D5%B4%D5%A1%D5%A9%D5%A5%D5%B4%D5%A1%D5%BF%D5%AB%D5%AF%D5%A1)" title="Խումբ (մաթեմատիկա) – arménština" lang="hy" hreflang="hy" data-title="Խումբ (մաթեմատիկա)" data-language-autonym="Հայերեն" data-language-local-name="arménština" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-ia mw-list-item"><a href="https://ia.wikipedia.org/wiki/Gruppo_(mathematica)" title="Gruppo (mathematica) – interlingua" lang="ia" hreflang="ia" data-title="Gruppo (mathematica)" data-language-autonym="Interlingua" data-language-local-name="interlingua" class="interlanguage-link-target"><span>Interlingua</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Grup_(matematika)" title="Grup (matematika) – indonéština" lang="id" hreflang="id" data-title="Grup (matematika)" data-language-autonym="Bahasa Indonesia" data-language-local-name="indonéština" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Gr%C3%BApa" title="Grúpa – islandština" lang="is" hreflang="is" data-title="Grúpa" data-language-autonym="Íslenska" data-language-local-name="islandština" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Gruppo_(matematica)" title="Gruppo (matematica) – italština" lang="it" hreflang="it" data-title="Gruppo (matematica)" data-language-autonym="Italiano" data-language-local-name="italština" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E7%BE%A4_(%E6%95%B0%E5%AD%A6)" title="群 (数学) – japonština" lang="ja" hreflang="ja" data-title="群 (数学)" data-language-autonym="日本語" data-language-local-name="japonština" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%AF%E1%83%92%E1%83%A3%E1%83%A4%E1%83%98_(%E1%83%9B%E1%83%90%E1%83%97%E1%83%94%E1%83%9B%E1%83%90%E1%83%A2%E1%83%98%E1%83%99%E1%83%90)" title="ჯგუფი (მათემატიკა) – gruzínština" lang="ka" hreflang="ka" data-title="ჯგუფი (მათემატიკა)" data-language-autonym="ქართული" data-language-local-name="gruzínština" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-kab mw-list-item"><a href="https://kab.wikipedia.org/wiki/Tagrumma_(tusnakt)" title="Tagrumma (tusnakt) – kabylština" lang="kab" hreflang="kab" data-title="Tagrumma (tusnakt)" data-language-autonym="Taqbaylit" data-language-local-name="kabylština" class="interlanguage-link-target"><span>Taqbaylit</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%A2%D0%BE%D0%BF_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Топ (математика) – kazaština" lang="kk" hreflang="kk" data-title="Топ (математика)" data-language-autonym="Қазақша" data-language-local-name="kazaština" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-kn mw-list-item"><a href="https://kn.wikipedia.org/wiki/%E0%B2%97%E0%B3%8D%E0%B2%B0%E0%B3%82%E0%B2%AA%E0%B3%8D" title="ಗ್ರೂಪ್ – kannadština" lang="kn" hreflang="kn" data-title="ಗ್ರೂಪ್" data-language-autonym="ಕನ್ನಡ" data-language-local-name="kannadština" class="interlanguage-link-target"><span>ಕನ್ನಡ</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EA%B5%B0_(%EC%88%98%ED%95%99)" title="군 (수학) – korejština" lang="ko" hreflang="ko" data-title="군 (수학)" data-language-autonym="한국어" data-language-local-name="korejština" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Caterva_(mathematica)" title="Caterva (mathematica) – latina" lang="la" hreflang="la" data-title="Caterva (mathematica)" data-language-autonym="Latina" data-language-local-name="latina" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-lb mw-list-item"><a href="https://lb.wikipedia.org/wiki/Grupp_(Algeber)" title="Grupp (Algeber) – lucemburština" lang="lb" hreflang="lb" data-title="Grupp (Algeber)" data-language-autonym="Lëtzebuergesch" data-language-local-name="lucemburština" class="interlanguage-link-target"><span>Lëtzebuergesch</span></a></li><li class="interlanguage-link interwiki-lmo mw-list-item"><a href="https://lmo.wikipedia.org/wiki/Grupp_(matem%C3%A0tica)" title="Grupp (matemàtica) – lombardština" lang="lmo" hreflang="lmo" data-title="Grupp (matemàtica)" data-language-autonym="Lombard" data-language-local-name="lombardština" class="interlanguage-link-target"><span>Lombard</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Grup%C4%97_(algebra)" title="Grupė (algebra) – litevština" lang="lt" hreflang="lt" data-title="Grupė (algebra)" data-language-autonym="Lietuvių" data-language-local-name="litevština" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Grupa_(matem%C4%81tika)" title="Grupa (matemātika) – lotyština" lang="lv" hreflang="lv" data-title="Grupa (matemātika)" data-language-autonym="Latviešu" data-language-local-name="lotyština" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-mg mw-list-item"><a href="https://mg.wikipedia.org/wiki/Vory_(matematika)" title="Vory (matematika) – malgaština" lang="mg" hreflang="mg" data-title="Vory (matematika)" data-language-autonym="Malagasy" data-language-local-name="malgaština" class="interlanguage-link-target"><span>Malagasy</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%97%E0%B5%8D%E0%B4%B0%E0%B5%82%E0%B4%AA%E0%B5%8D%E0%B4%AA%E0%B5%8D" title="ഗ്രൂപ്പ് – malajálamština" lang="ml" hreflang="ml" data-title="ഗ്രൂപ്പ്" data-language-autonym="മലയാളം" data-language-local-name="malajálamština" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Kumpulan_(matematik)" title="Kumpulan (matematik) – malajština" lang="ms" hreflang="ms" data-title="Kumpulan (matematik)" data-language-autonym="Bahasa Melayu" data-language-local-name="malajština" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-mt mw-list-item"><a href="https://mt.wikipedia.org/wiki/Grupp_(matematika)" title="Grupp (matematika) – maltština" lang="mt" hreflang="mt" data-title="Grupp (matematika)" data-language-autonym="Malti" data-language-local-name="maltština" class="interlanguage-link-target"><span>Malti</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Groep_(wiskunde)" title="Groep (wiskunde) – nizozemština" lang="nl" hreflang="nl" data-title="Groep (wiskunde)" data-language-autonym="Nederlands" data-language-local-name="nizozemština" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Matematisk_gruppe" title="Matematisk gruppe – norština (nynorsk)" lang="nn" hreflang="nn" data-title="Matematisk gruppe" data-language-autonym="Norsk nynorsk" data-language-local-name="norština (nynorsk)" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Gruppe_(matematikk)" title="Gruppe (matematikk) – norština (bokmål)" lang="nb" hreflang="nb" data-title="Gruppe (matematikk)" data-language-autonym="Norsk bokmål" data-language-local-name="norština (bokmål)" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-nov mw-list-item"><a href="https://nov.wikipedia.org/wiki/Grupe_(matematike)" title="Grupe (matematike) – novial" lang="nov" hreflang="nov" data-title="Grupe (matematike)" data-language-autonym="Novial" data-language-local-name="novial" class="interlanguage-link-target"><span>Novial</span></a></li><li class="interlanguage-link interwiki-oc mw-list-item"><a href="https://oc.wikipedia.org/wiki/Grop_(matematicas)" title="Grop (matematicas) – okcitánština" lang="oc" hreflang="oc" data-title="Grop (matematicas)" data-language-autonym="Occitan" data-language-local-name="okcitánština" class="interlanguage-link-target"><span>Occitan</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Grupa_(matematyka)" title="Grupa (matematyka) – polština" lang="pl" hreflang="pl" data-title="Grupa (matematyka)" data-language-autonym="Polski" data-language-local-name="polština" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pms mw-list-item"><a href="https://pms.wikipedia.org/wiki/Strop" title="Strop – piemonština" lang="pms" hreflang="pms" data-title="Strop" data-language-autonym="Piemontèis" data-language-local-name="piemonština" class="interlanguage-link-target"><span>Piemontèis</span></a></li><li class="interlanguage-link interwiki-pnb mw-list-item"><a href="https://pnb.wikipedia.org/wiki/%DA%AF%D8%B1%D9%88%DB%81_(%D8%B1%DB%8C%D8%A7%D8%B6%DB%8C)" title="گروہ (ریاضی) – Western Punjabi" lang="pnb" hreflang="pnb" data-title="گروہ (ریاضی)" data-language-autonym="پنجابی" data-language-local-name="Western Punjabi" class="interlanguage-link-target"><span>پنجابی</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Grupo_(matem%C3%A1tica)" title="Grupo (matemática) – portugalština" lang="pt" hreflang="pt" data-title="Grupo (matemática)" data-language-autonym="Português" data-language-local-name="portugalština" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro badge-Q17437796 badge-featuredarticle mw-list-item" title="nejlepší článek"><a href="https://ro.wikipedia.org/wiki/Grup_(matematic%C4%83)" title="Grup (matematică) – rumunština" lang="ro" hreflang="ro" data-title="Grup (matematică)" data-language-autonym="Română" data-language-local-name="rumunština" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%93%D1%80%D1%83%D0%BF%D0%BF%D0%B0_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Группа (математика) – ruština" lang="ru" hreflang="ru" data-title="Группа (математика)" data-language-autonym="Русский" data-language-local-name="ruština" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-scn mw-list-item"><a href="https://scn.wikipedia.org/wiki/Gruppu_(matimatica)" title="Gruppu (matimatica) – sicilština" lang="scn" hreflang="scn" data-title="Gruppu (matimatica)" data-language-autonym="Sicilianu" data-language-local-name="sicilština" class="interlanguage-link-target"><span>Sicilianu</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Grupa_(matematika)" title="Grupa (matematika) – srbochorvatština" lang="sh" hreflang="sh" data-title="Grupa (matematika)" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="srbochorvatština" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Group_(mathematics)" title="Group (mathematics) – Simple English" lang="en-simple" hreflang="en-simple" data-title="Group (mathematics)" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Grupa_(matematika)" title="Grupa (matematika) – slovenština" lang="sk" hreflang="sk" data-title="Grupa (matematika)" data-language-autonym="Slovenčina" data-language-local-name="slovenština" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Grupa" title="Grupa – slovinština" lang="sl" hreflang="sl" data-title="Grupa" data-language-autonym="Slovenščina" data-language-local-name="slovinština" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%93%D1%80%D1%83%D0%BF%D0%B0_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Група (математика) – srbština" lang="sr" hreflang="sr" data-title="Група (математика)" data-language-autonym="Српски / srpski" data-language-local-name="srbština" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Grupp_(matematik)" title="Grupp (matematik) – švédština" lang="sv" hreflang="sv" data-title="Grupp (matematik)" data-language-autonym="Svenska" data-language-local-name="švédština" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-szl mw-list-item"><a href="https://szl.wikipedia.org/wiki/Grupa_(matymatyka)" title="Grupa (matymatyka) – slezština" lang="szl" hreflang="szl" data-title="Grupa (matymatyka)" data-language-autonym="Ślůnski" data-language-local-name="slezština" class="interlanguage-link-target"><span>Ślůnski</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%95%E0%AF%81%E0%AE%B2%E0%AE%AE%E0%AF%8D_(%E0%AE%95%E0%AE%A3%E0%AE%BF%E0%AE%A4%E0%AE%AE%E0%AF%8D)" title="குலம் (கணிதம்) – tamilština" lang="ta" hreflang="ta" data-title="குலம் (கணிதம்)" data-language-autonym="தமிழ்" data-language-local-name="tamilština" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-tg mw-list-item"><a href="https://tg.wikipedia.org/wiki/%D0%93%D1%83%D1%80%D3%AF%D2%B3_(%D1%80%D0%B8%D1%91%D0%B7%D0%B8%D1%91%D1%82)" title="Гурӯҳ (риёзиёт) – tádžičtina" lang="tg" hreflang="tg" data-title="Гурӯҳ (риёзиёт)" data-language-autonym="Тоҷикӣ" data-language-local-name="tádžičtina" class="interlanguage-link-target"><span>Тоҷикӣ</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%81%E0%B8%A3%E0%B8%B8%E0%B8%9B_(%E0%B8%84%E0%B8%93%E0%B8%B4%E0%B8%95%E0%B8%A8%E0%B8%B2%E0%B8%AA%E0%B8%95%E0%B8%A3%E0%B9%8C)" title="กรุป (คณิตศาสตร์) – thajština" lang="th" hreflang="th" data-title="กรุป (คณิตศาสตร์)" data-language-autonym="ไทย" data-language-local-name="thajština" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Grupo_(matematika)" title="Grupo (matematika) – tagalog" lang="tl" hreflang="tl" data-title="Grupo (matematika)" data-language-autonym="Tagalog" data-language-local-name="tagalog" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Grup_(matematik)" title="Grup (matematik) – turečtina" lang="tr" hreflang="tr" data-title="Grup (matematik)" data-language-autonym="Türkçe" data-language-local-name="turečtina" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%93%D1%80%D1%83%D0%BF%D0%B0_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Група (математика) – ukrajinština" lang="uk" hreflang="uk" data-title="Група (математика)" data-language-autonym="Українська" data-language-local-name="ukrajinština" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%DA%AF%D8%B1%D9%88%DB%81_(%D8%B1%DB%8C%D8%A7%D8%B6%DB%8C)" title="گروہ (ریاضی) – urdština" lang="ur" hreflang="ur" data-title="گروہ (ریاضی)" data-language-autonym="اردو" data-language-local-name="urdština" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-vi badge-Q17437796 badge-featuredarticle mw-list-item" title="nejlepší článek"><a href="https://vi.wikipedia.org/wiki/Nh%C3%B3m_(to%C3%A1n_h%E1%BB%8Dc)" title="Nhóm (toán học) – vietnamština" lang="vi" hreflang="vi" data-title="Nhóm (toán học)" data-language-autonym="Tiếng Việt" data-language-local-name="vietnamština" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-vls mw-list-item"><a href="https://vls.wikipedia.org/wiki/Groep_(algebra)" title="Groep (algebra) – vlámština (západní)" lang="vls" hreflang="vls" data-title="Groep (algebra)" data-language-autonym="West-Vlams" data-language-local-name="vlámština (západní)" class="interlanguage-link-target"><span>West-Vlams</span></a></li><li class="interlanguage-link interwiki-vo mw-list-item"><a href="https://vo.wikipedia.org/wiki/Grup" title="Grup – volapük" lang="vo" hreflang="vo" data-title="Grup" data-language-autonym="Volapük" data-language-local-name="volapük" class="interlanguage-link-target"><span>Volapük</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E7%BE%A4" title="群 – čínština (dialekty Wu)" lang="wuu" hreflang="wuu" data-title="群" data-language-autonym="吴语" data-language-local-name="čínština (dialekty Wu)" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-yi mw-list-item"><a href="https://yi.wikipedia.org/wiki/%D7%92%D7%A8%D7%95%D7%A4%D7%A2_(%D7%9E%D7%90%D7%98%D7%A2%D7%9E%D7%90%D7%98%D7%99%D7%A7)" title="גרופע (מאטעמאטיק) – jidiš" lang="yi" hreflang="yi" data-title="גרופע (מאטעמאטיק)" data-language-autonym="ייִדיש" data-language-local-name="jidiš" class="interlanguage-link-target"><span>ייִדיש</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E7%BE%A4" title="群 – čínština" lang="zh" hreflang="zh" data-title="群" data-language-autonym="中文" data-language-local-name="čínština" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-zh-classical mw-list-item"><a href="https://zh-classical.wikipedia.org/wiki/%E7%BE%A4_(%E4%BB%A3%E6%95%B8)" title="群 (代數) – čínština (klasická)" lang="lzh" hreflang="lzh" data-title="群 (代數)" data-language-autonym="文言" data-language-local-name="čínština (klasická)" class="interlanguage-link-target"><span>文言</span></a></li><li class="interlanguage-link interwiki-zh-min-nan mw-list-item"><a href="https://zh-min-nan.wikipedia.org/wiki/K%C3%BBn_(s%C3%B2%CD%98-ha%CC%8Dk)" title="Kûn (sò͘-ha̍k) – čínština (dialekty Minnan)" lang="nan" hreflang="nan" data-title="Kûn (sò͘-ha̍k)" data-language-autonym="閩南語 / Bân-lâm-gú" data-language-local-name="čínština (dialekty Minnan)" class="interlanguage-link-target"><span>閩南語 / Bân-lâm-gú</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E7%BE%A3" title="羣 – kantonština" lang="yue" hreflang="yue" data-title="羣" data-language-autonym="粵語" data-language-local-name="kantonština" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q83478#sitelinks-wikipedia" title="Editovat mezijazykové odkazy" class="wbc-editpage">Upravit odkazy</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Jmenné prostory"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Grupa" title="Zobrazit obsahovou stránku [c]" accesskey="c"><span>Článek</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Diskuse:Grupa" rel="discussion" title="Diskuse ke stránce [t]" accesskey="t"><span>Diskuse</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Změnit variantu jazyka" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">čeština</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Zobrazení"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Grupa"><span>Číst</span></a></li><li id="ca-ve-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Grupa&amp;veaction=edit" title="Editovat tuto stránku [v]" accesskey="v"><span>Editovat</span></a></li><li id="ca-edit" class="collapsible vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Grupa&amp;action=edit" title="Editovat zdrojový kód této stránky [e]" accesskey="e"><span>Editovat zdroj</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Grupa&amp;action=history" title="Starší verze této stránky. [h]" accesskey="h"><span>Zobrazit historii</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Nástroje ke stránce"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Nástroje" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Nástroje</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Nástroje</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">přesunout do postranního panelu</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">skrýt</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="Další možnosti" > <div class="vector-menu-heading"> Akce </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Grupa"><span>Číst</span></a></li><li id="ca-more-ve-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Grupa&amp;veaction=edit" title="Editovat tuto stránku [v]" accesskey="v"><span>Editovat</span></a></li><li id="ca-more-edit" class="collapsible vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Grupa&amp;action=edit" title="Editovat zdrojový kód této stránky [e]" accesskey="e"><span>Editovat zdroj</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Grupa&amp;action=history"><span>Zobrazit historii</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> Obecné </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Speci%C3%A1ln%C3%AD:Co_odkazuje_na/Grupa" title="Seznam všech wikistránek, které sem odkazují [j]" accesskey="j"><span>Odkazuje sem</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Speci%C3%A1ln%C3%AD:Souvisej%C3%ADc%C3%AD_zm%C4%9Bny/Grupa" rel="nofollow" title="Nedávné změny stránek, na které je odkazováno [k]" accesskey="k"><span>Související změny</span></a></li><li id="t-upload" class="mw-list-item"><a href="//commons.wikimedia.org/wiki/Special:UploadWizard?uselang=cs" title="Nahrát obrázky či jiná multimédia [u]" accesskey="u"><span>Načíst soubor</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Speci%C3%A1ln%C3%AD:Speci%C3%A1ln%C3%AD_str%C3%A1nky" title="Seznam všech speciálních stránek [q]" accesskey="q"><span>Speciální stránky</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Grupa&amp;oldid=24277163" title="Trvalý odkaz na současnou verzi této stránky"><span>Trvalý odkaz</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Grupa&amp;action=info" title="Více informací o této stránce"><span>Informace o stránce</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Speci%C3%A1ln%C3%AD:Citovat&amp;page=Grupa&amp;id=24277163&amp;wpFormIdentifier=titleform" title="Informace o tom, jak citovat tuto stránku"><span>Citovat stránku</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Speci%C3%A1ln%C3%AD:UrlShortener&amp;url=https%3A%2F%2Fcs.wikipedia.org%2Fwiki%2FGrupa%23%C5%98%C3%A1d_prvku_a_grupy"><span>Získat zkrácené URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Speci%C3%A1ln%C3%AD:QrCode&amp;url=https%3A%2F%2Fcs.wikipedia.org%2Fwiki%2FGrupa%23%C5%98%C3%A1d_prvku_a_grupy"><span>Stáhnout QR kód</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Tisk/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=Speci%C3%A1ln%C3%AD:Kniha&amp;bookcmd=book_creator&amp;referer=Grupa"><span>Vytvořit knihu</span></a></li><li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Speci%C3%A1ln%C3%AD:DownloadAsPdf&amp;page=Grupa&amp;action=show-download-screen"><span>Stáhnout jako PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Grupa&amp;printable=yes" title="Tato stránka v podobě vhodné k tisku [p]" accesskey="p"><span>Verze k tisku</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> Na jiných projektech </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Group_theory" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q83478" title="Odkaz na propojenou položku datového úložiště [g]" accesskey="g"><span>Položka Wikidat</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Nástroje ke stránce"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Vzhled"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Vzhled</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">přesunout do postranního panelu</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">skrýt</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> <div id="mw-indicator-good" class="mw-indicator"><div class="mw-parser-output"><span typeof="mw:File"><a href="/wiki/Wikipedie:Dobr%C3%A9_%C4%8Dl%C3%A1nky" title="Tento článek patří mezi dobré v české Wikipedii. Kliknutím získáte další informace."><img alt="Tento článek patří mezi dobré v české Wikipedii. Kliknutím získáte další informace." src="//upload.wikimedia.org/wikipedia/commons/thumb/1/1a/Silver_piece.png/20px-Silver_piece.png" decoding="async" width="20" height="20" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/1a/Silver_piece.png/30px-Silver_piece.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/1a/Silver_piece.png/40px-Silver_piece.png 2x" data-file-width="600" data-file-height="595" /></a></span></div></div> </div> <div id="siteSub" class="noprint">Z Wikipedie, otevřené encyklopedie</div> </div> <div id="contentSub"><div id="mw-content-subtitle"><span class="mw-redirectedfrom">(přesměrováno z <a href="/w/index.php?title=%C5%98%C3%A1d_grupy&amp;redirect=no" class="mw-redirect" title="Řád grupy">Řád grupy</a>)</span></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="cs" dir="ltr"><div class="uvodni-upozorneni hatnote noprint">Tento článek je o&#160;<a href="/wiki/Matematika" title="Matematika">matematice</a>.&#32;O&#160;<a href="/wiki/Chemie" title="Chemie">chemii</a> pojednává článek <a href="/wiki/Skupina_(periodick%C3%A1_tabulka)" title="Skupina (periodická tabulka)">Skupina (periodická tabulka)</a>.</div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/Soubor:Rubik%27s_cube.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a6/Rubik%27s_cube.svg/220px-Rubik%27s_cube.svg.png" decoding="async" width="220" height="229" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a6/Rubik%27s_cube.svg/330px-Rubik%27s_cube.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a6/Rubik%27s_cube.svg/440px-Rubik%27s_cube.svg.png 2x" data-file-width="480" data-file-height="500" /></a><figcaption>Všechny povolené transformace <a href="/wiki/Rubikova_kostka" title="Rubikova kostka">Rubikovy kostky</a> tvoří grupu</figcaption></figure> <p><b>Grupa</b> je v&#160;<a href="/wiki/Matematika" title="Matematika">matematice</a> <a href="/wiki/Algebraick%C3%A1_struktura" title="Algebraická struktura">algebraická struktura</a> tvořená <a href="/wiki/Mno%C5%BEina" title="Množina">množinou</a> spolu s&#160;<a href="/wiki/Bin%C3%A1rn%C3%AD_operace" title="Binární operace">binární operací</a>, která je <a href="/wiki/Asociativita" title="Asociativita">asociativní</a>, má <a href="/wiki/Neutr%C3%A1ln%C3%AD_prvek" title="Neutrální prvek">neutrální prvek</a> a každý prvek má svou <a href="/wiki/Inverzn%C3%AD_prvek" title="Inverzní prvek">inverzi</a>. Matematická disciplína zabývající se studiem grup se nazývá <a href="/wiki/Teorie_grup" title="Teorie grup">teorie grup</a>. Příkladem grup jsou <a href="/wiki/Cel%C3%A9_%C4%8D%C3%ADslo" title="Celé číslo">celá čísla</a> s operací <a href="/wiki/S%C4%8D%C3%ADt%C3%A1n%C3%AD" title="Sčítání">sčítání</a>, nenulová <a href="/wiki/Racion%C3%A1ln%C3%AD_%C4%8D%C3%ADslo" title="Racionální číslo">racionální čísla</a> s&#160;operací <a href="/wiki/N%C3%A1soben%C3%AD" title="Násobení">násobení</a>, <a href="/wiki/Symetrie" title="Symetrie">symetrie</a> pravidelných <a href="/wiki/Geometrick%C3%BD_%C3%BAtvar" title="Geometrický útvar">geometrických útvarů</a>, množiny <a href="/wiki/Regul%C3%A1rn%C3%AD_matice" title="Regulární matice">regulárních matic</a> a <a href="/wiki/Automorfismus" class="mw-redirect" title="Automorfismus">automorfismy</a> různých <a href="/wiki/Algebraick%C3%A1_struktura" title="Algebraická struktura">algebraických struktur</a>. </p><p><a href="/wiki/Teorie_grup" title="Teorie grup">Teorie grup</a> vznikla počátkem 19. století. U&#160;jejího zrodu stál matematik <a href="/wiki/%C3%89variste_Galois" title="Évariste Galois">Évariste Galois</a>, který pomocí grup podal elegantní důkaz, že polynomiální rovnice nelze obecně řešit pomocí odmocnin. Grupy našly později uplatnění také v&#160;<a href="/wiki/Geometrie" title="Geometrie">geometrii</a>, <a href="/wiki/Teorie_%C4%8D%C3%ADsel" title="Teorie čísel">teorii čísel</a>, <a href="/wiki/Algebraick%C3%A1_topologie" title="Algebraická topologie">algebraické topologii</a> a&#160;dalších matematických oborech. <a href="/wiki/Klasifikace_jednoduch%C3%BDch_kone%C4%8Dn%C3%BDch_grup" title="Klasifikace jednoduchých konečných grup">Klasifikace jednoduchých konečných grup</a> byla dokončena koncem 20.&#160;století a&#160;patří k největším výsledkům matematiky vůbec. </p><p>Pojem grupy abstraktně popisuje či zobecňuje mnoho matematických objektů a&#160;má významné uplatnění i&#160;v&#160;příbuzných oborech – ve <a href="/wiki/Fyzika" title="Fyzika">fyzice</a>, <a href="/wiki/Informatika" title="Informatika">informatice</a> a&#160;<a href="/wiki/Chemie" title="Chemie">chemii</a>. <a href="/wiki/Reprezentace_(grupa)" title="Reprezentace (grupa)">Reprezentace grup</a> hrají důležitou úlohu v&#160;teoriích jako jsou <a href="/wiki/Fyzika_%C4%8D%C3%A1stic" title="Fyzika částic">částicová fyzika</a>, <a href="/wiki/Kvantov%C3%A1_teorie_pole" title="Kvantová teorie pole">kvantová teorie pole</a> anebo <a href="/wiki/Teorie_strun" class="mw-redirect" title="Teorie strun">teorie strun</a>. V&#160;informatice se grupy vyskytují například v&#160;<a href="/wiki/Kryptografie" title="Kryptografie">kryptografii</a>, <a href="/wiki/K%C3%B3dov%C3%A1n%C3%AD" title="Kódování">kódování</a> anebo <a href="/wiki/Zpracov%C3%A1n%C3%AD_obrazu" title="Zpracování obrazu">zpracování obrazu</a>, chemie používá grupy pro popis symetrií <a href="/wiki/Molekula" title="Molekula">molekul</a> a&#160;<a href="/wiki/Krystalov%C3%A1_m%C5%99%C3%AD%C5%BEka" title="Krystalová mřížka">krystalových mřížek</a> v&#160;<a href="/wiki/Krystalografie" title="Krystalografie">krystalografii</a>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Definice_grupy">Definice grupy</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Grupa&amp;veaction=edit&amp;section=1" title="Editace sekce: Definice grupy" class="mw-editsection-visualeditor"><span>editovat</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Grupa&amp;action=edit&amp;section=1" title="Editovat zdrojový kód sekce Definice grupy"><span>editovat zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Soubor:Magma_to_group4_cz.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/1b/Magma_to_group4_cz.svg/220px-Magma_to_group4_cz.svg.png" decoding="async" width="220" height="199" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/1b/Magma_to_group4_cz.svg/330px-Magma_to_group4_cz.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/1b/Magma_to_group4_cz.svg/440px-Magma_to_group4_cz.svg.png 2x" data-file-width="410" data-file-height="371" /></a><figcaption>Schéma vztahů mezi algebraickými strukturami. Výchozí je grupoid (anglicky magma) s jednou uzavřenou operací. Přidáváním dalších podmínek vznikají např. pologrupa (semigroup) a kvazigrupa (quasigroup).</figcaption></figure> <p>Grupou nazýváme <a href="/wiki/Mno%C5%BEina" title="Množina">množinu</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span> spolu s&#160;<a href="/wiki/Bin%C3%A1rn%C3%AD_operace" title="Binární operace">binární operací</a> na ní, která se nazývá <b>grupová operace</b>. Tato operace libovolným dvěma prvkům grupy <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a,b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>,</mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a,b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/181523deba732fda302fd176275a0739121d3bc8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.261ex; height:2.509ex;" alt="{\displaystyle a,b}"></span> přiřazuje prvek téže grupy <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span>. Značení grupové operace se v literatuře liší. Obvykle se značí jako násobení <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c=a\cdot b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>=</mo> <mi>a</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c=a\cdot b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/70c90ffea9500961877f2a7b4b723affdc139e94" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.012ex; height:2.176ex;" alt="{\displaystyle c=a\cdot b}"></span>, resp. jenom <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c=ab}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>=</mo> <mi>a</mi> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c=ab}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/733a1df5f220632cc3d42880836b6969cb6f45c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.333ex; height:2.176ex;" alt="{\displaystyle c=ab}"></span>, v <a href="/wiki/Abelova_grupa" title="Abelova grupa">Abelových grupách</a> často jako sčítání <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c=a+b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c=a+b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f30ef8641775f6e48cf40db2d040125f17bfb360" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:9.173ex; height:2.343ex;" alt="{\displaystyle c=a+b}"></span>, a někdy také pomocí dalších symbolů (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\circ b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&#x2218;<!-- ∘ --></mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\circ b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6f270b24a930a6546b42f355ad905d2d7a26d4b3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.422ex; height:2.176ex;" alt="{\displaystyle a\circ b}"></span>, resp. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a*b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a*b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4baddb0eb2fc85a456316d026699d38f5166a27c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.422ex; height:2.176ex;" alt="{\displaystyle a*b}"></span>). Podle kontextu říkáme, že <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span> je <i>složení</i>, resp. <i>součin</i>, resp. <i>součet</i> prvků <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> a&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span>. Dále se v&#160;definici grupy požaduje, aby grupová operace splňovala určité vlastnosti, které se nazývají <a href="/wiki/Axiom" title="Axiom">axiomy</a> grupy.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dt><a href="/wiki/Operace_(matematika)#Uzavřenost_množiny_na_operaci" title="Operace (matematika)">Uzavřenost</a></dt></dl> <dl><dd>Pro všechny prvky <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a,b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>,</mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a,b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/181523deba732fda302fd176275a0739121d3bc8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.261ex; height:2.509ex;" alt="{\displaystyle a,b}"></span> v&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span> je i&#160;složení <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\cdot b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\cdot b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/620419d3ed53abc98659a5fc0f3a5eb6177830ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.906ex; height:2.176ex;" alt="{\displaystyle a\cdot b}"></span> prvkem <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span>.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>pozn 1<span class="cite-bracket">&#93;</span></a></sup></dd></dl> <dl><dt><a href="/wiki/Asociativita" title="Asociativita">Asociativita</a></dt></dl> <dl><dd>Pro všechny prvky <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a,b,c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a,b,c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f13f068df656c1b1911ae9f81628c49a6181194d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.302ex; height:2.509ex;" alt="{\displaystyle a,b,c}"></span> grupy <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span> platí <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\cdot (b\cdot c)=(a\cdot b)\cdot c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mi>b</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\cdot (b\cdot c)=(a\cdot b)\cdot c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4be34a5bcecdbbd7f3d5a983e34f00bf0b80c5f6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.902ex; height:2.843ex;" alt="{\displaystyle a\cdot (b\cdot c)=(a\cdot b)\cdot c}"></span>, tj.&#160;výsledek složení tří prvků nezávisí na umístění závorek.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>pozn 2<span class="cite-bracket">&#93;</span></a></sup> Díky tomu má smysl psát složení tří a více prvků <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\cdot b\cdot c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>b</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\cdot b\cdot c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ece943b26af57e45033fce72c97d57f8b2c9a084" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.592ex; height:2.176ex;" alt="{\displaystyle a\cdot b\cdot c}"></span> i&#160;bez závorek.</dd></dl> <dl><dt>Existence <a href="/wiki/Neutr%C3%A1ln%C3%AD_prvek" title="Neutrální prvek">neutrálního prvku</a></dt></dl> <dl><dd>Existuje prvek <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e\in G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>e</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e\in G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc993b87bf6f6f7f8e5f1e99011f92bd4b0188a4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.751ex; height:2.176ex;" alt="{\displaystyle e\in G}"></span> takový, že pro všechna <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\in G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\in G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe9f5ea7aea0b7a62b07eae139e7a5038ea5a120" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.897ex; height:2.176ex;" alt="{\displaystyle a\in G}"></span> platí <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\cdot e=e\cdot a=a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>e</mi> <mo>=</mo> <mi>e</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>a</mi> <mo>=</mo> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\cdot e=e\cdot a=a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81376c689879ada266bcf9b06ddf397288a6dbff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:15.412ex; height:1.676ex;" alt="{\displaystyle a\cdot e=e\cdot a=a}"></span>. Tento prvek se nazývá <i>neutrální prvek</i> anebo <i>jednotkový prvek</i> a&#160;značí se také <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"></span>, resp. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1_{G}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1_{G}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e502e0e475eb917470244c25906c25eb0c15cbd3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.686ex; height:2.509ex;" alt="{\displaystyle 1_{G}}"></span>.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>pozn 3<span class="cite-bracket">&#93;</span></a></sup></dd></dl> <dl><dt>Existence <a href="/wiki/Inverzn%C3%AD_prvek" title="Inverzní prvek">inverzního prvku</a></dt></dl> <dl><dd>Pro každý prvek grupy <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> existuje prvek <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> takový, že <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\cdot b=b\cdot a=e}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>b</mi> <mo>=</mo> <mi>b</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>a</mi> <mo>=</mo> <mi>e</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\cdot b=b\cdot a=e}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e2d10dd281a5a9b47f1547608c8216da51a3bb53" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:15.093ex; height:2.176ex;" alt="{\displaystyle a\cdot b=b\cdot a=e}"></span>, tj.&#160;jejich složení v&#160;libovolném pořadí je rovno neutrálnímu prvku <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>e</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd253103f0876afc68ebead27a5aa9867d927467" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.083ex; height:1.676ex;" alt="{\displaystyle e}"></span>. Prvek <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> se také nazývá inverzní prvek k&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> a&#160;značí se <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3f5709c8d86f7fec8fb86069bf5d15a9eabe564e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.563ex; height:2.676ex;" alt="{\displaystyle a^{-1}}"></span>. Lze ukázat, že neutrální prvek je v&#160;grupě jenom jeden a&#160;že inverzní prvek k&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> je dán jednoznačně.</dd></dl> <p>V&#160;grupách obecně záleží na pořadí, ve kterém prvky skládáme, tj.&#160;obecně nemusí platit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\cdot b=b\cdot a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>b</mi> <mo>=</mo> <mi>b</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\cdot b=b\cdot a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a4b7dede7493e0231b3ad6ff9b54f4eae954108" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.911ex; height:2.176ex;" alt="{\displaystyle a\cdot b=b\cdot a}"></span>. Grupa, ve které tato rovnost platí pro všechna <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a,b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>,</mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a,b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/181523deba732fda302fd176275a0739121d3bc8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.261ex; height:2.509ex;" alt="{\displaystyle a,b}"></span>, se nazývá <i>komutativní grupa</i> nebo také <i><a href="/wiki/Abelova_grupa" title="Abelova grupa">Abelova grupa</a></i>. </p><p><a href="/wiki/Mno%C5%BEina" title="Množina">Množina</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span> z&#160;této definice se označuje jako <b>nosič</b> nebo <a href="/wiki/Nosn%C3%A1_mno%C5%BEina" class="mw-redirect" title="Nosná množina">nosná množina</a> grupy. Označíme-li operaci jako sčítání <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (+)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mo>+</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (+)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/329f8c1ec9a4bd1c8e882e368f2de3800f16fc65" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.617ex; height:2.843ex;" alt="{\displaystyle (+)}"></span>, mluvíme o&#160;<i>aditivní grupě</i> a&#160;píšeme <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (G,+)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>G</mi> <mo>,</mo> <mo>+</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (G,+)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ede3320938add8f227928a5efe5738feaa903345" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.478ex; height:2.843ex;" alt="{\displaystyle (G,+)}"></span>. Obvykle se používá aditivní notace pro grupy <a href="/wiki/Abelova_grupa" title="Abelova grupa">Abelovy</a> a&#160;neutrální prvek se pak zapisuje jako <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span>. Označíme-li operaci jako násobení <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\cdot )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\cdot )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a4c2b509ce21093c430b9c0849fa1aef7f0f1d24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.456ex; height:2.843ex;" alt="{\displaystyle (\cdot )}"></span>, hovoříme o&#160;<i>multiplikativní grupě</i> a&#160;píšeme <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (G,\cdot )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>G</mi> <mo>,</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (G,\cdot )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ccc71a6904c5ab99ecaab1c8ed69e20815d66da" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.317ex; height:2.843ex;" alt="{\displaystyle (G,\cdot )}"></span>. V&#160;takovém případě se často znak <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cdot }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x22C5;<!-- ⋅ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cdot }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba2c023bad1bd39ed49080f729cbf26bc448c9ba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.439ex; margin-bottom: -0.61ex; width:0.647ex; height:1.176ex;" alt="{\displaystyle \cdot }"></span> nepíše a&#160;součin prvků <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a,b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>,</mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a,b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/181523deba732fda302fd176275a0739121d3bc8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.261ex; height:2.509ex;" alt="{\displaystyle a,b}"></span> se značí jako <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ab}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ab}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/49337c5cf256196e2292f7047cb5da68c24ca95d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.227ex; height:2.176ex;" alt="{\displaystyle ab}"></span>. Neutrální prvek multiplikativní grupy se obvykle značí jako <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Definice_pomocí_tří_operací"><span id="Definice_pomoc.C3.AD_t.C5.99.C3.AD_operac.C3.AD"></span>Definice pomocí tří operací</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Grupa&amp;veaction=edit&amp;section=2" title="Editace sekce: Definice pomocí tří operací" class="mw-editsection-visualeditor"><span>editovat</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Grupa&amp;action=edit&amp;section=2" title="Editovat zdrojový kód sekce Definice pomocí tří operací"><span>editovat zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Ekvivalentně lze grupu definovat pomocí </p> <ul><li>nulární operace (tj. konstanty) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>e</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd253103f0876afc68ebead27a5aa9867d927467" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.083ex; height:1.676ex;" alt="{\displaystyle e}"></span> představující neutrální prvek,</li> <li><a href="/wiki/Un%C3%A1rn%C3%AD_operace" title="Unární operace">unární</a> operace <sup>−1</sup>, která každému prvku přiřadí prvek k&#160;němu inverzní, a</li> <li><a href="/wiki/Bin%C3%A1rn%C3%AD_operace" title="Binární operace">binární operace</a>,</li></ul> <p>které splňují axiomy uvedené výše. Místo označení „<i>grupa <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\mathbb {Z} ,+)\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mo>,</mo> <mo>+</mo> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\mathbb {Z} ,+)\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3f97b0a4ed4ba6b6d61c4e6b0f71be083e63ca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-right: -0.387ex; width:6.589ex; height:2.843ex;" alt="{\displaystyle (\mathbb {Z} ,+)\,\!}"></span></i>“ se pak používá označení „<i>grupa <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\mathbb {Z} ,+,0,-)\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mo>,</mo> <mo>+</mo> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\mathbb {Z} ,+,0,-)\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/800a0b11da1ff86c42c783d9f96a925df9ed00ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-right: -0.387ex; width:11.627ex; height:2.843ex;" alt="{\displaystyle (\mathbb {Z} ,+,0,-)\,\!}"></span></i>“. Axiomy grupy lze pak přepsat do <a href="/wiki/V%C3%BDrok_(logika)" title="Výrok (logika)">výroků</a>, které neobsahují <a href="/wiki/Existen%C4%8Dn%C3%AD_kvantifik%C3%A1tor" title="Existenční kvantifikátor">existenční kvantifikátory</a>. Třída všech grup proto je <a href="/wiki/Varieta_algeber" title="Varieta algeber">varieta</a>,<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> a&#160;tak lze na grupy vztáhnout mnohé výsledky dokázané v&#160;<a href="/wiki/Univerz%C3%A1ln%C3%AD_algebra" title="Univerzální algebra">univerzální algebře</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Ilustrativní_příklady"><span id="Ilustrativn.C3.AD_p.C5.99.C3.ADklady"></span>Ilustrativní příklady</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Grupa&amp;veaction=edit&amp;section=3" title="Editace sekce: Ilustrativní příklady" class="mw-editsection-visualeditor"><span>editovat</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Grupa&amp;action=edit&amp;section=3" title="Editovat zdrojový kód sekce Ilustrativní příklady"><span>editovat zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Celá_čísla"><span id="Cel.C3.A1_.C4.8D.C3.ADsla"></span>Celá čísla</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Grupa&amp;veaction=edit&amp;section=4" title="Editace sekce: Celá čísla" class="mw-editsection-visualeditor"><span>editovat</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Grupa&amp;action=edit&amp;section=4" title="Editovat zdrojový kód sekce Celá čísla"><span>editovat zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Známým příkladem grupy je množina <a href="/wiki/Cel%C3%A9_%C4%8D%C3%ADslo" title="Celé číslo">celých čísel</a> spolu s&#160;operací <a href="/wiki/S%C4%8D%C3%ADt%C3%A1n%C3%AD" title="Sčítání">sčítání</a>.<sup id="cite_ref-Rosicky_s9_6-0" class="reference"><a href="#cite_note-Rosicky_s9-6"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Prochazka_s100_7-0" class="reference"><a href="#cite_note-Prochazka_s100-7"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> </p> <ul><li>Operace sčítání je na této množině binární operace, protože součtem dvou celých čísel je opět celé číslo.</li> <li>Sčítání je asociativní, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a+(b+c)=(a+b)+c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mi>b</mi> <mo>+</mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a+(b+c)=(a+b)+c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/44038eb287a7d11c82ecf1642362bff63a012b2f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.547ex; height:2.843ex;" alt="{\displaystyle a+(b+c)=(a+b)+c}"></span></li> <li>Nula je neutrální prvek, protože pro každé celé číslo a&#160;platí <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a+0=0+a=a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>+</mo> <mn>0</mn> <mo>=</mo> <mn>0</mn> <mo>+</mo> <mi>a</mi> <mo>=</mo> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a+0=0+a=a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/649814bd8a1a695a94e5cd97b36b480264009912" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:17.892ex; height:2.343ex;" alt="{\displaystyle a+0=0+a=a}"></span></li> <li>Pro každé celé číslo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> existuje opačné číslo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e0982b5868a66be1ed3ad7ef4bcd3d3db20f982" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:3.038ex; height:2.176ex;" alt="{\displaystyle -a}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a+(-a)=(-a)+a=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>a</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a+(-a)=(-a)+a=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3f40bc0a00434f7be873180035fda03531836b5b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.194ex; height:2.843ex;" alt="{\displaystyle a+(-a)=(-a)+a=0}"></span>.</li></ul> <p><a href="/wiki/Axiom" title="Axiom">Axiomy</a> jsou tedy splněny. Tato grupa se obvykle značí <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\mathbb {Z} ,+)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mo>,</mo> <mo>+</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\mathbb {Z} ,+)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/910eaae0a8267ccb04d4846f6a28f02ce6ab8ac9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.202ex; height:2.843ex;" alt="{\displaystyle (\mathbb {Z} ,+)}"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Dihedrální_grupa_D4"><span id="Dihedr.C3.A1ln.C3.AD_grupa_D4"></span>Dihedrální grupa D<sub>4</sub></h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Grupa&amp;veaction=edit&amp;section=5" title="Editace sekce: Dihedrální grupa D4" class="mw-editsection-visualeditor"><span>editovat</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Grupa&amp;action=edit&amp;section=5" title="Editovat zdrojový kód sekce Dihedrální grupa D4"><span>editovat zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Symetrie" title="Symetrie">Symetrie</a> čtverce jsou definovány jako <a href="/wiki/Oto%C4%8Den%C3%AD" title="Otočení">rotace</a>, <a href="/wiki/Osov%C3%A1_soum%C4%9Brnost" title="Osová souměrnost">zrcadlení</a> resp. jejich složení, které převádí čtverec sám na sebe. Množina všech takových symetrií tvoří grupu, která má osm prvků a značí se D<sub>4</sub>.<sup id="cite_ref-Prochazka_s100_7-1" class="reference"><a href="#cite_note-Prochazka_s100-7"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Valvoda_8-0" class="reference"><a href="#cite_note-Valvoda-8"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> Následuje popis těchto symetrií: </p> <table class="wikitable" border="1" style="text-align:center; margin:0 auto .5em auto;"> <tbody><tr> <td><span typeof="mw:File"><a href="/wiki/Soubor:Group_D8_id.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/7e/Group_D8_id.svg/140px-Group_D8_id.svg.png" decoding="async" width="140" height="118" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/7e/Group_D8_id.svg/210px-Group_D8_id.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/7e/Group_D8_id.svg/280px-Group_D8_id.svg.png 2x" data-file-width="160" data-file-height="135" /></a></span> <br /> id (identita)</td> <td><span typeof="mw:File"><a href="/wiki/Soubor:Group_D8_90.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f6/Group_D8_90.svg/140px-Group_D8_90.svg.png" decoding="async" width="140" height="118" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f6/Group_D8_90.svg/210px-Group_D8_90.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f6/Group_D8_90.svg/280px-Group_D8_90.svg.png 2x" data-file-width="160" data-file-height="135" /></a></span> <br /> r<sub>1</sub> (rotace o 90° doprava)</td> <td><span typeof="mw:File"><a href="/wiki/Soubor:Group_D8_180.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/64/Group_D8_180.svg/140px-Group_D8_180.svg.png" decoding="async" width="140" height="118" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/64/Group_D8_180.svg/210px-Group_D8_180.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/64/Group_D8_180.svg/280px-Group_D8_180.svg.png 2x" data-file-width="160" data-file-height="135" /></a></span> <br /> r<sub>2</sub> (rotace o 180° doprava)</td> <td><span typeof="mw:File"><a href="/wiki/Soubor:Group_D8_270.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/33/Group_D8_270.svg/140px-Group_D8_270.svg.png" decoding="async" width="140" height="118" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/33/Group_D8_270.svg/210px-Group_D8_270.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/33/Group_D8_270.svg/280px-Group_D8_270.svg.png 2x" data-file-width="160" data-file-height="135" /></a></span> <br /> r<sub>3</sub> (rotace o 270° doprava) </td></tr> <tr> <td><span typeof="mw:File"><a href="/wiki/Soubor:Group_D8_fv.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/47/Group_D8_fv.svg/140px-Group_D8_fv.svg.png" decoding="async" width="140" height="118" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/47/Group_D8_fv.svg/210px-Group_D8_fv.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/47/Group_D8_fv.svg/280px-Group_D8_fv.svg.png 2x" data-file-width="160" data-file-height="135" /></a></span> <br /> f<sub>v</sub> (vertikální překlopení)</td> <td><span typeof="mw:File"><a href="/wiki/Soubor:Group_D8_fh.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b3/Group_D8_fh.svg/140px-Group_D8_fh.svg.png" decoding="async" width="140" height="118" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b3/Group_D8_fh.svg/210px-Group_D8_fh.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b3/Group_D8_fh.svg/280px-Group_D8_fh.svg.png 2x" data-file-width="160" data-file-height="135" /></a></span> <br /> f<sub>h</sub> (horizontální překlopení)</td> <td><span typeof="mw:File"><a href="/wiki/Soubor:Group_D8_f13.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0c/Group_D8_f13.svg/140px-Group_D8_f13.svg.png" decoding="async" width="140" height="118" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0c/Group_D8_f13.svg/210px-Group_D8_f13.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0c/Group_D8_f13.svg/280px-Group_D8_f13.svg.png 2x" data-file-width="160" data-file-height="135" /></a></span> <br /> f<sub>d</sub> (diagonální překlopení)</td> <td><span typeof="mw:File"><a href="/wiki/Soubor:Group_D8_f24.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a1/Group_D8_f24.svg/140px-Group_D8_f24.svg.png" decoding="async" width="140" height="118" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a1/Group_D8_f24.svg/210px-Group_D8_f24.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a1/Group_D8_f24.svg/280px-Group_D8_f24.svg.png 2x" data-file-width="160" data-file-height="135" /></a></span> <br /> f<sub>c</sub> (anti-diagonální překlopení) </td></tr> <tr> <td style="text-align:left" colspan="4">Prvky grupy symetrií čtverce (D<sub>4</sub>). Vrcholy jsou očíslovány a obarveny jenom za účelem vizualizace operací. </td></tr></tbody></table> <table class="wikitable" border="1" style="float:right; text-align:center; margin:.5em 0 .5em 1em; width:40ex; height:40ex;"> <caption>Násobení v grupě D<sub>4</sub> </caption> <tbody><tr> <th width="12%" style="background:#FDD; border-top:solid black 2px; border-left:solid black 2px;">• </th> <th style="background:#FDD; border-top:solid black 2px;" width="11%">id </th> <th style="background:#FDD; border-top:solid black 2px;" width="11%">r<sub>1</sub> </th> <th style="background:#FDD; border-top:solid black 2px;" width="11%">r<sub>2</sub> </th> <th style="background:#FDD; border-right:solid black 2px; border-top:solid black 2px;" width="11%">r<sub>3</sub> </th> <th width="11%">f<sub>v</sub></th> <th width="11%">f<sub>h</sub></th> <th width="11%">f<sub>d</sub></th> <th width="11%">f<sub>c</sub> </th></tr> <tr> <th style="background:#FDD; border-left:solid black 2px;">id </th> <td style="background:#FDD;">id </td> <td style="background:#FDD;">r<sub>1</sub> </td> <td style="background:#FDD;">r<sub>2</sub> </td> <td style="background:#FDD; border-right:solid black 2px;">r<sub>3</sub></td> <td>f<sub>v</sub></td> <td>f<sub>h</sub></td> <td>f<sub>d</sub> </td> <td style="background:#FFFC93; border-right:solid black 2px; border-left:solid black 2px; border-top:solid black 2px;">f<sub>c</sub> </td></tr> <tr> <th style="background:#FDD; border-left:solid black 2px;">r<sub>1</sub> </th> <td style="background:#FDD;">r<sub>1</sub> </td> <td style="background:#FDD;">r<sub>2</sub> </td> <td style="background:#FDD;">r<sub>3</sub> </td> <td style="background:#FDD; border-right:solid black 2px;">id</td> <td>f<sub>c</sub></td> <td>f<sub>d</sub></td> <td>f<sub>v</sub> </td> <td style="background:#FFFC93; border-right: solid black 2px; border-left: solid black 2px;">f<sub>h</sub> </td></tr> <tr style="height:10%"> <th style="background:#FDD; border-left:solid black 2px;">r<sub>2</sub> </th> <td style="background:#FDD;">r<sub>2</sub> </td> <td style="background:#FDD;">r<sub>3</sub> </td> <td style="background:#FDD;">id </td> <td style="background:#FDD; border-right:solid black 2px;">r<sub>1</sub></td> <td>f<sub>h</sub></td> <td>f<sub>v</sub></td> <td>f<sub>c</sub> </td> <td style="background:#FFFC93; border-right: solid black 2px; border-left: solid black 2px;">f<sub>d</sub> </td></tr> <tr style="height:10%"> <th style="background:#FDD; border-bottom:solid black 2px; border-left:solid black 2px;">r<sub>3</sub> </th> <td style="background:#FDD; border-bottom:solid black 2px;">r<sub>3</sub> </td> <td style="background:#FDD; border-bottom:solid black 2px;">id </td> <td style="background:#FDD; border-bottom:solid black 2px;">r<sub>1</sub> </td> <td style="background:#FDD; border-right:solid black 2px; border-bottom:solid black 2px;">r<sub>2</sub></td> <td>f<sub>d</sub></td> <td>f<sub>c</sub> </td> <td>f<sub>h</sub> </td> <td style="background:#FFFC93; border-right:solid black 2px; border-left:solid black 2px; border-bottom:solid black 2px;">f<sub>v</sub> </td></tr> <tr style="height:10%"> <th>f<sub>v</sub> </th> <td>f<sub>v</sub></td> <td>f<sub>d</sub></td> <td>f<sub>h</sub></td> <td>f<sub>c</sub></td> <td>id</td> <td>r<sub>2</sub></td> <td>r<sub>1</sub></td> <td>r<sub>3</sub> </td></tr> <tr style="height:10%"> <th>f<sub>h</sub> </th> <td>f<sub>h</sub></td> <td>f<sub>c</sub></td> <td>f<sub>v</sub></td> <td style="background:#DDF;border:solid black 2px;">f<sub>d</sub></td> <td>r<sub>2</sub></td> <td>id</td> <td>r<sub>3</sub></td> <td>r<sub>1</sub> </td></tr> <tr style="height:10%"> <th>f<sub>d</sub> </th> <td>f<sub>d</sub></td> <td>f<sub>h</sub></td> <td>f<sub>c</sub></td> <td>f<sub>v</sub></td> <td>r<sub>3</sub></td> <td>r<sub>1</sub></td> <td>id</td> <td>r<sub>2</sub> </td></tr> <tr style="height:10%"> <th>f<sub>c</sub> </th> <td style="background:#9DFF93; border-left: solid black 2px; border-bottom: solid black 2px; border-top: solid black 2px;">f<sub>c</sub> </td> <td style="background:#9DFF93; border-bottom: solid black 2px; border-top: solid black 2px;">f<sub>v</sub> </td> <td style="background:#9DFF93; border-bottom: solid black 2px; border-top: solid black 2px;">f<sub>d</sub> </td> <td style="background:#9DFF93; border-bottom:solid black 2px; border-top:solid black 2px; border-right:solid black 2px;">f<sub>h</sub></td> <td>r<sub>1</sub></td> <td>r<sub>3</sub></td> <td>r<sub>2</sub></td> <td>id </td></tr> <tr> <td colspan="9" style="text-align:left">Prvky id, r<sub>1</sub>, r<sub>2</sub> a r<sub>3</sub> tvoří <a href="/wiki/Podgrupa" title="Podgrupa">podgrupu</a>, zvýrazněnou červeně (levá horní oblast). Prvek levé a pravé třídy rozkladu podle této podgrupy je zvýrazněna zelenou (v posledním řádku) a žlutou (v posledním sloupci). </td></tr></tbody></table> <ul><li>Identita (id) nechává čtverec nezměněn</li> <li>Rotace čtverce o 90°, 180°, a 270° doprava (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{1},r_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r_{1},r_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d00a857c907f8c4b3858f06a1b5c1db4282ab027" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.24ex; height:2.009ex;" alt="{\displaystyle r_{1},r_{2}}"></span> a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r_{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/51fc5930cbb780220b209b444707ad9e2ba82c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.103ex; height:2.009ex;" alt="{\displaystyle r_{3}}"></span>)</li> <li>Překlopení (také reflexe nebo <a href="/wiki/Osov%C3%A1_soum%C4%9Brnost" title="Osová souměrnost">zrcadlení</a>) kolem vertikální a horizontální střední úsečky (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{h}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{h}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3aab732ff18f6a45eb0b17db57ad16fca101f917" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.318ex; height:2.509ex;" alt="{\displaystyle f_{h}}"></span> a&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{v}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{v}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9255f21ea6fe8035150b7379314de6ded7adfe22" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.169ex; height:2.509ex;" alt="{\displaystyle f_{v}}"></span>), a&#160;kolem dvou diagonál (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{d}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{d}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/20ee02c09722b2edd84bebb217b4b1cca8bd2d38" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.231ex; height:2.509ex;" alt="{\displaystyle f_{d}}"></span> a&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{c}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{c}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d2b64a46c31800830b9fecc59b22812390e18c05" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.083ex; height:2.509ex;" alt="{\displaystyle f_{c}}"></span>).</li></ul> <p>Binární operaci v této grupě definujeme jako <a href="/wiki/Skl%C3%A1d%C3%A1n%C3%AD_zobrazen%C3%AD" title="Skládání zobrazení">skládání zobrazení</a>: osm symetrií jsou zobrazení ze&#160;čtverce na čtverec a&#160;dvě symetrie se dají složit do&#160;nové symetrie. Je zřejmé, že výsledek bude opět symetrie čtverce. Výsledek operace „nejdříve <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> a&#160;pak <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span>“ se obvykle značí zprava doleva jako <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b\cdot a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b\cdot a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86cfc2b64ea5a17c1fe61677e219b10446590c20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.906ex; height:2.176ex;" alt="{\displaystyle b\cdot a}"></span>. Podobné značení se totiž používá pro skládání zobrazení. Například <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{1}\cdot r_{1}=r_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r_{1}\cdot r_{1}=r_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/324051ea39e410a501a0ddb8fea425e193ab46a6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.086ex; height:2.009ex;" alt="{\displaystyle r_{1}\cdot r_{1}=r_{2}}"></span>. </p><p>Tabulka vpravo znázorňuje výsledky všech možných složení. Například výsledek složení rotace o 270° doprava (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r_{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/51fc5930cbb780220b209b444707ad9e2ba82c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.103ex; height:2.009ex;" alt="{\displaystyle r_{3}}"></span>) a&#160;horizontálního překlopení (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{h}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{h}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3aab732ff18f6a45eb0b17db57ad16fca101f917" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.318ex; height:2.509ex;" alt="{\displaystyle f_{h}}"></span>) je stejný jako překlopení kolem diagonály (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{d}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{d}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/20ee02c09722b2edd84bebb217b4b1cca8bd2d38" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.231ex; height:2.509ex;" alt="{\displaystyle f_{d}}"></span>). Formálně, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{h}\cdot r_{3}=f_{d}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{h}\cdot r_{3}=f_{d}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/17b6d0cc3b2e2b119de4bc001ffe604053c53ed9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.43ex; height:2.509ex;" alt="{\displaystyle f_{h}\cdot r_{3}=f_{d}}"></span></dd></dl> <p>což je v&#160;tabulce zvýrazněno modrou barvou. Vidíme také, že grupa není komutativní, neboť například </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{v}\cdot r_{1}=f_{d}\neq f_{c}=r_{1}\cdot f_{v}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msub> <mo>&#x2260;<!-- ≠ --></mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{v}\cdot r_{1}=f_{d}\neq f_{c}=r_{1}\cdot f_{v}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d030da8f066f3e89b1cd4406c27c4d608d7af6fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.159ex; height:2.676ex;" alt="{\displaystyle f_{v}\cdot r_{1}=f_{d}\neq f_{c}=r_{1}\cdot f_{v}.}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Dějiny"><span id="D.C4.9Bjiny"></span>Dějiny</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Grupa&amp;veaction=edit&amp;section=6" title="Editace sekce: Dějiny" class="mw-editsection-visualeditor"><span>editovat</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Grupa&amp;action=edit&amp;section=6" title="Editovat zdrojový kód sekce Dějiny"><span>editovat zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/Soubor:Evariste_galois.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/53/Evariste_galois.jpg/220px-Evariste_galois.jpg" decoding="async" width="220" height="284" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/53/Evariste_galois.jpg/330px-Evariste_galois.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/53/Evariste_galois.jpg/440px-Evariste_galois.jpg 2x" data-file-width="792" data-file-height="1024" /></a><figcaption><a href="/wiki/%C3%89variste_Galois" title="Évariste Galois">Évariste Galois</a> ve&#160;věku 15 let. Přestože zemřel dvacetiletý, je považován za jednoho ze zakladatelů <a href="/wiki/Teorie_grup" title="Teorie grup">teorie grup</a></figcaption></figure> <p>Koncept grupy se vyvinul z různých oblastí matematiky.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> Původní motivace pro teorii grup byla snaha řešit <a href="/wiki/Polynomi%C3%A1ln%C3%AD_rovnice" class="mw-redirect" title="Polynomiální rovnice">polynomiální rovnice</a> stupně vyššího než&#160;4. <a href="/wiki/Kvadratick%C3%A1_rovnice" title="Kvadratická rovnice">Kvadratické rovnice</a> uměli lidé řešit už v&#160;<a href="/wiki/Starov%C4%9Bk" title="Starověk">starověkých</a> civilizacích.<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Lodovico_Ferrari" title="Lodovico Ferrari">Lodovico Ferrari</a> uměl řešit polynomiální rovnice stupně 3 a&#160;4 kolem roku 1540,<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> řešení publikoval spolu s&#160;<a href="/wiki/Gerolamo_Cardano" title="Gerolamo Cardano">Gerolamo Cardanem</a> v&#160;knize <i>Ars Magna</i> v&#160;roce 1545. Pro polynomiální rovnice vyššího stupně však obecně nelze řešení vyjádřit vzorcem obsahujícím pouze konečný počet sčítání, odčítání, násobení, dělení a odmocnin. Historickou terminologií se jedná o nalezení řešení pomocí <i>radikálů</i>, moderní terminologie mluví o <i>algebraicky řešitelné</i> rovnici.<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> Počátkem 19.&#160;století francouzský matematik <a href="/wiki/%C3%89variste_Galois" title="Évariste Galois">Évariste Galois</a>, navazuje na starší práce <a href="/wiki/Paolo_Ruffini" title="Paolo Ruffini">Ruffiniho</a> a&#160;<a href="/wiki/Joseph_Louis_Lagrange" class="mw-redirect" title="Joseph Louis Lagrange">Lagrangeho</a>, nalezl kritérium pro algebraickou řešitelnost polynomiálních rovnic. Existence takového řešení závisí na&#160;grupě symetrií <a href="/wiki/Ko%C5%99en_(matematika)" title="Kořen (matematika)">kořenů</a> daného polynomu. Tato grupa se dnes nazývá <a href="/wiki/Galoisova_grupa" title="Galoisova grupa">Galoisova grupa</a> a&#160;její prvky jsou jisté <a href="/wiki/Permutace" title="Permutace">permutace</a> kořenů. </p><p>Galoisovy myšlenky byly jeho současníky odmítnuty a&#160;publikovány až posmrtně.<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> Obecnější <a href="/wiki/Symetrick%C3%A1_grupa" title="Symetrická grupa">permutační grupy</a> byly zkoumány <a href="/wiki/Augustin_Louis_Cauchy" title="Augustin Louis Cauchy">Augustinem Cauchym</a>. První definici konečné grupy a&#160;také název „grupa“ zavedl <a href="/wiki/Arthur_Cayley" title="Arthur Cayley">Arthur Cayley</a> v&#160;publikaci <i>On the theory of groups, as depending on the symbolic equation θ<sup>n</sup> = 1</i> (1854). </p><p><a href="/wiki/Geometrie" title="Geometrie">Geometrie</a> byla druhou oblastí, ve které byly grupy systematicky využívány, hlavně grupy symetrií geometrických prostorů zavedené <a href="/wiki/Felix_Christian_Klein" class="mw-redirect" title="Felix Christian Klein">Felixem Kleinem</a> v&#160;<a href="/wiki/Erlangensk%C3%BD_program" title="Erlangenský program">Erlangenském programu</a> v&#160;roce 1872.<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> Klein využil teorii grup pro popis a&#160;kategorizaci nově se&#160;objevivších geometrií jako <a href="/wiki/Hyperbolick%C3%A1_geometrie" title="Hyperbolická geometrie">hyperbolická geometrie</a>, <a href="/wiki/Projektivn%C3%AD_geometrie" title="Projektivní geometrie">projektivní geometrie</a> a&#160;starší <a href="/wiki/Eukleidovsk%C3%A1_geometrie" title="Eukleidovská geometrie">Eukleidova geometrie</a>. Dále tento koncept rozvinul <a href="/wiki/Sophus_Lie" title="Sophus Lie">Sophus Lie</a>, který zavedl <a href="/wiki/Lieova_grupa" title="Lieova grupa">Lieovy grupy</a> v&#160;roce 1884.<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> </p><p>Třetí oblast, která přispěla ke&#160;vzniku a&#160;rozšíření <a href="/wiki/Teorie_grup" title="Teorie grup">teorie grup</a>, byla <a href="/wiki/Teorie_%C4%8D%C3%ADsel" title="Teorie čísel">teorie čísel</a>. Jisté struktury odpovídající <a href="/wiki/Abelova_grupa" title="Abelova grupa">Abelovým grupám</a> byly implicitně použity v&#160;<a href="/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss">Gaussově</a> číselně teoretickém díle <i>Disquisitiones Arithmeticae</i> a&#160;explicitněji je používal i&#160;<a href="/wiki/Leopold_Kronecker" title="Leopold Kronecker">Leopold Kronecker</a>.<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> V&#160;roce 1847 <a href="/wiki/Ernst_Eduard_Kummer" title="Ernst Eduard Kummer">Ernst Kummer</a> v&#160;raných pokusech dokázat <a href="/wiki/Velk%C3%A1_Fermatova_v%C4%9Bta" title="Velká Fermatova věta">Velkou Fermatovu větu</a> zavedl grupy popisující faktorizaci na <a href="/wiki/Prvo%C4%8D%C3%ADslo" title="Prvočíslo">prvočísla</a>.<sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> </p><p>Spojování těchto přístupů do&#160;jednotné teorie grup začalo <a href="/wiki/Camille_Jordan" title="Camille Jordan">Jordanovou</a> publikací <i>Traité des substitutions et des équations algébriques</i> (1870).<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> <a href="/w/index.php?title=Walther_von_Dyck&amp;action=edit&amp;redlink=1" class="new" title="Walther von Dyck (stránka neexistuje)">Walther von Dyck</a> (1882) zavedl první moderní definici grupy.<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> </p><p>Počátkem 20.&#160;století získaly grupy široké přijetí díky práci <a href="/wiki/Ferdinand_Georg_Frobenius" title="Ferdinand Georg Frobenius">Ferdinanda Frobenia</a> a <a href="/wiki/William_Burnside" title="William Burnside">Williama Burnsidea</a>, kteří pracovali na <a href="/wiki/Reprezentace_(grupa)" title="Reprezentace (grupa)">teorii reprezentací</a> konečných grup, a&#160;také díky článkům <a href="/wiki/Richard_Brauer" title="Richard Brauer">Richarda Brauera</a> (modulární teorie reprezentací) a&#160;<a href="/wiki/Issai_Schur" title="Issai Schur">Issaie Schura</a>.<sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> Teorie Lieových grup a obecněji lokálně kompaktních grup byla publikována <a href="/wiki/Hermann_Weyl" title="Hermann Weyl">Hermannem Weylem</a>, <a href="/wiki/%C3%89lie_Cartan" title="Élie Cartan">Élie Cartanem</a> a&#160;mnoha dalšími.<sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> Její algebraický protějšek, teorie <a href="/wiki/Algebraick%C3%A1_grupa" title="Algebraická grupa">algebraických grup</a>, byla prvně popsána <a href="/w/index.php?title=Claude_Chevalley&amp;action=edit&amp;redlink=1" class="new" title="Claude Chevalley (stránka neexistuje)">Chevalleyem</a> (koncem 30. let) a později <a href="/wiki/Armand_Borel" title="Armand Borel">Armandem Borelem</a> a <a href="/wiki/Jacques_Tits" title="Jacques Tits">Jacquesem Titsem</a>.<sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> </p><p>V&#160;letech 1960–61 zorganizovala Univerzita v Chicagu <i>Rok teorie grup</i> a&#160;teoretici jako <a href="/w/index.php?title=Daniel_Gorenstein&amp;action=edit&amp;redlink=1" class="new" title="Daniel Gorenstein (stránka neexistuje)">Daniel Gorenstein</a>, <a href="/w/index.php?title=John_G._Thompson&amp;action=edit&amp;redlink=1" class="new" title="John G. Thompson (stránka neexistuje)">John G. Thompson</a> a&#160;<a href="/w/index.php?title=Walter_Feit&amp;action=edit&amp;redlink=1" class="new" title="Walter Feit (stránka neexistuje)">Walter Feit</a> založili spolupráci, která s&#160;přispěním mnohých jiných matematiků vedla ke&#160;<a href="/wiki/Klasifikace_jednoduch%C3%BDch_kone%C4%8Dn%C3%BDch_grup" title="Klasifikace jednoduchých konečných grup">klasifikaci jednoduchých konečných grup</a> v&#160;roce 1982. Tento projekt předčil svým rozsahem předchozí matematické spolupráce, a&#160;to jak délkou <a href="/wiki/Matematick%C3%BD_d%C5%AFkaz" title="Matematický důkaz">důkazů</a>, tak počtem zapojených matematiků. Ačkoliv je klasifikace hotova, výzkum pokračuje s cílem zjednodušit důkaz této klasifikace.<sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup> I v&#160;současnosti je <a href="/wiki/Teorie_grup" title="Teorie grup">teorie grup</a> rozvíjející se oblast matematiky, která ovlivňuje řadu souvisejících teorií. </p> <div class="mw-heading mw-heading2"><h2 id="Základní_pojmy"><span id="Z.C3.A1kladn.C3.AD_pojmy"></span>Základní pojmy</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Grupa&amp;veaction=edit&amp;section=7" title="Editace sekce: Základní pojmy" class="mw-editsection-visualeditor"><span>editovat</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Grupa&amp;action=edit&amp;section=7" title="Editovat zdrojový kód sekce Základní pojmy"><span>editovat zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>V&#160;této kapitole budeme pro grupovou operaci používat symbol pro součin (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cdot }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x22C5;<!-- ⋅ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cdot }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba2c023bad1bd39ed49080f729cbf26bc448c9ba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.439ex; margin-bottom: -0.61ex; width:0.647ex; height:1.176ex;" alt="{\displaystyle \cdot }"></span>), složení prvků <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> a&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> budeme značit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\cdot b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\cdot b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/620419d3ed53abc98659a5fc0f3a5eb6177830ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.906ex; height:2.176ex;" alt="{\displaystyle a\cdot b}"></span>. V případě Abelových grup budeme používat symbol pro součet (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle +}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>+</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle +}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe6ef363cd19902d1a7a71fb1c8b21e8ede52406" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle +}"></span>) a psát <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a+b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>+</mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a+b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a2391acf09244b9dba74eb940e871a6be7e7973a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.068ex; height:2.343ex;" alt="{\displaystyle a+b}"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Řád_prvku_a_grupy"><span id=".C5.98.C3.A1d_prvku_a_grupy"></span>Řád prvku a grupy</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Grupa&amp;veaction=edit&amp;section=8" title="Editace sekce: Řád prvku a grupy" class="mw-editsection-visualeditor"><span>editovat</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Grupa&amp;action=edit&amp;section=8" title="Editovat zdrojový kód sekce Řád prvku a grupy"><span>editovat zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><i>Řádem grupy</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span> se nazývá <a href="/wiki/Mohutnost" title="Mohutnost">mohutnost</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |G|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |G|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8258bc41edeb87bfbc8cba8367f29838c0eddc1c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.12ex; height:2.843ex;" alt="{\displaystyle |G|}"></span> její nosné množiny. </p><p><a href="/wiki/%C5%98%C3%A1d_prvku" title="Řád prvku"><i>Řádem prvku</i></a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span> se nazývá nejmenší přirozené číslo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> takové, že <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g^{n}=g\cdot g\cdot \ldots \cdot g=e}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mi>g</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>g</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mo>&#x2026;<!-- … --></mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>g</mi> <mo>=</mo> <mi>e</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g^{n}=g\cdot g\cdot \ldots \cdot g=e}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a50456de6bbacf7d84eb84ab0f301b21b9b9aa82" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:20.726ex; height:2.676ex;" alt="{\displaystyle g^{n}=g\cdot g\cdot \ldots \cdot g=e}"></span> (součin <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> krát prvku <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span>) anebo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c26c105004f30c27aa7c2a9c601550a4183b1f21" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.676ex;" alt="{\displaystyle \infty }"></span>, pokud takové <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> neexistuje.<sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Cyklická_grupa"><span id="Cyklick.C3.A1_grupa"></span>Cyklická grupa</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Grupa&amp;veaction=edit&amp;section=9" title="Editace sekce: Cyklická grupa" class="mw-editsection-visualeditor"><span>editovat</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Grupa&amp;action=edit&amp;section=9" title="Editovat zdrojový kód sekce Cyklická grupa"><span>editovat zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/Soubor:Cyclic_group.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/5f/Cyclic_group.svg/220px-Cyclic_group.svg.png" decoding="async" width="220" height="214" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/5f/Cyclic_group.svg/330px-Cyclic_group.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/5f/Cyclic_group.svg/440px-Cyclic_group.svg.png 2x" data-file-width="443" data-file-height="431" /></a><figcaption>Množina <a href="/wiki/Komplexn%C3%AD_%C4%8D%C3%ADslo" title="Komplexní číslo">komplexních</a> šestých odmocnin z&#160;jednotky tvoří šestiprvkovou cyklickou grupu. Například <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=e^{2\pi /6}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>6</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z=e^{2\pi /6}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23ec8438c642be9f599b16d4293e165176c2e335" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.91ex; height:2.843ex;" alt="{\displaystyle z=e^{2\pi /6}}"></span> je její generátor, ale <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f23e4338924d253cd2f3ed83a7082fb07243d08e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.145ex; height:2.676ex;" alt="{\displaystyle z^{2}}"></span> není, neboť liché mocniny <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"></span> nejsou mocniny <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f23e4338924d253cd2f3ed83a7082fb07243d08e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.145ex; height:2.676ex;" alt="{\displaystyle z^{2}}"></span>.</figcaption></figure> <div class="uvodni-upozorneni hatnote"> Podrobnější informace naleznete v článku&#32;<a href="/wiki/Cyklick%C3%A1_grupa" title="Cyklická grupa">Cyklická grupa</a>.</div> <p>Grupa <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span> se nazývá cyklická, pokud je generována jedním prvkem. To znamená, že existuje prvek <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d7e0b51bd905f35d11790939139d18014f8b017" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.997ex; height:2.176ex;" alt="{\displaystyle x\in G}"></span> takový, že každý prvek <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g\in G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g\in G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b1be73903416a0dd94b8cbc2268ce480810c0e62" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.783ex; height:2.509ex;" alt="{\displaystyle g\in G}"></span> lze napsat jako <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g=x^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>=</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g=x^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a69b0c2be02cd4cd4fbe5a8ea70950bf7d97985" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.763ex; height:2.676ex;" alt="{\displaystyle g=x^{n}}"></span> pro nějaké celé číslo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>.<sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup> Výraz <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{n}=x\cdot x\cdot \ldots \cdot x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mi>x</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>x</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mo>&#x2026;<!-- … --></mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{n}=x\cdot x\cdot \ldots \cdot x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/08ddce4ce233701ef6629df4594db5a1afdcf1c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:17.396ex; height:2.343ex;" alt="{\displaystyle x^{n}=x\cdot x\cdot \ldots \cdot x}"></span> znamená, že prvek <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> je vynásoben sám se sebou <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>&#160;krát, a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{-n}=x^{-1}\cdot x^{-1}\cdot \ldots \cdot x^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>n</mi> </mrow> </msup> <mo>=</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <mo>&#x2026;<!-- … --></mo> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{-n}=x^{-1}\cdot x^{-1}\cdot \ldots \cdot x^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48a5f281b8dbae21a7a751e88ef9095b6167bb3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:25.673ex; height:2.676ex;" alt="{\displaystyle x^{-n}=x^{-1}\cdot x^{-1}\cdot \ldots \cdot x^{-1}}"></span> znamená, že je prvek <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fbf91609f1a0b7847e108023b015cb6b0d567821" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.662ex; height:2.676ex;" alt="{\displaystyle x^{-1}}"></span> vynásoben sám se sebou <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>&#160;krát pro nějaké <a href="/wiki/P%C5%99irozen%C3%A9_%C4%8D%C3%ADslo" title="Přirozené číslo">přirozené číslo</a>&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>. Konečnou cyklickou grupu řádu <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> lze reprezentovat množinou řešení rovnice <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z^{n}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z^{n}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34fb31edf665701c275c44a5be8b82a95509888d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.57ex; height:2.343ex;" alt="{\displaystyle z^{n}=1}"></span> v&#160;<a href="/wiki/Komplexn%C3%AD_rovina" title="Komplexní rovina">komplexní rovině</a>, což je pro <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=6}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mn>6</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=6}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0365f0b9f2721ed3ebb488a96d7348d978acf8f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\displaystyle n=6}"></span> znázorněno na obrázku. Grupové násobení je pak obyčejné násobení <a href="/wiki/Komplexn%C3%AD_%C4%8D%C3%ADslo" title="Komplexní číslo">komplexních čísel</a>. Jinou reprezentaci představuje množina zbytkových tříd <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} _{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} _{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b729c334a9863c47f0b7e3ad61342c2f0881bdb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.769ex; height:2.509ex;" alt="{\displaystyle \mathbb {Z} _{n}}"></span> spolu se sčítáním <a href="/wiki/Zbytek_po_d%C4%9Blen%C3%AD" title="Zbytek po dělení">modulo</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>. </p><p>Pokud je cyklická grupa nekonečná, je izomorfní grupě celých čísel <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\mathbb {Z} ,+)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mo>,</mo> <mo>+</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\mathbb {Z} ,+)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/910eaae0a8267ccb04d4846f6a28f02ce6ab8ac9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.202ex; height:2.843ex;" alt="{\displaystyle (\mathbb {Z} ,+)}"></span>. Pokud je konečná a&#160;má <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> prvků, je izomorfní množině zbytkových tříd <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\mathbb {Z} _{n},+)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>,</mo> <mo>+</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\mathbb {Z} _{n},+)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3dde0cadbdf9ccdebd0d4c4cc120bba8db8b795" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.42ex; height:2.843ex;" alt="{\displaystyle (\mathbb {Z} _{n},+)}"></span>.<sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Abelova_grupa">Abelova grupa</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Grupa&amp;veaction=edit&amp;section=10" title="Editace sekce: Abelova grupa" class="mw-editsection-visualeditor"><span>editovat</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Grupa&amp;action=edit&amp;section=10" title="Editovat zdrojový kód sekce Abelova grupa"><span>editovat zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="uvodni-upozorneni hatnote">Související informace naleznete také v&#160;článku&#32;<a href="/wiki/Abelova_grupa" title="Abelova grupa">Abelova grupa</a>.</div> <p>Grupu <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (G,+)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>G</mi> <mo>,</mo> <mo>+</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (G,+)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ede3320938add8f227928a5efe5738feaa903345" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.478ex; height:2.843ex;" alt="{\displaystyle (G,+)}"></span> nazýváme <i><a href="/wiki/Abelova_grupa" title="Abelova grupa">Abelovou</a></i> (také <a href="/wiki/Komutativita" title="Komutativita">komutativní</a>), platí-li <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a+b=b+a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>=</mo> <mi>b</mi> <mo>+</mo> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a+b=b+a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/684f43b5094501674e8314be5e24a80ee64682e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:13.234ex; height:2.343ex;" alt="{\displaystyle a+b=b+a}"></span> pro všechna <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a,\,b\in G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>b</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a,\,b\in G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/37ad7ae192ba151b413fd9d734befb34208f0fca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.316ex; height:2.509ex;" alt="{\displaystyle a,\,b\in G}"></span>. Pojmenování je po norském matematikovi <a href="/wiki/Niels_Henrik_Abel" title="Niels Henrik Abel">Henrikovi Abelovi</a>.<sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup> Příklady Abelových grup jsou <a href="/wiki/Cel%C3%A9_%C4%8D%C3%ADslo" title="Celé číslo">celá čísla</a> spolu s&#160;operací sčítání <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\mathbb {Z} ,+)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mo>,</mo> <mo>+</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\mathbb {Z} ,+)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/910eaae0a8267ccb04d4846f6a28f02ce6ab8ac9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.202ex; height:2.843ex;" alt="{\displaystyle (\mathbb {Z} ,+)}"></span>, <a href="/wiki/Re%C3%A1ln%C3%A9_%C4%8D%C3%ADslo" title="Reálné číslo">reálná čísla</a> se&#160;sčítáním <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\mathbb {R} ,+)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>,</mo> <mo>+</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\mathbb {R} ,+)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b33b2c9358cbd7bad20aa0b18651d3bba582c09" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.329ex; height:2.843ex;" alt="{\displaystyle (\mathbb {R} ,+)}"></span>, <a href="/wiki/Mno%C5%BEina_zbytkov%C3%BDch_t%C5%99%C3%ADd" class="mw-redirect" title="Množina zbytkových tříd">množiny zbytkových tříd</a> se sčítáním <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\mathbb {Z} _{n},+)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>,</mo> <mo>+</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\mathbb {Z} _{n},+)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3dde0cadbdf9ccdebd0d4c4cc120bba8db8b795" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.42ex; height:2.843ex;" alt="{\displaystyle (\mathbb {Z} _{n},+)}"></span>, <a href="/wiki/Vektorov%C3%BD_prostor" title="Vektorový prostor">vektorové prostory</a> se sčítáním, anebo nenulová reálná čísla spolu s&#160;operací násobení <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\mathbb {R} \backslash \{0\},\cdot )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mi class="MJX-variant" mathvariant="normal">&#x2216;<!-- ∖ --></mi> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo fence="false" stretchy="false">}</mo> <mo>,</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\mathbb {R} \backslash \{0\},\cdot )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b17dedfe0a591d5709a701016ba0b89c14c19889" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.818ex; height:2.843ex;" alt="{\displaystyle (\mathbb {R} \backslash \{0\},\cdot )}"></span>. Každá Abelova grupa se dá chápat jako <a href="/wiki/Modul_(matematika)" title="Modul (matematika)">modul</a> nad <a href="/wiki/Okruh_(algebra)" title="Okruh (algebra)">okruhem</a> celých čísel a&#160;naopak, modul nad okruhem celých čísel je Abelova grupa. </p><p>Konečné Abelovy grupy se dají jednoduše klasifikovat. Každá konečná Abelova grupa je izomorfní <a href="/wiki/Direktn%C3%AD_suma_grup" class="mw-redirect" title="Direktní suma grup">direktní sumě</a> <a href="/wiki/Cyklick%C3%A1_grupa" title="Cyklická grupa">cyklických grup</a>, jejichž řády jsou mocniny prvočísel. Speciální případ tohoto tvrzení popisuje <a href="/wiki/%C4%8C%C3%ADnsk%C3%A1_v%C4%9Bta_o_zbytc%C3%ADch" title="Čínská věta o zbytcích">čínská věta o zbytcích</a>, která byla částečně popsána už v&#160;knize <i>Sun-c' suan-ťing</i> čínského matematika <a href="/wiki/Sun-c%27_(matematik)" title="Sun-c&#39; (matematik)">Sun-c’</a> mezi 3.&#160;a&#160;5.&#160;stoletím.<sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup> </p><p>Obecněji, každá <i>konečně generovaná</i> Abelova grupa je součtem volných Abelových grup (izomorfních <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} _{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} _{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b729c334a9863c47f0b7e3ad61342c2f0881bdb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.769ex; height:2.509ex;" alt="{\displaystyle \mathbb {Z} _{n}}"></span>) a&#160;cyklických grup řádů mocnin prvočísel.<sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup> Například <a href="/wiki/Racion%C3%A1ln%C3%AD_%C4%8D%C3%ADslo" title="Racionální číslo">racionální čísla</a> spolu se&#160;sčítáním však nejsou konečně generována.<sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup> </p><p>Dalším důležitým příkladem Abelových grup jsou <a href="/wiki/Pr%C3%BCferova_grupa" title="Prüferova grupa">Prüferovy grupy</a>. Prüferova grupa <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} (p^{\infty })}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mo stretchy="false">(</mo> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} (p^{\infty })}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/14af623e08c241266c125ad927dd35086ec8ce90" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.404ex; height:2.843ex;" alt="{\displaystyle \mathbb {Z} (p^{\infty })}"></span> je pro každé <a href="/wiki/Prvo%C4%8D%C3%ADslo" title="Prvočíslo">prvočíslo</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> <a href="/wiki/Spo%C4%8Detn%C3%A1_mno%C5%BEina" title="Spočetná množina">spočetná</a> Abelova grupa, v&#160;které má každý prvek <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span>-tou <a href="/wiki/Odmocnina" title="Odmocnina">odmocninu</a>. Tyto grupy hrají důležitou roli v&#160;klasifikaci nekonečných Abelových grup.<sup id="cite_ref-35" class="reference"><a href="#cite_note-35"><span class="cite-bracket">&#91;</span>32<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Podgrupa">Podgrupa</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Grupa&amp;veaction=edit&amp;section=11" title="Editace sekce: Podgrupa" class="mw-editsection-visualeditor"><span>editovat</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Grupa&amp;action=edit&amp;section=11" title="Editovat zdrojový kód sekce Podgrupa"><span>editovat zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/Soubor:Dih4_subgroups.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/5d/Dih4_subgroups.svg/300px-Dih4_subgroups.svg.png" decoding="async" width="300" height="278" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/5d/Dih4_subgroups.svg/450px-Dih4_subgroups.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/5d/Dih4_subgroups.svg/600px-Dih4_subgroups.svg.png 2x" data-file-width="729" data-file-height="675" /></a><figcaption>Znázornění podgrup <a href="/wiki/Dihedr%C3%A1ln%C3%AD_grupa" title="Dihedrální grupa">dihedrální grupy</a> D<sub>4</sub> pomocí <a href="/wiki/Graf_(teorie_graf%C5%AF)" title="Graf (teorie grafů)">grafu</a>. Vrchol úplně nahoře obsahuje všech 8&#160;prvků grupy, které jsou znázorněny jako transformace písmena <b>F</b> a&#160;představuje celou grupu D<sub>4</sub>. Úplně dole je <a href="/wiki/Trivi%C3%A1ln%C3%AD_podgrupa" class="mw-redirect" title="Triviální podgrupa">triviální podgrupa</a>, obsahující pouze neutrální prvek. Pokud jsou dva vrcholy v&#160;tomto grafu spojeny <a href="/wiki/Hrana_(graf)" title="Hrana (graf)">hranou</a>, představují příslušné vrcholy grupu a&#160;její podgrupu.</figcaption></figure> <div class="uvodni-upozorneni hatnote">Související informace naleznete také v&#160;článku&#32;<a href="/wiki/Podgrupa" title="Podgrupa">Podgrupa</a>.</div> <p><a href="/wiki/Podgrupa" title="Podgrupa">Podgrupa</a> grupy <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span> je každá taková podmnožina <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H\subseteq G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H\subseteq G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6dbe10924c5c9134471b96d6a8dfb9c8b1bf0f04" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.989ex; height:2.343ex;" alt="{\displaystyle H\subseteq G}"></span>, která splňuje<sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup> </p> <ol><li>Pro libovolné <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h_{1},h_{2}\in H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h_{1},h_{2}\in H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81d21f1282f82ac1704d123a81f13cbce4330d01" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.725ex; height:2.509ex;" alt="{\displaystyle h_{1},h_{2}\in H}"></span> je i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h_{1}\cdot h_{2}\in H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h_{1}\cdot h_{2}\in H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d0ab660e073cc90e9bce0e7eeaa839929ccbbc1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.37ex; height:2.509ex;" alt="{\displaystyle h_{1}\cdot h_{2}\in H}"></span></li> <li>Neutrální prvek <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e\in H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>e</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e\in H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5a7862c6f73774ee2ba4ff20d8eb08677b6f984b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.988ex; height:2.176ex;" alt="{\displaystyle e\in H}"></span></li> <li>Pro každé <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h\in H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h\in H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/675a79e26028d91d97f4e2ce279c314b0f194c1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.243ex; height:2.176ex;" alt="{\displaystyle h\in H}"></span> je i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h^{-1}\in H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2208;<!-- ∈ --></mo> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h^{-1}\in H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c7e953eec1aa282c535c0a3c6a3b7d2b7660bd11" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.576ex; height:2.676ex;" alt="{\displaystyle h^{-1}\in H}"></span>.</li></ol> <p>Podgrupa <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H\subseteq G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H\subseteq G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6dbe10924c5c9134471b96d6a8dfb9c8b1bf0f04" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.989ex; height:2.343ex;" alt="{\displaystyle H\subseteq G}"></span> je tedy sama o&#160;sobě grupou<sup id="cite_ref-37" class="reference"><a href="#cite_note-37"><span class="cite-bracket">&#91;</span>pozn 4<span class="cite-bracket">&#93;</span></a></sup> (pojem „podgrupa“ se běžně používá jak pro samotnou množinu, tak pro množinu s operací, tj. grupu). </p><p>Samotná grupa <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span> je vždy podgrupou <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span>. Podobně jednoprvková grupa, která obsahuje jenom neutrální prvek, je podgrupou <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span>. Tyto podgrupy se&#160;nazývají <i>triviální podgrupy</i>; podgrupy, které nejsou triviální, se&#160;pak nazývají <i>vlastní podgrupy</i>. Pokud <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span> je podgrupa <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75a9edddcca2f782014371f75dca39d7e13a9c1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle H}"></span> a&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75a9edddcca2f782014371f75dca39d7e13a9c1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle H}"></span> je podgrupa <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span>, pak je také <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span> podgrupa <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span>. Znalost struktury podgrup dané grupy je důležitá pro porozumění grupy jako celku, ačkoliv grupa obecně nemusí být jednoznačně určena strukturou svých vlastních podgrup.<sup id="cite_ref-38" class="reference"><a href="#cite_note-38"><span class="cite-bracket">&#91;</span>34<span class="cite-bracket">&#93;</span></a></sup> </p><p>V&#160;příkladu dihedrální grupy D<sub>4</sub> popsaném výše identita a&#160;otočení tvoří podgrupu <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R=\{id,r_{1},r_{2},r_{3}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>i</mi> <mi>d</mi> <mo>,</mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R=\{id,r_{1},r_{2},r_{3}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb78415f56955b5b3a0f56c6e18eed3e4e9f78bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.616ex; height:2.843ex;" alt="{\displaystyle R=\{id,r_{1},r_{2},r_{3}\}}"></span> zvýrazněnou v tabulce násobení v grupě D<sub>4</sub> červenou barvou. Složení libovolných rotací je totiž opět rotace a&#160;inverze k rotaci je také rotace. V&#160;tabulce podgrup dihedrální grupy je reprezentována rotacemi písmena <b>F</b> a&#160;odpovídá políčku v&#160;druhém řádku uprostřed. </p><p>Pro libovolnou <a href="/wiki/Mno%C5%BEina" title="Množina">množinu</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S\subseteq G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S\subseteq G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/661adc96925066de10003e726886d8238cea7302" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.424ex; height:2.343ex;" alt="{\displaystyle S\subseteq G}"></span> můžeme definovat podgrupu <i>generovanou</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span>. Je to nejmenší podgrupa <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span>, která obsahuje množinu <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span>.<sup id="cite_ref-39" class="reference"><a href="#cite_note-39"><span class="cite-bracket">&#91;</span>35<span class="cite-bracket">&#93;</span></a></sup> Ekvivalentně se dá popsat jako množina všech konečných součinů prvků z&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> a&#160;jejich inverzí.<sup id="cite_ref-40" class="reference"><a href="#cite_note-40"><span class="cite-bracket">&#91;</span>pozn 5<span class="cite-bracket">&#93;</span></a></sup> Ve&#160;výše uvedeném příkladu podgrupa generovaná <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4cbe9b0b294fdd6fadbf9a7249813f016dcbc44f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.103ex; height:2.009ex;" alt="{\displaystyle r_{2}}"></span> a&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{v}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{v}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9255f21ea6fe8035150b7379314de6ded7adfe22" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.169ex; height:2.509ex;" alt="{\displaystyle f_{v}}"></span> obsahuje kromě těchto dvou prvků také <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{v}\cdot r_{2}=f_{h}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{v}\cdot r_{2}=f_{h}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/37af10fe13938213abcfc1449488385459e537a6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.368ex; height:2.509ex;" alt="{\displaystyle f_{v}\cdot r_{2}=f_{h}}"></span>. Protože jak <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4cbe9b0b294fdd6fadbf9a7249813f016dcbc44f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.103ex; height:2.009ex;" alt="{\displaystyle r_{2}}"></span>, tak <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{h}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{h}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3aab732ff18f6a45eb0b17db57ad16fca101f917" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.318ex; height:2.509ex;" alt="{\displaystyle f_{h}}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{v}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{v}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9255f21ea6fe8035150b7379314de6ded7adfe22" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.169ex; height:2.509ex;" alt="{\displaystyle f_{v}}"></span> jsou samy k&#160;sobě inverzní a&#160;libovolný součin těchto prvků je opět prvkem množiny <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{id,r_{2},f_{v},f_{h}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>i</mi> <mi>d</mi> <mo>,</mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{id,r_{2},f_{v},f_{h}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72378467231570343c69ac1179396dd30322d949" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.035ex; height:2.843ex;" alt="{\displaystyle \{id,r_{2},f_{v},f_{h}\}}"></span>, jedná se o podgrupu (na obrázku znázorňujícím podgrupy D<sub>4</sub> odpovídá levému políčku v&#160;druhém řádku). Tato podgrupa je komutativní. </p> <div class="mw-heading mw-heading3"><h3 id="Homomorfismus_a_izomorfismus_grup">Homomorfismus a izomorfismus grup</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Grupa&amp;veaction=edit&amp;section=12" title="Editace sekce: Homomorfismus a izomorfismus grup" class="mw-editsection-visualeditor"><span>editovat</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Grupa&amp;action=edit&amp;section=12" title="Editovat zdrojový kód sekce Homomorfismus a izomorfismus grup"><span>editovat zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Grupový <a href="/wiki/Homomorfismus" title="Homomorfismus">homomorfismus</a> je zobrazení mezi grupami, které zachovává grupovou strukturu. Explicitně, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a:G\to H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>:</mo> <mi>G</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a:G\to H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7186fe39fdfe574028fad939afae8980fe11526d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.671ex; height:2.176ex;" alt="{\displaystyle a:G\to H}"></span> je homomorfismus mezi <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (G,\cdot )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>G</mi> <mo>,</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (G,\cdot )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ccc71a6904c5ab99ecaab1c8ed69e20815d66da" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.317ex; height:2.843ex;" alt="{\displaystyle (G,\cdot )}"></span> a&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (H,*)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>H</mi> <mo>,</mo> <mo>&#x2217;<!-- ∗ --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (H,*)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ca9efa8f60b1acd949386d15ff163c637042933" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.069ex; height:2.843ex;" alt="{\displaystyle (H,*)}"></span>, pokud pro libovolné 2&#160;prvky <i>g</i>, <i>k</i> z <i>G</i> platí </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a(g\cdot k)=a(g)*a(k)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>a</mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo>&#x2217;<!-- ∗ --></mo> <mi>a</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a(g\cdot k)=a(g)*a(k)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8000702ff8d637853d64fd788a31f579aaa99371" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.744ex; height:2.843ex;" alt="{\displaystyle a(g\cdot k)=a(g)*a(k)}"></span>.</dd></dl> <p>Z&#160;této definice se dá ukázat, že grupový homomorfismus zobrazuje neutrální prvek <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e_{G}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e_{G}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0f65007183ece88b79cbbb5eefcf68576c76a4c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.607ex; height:2.009ex;" alt="{\displaystyle e_{G}}"></span> v&#160;grupě <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span> na neutrální prvek <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e_{H}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>H</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e_{H}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b452e01a40b89744db265db3976d8f3d47b41d9a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.775ex; height:2.009ex;" alt="{\displaystyle e_{H}}"></span> v&#160;grupě <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75a9edddcca2f782014371f75dca39d7e13a9c1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle H}"></span> a&#160;také inverzní prvek na inverzní: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a(e_{G})=e_{H},\quad a(g^{-1})=(a(g))^{-1}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo stretchy="false">(</mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>H</mi> </mrow> </msub> <mo>,</mo> <mspace width="1em" /> <mi>a</mi> <mo stretchy="false">(</mo> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">)</mo> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a(e_{G})=e_{H},\quad a(g^{-1})=(a(g))^{-1}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/66f77ce76ce4a1ae1abd6d74cb7364e188d8395e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:33.409ex; height:3.176ex;" alt="{\displaystyle a(e_{G})=e_{H},\quad a(g^{-1})=(a(g))^{-1}.}"></span></dd></dl> <p>Homomorfismus tedy zachovává strukturu, která je určena grupovými axiomy.<sup id="cite_ref-41" class="reference"><a href="#cite_note-41"><span class="cite-bracket">&#91;</span>36<span class="cite-bracket">&#93;</span></a></sup> </p><p>Dvě grupy <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span> a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75a9edddcca2f782014371f75dca39d7e13a9c1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle H}"></span> se nazývají <a href="/wiki/Izomorfismus" title="Izomorfismus">izomorfní</a>, pokud existují grupové homomorfismy <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a:G\to H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>:</mo> <mi>G</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a:G\to H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7186fe39fdfe574028fad939afae8980fe11526d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.671ex; height:2.176ex;" alt="{\displaystyle a:G\to H}"></span> a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b:H\to G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> <mo>:</mo> <mi>H</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b:H\to G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/19e0936bdd3ac1f4ca74f8783542848c57b37f47" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.439ex; height:2.176ex;" alt="{\displaystyle b:H\to G}"></span> takové, že složení <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\circ b=id_{H}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&#x2218;<!-- ∘ --></mo> <mi>b</mi> <mo>=</mo> <mi>i</mi> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>H</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\circ b=id_{H}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d3a615f1a220cf8fdf0ca15e27a641cdacc4d41" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.223ex; height:2.509ex;" alt="{\displaystyle a\circ b=id_{H}}"></span> a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b\circ a=id_{G}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> <mo>&#x2218;<!-- ∘ --></mo> <mi>a</mi> <mo>=</mo> <mi>i</mi> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b\circ a=id_{G}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52cf5c2b0c65558364e0c6482963c3b01e884fe8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.056ex; height:2.509ex;" alt="{\displaystyle b\circ a=id_{G}}"></span> jsou <a href="/wiki/Identita_(matematika)" title="Identita (matematika)">identity</a>. Zobrazení <i>a</i> se nazývá <i>izomorfismus grup</i>. </p><p>Z abstraktního pohledu, izomorfní grupy jsou považovány za objekty reprezentující stejnou strukturu. Například vlastnost <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g\cdot g=e_{G}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>g</mi> <mo>=</mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g\cdot g=e_{G}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab2ae9bc2f0e9ef8e81eb9b1d71a562bc8c1f2bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.617ex; height:2.009ex;" alt="{\displaystyle g\cdot g=e_{G}}"></span> v grupě <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span> je ekvivalentní vlastnosti <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a(g)*a(g)=e_{H}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo>&#x2217;<!-- ∗ --></mo> <mi>a</mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>H</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a(g)*a(g)=e_{H}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bd5e83769b554b26aeed1db7a45e562522dc80a8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.378ex; height:2.843ex;" alt="{\displaystyle a(g)*a(g)=e_{H}}"></span> v&#160;grupě <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75a9edddcca2f782014371f75dca39d7e13a9c1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle H}"></span>. </p><p>Izomorfismus <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G\to G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G\to G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/17f4a9c67f1896ed706ac35c5e143d0726945ec9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.268ex; height:2.176ex;" alt="{\displaystyle G\to G}"></span> se nazývá <a href="/wiki/Automorfismus" class="mw-redirect" title="Automorfismus">automorfismus</a>. Každý prvek <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g\in G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g\in G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b1be73903416a0dd94b8cbc2268ce480810c0e62" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.783ex; height:2.509ex;" alt="{\displaystyle g\in G}"></span> určuje <b>vnitřní automorfismus</b> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=g^{-1}\cdot x\cdot g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>x</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=g^{-1}\cdot x\cdot g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4ee94d3ae3551f6f7cc1747859e056befab47075" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.771ex; height:3.176ex;" alt="{\displaystyle f(x)=g^{-1}\cdot x\cdot g}"></span>. Automorfismus, který není vnitřní, se&#160;nazývá <b>vnější</b>. </p> <div class="mw-heading mw-heading3"><h3 id="Rozkladové_třídy"><span id="Rozkladov.C3.A9_t.C5.99.C3.ADdy"></span>Rozkladové třídy</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Grupa&amp;veaction=edit&amp;section=13" title="Editace sekce: Rozkladové třídy" class="mw-editsection-visualeditor"><span>editovat</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Grupa&amp;action=edit&amp;section=13" title="Editovat zdrojový kód sekce Rozkladové třídy"><span>editovat zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>V&#160;mnohých situacích je užitečné považovat dva prvky grupy za <a href="/wiki/Ekvivalence_(matematika)" title="Ekvivalence (matematika)">ekvivalentní</a>, pokud se liší jenom o&#160;násobek nějaké dané podgrupy. Uvažujme například grupu D<sub>4</sub> popsanou výše a&#160;její podgrupu <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R=\{id,r_{1},r_{2},r_{3}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>i</mi> <mi>d</mi> <mo>,</mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R=\{id,r_{1},r_{2},r_{3}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb78415f56955b5b3a0f56c6e18eed3e4e9f78bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.616ex; height:2.843ex;" alt="{\displaystyle R=\{id,r_{1},r_{2},r_{3}\}}"></span>. Pokud uvažujeme nějaké překlopení čtverce (například f<sub>h</sub>), tak žádnou rotací už nemůžeme docílit zpátky konfiguraci <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle id,r_{1},r_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mi>d</mi> <mo>,</mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle id,r_{1},r_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dbfeaca0da068048597d0e17c86e8596692ee99e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.292ex; height:2.509ex;" alt="{\displaystyle id,r_{1},r_{2}}"></span> nebo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r_{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/51fc5930cbb780220b209b444707ad9e2ba82c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.103ex; height:2.009ex;" alt="{\displaystyle r_{3}}"></span>. Složení překlopení a&#160;rotace je vždy překlopení. Rotace tedy nehraje roli, pokud si všímáme jenom, zda bylo nebo nebylo aplikováno nějaké překlopení. </p><p>Rozkladové třídy formalizují tuto ideu. Podgrupa <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75a9edddcca2f782014371f75dca39d7e13a9c1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle H}"></span> grupy <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span> definuje takzvané <i>pravé</i> a&#160;<i>levé rozkladové třídy</i> takto:<sup id="cite_ref-42" class="reference"><a href="#cite_note-42"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle gH=\{g\cdot h;\,h\in H\}\quad {\text{a}}\quad Hg=\{h\cdot g;\,h\in H\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mi>H</mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>g</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>h</mi> <mo>;</mo> <mspace width="thinmathspace" /> <mi>h</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>H</mi> <mo fence="false" stretchy="false">}</mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>a</mtext> </mrow> <mspace width="1em" /> <mi>H</mi> <mi>g</mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>h</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>g</mi> <mo>;</mo> <mspace width="thinmathspace" /> <mi>h</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>H</mi> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle gH=\{g\cdot h;\,h\in H\}\quad {\text{a}}\quad Hg=\{h\cdot g;\,h\in H\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b71d12c8584ea01f03acc8495b88fb37e14a5f84" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:47.257ex; height:2.843ex;" alt="{\displaystyle gH=\{g\cdot h;\,h\in H\}\quad {\text{a}}\quad Hg=\{h\cdot g;\,h\in H\}.}"></span></dd></dl> <p>Rozkladové třídy pro libovolnou podgrupu <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75a9edddcca2f782014371f75dca39d7e13a9c1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle H}"></span> tvoří rozklad <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span> na disjunktní podmnožiny. Přesněji, sjednocení všech levých rozkladových tříd je celé <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span> a&#160;libovolné dvě levé rozkladové třídy se buď rovnají, anebo jsou <a href="/wiki/Disjunktn%C3%AD_mno%C5%BEiny" title="Disjunktní množiny">disjunktní</a>.<sup id="cite_ref-43" class="reference"><a href="#cite_note-43"><span class="cite-bracket">&#91;</span>38<span class="cite-bracket">&#93;</span></a></sup> První případ <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{1}H=g_{2}H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>H</mi> <mo>=</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{1}H=g_{2}H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bdc4c4347ad22a16c2d269173f33bf9efd85f8d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.552ex; height:2.509ex;" alt="{\displaystyle g_{1}H=g_{2}H}"></span> nastává právě když <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{1}^{-1}\cdot g_{2}\in H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{1}^{-1}\cdot g_{2}\in H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/657227f032b674f1d7f4b0265895a0b06721108a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:12.198ex; height:3.343ex;" alt="{\displaystyle g_{1}^{-1}\cdot g_{2}\in H}"></span>, tj.&#160;když se příslušné prvky <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3755e3e04ec295992b2b5331655ef83a500a05c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.163ex; height:2.009ex;" alt="{\displaystyle g_{1}}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0261c34f2ad1e1b5317708b7f98ae13ee70ff1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.163ex; height:2.009ex;" alt="{\displaystyle g_{2}}"></span> liší jenom o&#160;prvek z&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75a9edddcca2f782014371f75dca39d7e13a9c1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle H}"></span>. Analogická tvrzení platí pro pravé rozkladové třídy. </p><p>Pravé a&#160;levé rozkladové třídy mohou být stejné, ale tato rovnost platit nemusí. Pokud se rovnají, tj.&#160;pokud pro všechna <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span> v&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span> platí <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle gH=Hg}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mi>H</mi> <mo>=</mo> <mi>H</mi> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle gH=Hg}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d1dec58109c201c75ce8384c01a1aba2c6fcd03" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.458ex; height:2.509ex;" alt="{\displaystyle gH=Hg}"></span>, pak se podgrupa <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75a9edddcca2f782014371f75dca39d7e13a9c1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle H}"></span> nazývá <a href="/wiki/Norm%C3%A1ln%C3%AD_podgrupa" title="Normální podgrupa">normální</a>. Množina všech levých rozkladových tříd se značí <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G/H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G/H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/21e7e9d6e3072ec8dd48200d755847154ea5d35c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.053ex; height:2.843ex;" alt="{\displaystyle G/H}"></span> a množina všech pravých rozkladových tříd se značí <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H\backslash G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mi class="MJX-variant" mathvariant="normal">&#x2216;<!-- ∖ --></mi> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H\backslash G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e2362b495ce554ce84b546350c23611603f406b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.053ex; height:2.843ex;" alt="{\displaystyle H\backslash G}"></span>. </p><p>V&#160;případě grupy D<sub>4</sub> z&#160;úvodu a&#160;její podgrupy rotací <i>R</i>, levé rozkladové třídy <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle gR}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle gR}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fad2c861c51f57c1a74d5a70fc181a944691b588" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.88ex; height:2.509ex;" alt="{\displaystyle gR}"></span> jsou buď množina <i>R</i> všech rotací (a&#160;identita) pokud <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span> je prvkem <i>R</i>, anebo množina <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F=\{f_{h},f_{v},f_{d},f_{c}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F=\{f_{h},f_{v},f_{d},f_{c}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/07386a981f441436170a0567d4ee31fd2da6b12c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.068ex; height:2.843ex;" alt="{\displaystyle F=\{f_{h},f_{v},f_{d},f_{c}\}}"></span> všech překlopení (zvýrazněna v&#160;tabulce zeleně) pokud <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span> je nějaké překlopení. Levé rozkladové třídy jsou tedy <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{4}/R=\{R,F\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>R</mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>R</mi> <mo>,</mo> <mi>F</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{4}/R=\{R,F\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/21a4b38a40f4423f56709ca99eda5f5aa43c231a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.867ex; height:2.843ex;" alt="{\displaystyle D_{4}/R=\{R,F\}}"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Normální_podgrupa_a_faktorová_grupa"><span id="Norm.C3.A1ln.C3.AD_podgrupa_a_faktorov.C3.A1_grupa"></span>Normální podgrupa a faktorová grupa</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Grupa&amp;veaction=edit&amp;section=14" title="Editace sekce: Normální podgrupa a faktorová grupa" class="mw-editsection-visualeditor"><span>editovat</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Grupa&amp;action=edit&amp;section=14" title="Editovat zdrojový kód sekce Normální podgrupa a faktorová grupa"><span>editovat zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="uvodni-upozorneni hatnote"> Podrobnější informace naleznete v článku&#32;<a href="/wiki/Faktorov%C3%A1_grupa" title="Faktorová grupa">Faktorová grupa</a>.</div> <p>Podgrupa <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span> se nazývá <a href="/wiki/Norm%C3%A1ln%C3%AD_podgrupa" title="Normální podgrupa">normální</a> podgrupou grupy <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span>, pokud pro každé <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g\in G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g\in G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b1be73903416a0dd94b8cbc2268ce480810c0e62" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.783ex; height:2.509ex;" alt="{\displaystyle g\in G}"></span> a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\in N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\in N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aedc99ee9cd35f9c34b0f743f8c26b34359ca2fe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.299ex; height:2.176ex;" alt="{\displaystyle n\in N}"></span> existuje <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n'\in N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>n</mi> <mo>&#x2032;</mo> </msup> <mo>&#x2208;<!-- ∈ --></mo> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n'\in N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e7e963a2cc5ea9706c598f5d5bd7efc12472918" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.984ex; height:2.509ex;" alt="{\displaystyle n&#039;\in N}"></span> takové, že <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g\cdot n=n'\cdot g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>n</mi> <mo>=</mo> <msup> <mi>n</mi> <mo>&#x2032;</mo> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g\cdot n=n'\cdot g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3954f1d1d2a03f70600bcb0ab349124301b91ad3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.163ex; height:2.843ex;" alt="{\displaystyle g\cdot n=n&#039;\cdot g}"></span>, tj.&#160;levé a&#160;pravé rozkladové třídy se pro všechna <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span> rovnají: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle gN=Ng.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mi>N</mi> <mo>=</mo> <mi>N</mi> <mi>g</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle gN=Ng.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/95b481723e2b82b2b93f9b98b5fc69fd6622a61d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.105ex; height:2.509ex;" alt="{\displaystyle gN=Ng.}"></span></dd></dl> <p>Ekvivalentně, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75a9edddcca2f782014371f75dca39d7e13a9c1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle H}"></span> je jádro nějakého homomorfismu grup <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G\to K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G\to K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5a0e0454b247d09e3efe44e83de2f14b319b7f4e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.507ex; height:2.176ex;" alt="{\displaystyle G\to K}"></span>.<sup id="cite_ref-44" class="reference"><a href="#cite_note-44"><span class="cite-bracket">&#91;</span>39<span class="cite-bracket">&#93;</span></a></sup> Každá podgrupa Abelovy grupy je normální. </p><p>Pokud <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span> je <a href="/wiki/Norm%C3%A1ln%C3%AD_podgrupa" title="Normální podgrupa">normální podgrupa</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span>, je možné zavést na množině rozkladových tříd <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G/N=\{gN,g\in G\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>N</mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>g</mi> <mi>N</mi> <mo>,</mo> <mi>g</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>G</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G/N=\{gN,g\in G\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dff35b111ea71a95a3dccc27f52375a32f053eb2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.473ex; height:2.843ex;" alt="{\displaystyle G/N=\{gN,g\in G\}}"></span> strukturu grupy.<sup id="cite_ref-45" class="reference"><a href="#cite_note-45"><span class="cite-bracket">&#91;</span>40<span class="cite-bracket">&#93;</span></a></sup> Grupová operace na množině <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G/N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G/N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab52bff253c690c4e0d473400ab8c365ea019298" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.053ex; height:2.843ex;" alt="{\displaystyle G/N}"></span> je definována vztahem <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (gN)\cdot (hN):=(gh)N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>g</mi> <mi>N</mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mi>h</mi> <mi>N</mi> <mo stretchy="false">)</mo> <mo>:=</mo> <mo stretchy="false">(</mo> <mi>g</mi> <mi>h</mi> <mo stretchy="false">)</mo> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (gN)\cdot (hN):=(gh)N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ddc1d07d2469af711ceb48724d82beb463a6fcae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.953ex; height:2.843ex;" alt="{\displaystyle (gN)\cdot (hN):=(gh)N}"></span> pro všechny <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g,h\in G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>,</mo> <mi>h</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g,h\in G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23eaf33f751fae514c9b3e99dfb98a7718241dda" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.156ex; height:2.509ex;" alt="{\displaystyle g,h\in G}"></span>. Tato grupa se nazývá faktorgrupa. Rozkladová třída <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle eN=N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>e</mi> <mi>N</mi> <mo>=</mo> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle eN=N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/392c569f369e3f2b35d06ff6822f18189a7da05d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.309ex; height:2.176ex;" alt="{\displaystyle eN=N}"></span> je neutrální prvek této grupy a inverze k&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle gN}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle gN}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd554e0bd9bf40da2dac81a62a5c954d56d3aa74" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.18ex; height:2.509ex;" alt="{\displaystyle gN}"></span> je třída <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (gN)^{-1}=g^{-1}N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>g</mi> <mi>N</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (gN)^{-1}=g^{-1}N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a96f7a1f3f1f2b2de5eeb1a367c6ca4e6bbd027f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.935ex; height:3.176ex;" alt="{\displaystyle (gN)^{-1}=g^{-1}N}"></span>. Z&#160;toho vidíme, že zobrazení <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G\to G/N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G\to G/N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c203e099a7f440cb370e1f0714c364473178a17c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.494ex; height:2.843ex;" alt="{\displaystyle G\to G/N}"></span>, které prvku <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span> přiřadí jeho rozkladovou třídu <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle gN}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle gN}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd554e0bd9bf40da2dac81a62a5c954d56d3aa74" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.18ex; height:2.509ex;" alt="{\displaystyle gN}"></span> je homomorfismus grup.<sup id="cite_ref-46" class="reference"><a href="#cite_note-46"><span class="cite-bracket">&#91;</span>41<span class="cite-bracket">&#93;</span></a></sup> </p> <table class="wikitable" border="1" style="float:right; text-align:center; margin:.5em 0 .5em 1em;"> <tbody><tr> <th width="30px">• </th> <th width="33%">R </th> <th width="33%">F </th></tr> <tr> <th><i>R</i> </th> <td><i>R</i></td> <td><i>F</i> </td></tr> <tr> <th><i>F</i> </th> <td><i>F</i></td> <td><i>R</i> </td></tr> <tr> <td colspan="3" style="text-align:left">Tabulka násobení ve faktorové grupě <span style="white-space:nowrap">D<sub>4</sub> / <i>R</i></span>. </td></tr></tbody></table> <p>V&#160;příkladu grupy D<sub>4</sub> je její podgrupa <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R=\{id,r_{1},r_{2},r_{3}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>i</mi> <mi>d</mi> <mo>,</mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R=\{id,r_{1},r_{2},r_{3}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb78415f56955b5b3a0f56c6e18eed3e4e9f78bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.616ex; height:2.843ex;" alt="{\displaystyle R=\{id,r_{1},r_{2},r_{3}\}}"></span> normální a rozkladové třídy jsou <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{R,F\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>R</mi> <mo>,</mo> <mi>F</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{R,F\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1d25ff25be6962f91cc762c84f684c3cc0c7d86b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.864ex; height:2.843ex;" alt="{\displaystyle \{R,F\}}"></span>, kde <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span> je množina všech překlopení. </p><p>Grupová operace na faktorové grupě je znázorněna tabulkou vpravo. Například <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F\cdot F=f_{v}R\cdot f_{v}R=(f_{v}\cdot f_{v})R=idR=R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>F</mi> <mo>=</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> </mrow> </msub> <mi>R</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> </mrow> </msub> <mi>R</mi> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mi>R</mi> <mo>=</mo> <mi>i</mi> <mi>d</mi> <mi>R</mi> <mo>=</mo> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F\cdot F=f_{v}R\cdot f_{v}R=(f_{v}\cdot f_{v})R=idR=R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/affd76443f3990ec3688249c805f9167c2637ac7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:42.236ex; height:2.843ex;" alt="{\displaystyle F\cdot F=f_{v}R\cdot f_{v}R=(f_{v}\cdot f_{v})R=idR=R}"></span>. </p><p>Podgrupa <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span> je <a href="/wiki/Abelova_grupa" title="Abelova grupa">Abelova</a>, a faktorová grupa <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{4}/R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{4}/R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bd8673d3d87d30da9e2b75dab9d4bb823fc45711" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.905ex; height:2.843ex;" alt="{\displaystyle D_{4}/R}"></span> je také Abelova, zatímco D<sub>4</sub> není Abelova. </p> <div class="mw-heading mw-heading3"><h3 id="Jednoduchá_a_polojednoduchá_grupa"><span id="Jednoduch.C3.A1_a_polojednoduch.C3.A1_grupa"></span>Jednoduchá a polojednoduchá grupa</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Grupa&amp;veaction=edit&amp;section=15" title="Editace sekce: Jednoduchá a polojednoduchá grupa" class="mw-editsection-visualeditor"><span>editovat</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Grupa&amp;action=edit&amp;section=15" title="Editovat zdrojový kód sekce Jednoduchá a polojednoduchá grupa"><span>editovat zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Pokud grupa neobsahuje žádné vlastní <a href="/wiki/Norm%C3%A1ln%C3%AD_podgrupa" title="Normální podgrupa">normální podgrupy</a>, je označována jako <i>jednoduchá grupa</i> (někdy se též používá <i>prostá grupa</i>). Pokud grupa neobsahuje žádné vlastní normální <a href="/wiki/Abelova_grupa" title="Abelova grupa">Abelovy</a> podgrupy, pak je označována jako <i>polojednoduchá grupa</i> (také <i>poloprostá grupa</i>). </p><p>U&#160;<a href="/wiki/Lieova_grupa" title="Lieova grupa">Lieových grup</a> se definuje jednoduchá Lieova grupa jako taková, která neobsahuje žádné vlastní normální podgrupy kromě diskrétních.<sup id="cite_ref-47" class="reference"><a href="#cite_note-47"><span class="cite-bracket">&#91;</span>42<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-48" class="reference"><a href="#cite_note-48"><span class="cite-bracket">&#91;</span>pozn 6<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Generování_a_prezentace_grupy"><span id="Generov.C3.A1n.C3.AD_a_prezentace_grupy"></span>Generování a prezentace grupy</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Grupa&amp;veaction=edit&amp;section=16" title="Editace sekce: Generování a prezentace grupy" class="mw-editsection-visualeditor"><span>editovat</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Grupa&amp;action=edit&amp;section=16" title="Editovat zdrojový kód sekce Generování a prezentace grupy"><span>editovat zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Faktorové grupy a&#160;podgrupy tvoří spolu způsob, kterým je možné každou grupu popsat její <i>prezentací</i>. Každou grupu je možné zadat jako faktor <a href="/w/index.php?title=Voln%C3%A1_grupa&amp;action=edit&amp;redlink=1" class="new" title="Volná grupa (stránka neexistuje)">volné grupy</a> nad nějakou <i>generující množinou</i> podle normální podgrupy generovanou <i>relacemi</i>.<sup id="cite_ref-49" class="reference"><a href="#cite_note-49"><span class="cite-bracket">&#91;</span>43<span class="cite-bracket">&#93;</span></a></sup> Relace jsou výrazy, které se v&#160;grupě rovnají neutrálnímu prvku. Grupa zadána generátory a&#160;relacemi se zapisuje jako <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle Gen|Rel\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>G</mi> <mi>e</mi> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>R</mi> <mi>e</mi> <mi>l</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle Gen|Rel\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d53e08d057201713202eef85f4b1ebb216c94b11" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.302ex; height:2.843ex;" alt="{\displaystyle \langle Gen|Rel\rangle }"></span>, kde <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Gen}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mi>e</mi> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Gen}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f40eaa719fbe0a46b120923e7a5f84526a0df7c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.305ex; height:2.176ex;" alt="{\displaystyle Gen}"></span> je množina generátorů a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Rel}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mi>e</mi> <mi>l</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Rel}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e3c8d33622b321d4f18c8b8b78457571fa84b97d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.541ex; height:2.176ex;" alt="{\displaystyle Rel}"></span> množina relací.<sup id="cite_ref-50" class="reference"><a href="#cite_note-50"><span class="cite-bracket">&#91;</span>44<span class="cite-bracket">&#93;</span></a></sup> </p><p>Dihedrální grupa D<sub>4</sub> je generována například prvky <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea214f2b31fb3869344bb9311da41c5cc38a99e1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.103ex; height:2.009ex;" alt="{\displaystyle r_{1}}"></span> a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{v}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{v}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9255f21ea6fe8035150b7379314de6ded7adfe22" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.169ex; height:2.509ex;" alt="{\displaystyle f_{v}}"></span>, což znamená že každá symetrie čtverce se dá vyjádřit jako složení konečně mnoha těchto dvou symetrií a&#160;jejich inverzí. Společně s&#160;relacemi <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{1}^{4}=f_{v}^{2}=(r_{1}\cdot f_{v})^{2}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r_{1}^{4}=f_{v}^{2}=(r_{1}\cdot f_{v})^{2}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81736af74a26b7c13cae2a3532c8e57886fd3d9c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:23.75ex; height:3.343ex;" alt="{\displaystyle r_{1}^{4}=f_{v}^{2}=(r_{1}\cdot f_{v})^{2}=1}"></span>,<sup id="cite_ref-51" class="reference"><a href="#cite_note-51"><span class="cite-bracket">&#91;</span>45<span class="cite-bracket">&#93;</span></a></sup> je grupa úplně popsána. Tedy </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{4}=\langle r_{1},f_{v}|r_{1}^{4},\,f_{v}^{2},\,(r_{1}\cdot f_{v})^{2}\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo>=</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msubsup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msubsup> <mo>,</mo> <mspace width="thinmathspace" /> <msubsup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>,</mo> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{4}=\langle r_{1},f_{v}|r_{1}^{4},\,f_{v}^{2},\,(r_{1}\cdot f_{v})^{2}\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/008dcff7b0d234e00188dafa0a6c37cea033dc7f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:29.973ex; height:3.343ex;" alt="{\displaystyle D_{4}=\langle r_{1},f_{v}|r_{1}^{4},\,f_{v}^{2},\,(r_{1}\cdot f_{v})^{2}\rangle }"></span>.</dd></dl> <p>Prezentace grupy se dá použít pro konstrukci <a href="/wiki/Cayleyho_graf" title="Cayleyho graf">Cayleyho grafu</a>, který může graficky popsat diskrétní grupy. </p> <div class="mw-heading mw-heading3"><h3 id="Řešitelná_grupa"><span id=".C5.98e.C5.A1iteln.C3.A1_grupa"></span>Řešitelná grupa</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Grupa&amp;veaction=edit&amp;section=17" title="Editace sekce: Řešitelná grupa" class="mw-editsection-visualeditor"><span>editovat</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Grupa&amp;action=edit&amp;section=17" title="Editovat zdrojový kód sekce Řešitelná grupa"><span>editovat zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Grupa <i>G</i> se nazývá <i>řešitelná</i>, pokud existuje posloupnost jejich podgrup </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G=G_{0}\supset G_{1}\supset G_{2}\supset \ldots \supset G_{n}=\{e\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo>=</mo> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&#x2283;<!-- ⊃ --></mo> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2283;<!-- ⊃ --></mo> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2283;<!-- ⊃ --></mo> <mo>&#x2026;<!-- … --></mo> <mo>&#x2283;<!-- ⊃ --></mo> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>e</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G=G_{0}\supset G_{1}\supset G_{2}\supset \ldots \supset G_{n}=\{e\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ccbcc037ae616c19f6d36d2f16d3f8babfa3a0e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:38.237ex; height:2.843ex;" alt="{\displaystyle G=G_{0}\supset G_{1}\supset G_{2}\supset \ldots \supset G_{n}=\{e\}}"></span></dd></dl> <p>takových, že <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{i+1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G_{i+1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5b72d7e0a7989e01801761ca43e752eda9bb2cc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.727ex; height:2.509ex;" alt="{\displaystyle G_{i+1}}"></span> je <a href="/wiki/Norm%C3%A1ln%C3%AD_podgrupa" title="Normální podgrupa">normální podgrupa</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0dd9fe8d455762608cc4e0a946b452492790ee5f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.626ex; height:2.509ex;" alt="{\displaystyle G_{i}}"></span> a&#160;<a href="/wiki/Faktorov%C3%A1_grupa" title="Faktorová grupa">faktorová grupa</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{i}/G_{i+1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G_{i}/G_{i+1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/276106260da597a5b5369294ed98a6492d175050" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.516ex; height:2.843ex;" alt="{\displaystyle G_{i}/G_{i+1}}"></span> je Abelova pro všechna <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span>, přičemž poslední grupa <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f74402fbd65c1683d50670c7ecddc180b66fec1c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.045ex; height:2.509ex;" alt="{\displaystyle G_{n}}"></span> je grupa triviální.<sup id="cite_ref-52" class="reference"><a href="#cite_note-52"><span class="cite-bracket">&#91;</span>46<span class="cite-bracket">&#93;</span></a></sup> </p><p>Například výše diskutovaná grupa D<sub>4</sub> je řešitelná, neboť obsahuje komutativní podgrupu <i>R</i> a faktor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{4}/R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{4}/R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bd8673d3d87d30da9e2b75dab9d4bb823fc45711" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.905ex; height:2.843ex;" alt="{\displaystyle D_{4}/R}"></span> je komutativní. Nejmenší grupa, která není řešitelná, je <a href="/wiki/Alternuj%C3%ADc%C3%AD_grupa" title="Alternující grupa">alternující grupa</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{5}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{5}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e213bbb69691c65e1391fe16cd79a0029471446" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.797ex; height:2.509ex;" alt="{\displaystyle A_{5}}"></span>, která má <i>60</i> prvků.<sup id="cite_ref-53" class="reference"><a href="#cite_note-53"><span class="cite-bracket">&#91;</span>47<span class="cite-bracket">&#93;</span></a></sup> </p><p>Slovo <i>řešitelná</i> má historickou souvislost se&#160;zkoumáním existence řešení polynomiálních rovnic pomocí radikálů v rámci <a href="/wiki/Galoisova_teorie" title="Galoisova teorie">Galoisovy teorie</a>. <a href="/wiki/%C3%89variste_Galois" title="Évariste Galois">Galois</a> ukázal, že takové řešení existuje právě tehdy, když má grupa symetrií kořenů polynomu (tzv. <a href="/wiki/Galoisova_grupa" title="Galoisova grupa">Galoisova grupa</a>) výše uvedenou vlastnost.<sup id="cite_ref-54" class="reference"><a href="#cite_note-54"><span class="cite-bracket">&#91;</span>48<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Příklady_a_aplikace"><span id="P.C5.99.C3.ADklady_a_aplikace"></span>Příklady a aplikace</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Grupa&amp;veaction=edit&amp;section=18" title="Editace sekce: Příklady a aplikace" class="mw-editsection-visualeditor"><span>editovat</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Grupa&amp;action=edit&amp;section=18" title="Editovat zdrojový kód sekce Příklady a aplikace"><span>editovat zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Čísla"><span id=".C4.8C.C3.ADsla"></span>Čísla</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Grupa&amp;veaction=edit&amp;section=19" title="Editace sekce: Čísla" class="mw-editsection-visualeditor"><span>editovat</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Grupa&amp;action=edit&amp;section=19" title="Editovat zdrojový kód sekce Čísla"><span>editovat zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="uvodni-upozorneni hatnote">Související informace naleznete také v článcích&#32;<a href="/wiki/T%C4%9Bleso_(algebra)" title="Těleso (algebra)">Těleso (algebra)</a>&#32;a <a href="/wiki/Modul%C3%A1rn%C3%AD_aritmetika" title="Modulární aritmetika">Modulární aritmetika</a>.</div> <p>Mnohé systémy <a href="/wiki/%C4%8C%C3%ADslo" title="Číslo">čísel</a>, například <a href="/wiki/Cel%C3%A9_%C4%8D%C3%ADslo" title="Celé číslo">celá</a> nebo <a href="/wiki/Racion%C3%A1ln%C3%AD_%C4%8D%C3%ADslo" title="Racionální číslo">racionální</a> čísla mají přirozenou strukturu grupy. V&#160;některých případech, jako například u&#160;racionálních čísel, má jak <a href="/wiki/S%C4%8D%C3%ADt%C3%A1n%C3%AD" title="Sčítání">sčítání</a> tak i&#160;<a href="/wiki/N%C3%A1soben%C3%AD" title="Násobení">násobení</a> grupovou strukturu. Takové číselné systémy se dají zobecnit na <a href="/wiki/Algebraick%C3%A1_struktura" title="Algebraická struktura">algebraické struktury</a> jako jsou <a href="/wiki/Okruh_(algebra)" title="Okruh (algebra)">okruhy</a>, <a href="/wiki/T%C4%9Bleso_(algebra)" title="Těleso (algebra)">tělesa</a>, <a href="/wiki/Modul_(matematika)" title="Modul (matematika)">moduly</a>, <a href="/wiki/Vektorov%C3%BD_prostor" title="Vektorový prostor">vektorové prostory</a> a <a href="/wiki/Algebra_(struktura)" title="Algebra (struktura)">algebry</a>. </p><p>Grupa celých čísel spolu se sčítáním <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\mathbb {Z} ,+)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mo>,</mo> <mo>+</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\mathbb {Z} ,+)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/910eaae0a8267ccb04d4846f6a28f02ce6ab8ac9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.202ex; height:2.843ex;" alt="{\displaystyle (\mathbb {Z} ,+)}"></span> byla popsána výše. Naproti tomu celá čísla s&#160;operací <a href="/wiki/N%C3%A1soben%C3%AD" title="Násobení">násobení</a> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} ,\cdot }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mo>,</mo> <mo>&#x22C5;<!-- ⋅ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} ,\cdot }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29751408e68994e6583089bad6ca82b246547c72" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.231ex; height:2.509ex;" alt="{\displaystyle \mathbb {Z} ,\cdot }"></span>) netvoří grupu. Asociativita je splněna, jednotkový prvek je číslo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"></span>, ale k&#160;číslům obecně neexistují inverzní prvky (už pro celé číslo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a=2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>=</mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a=2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4208bf5a67fc2ceb3a3bcd75aebb1d74fbb531bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.491ex; height:2.176ex;" alt="{\displaystyle a=2}"></span> rovnice <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ax=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mi>x</mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ax=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc3570e5a911900f1a9cc990737bafd321f3fd48" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.82ex; height:2.176ex;" alt="{\displaystyle ax=1}"></span> nemá řešení <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> v&#160;oboru celých čísel). </p><p>Pokud chceme, aby k&#160;nenulovým číslům existovaly inverzní prvky, musíme zavést <a href="/wiki/Zlomek" title="Zlomek">zlomky</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a/b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a/b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4a1b6c014398323cb45578581a536033fce1b28c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.39ex; height:2.843ex;" alt="{\displaystyle a/b}"></span>. Zlomky celých čísel se nazývají <a href="/wiki/Racion%C3%A1ln%C3%AD_%C4%8D%C3%ADslo" title="Racionální číslo">racionální čísla</a> a&#160;množina racionálních čísel se značí <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Q} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Q} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5909f0b54e4718fa24d5fd34d54189d24a66e9a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.808ex; height:2.509ex;" alt="{\displaystyle \mathbb {Q} }"></span>. Množina nenulových racionálních čísel spolu s&#160;operací násobení <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\mathbb {Q} \backslash \{0\},\cdot )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> <mi class="MJX-variant" mathvariant="normal">&#x2216;<!-- ∖ --></mi> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo fence="false" stretchy="false">}</mo> <mo>,</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\mathbb {Q} \backslash \{0\},\cdot )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d88ccdfb6f5c368adf38e986477e57cb55f5b66a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.948ex; height:2.843ex;" alt="{\displaystyle (\mathbb {Q} \backslash \{0\},\cdot )}"></span> je opět grupa. Součin dvou nenulových racionálních čísel je nenulové racionální číslo, neutrální prvek je <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"></span> a&#160;inverzní prvek k&#160;nenulovému číslu <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a/b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a/b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4a1b6c014398323cb45578581a536033fce1b28c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.39ex; height:2.843ex;" alt="{\displaystyle a/b}"></span> je nenulové číslo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b/a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b/a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0e0082708c4a962619f1b493a22dc776b5fbab62" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.39ex; height:2.843ex;" alt="{\displaystyle b/a}"></span>. Racionální čísla (s&#160;nulou) tvoří také grupu vzhledem ke&#160;sčítání. </p><p>Obecněji, množina všech prvků <a href="/wiki/T%C4%9Bleso_(algebra)" title="Těleso (algebra)">tělesa</a> tvoří vždy grupu vzhledem ke sčítání a&#160;množina všech <i>nenulových</i> prvků tělesa tvoří grupu vzhledem k&#160;násobení. </p> <table class="wikitable" border="1" style="float:right; text-align:center; margin:.5em 0 .5em 1em;"> <tbody><tr> <td>• </td> <td><b>1</b> </td> <td><b>2</b> </td> <td><b>3</b> </td> <td><b>4</b> </td></tr> <tr> <td><b>1</b> </td> <td><i>1</i> </td> <td><i>2</i> </td> <td><i>3</i> </td> <td><i>4</i> </td></tr> <tr> <td><b>2</b> </td> <td><i>2</i> </td> <td><i>4</i> </td> <td><i>1</i> </td> <td><i>3</i> </td></tr> <tr> <td><b>3</b> </td> <td><i>3</i> </td> <td><i>1</i> </td> <td><i>4</i> </td> <td><i>2</i> </td></tr> <tr> <td><b>4</b> </td> <td><i>4</i> </td> <td><i>3</i> </td> <td><i>2</i> </td> <td><i>1</i> </td></tr> <tr> <td colspan="5" style="text-align:left">Tabulka násobení v&#160;multiplikativní grupě <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} _{5}\backslash \{0\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> <mi class="MJX-variant" mathvariant="normal">&#x2216;<!-- ∖ --></mi> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} _{5}\backslash \{0\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7f61687fb06c9a4770527abe9266aa5f0189a597" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.254ex; height:2.843ex;" alt="{\displaystyle \mathbb {Z} _{5}\backslash \{0\}}"></span>. </td></tr></tbody></table> <p>Pro libovolné <a href="/wiki/Prvo%C4%8D%C3%ADslo" title="Prvočíslo">prvočíslo</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> můžeme <a href="/wiki/Modul%C3%A1rn%C3%AD_aritmetika" title="Modulární aritmetika">modulární aritmetikou</a> zavést na <a href="/wiki/Mno%C5%BEina_zbytkov%C3%BDch_t%C5%99%C3%ADd" class="mw-redirect" title="Množina zbytkových tříd">množině zbytkových tříd</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} _{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} _{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dbc1df7227ef11fe88dccd2dae3adc7bbdeae5f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.609ex; height:2.843ex;" alt="{\displaystyle \mathbb {Z} _{p}}"></span> násobení a&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\mathbb {Z} _{p}\backslash \{0\},\cdot )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mi class="MJX-variant" mathvariant="normal">&#x2216;<!-- ∖ --></mi> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo fence="false" stretchy="false">}</mo> <mo>,</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\mathbb {Z} _{p}\backslash \{0\},\cdot )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bbdc3417d629b6e319552794db606fb57c0b954f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:10.749ex; height:3.009ex;" alt="{\displaystyle (\mathbb {Z} _{p}\backslash \{0\},\cdot )}"></span> je pak grupa.<sup id="cite_ref-55" class="reference"><a href="#cite_note-55"><span class="cite-bracket">&#91;</span>49<span class="cite-bracket">&#93;</span></a></sup> Její prvky se dají reprezentovat jako <a href="/wiki/T%C5%99%C3%ADda_ekvivalence" class="mw-redirect" title="Třída ekvivalence">třídy ekvivalence</a> celých čísel s&#160;ekvivalencí <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\sim m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&#x223C;<!-- ∼ --></mo> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\sim m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c18accd891a86e2944c005519c07a55a72c636a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.534ex; height:1.676ex;" alt="{\displaystyle n\sim m}"></span> <a href="/wiki/Ekvivalence_(logika)" title="Ekvivalence (logika)">právě když</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> <a href="/wiki/D%C4%9Blitelnost#Obecně" title="Dělitelnost">dělí</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m-n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m-n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/767c4b0c3cbd063f836169c2db77f5ffd833d136" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.276ex; height:2.176ex;" alt="{\displaystyle m-n}"></span>. Množina zbytkových tříd spolu se&#160;sčítáním a&#160;násobením <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\mathbb {Z} _{p},+,\cdot )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>,</mo> <mo>+</mo> <mo>,</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\mathbb {Z} _{p},+,\cdot )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f4f0508d0903999a2041a789b3563d5050b71f7d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:8.942ex; height:3.009ex;" alt="{\displaystyle (\mathbb {Z} _{p},+,\cdot )}"></span> je speciálním případem <a href="/wiki/Galoisovo_t%C4%9Bleso" class="mw-redirect" title="Galoisovo těleso">konečného tělesa</a>.<sup id="cite_ref-56" class="reference"><a href="#cite_note-56"><span class="cite-bracket">&#91;</span>50<span class="cite-bracket">&#93;</span></a></sup> Dá se ukázat, že každá multiplikativní grupa nenulových prvků konečného tělesa je cyklická.<sup id="cite_ref-57" class="reference"><a href="#cite_note-57"><span class="cite-bracket">&#91;</span>51<span class="cite-bracket">&#93;</span></a></sup> Tyto grupy se používají v&#160;<a href="/wiki/Asymetrick%C3%A1_kryptografie" title="Asymetrická kryptografie">asymetrické kryptografii</a>. </p><p>Tabulka vpravo znázorňuje multiplikativní grupu nenulových zbytkových tříd modulo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 5}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>5</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 5}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29483407999b8763f0ea335cf715a6a5e809f44b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 5}"></span>. Rovnost <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3\cdot 2=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>2</mn> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3\cdot 2=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/850a93429f7a3de47343dfcb2a7cca58b61fffd6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.265ex; height:2.176ex;" alt="{\displaystyle 3\cdot 2=1}"></span> například znázorňuje fakt, že <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3\cdot 2\,{\rm {{mod}\,5=6\,{\rm {{mod}\,5=1}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>2</mn> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">m</mi> <mi mathvariant="normal">o</mi> <mi mathvariant="normal">d</mi> </mrow> <mspace width="thinmathspace" /> <mn>5</mn> <mo>=</mo> <mn>6</mn> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">m</mi> <mi mathvariant="normal">o</mi> <mi mathvariant="normal">d</mi> </mrow> <mspace width="thinmathspace" /> <mn>5</mn> <mo>=</mo> <mn>1</mn> </mrow> </mrow> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3\cdot 2\,{\rm {{mod}\,5=6\,{\rm {{mod}\,5=1}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f1d6313c287ea06e52886fa1accf199126bafa3c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:25.181ex; height:2.176ex;" alt="{\displaystyle 3\cdot 2\,{\rm {{mod}\,5=6\,{\rm {{mod}\,5=1}}}}}"></span>. Vidíme, že každý prvek má inverzní prvek (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{-1}=3,\,4^{-1}=4}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mspace width="thinmathspace" /> <msup> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <mn>4</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{-1}=3,\,4^{-1}=4}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e7d691f009ad41b9b9ef5139c059c32769a2ea3c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:16.933ex; height:3.009ex;" alt="{\displaystyle 2^{-1}=3,\,4^{-1}=4}"></span>) a&#160;grupa je cyklická (například prvek <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/901fc910c19990d0dbaaefe4726ceb1a4e217a0f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 2}"></span> generuje celou grupu, neboť <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{1}=2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo>=</mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{1}=2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1a8fa6b2a667bd0f236b70179dbf1fbc9a0accb1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.478ex; height:2.676ex;" alt="{\displaystyle 2^{1}=2}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{2}=4}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mn>4</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{2}=4}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/544566e539538b9b5d5f9106712550b2c80da685" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.478ex; height:2.676ex;" alt="{\displaystyle 2^{2}=4}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{3}=3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>=</mo> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{3}=3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/08c2fe669666793c18ea2663f961a8ce0d216471" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.478ex; height:2.676ex;" alt="{\displaystyle 2^{3}=3}"></span> a&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{4}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{4}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f1be41e1856cb54476aac00bd26562d15b068a95" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.478ex; height:2.676ex;" alt="{\displaystyle 2^{4}=1}"></span>). </p><p>Další grupy tvořené čísly popisují následující příklady. </p> <ul><li>Množina <a href="/wiki/Gaussovo_%C4%8D%C3%ADslo" class="mw-redirect" title="Gaussovo číslo">Gaussových čísel</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\mathbb {Z} [i],+)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mo stretchy="false">[</mo> <mi>i</mi> <mo stretchy="false">]</mo> <mo>,</mo> <mo>+</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\mathbb {Z} [i],+)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc8944d62bceb25176fcafb1b6c91a0d74d7c3b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.298ex; height:2.843ex;" alt="{\displaystyle (\mathbb {Z} [i],+)}"></span>, zobecňuje celá čísla do komplexní roviny.</li> <li>Množina invertibilních prvků v&#160;obecné množině zbytkových tříd <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} _{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} _{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b729c334a9863c47f0b7e3ad61342c2f0881bdb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.769ex; height:2.509ex;" alt="{\displaystyle \mathbb {Z} _{n}}"></span> tvoří vzhledem k&#160;násobení grupu (viz též <a href="/wiki/Grupa_jednotek" title="Grupa jednotek">grupa jednotek</a>).</li> <li>Množina komplexních čísel <a href="/wiki/Absolutn%C3%AD_hodnota#Absolutn.C3.AD_hodnota_komplexn.C3.ADch_.C4.8D.C3.ADsel" title="Absolutní hodnota">absolutní hodnoty</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"></span> spolu s&#160;násobením tvoří grupu (značí se <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S^{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S^{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/60796c8d0c03cf575637d3202463b214d9635880" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.576ex; height:2.676ex;" alt="{\displaystyle S^{1}}"></span>).</li> <li>Množina <a href="/wiki/Kvaternion" title="Kvaternion">kvaternionů</a> <a href="/wiki/Norma_(matematika)" title="Norma (matematika)">normy</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"></span> spolu s&#160;násobením tvoří grupu (značí se <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01e57c690f890937838c10ba57853ff21bf30ec8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.576ex; height:2.676ex;" alt="{\displaystyle S^{3}}"></span>).</li> <li><a href="/wiki/Kvaternionov%C3%A1_grupa" title="Kvaternionová grupa">Kvaternionová grupa</a> je podgrupa o&#160;osmi prvcích, generována prvky <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{1,i,j,k\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mn>1</mn> <mo>,</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>,</mo> <mi>k</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{1,i,j,k\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/42b2607d006b423182b9a09036dc0bae5fca7450" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.561ex; height:2.843ex;" alt="{\displaystyle \{1,i,j,k\}}"></span> v&#160;grupě nenulových kvaternionů.</li></ul> <div class="mw-heading mw-heading3"><h3 id="Grupy_symetrií"><span id="Grupy_symetri.C3.AD"></span>Grupy symetrií</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Grupa&amp;veaction=edit&amp;section=20" title="Editace sekce: Grupy symetrií" class="mw-editsection-visualeditor"><span>editovat</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Grupa&amp;action=edit&amp;section=20" title="Editovat zdrojový kód sekce Grupy symetrií"><span>editovat zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/Soubor:Wallpaper_group-cm-6.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8d/Wallpaper_group-cm-6.jpg/200px-Wallpaper_group-cm-6.jpg" decoding="async" width="200" height="227" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8d/Wallpaper_group-cm-6.jpg/300px-Wallpaper_group-cm-6.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8d/Wallpaper_group-cm-6.jpg/400px-Wallpaper_group-cm-6.jpg 2x" data-file-width="1132" data-file-height="1282" /></a><figcaption>Periodický vzor zadává jistou grupu symetrií <a href="/wiki/Rovina" title="Rovina">roviny</a>.</figcaption></figure> <p><i>Grupa symetrií</i> je grupa, jejíž prvky jsou <a href="/wiki/Symetrie" title="Symetrie">symetrie</a> daného matematického objektu, ať už <a href="/wiki/Geometrie" title="Geometrie">geometrického</a> (jako grupa symetrií čtverce v úvodu) anebo algebraického, například <a href="/wiki/Ko%C5%99en_(matematika)" title="Kořen (matematika)">kořeny</a> <a href="/wiki/Polynom" title="Polynom">polynomu</a>.<sup id="cite_ref-58" class="reference"><a href="#cite_note-58"><span class="cite-bracket">&#91;</span>52<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Teorie_grup" title="Teorie grup">Teorie grup</a> může být chápana jako studium symetrií. Dá se například dokázat, že každá grupa je grupou symetrie nějakého <a href="/wiki/Graf_(teorie_graf%C5%AF)" title="Graf (teorie grafů)">grafu</a>.<sup id="cite_ref-59" class="reference"><a href="#cite_note-59"><span class="cite-bracket">&#91;</span>53<span class="cite-bracket">&#93;</span></a></sup> Symetrie v matematice často zjednodušuje studium <a href="/wiki/Geometrie" title="Geometrie">geometrických</a>, <a href="/wiki/Matematick%C3%A1_anal%C3%BDza" title="Matematická analýza">analytických</a> anebo <a href="/wiki/Fyzika" title="Fyzika">fyzikálních</a> objektů. O&#160;grupě se říká, že má <a href="/wiki/Akce_grupy_na_mno%C5%BEin%C4%9B" title="Akce grupy na množině">akci</a> na objektu <i>X</i> pokud každý prvek grupy provede s&#160;objektem operaci kompatibilní s&#160;grupovou strukturou. Symetrie objektu je pak podgrupa všech takových prvků, které nechávají <i>X</i> nezměněn. </p> <div class="mw-heading mw-heading4"><h4 id="Symetrie_dláždění_roviny"><span id="Symetrie_dl.C3.A1.C5.BEd.C4.9Bn.C3.AD_roviny"></span>Symetrie dláždění roviny</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Grupa&amp;veaction=edit&amp;section=21" title="Editace sekce: Symetrie dláždění roviny" class="mw-editsection-visualeditor"><span>editovat</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Grupa&amp;action=edit&amp;section=21" title="Editovat zdrojový kód sekce Symetrie dláždění roviny"><span>editovat zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Rovinné krystalografické grupy (anglicky <i>Wallpaper groups</i>) popisují symetrie periodických <a href="/w/index.php?title=Dl%C3%A1%C5%BEd%C4%9Bn%C3%AD&amp;action=edit&amp;redlink=1" class="new" title="Dláždění (stránka neexistuje)">dláždění</a> <a href="/wiki/Rovina" title="Rovina">roviny</a>. V&#160;příkladu na obrázku je vzorek tvořen květinou, která se periodicky opakuje. Grupa symetrií tohoto vzoru obsahuje všechny spojité transformace roviny, které převádějí vzor sám na sebe. Tato grupa se skládá jenom s&#160;<a href="/w/index.php?title=Translace_(sou%C5%99adnice)&amp;action=edit&amp;redlink=1" class="new" title="Translace (souřadnice) (stránka neexistuje)">translací</a> a&#160;neobsahuje žádné <a href="/wiki/Oto%C4%8Den%C3%AD_(geometrie)" class="mw-redirect" title="Otočení (geometrie)">rotace</a> ani <a href="/wiki/Osov%C3%A1_soum%C4%9Brnost" title="Osová souměrnost">zrcadlení</a>. Jiná periodická dláždění (například nekonečný čtverečkový papír) mají grupu symetrií, která obsahuje kromě <a href="/w/index.php?title=Translace_(sou%C5%99adnice)&amp;action=edit&amp;redlink=1" class="new" title="Translace (souřadnice) (stránka neexistuje)">translací</a> roviny i&#160;různé rotace, zrcadlení a&#160;jejich <a href="/wiki/Skl%C3%A1d%C3%A1n%C3%AD_zobrazen%C3%AD" title="Skládání zobrazení">složení</a>. Různých neizomorfních rovinných krystalografických grup existuje celkem 17. Tyto vzory můžeme najít často v&#160;<a href="/wiki/Isl%C3%A1msk%C3%A1_architektura" title="Islámská architektura">islámské architektuře</a>, většina z&#160;nich se vyskytuje například v&#160;paláci <a href="/wiki/Alhambra" title="Alhambra">Alhambra</a>.<sup id="cite_ref-60" class="reference"><a href="#cite_note-60"><span class="cite-bracket">&#91;</span>54<span class="cite-bracket">&#93;</span></a></sup> Důkaz, že rovinných krystalografických grup je právě 17, publikoval poprvé E. Fedorov v&#160;roce 1891.<sup id="cite_ref-61" class="reference"><a href="#cite_note-61"><span class="cite-bracket">&#91;</span>55<span class="cite-bracket">&#93;</span></a></sup> Kromě těchto dláždění roviny existují i&#160;neperiodická dláždění, jejichž grupa symetrií neobsahuje žádnou <a href="/w/index.php?title=Translace_(sou%C5%99adnice)&amp;action=edit&amp;redlink=1" class="new" title="Translace (souřadnice) (stránka neexistuje)">translaci</a>. Příkladem je slavné <a href="/wiki/Penroseovo_dl%C3%A1%C5%BEd%C4%9Bn%C3%AD" title="Penroseovo dláždění">Penroseho pokrytí</a>, což je neperiodické dláždění roviny pomocí konečného počtu typů dlaždiček. Jeho grupa symetrií obsahuje například <a href="/wiki/Oto%C4%8Den%C3%AD_(geometrie)" class="mw-redirect" title="Otočení (geometrie)">otočení</a> o&#160;pětinu kruhu kolem nějakého bodu.<sup id="cite_ref-62" class="reference"><a href="#cite_note-62"><span class="cite-bracket">&#91;</span>56<span class="cite-bracket">&#93;</span></a></sup> </p> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/Soubor:Uniform_tiling_73-t2_colored.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/14/Uniform_tiling_73-t2_colored.png/200px-Uniform_tiling_73-t2_colored.png" decoding="async" width="200" height="199" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/14/Uniform_tiling_73-t2_colored.png/300px-Uniform_tiling_73-t2_colored.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/14/Uniform_tiling_73-t2_colored.png/400px-Uniform_tiling_73-t2_colored.png 2x" data-file-width="935" data-file-height="930" /></a><figcaption>Trojúhelníková grupa (2,3,7) je hyperbolická grupa, která má <a href="/wiki/Akce_grupy_na_mno%C5%BEin%C4%9B" title="Akce grupy na množině">akci</a> na tomto <a href="/w/index.php?title=Dl%C3%A1%C5%BEd%C4%9Bn%C3%AD&amp;action=edit&amp;redlink=1" class="new" title="Dláždění (stránka neexistuje)">dláždění</a> <a href="/wiki/Hyperbolick%C3%A1_geometrie" title="Hyperbolická geometrie">hyperbolické</a> roviny.</figcaption></figure> <p>Podobná periodická dláždění a&#160;jejich grupy symetrií můžeme studovat i&#160;v&#160;<a href="/wiki/Neeukleidovsk%C3%A1_geometrie" title="Neeukleidovská geometrie">neeukleidovských geometriích</a>. Například <a href="/wiki/Hyperbolick%C3%A1_geometrie" title="Hyperbolická geometrie">hyperbolickou rovinu</a> lze pravidelně pokrýt rovnostrannými trojúhelníky takovým způsobem, že každý vrchol je společný 7 trojúhelníkům. Příslušná grupa symetrie je tvořena všemi symetriemi této roviny, které převádějí toto pokrytí samo na sebe. Na obrázku je znázorněno jedno z takových pokrytí. Příslušná grupa se nazývá <i>trojúhelníková grupa (2,3,7)</i>. Pro libovolný vrchol nějakého trojúhelníka pak existuje v dané grupě prvek řádu 7, který „otočí“ rovinu kolem daného bodu o&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1/7}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>7</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1/7}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a4d58e3805ad7764adda51f644ece004afd557c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.487ex; height:2.843ex;" alt="{\displaystyle 1/7}"></span> kruhu takovým způsobem, že převede dláždění samo na sebe. </p> <div class="mw-heading mw-heading4"><h4 id="Symetrie_v_krystalografii">Symetrie v krystalografii</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Grupa&amp;veaction=edit&amp;section=22" title="Editace sekce: Symetrie v krystalografii" class="mw-editsection-visualeditor"><span>editovat</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Grupa&amp;action=edit&amp;section=22" title="Editovat zdrojový kód sekce Symetrie v krystalografii"><span>editovat zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>V&#160;<a href="/wiki/Chemie" title="Chemie">chemických</a> oborech jako <a href="/wiki/Krystalografie" title="Krystalografie">krystalografie</a> popisují <i>prostorová grupa</i> a&#160;<i>bodová grupa</i> <a href="/w/index.php?title=Molekul%C3%A1rn%C3%AD_symetrie&amp;action=edit&amp;redlink=1" class="new" title="Molekulární symetrie (stránka neexistuje)">molekulární symetrie</a> a&#160;symetrie <a href="/wiki/Krystal" title="Krystal">krystalů</a>. Tyto symetrie určují chemické a&#160;fyzikální vlastnosti těchto systémů a&#160;teorie grup v&#160;mnohých případech usnadňuje <a href="/wiki/Kvantov%C3%A1_mechanika" title="Kvantová mechanika">kvantově mechanickou</a> analýzu těchto vlastností.<sup id="cite_ref-63" class="reference"><a href="#cite_note-63"><span class="cite-bracket">&#91;</span>57<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-64" class="reference"><a href="#cite_note-64"><span class="cite-bracket">&#91;</span>58<span class="cite-bracket">&#93;</span></a></sup> Například teorie grup ukazuje, že některé přechody mezi kvantovými stavy nemohou nastat jenom z&#160;důvodu symetrií daných stavů. </p><p>Nejenom že jsou grupy užitečné na popis symetrií molekul, ale překvapivě dokáží i&#160;predikovat, jak molekuly mohou svoji symetrii změnit. <a href="/wiki/Jahn-Teller%C5%AFv_jev" class="mw-redirect" title="Jahn-Tellerův jev">Jahn-Tellerův jev</a> je deformace molekuly s vysokou mírou symetrie, která nabude určitý stav, jehož symetrie je z&#160;množiny nižších symetrií, které jsou ale vzájemně příbuzné a&#160;souvisejí se symetrií původní.<sup id="cite_ref-Bersuker_65-0" class="reference"><a href="#cite_note-Bersuker-65"><span class="cite-bracket">&#91;</span>59<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-66" class="reference"><a href="#cite_note-66"><span class="cite-bracket">&#91;</span>60<span class="cite-bracket">&#93;</span></a></sup> Podobně může teorie grup být použita pro popis změn fyzikálních vlastností, které se dějí během <a href="/wiki/F%C3%A1zov%C3%BD_p%C5%99echod" title="Fázový přechod">fázového přechodu</a>, například při změně typu <a href="/wiki/Krystalov%C3%A1_m%C5%99%C3%AD%C5%BEka" title="Krystalová mřížka">mřížky</a>.<sup id="cite_ref-67" class="reference"><a href="#cite_note-67"><span class="cite-bracket">&#91;</span>pozn 7<span class="cite-bracket">&#93;</span></a></sup> </p> <table class="wikitable" border="1" style="text-align:center; margin:1em auto 1em auto;"> <tbody><tr> <td width="25%"><span typeof="mw:File"><a href="/wiki/Soubor:C60a.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/41/C60a.png/125px-C60a.png" decoding="async" width="125" height="122" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/41/C60a.png/188px-C60a.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/41/C60a.png/250px-C60a.png 2x" data-file-width="627" data-file-height="614" /></a></span> </td> <td width="25%"><span typeof="mw:File"><a href="/wiki/Soubor:Ammonia-3D-balls-A.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/05/Ammonia-3D-balls-A.png/125px-Ammonia-3D-balls-A.png" decoding="async" width="125" height="96" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/05/Ammonia-3D-balls-A.png/188px-Ammonia-3D-balls-A.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/05/Ammonia-3D-balls-A.png/250px-Ammonia-3D-balls-A.png 2x" data-file-width="1100" data-file-height="849" /></a></span> </td> <td width="25%"><span typeof="mw:File"><a href="/wiki/Soubor:Cubane-3D-balls.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/18/Cubane-3D-balls.png/125px-Cubane-3D-balls.png" decoding="async" width="125" height="126" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/18/Cubane-3D-balls.png/188px-Cubane-3D-balls.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/18/Cubane-3D-balls.png/250px-Cubane-3D-balls.png 2x" data-file-width="1100" data-file-height="1111" /></a></span> </td> <td width="25%"><span typeof="mw:File"><a href="/wiki/Soubor:Hexaaquacopper(II)-3D-balls.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/09/Hexaaquacopper%28II%29-3D-balls.png/125px-Hexaaquacopper%28II%29-3D-balls.png" decoding="async" width="125" height="147" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/09/Hexaaquacopper%28II%29-3D-balls.png/188px-Hexaaquacopper%28II%29-3D-balls.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/09/Hexaaquacopper%28II%29-3D-balls.png/250px-Hexaaquacopper%28II%29-3D-balls.png 2x" data-file-width="938" data-file-height="1100" /></a></span> </td></tr> <tr> <td><a href="/wiki/Molekula" title="Molekula">Molekula</a> <a href="/wiki/Buckminsterfulleren" title="Buckminsterfulleren">buckminsterfullerenu</a> C<sub>60</sub> má <br /> symetrie <a href="/wiki/Dvacetist%C4%9Bn" title="Dvacetistěn">ikosaedru</a> (dvacetistěnu). </td> <td><a href="/wiki/Amoniak" title="Amoniak">Amoniak</a> NH<sub>3</sub>. Jeho grupa symetrie má řád 6 a&#160;je generována <a href="/wiki/Oto%C4%8Den%C3%AD_(geometrie)" class="mw-redirect" title="Otočení (geometrie)">rotací</a> o&#160;120° a zrcadlením. </td> <td><a href="/wiki/Molekula" title="Molekula">Molekula</a> <a href="/wiki/Kuban" title="Kuban">kubanu</a> C<sub>8</sub>H<sub>8</sub> vykazuje <br /> symetrii <a href="/wiki/Osmist%C4%9Bn" title="Osmistěn">oktaedru</a> (osmistěnu). </td> <td><a href="/wiki/Komplexn%C3%AD_slou%C4%8Denina" title="Komplexní sloučenina">komplexní kation</a> hexaaquaměďnatý, Cu[(OH<sub>2</sub>)<sub>6</sub>]<sup>2+</sup>. <p>Ve srovnání s&#160;úplně symetrickým tvarem, molekula je vertikálně odkloněna o&#160;asi 22&#160;% (<a href="/wiki/Jahn-Teller%C5%AFv_jev" class="mw-redirect" title="Jahn-Tellerův jev">Jahn-Tellerův jev</a>). </p> </td></tr></tbody></table> <div class="mw-heading mw-heading4"><h4 id="Transformační_grupy_v_geometrii"><span id="Transforma.C4.8Dn.C3.AD_grupy_v_geometrii"></span>Transformační grupy v geometrii</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Grupa&amp;veaction=edit&amp;section=23" title="Editace sekce: Transformační grupy v geometrii" class="mw-editsection-visualeditor"><span>editovat</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Grupa&amp;action=edit&amp;section=23" title="Editovat zdrojový kód sekce Transformační grupy v geometrii"><span>editovat zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Geometrické vlastnosti, které <a href="/wiki/Akce_grupy_na_mno%C5%BEin%C4%9B" title="Akce grupy na množině">akce grupy</a> nemění, studuje geometrická <a href="/wiki/Teorie_invariant%C5%AF" title="Teorie invariantů">teorie invariantů</a>.<sup id="cite_ref-68" class="reference"><a href="#cite_note-68"><span class="cite-bracket">&#91;</span>61<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Felix_Klein" title="Felix Klein">Felix Klein</a> ve&#160;slavné přednášce v <a href="/wiki/Erlangen" title="Erlangen">Erlangen</a> v roce [1872] <i>definoval</i> <a href="/wiki/Geometrie" title="Geometrie">geometrii</a> takto:<sup id="cite_ref-69" class="reference"><a href="#cite_note-69"><span class="cite-bracket">&#91;</span>62<span class="cite-bracket">&#93;</span></a></sup> </p> <table style="margin: auto; border-collapse: collapse; display: block; background-color: transparent; overflow: auto;"> <tbody><tr style="font-family: &#39;Linux Libertine&#39;, Georgia, Times, serif;"> <td style="color: #aad; font-size: 400%; font-weight: bold; vertical-align: bottom; padding-bottom: .7ex; _padding-bottom: .6ex;">„ </td> <td style="font-size: 110%; font-style: italic; text-align: justify;">Geometrie je studium invariantů vůči grupě transformací. </td> <td style="color: #aad; font-size: 400%; font-weight: bold; vertical-align: top; padding-top: .3ex;">“ </td></tr> </tbody></table> <p>Grupa symetrie nějaké geometrie je množina všech transformací, které zachovávají příslušnou geometrickou strukturu. Například pro <a href="/wiki/Eukleidovsk%C3%A1_geometrie" title="Eukleidovská geometrie">Eukleidovu geometrii</a> je to takzvaná <a href="/wiki/Eukleidova_grupa" title="Eukleidova grupa">Eukleidova grupa</a> <i>Euc(n)</i>, která se skládá se všech <a href="/w/index.php?title=Translace_(sou%C5%99adnice)&amp;action=edit&amp;redlink=1" class="new" title="Translace (souřadnice) (stránka neexistuje)">translací</a>, <a href="/wiki/Oto%C4%8Den%C3%AD" title="Otočení">rotací</a> a&#160;<a href="/w/index.php?title=Zrcadlen%C3%AD_(matematika)&amp;action=edit&amp;redlink=1" class="new" title="Zrcadlení (matematika) (stránka neexistuje)">zrcadlení</a> <i>n</i>-rozměrného Eukleidova prostoru. Akce této grupy zachovává vzdálenosti <a href="/wiki/Bod" title="Bod">bodů</a>, a velikosti a&#160;<a href="/wiki/%C3%9Ahel" title="Úhel">úhly</a> <a href="/wiki/Vektor" title="Vektor">vektorů</a>. Podobně pro <a href="/wiki/Projektivn%C3%AD_geometrie" title="Projektivní geometrie">projektivní geometrii</a> pozůstává příslušná grupa symetrie ze všech kolineací, které zachovávají projektivní invarianty (převádí <a href="/wiki/Projektivn%C3%AD_p%C5%99%C3%ADmka" title="Projektivní přímka">projektivní přímky</a> na projektivní přímky a zachovává <a href="/w/index.php?title=Dvoupom%C4%9Br&amp;action=edit&amp;redlink=1" class="new" title="Dvoupoměr (stránka neexistuje)">dvoupoměr</a>). </p><p>Tyto grupy symetrií nějaké geometrie se nazývají <i>transformační grupy</i> a pro běžné geometrie jsou to tzv.&#160;<a href="/wiki/Lieova_grupa" title="Lieova grupa">Lieovy grupy</a>. Pokud je Lieova grupa <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span> transformační grupa nějakého geometrického prostoru <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> a&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span> má na <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> <a href="/wiki/Akce_grupy_na_mno%C5%BEin%C4%9B#Tranzitivní_akce_a_homogenní_prostor" title="Akce grupy na množině">tranzitivní akci</a>, můžeme definovat podgrupu <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H\subseteq G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H\subseteq G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6dbe10924c5c9134471b96d6a8dfb9c8b1bf0f04" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.989ex; height:2.343ex;" alt="{\displaystyle H\subseteq G}"></span> všech transformací, které zachovávají jistý bod <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e580967f68f36743e894aa7944f032dda6ea01d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.15ex; height:2.176ex;" alt="{\displaystyle x\in X}"></span>. Prostor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> pak můžeme ztotožnit s&#160;prostorem rozkladových tříd </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\simeq G/H.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>&#x2243;<!-- ≃ --></mo> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>H</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\simeq G/H.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e68c1dc7bf26dd4edfe31324cbaee0533fda260" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.778ex; height:2.843ex;" alt="{\displaystyle X\simeq G/H.}"></span></dd></dl> <p>Tento popis geometrie se nazývá <a href="/w/index.php?title=Kleinova_geometrie&amp;action=edit&amp;redlink=1" class="new" title="Kleinova geometrie (stránka neexistuje)">Kleinova geometrie</a>.<sup id="cite_ref-sharpe_70-0" class="reference"><a href="#cite_note-sharpe-70"><span class="cite-bracket">&#91;</span>63<span class="cite-bracket">&#93;</span></a></sup> Speciální volba grup <i>G</i> a <i>H</i> vede na <a href="/wiki/Eukleidovsk%C3%A1_geometrie" title="Eukleidovská geometrie">Eukleidovskou</a>, afinní a&#160;<a href="/wiki/Projektivn%C3%AD_geometrie" title="Projektivní geometrie">projektivní</a> geometrii. Následuje tabulka, která popisuje některé geometrické struktury a&#160;jejich příslušnou transformační grupu <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span>. </p> <table class="wikitable" border="1"> <tbody><tr> <td> </td> <td><b>Podkladový prostor</b> </td> <td><b>Transformační grupa <i>G</i></b> </td> <td><b>Invarianty</b> </td></tr> <tr> <th><i><a href="/wiki/Eukleidovsk%C3%A1_geometrie" title="Eukleidovská geometrie">Eukleidova geometrie</a></i> </th> <td><a href="/wiki/Eukleidovsk%C3%BD_prostor" title="Eukleidovský prostor">Eukleidovský prostor</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c510b63578322050121fe966f2e5770bea43308d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}}"></span></td> <td><a href="/wiki/Eukleidova_grupa" title="Eukleidova grupa">Eukleidova grupa</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Euc(n)\simeq O(n)\rtimes \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mi>u</mi> <mi>c</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>&#x2243;<!-- ≃ --></mo> <mi>O</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>&#x22CA;<!-- ⋊ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Euc(n)\simeq O(n)\rtimes \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/58e9683eeda31508fd110659fa6663630b9c499d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.129ex; height:2.843ex;" alt="{\displaystyle Euc(n)\simeq O(n)\rtimes \mathbb {R} ^{n}}"></span></td> <td>Vzdálenosti <a href="/wiki/Bod" title="Bod">bodů</a>, <a href="/wiki/%C3%9Ahel" title="Úhel">úhly</a> <a href="/wiki/Vektor" title="Vektor">vektorů</a> </td></tr> <tr> <th><i><a href="/wiki/Sf%C3%A9rick%C3%A1_geometrie" title="Sférická geometrie">Sférická geometrie</a></i> </th> <td><a href="/wiki/Sf%C3%A9ra_(matematika)" title="Sféra (matematika)">Sféra</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee006452a59bf1eb29983b4412348b66517a2d23" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.74ex; height:2.343ex;" alt="{\displaystyle S^{n}}"></span></td> <td><a href="/wiki/Ortogon%C3%A1ln%C3%AD_grupa" title="Ortogonální grupa">Ortogonální grupa</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O(n+1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O(n+1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0852b83035449116b712c15ebeead2a3d8998117" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.98ex; height:2.843ex;" alt="{\displaystyle O(n+1)}"></span></td> <td>Vzdálenosti bodů, úhly vektorů </td></tr> <tr> <th><i><a href="/wiki/Konformn%C3%AD_geometrie" title="Konformní geometrie">Konformní geometrie</a> na sféře</i> </th> <td><a href="/wiki/Sf%C3%A9ra_(matematika)" title="Sféra (matematika)">Sféra</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee006452a59bf1eb29983b4412348b66517a2d23" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.74ex; height:2.343ex;" alt="{\displaystyle S^{n}}"></span></td> <td><a href="/wiki/Lorentzova_grupa" title="Lorentzova grupa">Lorentzova grupa</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n+2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>+</mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n+2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aaf4207e44c00a9312fe3e8710efbefcd6eafdc0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.398ex; height:2.343ex;" alt="{\displaystyle n+2}"></span> dimenzionálního prostoru <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O(n+1,1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O(n+1,1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f344703d96c1c0100cd7bf73506a1b2845bb7104" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.177ex; height:2.843ex;" alt="{\displaystyle O(n+1,1)}"></span></td> <td>Úhly vektorů </td></tr> <tr> <th><i><a href="/wiki/Projektivn%C3%AD_geometrie" title="Projektivní geometrie">Projektivní geometrie</a></i> </th> <td><a href="/wiki/Projektivn%C3%AD_prostor" title="Projektivní prostor">Projektivní prostor</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {RP} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> <mi mathvariant="double-struck">P</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {RP} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/49667cb8bc888139c775ec90afbd9ed5ea417e96" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.317ex; height:2.343ex;" alt="{\displaystyle \mathbb {RP} ^{n}}"></span></td> <td><a href="/wiki/Projektivn%C3%AD_grupa" title="Projektivní grupa">Projektivní grupa</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle PGL(n+1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mi>G</mi> <mi>L</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle PGL(n+1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3fc2589d92405a033a1a2a54314abf4743e395b6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.362ex; height:2.843ex;" alt="{\displaystyle PGL(n+1)}"></span></td> <td><a href="/wiki/Projektivn%C3%AD_p%C5%99%C3%ADmka" title="Projektivní přímka">Projektivní přímky</a>, <a href="/w/index.php?title=Dvoupom%C4%9Br&amp;action=edit&amp;redlink=1" class="new" title="Dvoupoměr (stránka neexistuje)">dvoupoměr</a> </td></tr> <tr> <th><i><a href="/wiki/Afinn%C3%AD_geometrie" title="Afinní geometrie">Afinní geometrie</a></i> </th> <td><a href="/wiki/Afinn%C3%AD_prostor" title="Afinní prostor">Afinní prostor</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c510b63578322050121fe966f2e5770bea43308d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}}"></span></td> <td><a href="/wiki/Afinn%C3%AD_grupa" class="mw-redirect" title="Afinní grupa">Afinní grupa</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Aff(n)\simeq GL(n)\rtimes \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi>f</mi> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>&#x2243;<!-- ≃ --></mo> <mi>G</mi> <mi>L</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>&#x22CA;<!-- ⋊ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Aff(n)\simeq GL(n)\rtimes \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b760bf5a0a1b5e5be8184f9668854b695104a09f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.953ex; height:2.843ex;" alt="{\displaystyle Aff(n)\simeq GL(n)\rtimes \mathbb {R} ^{n}}"></span></td> <td>Přímky, <a href="/wiki/Pom%C4%9Br" title="Poměr">poměry</a> obsahů <a href="/wiki/Geometrick%C3%BD_%C3%BAtvar" title="Geometrický útvar">geometrických útvarů</a>, <a href="/wiki/T%C4%9B%C5%BEi%C5%A1t%C4%9B" title="Těžiště">těžiště</a> <a href="/wiki/Troj%C3%BAheln%C3%ADk" title="Trojúhelník">trojúhelníků</a>. </td></tr> <tr> <td colspan="4" style="text-align:left">Popis některých geometrií pomocí jejich transformačních grup. </td></tr></tbody></table> <p>Zobecnění těchto idejí na širší třídu geometrií zahrnujících zakřivené prostory v&#160;<a href="/wiki/Riemannova_geometrie" title="Riemannova geometrie">Riemannově geometrii</a> rozpracoval <a href="/wiki/%C3%89lie_Cartan" title="Élie Cartan">Élie Cartan</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Obecná_lineární_grupa_a_teorie_reprezentací"><span id="Obecn.C3.A1_line.C3.A1rn.C3.AD_grupa_a_teorie_reprezentac.C3.AD"></span>Obecná lineární grupa a teorie reprezentací</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Grupa&amp;veaction=edit&amp;section=24" title="Editace sekce: Obecná lineární grupa a teorie reprezentací" class="mw-editsection-visualeditor"><span>editovat</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Grupa&amp;action=edit&amp;section=24" title="Editovat zdrojový kód sekce Obecná lineární grupa a teorie reprezentací"><span>editovat zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="uvodni-upozorneni hatnote">Související informace naleznete také v článcích&#32;<a href="/wiki/Line%C3%A1rn%C3%AD_grupa" title="Lineární grupa">Lineární grupa</a>&#32;a <a href="/wiki/Reprezentace_(grupa)" title="Reprezentace (grupa)">Reprezentace (grupa)</a>.</div> <figure typeof="mw:File/Thumb"><a href="/wiki/Soubor:Matrix_multiplication.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/ab/Matrix_multiplication.svg/250px-Matrix_multiplication.svg.png" decoding="async" width="250" height="93" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/ab/Matrix_multiplication.svg/375px-Matrix_multiplication.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/ab/Matrix_multiplication.svg/500px-Matrix_multiplication.svg.png 2x" data-file-width="739" data-file-height="274" /></a><figcaption>Dva <a href="/wiki/Vektor" title="Vektor">vektory</a> na levém obrázku jsou vynásobeny maticí (prostřední a pravý obrázek). Prostřední obrázek reprezentuje <a href="/wiki/Oto%C4%8Den%C3%AD_(geometrie)" class="mw-redirect" title="Otočení (geometrie)">rotaci</a> o&#160;90° ve&#160;směru hodinových ručiček, na pravém obrázku se navíc zvětšila <i>x</i>-ová souřadnice vektorů na dvojnásobek.</figcaption></figure> <p><a href="/wiki/Line%C3%A1rn%C3%AD_grupa" title="Lineární grupa">Maticové grupy</a> jsou grupy, které se skládají z&#160;<a href="/wiki/Matice" title="Matice">matic</a> a&#160;grupová operace je <a href="/wiki/N%C3%A1soben%C3%AD_matic" title="Násobení matic">maticové násobení</a>. Obecná lineární grupa <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle GL(n,\mathbb {R} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mi>L</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle GL(n,\mathbb {R} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a1f7197960fac26cadfe027d3045154b9972f8d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.326ex; height:2.843ex;" alt="{\displaystyle GL(n,\mathbb {R} )}"></span> se skládá ze všech <a href="/wiki/Regul%C3%A1rn%C3%AD_matice" title="Regulární matice">regulárních</a> reálných čtvercových matic dimenze <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>.<sup id="cite_ref-71" class="reference"><a href="#cite_note-71"><span class="cite-bracket">&#91;</span>64<span class="cite-bracket">&#93;</span></a></sup> Její podgrupy se nazývají <i>maticové grupy</i> anebo <i>lineární grupy</i>. Dihedrální grupa v&#160;úvodu se dá reprezentovat jako maticová grupa (symetrie čtverce jako otočení nebo překlopení můžeme reprezentovat maticí). Jiná důležitá maticová grupa je <a href="/wiki/Ortogon%C3%A1ln%C3%AD_grupa" title="Ortogonální grupa">speciální ortogonální grupa</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle SO(n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mi>O</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle SO(n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f8243929248730d44fbb8ee9d267361713332ff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.477ex; height:2.843ex;" alt="{\displaystyle SO(n)}"></span>. Popisuje všechny možné rotace v&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> rozměrném <a href="/wiki/Eukleidovsk%C3%BD_prostor" title="Eukleidovský prostor">Eukleidově prostoru</a>. </p><p>Teorie <a href="/wiki/Reprezentace_(grupa)" title="Reprezentace (grupa)">reprezentací</a> je jak aplikace grupových konceptů, tak i&#160;důležitý nástroj pro hlubší porozumění grup.<sup id="cite_ref-72" class="reference"><a href="#cite_note-72"><span class="cite-bracket">&#91;</span>65<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-73" class="reference"><a href="#cite_note-73"><span class="cite-bracket">&#91;</span>66<span class="cite-bracket">&#93;</span></a></sup> Tato teorie studuje grupy pomocí jejich <a href="/wiki/Akce_grupy_na_mno%C5%BEin%C4%9B" title="Akce grupy na množině">akcí</a> na <a href="/wiki/Vektorov%C3%BD_prostor" title="Vektorový prostor">vektorových prostorech</a>. Reprezentace grupy <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span> na vektorovém prostoru <i>V</i> je grupový homomorfismus </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho :G\to GL(V)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C1;<!-- ρ --></mi> <mo>:</mo> <mi>G</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>G</mi> <mi>L</mi> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho :G\to GL(V)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/82f269781bd98e77f7fcb16a1b6f31d04e645ec0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.586ex; height:2.843ex;" alt="{\displaystyle \rho :G\to GL(V)}"></span></dd></dl> <p>grupy <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span> a&#160;<a href="/wiki/Line%C3%A1rn%C3%AD_grupa" title="Lineární grupa">obecné lineární grupy</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle GL(V)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mi>L</mi> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle GL(V)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4ad853a4ebab014e00fbd05a7a75beca186ed9a6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.006ex; height:2.843ex;" alt="{\displaystyle GL(V)}"></span>. Tímto způsobem se grupová operace na <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span>, která mohla být zadána abstraktním způsobem, převede na skládání lineárních zobrazení, resp. <a href="/wiki/N%C3%A1soben%C3%AD_matic" title="Násobení matic">násobení matic</a>, což umožňuje explicitní počty.<sup id="cite_ref-74" class="reference"><a href="#cite_note-74"><span class="cite-bracket">&#91;</span>pozn 8<span class="cite-bracket">&#93;</span></a></sup> Grupová akce na nějakém prostoru je tedy prostředkem jak ke&#160;zkoumání daného prostoru, tak i&#160;ke&#160;zkoumání grupy samotné. Teorie reprezentací dává do souvislosti teorii <a href="/w/index.php?title=Kone%C4%8Dn%C3%A1_grupa&amp;action=edit&amp;redlink=1" class="new" title="Konečná grupa (stránka neexistuje)">konečných grup</a>, <a href="/wiki/Lieova_grupa" title="Lieova grupa">Lieových grup</a>, <a href="/wiki/Algebraick%C3%A1_grupa" title="Algebraická grupa">algebraických grup</a> a&#160;<a href="/wiki/Topologick%C3%A1_grupa" title="Topologická grupa">topologických grup</a>, hlavně (lokálně) <a href="/wiki/Kompaktnost" class="mw-redirect" title="Kompaktnost">kompaktních</a> grup.<sup id="cite_ref-75" class="reference"><a href="#cite_note-75"><span class="cite-bracket">&#91;</span>67<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-76" class="reference"><a href="#cite_note-76"><span class="cite-bracket">&#91;</span>68<span class="cite-bracket">&#93;</span></a></sup> </p><p>Reprezentace <a href="/wiki/Lieova_grupa" title="Lieova grupa">Lieových grup</a> mají aplikace v&#160;<a href="/wiki/Geometrie" title="Geometrie">geometrii</a> a&#160;studium reprezentací grup v&#160;prostorech nenulové charakteristiky má aplikace v&#160;<a href="/wiki/Teorie_%C4%8D%C3%ADsel" title="Teorie čísel">teorii čísel</a>.<sup id="cite_ref-77" class="reference"><a href="#cite_note-77"><span class="cite-bracket">&#91;</span>69<span class="cite-bracket">&#93;</span></a></sup> Některé partie teorie reprezentací jsou zobecněním klasické <a href="/wiki/Harmonick%C3%A1_anal%C3%BDza" title="Harmonická analýza">harmonické analýzy</a> studující funkce prostřednictvím <a href="/wiki/Fourierova_transformace" title="Fourierova transformace">Fourierovy transformace</a>.<sup id="cite_ref-78" class="reference"><a href="#cite_note-78"><span class="cite-bracket">&#91;</span>70<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-79" class="reference"><a href="#cite_note-79"><span class="cite-bracket">&#91;</span>71<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-varad_80-0" class="reference"><a href="#cite_note-varad-80"><span class="cite-bracket">&#91;</span>72<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Galoisova_grupa">Galoisova grupa</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Grupa&amp;veaction=edit&amp;section=25" title="Editace sekce: Galoisova grupa" class="mw-editsection-visualeditor"><span>editovat</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Grupa&amp;action=edit&amp;section=25" title="Editovat zdrojový kód sekce Galoisova grupa"><span>editovat zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="uvodni-upozorneni hatnote">Související informace naleznete také v&#160;článku&#32;<a href="/wiki/Galoisova_grupa" title="Galoisova grupa">Galoisova grupa</a>.</div> <p><i>Galoisova grupa</i> byla vynalezena pro popis řešení <a href="/wiki/Polynom" title="Polynom">polynomických</a> rovnic. Například řešení <a href="/wiki/Kvadratick%C3%A1_rovnice" title="Kvadratická rovnice">kvadratické rovnice</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{2}+px+q=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>p</mi> <mi>x</mi> <mo>+</mo> <mi>q</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{2}+px+q=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b1447b7f80b86966dc9f431ba415b2de2608e50e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:15.894ex; height:3.009ex;" alt="{\displaystyle x^{2}+px+q=0}"></span> jsou dány </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{1,2}={\frac {-p\pm {\sqrt {p^{2}-4q}}}{2}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>,</mo> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <mo>&#x00B1;<!-- ± --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>4</mn> <mi>q</mi> </msqrt> </mrow> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{1,2}={\frac {-p\pm {\sqrt {p^{2}-4q}}}{2}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d0894c0c8ba32615d78a0845b354d0f20319b63" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:23.682ex; height:6.176ex;" alt="{\displaystyle x_{1,2}={\frac {-p\pm {\sqrt {p^{2}-4q}}}{2}}.}"></span></dd></dl> <p>Podobné vzorce jsou známe pro <a href="/wiki/Kubick%C3%A1_rovnice" title="Kubická rovnice">kubické</a> a&#160;<a href="/wiki/Kvartick%C3%A1_rovnice" title="Kvartická rovnice">kvartické</a> rovnice, ale neexistují pro rovnice pátého stupně a&#160;vyšší.<sup id="cite_ref-81" class="reference"><a href="#cite_note-81"><span class="cite-bracket">&#91;</span>73<span class="cite-bracket">&#93;</span></a></sup> </p><p>Výměna „<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle +}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>+</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle +}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe6ef363cd19902d1a7a71fb1c8b21e8ede52406" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle +}"></span>“ a „<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04bd52ce670743d3b61bec928a7ec9f47309eb36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle -}"></span>“ v&#160;tomto výrazu, tj.&#160;<a href="/wiki/Permutace" title="Permutace">permutace</a> obou <a href="/wiki/Ko%C5%99en" title="Kořen">kořenů</a> rovnice se dá chápat jako velmi jednoduchá grupová operace. Kořeny původní rovnice splňují <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{1}x_{2}=q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{1}x_{2}=q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d32bc73237fdba5a79806b6dc2da08740d405d7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.936ex; height:2.009ex;" alt="{\displaystyle x_{1}x_{2}=q}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{1}+x_{2}=-p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{1}+x_{2}=-p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a38f7e5e131f885120284211877634fde161ee9c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.684ex; height:2.343ex;" alt="{\displaystyle x_{1}+x_{2}=-p}"></span>. Zároveň výměna kořenů <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a8788bf85d532fa88d1fb25eff6ae382a601c308" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{1}}"></span> a&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7af1b928f06e4c7e3e8ebfd60704656719bd766" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{2}}"></span> nemění jejich <a href="/wiki/Sou%C4%8Det" class="mw-redirect" title="Součet">součet</a> a <a href="/wiki/Sou%C4%8Din" class="mw-redirect" title="Součin">součin</a>. Pro obecný polynom se dá definovat Galoisova grupa jako množina všech takových permutací kořenů, že racionální výrazy kořenů (například <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{1}+x_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{1}+x_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6832c497a90f2dfd883818f60ee527f53b0de22d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.608ex; height:2.343ex;" alt="{\displaystyle x_{1}+x_{2}}"></span> nebo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{1}x_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{1}x_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b72aaacad232ae448753193b1f80b434bc61b88" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.768ex; height:2.009ex;" alt="{\displaystyle x_{1}x_{2}}"></span>), které popisují nějaký racionální výraz koeficientů (například <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/233ea0d764a4823bcf8b9a31b2f25f3966e77845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.978ex; height:2.343ex;" alt="{\displaystyle -p}"></span> nebo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span>), se nemění (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{1}+x_{2}=x_{2}+x_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{1}+x_{2}=x_{2}+x_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c463814458fb002978ff852a426bb2bba47698dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:18.315ex; height:2.343ex;" alt="{\displaystyle x_{1}+x_{2}=x_{2}+x_{1}}"></span> a pod). </p><p>Abstraktní vlastnosti Galoisovy grupy asociované s polynomem dávají kritérium, zda má polynom všechny své kořeny vyjádřitelné z&#160;koeficientů pomocí radikálů, tj.&#160;pomocí sčítání, násobení a&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>-tých odmocnin. Je to právě když příslušná Galoisova grupa je <i>řešitelná</i>.<sup id="cite_ref-82" class="reference"><a href="#cite_note-82"><span class="cite-bracket">&#91;</span>74<span class="cite-bracket">&#93;</span></a></sup> Pro některé polynomy stupně 5 však Galoisova grupa pozůstává se všech permutací pěti kořenů.<sup id="cite_ref-83" class="reference"><a href="#cite_note-83"><span class="cite-bracket">&#91;</span>75<span class="cite-bracket">&#93;</span></a></sup> Permutační grupa <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S_{5}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S_{5}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d113353a42f71fc5e7154ddef2257079ab2e25a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.479ex; height:2.509ex;" alt="{\displaystyle S_{5}}"></span> však není řešitelná<sup id="cite_ref-84" class="reference"><a href="#cite_note-84"><span class="cite-bracket">&#91;</span>76<span class="cite-bracket">&#93;</span></a></sup> a&#160;proto obecný vzorec pro rovnice pátého stupně, který by obsahoval pouze sčítání, násobení, dělení a&#160;odmocňování, nemůže existovat. </p><p>V moderní algebře se Galoisova grupa definuje obecněji pro <a href="/wiki/T%C4%9Bleso_(algebra)" title="Těleso (algebra)">tělesa</a> jejich rozšíření. Pokud je <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> nadtěleso tělesa <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span>, je příslušná Galoisova grupa <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Gal(E/F)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mi>a</mi> <mi>l</mi> <mo stretchy="false">(</mo> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>F</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Gal(E/F)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/91a0a39ba8e6fabc855af64623a205cb2594596b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.238ex; height:2.843ex;" alt="{\displaystyle Gal(E/F)}"></span> definována jako množina všech <a href="/wiki/Automorfismus" class="mw-redirect" title="Automorfismus">automorfismů</a> tělesa <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span>, které nemění prvky tělesa <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span>. <a href="/w/index.php?title=Z%C3%A1kladn%C3%AD_v%C4%9Bta_Galoisovy_teorie&amp;action=edit&amp;redlink=1" class="new" title="Základní věta Galoisovy teorie (stránka neexistuje)">Základní věta Galoisovy teorie</a> tvrdí, že podgrupy Galoisovy grupy odpovídají mezitělesům <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F\subseteq K\subseteq E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi>K</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F\subseteq K\subseteq E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1171c7eeee44fe67127a3389091f8f5e508c5e54" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:11.779ex; height:2.343ex;" alt="{\displaystyle F\subseteq K\subseteq E}"></span>.<sup id="cite_ref-85" class="reference"><a href="#cite_note-85"><span class="cite-bracket">&#91;</span>77<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Grupy_v_algebraické_topologii"><span id="Grupy_v_algebraick.C3.A9_topologii"></span>Grupy v algebraické topologii</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Grupa&amp;veaction=edit&amp;section=26" title="Editace sekce: Grupy v algebraické topologii" class="mw-editsection-visualeditor"><span>editovat</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Grupa&amp;action=edit&amp;section=26" title="Editovat zdrojový kód sekce Grupy v algebraické topologii"><span>editovat zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="uvodni-upozorneni hatnote">Související informace naleznete také v článcích&#32;<a href="/wiki/Fundament%C3%A1ln%C3%AD_grupa" title="Fundamentální grupa">Fundamentální grupa</a>&#32;a <a href="/wiki/Homologie_(matematika)" title="Homologie (matematika)">Homologie (matematika)</a>.</div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/Soubor:Fundamental_group.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/ba/Fundamental_group.svg/250px-Fundamental_group.svg.png" decoding="async" width="250" height="238" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/ba/Fundamental_group.svg/375px-Fundamental_group.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/ba/Fundamental_group.svg/500px-Fundamental_group.svg.png 2x" data-file-width="305" data-file-height="290" /></a><figcaption>Rovina, z&#160;které jsme odstranili jeden bod (znázorněn černě). Oranžová křivka, která jde kolem toho bodu, se nedá stáhnout a&#160;reprezentuje netriviální prvek <a href="/wiki/Fundament%C3%A1ln%C3%AD_grupa" title="Fundamentální grupa">fundamentální grupy</a>.</figcaption></figure> <p>V&#160;<a href="/wiki/Algebraick%C3%A1_topologie" title="Algebraická topologie">algebraické topologii</a> se <a href="/wiki/Topologick%C3%BD_prostor" title="Topologický prostor">topologickým prostorům</a> přiřazují různé grupy, které reflektují jejich vlastnosti. Nejjednodušší je tzv.&#160;<a href="/wiki/Fundament%C3%A1ln%C3%AD_grupa" title="Fundamentální grupa">fundamentální grupa</a>, kterou jako první uvažoval <a href="/wiki/Camille_Jordan" title="Camille Jordan">Camille Jordan</a><sup id="cite_ref-86" class="reference"><a href="#cite_note-86"><span class="cite-bracket">&#91;</span>78<span class="cite-bracket">&#93;</span></a></sup> a&#160;formálně definoval <a href="/wiki/Henri_Poincar%C3%A9" title="Henri Poincaré">Henri Poincaré</a>.<sup id="cite_ref-87" class="reference"><a href="#cite_note-87"><span class="cite-bracket">&#91;</span>79<span class="cite-bracket">&#93;</span></a></sup> </p><p>Prvky fundamentální grupy se dají reprezentovat jako smyčky (uzavřené <a href="/wiki/K%C5%99ivka" title="Křivka">křivky</a>) v&#160;daném prostoru. Dvě smyčky reprezentují stejný prvek fundamentální grupy, pokud se dají jedna na druhou převést spojitou deformací. Ilustrativní obrázek ukazuje křivku v&#160;rovině bez bodu. Modrá křivka se považuje za triviální a reprezentuje neutrální prvek fundamentální grupy, neboť se dá spojitě stáhnout do&#160;jednoho bodu. Naopak oranžová křivka se stáhnout nedá, protože uvnitř ní je díra (chybějící bod). Fundamentální grupa roviny, z&#160;které odstraníme jeden bod, je nekonečná cyklická grupa generována oranžovou křivkou. </p><p>Podobně se definují vyšší <a href="/wiki/Homotopick%C3%A1_grupa" class="mw-redirect" title="Homotopická grupa">homotopické grupy</a>, které mohou odhalit díry různých dimenzí.<sup id="cite_ref-88" class="reference"><a href="#cite_note-88"><span class="cite-bracket">&#91;</span>80<span class="cite-bracket">&#93;</span></a></sup> Homotopické grupy jsou topologické a dokonce i homotopické <a href="/wiki/Invariant_(matematika)" title="Invariant (matematika)">invarianty</a>, to znamená, že prostory, které jsou topologicky ekvivalentní (homeomorfní) a dokonce i prostory, které jsou <a href="/wiki/Homotopie" title="Homotopie">homotopické</a> resp. homotopicky ekvivalentní, mají izomorfní homotopické grupy. Spojitá zobrazení topologických prostorů indukují přirozeným způsobem homomorfismy jejich homotopických grup. Homotopické grupy jsou tedy speciálním případem <a href="/wiki/Funktor" title="Funktor">kovariantního funktoru</a>.<sup id="cite_ref-89" class="reference"><a href="#cite_note-89"><span class="cite-bracket">&#91;</span>81<span class="cite-bracket">&#93;</span></a></sup> </p><p>Výpočet vyšších homotopických grup je však často velmi složitý. Dodnes nejsou obecně známy ani homotopické grupy <a href="/wiki/Sf%C3%A9ra_(matematika)" title="Sféra (matematika)">sfér</a>, ačkoliv je známo, že jejich výpočet je algoritmicky možný.<sup id="cite_ref-90" class="reference"><a href="#cite_note-90"><span class="cite-bracket">&#91;</span>82<span class="cite-bracket">&#93;</span></a></sup> Proto se často používají jednodušší <a href="/wiki/Homologick%C3%A1_grupa" class="mw-redirect" title="Homologická grupa">homologické</a> a&#160;<a href="/w/index.php?title=Kohomologick%C3%A1_grupa&amp;action=edit&amp;redlink=1" class="new" title="Kohomologická grupa (stránka neexistuje)">kohomologické grupy</a>.<sup id="cite_ref-91" class="reference"><a href="#cite_note-91"><span class="cite-bracket">&#91;</span>83<span class="cite-bracket">&#93;</span></a></sup> Tyto grupy jsou taktéž homotopické invarianty. Homologie <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> té dimenze <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e63458b04288bbe116a9a8037dfae0b36b2c639a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.15ex; height:2.509ex;" alt="{\displaystyle H_{n}}"></span> je kovariantní funktor z&#160;kategorie topologických prostorů do kategorie grup. Podobně <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6c813df15dbb76f2e02b3bceb3f16b83a69d9c6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.322ex; height:2.343ex;" alt="{\displaystyle H^{n}}"></span> je kontravariantní funktor. </p><p>Využitím homotopických a&#160;homologických grup je možné řešit širokou třídu topologických problému: například dokázat neexistence rozšíření spojitého zobrazení s podprostoru na celý prostor (například identita na sféře se nedá rozšířit na zobrazení celé <a href="/wiki/Koule" title="Koule">koule</a> na sféru),<sup id="cite_ref-92" class="reference"><a href="#cite_note-92"><span class="cite-bracket">&#91;</span>84<span class="cite-bracket">&#93;</span></a></sup> dokazovat různé věty o&#160;pevných bodech (například <a href="/wiki/Brouwerova_v%C4%9Bta_o_pevn%C3%A9m_bodu" title="Brouwerova věta o pevném bodu">Brouwerova věta o pevném bodu</a>)<sup id="cite_ref-93" class="reference"><a href="#cite_note-93"><span class="cite-bracket">&#91;</span>85<span class="cite-bracket">&#93;</span></a></sup>, dokázat <a href="/wiki/Z%C3%A1kladn%C3%AD_v%C4%9Bta_algebry" title="Základní věta algebry">základní větu algebry</a>,<sup id="cite_ref-94" class="reference"><a href="#cite_note-94"><span class="cite-bracket">&#91;</span>86<span class="cite-bracket">&#93;</span></a></sup> anebo ukázat, že otevřené množiny v Eukleidovských prostorech jsou homeomorfní pouze pokud mají stejnou dimenzi (a tedy dimenze prostoru je topologický invariant).<sup id="cite_ref-95" class="reference"><a href="#cite_note-95"><span class="cite-bracket">&#91;</span>87<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Další_využití"><span id="Dal.C5.A1.C3.AD_vyu.C5.BEit.C3.AD"></span>Další využití</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Grupa&amp;veaction=edit&amp;section=27" title="Editace sekce: Další využití" class="mw-editsection-visualeditor"><span>editovat</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Grupa&amp;action=edit&amp;section=27" title="Editovat zdrojový kód sekce Další využití"><span>editovat zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Existuje řada dalších teoretických i praktických aplikací teorie grup. Konečné grupy symetrií, jako například <a href="/w/index.php?title=Mathiova_grupa&amp;action=edit&amp;redlink=1" class="new" title="Mathiova grupa (stránka neexistuje)">Mathiovy grupy</a> se využívají v <a href="/wiki/K%C3%B3dov%C3%A1n%C3%AD" title="Kódování">kódování</a> a&#160;v&#160;korekci chyb přenášených dat.<sup id="cite_ref-96" class="reference"><a href="#cite_note-96"><span class="cite-bracket">&#91;</span>88<span class="cite-bracket">&#93;</span></a></sup> Multiplikativní grupy konečných <a href="/wiki/T%C4%9Bleso_(algebra)" title="Těleso (algebra)">těles</a> se využívají v <a href="/wiki/Cyklick%C3%BD_k%C3%B3d" title="Cyklický kód">cyklickém kódování</a>, které se používá například v&#160;<a href="/wiki/Kompaktn%C3%AD_disk" title="Kompaktní disk">CD</a> přehrávačích.<sup id="cite_ref-97" class="reference"><a href="#cite_note-97"><span class="cite-bracket">&#91;</span>pozn 9<span class="cite-bracket">&#93;</span></a></sup> <a href="/w/index.php?title=Diferenci%C3%A1ln%C3%AD_Galoisova_teorie&amp;action=edit&amp;redlink=1" class="new" title="Diferenciální Galoisova teorie (stránka neexistuje)">Diferenciální Galoisova teorie</a>, zobecňuje klasickou Galoisovu teorii a dává grupově teoretická kritéria pro vlastnosti řešení jistých <a href="/wiki/Diferenci%C3%A1ln%C3%AD_rovnice" title="Diferenciální rovnice">diferenciálních rovnic</a>.<sup id="cite_ref-98" class="reference"><a href="#cite_note-98"><span class="cite-bracket">&#91;</span>89<span class="cite-bracket">&#93;</span></a></sup> Grupy se podstatným způsobem využívají v&#160;<a href="/wiki/Algebraick%C3%A1_geometrie" title="Algebraická geometrie">algebraické geometrii</a> a&#160;<a href="/wiki/Teorie_%C4%8D%C3%ADsel" title="Teorie čísel">teorii čísel</a>.<sup id="cite_ref-99" class="reference"><a href="#cite_note-99"><span class="cite-bracket">&#91;</span>90<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Kryptografie" title="Kryptografie">Kryptografie</a> kombinuje přístup abstraktní teorie grup s&#160;výpočetní teorií grup implementovanou pro konečné grupy.<sup id="cite_ref-100" class="reference"><a href="#cite_note-100"><span class="cite-bracket">&#91;</span>91<span class="cite-bracket">&#93;</span></a></sup> </p><p>Aplikace teorie grup nejsou omezeny na matematiku a z&#160;jejích konceptů také čerpají vědy jako <a href="/wiki/Chemie" title="Chemie">chemie</a>, <a href="/wiki/Fyzika" title="Fyzika">fyzika</a> a <a href="/wiki/Informatika" title="Informatika">informatika</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Konečné_grupy"><span id="Kone.C4.8Dn.C3.A9_grupy"></span>Konečné grupy</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Grupa&amp;veaction=edit&amp;section=28" title="Editace sekce: Konečné grupy" class="mw-editsection-visualeditor"><span>editovat</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Grupa&amp;action=edit&amp;section=28" title="Editovat zdrojový kód sekce Konečné grupy"><span>editovat zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Grupa se nazývá <i>konečná</i>, pokud má konečně mnoho prvků. Počet jejich prvků se nazývá <i>řád</i> grupy.<sup id="cite_ref-101" class="reference"><a href="#cite_note-101"><span class="cite-bracket">&#91;</span>92<span class="cite-bracket">&#93;</span></a></sup> Důležitý příklad je grupa <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f049ac28d4ac8097b625f9d71c1f22b2ebd1bc4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.643ex; height:2.509ex;" alt="{\displaystyle S_{n}}"></span> <a href="/wiki/Permutace" title="Permutace">permutací</a> <i>n</i>-prvkové <a href="/wiki/Mno%C5%BEina" title="Množina">množiny</a>, která se také nazývá <a href="/wiki/Symetrick%C3%A1_grupa" title="Symetrická grupa">symetrická grupa</a>.<sup id="cite_ref-102" class="reference"><a href="#cite_note-102"><span class="cite-bracket">&#91;</span>93<span class="cite-bracket">&#93;</span></a></sup> Například symetrickou grupu <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S_{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S_{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/70e15f3e200aaa247f69c43110cc5a09ecc91b89" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.479ex; height:2.509ex;" alt="{\displaystyle S_{3}}"></span> můžeme reprezentovat jako množinu permutací tří písmen <i>ABC</i>. Grupa pozůstává z&#160;prvků <i>ABC</i>, <i>ACB</i>, ..., až po <i>CBA</i>, celkem 6 prvků. Symetrické grupy jsou základním příkladem konečných grupy, neboť každá konečná grupa se dá vyjádřit jako podgrupa symetrické grupy <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f049ac28d4ac8097b625f9d71c1f22b2ebd1bc4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.643ex; height:2.509ex;" alt="{\displaystyle S_{n}}"></span> pro vhodné <a href="/wiki/P%C5%99irozen%C3%A9_%C4%8D%C3%ADslo" title="Přirozené číslo">přirozené číslo</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> (<a href="/w/index.php?title=Cayleyho_v%C4%9Bta&amp;action=edit&amp;redlink=1" class="new" title="Cayleyho věta (stránka neexistuje)">Cayleyho věta</a>).<sup id="cite_ref-103" class="reference"><a href="#cite_note-103"><span class="cite-bracket">&#91;</span>94<span class="cite-bracket">&#93;</span></a></sup> Grupa <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S_{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S_{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/70e15f3e200aaa247f69c43110cc5a09ecc91b89" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.479ex; height:2.509ex;" alt="{\displaystyle S_{3}}"></span> se dá také interpretovat jako množina symetrií <a href="/wiki/Rovnostrann%C3%BD_troj%C3%BAheln%C3%ADk" title="Rovnostranný trojúhelník">rovnostranného trojúhelníka</a>, podobně jako dihedrální grupa D<sub>4</sub> v&#160;úvodu je grupou symetrií <a href="/wiki/%C4%8Ctverec" title="Čtverec">čtverce</a>. </p><p>Řád prvku <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> grupy <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span> je nejmenší <a href="/wiki/P%C5%99irozen%C3%A9_%C4%8D%C3%ADslo" title="Přirozené číslo">přirozené číslo</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> takové, že <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2687184a7698e75db65a25bea7afd207bff3d03b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.448ex; height:2.343ex;" alt="{\displaystyle a^{n}}"></span> (součin <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> kopií <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span>) je rovno neutrálnímu prvku <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>e</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd253103f0876afc68ebead27a5aa9867d927467" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.083ex; height:1.676ex;" alt="{\displaystyle e}"></span>. Řád každého prvku konečné grupy je konečný. Grupa je do&#160;jisté míry určena svým řádem a&#160;strukturou svých podgrup. <a href="/wiki/Lagrangeova_v%C4%9Bta_(teorie_grup)" title="Lagrangeova věta (teorie grup)">Lagrangeova věta</a> tvrdí, že pro konečnou grupu <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span> počet prvků její libovolné podgrupy <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75a9edddcca2f782014371f75dca39d7e13a9c1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle H}"></span> <a href="/wiki/D%C4%9Blitelnost" title="Dělitelnost">dělí</a> počet prvků grupy <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span>.<sup id="cite_ref-104" class="reference"><a href="#cite_note-104"><span class="cite-bracket">&#91;</span>95<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Sylowovy_v%C4%9Bty" title="Sylowovy věty">Sylowovy věty</a> dávají část obráceného tvrzení.<sup id="cite_ref-105" class="reference"><a href="#cite_note-105"><span class="cite-bracket">&#91;</span>96<span class="cite-bracket">&#93;</span></a></sup> </p> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/Soubor:Dih4_cycle_graph_pf.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d1/Dih4_cycle_graph_pf.svg/200px-Dih4_cycle_graph_pf.svg.png" decoding="async" width="200" height="228" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d1/Dih4_cycle_graph_pf.svg/300px-Dih4_cycle_graph_pf.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d1/Dih4_cycle_graph_pf.svg/400px-Dih4_cycle_graph_pf.svg.png 2x" data-file-width="1212" data-file-height="1382" /></a><figcaption>Graf cyklů <a href="/wiki/Dihedr%C3%A1ln%C3%AD_grupa" title="Dihedrální grupa">dihedrální grupy</a> D<sub>4</sub>. Rotace <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea214f2b31fb3869344bb9311da41c5cc38a99e1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.103ex; height:2.009ex;" alt="{\displaystyle r_{1}}"></span> generuje 4prvkovou cyklickou podgrupu, překlopení generují pouze 2prvkové cyklické podgrupy.</figcaption></figure> <p><a href="/wiki/Dihedr%C3%A1ln%C3%AD_grupa" title="Dihedrální grupa">Dihedrální grupa</a> (uvedena výše) je příkladem konečné grupy řádu 8. Řád prvku <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea214f2b31fb3869344bb9311da41c5cc38a99e1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.103ex; height:2.009ex;" alt="{\displaystyle r_{1}}"></span> je 4, stejně jako řád podgrupy <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span> kterou generuje. Řád libovolné reflexe je 2. Oba řády dělí číslo 8, jak tvrdí Lagrangeova věta. Malé grupy se dají částečně popsat grafem cyklů, v&#160;kterém vrcholy <a href="/wiki/Graf_(teorie_graf%C5%AF)" title="Graf (teorie grafů)">grafu</a> odpovídají prvkům grupy a&#160;cyklickým podgrupám <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{a,a^{2},...,a^{n}=e\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>a</mi> <mo>,</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mi>e</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{a,a^{2},...,a^{n}=e\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81c1e2bcfb00a2a23b5aec7e5af11fbf2fe6cdce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.673ex; height:3.176ex;" alt="{\displaystyle \{a,a^{2},...,a^{n}=e\}}"></span> odpovídají hrany od <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> k&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f564e5dc0b6e68af32ca8614e972f5b36e944a24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.284ex; height:2.676ex;" alt="{\displaystyle a^{2}}"></span>, od <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f564e5dc0b6e68af32ca8614e972f5b36e944a24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.284ex; height:2.676ex;" alt="{\displaystyle a^{2}}"></span> k&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/abd83c98f7301a720f69dd6d4043461e4cc83daa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.284ex; height:2.676ex;" alt="{\displaystyle a^{3}}"></span> a&#160;tak dále. Obrázek vpravo znázorňuje graf cyklů Dihedrální grupy D<sub>4</sub>. Pro grupy řádu menšího než 16 určuje graf cyklů grupu jednoznačně. </p><p>Další důležité příklady konečných grup jsou multiplikativní grupy <a href="/wiki/Galoisovo_t%C4%9Bleso" class="mw-redirect" title="Galoisovo těleso">konečných těles</a> a&#160;grupy <a href="/wiki/Line%C3%A1rn%C3%AD_grupa" title="Lineární grupa">regulárních</a>, <a href="/wiki/Ortogon%C3%A1ln%C3%AD_matice" title="Ortogonální matice">ortogonálních</a> respektive <a href="/wiki/Symplektick%C3%A1_grupa" title="Symplektická grupa">symplektických</a> matic nad konečnými tělesy. </p> <div class="mw-heading mw-heading3"><h3 id="Klasifikace_jednoduchých_konečných_grup"><span id="Klasifikace_jednoduch.C3.BDch_kone.C4.8Dn.C3.BDch_grup"></span>Klasifikace jednoduchých konečných grup</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Grupa&amp;veaction=edit&amp;section=29" title="Editace sekce: Klasifikace jednoduchých konečných grup" class="mw-editsection-visualeditor"><span>editovat</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Grupa&amp;action=edit&amp;section=29" title="Editovat zdrojový kód sekce Klasifikace jednoduchých konečných grup"><span>editovat zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="uvodni-upozorneni hatnote">Související informace naleznete také v&#160;článku&#32;<a href="/wiki/Klasifikace_jednoduch%C3%BDch_kone%C4%8Dn%C3%BDch_grup" title="Klasifikace jednoduchých konečných grup">Klasifikace jednoduchých konečných grup</a>.</div> <p>Zatím co klasifikace konečných <i>Abelových</i> grup je jednoduchá, snaha o&#160;klasifikaci všech konečných grup vede na hluboké a&#160;složité matematické problémy. Podle Lagrangeovy věty, konečné grupy <a href="/wiki/Prvo%C4%8D%C3%ADslo" title="Prvočíslo">prvočíselného řádu</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> jsou nutně cyklické a&#160;tedy izomorfní grupě <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\mathbb {Z} _{p},+)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>,</mo> <mo>+</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\mathbb {Z} _{p},+)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c7947168a4d4886ae68da8886083d055524f7d62" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.261ex; height:3.009ex;" alt="{\displaystyle (\mathbb {Z} _{p},+)}"></span>. O&#160;grupách řádu <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef685027b97072ee63a8c738f395cd40f63767e1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:2.313ex; height:3.009ex;" alt="{\displaystyle p^{2}}"></span> víme že jsou Abelovy, toto tvrzení už ale neplatí pro grupy řádu <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ddd72168a6110be2b0bd12486f30b4d40c2d4608" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:2.313ex; height:3.009ex;" alt="{\displaystyle p^{3}}"></span>, jak ukazuje příklad dihedrální grupy D<sub>4</sub> řádu 8&#160;=&#160;2<sup>3</sup>.<sup id="cite_ref-106" class="reference"><a href="#cite_note-106"><span class="cite-bracket">&#91;</span>97<span class="cite-bracket">&#93;</span></a></sup> Grupy nízkých řádů se dají popsat i&#160;pomocí počítačových programů (např. <a href="/wiki/Po%C4%8D%C3%ADta%C4%8Dov%C3%BD_algebraick%C3%BD_syst%C3%A9m" title="Počítačový algebraický systém">computer algebra system</a>). Malé grupy jsou známe až do&#160;řádu 2000 a&#160;až na izomorfismus jich je kolem 50 <a href="/wiki/Miliarda" title="Miliarda">miliard</a>.<sup id="cite_ref-107" class="reference"><a href="#cite_note-107"><span class="cite-bracket">&#91;</span>98<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-108" class="reference"><a href="#cite_note-108"><span class="cite-bracket">&#91;</span>pozn 10<span class="cite-bracket">&#93;</span></a></sup> Klasifikace všech konečných grup však zatím není známa. </p><p>Mezistupeň v&#160;porozumění konečných grup představuje klasifikace konečných <i><a href="/wiki/Jednoduch%C3%A1_grupa" title="Jednoduchá grupa">jednoduchých grup</a></i>.<sup id="cite_ref-109" class="reference"><a href="#cite_note-109"><span class="cite-bracket">&#91;</span>pozn 11<span class="cite-bracket">&#93;</span></a></sup> Netriviální grupa se jmenuje <i>jednoduchá</i>, pokud jediné její <a href="/wiki/Norm%C3%A1ln%C3%AD_podgrupa" title="Normální podgrupa">normální podgrupy</a> jsou grupa <a href="/wiki/Trivi%C3%A1ln%C3%AD_grupa" title="Triviální grupa">triviální</a> (jednoprvková) a&#160;celá grupa. <a href="/w/index.php?title=Jordan%E2%80%93H%C3%B6lderova_v%C4%9Bta&amp;action=edit&amp;redlink=1" class="new" title="Jordan–Hölderova věta (stránka neexistuje)">Jordan–Hölderova věta</a> popisuje jednoduché grupy jako základní prvky pro konstrukci obecných konečných grup.<sup id="cite_ref-110" class="reference"><a href="#cite_note-110"><span class="cite-bracket">&#91;</span>99<span class="cite-bracket">&#93;</span></a></sup> </p><p>Dokončení seznamu všech konečných jednoduchých grup byl velký úspěch současné teorie grup. Věta o&#160;<a href="/wiki/Klasifikace_jednoduch%C3%BDch_kone%C4%8Dn%C3%BDch_grup" title="Klasifikace jednoduchých konečných grup">klasifikaci jednoduchých konečných grup</a> říká, že každá konečná jednoduchá grupa spadá buďto do&#160;jedné z 18 nekonečných skupin grup nebo je jednou z&#160;26 takzvaných <a href="/w/index.php?title=Sporadick%C3%A1_grupa&amp;action=edit&amp;redlink=1" class="new" title="Sporadická grupa (stránka neexistuje)">sporadických grup</a>.<sup id="cite_ref-111" class="reference"><a href="#cite_note-111"><span class="cite-bracket">&#91;</span>100<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-112" class="reference"><a href="#cite_note-112"><span class="cite-bracket">&#91;</span>pozn 12<span class="cite-bracket">&#93;</span></a></sup> Tato věta plně charakterizuje všechny konečné jednoduché grupy. Kvůli ohromné náročnosti jejího důkazu bývá v&#160;<a href="/wiki/Angli%C4%8Dtina" title="Angličtina">angličtině</a> také nazývána „<i><span class="cizojazycne" lang="en" title="angličtina">Enormous theorem</span></i>“. </p><p>Důkaz této věty nebyl nikdy uveřejněn v celku. Sestává z více než 500 článků od&#160;přibližně 100 autorů uveřejněných v&#160;nejrůznějších matematických časopisech převážně mezi lety <a href="/wiki/1955" title="1955">1955</a> a&#160;<a href="/wiki/1983" title="1983">1983</a>. Odhaduje se, že celková délka důkazu je 10 000–15 000 stran tištěného textu.<sup id="cite_ref-100proof12_113-0" class="reference"><a href="#cite_note-100proof12-113"><span class="cite-bracket">&#91;</span>101<span class="cite-bracket">&#93;</span></a></sup> Taková rozsáhlost může vyvolat (podobně jako u <a href="/wiki/Probl%C3%A9m_%C4%8Dty%C5%99_barev" title="Problém čtyř barev">věty o čtyřech barvách</a>) pochybnosti o&#160;správnosti důkazu. Žádný matematik totiž pravděpodobně nepřečetl tento důkaz celý. Každá jednotlivá část důkazu publikovaná v&#160;průběhu téměř třiceti let však byla mnoha matematiky přečtena a&#160;uznána za správnou. Proto je tento důkaz všeobecně považován za správný. </p> <div class="mw-heading mw-heading2"><h2 id="Grupy_s_dodatečnou_strukturou"><span id="Grupy_s_dodate.C4.8Dnou_strukturou"></span>Grupy s dodatečnou strukturou</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Grupa&amp;veaction=edit&amp;section=30" title="Editace sekce: Grupy s dodatečnou strukturou" class="mw-editsection-visualeditor"><span>editovat</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Grupa&amp;action=edit&amp;section=30" title="Editovat zdrojový kód sekce Grupy s dodatečnou strukturou"><span>editovat zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Mnoho grup jsou současně příklady jiných matematických <a href="/wiki/Algebraick%C3%A1_struktura" title="Algebraická struktura">struktur</a>. V&#160;jazyku <a href="/wiki/Teorie_kategori%C3%AD" title="Teorie kategorií">teorie kategorií</a> jsou to <i>grupové objekty</i> nějaké kategorie, tedy objekty a&#160;morfismy, které jsou kompatibilní s&#160;grupovou strukturou. </p> <div class="mw-heading mw-heading3"><h3 id="Topologické_grupy"><span id="Topologick.C3.A9_grupy"></span>Topologické grupy</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Grupa&amp;veaction=edit&amp;section=31" title="Editace sekce: Topologické grupy" class="mw-editsection-visualeditor"><span>editovat</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Grupa&amp;action=edit&amp;section=31" title="Editovat zdrojový kód sekce Topologické grupy"><span>editovat zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/Soubor:Circle_as_Lie_group2.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/de/Circle_as_Lie_group2.svg/220px-Circle_as_Lie_group2.svg.png" decoding="async" width="220" height="242" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/de/Circle_as_Lie_group2.svg/330px-Circle_as_Lie_group2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/de/Circle_as_Lie_group2.svg/440px-Circle_as_Lie_group2.svg.png 2x" data-file-width="377" data-file-height="414" /></a><figcaption>Jednotková <a href="/wiki/Kru%C5%BEnice" title="Kružnice">kružnice</a> v&#160;<a href="/wiki/Komplexn%C3%AD_rovina" title="Komplexní rovina">komplexní rovině</a>. Spolu s&#160;násobením <a href="/wiki/Komplexn%C3%AD_%C4%8D%C3%ADslo" title="Komplexní číslo">komplexních čísel</a> tvoří <a href="/wiki/Topologick%C3%A1_grupa" title="Topologická grupa">topologickou grupu</a>, neboť násobení a&#160;dělení jednotkových komplexních čísel je <a href="/wiki/Spojitost" class="mw-redirect" title="Spojitost">spojité</a>. Je to navíc <a href="/wiki/Varieta_(matematika)" title="Varieta (matematika)">varieta</a> a&#160;tedy i&#160;<a href="/wiki/Lieova_grupa" title="Lieova grupa">Lieova grupa</a>, protože každé <a href="/wiki/Okol%C3%AD_(matematika)" title="Okolí (matematika)">okolí</a> nějakého bodu, podobně jako červený oblouk na obrázku, je podobný kousku <a href="/wiki/Eukleidovsk%C3%BD_prostor" title="Eukleidovský prostor">Eukleidova prostoru</a>, v&#160;tomto případě reálné <a href="/wiki/P%C5%99%C3%ADmka" title="Přímka">přímky</a> (znázorněno dole).</figcaption></figure> <p>Některé <a href="/wiki/Topologick%C3%BD_prostor" title="Topologický prostor">topologické prostory</a> mohou být vybaveny grupovým násobením. Abychom takovou grupu nazvali <a href="/wiki/Topologick%C3%A1_grupa" title="Topologická grupa">topologickou grupu</a>, musí být obě operace vzájemně kompatibilní, což znamená že grupové násobení <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g\cdot h}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>h</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g\cdot h}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d4ac66a8dc7e57303a6f04d0ee08b5c081ddb3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.134ex; height:2.509ex;" alt="{\displaystyle g\cdot h}"></span> závisí <a href="/wiki/Spojitost" class="mw-redirect" title="Spojitost">spojitě</a> na <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span> a&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b26be3e694314bc90c3215047e4a2010c6ee184a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.339ex; height:2.176ex;" alt="{\displaystyle h}"></span> a&#160;také inverze <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ae77eeb0200a3b0e26ff4b251fb845ca1b385c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.451ex; height:3.009ex;" alt="{\displaystyle g^{-1}}"></span> je spojitou funkcí <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span>.<sup id="cite_ref-114" class="reference"><a href="#cite_note-114"><span class="cite-bracket">&#91;</span>102<span class="cite-bracket">&#93;</span></a></sup> </p><p>Nejzákladnějším příkladem jsou <a href="/wiki/Re%C3%A1ln%C3%A9_%C4%8D%C3%ADslo" title="Reálné číslo">reálná čísla</a> spolu se sčítáním <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\mathbb {R} ,+)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>,</mo> <mo>+</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\mathbb {R} ,+)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b33b2c9358cbd7bad20aa0b18651d3bba582c09" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.329ex; height:2.843ex;" alt="{\displaystyle (\mathbb {R} ,+)}"></span>, nenulová reálná čísla s&#160;násobením <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\mathbb {R} \backslash \{0\},\cdot )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mi class="MJX-variant" mathvariant="normal">&#x2216;<!-- ∖ --></mi> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo fence="false" stretchy="false">}</mo> <mo>,</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\mathbb {R} \backslash \{0\},\cdot )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b17dedfe0a591d5709a701016ba0b89c14c19889" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.818ex; height:2.843ex;" alt="{\displaystyle (\mathbb {R} \backslash \{0\},\cdot )}"></span> a&#160;podobně libovolné topologické těleso, jako například <a href="/wiki/Komplexn%C3%AD_%C4%8D%C3%ADslo" title="Komplexní číslo">komplexní čísla</a> anebo <a href="/wiki/P-adick%C3%A1_%C4%8D%C3%ADsla" class="mw-redirect" title="P-adická čísla">p-adická čísla</a>. Všechny tyto grupy jsou <a href="/w/index.php?title=Lok%C3%A1ln%C4%9B_kompaktn%C3%AD_grupa&amp;action=edit&amp;redlink=1" class="new" title="Lokálně kompaktní grupa (stránka neexistuje)">lokálně kompaktní</a>, je na nich tedy možné definovat invariantní <a href="/wiki/Haarova_m%C3%ADra" title="Haarova míra">Haarovu míru</a>.<sup id="cite_ref-115" class="reference"><a href="#cite_note-115"><span class="cite-bracket">&#91;</span>103<span class="cite-bracket">&#93;</span></a></sup> Díky ní je možné na grupě <a href="/wiki/Integr%C3%A1l" title="Integrál">integrovat</a> a&#160;studovat vlastnosti grupy pomocí <a href="/wiki/Harmonick%C3%A1_anal%C3%BDza" title="Harmonická analýza">harmonické analýzy</a>. <a href="/wiki/Invariance" title="Invariance">Invariance</a> v&#160;tomto případě znamená, že </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{G}f(x)\,dx=\int _{G}f(c\cdot x)\,dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mi>c</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{G}f(x)\,dx=\int _{G}f(c\cdot x)\,dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/26bd4b5c902842ead4d6a982e6b9f03a55b36566" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:26.892ex; height:5.676ex;" alt="{\displaystyle \int _{G}f(x)\,dx=\int _{G}f(c\cdot x)\,dx}"></span></dd></dl> <p>pro libovolný prvek grupy <i>c</i>. </p><p><a href="/wiki/Line%C3%A1rn%C3%AD_grupa" title="Lineární grupa">Maticové grupy</a> nad těmito tělesy jsou také lokálně kompaktní topologické grupy a&#160;taktéž <a href="/w/index.php?title=Ad%C3%A9ly&amp;action=edit&amp;redlink=1" class="new" title="Adély (stránka neexistuje)">adély</a> a&#160;<a href="/w/index.php?title=Adelick%C3%A9_algebraick%C3%A9_grupy&amp;action=edit&amp;redlink=1" class="new" title="Adelické algebraické grupy (stránka neexistuje)">adelické algebraické grupy</a>, které jsou důležité v&#160;<a href="/wiki/Teorie_%C4%8D%C3%ADsel" title="Teorie čísel">teorii čísel</a>.<sup id="cite_ref-116" class="reference"><a href="#cite_note-116"><span class="cite-bracket">&#91;</span>104<span class="cite-bracket">&#93;</span></a></sup> </p><p>Galoisovy grupy rozšíření těles nekonečného stupně jako například absolutní Galoisova grupa, se dají přirozeně vybavit tzv. <a href="/w/index.php?title=Krullova_topologie&amp;action=edit&amp;redlink=1" class="new" title="Krullova topologie (stránka neexistuje)">Krullovou topologií</a>.<sup id="cite_ref-117" class="reference"><a href="#cite_note-117"><span class="cite-bracket">&#91;</span>105<span class="cite-bracket">&#93;</span></a></sup> Zobecněním těchto idejí adaptovaným na potřeby <a href="/wiki/Algebraick%C3%A1_geometrie" title="Algebraická geometrie">algebraické geometrie</a>, je <a href="/w/index.php?title=Et%C3%A1ln%C3%AD_fundament%C3%A1ln%C3%AD_grupa&amp;action=edit&amp;redlink=1" class="new" title="Etální fundamentální grupa (stránka neexistuje)">etální fundamentální grupa</a>.<sup id="cite_ref-118" class="reference"><a href="#cite_note-118"><span class="cite-bracket">&#91;</span>106<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Lieovy_grupy">Lieovy grupy</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Grupa&amp;veaction=edit&amp;section=32" title="Editace sekce: Lieovy grupy" class="mw-editsection-visualeditor"><span>editovat</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Grupa&amp;action=edit&amp;section=32" title="Editovat zdrojový kód sekce Lieovy grupy"><span>editovat zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="uvodni-upozorneni hatnote"> Podrobnější informace naleznete v článku&#32;<a href="/wiki/Lieova_grupa" title="Lieova grupa">Lieova grupa</a>.</div> <p><b>Lieovy grupy</b> (pojmenovány po <a href="/wiki/Sophus_Lie" title="Sophus Lie">Sophusi Lieovi</a>) jsou grupy, které mají současně strukturu hladké <a href="/wiki/Varieta_(matematika)" title="Varieta (matematika)">variety</a>, tj.&#160;jsou lokálně <a href="/wiki/Difeomorfismus" title="Difeomorfismus">difeomorfní</a> <a href="/wiki/Eukleidovsk%C3%BD_prostor" title="Eukleidovský prostor">Eukleidovskému prostoru</a> dané <a href="/wiki/Dimenze_vektorov%C3%A9ho_prostoru" title="Dimenze vektorového prostoru">dimenze</a>.<sup id="cite_ref-119" class="reference"><a href="#cite_note-119"><span class="cite-bracket">&#91;</span>107<span class="cite-bracket">&#93;</span></a></sup> Struktura variety musí být opět kompatibilní se&#160;strukturou grupy, tj.&#160;v tomto případě násobení a&#160;inverze musí být hladká (tj.&#160;<a href="/wiki/Diferencovatelnost" title="Diferencovatelnost">diferencovatelné</a>) zobrazení. </p><p>Příkladem Lieovy grupy je <a href="/wiki/Line%C3%A1rn%C3%AD_grupa" title="Lineární grupa">obecná lineární grupa</a>, která se skládá ze všech <a href="/wiki/Regul%C3%A1rn%C3%AD_matice" title="Regulární matice">regulárních</a> reálných nebo komplexních <a href="/wiki/Matice" title="Matice">matic</a> dimenze <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\times n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&#x00D7;<!-- × --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\times n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59d2b4cb72e304526cf5b5887147729ea259da78" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.63ex; height:1.676ex;" alt="{\displaystyle n\times n}"></span>. Je to <a href="/wiki/Otev%C5%99en%C3%A1_mno%C5%BEina" title="Otevřená množina">otevřená množina</a> v&#160;prostoru všech matic <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\times n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&#x00D7;<!-- × --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\times n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59d2b4cb72e304526cf5b5887147729ea259da78" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.63ex; height:1.676ex;" alt="{\displaystyle n\times n}"></span>, neboť je určena nerovností </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \det(A)\neq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">det</mo> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>&#x2260;<!-- ≠ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \det(A)\neq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81d898084132330fd10494d5d3bda55b449162ad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.043ex; height:2.843ex;" alt="{\displaystyle \det(A)\neq 0}"></span></dd></dl> <p>kde <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> je matice.<sup id="cite_ref-120" class="reference"><a href="#cite_note-120"><span class="cite-bracket">&#91;</span>108<span class="cite-bracket">&#93;</span></a></sup> Kromě obecné lineární grupy existují další série Lieových grup, které se nazývají <a href="/w/index.php?title=Klasick%C3%A9_grupy&amp;action=edit&amp;redlink=1" class="new" title="Klasické grupy (stránka neexistuje)">klasické grupy</a>. Jsou to <a href="/wiki/Speci%C3%A1ln%C3%AD_line%C3%A1rn%C3%AD_grupa" title="Speciální lineární grupa">Speciální lineární grupa</a>, která pozůstává pouze z&#160;matic s&#160;<a href="/wiki/Determinant" title="Determinant">determinantem</a> rovným jedné, <a href="/wiki/Ortogon%C3%A1ln%C3%AD_grupa" title="Ortogonální grupa">ortogonální</a> lineární grupy, <a href="/wiki/Unit%C3%A1rn%C3%AD_grupa" title="Unitární grupa">unitární grupy</a> a&#160;<a href="/wiki/Symplektick%C3%A1_grupa" title="Symplektická grupa">symplektické grupy</a>. </p><p>Lieovy grupy mají úzkou souvislost s&#160;<a href="/wiki/Lieova_algebra" title="Lieova algebra">Lieovýma algebrami</a>. Lieova algebra Lieovy grupy popisuje lokální vlastnosti grupy.<sup id="cite_ref-121" class="reference"><a href="#cite_note-121"><span class="cite-bracket">&#91;</span>109<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-122" class="reference"><a href="#cite_note-122"><span class="cite-bracket">&#91;</span>110<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Wilhelm_Killing" title="Wilhelm Killing">Wilhelm Killing</a> a <a href="/wiki/%C3%89lie_Cartan" title="Élie Cartan">Élie Cartan</a> popsali klasifikaci jednoduchých Lieových algeber nad <a href="/wiki/Komplexn%C3%AD_%C4%8D%C3%ADslo" title="Komplexní číslo">komplexními čísly</a> a&#160;reálnými čísly. Každá komplexní jednoduchá Lieova algebra patří do 4 nekonečných sérií anebo je jednou z&#160;pěti výjimečných Lieových algeber.<sup id="cite_ref-123" class="reference"><a href="#cite_note-123"><span class="cite-bracket">&#91;</span>111<span class="cite-bracket">&#93;</span></a></sup> Grupy, které k&#160;těmto algebrám náleží, jsou (až na nakrytí) <a href="/wiki/Speci%C3%A1ln%C3%AD_line%C3%A1rn%C3%AD_grupa" title="Speciální lineární grupa">speciální lineární grupy</a>, <a href="/wiki/Ortogon%C3%A1ln%C3%AD_grupa" title="Ortogonální grupa">ortogonální lineární grupy</a> liché a&#160;sudé dimenze, <a href="/wiki/Symplektick%C3%A1_grupa" title="Symplektická grupa">symplektické grupy</a> a&#160;<a href="/w/index.php?title=V%C3%BDjime%C4%8Dn%C3%A9_Lieovy_grupy&amp;action=edit&amp;redlink=1" class="new" title="Výjimečné Lieovy grupy (stránka neexistuje)">výjimečné Lieovy grupy</a> (vše nad komplexními čísly). K&#160;těmto komplexním grupám existuje vícero reálných forem (ke každé existuje právě jedna <a href="/wiki/Kompaktnost" class="mw-redirect" title="Kompaktnost">kompaktní</a>).<sup id="cite_ref-124" class="reference"><a href="#cite_note-124"><span class="cite-bracket">&#91;</span>112<span class="cite-bracket">&#93;</span></a></sup> </p><p>Lieovy grupy mají zásadní důležitost ve&#160;<a href="/wiki/Fyzika" title="Fyzika">fyzice</a>: <a href="/wiki/Teor%C3%A9m_Noetherov%C3%A9" title="Teorém Noetherové">teorém Noetherové</a> dává do&#160;souvislosti symetrie a kvantity, které se <a href="/wiki/Invariance" title="Invariance">zachovávají</a>.<sup id="cite_ref-125" class="reference"><a href="#cite_note-125"><span class="cite-bracket">&#91;</span>113<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Oto%C4%8Den%C3%AD" title="Otočení">Rotace</a>, podobně jako <a href="/wiki/Posunut%C3%AD_(geometrie)" title="Posunutí (geometrie)">translace</a> v&#160;<a href="/wiki/Prostor_(matematika)" title="Prostor (matematika)">prostoru</a> a&#160;<a href="/wiki/%C4%8Cas" title="Čas">času</a> jsou základní symetrie zákonů klasické <a href="/wiki/Mechanika" title="Mechanika">mechaniky</a>. Jiný jednoduchý příklad tvoří <a href="/wiki/Lorentzova_transformace" title="Lorentzova transformace">Lorentzovy transformace</a>, které dávají do souvislosti měření polohy a&#160;času ve <a href="/wiki/Speci%C3%A1ln%C3%AD_teorie_relativity" title="Speciální teorie relativity">speciální teorii relativity</a>.<sup id="cite_ref-126" class="reference"><a href="#cite_note-126"><span class="cite-bracket">&#91;</span>114<span class="cite-bracket">&#93;</span></a></sup> Množina všech takových transformací se nazývá <a href="/wiki/Lorentzova_grupa" title="Lorentzova grupa">Lorentzova grupa</a> a&#160;tvoří rotační symetrie <a href="/wiki/Minkowsk%C3%A9ho_prostor" title="Minkowského prostor">Minkowského prostoru</a>, který je model <a href="/wiki/%C4%8Casoprostor" title="Časoprostor">časoprostoru</a> v&#160;teorii relativity při absenci <a href="/wiki/Hmota" title="Hmota">hmoty</a>. Grupa všech symetrií Minkowského prostoru, která zahrnuje i&#160;<a href="/wiki/Posunut%C3%AD_(geometrie)" title="Posunutí (geometrie)">translace</a>, se nazývá <a href="/wiki/Poincar%C3%A9ho_grupa" title="Poincarého grupa">Poincarého grupa</a>. Tato Lieova grupa hraje hlavní roli v&#160;speciální teorii relativity a&#160;také v <a href="/wiki/Kvantov%C3%A1_teorie_pole" title="Kvantová teorie pole">kvantové teorii pole</a>. Unitární grupy <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle SU(2)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mi>U</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle SU(2)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/27f8cd5de228a45abf34210c1666cd46dd87bc12" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.254ex; height:2.843ex;" alt="{\displaystyle SU(2)}"></span> a&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle SU(3)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mi>U</mi> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle SU(3)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ac7389c1b06f783c603fa08d057b7c526228519" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.254ex; height:2.843ex;" alt="{\displaystyle SU(3)}"></span> vystupují jako grupy symetrií některých částicových teorií a&#160;výjimečné Lieovy grupy <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{8}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>8</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{8}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48479e96d90b4cfabc7784106cc3cfff907dda34" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.769ex; height:2.509ex;" alt="{\displaystyle E_{8}}"></span> se vyskytují často v&#160;<a href="/wiki/Teorie_strun" class="mw-redirect" title="Teorie strun">teorii strun</a> a&#160;<a href="/wiki/Kvantov%C3%A1_gravitace" title="Kvantová gravitace">kvantové gravitaci</a>.<sup id="cite_ref-127" class="reference"><a href="#cite_note-127"><span class="cite-bracket">&#91;</span>115<span class="cite-bracket">&#93;</span></a></sup> </p><p>Důležitou součástí studia Lieových grup je studium jejich <a href="/wiki/Reprezentace_(grupa)" title="Reprezentace (grupa)">reprezentací</a>. Tyto reprezentace mají aplikace v&#160;<a href="/wiki/Geometrie" title="Geometrie">geometrii</a> a&#160;díky nim je možné také zobecnit klasickou <a href="/wiki/Harmonick%C3%A1_anal%C3%BDza" title="Harmonická analýza">harmonickou analýzu</a>, která studuje <a href="/wiki/Matematick%C3%A1_funkce" class="mw-redirect" title="Matematická funkce">funkce</a> prostřednictvím jejich <a href="/wiki/Fourierova_transformace" title="Fourierova transformace">Fourierovy transformace</a>, na funkce definované na&#160;Lieových grupách.<sup id="cite_ref-varad_80-1" class="reference"><a href="#cite_note-varad-80"><span class="cite-bracket">&#91;</span>72<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Zobecnění"><span id="Zobecn.C4.9Bn.C3.AD"></span>Zobecnění</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Grupa&amp;veaction=edit&amp;section=33" title="Editace sekce: Zobecnění" class="mw-editsection-visualeditor"><span>editovat</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Grupa&amp;action=edit&amp;section=33" title="Editovat zdrojový kód sekce Zobecnění"><span>editovat zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="thumb tright"><div class="thumbinner" style=""> <table> <tbody><tr> <th></th> <th><a href="/wiki/Asociativita" title="Asociativita">Asociativita</a>&#160;&#160;</th> <th><a href="/wiki/Neutr%C3%A1ln%C3%AD_prvek" title="Neutrální prvek">Neutrální prvek</a> &#160;&#160;</th> <th><a href="/wiki/Inverzn%C3%AD_prvek" title="Inverzní prvek">Inverzní prvek</a> &#160;&#160;</th> <th><a href="/wiki/Komutativita" title="Komutativita">Komutativita</a> </th></tr> <tr> <th><a href="/wiki/Abelova_grupa" title="Abelova grupa">Abelova grupa</a> </th> <td><span typeof="mw:File"><span title="Ano"><img alt="Ano" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/41/Symbol_confirmed.svg/20px-Symbol_confirmed.svg.png" decoding="async" width="20" height="21" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/41/Symbol_confirmed.svg/30px-Symbol_confirmed.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/41/Symbol_confirmed.svg/40px-Symbol_confirmed.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span><span style="display:none">Ano</span></td> <td><span typeof="mw:File"><span title="Ano"><img alt="Ano" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/41/Symbol_confirmed.svg/20px-Symbol_confirmed.svg.png" decoding="async" width="20" height="21" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/41/Symbol_confirmed.svg/30px-Symbol_confirmed.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/41/Symbol_confirmed.svg/40px-Symbol_confirmed.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span><span style="display:none">Ano</span></td> <td><span typeof="mw:File"><span title="Ano"><img alt="Ano" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/41/Symbol_confirmed.svg/20px-Symbol_confirmed.svg.png" decoding="async" width="20" height="21" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/41/Symbol_confirmed.svg/30px-Symbol_confirmed.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/41/Symbol_confirmed.svg/40px-Symbol_confirmed.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span><span style="display:none">Ano</span></td> <td><span typeof="mw:File"><span title="Ano"><img alt="Ano" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/41/Symbol_confirmed.svg/20px-Symbol_confirmed.svg.png" decoding="async" width="20" height="21" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/41/Symbol_confirmed.svg/30px-Symbol_confirmed.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/41/Symbol_confirmed.svg/40px-Symbol_confirmed.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span><span style="display:none">Ano</span> </td></tr> <tr> <th><a class="mw-selflink selflink">Grupa</a> </th> <td><span typeof="mw:File"><span title="Ano"><img alt="Ano" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/41/Symbol_confirmed.svg/20px-Symbol_confirmed.svg.png" decoding="async" width="20" height="21" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/41/Symbol_confirmed.svg/30px-Symbol_confirmed.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/41/Symbol_confirmed.svg/40px-Symbol_confirmed.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span><span style="display:none">Ano</span></td> <td><span typeof="mw:File"><span title="Ano"><img alt="Ano" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/41/Symbol_confirmed.svg/20px-Symbol_confirmed.svg.png" decoding="async" width="20" height="21" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/41/Symbol_confirmed.svg/30px-Symbol_confirmed.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/41/Symbol_confirmed.svg/40px-Symbol_confirmed.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span><span style="display:none">Ano</span></td> <td><span typeof="mw:File"><span title="Ano"><img alt="Ano" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/41/Symbol_confirmed.svg/20px-Symbol_confirmed.svg.png" decoding="async" width="20" height="21" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/41/Symbol_confirmed.svg/30px-Symbol_confirmed.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/41/Symbol_confirmed.svg/40px-Symbol_confirmed.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span><span style="display:none">Ano</span></td> <td><span typeof="mw:File"><span title="Ne"><img alt="Ne" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Symbol_delete_vote_darkened.svg/20px-Symbol_delete_vote_darkened.svg.png" decoding="async" width="20" height="21" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Symbol_delete_vote_darkened.svg/30px-Symbol_delete_vote_darkened.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Symbol_delete_vote_darkened.svg/40px-Symbol_delete_vote_darkened.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span><span style="display:none">Ne</span> </td></tr> <tr> <th><a href="/wiki/Monoid" title="Monoid">Monoid</a> </th> <td><span typeof="mw:File"><span title="Ano"><img alt="Ano" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/41/Symbol_confirmed.svg/20px-Symbol_confirmed.svg.png" decoding="async" width="20" height="21" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/41/Symbol_confirmed.svg/30px-Symbol_confirmed.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/41/Symbol_confirmed.svg/40px-Symbol_confirmed.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span><span style="display:none">Ano</span></td> <td><span typeof="mw:File"><span title="Ano"><img alt="Ano" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/41/Symbol_confirmed.svg/20px-Symbol_confirmed.svg.png" decoding="async" width="20" height="21" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/41/Symbol_confirmed.svg/30px-Symbol_confirmed.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/41/Symbol_confirmed.svg/40px-Symbol_confirmed.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span><span style="display:none">Ano</span></td> <td><span typeof="mw:File"><span title="Ne"><img alt="Ne" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Symbol_delete_vote_darkened.svg/20px-Symbol_delete_vote_darkened.svg.png" decoding="async" width="20" height="21" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Symbol_delete_vote_darkened.svg/30px-Symbol_delete_vote_darkened.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Symbol_delete_vote_darkened.svg/40px-Symbol_delete_vote_darkened.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span><span style="display:none">Ne</span></td> <td><span typeof="mw:File"><span title="Ne"><img alt="Ne" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Symbol_delete_vote_darkened.svg/20px-Symbol_delete_vote_darkened.svg.png" decoding="async" width="20" height="21" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Symbol_delete_vote_darkened.svg/30px-Symbol_delete_vote_darkened.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Symbol_delete_vote_darkened.svg/40px-Symbol_delete_vote_darkened.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span><span style="display:none">Ne</span> </td></tr> <tr> <th><a href="/wiki/Pologrupa" title="Pologrupa">Pologrupa</a> </th> <td><span typeof="mw:File"><span title="Ano"><img alt="Ano" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/41/Symbol_confirmed.svg/20px-Symbol_confirmed.svg.png" decoding="async" width="20" height="21" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/41/Symbol_confirmed.svg/30px-Symbol_confirmed.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/41/Symbol_confirmed.svg/40px-Symbol_confirmed.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span><span style="display:none">Ano</span></td> <td><span typeof="mw:File"><span title="Ne"><img alt="Ne" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Symbol_delete_vote_darkened.svg/20px-Symbol_delete_vote_darkened.svg.png" decoding="async" width="20" height="21" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Symbol_delete_vote_darkened.svg/30px-Symbol_delete_vote_darkened.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Symbol_delete_vote_darkened.svg/40px-Symbol_delete_vote_darkened.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span><span style="display:none">Ne</span></td> <td><span typeof="mw:File"><span title="Ne"><img alt="Ne" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Symbol_delete_vote_darkened.svg/20px-Symbol_delete_vote_darkened.svg.png" decoding="async" width="20" height="21" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Symbol_delete_vote_darkened.svg/30px-Symbol_delete_vote_darkened.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Symbol_delete_vote_darkened.svg/40px-Symbol_delete_vote_darkened.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span><span style="display:none">Ne</span></td> <td><span typeof="mw:File"><span title="Ne"><img alt="Ne" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Symbol_delete_vote_darkened.svg/20px-Symbol_delete_vote_darkened.svg.png" decoding="async" width="20" height="21" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Symbol_delete_vote_darkened.svg/30px-Symbol_delete_vote_darkened.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Symbol_delete_vote_darkened.svg/40px-Symbol_delete_vote_darkened.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span><span style="display:none">Ne</span> </td></tr> <tr> <th><a href="/wiki/Lupa_(matematika)" class="mw-redirect" title="Lupa (matematika)">Lupa</a> </th> <td><span typeof="mw:File"><span title="Ne"><img alt="Ne" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Symbol_delete_vote_darkened.svg/20px-Symbol_delete_vote_darkened.svg.png" decoding="async" width="20" height="21" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Symbol_delete_vote_darkened.svg/30px-Symbol_delete_vote_darkened.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Symbol_delete_vote_darkened.svg/40px-Symbol_delete_vote_darkened.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span><span style="display:none">Ne</span></td> <td><span typeof="mw:File"><span title="Ano"><img alt="Ano" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/41/Symbol_confirmed.svg/20px-Symbol_confirmed.svg.png" decoding="async" width="20" height="21" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/41/Symbol_confirmed.svg/30px-Symbol_confirmed.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/41/Symbol_confirmed.svg/40px-Symbol_confirmed.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span><span style="display:none">Ano</span></td> <td><span typeof="mw:File"><span title="Ano"><img alt="Ano" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/41/Symbol_confirmed.svg/20px-Symbol_confirmed.svg.png" decoding="async" width="20" height="21" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/41/Symbol_confirmed.svg/30px-Symbol_confirmed.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/41/Symbol_confirmed.svg/40px-Symbol_confirmed.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span><span style="display:none">Ano</span></td> <td><span typeof="mw:File"><span title="Ne"><img alt="Ne" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Symbol_delete_vote_darkened.svg/20px-Symbol_delete_vote_darkened.svg.png" decoding="async" width="20" height="21" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Symbol_delete_vote_darkened.svg/30px-Symbol_delete_vote_darkened.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Symbol_delete_vote_darkened.svg/40px-Symbol_delete_vote_darkened.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span><span style="display:none">Ne</span> </td></tr> <tr> <th><a href="/wiki/Kvazigrupa" title="Kvazigrupa">Kvazigrupa</a> </th> <td><span typeof="mw:File"><span title="Ne"><img alt="Ne" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Symbol_delete_vote_darkened.svg/20px-Symbol_delete_vote_darkened.svg.png" decoding="async" width="20" height="21" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Symbol_delete_vote_darkened.svg/30px-Symbol_delete_vote_darkened.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Symbol_delete_vote_darkened.svg/40px-Symbol_delete_vote_darkened.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span><span style="display:none">Ne</span></td> <td><span typeof="mw:File"><span title="Ne"><img alt="Ne" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Symbol_delete_vote_darkened.svg/20px-Symbol_delete_vote_darkened.svg.png" decoding="async" width="20" height="21" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Symbol_delete_vote_darkened.svg/30px-Symbol_delete_vote_darkened.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Symbol_delete_vote_darkened.svg/40px-Symbol_delete_vote_darkened.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span><span style="display:none">Ne</span></td> <td><span typeof="mw:File"><span title="Ano"><img alt="Ano" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/41/Symbol_confirmed.svg/20px-Symbol_confirmed.svg.png" decoding="async" width="20" height="21" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/41/Symbol_confirmed.svg/30px-Symbol_confirmed.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/41/Symbol_confirmed.svg/40px-Symbol_confirmed.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span><span style="display:none">Ano</span></td> <td><span typeof="mw:File"><span title="Ne"><img alt="Ne" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Symbol_delete_vote_darkened.svg/20px-Symbol_delete_vote_darkened.svg.png" decoding="async" width="20" height="21" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Symbol_delete_vote_darkened.svg/30px-Symbol_delete_vote_darkened.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Symbol_delete_vote_darkened.svg/40px-Symbol_delete_vote_darkened.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span><span style="display:none">Ne</span> </td></tr> <tr> <th><a href="/wiki/Grupoid" title="Grupoid">Grupoid</a> </th> <td><span typeof="mw:File"><span title="Ne"><img alt="Ne" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Symbol_delete_vote_darkened.svg/20px-Symbol_delete_vote_darkened.svg.png" decoding="async" width="20" height="21" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Symbol_delete_vote_darkened.svg/30px-Symbol_delete_vote_darkened.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Symbol_delete_vote_darkened.svg/40px-Symbol_delete_vote_darkened.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span><span style="display:none">Ne</span></td> <td><span typeof="mw:File"><span title="Ne"><img alt="Ne" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Symbol_delete_vote_darkened.svg/20px-Symbol_delete_vote_darkened.svg.png" decoding="async" width="20" height="21" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Symbol_delete_vote_darkened.svg/30px-Symbol_delete_vote_darkened.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Symbol_delete_vote_darkened.svg/40px-Symbol_delete_vote_darkened.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span><span style="display:none">Ne</span></td> <td><span typeof="mw:File"><span title="Ne"><img alt="Ne" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Symbol_delete_vote_darkened.svg/20px-Symbol_delete_vote_darkened.svg.png" decoding="async" width="20" height="21" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Symbol_delete_vote_darkened.svg/30px-Symbol_delete_vote_darkened.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Symbol_delete_vote_darkened.svg/40px-Symbol_delete_vote_darkened.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span><span style="display:none">Ne</span></td> <td><span typeof="mw:File"><span title="Ne"><img alt="Ne" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Symbol_delete_vote_darkened.svg/20px-Symbol_delete_vote_darkened.svg.png" decoding="async" width="20" height="21" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Symbol_delete_vote_darkened.svg/30px-Symbol_delete_vote_darkened.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Symbol_delete_vote_darkened.svg/40px-Symbol_delete_vote_darkened.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span><span style="display:none">Ne</span> </td></tr></tbody></table> <div class="thumbcaption">Struktury s jednou binární operací</div></div></div> <p>V&#160;<a href="/wiki/Abstraktn%C3%AD_algebra" title="Abstraktní algebra">abstraktní algebře</a> je možné definovat obecnější struktury vynecháním některých axiomů grupy.<sup id="cite_ref-128" class="reference"><a href="#cite_note-128"><span class="cite-bracket">&#91;</span>116<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-129" class="reference"><a href="#cite_note-129"><span class="cite-bracket">&#91;</span>117<span class="cite-bracket">&#93;</span></a></sup> Pokud například vynecháme v&#160;definici grupy požadavek, aby ke&#160;každému prvku existoval inverzní prvek, výsledná algebraická struktura se nazývá <a href="/wiki/Monoid" title="Monoid">monoid</a>. <a href="/wiki/Mno%C5%BEina" title="Množina">Množina</a> <a href="/wiki/P%C5%99irozen%C3%A9_%C4%8D%C3%ADslo" title="Přirozené číslo">přirozených čísel</a> (včetně nuly) spolu se&#160;sčítáním tvoří monoid, podobně množina všech celých čísel spolu s&#160;operací násobení. Existuje obecná metoda jak formálně přidat inverzní prvky k&#160;libovolnému komutativnímu monoidu podobným způsobem jako jsou odvozena racionální čísla <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\mathbb {Q} \backslash \{0\},\cdot )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> <mi class="MJX-variant" mathvariant="normal">&#x2216;<!-- ∖ --></mi> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo fence="false" stretchy="false">}</mo> <mo>,</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\mathbb {Q} \backslash \{0\},\cdot )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d88ccdfb6f5c368adf38e986477e57cb55f5b66a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.948ex; height:2.843ex;" alt="{\displaystyle (\mathbb {Q} \backslash \{0\},\cdot )}"></span> od <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\mathbb {Z} \backslash \{0\},\cdot )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mi class="MJX-variant" mathvariant="normal">&#x2216;<!-- ∖ --></mi> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo fence="false" stretchy="false">}</mo> <mo>,</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\mathbb {Z} \backslash \{0\},\cdot )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45958e116a5f9503555b5cbb31194876503fea62" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.69ex; height:2.843ex;" alt="{\displaystyle (\mathbb {Z} \backslash \{0\},\cdot )}"></span> a&#160;takto vzniklá grupa se nazývá <a href="/w/index.php?title=Grothendieckova_grupa&amp;action=edit&amp;redlink=1" class="new" title="Grothendieckova grupa (stránka neexistuje)">Grothendieckova grupa</a>. Dalším příkladem algebraické struktury je <a href="/wiki/Kvazigrupa" title="Kvazigrupa">kvazigrupa</a>, v které sice neexistuje neutrální prvek, přesto je ale možné <a href="/wiki/D%C4%9Blen%C3%AD" title="Dělení">dělit</a>, tj.&#160;rovnice <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\cdot x=b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>x</mi> <mo>=</mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\cdot x=b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/287eeadb64ac963840d9d27237db4cdb466a8269" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.335ex; height:2.176ex;" alt="{\displaystyle a\cdot x=b}"></span> a&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\cdot a=b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>a</mi> <mo>=</mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\cdot a=b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92e4b8c81bf7247e324ec6d020afb67f48ee0688" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.335ex; height:2.176ex;" alt="{\displaystyle x\cdot a=b}"></span> mají řešení pro každé <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> a&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span>. Struktura, v&#160;které je dána pouze binární operace bez žádných dalších předpokladů o&#160;ní, se nazývá <a href="/wiki/Grupoid" title="Grupoid">grupoid</a>. </p><p>Další matematické pojmy zobecňující grupu jsou <a href="/wiki/Morfismus" title="Morfismus">morfismy</a> nějaké <a href="/wiki/Teorie_kategori%C3%AD" title="Teorie kategorií">kategorie</a>. Morfismy se dají skládat, a&#160;jejich složení splňuje asociativní zákon, ovšem obecně nemusí existovat inverzní morfismy a&#160;také není možné složit libovolné morfismy (jenom prvky <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Mor(A,B)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mi>o</mi> <mi>r</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Mor(A,B)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41f1175e503102acae3f25cbef4de21701390395" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.969ex; height:2.843ex;" alt="{\displaystyle Mor(A,B)}"></span> a&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Mor(B,C)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mi>o</mi> <mi>r</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo>,</mo> <mi>C</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Mor(B,C)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f3d0a775daa39c18006ca7831c421d92c5f7946" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.992ex; height:2.843ex;" alt="{\displaystyle Mor(B,C)}"></span>). Kategorie, v&#160;které je každý morfismus izomorfismem, se nazývá <a href="/wiki/Grupoid_(teorie_kategori%C3%AD)" title="Grupoid (teorie kategorií)">grupoid v&#160;teorii kategorií</a>. Morfismy tohoto objektu splňují asociativitu, existenci neutrálního i&#160;inverzního prvku, ovšem opět je možné skládat jenom takové morfismy, že složení má smysl. </p><p>Libovolný z&#160;těchto konceptů se dá dále zobecňovat na obecnou <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>-ární operaci (tj.&#160;operace, která má jako vstup <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> argumentů). Vhodným zobecněním axiomů grupy dostáváme tzv.&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>-ární grupu.<sup id="cite_ref-130" class="reference"><a href="#cite_note-130"><span class="cite-bracket">&#91;</span>118<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Odkazy">Odkazy</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Grupa&amp;veaction=edit&amp;section=34" title="Editace sekce: Odkazy" class="mw-editsection-visualeditor"><span>editovat</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Grupa&amp;action=edit&amp;section=34" title="Editovat zdrojový kód sekce Odkazy"><span>editovat zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Poznámky"><span id="Pozn.C3.A1mky"></span>Poznámky</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Grupa&amp;veaction=edit&amp;section=35" title="Editace sekce: Poznámky" class="mw-editsection-visualeditor"><span>editovat</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Grupa&amp;action=edit&amp;section=35" title="Editovat zdrojový kód sekce Poznámky"><span>editovat zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-2"><span class="mw-cite-backlink"><a href="#cite_ref-2">↑</a></span> <span class="reference-text">Tento axiom je implicitně obsažen v&#160;tom, že <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cdot }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x22C5;<!-- ⋅ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cdot }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba2c023bad1bd39ed49080f729cbf26bc448c9ba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.439ex; margin-bottom: -0.61ex; width:0.647ex; height:1.176ex;" alt="{\displaystyle \cdot }"></span> je <a href="/wiki/Bin%C3%A1rn%C3%AD_operace" title="Binární operace">binární operace</a> na <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span> a&#160;někdy se proto vynechává.</span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><a href="#cite_ref-3">↑</a></span> <span class="reference-text">Výsledek složení více než dvou prvků grupy tedy nezávisí na pořadí, v kterém opakující se binární operaci vyhodnocujeme. Výraz <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a\cdot b)\cdot c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a\cdot b)\cdot c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0cbef89938d558d6426913424f53b3c8b862d561" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.402ex; height:2.843ex;" alt="{\displaystyle (a\cdot b)\cdot c}"></span> znamená, že nejdříve spočítáme <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\cdot b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\cdot b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/620419d3ed53abc98659a5fc0f3a5eb6177830ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.906ex; height:2.176ex;" alt="{\displaystyle a\cdot b}"></span> a tento výsledek vynásobíme zprava <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span>. Výraz <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\cdot (b\cdot c)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mi>b</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>c</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\cdot (b\cdot c)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2e100537a7c04dc6a1710f470175a5857755da7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.402ex; height:2.843ex;" alt="{\displaystyle a\cdot (b\cdot c)}"></span> znamená, že nejdříve spočítáme <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b\cdot c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b\cdot c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c5b653a2e89e68180073912d47192e07f2ed1a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.683ex; height:2.176ex;" alt="{\displaystyle b\cdot c}"></span> a tento výsledek vynásobíme zleva <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span>.</span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><a href="#cite_ref-4">↑</a></span> <span class="reference-text">Často používané písmeno <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>e</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd253103f0876afc68ebead27a5aa9867d927467" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.083ex; height:1.676ex;" alt="{\displaystyle e}"></span> je odvozeno z&#160;německého <i>Einheit</i>, viz <a rel="nofollow" class="external text" href="http://mathworld.wolfram.com/IdentityElement.html">Identity Element</a> na Wolfram mathword.</span> </li> <li id="cite_note-37"><span class="mw-cite-backlink"><a href="#cite_ref-37">↑</a></span> <span class="reference-text">Asociativita grupové operace platí, protože grupová operace je asociativní na celém <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span>.</span> </li> <li id="cite_note-40"><span class="mw-cite-backlink"><a href="#cite_ref-40">↑</a></span> <span class="reference-text">Myslí se součiny libovolného konečného počtu prvků, které se mohou opakovat.</span> </li> <li id="cite_note-48"><span class="mw-cite-backlink"><a href="#cite_ref-48">↑</a></span> <span class="reference-text">Obvykle se jednoduchá Lieova grupa definuje abstraktněji jako taková grupa, jejíž <a href="/wiki/Lieova_algebra" title="Lieova algebra">Lieova algebra</a> je <a href="/w/index.php?title=Jednoduch%C3%A1_Lieova_algebra&amp;action=edit&amp;redlink=1" class="new" title="Jednoduchá Lieova algebra (stránka neexistuje)">jednoduchá Lieova algebra</a>. Tato definice vylučuje například komutativní Lieovy grupy. Pro přesnou definici, viz např. <cite class="book" style="font-style:normal;">HELGASON, Sigurdur. <i>Differential geometry, Lie groups, and symmetric spaces</i>. [s.l.]: Academic Press, 1981. 630&#160;s. <a rel="nofollow" class="external text" href="https://archive.org/details/differentialgeom00helg_172">Dostupné online</a>. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/9780123384607" title="Speciální:Zdroje knih/9780123384607"><span class="&#73;SBN">9780123384607</span></a></span>. S.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/differentialgeom00helg_172/page/n145">131</a>. (anglicky)</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Differential+geometry%2C+Lie+groups%2C+and+symmetric+spaces&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fdifferentialgeom00helg_172&amp;rft.isbn=9780123384607&amp;rft.aulast=Helgason&amp;rft.aufirst=Sigurdur&amp;rft.pub=Academic+Press&amp;rft.date=1981&amp;rft.tpages=630&amp;rft.pages=%5Bhttps%3A%2F%2Farchive.org%2Fdetails%2Fdifferentialgeom00helg_172%2Fpage%2Fn145+131%5D"><span style="display:none">&#160;</span></span></span> </li> <li id="cite_note-67"><span class="mw-cite-backlink"><a href="#cite_ref-67">↑</a></span> <span class="reference-text"> Analogické spontánní <a href="/wiki/Naru%C5%A1en%C3%AD_symetrie" class="mw-redirect" title="Narušení symetrie">narušení symetrie</a> se využívá v&#160;<a href="/wiki/Kvantov%C3%A1_teorie_pole" title="Kvantová teorie pole">kvantové teorii pole</a> k teoretickému vysvětlení vzájemných interakcí <a href="/wiki/%C4%8C%C3%A1stice" title="Částice">částic</a>, např. v&#160;teorii <a href="/wiki/Elektroslab%C3%A1_interakce" title="Elektroslabá interakce">elektroslabé interakce</a>, viz např. <cite class="book" style="font-style:normal;">KILIAN, Wolfgang. <i>Electroweak Symmetry Breaking: The Bottom-Up Approach</i>. [s.l.]: Springer, 2003. <a rel="nofollow" class="external text" href="https://archive.org/details/electroweaksymme0000kili">Dostupné online</a>. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/9780387400976" title="Speciální:Zdroje knih/9780387400976"><span class="&#73;SBN">9780387400976</span></a></span>. (anglicky)</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Electroweak+Symmetry+Breaking%3A+The+Bottom-Up+Approach&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Felectroweaksymme0000kili&amp;rft.isbn=9780387400976&amp;rft.aulast=Kilian&amp;rft.aufirst=Wolfgang&amp;rft.pub=Springer&amp;rft.date=2003"><span style="display:none">&#160;</span></span></span> </li> <li id="cite_note-74"><span class="mw-cite-backlink"><a href="#cite_ref-74">↑</a></span> <span class="reference-text">Tato věc se byla klíčová pro klasifikaci jednoduchých konečných grup, viz např. Aschbacher, Michael (2004), <i><a rel="nofollow" class="external text" href="http://www.ams.org/notices/200407/fea-aschbacher.pdf">The Status of the Classification of the Finite Simple Groups</a></i> (PDF), Notices of the American Mathematical Society <b>51</b> (7): 736–740.</span> </li> <li id="cite_note-97"><span class="mw-cite-backlink"><a href="#cite_ref-97">↑</a></span> <span class="reference-text">V CD technologii se používá jako ochrana před poškrábáním a chybami tzv. <a href="/wiki/Reedovy%E2%80%93Solomonovy_k%C3%B3dy" title="Reedovy–Solomonovy kódy">Reedův–Solomonův kód</a>, viz např. <cite class="book" style="font-style:normal;">WICKER,, Stephen B.; BHARGAVA, Vijay K. <i>Reed-Solomon Codes and Their Applications</i>. [s.l.]: John Wiley and Sons, 1999. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/9780780353916" title="Speciální:Zdroje knih/9780780353916"><span class="&#73;SBN">9780780353916</span></a></span>. S.&#160;14. (anglicky)</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Reed-Solomon+Codes+and+Their+Applications&amp;rft.isbn=9780780353916&amp;rft.aulast=Wicker%2C&amp;rft.aufirst=Stephen+B.&amp;rft.au=Bhargava%2C+Vijay+K.&amp;rft.pub=John+Wiley+and+Sons&amp;rft.date=1999&amp;rft.pages=14"><span style="display:none">&#160;</span></span></span> </li> <li id="cite_note-108"><span class="mw-cite-backlink"><a href="#cite_ref-108">↑</a></span> <span class="reference-text">Naprostá většina z nich je řádu 1024.</span> </li> <li id="cite_note-109"><span class="mw-cite-backlink"><a href="#cite_ref-109">↑</a></span> <span class="reference-text">Mezera mezi klasifikací jednoduchý group a&#160;všech grup spočívá v&#160;<i>problému extenze</i>, který je příliš obtížný na obecné řešení. Viz např.&#160;Aschbacher (2004), <a rel="nofollow" class="external text" href="http://www.ams.org/notices/200407/fea-aschbacher.pdf">The Status of the Classification of the Finite Simple Groups</a>, str. 737.</span> </li> <li id="cite_note-112"><span class="mw-cite-backlink"><a href="#cite_ref-112">↑</a></span> <span class="reference-text">Největší z&#160;nich, tzv.&#160;<a href="/w/index.php?title=Monstergrupa&amp;action=edit&amp;redlink=1" class="new" title="Monstergrupa (stránka neexistuje)">monstergrupa</a>, obsahuje asi <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 10^{54}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>54</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 10^{54}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1804107c95f990c5ae8aacfa35741df2250cc157" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.201ex; height:2.676ex;" alt="{\displaystyle 10^{54}}"></span> prvků.</span> </li> </ol></div> <div class="mw-heading mw-heading3"><h3 id="Reference">Reference</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Grupa&amp;veaction=edit&amp;section=36" title="Editace sekce: Reference" class="mw-editsection-visualeditor"><span>editovat</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Grupa&amp;action=edit&amp;section=36" title="Editovat zdrojový kód sekce Reference"><span>editovat zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><span class="plainlinks"><i>V tomto článku byl použit <a href="/wiki/Wikipedie:WikiProjekt_P%C5%99eklad/Rady" title="Wikipedie:WikiProjekt Překlad/Rady">překlad</a> textu z článku <a class="external text" href="https://en.wikipedia.org/wiki/Group_(mathematics)?oldid=425504386"><span class="cizojazycne" lang="en" title="angličtina">Group (mathematics)</span></a> na anglické Wikipedii.</i></span> </p> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><a href="#cite_ref-1">↑</a></span> <span class="reference-text"><cite class="book" style="font-style:normal;">RAMOND, Pierre. <i>Group Theory: A Physicist's Survey</i>. [s.l.]: Cambridge University Press, 2010. 310&#160;s. <a rel="nofollow" class="external text" href="https://archive.org/details/grouptheoryphysi00ramo_629">Dostupné online</a>. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/9780521896030" title="Speciální:Zdroje knih/9780521896030"><span class="&#73;SBN">9780521896030</span></a></span>. S.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/grouptheoryphysi00ramo_629/page/n16">5</a>. (anglicky)</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Group+Theory%3A+A+Physicist%27s+Survey&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fgrouptheoryphysi00ramo_629&amp;rft.isbn=9780521896030&amp;rft.aulast=Ramond&amp;rft.aufirst=Pierre&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2010&amp;rft.tpages=310&amp;rft.pages=%5Bhttps%3A%2F%2Farchive.org%2Fdetails%2Fgrouptheoryphysi00ramo_629%2Fpage%2Fn16+5%5D"><span style="display:none">&#160;</span></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><a href="#cite_ref-5">↑</a></span> <span class="reference-text"><cite class="book" style="font-style:normal;">PLOTKIN, Boris Isaakovich. <i>Universal algebra, algebraic logic, and databases</i>. [s.l.]: Springer, 1994. 438&#160;s. <a rel="nofollow" class="external text" href="https://archive.org/details/universalalgebra00plot">Dostupné online</a>. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/9780792326656" title="Speciální:Zdroje knih/9780792326656"><span class="&#73;SBN">9780792326656</span></a></span>. S.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/universalalgebra00plot/page/n58">48</a>. (anglicky)</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Universal+algebra%2C+algebraic+logic%2C+and+databases&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Funiversalalgebra00plot&amp;rft.isbn=9780792326656&amp;rft.aulast=Plotkin&amp;rft.aufirst=Boris+Isaakovich&amp;rft.pub=Springer&amp;rft.date=1994&amp;rft.tpages=438&amp;rft.pages=%5Bhttps%3A%2F%2Farchive.org%2Fdetails%2Funiversalalgebra00plot%2Fpage%2Fn58+48%5D"><span style="display:none">&#160;</span></span></span> </li> <li id="cite_note-Rosicky_s9-6"><span class="mw-cite-backlink"><a href="#cite_ref-Rosicky_s9_6-0">↑</a></span> <span class="reference-text"><cite class="book" style="font-style:normal;">ROSICKÝ, Jiří. <i>Algebra</i>. 4 (1.dotisk). vyd. Brno: Masarykova univerzita, 2005. 133&#160;s. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/80-210-2964-1" title="Speciální:Zdroje knih/80-210-2964-1"><span class="&#73;SBN">80-210-2964-1</span></a></span>. Kapitola 1, s.&#160;9.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Algebra&amp;rft.isbn=80-210-2964-1&amp;rft.aulast=Rosick%C3%BD&amp;rft.aufirst=Ji%C5%99%C3%AD&amp;rft.atitle=1&amp;rft.place=Brno&amp;rft.pub=Masarykova+univerzita&amp;rft.date=2005&amp;rft.edition=4+%281.dotisk%29&amp;rft.tpages=133&amp;rft.pages=9"><span style="display:none">&#160;</span></span></span> </li> <li id="cite_note-Prochazka_s100-7"><span class="mw-cite-backlink">↑ <a href="#cite_ref-Prochazka_s100_7-0"><sup style="font-style: italic; font-weight: bold; vertical-align: top">a</sup></a> <a href="#cite_ref-Prochazka_s100_7-1"><sup style="font-style: italic; font-weight: bold; vertical-align: top">b</sup></a></span> <span class="reference-text"><cite class="book" style="font-style:normal;">PROCHÁZKA, Ladislav, a kol. <i>Algebra</i>. Praha: Academia, 1990. 560&#160;s. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/80-200-0301-0" title="Speciální:Zdroje knih/80-200-0301-0"><span class="&#73;SBN">80-200-0301-0</span></a></span>. Kapitola III., s.&#160;100.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Algebra&amp;rft.isbn=80-200-0301-0&amp;rft.aulast=Proch%C3%A1zka&amp;rft.aufirst=Ladislav&amp;rft.atitle=III.&amp;rft.place=Praha&amp;rft.pub=Academia&amp;rft.date=1990&amp;rft.tpages=560&amp;rft.pages=100"><span style="display:none">&#160;</span></span></span> </li> <li id="cite_note-Valvoda-8"><span class="mw-cite-backlink"><a href="#cite_ref-Valvoda_8-0">↑</a></span> <span class="reference-text"><cite class="book" style="font-style:normal;">VALVODA, Václav; POLCAROVÁ, Milena; LUKÁČ, Pavel. <i>Základy strukturní analýzy</i>. 1. vyd. Praha: Karolinum, 1992. 489&#160;s. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/80-7066-648-X" title="Speciální:Zdroje knih/80-7066-648-X"><span class="&#73;SBN">80-7066-648-X</span></a></span>.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Z%C3%A1klady+strukturn%C3%AD+anal%C3%BDzy&amp;rft.isbn=80-7066-648-X&amp;rft.aulast=Valvoda&amp;rft.aufirst=V%C3%A1clav&amp;rft.au=Polcarov%C3%A1%2C+Milena&amp;rft.au=Luk%C3%A1%C4%8D%2C+Pavel&amp;rft.place=Praha&amp;rft.pub=Karolinum&amp;rft.date=1992&amp;rft.edition=1&amp;rft.tpages=489"><span style="display:none">&#160;</span></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><a href="#cite_ref-9">↑</a></span> <span class="reference-text"><cite class="book" style="font-style:normal;">WUSSING, Hans. <i>The Genesis of the Abstract Group Concept: A Contribution to the History of the Origin of Abstract Group Theory</i>. New York: Dover Publications, 2007. <a rel="nofollow" class="external text" href="https://archive.org/details/genesisofabstrac0000wuss">Dostupné online</a>. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/978-0-486-45868-7" title="Speciální:Zdroje knih/978-0-486-45868-7"><span class="&#73;SBN">978-0-486-45868-7</span></a></span>. (anglicky)</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=The+Genesis+of+the+Abstract+Group+Concept%3A+A+Contribution+to+the+History+of+the+Origin+of+Abstract+Group+Theory&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fgenesisofabstrac0000wuss&amp;rft.isbn=978-0-486-45868-7&amp;rft.aulast=Wussing&amp;rft.aufirst=Hans&amp;rft.place=New+York&amp;rft.pub=Dover+Publications&amp;rft.date=2007"><span style="display:none">&#160;</span></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><a href="#cite_ref-10">↑</a></span> <span class="reference-text"><cite style="font-style:normal;">KLEINER, Israel. The evolution of group theory: a brief survey. <i>Mathematics Magazine</i>. 1986, s. 195–215. <a href="/wiki/Digital_object_identifier" title="Digital object identifier">DOI</a> <a rel="nofollow" class="external text" href="https://dx.doi.org/10.2307%2F2690312">10.2307/2690312</a>.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitaceperiodika&amp;rft.jtitle=Mathematics+Magazine&amp;rft_id=info:doi/10.2307%2F2690312&amp;rft.atitle=The+evolution+of+group+theory%3A+a+brief+survey&amp;rft.date=1986&amp;rft.pages=195%E2%80%93215&amp;rft.aulast=Kleiner&amp;rft.aufirst=Israel"><span style="display:none">&#160;</span></span><span title="Chyba v použití šablony!" class="error" style="font-weight:bold;display:none;">Je zde použita šablona <code>{&#x7b;<a href="/wiki/%C5%A0ablona:Citation" title="Šablona:Citation">Citation</a>}}</code> označená jako k „pouze dočasnému použití“.</span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><a href="#cite_ref-11">↑</a></span> <span class="reference-text"><cite class="book" style="font-style:normal;">SMITH, David Eugene. <i>History of Modern Mathematics</i>. [s.l.]: [s.n.], 1906. <a rel="nofollow" class="external text" href="http://www.gutenberg.org/etext/8746">Dostupné online</a>. (anglicky)</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=History+of+Modern+Mathematics&amp;rft_id=http%3A%2F%2Fwww.gutenberg.org%2Fetext%2F8746&amp;rft.aulast=Smith&amp;rft.aufirst=David+Eugene&amp;rft.date=1906"><span style="display:none">&#160;</span></span></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><a href="#cite_ref-12">↑</a></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://www.bbc.co.uk/dna/h2g2/A2982567">The History Behind The Quadratic Formula</a></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><a href="#cite_ref-13">↑</a></span> <span class="reference-text">O'Connor, John J.; Robertson, Edmund F., <a rel="nofollow" class="external text" href="http://www-history.mcs.st-andrews.ac.uk/Biographies/Ferrari.html">Lodovico Ferrari</a>, <a rel="nofollow" class="external text" href="http://www-history.mcs.st-andrews.ac.uk/">MacTutor History of Mathematics archive</a>, University of St Andrews.</span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><a href="#cite_ref-14">↑</a></span> <span class="reference-text"><cite class="book" style="font-style:normal;">HAVLÍČEK, Karel. <i>Cesty moderní matematiky</i>. Praha: Horizont, 1976. S.&#160;62.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Cesty+modern%C3%AD+matematiky&amp;rft.aulast=Havl%C3%AD%C4%8Dek&amp;rft.aufirst=Karel&amp;rft.place=Praha&amp;rft.pub=Horizont&amp;rft.date=1976&amp;rft.pages=62"><span style="display:none">&#160;</span></span></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><a href="#cite_ref-15">↑</a></span> <span class="reference-text"><cite class="book" style="font-style:normal;"><a href="/wiki/%C3%89variste_Galois" title="Évariste Galois">GALOIS, Évariste</a>. <i>Manuscrits de Évariste Galois</i>. Paris: Gauthier-Villars, 1908. <a rel="nofollow" class="external text" href="http://quod.lib.umich.edu/cgi/t/text/text-idx?c=umhistmath;idno=AAN9280">Dostupné online</a>. (francouzsky)</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Manuscrits+de+%C3%89variste+Galois&amp;rft_id=http%3A%2F%2Fquod.lib.umich.edu%2Fcgi%2Ft%2Ftext%2Ftext-idx%3Fc%3Dumhistmath%3Bidno%3DAAN9280&amp;rft.aulast=Galois&amp;rft.aufirst=%C3%89variste&amp;rft.place=Paris&amp;rft.pub=Gauthier-Villars&amp;rft.date=1908"><span style="display:none">&#160;</span></span> (Galoisovo dílo bylo prvně publikováno <a href="/wiki/Joseph_Liouville" title="Joseph Liouville">Josephem Liouvillem</a> v roce 1843)</span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><a href="#cite_ref-16">↑</a></span> <span class="reference-text">Kleiner, str. 202</span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><a href="#cite_ref-17">↑</a></span> <span class="reference-text">Wussig, §III.2</span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><a href="#cite_ref-18">↑</a></span> <span class="reference-text"><cite class="book" style="font-style:normal;"><a href="/wiki/Sophus_Lie" title="Sophus Lie">LIE, Sophus</a>. <i>Gesammelte Abhandlungen, Band 1</i>. New York: Johnson Reprint Corp., 1973. (německy)</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Gesammelte+Abhandlungen%2C+Band+1&amp;rft.aulast=Lie&amp;rft.aufirst=Sophus&amp;rft.place=New+York&amp;rft.pub=Johnson+Reprint+Corp.&amp;rft.date=1973"><span style="display:none">&#160;</span></span>.</span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><a href="#cite_ref-19">↑</a></span> <span class="reference-text">Kleiner, str. 204</span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><a href="#cite_ref-20">↑</a></span> <span class="reference-text">Wussig, §I.3.4</span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><a href="#cite_ref-21">↑</a></span> <span class="reference-text"><cite class="book" style="font-style:normal;"><a href="/wiki/Camille_Jordan" title="Camille Jordan">JORDAN, Camille</a>. <i>Traité des substitutions et des équations algébriques</i>. Paris: Gauthier-Villars, 1870. <a rel="nofollow" class="external text" href="https://archive.org/details/traitdessubstit01jordgoog">Dostupné online</a>. (francouzsky)</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Trait%C3%A9+des+substitutions+et+des+%C3%A9quations+alg%C3%A9briques&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Ftraitdessubstit01jordgoog&amp;rft.aulast=Jordan&amp;rft.aufirst=Camille&amp;rft.place=Paris&amp;rft.pub=Gauthier-Villars&amp;rft.date=1870"><span style="display:none">&#160;</span></span></span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><a href="#cite_ref-22">↑</a></span> <span class="reference-text"><cite style="font-style:normal;">VON DYCK, Walther. Gruppentheoretische Studien. <i>Mathematische Annalen</i>. 1882, s. 1–44. <a href="/wiki/Digital_object_identifier" title="Digital object identifier">DOI</a> <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1007%2FBF01443322">10.1007/BF01443322</a>.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitaceperiodika&amp;rft.jtitle=Mathematische+Annalen&amp;rft_id=info:doi/10.1007%2FBF01443322&amp;rft.atitle=Gruppentheoretische+Studien&amp;rft.date=1882&amp;rft.pages=1%E2%80%9344&amp;rft.aulast=von+Dyck&amp;rft.aufirst=Walther"><span style="display:none">&#160;</span></span><span title="Chyba v použití šablony!" class="error" style="font-weight:bold;display:none;">Je zde použita šablona <code>{&#x7b;<a href="/wiki/%C5%A0ablona:Citation" title="Šablona:Citation">Citation</a>}}</code> označená jako k „pouze dočasnému použití“.</span></span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><a href="#cite_ref-23">↑</a></span> <span class="reference-text"><cite class="book" style="font-style:normal;">CURTIS, Charles W. <i>Pioneers of Representation Theory: Frobenius, Burnside, Schur, and Brauer</i>. Providence, R.I.: American Mathematical Society, 2003. <a rel="nofollow" class="external text" href="https://archive.org/details/pioneersofrepres0015curt">Dostupné online</a>. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/978-0-8218-2677-5" title="Speciální:Zdroje knih/978-0-8218-2677-5"><span class="&#73;SBN">978-0-8218-2677-5</span></a></span>. (anglicky)</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Pioneers+of+Representation+Theory%3A+Frobenius%2C+Burnside%2C+Schur%2C+and+Brauer&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fpioneersofrepres0015curt&amp;rft.isbn=978-0-8218-2677-5&amp;rft.aulast=Curtis&amp;rft.aufirst=Charles+W.&amp;rft.place=Providence%2C+R.I.&amp;rft.pub=American+Mathematical+Society&amp;rft.date=2003"><span style="display:none">&#160;</span></span>.</span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><a href="#cite_ref-24">↑</a></span> <span class="reference-text"><cite class="book" style="font-style:normal;">MACKEY, George Whitelaw. <i>The theory of unitary group representations</i>. [s.l.]: University of Chicago Press, 1976. <a rel="nofollow" class="external text" href="https://archive.org/details/theoryofunitaryg0000mack">Dostupné online</a>. (anglicky)</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=The+theory+of+unitary+group+representations&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Ftheoryofunitaryg0000mack&amp;rft.aulast=Mackey&amp;rft.aufirst=George+Whitelaw&amp;rft.pub=University+of+Chicago+Press&amp;rft.date=1976"><span style="display:none">&#160;</span></span></span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><a href="#cite_ref-25">↑</a></span> <span class="reference-text"><cite class="book" style="font-style:normal;">BOREL, Armand. <i>Essays in the History of Lie Groups and Algebraic Groups</i>. Providence, R.I.: <a href="/wiki/American_Mathematical_Society" class="mw-redirect" title="American Mathematical Society">American Mathematical Society</a>, 2001. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/978-0-8218-0288-5" title="Speciální:Zdroje knih/978-0-8218-0288-5"><span class="&#73;SBN">978-0-8218-0288-5</span></a></span>. (anglicky)</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Essays+in+the+History+of+Lie+Groups+and+Algebraic+Groups&amp;rft.isbn=978-0-8218-0288-5&amp;rft.aulast=Borel&amp;rft.aufirst=Armand&amp;rft.place=Providence%2C+R.I.&amp;rft.pub=%5B%5BAmerican+Mathematical+Society%5D%5D&amp;rft.date=2001"><span style="display:none">&#160;</span></span></span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><a href="#cite_ref-26">↑</a></span> <span class="reference-text"><cite style="font-style:normal;"><a href="/w/index.php?title=Michael_Aschbacher&amp;action=edit&amp;redlink=1" class="new" title="Michael Aschbacher (stránka neexistuje)">ASCHBACHER, Michael</a>. The Status of the Classification of the Finite Simple Groups. <i>Notices of the American Mathematical Society</i>. 2004, s. 736–740. <a rel="nofollow" class="external text" href="http://www.ams.org/notices/200407/fea-aschbacher.pdf">Dostupné online</a>.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitaceperiodika&amp;rft.jtitle=Notices+of+the+American+Mathematical+Society&amp;rft_id=http%3A%2F%2Fwww.ams.org%2Fnotices%2F200407%2Ffea-aschbacher.pdf&amp;rft.atitle=The+Status+of+the+Classification+of+the+Finite+Simple+Groups&amp;rft.date=2004&amp;rft.pages=736%E2%80%93740&amp;rft.aulast=Aschbacher&amp;rft.aufirst=Michael"><span style="display:none">&#160;</span></span><span title="Chyba v použití šablony!" class="error" style="font-weight:bold;display:none;">Je zde použita šablona <code>{&#x7b;<a href="/wiki/%C5%A0ablona:Citation" title="Šablona:Citation">Citation</a>}}</code> označená jako k „pouze dočasnému použití“.</span></span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><a href="#cite_ref-27">↑</a></span> <span class="reference-text"><cite class="book" style="font-style:normal;">LANDIN, Joseph. <i>An introduction to algebraic structures</i>. [s.l.]: Courier Dover Publications, 1989. 247&#160;s. <a rel="nofollow" class="external text" href="https://archive.org/details/introductiontoal00land">Dostupné online</a>. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/9780486659404" title="Speciální:Zdroje knih/9780486659404"><span class="&#73;SBN">9780486659404</span></a></span>. S.&#160;68, definice 8. (anglicky)</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=An+introduction+to+algebraic+structures&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fintroductiontoal00land&amp;rft.isbn=9780486659404&amp;rft.aulast=Landin&amp;rft.aufirst=Joseph&amp;rft.pub=Courier+Dover+Publications&amp;rft.date=1989&amp;rft.tpages=247&amp;rft.pages=68%2C+definice+8"><span style="display:none">&#160;</span></span></span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><a href="#cite_ref-28">↑</a></span> <span class="reference-text"><cite class="book" style="font-style:normal;">LANG, Serge. <i>Undergraduate Algebra</i>. Berlin, New York: Springer, 2005. <a rel="nofollow" class="external text" href="https://archive.org/details/undergraduatealg00lang_077">Dostupné online</a>. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/978-0-387-22025-3" title="Speciální:Zdroje knih/978-0-387-22025-3"><span class="&#73;SBN">978-0-387-22025-3</span></a></span>. Kapitola §II.1, s.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/undergraduatealg00lang_077/page/n32">22</a>. (anglicky)</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Undergraduate+Algebra&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fundergraduatealg00lang_077&amp;rft.isbn=978-0-387-22025-3&amp;rft.aulast=Lang&amp;rft.aufirst=Serge&amp;rft.atitle=%C2%A7II.1&amp;rft.place=Berlin%2C+New+York&amp;rft.pub=Springer&amp;rft.date=2005&amp;rft.pages=%5Bhttps%3A%2F%2Farchive.org%2Fdetails%2Fundergraduatealg00lang_077%2Fpage%2Fn32+22%5D"><span style="display:none">&#160;</span></span></span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><a href="#cite_ref-29">↑</a></span> <span class="reference-text"> <cite class="book" style="font-style:normal;">MAC LANE, S.; BIRKHOFF, G. <i>Algebra</i>. Bratislava: Vydavateľstvo technickej a ekonomickej literatúry, 1974. Kapitola III (grupy), s.&#160;106, Veta 4,5. (slovensky)</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Algebra&amp;rft.aulast=Mac+Lane&amp;rft.aufirst=S.&amp;rft.au=Birkhoff%2C+G.&amp;rft.atitle=III+%28grupy%29&amp;rft.place=Bratislava&amp;rft.pub=Vydavate%C4%BEstvo+technickej+a+ekonomickej+literat%C3%BAry&amp;rft.date=1974&amp;rft.pages=106%2C+Veta+4%2C5"><span style="display:none">&#160;</span></span></span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><a href="#cite_ref-30">↑</a></span> <span class="reference-text"><cite class="book" style="font-style:normal;">JACOBSON, Nathan. <i>Basic algebra</i>. [s.l.]: <a href="/wiki/American_Mathematical_Society" class="mw-redirect" title="American Mathematical Society">American Mathematical Society</a>, 2009. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/978-0-486-47189-1" title="Speciální:Zdroje knih/978-0-486-47189-1"><span class="&#73;SBN">978-0-486-47189-1</span></a></span>. S.&#160;41. (anglicky)</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Basic+algebra&amp;rft.isbn=978-0-486-47189-1&amp;rft.aulast=Jacobson&amp;rft.aufirst=Nathan&amp;rft.pub=%5B%5BAmerican+Mathematical+Society%5D%5D&amp;rft.date=2009&amp;rft.pages=41"><span style="display:none">&#160;</span></span></span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><a href="#cite_ref-31">↑</a></span> <span class="reference-text">The MacTutor History of Mathematics archive, <a rel="nofollow" class="external text" href="http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Sun_Zi.html">Sun Zi</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20101201162008/http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Sun_Zi.html">Archivováno</a> 1. 12. 2010 na <a href="/wiki/Internet_Archive" title="Internet Archive">Wayback Machine</a>.</span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><a href="#cite_ref-32">↑</a></span> <span class="reference-text"><cite class="book" style="font-style:normal;">HUNGERFORD, Thomas W. <i>Algebra</i>. [s.l.]: Springer, 1996. 502&#160;s. <a rel="nofollow" class="external text" href="https://archive.org/details/algebra00hung_830">Dostupné online</a>. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/9780387905181" title="Speciální:Zdroje knih/9780387905181"><span class="&#73;SBN">9780387905181</span></a></span>. Kapitola 2, věta 2.2, s.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/algebra00hung_830/page/n100">76</a>. (anglicky)</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Algebra&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Falgebra00hung_830&amp;rft.isbn=9780387905181&amp;rft.aulast=Hungerford&amp;rft.aufirst=Thomas+W.&amp;rft.atitle=2%2C+v%C4%9Bta+2.2&amp;rft.pub=Springer&amp;rft.date=1996&amp;rft.tpages=502&amp;rft.pages=%5Bhttps%3A%2F%2Farchive.org%2Fdetails%2Falgebra00hung_830%2Fpage%2Fn100+76%5D"><span style="display:none">&#160;</span></span></span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><a href="#cite_ref-33">↑</a></span> <span class="reference-text">Wolf Holzmann, <a rel="nofollow" class="external text" href="http://www.cs.uleth.ca/~holzmann/notes/abelian.pdf">Classification of Finitely Generated Abelian Groups</a> (online)</span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><a href="#cite_ref-34">↑</a></span> <span class="reference-text"><cite class="book" style="font-style:normal;">LA HARPE, Pierre. <i>Topics in geometric group theory</i>. [s.l.]: AMS, 2000. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/9780226317212" title="Speciální:Zdroje knih/9780226317212"><span class="&#73;SBN">9780226317212</span></a></span>. S.&#160;46. (anglicky)</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Topics+in+geometric+group+theory&amp;rft.isbn=9780226317212&amp;rft.aulast=La+Harpe&amp;rft.aufirst=Pierre&amp;rft.pub=AMS&amp;rft.date=2000&amp;rft.pages=46"><span style="display:none">&#160;</span></span></span> </li> <li id="cite_note-35"><span class="mw-cite-backlink"><a href="#cite_ref-35">↑</a></span> <span class="reference-text"><cite class="book" style="font-style:normal;">HAZEWINKEL, Michiel. <i>Encyclopaedia of mathematics</i>. [s.l.]: Springer, 1995. 3748&#160;s. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/9781556080104" title="Speciální:Zdroje knih/9781556080104"><span class="&#73;SBN">9781556080104</span></a></span>. S.&#160;13–14. (anglicky)</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Encyclopaedia+of+mathematics&amp;rft.isbn=9781556080104&amp;rft.aulast=Hazewinkel&amp;rft.aufirst=Michiel&amp;rft.pub=Springer&amp;rft.date=1995&amp;rft.tpages=3748&amp;rft.pages=13%E2%80%9314"><span style="display:none">&#160;</span></span></span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><a href="#cite_ref-36">↑</a></span> <span class="reference-text">Rosický, definice 5.1</span> </li> <li id="cite_note-38"><span class="mw-cite-backlink"><a href="#cite_ref-38">↑</a></span> <span class="reference-text"><cite style="font-style:normal;"><a href="/w/index.php?title=Michio_Suzuki&amp;action=edit&amp;redlink=1" class="new" title="Michio Suzuki (stránka neexistuje)">SUZUKI, Michio</a>. On the lattice of subgroups of finite groups. <i><a href="/w/index.php?title=Transactions_of_the_American_Mathematical_Society&amp;action=edit&amp;redlink=1" class="new" title="Transactions of the American Mathematical Society (stránka neexistuje)">Transactions of the American Mathematical Society</a></i>. 1951, s. 345–371. <a href="/wiki/Digital_object_identifier" title="Digital object identifier">DOI</a> <a rel="nofollow" class="external text" href="https://dx.doi.org/10.2307%2F1990375">10.2307/1990375</a>. <a href="/wiki/JSTOR" title="JSTOR">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/1990375"><span class="JSTOR">1990375</span></a>.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitaceperiodika&amp;rft.jtitle=%5B%5BTransactions+of+the+American+Mathematical+Society%5D%5D&amp;rft_id=info:doi/10.2307%2F1990375&amp;rft.atitle=On+the+lattice+of+subgroups+of+finite+groups&amp;rft.date=1951&amp;rft.pages=345%E2%80%93371&amp;rft.aulast=Suzuki&amp;rft.aufirst=Michio"><span style="display:none">&#160;</span></span><span title="Chyba v použití šablony!" class="error" style="font-weight:bold;display:none;">Je zde použita šablona <code>{&#x7b;<a href="/wiki/%C5%A0ablona:Citation" title="Šablona:Citation">Citation</a>}}</code> označená jako k „pouze dočasnému použití“.</span></span> </li> <li id="cite_note-39"><span class="mw-cite-backlink"><a href="#cite_ref-39">↑</a></span> <span class="reference-text"><cite class="book" style="font-style:normal;">LEDERMANN, Walter. <i>Introduction to group theory</i>. New York: Barnes and Noble, 1973. Kapitola II.12, s.&#160;39. (anglicky)</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Introduction+to+group+theory&amp;rft.aulast=Ledermann&amp;rft.aufirst=Walter&amp;rft.atitle=II.12&amp;rft.place=New+York&amp;rft.pub=Barnes+and+Noble&amp;rft.date=1973&amp;rft.pages=39"><span style="display:none">&#160;</span></span></span> </li> <li id="cite_note-41"><span class="mw-cite-backlink"><a href="#cite_ref-41">↑</a></span> <span class="reference-text">Lang 2005, kap. §II.3, s. 34</span> </li> <li id="cite_note-42"><span class="mw-cite-backlink"><a href="#cite_ref-42">↑</a></span> <span class="reference-text">Lang 2005, II.4, s. 41</span> </li> <li id="cite_note-43"><span class="mw-cite-backlink"><a href="#cite_ref-43">↑</a></span> <span class="reference-text"><cite class="book" style="font-style:normal;">LANG, Serge. <i>Algebra</i>. New York: Springer, 2002. <a rel="nofollow" class="external text" href="https://archive.org/details/algebra00slan_986">Dostupné online</a>. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/978-0-387-95385-4" title="Speciální:Zdroje knih/978-0-387-95385-4"><span class="&#73;SBN">978-0-387-95385-4</span></a></span>. Kapitola §I.2, s.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/algebra00slan_986/page/n26">12</a>. (anglicky)</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Algebra&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Falgebra00slan_986&amp;rft.isbn=978-0-387-95385-4&amp;rft.aulast=Lang&amp;rft.aufirst=Serge&amp;rft.atitle=%C2%A7I.2&amp;rft.place=New+York&amp;rft.pub=Springer&amp;rft.date=2002&amp;rft.pages=%5Bhttps%3A%2F%2Farchive.org%2Fdetails%2Falgebra00slan_986%2Fpage%2Fn26+12%5D"><span style="display:none">&#160;</span></span></span> </li> <li id="cite_note-44"><span class="mw-cite-backlink"><a href="#cite_ref-44">↑</a></span> <span class="reference-text">Lang 2005, §II.4, s. 45</span> </li> <li id="cite_note-45"><span class="mw-cite-backlink"><a href="#cite_ref-45">↑</a></span> <span class="reference-text">Lang 2005, §II.4, p. 45</span> </li> <li id="cite_note-46"><span class="mw-cite-backlink"><a href="#cite_ref-46">↑</a></span> <span class="reference-text">Lang 2005, §II.4, s. 46. Cor. 4.6.</span> </li> <li id="cite_note-47"><span class="mw-cite-backlink"><a href="#cite_ref-47">↑</a></span> <span class="reference-text"><cite class="book" style="font-style:normal;">MOTL, Luboš; ZAHRADNÍK, Miloš. <i>Pěstujeme lineární algebru</i>. Praha: Karolinum, 1997. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20041225000824/http://www.kolej.mff.cuni.cz/~lmotm275/skripta/mzahrad/node17.html#SECTION02210000000000000000">Dostupné v&#160;archivu</a> pořízeném dne&#160;2004-12-25. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/9788071841869" title="Speciální:Zdroje knih/9788071841869"><span class="&#73;SBN">9788071841869</span></a></span>. Kapitola Grupa.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=P%C4%9Bstujeme+line%C3%A1rn%C3%AD+algebru&amp;rft_id=http%3A%2F%2Fwww.kolej.mff.cuni.cz%2F~lmotm275%2Fskripta%2Fmzahrad%2Fnode17.html%23SECTION02210000000000000000&amp;rft.isbn=9788071841869&amp;rft.aulast=Motl&amp;rft.aufirst=Lubo%C5%A1&amp;rft.au=Zahradn%C3%ADk%2C+Milo%C5%A1&amp;rft.atitle=Grupa&amp;rft.place=Praha&amp;rft.pub=Karolinum&amp;rft.date=1997"><span style="display:none">&#160;</span></span> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20041225000824/http://www.kolej.mff.cuni.cz/~lmotm275/skripta/mzahrad/node17.html#SECTION02210000000000000000">Archivováno</a> 25. 12. 2004 na <a href="/wiki/Internet_Archive" title="Internet Archive">Wayback Machine</a>.</span> </li> <li id="cite_note-49"><span class="mw-cite-backlink"><a href="#cite_ref-49">↑</a></span> <span class="reference-text"><cite class="book" style="font-style:normal;">BOGOPOLʹSKIJ, Oleg Vladimirovič. <i>Introduction to group theory</i>. [s.l.]: European Mathematical Society, 2008. 177&#160;s. <a rel="nofollow" class="external text" href="https://archive.org/details/introductiontogr00obog">Dostupné online</a>. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/9783037190418" title="Speciální:Zdroje knih/9783037190418"><span class="&#73;SBN">9783037190418</span></a></span>. Kapitola 5, s.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/introductiontogr00obog/page/n69">58</a>. (anglicky)</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Introduction+to+group+theory&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fintroductiontogr00obog&amp;rft.isbn=9783037190418&amp;rft.aulast=Bogopol%CA%B9skij&amp;rft.aufirst=Oleg+Vladimirovi%C4%8D&amp;rft.atitle=5&amp;rft.pub=European+Mathematical+Society&amp;rft.date=2008&amp;rft.tpages=177&amp;rft.pages=%5Bhttps%3A%2F%2Farchive.org%2Fdetails%2Fintroductiontogr00obog%2Fpage%2Fn69+58%5D"><span style="display:none">&#160;</span></span></span> </li> <li id="cite_note-50"><span class="mw-cite-backlink"><a href="#cite_ref-50">↑</a></span> <span class="reference-text">Bogopolʹskij, s. 59</span> </li> <li id="cite_note-51"><span class="mw-cite-backlink"><a href="#cite_ref-51">↑</a></span> <span class="reference-text">Lang, 2002, §I.2, p. 9</span> </li> <li id="cite_note-52"><span class="mw-cite-backlink"><a href="#cite_ref-52">↑</a></span> <span class="reference-text">Lang 2005, §II.4, s. 49</span> </li> <li id="cite_note-53"><span class="mw-cite-backlink"><a href="#cite_ref-53">↑</a></span> <span class="reference-text"><cite class="book" style="font-style:normal;">ARTIN, Emil; BLANK, Albert A. <i>Algebra with Galois theory</i>. [s.l.]: AMS, 2007. 126&#160;s. <a rel="nofollow" class="external text" href="https://archive.org/details/algebrawithgaloi0000arti">Dostupné online</a>. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/9780821841297" title="Speciální:Zdroje knih/9780821841297"><span class="&#73;SBN">9780821841297</span></a></span>. S.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/algebrawithgaloi0000arti/page/115">115</a>. (anglicky)</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Algebra+with+Galois+theory&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Falgebrawithgaloi0000arti&amp;rft.isbn=9780821841297&amp;rft.aulast=Artin&amp;rft.aufirst=Emil&amp;rft.au=Blank%2C+Albert+A.&amp;rft.pub=AMS&amp;rft.date=2007&amp;rft.tpages=126&amp;rft.pages=%5Bhttps%3A%2F%2Farchive.org%2Fdetails%2Falgebrawithgaloi0000arti%2Fpage%2F115+115%5D"><span style="display:none">&#160;</span></span></span> </li> <li id="cite_note-54"><span class="mw-cite-backlink"><a href="#cite_ref-54">↑</a></span> <span class="reference-text"><cite class="book" style="font-style:normal;">EDWARDS, Harold M. <i>Galois theory</i>. [s.l.]: Springer, 1984. 152&#160;s. <a rel="nofollow" class="external text" href="https://archive.org/details/galoistheory00edwa_0">Dostupné online</a>. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/9780387909806" title="Speciální:Zdroje knih/9780387909806"><span class="&#73;SBN">9780387909806</span></a></span>. S.&#160;89, (Theorem). (anglicky)</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Galois+theory&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fgaloistheory00edwa_0&amp;rft.isbn=9780387909806&amp;rft.aulast=Edwards&amp;rft.aufirst=Harold+M.&amp;rft.pub=Springer&amp;rft.date=1984&amp;rft.tpages=152&amp;rft.pages=89%2C+%28Theorem%29"><span style="display:none">&#160;</span></span></span> </li> <li id="cite_note-55"><span class="mw-cite-backlink"><a href="#cite_ref-55">↑</a></span> <span class="reference-text">Lang 2005, Kap. VII</span> </li> <li id="cite_note-56"><span class="mw-cite-backlink"><a href="#cite_ref-56">↑</a></span> <span class="reference-text"><cite class="book" style="font-style:normal;">WAN, Zhe-Xian. <i>Lectures on finite fields and galois rings</i>. [s.l.]: World Scientific, 2003. 342&#160;s. <a rel="nofollow" class="external text" href="https://archive.org/details/lecturesonfinite00zhex">Dostupné online</a>. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/9789812385703" title="Speciální:Zdroje knih/9789812385703"><span class="&#73;SBN">9789812385703</span></a></span>. S.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/lecturesonfinite00zhex/page/n109">103</a>. (anglicky)</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Lectures+on+finite+fields+and+galois+rings&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Flecturesonfinite00zhex&amp;rft.isbn=9789812385703&amp;rft.aulast=Wan&amp;rft.aufirst=Zhe-Xian&amp;rft.pub=World+Scientific&amp;rft.date=2003&amp;rft.tpages=342&amp;rft.pages=%5Bhttps%3A%2F%2Farchive.org%2Fdetails%2Flecturesonfinite00zhex%2Fpage%2Fn109+103%5D"><span style="display:none">&#160;</span></span></span> </li> <li id="cite_note-57"><span class="mw-cite-backlink"><a href="#cite_ref-57">↑</a></span> <span class="reference-text">Wan, str. 115, Theorem 6.3</span> </li> <li id="cite_note-58"><span class="mw-cite-backlink"><a href="#cite_ref-58">↑</a></span> <span class="reference-text"><cite class="book" style="font-style:normal;"><a href="/wiki/Hermann_Weyl" title="Hermann Weyl">WEYL, Hermann</a>. <i>Symmetry</i>. [s.l.]: Princeton University Press, 1983. 342&#160;s. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/978-0-691-02374-8" title="Speciální:Zdroje knih/978-0-691-02374-8"><span class="&#73;SBN">978-0-691-02374-8</span></a></span>. S.&#160;103. (anglicky)</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Symmetry&amp;rft.isbn=978-0-691-02374-8&amp;rft.aulast=Weyl&amp;rft.aufirst=Hermann&amp;rft.pub=Princeton+University+Press&amp;rft.date=1983&amp;rft.tpages=342&amp;rft.pages=103"><span style="display:none">&#160;</span></span></span> </li> <li id="cite_note-59"><span class="mw-cite-backlink"><a href="#cite_ref-59">↑</a></span> <span class="reference-text"><cite style="font-style:normal;"><a href="/w/index.php?title=R._Frucht&amp;action=edit&amp;redlink=1" class="new" title="R. Frucht (stránka neexistuje)">FRUCHT, R.</a> Herstellung von Graphen mit vorgegebener abstrakter Gruppe [Construction of Graphs with Prescribed Group]. <i>Compositio Mathematica</i>. 1939, s. 239–50. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20081201083831/http://www.numdam.org/numdam-bin/fitem?id=CM_1939__6__239_0">Dostupné v&#160;archivu</a> pořízeném dne&#160;01-12-2008.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitaceperiodika&amp;rft.jtitle=Compositio+Mathematica&amp;rft_id=http%3A%2F%2Fwww.numdam.org%2Fnumdam-bin%2Ffitem%3Fid%3DCM_1939&#95;_6&#95;_239_0&amp;rft.atitle=Herstellung+von+Graphen+mit+vorgegebener+abstrakter+Gruppe+%5BConstruction+of+Graphs+with+Prescribed+Group%5D&amp;rft.date=1939&amp;rft.pages=239%E2%80%9350&amp;rft.aulast=Frucht&amp;rft.aufirst=R."><span style="display:none">&#160;</span></span><span title="Chyba v použití šablony!" class="error" style="font-weight:bold;display:none;">Je zde použita šablona <code>{&#x7b;<a href="/wiki/%C5%A0ablona:Citation" title="Šablona:Citation">Citation</a>}}</code> označená jako k „pouze dočasnému použití“.</span>.</span> </li> <li id="cite_note-60"><span class="mw-cite-backlink"><a href="#cite_ref-60">↑</a></span> <span class="reference-text">Branko Grünbaum, <a rel="nofollow" class="external text" href="http://www.ams.org/notices/200606/comm-grunbaum.pdf">What Symmetry Groups Are Present in the Alhambra?</a>, <i>notices of AMS</i>, vol. 53, n. 6</span> </li> <li id="cite_note-61"><span class="mw-cite-backlink"><a href="#cite_ref-61">↑</a></span> <span class="reference-text"><cite style="font-style:normal;">FJODOROV, J. V. Симметрия на плоскоcти [Simmetrija na ploskosti]. <i>Записки Императорского С.-Петербургского Минералогического общества [Zapiski Imperatorskogo Sant-Petersburgskogo Mineralogičeskogo Obščestva]</i>. 1891, svazek 28, čís. 2.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitaceperiodika&amp;rft.jtitle=%D0%97%D0%B0%D0%BF%D0%B8%D1%81%D0%BA%D0%B8+%D0%98%D0%BC%D0%BF%D0%B5%D1%80%D0%B0%D1%82%D0%BE%D1%80%D1%81%D0%BA%D0%BE%D0%B3%D0%BE+%D0%A1.-%D0%9F%D0%B5%D1%82%D0%B5%D1%80%D0%B1%D1%83%D1%80%D0%B3%D1%81%D0%BA%D0%BE%D0%B3%D0%BE+%D0%9C%D0%B8%D0%BD%D0%B5%D1%80%D0%B0%D0%BB%D0%BE%D0%B3%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%B3%D0%BE+%D0%BE%D0%B1%D1%89%D0%B5%D1%81%D1%82%D0%B2%D0%B0+%5BZapiski+Imperatorskogo+Sant-Petersburgskogo+Mineralogi%C4%8Deskogo+Ob%C5%A1%C4%8Destva%5D&amp;rft.atitle=%D0%A1%D0%B8%D0%BC%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F+%D0%BD%D0%B0+%D0%BF%D0%BB%D0%BE%D1%81%D0%BA%D0%BEc%D1%82%D0%B8+%5BSimmetrija+na+ploskosti%5D&amp;rft.date=1891&amp;rft.volume=28&amp;rft.issue=2&amp;rft.aulast=Fjodorov&amp;rft.aufirst=J.+V"><span style="display:none">&#160;</span></span></span> </li> <li id="cite_note-62"><span class="mw-cite-backlink"><a href="#cite_ref-62">↑</a></span> <span class="reference-text">David Austin, <a rel="nofollow" class="external text" href="http://www.ams.org/samplings/feature-column/fcarc-penrose">Penrose Tiles Talk Across Miles</a>, Math Samplings (AMS)</span> </li> <li id="cite_note-63"><span class="mw-cite-backlink"><a href="#cite_ref-63">↑</a></span> <span class="reference-text"><cite style="font-style:normal;">CONWAY, John Horton; DELGADO FRIEDRICHS, Olaf; HUSON, Daniel H.; THURSTON, William P. On three-dimensional space groups. <i>Beiträge zur Algebra und Geometrie</i>. 2001, s. 475–507. <a href="/wiki/ArXiv" title="ArXiv">arXiv</a> <a rel="nofollow" class="external text" href="http://arxiv.org/abs/math.MG%2F9911185">math.MG/9911185</a>.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitaceperiodika&amp;rft.jtitle=Beitr%C3%A4ge+zur+Algebra+und+Geometrie&amp;rft.atitle=On+three-dimensional+space+groups&amp;rft.date=2001&amp;rft.pages=475%E2%80%93507&amp;rft.aulast=Conway&amp;rft.aufirst=John+Horton&amp;rft.au=Delgado+Friedrichs%2C+Olaf&amp;rft.au=Huson%2C+Daniel+H."><span style="display:none">&#160;</span></span><span title="Chyba v použití šablony!" class="error" style="font-weight:bold;display:none;">Je zde použita šablona <code>{&#x7b;<a href="/wiki/%C5%A0ablona:Citation" title="Šablona:Citation">Citation</a>}}</code> označená jako k „pouze dočasnému použití“.</span></span> </li> <li id="cite_note-64"><span class="mw-cite-backlink"><a href="#cite_ref-64">↑</a></span> <span class="reference-text"><cite class="book" style="font-style:normal;">BISHOP, avid H. L. <i>Group theory and chemistry</i>. New York: Dover Publications, 1993. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/978-0-486-67355-4" title="Speciální:Zdroje knih/978-0-486-67355-4"><span class="&#73;SBN">978-0-486-67355-4</span></a></span>. (anglicky)</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Group+theory+and+chemistry&amp;rft.isbn=978-0-486-67355-4&amp;rft.aulast=Bishop&amp;rft.aufirst=avid+H.+L.&amp;rft.place=New+York&amp;rft.pub=Dover+Publications&amp;rft.date=1993"><span style="display:none">&#160;</span></span></span> </li> <li id="cite_note-Bersuker-65"><span class="mw-cite-backlink"><a href="#cite_ref-Bersuker_65-0">↑</a></span> <span class="reference-text"><cite class="book" style="font-style:normal;">BERSUKER, Isaac. <i>The Jahn-Teller Effect</i>. [s.l.]: Cambridge University Press, 2006. <a rel="nofollow" class="external text" href="https://archive.org/details/jahntellereffect0000bers">Dostupné online</a>. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/0-521-82212-2" title="Speciální:Zdroje knih/0-521-82212-2"><span class="&#73;SBN">0-521-82212-2</span></a></span>. S.&#160;2. (anglicky)</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=The+Jahn-Teller+Effect&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fjahntellereffect0000bers&amp;rft.isbn=0-521-82212-2&amp;rft.aulast=Bersuker&amp;rft.aufirst=Isaac&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2006&amp;rft.pages=2"><span style="display:none">&#160;</span></span></span> </li> <li id="cite_note-66"><span class="mw-cite-backlink"><a href="#cite_ref-66">↑</a></span> <span class="reference-text"><cite style="font-style:normal;"><a href="/w/index.php?title=Hermann_Arthur_Jahn&amp;action=edit&amp;redlink=1" class="new" title="Hermann Arthur Jahn (stránka neexistuje)">JAHN, H.</a>; <a href="/wiki/Edward_Teller" title="Edward Teller">TELLER, E.</a> Stability of Polyatomic Molecules in Degenerate Electronic States. I. Orbital Degeneracy. <i><a href="/w/index.php?title=Proceedings_of_the_Royal_Society_of_London._Series_A,_Mathematical_and_Physical_Sciences_(1934%E2%80%931990)&amp;action=edit&amp;redlink=1" class="new" title="Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences (1934–1990) (stránka neexistuje)">Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences (1934–1990)</a></i>. 1937, s. 220–235. <a href="/wiki/Digital_object_identifier" title="Digital object identifier">DOI</a> <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1098%2Frspa.1937.0142">10.1098/rspa.1937.0142</a>.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitaceperiodika&amp;rft.jtitle=%5B%5BProceedings+of+the+Royal+Society+of+London.+Series+A%2C+Mathematical+and+Physical+Sciences+%281934%E2%80%931990%29%5D%5D&amp;rft_id=info:doi/10.1098%2Frspa.1937.0142&amp;rft.atitle=Stability+of+Polyatomic+Molecules+in+Degenerate+Electronic+States.+I.+Orbital+Degeneracy&amp;rft.date=1937&amp;rft.pages=220%E2%80%93235&amp;rft.aulast=Jahn&amp;rft.aufirst=H.&amp;rft.au=Teller%2C+E."><span style="display:none">&#160;</span></span><span title="Chyba v použití šablony!" class="error" style="font-weight:bold;display:none;">Je zde použita šablona <code>{&#x7b;<a href="/wiki/%C5%A0ablona:Citation" title="Šablona:Citation">Citation</a>}}</code> označená jako k „pouze dočasnému použití“.</span></span> </li> <li id="cite_note-68"><span class="mw-cite-backlink"><a href="#cite_ref-68">↑</a></span> <span class="reference-text"><cite class="book" style="font-style:normal;">MUMFORD, David; FOGARTY, J.; KIRWAN, F. <i>Geometric invariant theory</i>. Berlin, New York: Springer-Verlag, 1994. (3). <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/978-3-540-56963-3" title="Speciální:Zdroje knih/978-3-540-56963-3"><span class="&#73;SBN">978-3-540-56963-3</span></a></span>. (anglicky)</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Geometric+invariant+theory&amp;rft.isbn=978-3-540-56963-3&amp;rft.aulast=Mumford&amp;rft.aufirst=David&amp;rft.au=Fogarty%2C+J.&amp;rft.au=Kirwan%2C+F.&amp;rft.place=Berlin%2C+New+York&amp;rft.pub=Springer-Verlag&amp;rft.date=1994&amp;rft.series=3"><span style="display:none">&#160;</span></span></span> </li> <li id="cite_note-69"><span class="mw-cite-backlink"><a href="#cite_ref-69">↑</a></span> <span class="reference-text"><cite class="book" style="font-style:normal;">GALARZA, A.I.R.; SEADE, J. <i>Introduction to Classical Geometries</i>. [s.l.]: Birkhäuser Basel, 2007. <a rel="nofollow" class="external text" href="https://archive.org/details/introductiontocl00gala">Dostupné online</a>. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/978-3764375171" title="Speciální:Zdroje knih/978-3764375171"><span class="&#73;SBN">978-3764375171</span></a></span>. S.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/introductiontocl00gala/page/n25">16</a>. (anglicky)</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Introduction+to+Classical+Geometries&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fintroductiontocl00gala&amp;rft.isbn=978-3764375171&amp;rft.aulast=Galarza&amp;rft.aufirst=A.I.R.&amp;rft.au=Seade%2C+J.&amp;rft.pub=Birkh%C3%A4user+Basel&amp;rft.date=2007&amp;rft.pages=%5Bhttps%3A%2F%2Farchive.org%2Fdetails%2Fintroductiontocl00gala%2Fpage%2Fn25+16%5D"><span style="display:none">&#160;</span></span>, dostupné <a rel="nofollow" class="external text" href="https://web.archive.org/web/20120118214544/http://bib.tiera.ru/ShiZ/Great%20Science%20TextBooks/Great%20Science%20Textbooks%20DVD%20Library%202007%20-%20Supplement%20Two/Algebra%20%26%20Trigonometry/Geometry/Introduction%20to%20Classical%20Geometries%20-%20A.%20Galarza%2C%20J.%20Seade%20%28Birkhauser%2C%202002%29%20WW.pdf">online</a></span> </li> <li id="cite_note-sharpe-70"><span class="mw-cite-backlink"><a href="#cite_ref-sharpe_70-0">↑</a></span> <span class="reference-text"> <cite class="book" style="font-style:normal;">SHARPE, R.W. <i>Differential Geometry: Cartan's Generalization of Klein's Erlangen Program</i>. [s.l.]: Springer, 1997. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/978-0387947327" title="Speciální:Zdroje knih/978-0387947327"><span class="&#73;SBN">978-0387947327</span></a></span>. (anglicky)</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Differential+Geometry%3A+Cartan%27s+Generalization+of+Klein%27s+Erlangen+Program&amp;rft.isbn=978-0387947327&amp;rft.aulast=Sharpe&amp;rft.aufirst=R.W.&amp;rft.pub=Springer&amp;rft.date=1997"><span style="display:none">&#160;</span></span> Transformace známých geometrií jsou popisovány pomocí <a href="/wiki/Lieova_grupa" title="Lieova grupa">Lieových grup</a> a&#160;naopak, studium Lieových grup vedlo k&#160;popisu nových geometrických struktur.</span> </li> <li id="cite_note-71"><span class="mw-cite-backlink"><a href="#cite_ref-71">↑</a></span> <span class="reference-text"><cite class="book" style="font-style:normal;">REES, Elmer G. <i>Notes on geometry</i>. [s.l.]: Springer, 1988. <a rel="nofollow" class="external text" href="https://archive.org/details/notesongeometry0000rees">Dostupné online</a>. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/9783540120537" title="Speciální:Zdroje knih/9783540120537"><span class="&#73;SBN">9783540120537</span></a></span>. S.&#160;3. (anglicky)</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Notes+on+geometry&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fnotesongeometry0000rees&amp;rft.isbn=9783540120537&amp;rft.aulast=Rees&amp;rft.aufirst=Elmer+G.&amp;rft.pub=Springer&amp;rft.date=1988&amp;rft.pages=3"><span style="display:none">&#160;</span></span></span> </li> <li id="cite_note-72"><span class="mw-cite-backlink"><a href="#cite_ref-72">↑</a></span> <span class="reference-text"><cite class="book" style="font-style:normal;">FULTON, William.; HARRIS, Joe. <i>Representation theory. A first course</i>. New York: Springer, 1991. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/978-0-387-97495-8" title="Speciální:Zdroje knih/978-0-387-97495-8"><span class="&#73;SBN">978-0-387-97495-8</span></a></span>. (anglicky)</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Representation+theory.+A+first+course&amp;rft.isbn=978-0-387-97495-8&amp;rft.aulast=Fulton&amp;rft.aufirst=William.&amp;rft.au=Harris%2C+Joe&amp;rft.place=New+York&amp;rft.pub=Springer&amp;rft.date=1991"><span style="display:none">&#160;</span></span></span> </li> <li id="cite_note-73"><span class="mw-cite-backlink"><a href="#cite_ref-73">↑</a></span> <span class="reference-text"><cite class="book" style="font-style:normal;">SERRE, Jean-Pierre. <i>Linear representations of finite groups</i>. New York: Springer, 1977. <a rel="nofollow" class="external text" href="https://archive.org/details/linearrepresenta1977serr">Dostupné online</a>. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/978-0-387-90190-9" title="Speciální:Zdroje knih/978-0-387-90190-9"><span class="&#73;SBN">978-0-387-90190-9</span></a></span>. (anglicky)</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Linear+representations+of+finite+groups&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Flinearrepresenta1977serr&amp;rft.isbn=978-0-387-90190-9&amp;rft.aulast=Serre&amp;rft.aufirst=Jean-Pierre&amp;rft.place=New+York&amp;rft.pub=Springer&amp;rft.date=1977"><span style="display:none">&#160;</span></span></span> </li> <li id="cite_note-75"><span class="mw-cite-backlink"><a href="#cite_ref-75">↑</a></span> <span class="reference-text">Fulton-Harris</span> </li> <li id="cite_note-76"><span class="mw-cite-backlink"><a href="#cite_ref-76">↑</a></span> <span class="reference-text"><cite class="book" style="font-style:normal;">RUDIN, Walter; HARRIS, Joe. <i>Fourier Analysis on Groups</i>. New York: Wiley Classics, Wiley-Blackwell, 1990. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/0-471-52364-X" title="Speciální:Zdroje knih/0-471-52364-X"><span class="&#73;SBN">0-471-52364-X</span></a></span>. (anglicky)</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Fourier+Analysis+on+Groups&amp;rft.isbn=0-471-52364-X&amp;rft.aulast=Rudin&amp;rft.aufirst=Walter&amp;rft.au=Harris%2C+Joe&amp;rft.place=New+York&amp;rft.pub=Wiley+Classics%2C+Wiley-Blackwell&amp;rft.date=1990"><span style="display:none">&#160;</span></span></span> </li> <li id="cite_note-77"><span class="mw-cite-backlink"><a href="#cite_ref-77">↑</a></span> <span class="reference-text"><cite style="font-style:normal;">GELBART, Stephen. An Elementary Introduction to the Langlands Program. <i>Bulletin of the American Mathematical Society</i>. 1984, s. 177–219. <a rel="nofollow" class="external text" href="http://www.ams.org/bull/1984-10-02/S0273-0979-1984-15237-6/home.html">Dostupné online</a>. <a href="/wiki/Digital_object_identifier" title="Digital object identifier">DOI</a> <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1090%2FS0273-0979-1984-15237-6">10.1090/S0273-0979-1984-15237-6</a>.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitaceperiodika&amp;rft.jtitle=Bulletin+of+the+American+Mathematical+Society&amp;rft_id=info:doi/10.1090%2FS0273-0979-1984-15237-6&amp;rft_id=http%3A%2F%2Fwww.ams.org%2Fbull%2F1984-10-02%2FS0273-0979-1984-15237-6%2Fhome.html&amp;rft.atitle=An+Elementary+Introduction+to+the+Langlands+Program&amp;rft.date=1984&amp;rft.pages=177%E2%80%93219&amp;rft.aulast=Gelbart&amp;rft.aufirst=Stephen"><span style="display:none">&#160;</span></span><span title="Chyba v použití šablony!" class="error" style="font-weight:bold;display:none;">Je zde použita šablona <code>{&#x7b;<a href="/wiki/%C5%A0ablona:Citation" title="Šablona:Citation">Citation</a>}}</code> označená jako k „pouze dočasnému použití“.</span></span> </li> <li id="cite_note-78"><span class="mw-cite-backlink"><a href="#cite_ref-78">↑</a></span> <span class="reference-text">Anthony W. Knapp, <a rel="nofollow" class="external text" href="http://www.ams.org/notices/199605/knapp-2.pdf">Group Representations and Harmonic Analysis from Euler to Langlands, Part II</a>, Notices of the AMS, vol 43 (5), May 1996, 537--549</span> </li> <li id="cite_note-79"><span class="mw-cite-backlink"><a href="#cite_ref-79">↑</a></span> <span class="reference-text">James Arthur, <a rel="nofollow" class="external text" href="http://www.ams.org/notices/200001/fea-arthur.pdf">Harmonic Analysis and Group Representations</a>, Notices of the AMS, vol 47 (1), 26--34</span> </li> <li id="cite_note-varad-80"><span class="mw-cite-backlink">↑ <a href="#cite_ref-varad_80-0"><sup style="font-style: italic; font-weight: bold; vertical-align: top">a</sup></a> <a href="#cite_ref-varad_80-1"><sup style="font-style: italic; font-weight: bold; vertical-align: top">b</sup></a></span> <span class="reference-text"><cite class="book" style="font-style:normal;">VARADARAJAN, V. S. <i>An Introduction to Harmonic Analysis on Semisimple Lie Groups</i>. New York: Cambridge University Press, 1999. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/978-0521663625" title="Speciální:Zdroje knih/978-0521663625"><span class="&#73;SBN">978-0521663625</span></a></span>. (anglicky)</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=An+Introduction+to+Harmonic+Analysis+on+Semisimple+Lie+Groups&amp;rft.isbn=978-0521663625&amp;rft.aulast=Varadarajan&amp;rft.aufirst=V.+S.&amp;rft.place=New+York&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1999"><span style="display:none">&#160;</span></span></span> </li> <li id="cite_note-81"><span class="mw-cite-backlink"><a href="#cite_ref-81">↑</a></span> <span class="reference-text">Lang 2002, Kapitola VI (konkrétní příklady například na str. 273)</span> </li> <li id="cite_note-82"><span class="mw-cite-backlink"><a href="#cite_ref-82">↑</a></span> <span class="reference-text">Lang, 2002, str. 292 (Theorem VI.7.2)</span> </li> <li id="cite_note-83"><span class="mw-cite-backlink"><a href="#cite_ref-83">↑</a></span> <span class="reference-text">Lang 2002, str. 273</span> </li> <li id="cite_note-84"><span class="mw-cite-backlink"><a href="#cite_ref-84">↑</a></span> <span class="reference-text"><cite class="book" style="font-style:normal;">HUNGERFORD, Thomas W. <i>Algebra</i>. [s.l.]: Springer, 1996. 502&#160;s. <a rel="nofollow" class="external text" href="https://archive.org/details/algebra00hung_830">Dostupné online</a>. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/9780387905181" title="Speciální:Zdroje knih/9780387905181"><span class="&#73;SBN">9780387905181</span></a></span>. S.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/algebra00hung_830/page/n127">103</a>. (anglicky)</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Algebra&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Falgebra00hung_830&amp;rft.isbn=9780387905181&amp;rft.aulast=Hungerford&amp;rft.aufirst=Thomas+W.&amp;rft.pub=Springer&amp;rft.date=1996&amp;rft.tpages=502&amp;rft.pages=%5Bhttps%3A%2F%2Farchive.org%2Fdetails%2Falgebra00hung_830%2Fpage%2Fn127+103%5D"><span style="display:none">&#160;</span></span></span> </li> <li id="cite_note-85"><span class="mw-cite-backlink"><a href="#cite_ref-85">↑</a></span> <span class="reference-text"><cite class="book" style="font-style:normal;">ROTMAN, Joseph J. <i>Galois theory</i>. [s.l.]: Birkhäuser, 1998. 157&#160;s. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/9780387985411" title="Speciální:Zdroje knih/9780387985411"><span class="&#73;SBN">9780387985411</span></a></span>. S.&#160;83–84. (anglicky)</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Galois+theory&amp;rft.isbn=9780387985411&amp;rft.aulast=Rotman&amp;rft.aufirst=Joseph+J.&amp;rft.pub=Birkh%C3%A4user&amp;rft.date=1998&amp;rft.tpages=157&amp;rft.pages=83%E2%80%9384"><span style="display:none">&#160;</span></span></span> </li> <li id="cite_note-86"><span class="mw-cite-backlink"><a href="#cite_ref-86">↑</a></span> <span class="reference-text">The MacTutor History of Mathematics archive, <a rel="nofollow" class="external text" href="http://www-history.mcs.st-and.ac.uk/~history/Biographies/Jordan.html">Marie Ennemond Camille Jordan</a></span> </li> <li id="cite_note-87"><span class="mw-cite-backlink"><a href="#cite_ref-87">↑</a></span> <span class="reference-text"><cite style="font-style:normal;">POINCARÉ, Henri. Analysis Situs. <i>Journal de l'École Polytechnique ser 2</i>. 1895, s. 1–123.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitaceperiodika&amp;rft.jtitle=Journal+de+l%27%C3%89cole+Polytechnique+ser+2&amp;rft.atitle=Analysis+Situs&amp;rft.date=1895&amp;rft.pages=1%E2%80%93123&amp;rft.aulast=Poincar%C3%A9&amp;rft.aufirst=Henri"><span style="display:none">&#160;</span></span><span title="Chyba v použití šablony!" class="error" style="font-weight:bold;display:none;">Je zde použita šablona <code>{&#x7b;<a href="/wiki/%C5%A0ablona:Citation" title="Šablona:Citation">Citation</a>}}</code> označená jako k „pouze dočasnému použití“.</span>.</span> </li> <li id="cite_note-88"><span class="mw-cite-backlink"><a href="#cite_ref-88">↑</a></span> <span class="reference-text"><cite class="book" style="font-style:normal;">HATCHER, Allen. <i>Algebraic topology</i>. [s.l.]: Cambridge University Press, 2001. 556&#160;s. <a rel="nofollow" class="external text" href="http://www.math.cornell.edu/~hatcher/AT/ATpage.html">Dostupné online</a>. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/978-0521795401" title="Speciální:Zdroje knih/978-0521795401"><span class="&#73;SBN">978-0521795401</span></a></span>. S.&#160;340. (anglicky)</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Algebraic+topology&amp;rft_id=http%3A%2F%2Fwww.math.cornell.edu%2F~hatcher%2FAT%2FATpage.html&amp;rft.isbn=978-0521795401&amp;rft.aulast=Hatcher&amp;rft.aufirst=Allen&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2001&amp;rft.tpages=556&amp;rft.pages=340"><span style="display:none">&#160;</span></span></span> </li> <li id="cite_note-89"><span class="mw-cite-backlink"><a href="#cite_ref-89">↑</a></span> <span class="reference-text"><cite class="book" style="font-style:normal;">SPANIER, Edwin Henry. <i>Algebraic topology</i>. [s.l.]: Springer, 1994. <a rel="nofollow" class="external text" href="https://archive.org/details/algebraictopolog00span">Dostupné online</a>. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/9780387944265" title="Speciální:Zdroje knih/9780387944265"><span class="&#73;SBN">9780387944265</span></a></span>. S.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/algebraictopolog00span/page/n194">371</a>. (anglicky)</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Algebraic+topology&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Falgebraictopolog00span&amp;rft.isbn=9780387944265&amp;rft.aulast=Spanier&amp;rft.aufirst=Edwin+Henry&amp;rft.pub=Springer&amp;rft.date=1994&amp;rft.pages=%5Bhttps%3A%2F%2Farchive.org%2Fdetails%2Falgebraictopolog00span%2Fpage%2Fn194+371%5D"><span style="display:none">&#160;</span></span></span> </li> <li id="cite_note-90"><span class="mw-cite-backlink"><a href="#cite_ref-90">↑</a></span> <span class="reference-text"><cite style="font-style:normal;">BROWN, Edgar H. Finite Computability of Postnikov Complexes. <i>The Annals of Mathematics</i>. 1957, s. 1–20. <a rel="nofollow" class="external text" href="http://www.jstor.org/pss/1969664">Dostupné online</a>.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitaceperiodika&amp;rft.jtitle=The+Annals+of+Mathematics&amp;rft_id=http%3A%2F%2Fwww.jstor.org%2Fpss%2F1969664&amp;rft.atitle=Finite+Computability+of+Postnikov+Complexes&amp;rft.date=1957&amp;rft.pages=1%E2%80%9320&amp;rft.aulast=Brown&amp;rft.aufirst=Edgar+H."><span style="display:none">&#160;</span></span><span title="Chyba v použití šablony!" class="error" style="font-weight:bold;display:none;">Je zde použita šablona <code>{&#x7b;<a href="/wiki/%C5%A0ablona:Citation" title="Šablona:Citation">Citation</a>}}</code> označená jako k „pouze dočasnému použití“.</span></span> </li> <li id="cite_note-91"><span class="mw-cite-backlink"><a href="#cite_ref-91">↑</a></span> <span class="reference-text">Hatcher, kap. 2,3</span> </li> <li id="cite_note-92"><span class="mw-cite-backlink"><a href="#cite_ref-92">↑</a></span> <span class="reference-text"><cite class="book" style="font-style:normal;">HU, Sze-Tsen. <i>Homotopy theory</i>. [s.l.]: Academic Press, 1959. 347&#160;s. <a rel="nofollow" class="external text" href="https://archive.org/details/homotopytheory0000hust">Dostupné online</a>. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/9780123584502" title="Speciální:Zdroje knih/9780123584502"><span class="&#73;SBN">9780123584502</span></a></span>. S.&#160;1–4. (anglicky)</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Homotopy+theory&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fhomotopytheory0000hust&amp;rft.isbn=9780123584502&amp;rft.aulast=Hu&amp;rft.aufirst=Sze-Tsen&amp;rft.pub=Academic+Press&amp;rft.date=1959&amp;rft.tpages=347&amp;rft.pages=1%E2%80%934"><span style="display:none">&#160;</span></span></span> </li> <li id="cite_note-93"><span class="mw-cite-backlink"><a href="#cite_ref-93">↑</a></span> <span class="reference-text">Hu, str. 4</span> </li> <li id="cite_note-94"><span class="mw-cite-backlink"><a href="#cite_ref-94">↑</a></span> <span class="reference-text">Hatcher, str. 31</span> </li> <li id="cite_note-95"><span class="mw-cite-backlink"><a href="#cite_ref-95">↑</a></span> <span class="reference-text">Hatcher, str. 126</span> </li> <li id="cite_note-96"><span class="mw-cite-backlink"><a href="#cite_ref-96">↑</a></span> <span class="reference-text"><cite class="book" style="font-style:normal;">HUFFMAN, William Cary; PLESS, Vera. <i>Fundamentals of error-correcting codes</i>. [s.l.]: Cambridge University Press, 2003. 646&#160;s. <a rel="nofollow" class="external text" href="https://archive.org/details/fundamentalsofer0000huff">Dostupné online</a>. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/9780521782807" title="Speciální:Zdroje knih/9780521782807"><span class="&#73;SBN">9780521782807</span></a></span>. (anglicky)</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Fundamentals+of+error-correcting+codes&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Ffundamentalsofer0000huff&amp;rft.isbn=9780521782807&amp;rft.aulast=Huffman&amp;rft.aufirst=William+Cary&amp;rft.au=Pless%2C+Vera&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2003&amp;rft.tpages=646"><span style="display:none">&#160;</span></span></span> </li> <li id="cite_note-98"><span class="mw-cite-backlink"><a href="#cite_ref-98">↑</a></span> <span class="reference-text"><cite class="book" style="font-style:normal;">KUGA, Michio. <i>Galois' dream: group theory and differential equations</i>. Boston: Birkhäuser Boston, 1993. <a rel="nofollow" class="external text" href="https://archive.org/details/galoisdreamgroup0000kuga">Dostupné online</a>. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/978-0-8176-3688-3" title="Speciální:Zdroje knih/978-0-8176-3688-3"><span class="&#73;SBN">978-0-8176-3688-3</span></a></span>. S.&#160;105–113. (anglicky)</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Galois%27+dream%3A+group+theory+and+differential+equations&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fgaloisdreamgroup0000kuga&amp;rft.isbn=978-0-8176-3688-3&amp;rft.aulast=Kuga&amp;rft.aufirst=Michio&amp;rft.place=Boston&amp;rft.pub=Birkh%C3%A4user+Boston&amp;rft.date=1993&amp;rft.pages=105%E2%80%93113"><span style="display:none">&#160;</span></span></span> </li> <li id="cite_note-99"><span class="mw-cite-backlink"><a href="#cite_ref-99">↑</a></span> <span class="reference-text"><cite class="book" style="font-style:normal;">NEUKIRCH, Jürgen. <i>Algebraic Number Theory</i>. Berlin: Springer, 1999. <a rel="nofollow" class="external text" href="https://archive.org/details/algebraicnumbert0000neuk">Dostupné online</a>. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/978-3-540-65399-8" title="Speciální:Zdroje knih/978-3-540-65399-8"><span class="&#73;SBN">978-3-540-65399-8</span></a></span>. Kapitola §I.12, I.13. (anglicky)</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Algebraic+Number+Theory&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Falgebraicnumbert0000neuk&amp;rft.isbn=978-3-540-65399-8&amp;rft.aulast=Neukirch&amp;rft.aufirst=J%C3%BCrgen&amp;rft.atitle=%C2%A7I.12%2C+I.13&amp;rft.place=Berlin&amp;rft.pub=Springer&amp;rft.date=1999"><span style="display:none">&#160;</span></span></span> </li> <li id="cite_note-100"><span class="mw-cite-backlink"><a href="#cite_ref-100">↑</a></span> <span class="reference-text"><cite style="font-style:normal;">SERESS, Ákos. An introduction to computational group theory. <i>Notices of the American Mathematical Society</i>. 1997, s. 671–679. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20070208012642/http://www.math.ohio-state.edu/~akos/notices.ps">Dostupné v&#160;archivu</a> pořízeném dne&#160;08-02-2007.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitaceperiodika&amp;rft.jtitle=Notices+of+the+American+Mathematical+Society&amp;rft_id=http%3A%2F%2Fwww.math.ohio-state.edu%2F~akos%2Fnotices.ps&amp;rft.atitle=An+introduction+to+computational+group+theory&amp;rft.date=1997&amp;rft.pages=671%E2%80%93679&amp;rft.aulast=Seress&amp;rft.aufirst=%C3%81kos"><span style="display:none">&#160;</span></span><span title="Chyba v použití šablony!" class="error" style="font-weight:bold;display:none;">Je zde použita šablona <code>{&#x7b;<a href="/wiki/%C5%A0ablona:Citation" title="Šablona:Citation">Citation</a>}}</code> označená jako k „pouze dočasnému použití“.</span>.</span> </li> <li id="cite_note-101"><span class="mw-cite-backlink"><a href="#cite_ref-101">↑</a></span> <span class="reference-text">Landin, str. 67</span> </li> <li id="cite_note-102"><span class="mw-cite-backlink"><a href="#cite_ref-102">↑</a></span> <span class="reference-text">Landin, str. 83</span> </li> <li id="cite_note-103"><span class="mw-cite-backlink"><a href="#cite_ref-103">↑</a></span> <span class="reference-text">Landin, str. 126</span> </li> <li id="cite_note-104"><span class="mw-cite-backlink"><a href="#cite_ref-104">↑</a></span> <span class="reference-text">Landin, str. 110</span> </li> <li id="cite_note-105"><span class="mw-cite-backlink"><a href="#cite_ref-105">↑</a></span> <span class="reference-text"><cite class="book" style="font-style:normal;">MORANDI, Patrick. <i>Field and Galois theory</i>. [s.l.]: Springer, 1996. 281&#160;s. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/9780387947532" title="Speciální:Zdroje knih/9780387947532"><span class="&#73;SBN">9780387947532</span></a></span>. S.&#160;247. (anglicky)</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Field+and+Galois+theory&amp;rft.isbn=9780387947532&amp;rft.aulast=Morandi&amp;rft.aufirst=Patrick&amp;rft.pub=Springer&amp;rft.date=1996&amp;rft.tpages=281&amp;rft.pages=247"><span style="display:none">&#160;</span></span></span> </li> <li id="cite_note-106"><span class="mw-cite-backlink"><a href="#cite_ref-106">↑</a></span> <span class="reference-text"><cite class="book" style="font-style:normal;">ARTIN, Michael. <i>Algebra</i>. [s.l.]: Prentice Hall, 1991. 618&#160;s. <a rel="nofollow" class="external text" href="https://archive.org/details/algebra0000arti_x4a1">Dostupné online</a>. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/9780130047632" title="Speciální:Zdroje knih/9780130047632"><span class="&#73;SBN">9780130047632</span></a></span>. Kapitola 6, Theorem 6.1.14. (anglicky)</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Algebra&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Falgebra0000arti_x4a1&amp;rft.isbn=9780130047632&amp;rft.aulast=Artin&amp;rft.aufirst=Michael&amp;rft.atitle=6%2C+Theorem+6.1.14&amp;rft.pub=Prentice+Hall&amp;rft.date=1991&amp;rft.tpages=618"><span style="display:none">&#160;</span></span></span> </li> <li id="cite_note-107"><span class="mw-cite-backlink"><a href="#cite_ref-107">↑</a></span> <span class="reference-text"><cite style="font-style:normal;">BESCHE, Hans Ulrich; EICK, Bettina; O'BRIEN, E. A. The groups of order at most 2000. <i>Electronic Research Announcements of the American Mathematical Society</i>. 2001, s. 1–4. <a rel="nofollow" class="external text" href="http://www.ams.org/era/2001-07-01/S1079-6762-01-00087-7/home.html">Dostupné online</a>. <a href="/wiki/Digital_object_identifier" title="Digital object identifier">DOI</a> <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1090%2FS1079-6762-01-00087-7">10.1090/S1079-6762-01-00087-7</a>.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitaceperiodika&amp;rft.jtitle=Electronic+Research+Announcements+of+the+American+Mathematical+Society&amp;rft_id=info:doi/10.1090%2FS1079-6762-01-00087-7&amp;rft_id=http%3A%2F%2Fwww.ams.org%2Fera%2F2001-07-01%2FS1079-6762-01-00087-7%2Fhome.html&amp;rft.atitle=The+groups+of+order+at+most+2000&amp;rft.date=2001&amp;rft.pages=1%E2%80%934&amp;rft.aulast=Besche&amp;rft.aufirst=Hans+Ulrich&amp;rft.au=Eick%2C+Bettina&amp;rft.au=O%27Brien%2C+E.+A."><span style="display:none">&#160;</span></span><span title="Chyba v použití šablony!" class="error" style="font-weight:bold;display:none;">Je zde použita šablona <code>{&#x7b;<a href="/wiki/%C5%A0ablona:Citation" title="Šablona:Citation">Citation</a>}}</code> označená jako k „pouze dočasnému použití“.</span></span> </li> <li id="cite_note-110"><span class="mw-cite-backlink"><a href="#cite_ref-110">↑</a></span> <span class="reference-text">Lang, 2002, §I. 3, str. 22</span> </li> <li id="cite_note-111"><span class="mw-cite-backlink"><a href="#cite_ref-111">↑</a></span> <span class="reference-text"><cite style="font-style:normal;"><a href="/w/index.php?title=Michael_Aschbacher&amp;action=edit&amp;redlink=1" class="new" title="Michael Aschbacher (stránka neexistuje)">ASCHBACHER, Michael</a>. The Status of the Classification of the Finite Simple Groups. <i><a href="/w/index.php?title=Notices_of_the_American_Mathematical_Society&amp;action=edit&amp;redlink=1" class="new" title="Notices of the American Mathematical Society (stránka neexistuje)">Notices of the American Mathematical Society</a></i>. 2004, s. 736–740. <a rel="nofollow" class="external text" href="http://www.ams.org/notices/200407/fea-aschbacher.pdf">Dostupné online</a>.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitaceperiodika&amp;rft.jtitle=%5B%5BNotices+of+the+American+Mathematical+Society%5D%5D&amp;rft_id=http%3A%2F%2Fwww.ams.org%2Fnotices%2F200407%2Ffea-aschbacher.pdf&amp;rft.atitle=The+Status+of+the+Classification+of+the+Finite+Simple+Groups&amp;rft.date=2004&amp;rft.pages=736%E2%80%93740&amp;rft.aulast=Aschbacher&amp;rft.aufirst=Michael"><span style="display:none">&#160;</span></span><span title="Chyba v použití šablony!" class="error" style="font-weight:bold;display:none;">Je zde použita šablona <code>{&#x7b;<a href="/wiki/%C5%A0ablona:Citation" title="Šablona:Citation">Citation</a>}}</code> označená jako k „pouze dočasnému použití“.</span>.</span> </li> <li id="cite_note-100proof12-113"><span class="mw-cite-backlink"><a href="#cite_ref-100proof12_113-0">↑</a></span> <span class="reference-text"><cite class="book" style="font-style:normal;"><a href="/w/index.php?title=Rowan_Garnier&amp;action=edit&amp;redlink=1" class="new" title="Rowan Garnier (stránka neexistuje)">GARNIER, Rowan</a>; <a href="/w/index.php?title=John_Taylor&amp;action=edit&amp;redlink=1" class="new" title="John Taylor (stránka neexistuje)">TAYLOR, John</a>. <i>100% Mathematical Proof</i>. [s.l.]: John Wiley &amp; Sons, 1996. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/0-471-96198-1" title="Speciální:Zdroje knih/0-471-96198-1"><span class="&#73;SBN">0-471-96198-1</span></a></span>.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=100%25+Mathematical+Proof&amp;rft.isbn=0-471-96198-1&amp;rft.aulast=Garnier&amp;rft.aufirst=Rowan&amp;rft.au=Taylor%2C+John&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=1996"><span style="display:none">&#160;</span></span> str. 12.</span> </li> <li id="cite_note-114"><span class="mw-cite-backlink"><a href="#cite_ref-114">↑</a></span> <span class="reference-text"><cite class="book" style="font-style:normal;">HIGGINS, Philip J. <i>Introduction to topological groups</i>. London: CUP Archive, 1974. 109&#160;s. <a rel="nofollow" class="external text" href="https://archive.org/details/isbn_0521205271">Dostupné online</a>. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/9780521205276" title="Speciální:Zdroje knih/9780521205276"><span class="&#73;SBN">9780521205276</span></a></span>. Kapitola 2, s.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/isbn_0521205271/page/16">16</a>. (anglicky)</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Introduction+to+topological+groups&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fisbn_0521205271&amp;rft.isbn=9780521205276&amp;rft.aulast=Higgins&amp;rft.aufirst=Philip+J.&amp;rft.atitle=2&amp;rft.place=London&amp;rft.pub=CUP+Archive&amp;rft.date=1974&amp;rft.tpages=109&amp;rft.pages=%5Bhttps%3A%2F%2Farchive.org%2Fdetails%2Fisbn_0521205271%2Fpage%2F16+16%5D"><span style="display:none">&#160;</span></span></span> </li> <li id="cite_note-115"><span class="mw-cite-backlink"><a href="#cite_ref-115">↑</a></span> <span class="reference-text"><cite class="book" style="font-style:normal;">HUSAIN, Taqdir. <i>Introduction to topological groups</i>. [s.l.]: Saunders, 1966. 218&#160;s. <a rel="nofollow" class="external text" href="https://archive.org/details/introductiontoto00husa_934">Dostupné online</a>. S.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/introductiontoto00husa_934/page/n109">101</a>. (anglicky)</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Introduction+to+topological+groups&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fintroductiontoto00husa_934&amp;rft.aulast=Husain&amp;rft.aufirst=Taqdir&amp;rft.pub=Saunders&amp;rft.date=1966&amp;rft.tpages=218&amp;rft.pages=%5Bhttps%3A%2F%2Farchive.org%2Fdetails%2Fintroductiontoto00husa_934%2Fpage%2Fn109+101%5D"><span style="display:none">&#160;</span></span></span> </li> <li id="cite_note-116"><span class="mw-cite-backlink"><a href="#cite_ref-116">↑</a></span> <span class="reference-text"><cite class="book" style="font-style:normal;">NEUKIRCH, Jürgen. <i>Algebraic Number Theory</i>. Berlin: Springer, 1999. 571&#160;s. <a rel="nofollow" class="external text" href="https://archive.org/details/algebraicnumbert0000neuk">Dostupné online</a>. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/978-3-540-65399-8" title="Speciální:Zdroje knih/978-3-540-65399-8"><span class="&#73;SBN">978-3-540-65399-8</span></a></span>. (anglicky)</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Algebraic+Number+Theory&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Falgebraicnumbert0000neuk&amp;rft.isbn=978-3-540-65399-8&amp;rft.aulast=Neukirch&amp;rft.aufirst=J%C3%BCrgen&amp;rft.place=Berlin&amp;rft.pub=Springer&amp;rft.date=1999&amp;rft.tpages=571"><span style="display:none">&#160;</span></span></span> </li> <li id="cite_note-117"><span class="mw-cite-backlink"><a href="#cite_ref-117">↑</a></span> <span class="reference-text"><cite class="book" style="font-style:normal;">SHATZ, Stephen S. <i>Profinite groups, arithmetic, and geometry</i>. [s.l.]: Princeton University Press, 1972. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/978-0-691-08017-8" title="Speciální:Zdroje knih/978-0-691-08017-8"><span class="&#73;SBN">978-0-691-08017-8</span></a></span>. (anglicky)</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Profinite+groups%2C+arithmetic%2C+and+geometry&amp;rft.isbn=978-0-691-08017-8&amp;rft.aulast=Shatz&amp;rft.aufirst=Stephen+S.&amp;rft.pub=Princeton+University+Press&amp;rft.date=1972"><span style="display:none">&#160;</span></span></span> </li> <li id="cite_note-118"><span class="mw-cite-backlink"><a href="#cite_ref-118">↑</a></span> <span class="reference-text"><cite class="book" style="font-style:normal;">MILNE, James S. <i>Étale cohomology</i>. [s.l.]: Princeton University Press, 1980. <a rel="nofollow" class="external text" href="https://archive.org/details/etalecohomology00miln">Dostupné online</a>. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/978-0-691-08238-7" title="Speciální:Zdroje knih/978-0-691-08238-7"><span class="&#73;SBN">978-0-691-08238-7</span></a></span>. (anglicky)</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=%C3%89tale+cohomology&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fetalecohomology00miln&amp;rft.isbn=978-0-691-08238-7&amp;rft.aulast=Milne&amp;rft.aufirst=James+S.&amp;rft.pub=Princeton+University+Press&amp;rft.date=1980"><span style="display:none">&#160;</span></span></span> </li> <li id="cite_note-119"><span class="mw-cite-backlink"><a href="#cite_ref-119">↑</a></span> <span class="reference-text"><cite class="book" style="font-style:normal;">WARNER, Frank Wilson. <i>Foundations of differentiable manifolds and Lie groups</i>. [s.l.]: Springer, 1971. 272&#160;s. <a rel="nofollow" class="external text" href="https://archive.org/details/foundationsdiffe00warn_631">Dostupné online</a>. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/9780387908946" title="Speciální:Zdroje knih/9780387908946"><span class="&#73;SBN">9780387908946</span></a></span>. S.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/foundationsdiffe00warn_631/page/n89">82</a>. (anglicky)</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Foundations+of+differentiable+manifolds+and+Lie+groups&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Ffoundationsdiffe00warn_631&amp;rft.isbn=9780387908946&amp;rft.aulast=Warner&amp;rft.aufirst=Frank+Wilson&amp;rft.pub=Springer&amp;rft.date=1971&amp;rft.tpages=272&amp;rft.pages=%5Bhttps%3A%2F%2Farchive.org%2Fdetails%2Ffoundationsdiffe00warn_631%2Fpage%2Fn89+82%5D"><span style="display:none">&#160;</span></span></span> </li> <li id="cite_note-120"><span class="mw-cite-backlink"><a href="#cite_ref-120">↑</a></span> <span class="reference-text"><cite class="book" style="font-style:normal;">BOREL, Armand. <i>Linear algebraic groups</i>. [s.l.]: Springer, 1991. 288&#160;s. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/978-0-387-97370-8" title="Speciální:Zdroje knih/978-0-387-97370-8"><span class="&#73;SBN">978-0-387-97370-8</span></a></span>. S.&#160;29. (anglicky)</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Linear+algebraic+groups&amp;rft.isbn=978-0-387-97370-8&amp;rft.aulast=Borel&amp;rft.aufirst=Armand&amp;rft.pub=Springer&amp;rft.date=1991&amp;rft.tpages=288&amp;rft.pages=29"><span style="display:none">&#160;</span></span></span> </li> <li id="cite_note-121"><span class="mw-cite-backlink"><a href="#cite_ref-121">↑</a></span> <span class="reference-text"><cite class="book" style="font-style:normal;">HARRIS, Joe; FULTON,, William. <i>Representation theory: a first course</i>. [s.l.]: Springer, 1991. 551&#160;s. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/9780387974958" title="Speciální:Zdroje knih/9780387974958"><span class="&#73;SBN">9780387974958</span></a></span>. Kapitola II.8. (anglicky)</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Representation+theory%3A+a+first+course&amp;rft.isbn=9780387974958&amp;rft.aulast=Harris&amp;rft.aufirst=Joe&amp;rft.au=Fulton%2C%2C+William&amp;rft.atitle=II.8&amp;rft.pub=Springer&amp;rft.date=1991&amp;rft.tpages=551"><span style="display:none">&#160;</span></span></span> </li> <li id="cite_note-122"><span class="mw-cite-backlink"><a href="#cite_ref-122">↑</a></span> <span class="reference-text"><cite class="book" style="font-style:normal;">CORNWEL, J. F. <i>Group theory in physics: an introduction</i>. [s.l.]: Academic Press, 1997. 349&#160;s. <a rel="nofollow" class="external text" href="https://archive.org/details/grouptheoryphysi00corn_362">Dostupné online</a>. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/9780121898007" title="Speciální:Zdroje knih/9780121898007"><span class="&#73;SBN">9780121898007</span></a></span>. S.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/grouptheoryphysi00corn_362/page/n145">135</a>. (anglicky)</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Group+theory+in+physics%3A+an+introduction&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fgrouptheoryphysi00corn_362&amp;rft.isbn=9780121898007&amp;rft.aulast=Cornwel&amp;rft.aufirst=J.+F.&amp;rft.pub=Academic+Press&amp;rft.date=1997&amp;rft.tpages=349&amp;rft.pages=%5Bhttps%3A%2F%2Farchive.org%2Fdetails%2Fgrouptheoryphysi00corn_362%2Fpage%2Fn145+135%5D"><span style="display:none">&#160;</span></span></span> </li> <li id="cite_note-123"><span class="mw-cite-backlink"><a href="#cite_ref-123">↑</a></span> <span class="reference-text"><cite class="book" style="font-style:normal;">HUMPHREYS, James E. <i>Introduction to Lie algebras and representation theory</i>. [s.l.]: Birkhäuser, 2000. 172&#160;s. <a rel="nofollow" class="external text" href="https://archive.org/details/introductiontoli00jame">Dostupné online</a>. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/9780387900537" title="Speciální:Zdroje knih/9780387900537"><span class="&#73;SBN">9780387900537</span></a></span>. Kapitola III.11. (anglicky)</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Introduction+to+Lie+algebras+and+representation+theory&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fintroductiontoli00jame&amp;rft.isbn=9780387900537&amp;rft.aulast=Humphreys&amp;rft.aufirst=James+E.&amp;rft.atitle=III.11&amp;rft.pub=Birkh%C3%A4user&amp;rft.date=2000&amp;rft.tpages=172"><span style="display:none">&#160;</span></span></span> </li> <li id="cite_note-124"><span class="mw-cite-backlink"><a href="#cite_ref-124">↑</a></span> <span class="reference-text"><cite class="book" style="font-style:normal;">ONISHCHIK, A. L.; VINBERG, Ėrnest Borisovich. <i>Lie groups and Lie algebras III</i>. [s.l.]: Springer, 1994. 248&#160;s. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/9783540546832" title="Speciální:Zdroje knih/9783540546832"><span class="&#73;SBN">9783540546832</span></a></span>. Kapitola 4.1, 4.2. (anglicky)</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Lie+groups+and+Lie+algebras+III&amp;rft.isbn=9783540546832&amp;rft.aulast=Onishchik&amp;rft.aufirst=A.+L.&amp;rft.au=Vinberg%2C+%C4%96rnest+Borisovich&amp;rft.atitle=4.1%2C+4.2&amp;rft.pub=Springer&amp;rft.date=1994&amp;rft.tpages=248"><span style="display:none">&#160;</span></span></span> </li> <li id="cite_note-125"><span class="mw-cite-backlink"><a href="#cite_ref-125">↑</a></span> <span class="reference-text"><cite class="book" style="font-style:normal;">GOLDSTEIN, Herbert. <i>Classical Mechanics</i>. [s.l.]: Addison-Wesley Publishing, 1980. <a rel="nofollow" class="external text" href="https://archive.org/details/classicalmechani00gold_639">Dostupné online</a>. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/0-201-02918-9" title="Speciální:Zdroje knih/0-201-02918-9"><span class="&#73;SBN">0-201-02918-9</span></a></span>. S.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/classicalmechani00gold_639/page/n605">588</a>–596. (anglicky)</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Classical+Mechanics&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fclassicalmechani00gold_639&amp;rft.isbn=0-201-02918-9&amp;rft.aulast=Goldstein&amp;rft.aufirst=Herbert&amp;rft.pub=Addison-Wesley+Publishing&amp;rft.date=1980&amp;rft.pages=%5Bhttps%3A%2F%2Farchive.org%2Fdetails%2Fclassicalmechani00gold_639%2Fpage%2Fn605+588%5D%E2%80%93596"><span style="display:none">&#160;</span></span></span> </li> <li id="cite_note-126"><span class="mw-cite-backlink"><a href="#cite_ref-126">↑</a></span> <span class="reference-text"><cite class="book" style="font-style:normal;">WEINBERG, Steven. <i>Gravitation and Cosmology</i>. New York: John Wiley &amp; Sons, 1972. <a rel="nofollow" class="external text" href="https://archive.org/details/gravitationcosmo00stev_0">Dostupné online</a>. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/978-0-471-92567-5" title="Speciální:Zdroje knih/978-0-471-92567-5"><span class="&#73;SBN">978-0-471-92567-5</span></a></span>. S.&#160;25–29. (anglicky)</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Gravitation+and+Cosmology&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fgravitationcosmo00stev_0&amp;rft.isbn=978-0-471-92567-5&amp;rft.aulast=Weinberg&amp;rft.aufirst=Steven&amp;rft.place=New+York&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=1972&amp;rft.pages=25%E2%80%9329"><span style="display:none">&#160;</span></span></span> </li> <li id="cite_note-127"><span class="mw-cite-backlink"><a href="#cite_ref-127">↑</a></span> <span class="reference-text"><cite style="font-style:normal;">EL NASCHIE, M.S. String theory, exceptional Lie groups hierarchy and the structural constant of the universe. <i>Chaos, Solitons &amp; Fractals</i>. 2008, roč. 35, s. 7–12. <a rel="nofollow" class="external text" href="http://www.sciencedirect.com/science/article/pii/S0960077907007254">Dostupné online</a>.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitaceperiodika&amp;rft.jtitle=Chaos%2C+Solitons+%26+Fractals&amp;rft_id=http%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS0960077907007254&amp;rft.atitle=String+theory%2C+exceptional+Lie+groups+hierarchy%0Aand+the+structural+constant+of+the+universe&amp;rft.date=2008&amp;rft.volume=35&amp;rft.pages=7%E2%80%9312&amp;rft.aulast=El+Naschie&amp;rft.aufirst=M.S."><span style="display:none">&#160;</span></span></span> </li> <li id="cite_note-128"><span class="mw-cite-backlink"><a href="#cite_ref-128">↑</a></span> <span class="reference-text"><cite class="book" style="font-style:normal;">MAC LANE, Saunders. <i>Categories for the Working Mathematician</i>. Berlin, New York: Springer, 1998. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/978-0-387-98403-2" title="Speciální:Zdroje knih/978-0-387-98403-2"><span class="&#73;SBN">978-0-387-98403-2</span></a></span>. (anglicky)</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Categories+for+the+Working+Mathematician&amp;rft.isbn=978-0-387-98403-2&amp;rft.aulast=Mac+Lane&amp;rft.aufirst=Saunders&amp;rft.place=Berlin%2C+New+York&amp;rft.pub=Springer&amp;rft.date=1998"><span style="display:none">&#160;</span></span></span> </li> <li id="cite_note-129"><span class="mw-cite-backlink"><a href="#cite_ref-129">↑</a></span> <span class="reference-text"><cite class="book" style="font-style:normal;">DENECKE, Klaus; WISMATH, Shelly L. <i>Universal algebra and applications in theoretical computer science</i>. London: CRC Press, 2002. <a rel="nofollow" class="external text" href="https://archive.org/details/universalalgebra0000dene">Dostupné online</a>. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/978-1-58488-254-1" title="Speciální:Zdroje knih/978-1-58488-254-1"><span class="&#73;SBN">978-1-58488-254-1</span></a></span>. (anglicky)</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Universal+algebra+and+applications+in+theoretical+computer+science&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Funiversalalgebra0000dene&amp;rft.isbn=978-1-58488-254-1&amp;rft.aulast=Denecke&amp;rft.aufirst=Klaus&amp;rft.au=Wismath%2C+Shelly+L.&amp;rft.place=London&amp;rft.pub=CRC+Press&amp;rft.date=2002"><span style="display:none">&#160;</span></span></span> </li> <li id="cite_note-130"><span class="mw-cite-backlink"><a href="#cite_ref-130">↑</a></span> <span class="reference-text"><cite style="font-style:normal;">DUDEK, W.A. On some old problems in n-ary groups. <i>Quasigroups and Related Systems</i>. 2001, s. 15–36. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20090714003319/http://www.quasigroups.eu/contents/contents8.php?m=trzeci">Dostupné v&#160;archivu</a> pořízeném dne&#160;14-07-2009.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitaceperiodika&amp;rft.jtitle=Quasigroups+and+Related+Systems&amp;rft_id=http%3A%2F%2Fwww.quasigroups.eu%2Fcontents%2Fcontents8.php%3Fm%3Dtrzeci&amp;rft.atitle=On+some+old+problems+in+n-ary+groups&amp;rft.date=2001&amp;rft.pages=15%E2%80%9336&amp;rft.aulast=Dudek&amp;rft.aufirst=W.A."><span style="display:none">&#160;</span></span><span title="Chyba v použití šablony!" class="error" style="font-weight:bold;display:none;">Je zde použita šablona <code>{&#x7b;<a href="/wiki/%C5%A0ablona:Citation" title="Šablona:Citation">Citation</a>}}</code> označená jako k „pouze dočasnému použití“.</span></span> </li> </ol></div> <div class="mw-heading mw-heading3"><h3 id="Literatura">Literatura</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Grupa&amp;veaction=edit&amp;section=37" title="Editace sekce: Literatura" class="mw-editsection-visualeditor"><span>editovat</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Grupa&amp;action=edit&amp;section=37" title="Editovat zdrojový kód sekce Literatura"><span>editovat zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dt>Česká</dt></dl> <ul><li><cite class="book" style="font-style:normal;">ALEXANDROV, Pavel Sergejevič. <i>Úvod do teorie grup</i>. Překlad M. Volf. Moskva: Mir, 1985. 120&#160;s.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=%C3%9Avod+do+teorie+grup&amp;rft.aulast=Alexandrov&amp;rft.aufirst=Pavel+Sergejevi%C4%8D&amp;rft.place=Moskva&amp;rft.pub=Mir&amp;rft.date=1985&amp;rft.tpages=120"><span style="display:none">&#160;</span></span></li> <li><cite class="book" style="font-style:normal;">BOČEK, Leo; ŠEDIVÝ, Jaroslav. <i>Grupy geometrických zobrazení</i>. Praha: Státní pedagogické nakladatelství, 1979. 213&#160;s.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Grupy+geometrick%C3%BDch+zobrazen%C3%AD&amp;rft.aulast=Bo%C4%8Dek&amp;rft.aufirst=Leo&amp;rft.au=%C5%A0ediv%C3%BD%2C+Jaroslav&amp;rft.place=Praha&amp;rft.pub=St%C3%A1tn%C3%AD+pedagogick%C3%A9+nakladatelstv%C3%AD&amp;rft.date=1979&amp;rft.tpages=213"><span style="display:none">&#160;</span></span></li> <li><cite class="book" style="font-style:normal;">DRÁPAL, Aleš. <i>Teorie grup (základní aspekty)</i>. Praha: Karolinum, 2000. 207&#160;s. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/80-246-0162-1" title="Speciální:Zdroje knih/80-246-0162-1"><span class="&#73;SBN">80-246-0162-1</span></a></span>.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Teorie+grup+%28z%C3%A1kladn%C3%AD+aspekty%29&amp;rft.isbn=80-246-0162-1&amp;rft.aulast=Dr%C3%A1pal&amp;rft.aufirst=Ale%C5%A1&amp;rft.place=Praha&amp;rft.pub=Karolinum&amp;rft.date=2000&amp;rft.tpages=207"><span style="display:none">&#160;</span></span></li> <li><cite class="book" style="font-style:normal;"><a href="/wiki/Mario_Livio" title="Mario Livio">LIVIO, Mario</a>. <i>Neřešitelná rovnice</i>. Praha: Argo, Dokořán, 2008. 320&#160;s. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/978-80-7363-150-5" title="Speciální:Zdroje knih/978-80-7363-150-5"><span class="&#73;SBN">978-80-7363-150-5</span></a></span>.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Ne%C5%99e%C5%A1iteln%C3%A1+rovnice&amp;rft.isbn=978-80-7363-150-5&amp;rft.aulast=Livio&amp;rft.aufirst=Mario&amp;rft.place=Praha&amp;rft.pub=Argo%2C+Doko%C5%99%C3%A1n&amp;rft.date=2008&amp;rft.tpages=320"><span style="display:none">&#160;</span></span></li> <li><cite class="book" style="font-style:normal;">LITZMAN, Otto; SEKANINA, Milan. <i>Užití grup ve fyzice</i>. Praha: Academia, 1982. 276&#160;s.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=U%C5%BEit%C3%AD+grup+ve+fyzice&amp;rft.aulast=Litzman&amp;rft.aufirst=Otto&amp;rft.au=Sekanina%2C+Milan&amp;rft.place=Praha&amp;rft.pub=Academia&amp;rft.date=1982&amp;rft.tpages=276"><span style="display:none">&#160;</span></span></li> <li><cite class="book" style="font-style:normal;">PROCHÁZKA, Ladislav, a kol. <i>Algebra</i>. Praha: Academia, 1990. 560&#160;s. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/80-200-0301-0" title="Speciální:Zdroje knih/80-200-0301-0"><span class="&#73;SBN">80-200-0301-0</span></a></span>. Kapitola III.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Algebra&amp;rft.isbn=80-200-0301-0&amp;rft.aulast=Proch%C3%A1zka&amp;rft.aufirst=Ladislav&amp;rft.atitle=III&amp;rft.place=Praha&amp;rft.pub=Academia&amp;rft.date=1990&amp;rft.tpages=560"><span style="display:none">&#160;</span></span></li> <li><cite class="book" style="font-style:normal;">PROCHÁZKA, Ladislav. <i>Rozšíření grup a grupy krystalografické</i>. Praha: Academia, 2001. 119&#160;s. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/9788024604060" title="Speciální:Zdroje knih/9788024604060"><span class="&#73;SBN">9788024604060</span></a></span>.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Roz%C5%A1%C3%AD%C5%99en%C3%AD+grup+a+grupy+krystalografick%C3%A9&amp;rft.isbn=9788024604060&amp;rft.aulast=Proch%C3%A1zka&amp;rft.aufirst=Ladislav&amp;rft.place=Praha&amp;rft.pub=Academia&amp;rft.date=2001&amp;rft.tpages=119"><span style="display:none">&#160;</span></span></li> <li><cite class="book" style="font-style:normal;">RACHŮNEK,, Jiří. <i>Grupy a okruhy</i>. Olomouc: Univerzita Palackého v Olomouci, 2005. 106&#160;s. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/9788024409986" title="Speciální:Zdroje knih/9788024409986"><span class="&#73;SBN">9788024409986</span></a></span>.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Grupy+a+okruhy&amp;rft.isbn=9788024409986&amp;rft.aulast=Rach%C5%AFnek%2C&amp;rft.aufirst=Ji%C5%99%C3%AD&amp;rft.place=Olomouc&amp;rft.pub=Univerzita+Palack%C3%A9ho+v+Olomouci&amp;rft.date=2005&amp;rft.tpages=106"><span style="display:none">&#160;</span></span></li></ul> <dl><dt>Anglická</dt></dl> <ul><li><cite class="book" style="font-style:normal;">CORNWELL, J. F. <i>Group theory in physics: an introduction</i>. San Diego: Academic Press, 1997. 349&#160;s. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/9780121898007" title="Speciální:Zdroje knih/9780121898007"><span class="&#73;SBN">9780121898007</span></a></span>.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Group+theory+in+physics%3A+an+introduction&amp;rft.isbn=9780121898007&amp;rft.aulast=Cornwell&amp;rft.aufirst=J.+F&amp;rft.place=San+Diego&amp;rft.pub=Academic+Press&amp;rft.date=1997&amp;rft.tpages=349"><span style="display:none">&#160;</span></span></li> <li><cite class="book" style="font-style:normal;">LESK, Arthur M. <i>Introduction to symmetry and group theory for chemists</i>. Dordrecht&#160;; Boston: Kluwer Academic Publishers, 2004. 122&#160;s. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/9781402021503" title="Speciální:Zdroje knih/9781402021503"><span class="&#73;SBN">9781402021503</span></a></span>.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Introduction+to+symmetry+and+group+theory+for+chemists&amp;rft.isbn=9781402021503&amp;rft.aulast=Lesk&amp;rft.aufirst=Arthur+M&amp;rft.place=Dordrecht+%3B+Boston&amp;rft.pub=Kluwer+Academic+Publishers&amp;rft.date=2004&amp;rft.tpages=122"><span style="display:none">&#160;</span></span></li> <li><cite class="book" style="font-style:normal;">MCWEENY, Roy. <i>Symmetry: an introduction to group theory and its applications</i>. Mineola: Dover Publications, 2002. 248&#160;s. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/9780486421827" title="Speciální:Zdroje knih/9780486421827"><span class="&#73;SBN">9780486421827</span></a></span>.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Symmetry%3A+an+introduction+to+group+theory+and+its+applications&amp;rft.isbn=9780486421827&amp;rft.aulast=McWeeny&amp;rft.aufirst=Roy&amp;rft.place=Mineola&amp;rft.pub=Dover+Publications&amp;rft.date=2002&amp;rft.tpages=248"><span style="display:none">&#160;</span></span></li> <li><cite class="book" style="font-style:normal;">MILLER, Willard. <i>Symmetry groups and their applications</i>. New York: Academic Press, 1972. 432&#160;s. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/9780124974609" title="Speciální:Zdroje knih/9780124974609"><span class="&#73;SBN">9780124974609</span></a></span>.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Symmetry+groups+and+their+applications&amp;rft.isbn=9780124974609&amp;rft.aulast=Miller&amp;rft.aufirst=Willard&amp;rft.place=New+York&amp;rft.pub=Academic+Press&amp;rft.date=1972&amp;rft.tpages=432"><span style="display:none">&#160;</span></span></li> <li><cite class="book" style="font-style:normal;">STERNBERG, Shlomo. <i>Group theory and physics</i>. Cambridge: Cambridge University Press, 1995. 444&#160;s. <a rel="nofollow" class="external text" href="https://archive.org/details/grouptheoryphysi0000ster">Dostupné online</a>. <span style="white-space:nowrap"><a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Speci%C3%A1ln%C3%AD:Zdroje_knih/9780521558853" title="Speciální:Zdroje knih/9780521558853"><span class="&#73;SBN">9780521558853</span></a></span>.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/cs.wikipedia.org:templatecitacemonografie&amp;rft.btitle=Group+theory+and+physics&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fgrouptheoryphysi0000ster&amp;rft.isbn=9780521558853&amp;rft.aulast=Sternberg&amp;rft.aufirst=Shlomo&amp;rft.place=Cambridge&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1995&amp;rft.tpages=444"><span style="display:none">&#160;</span></span></li></ul> <div class="mw-heading mw-heading3"><h3 id="Externí_odkazy"><span id="Extern.C3.AD_odkazy"></span>Externí odkazy</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Grupa&amp;veaction=edit&amp;section=38" title="Editace sekce: Externí odkazy" class="mw-editsection-visualeditor"><span>editovat</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Grupa&amp;action=edit&amp;section=38" title="Editovat zdrojový kód sekce Externí odkazy"><span>editovat zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><span class="wd"><span class="sisterproject sisterproject-commons"><span class="sisterproject_image"><span typeof="mw:File"><a href="/wiki/Wikimedia_Commons" title="Wikimedia Commons"><img alt="Logo Wikimedia Commons" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/12px-Commons-logo.svg.png" decoding="async" width="12" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/24px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></a></span></span> <span class="sisterproject_text">Obrázky, zvuky či videa k tématu <span class="sisterproject_text_target"><a href="https://commons.wikimedia.org/wiki/Category:Group_theory" class="extiw" title="c:Category:Group theory">grupa</a></span> na <a href="/wiki/Wikimedia_Commons" title="Wikimedia Commons">Wikimedia Commons</a></span></span></span><i> </i></li> <li><span class="sisterproject sisterproject-wiktionary"><span class="sisterproject_image"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/9/97/Wiktionary-logo-cs.svg/16px-Wiktionary-logo-cs.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/97/Wiktionary-logo-cs.svg/24px-Wiktionary-logo-cs.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/97/Wiktionary-logo-cs.svg/32px-Wiktionary-logo-cs.svg.png 2x" data-file-width="411" data-file-height="411" /></span></span></span> <span class="sisterproject_text"><span class="sisterproject_text_prefix">Slovníkové heslo </span><span class="sisterproject_text_target"><a href="https://cs.wiktionary.org/wiki/grupa" class="extiw" title="wikt:grupa">grupa</a></span><span class="sisterproject_text_suffix"> ve Wikislovníku</span></span></span></li></ul> <dl><dt>České</dt></dl> <ul><li>Motl L., Zahradník M., <a rel="nofollow" class="external text" href="https://web.archive.org/web/20041225000824/http://www.kolej.mff.cuni.cz/~lmotm275/skripta/mzahrad/node17.html">Pěstujeme lineární algebru, kapitola Grupa</a> (skripta)</li> <li>Martin Kuřil, <a rel="nofollow" class="external text" href="http://katmatprf.ujepurkyne.com/materialy/kuril_grupy.pdf">Základy teorie grup</a><sup>&#x5b;<a href="/wiki/Wikipedie:Ov%C4%9B%C5%99itelnost" title="Wikipedie:Ověřitelnost"><span class="doplnte-zdroj" title="Je potřeba vyhledat jiný zdroj namísto současného nedostupného zdroje">nedostupný zdroj</span></a>]</sup> (učební text)</li> <li>Pavel Růžička, <a rel="nofollow" class="external text" href="http://www.karlin.mff.cuni.cz/~ruzicka/ctg/kapitola1.pdf">Elementární teorie grup</a></li> <li>Lucie Horálková, <a rel="nofollow" class="external text" href="http://is.muni.cz/th/106253/prif_b/Grupy_symetrii.pdf">Grupy symetrií</a>, bakalářská práce</li> <li>Jakub „šnEk“ Opršal, <a rel="nofollow" class="external text" href="http://atrey.karlin.mff.cuni.cz/~snek/pub/matika/rubiks_group_theory.pdf">Rubikova teorie grup</a><sup>&#x5b;<a href="/wiki/Wikipedie:Ov%C4%9B%C5%99itelnost" title="Wikipedie:Ověřitelnost"><span class="doplnte-zdroj" title="Je potřeba vyhledat jiný zdroj namísto současného nedostupného zdroje">nedostupný zdroj</span></a>]</sup></li> <li><a rel="nofollow" class="external text" href="http://www.xray.cz/kryst/grupa.htm">Grupa na stránkách Krystalografické společnosti</a></li></ul> <dl><dt>Anglické</dt></dl> <ul><li><a rel="nofollow" class="external text" href="http://www.e-booksdirectory.com/listing.php?category=35">Knihy o teorii grup na e-books</a>, volně ke stažení</li> <li>Frank W. K. Firk (Yale University), <a rel="nofollow" class="external text" href="http://www.physicsforfree.com/intro.html">Introduction to Groups, Invariants &amp; Particles</a>, volně ke stažení</li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20110615105236/http://www-public.tu-bs.de:8080/%7Ehubesche/small.html">The Small Groups library</a>, popis grup malých řádů</li> <li>John Jones, <a rel="nofollow" class="external text" href="http://hobbes.la.asu.edu/groups/groups.html">Group Tables and Subgroup Diagrams</a></li> <li><a rel="nofollow" class="external text" href="http://wwwmathlabo.univ-poitiers.fr/~maavl/LiE/">Lie</a>, program na počty související s reprezentacemi <a href="/wiki/Lieova_grupa" title="Lieova grupa">Lieových grup</a></li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20111107191217/http://www.opensourcemath.org/gap/small_groups.html">Popis malých grup do řádu 30</a></li> <li><a rel="nofollow" class="external text" href="http://mathworld.wolfram.com/Group.html">Grupa na MathWorld </a></li></ul> <style data-mw-deduplicate="TemplateStyles:r16915398">.mw-parser-output div/**/#portallinks a{font-weight:bold}</style><div id="portallinks" class="catlinks"><a href="/wiki/Port%C3%A1l:Obsah" title="Portál:Obsah">Portály</a>: <a href="/wiki/Port%C3%A1l:Matematika" title="Portál:Matematika">Matematika</a> </div> <p><span></span> </p> <style data-mw-deduplicate="TemplateStyles:r23078045">.mw-parser-output .navbox2{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox2 .navbox2{margin-top:0}.mw-parser-output .navbox2+.navbox2{margin-top:-1px}.mw-parser-output .navbox2-inner,.mw-parser-output .navbox2-subgroup{width:100%}.mw-parser-output .navbox2-group,.mw-parser-output .navbox2-title,.mw-parser-output .navbox2-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output th.navbox2-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox2,.mw-parser-output .navbox2-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox2-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output tr+tr>.navbox2-abovebelow,.mw-parser-output tr+tr>.navbox2-group,.mw-parser-output tr+tr>.navbox2-image,.mw-parser-output tr+tr>.navbox2-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox2 th,.mw-parser-output .navbox2-title{background-color:#e0e0e0}.mw-parser-output .navbox2-abovebelow,.mw-parser-output th.navbox2-group,.mw-parser-output .navbox2-subgroup .navbox2-title{background-color:#e7e7e7}.mw-parser-output .navbox2-subgroup .navbox2-title{font-size:88%}.mw-parser-output .navbox2-subgroup .navbox2-group,.mw-parser-output .navbox2-subgroup .navbox2-abovebelow{background-color:#f0f0f0}.mw-parser-output .navbox2-even{background-color:#f7f7f7}.mw-parser-output .navbox2-odd{background-color:transparent}.mw-parser-output .navbox2 .hlist td dl,.mw-parser-output .navbox2 .hlist td ol,.mw-parser-output .navbox2 .hlist td ul,.mw-parser-output .navbox2 td.hlist dl,.mw-parser-output .navbox2 td.hlist ol,.mw-parser-output .navbox2 td.hlist ul{padding:0.125em 0}</style><div role="navigation" class="navbox2" aria-labelledby="Autoritní_data_frameless_&amp;#124;text-top_&amp;#124;10px_&amp;#124;alt=Editovat_na_Wikidatech_&amp;#124;link=https&amp;#58;//www.wikidata.org/wiki/Q83478#identifiers&amp;#124;Editovat_na_Wikidatech" style="padding:2px"><table class="nowraplinks hlist navbox2-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th id="Autoritní_data_frameless_&amp;#124;text-top_&amp;#124;10px_&amp;#124;alt=Editovat_na_Wikidatech_&amp;#124;link=https&amp;#58;//www.wikidata.org/wiki/Q83478#identifiers&amp;#124;Editovat_na_Wikidatech" scope="row" class="navbox2-group" style="width:1%"><a href="/wiki/Autoritn%C3%AD_kontrola" title="Autoritní kontrola">Autoritní data</a> <span class="mw-valign-text-top" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q83478#identifiers" title="Editovat na Wikidatech"><img alt="Editovat na Wikidatech" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox2-list navbox2-odd" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><span class="nowrap"><a href="/wiki/N%C3%A1rodn%C3%AD_knihovna_%C4%8Cesk%C3%A9_republiky" title="Národní knihovna České republiky">NKC</a>: <span class="uid"><a rel="nofollow" class="external text" href="https://aleph.nkp.cz/F/?func=find-c&amp;local_base=aut&amp;ccl_term=ica=ph180740">ph180740</a></span></span></li> <li><span class="nowrap"><a href="/wiki/Gemeinsame_Normdatei" title="Gemeinsame Normdatei">GND</a>: <span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4022379-6">4022379-6</a></span></span></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐7c479b968‐ld26x Cached time: 20241117194856 Cache expiry: 2592000 Reduced expiry: false Complications: [show‐toc] CPU time usage: 1.035 seconds Real time usage: 1.334 seconds Preprocessor visited node count: 14319/1000000 Post‐expand include size: 238430/2097152 bytes Template argument size: 51811/2097152 bytes Highest expansion depth: 22/100 Expensive parser function count: 3/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 149240/5000000 bytes Lua time usage: 0.196/10.000 seconds Lua memory usage: 2434146/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 668.474 1 -total 21.89% 146.322 81 Šablona:Citace_monografie 11.74% 78.480 14 Šablona:Citation 7.49% 50.097 1 Šablona:Commonscat 7.27% 48.566 1 Šablona:Autoritní_data 6.20% 41.440 1 Šablona:Překlad 6.08% 40.633 1 Šablona:Různé_významy 5.89% 39.394 14 Šablona:Cizojazyčná_verze_šablony 5.42% 36.212 14 Šablona:Pouze_dočasné_použití 5.01% 33.485 1 Šablona:Končí_tečkou --> <!-- Saved in parser cache with key cswiki:pcache:idhash:13666-0!canonical and timestamp 20241117194856 and revision id 24277163. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Citováno z „<a dir="ltr" href="https://cs.wikipedia.org/w/index.php?title=Grupa&amp;oldid=24277163#Řád_prvku_a_grupy">https://cs.wikipedia.org/w/index.php?title=Grupa&amp;oldid=24277163#Řád_prvku_a_grupy</a>“</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/N%C3%A1pov%C4%9Bda:Kategorie" title="Nápověda:Kategorie">Kategorie</a>: <ul><li><a href="/wiki/Kategorie:Wikipedie:Dobr%C3%A9_%C4%8Dl%C3%A1nky" title="Kategorie:Wikipedie:Dobré články">Wikipedie:Dobré články</a></li><li><a href="/wiki/Kategorie:Teorie_grup" title="Kategorie:Teorie grup">Teorie grup</a></li><li><a href="/wiki/Kategorie:Algebraick%C3%A9_struktury" title="Kategorie:Algebraické struktury">Algebraické struktury</a></li><li><a href="/wiki/Kategorie:Symetrie" title="Kategorie:Symetrie">Symetrie</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Skryté kategorie: <ul><li><a href="/wiki/Kategorie:%C3%9Adr%C5%BEba:%C4%8Cl%C3%A1nky_s_do%C4%8Dasn%C4%9B_pou%C5%BEitou_%C5%A1ablonou" title="Kategorie:Údržba:Články s dočasně použitou šablonou">Údržba:Články s dočasně použitou šablonou</a></li><li><a href="/wiki/Kategorie:Monitoring:%C4%8Cl%C3%A1nky_p%C5%99elo%C5%BEen%C3%A9_z_enwiki" title="Kategorie:Monitoring:Články přeložené z enwiki">Monitoring:Články přeložené z enwiki</a></li><li><a href="/wiki/Kategorie:%C3%9Adr%C5%BEba:%C4%8Cl%C3%A1nky_obsahuj%C3%ADc%C3%AD_odkazy_na_nedostupn%C3%A9_zdroje" title="Kategorie:Údržba:Články obsahující odkazy na nedostupné zdroje">Údržba:Články obsahující odkazy na nedostupné zdroje</a></li><li><a href="/wiki/Kategorie:Monitoring:%C4%8Cl%C3%A1nky_s_identifik%C3%A1torem_NKC" title="Kategorie:Monitoring:Články s identifikátorem NKC">Monitoring:Články s identifikátorem NKC</a></li><li><a href="/wiki/Kategorie:Monitoring:%C4%8Cl%C3%A1nky_s_identifik%C3%A1torem_GND" title="Kategorie:Monitoring:Články s identifikátorem GND">Monitoring:Články s identifikátorem GND</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> Stránka byla naposledy editována 29. 9. 2024 v 23:34.</li> <li id="footer-info-copyright">Text je dostupný pod <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by-sa/4.0/deed.cs">licencí Creative Commons Uveďte původ&#160;– Zachovejte licenci</a>, případně za dalších podmínek. Podrobnosti naleznete na stránce <a class="external text" href="https://foundation.wikimedia.org/wiki/Policy:Terms_of_Use/cs">Podmínky užití</a>.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Ochrana osobních údajů</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedie">O Wikipedii</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedie:Vylou%C4%8Den%C3%AD_odpov%C4%9Bdnosti">Vyloučení odpovědnosti</a></li> <li id="footer-places-contact"><a href="//cs.wikipedia.org/wiki/Wikipedie:Kontakt">Kontaktujte Wikipedii</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Kodex chování</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Vývojáři</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/cs.wikipedia.org">Statistiky</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Prohlášení o cookies</a></li> <li id="footer-places-mobileview"><a href="//cs.m.wikipedia.org/w/index.php?title=Grupa&amp;mobileaction=toggle_view_mobile#Řád_prvku_a_grupy" class="noprint stopMobileRedirectToggle">Mobilní verze</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-ktpz4","wgBackendResponseTime":210,"wgPageParseReport":{"limitreport":{"cputime":"1.035","walltime":"1.334","ppvisitednodes":{"value":14319,"limit":1000000},"postexpandincludesize":{"value":238430,"limit":2097152},"templateargumentsize":{"value":51811,"limit":2097152},"expansiondepth":{"value":22,"limit":100},"expensivefunctioncount":{"value":3,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":149240,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 668.474 1 -total"," 21.89% 146.322 81 Šablona:Citace_monografie"," 11.74% 78.480 14 Šablona:Citation"," 7.49% 50.097 1 Šablona:Commonscat"," 7.27% 48.566 1 Šablona:Autoritní_data"," 6.20% 41.440 1 Šablona:Překlad"," 6.08% 40.633 1 Šablona:Různé_významy"," 5.89% 39.394 14 Šablona:Cizojazyčná_verze_šablony"," 5.42% 36.212 14 Šablona:Pouze_dočasné_použití"," 5.01% 33.485 1 Šablona:Končí_tečkou"]},"scribunto":{"limitreport-timeusage":{"value":"0.196","limit":"10.000"},"limitreport-memusage":{"value":2434146,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-7c479b968-ld26x","timestamp":"20241117194856","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Grupa","url":"https:\/\/cs.wikipedia.org\/wiki\/Grupa#\u0158\u00e1d_prvku_a_grupy","sameAs":"http:\/\/www.wikidata.org\/entity\/Q83478","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q83478","author":{"@type":"Organization","name":"P\u0159isp\u011bvatel\u00e9 projekt\u016f Wikimedia"},"publisher":{"@type":"Organization","name":"nadace Wikimedia","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2005-03-10T00:25:24Z","dateModified":"2024-09-29T22:34:43Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/a\/a6\/Rubik%27s_cube.svg","headline":"mno\u017eina s bin\u00e1rn\u00ed operac\u00ed"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10