CINXE.COM

Taxicab geometry - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Taxicab geometry - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"85feda51-96c2-4d60-a64b-194908fe5e1a","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Taxicab_geometry","wgTitle":"Taxicab geometry","wgCurRevisionId":1259671220,"wgRevisionId":1259671220,"wgArticleId":408354,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 German-language sources (de)","Articles with short description","Short description matches Wikidata","Digital geometry","Distance","Mathematical chess problems","Metric geometry","Norms (mathematics)"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Taxicab_geometry","wgRelevantArticleId":408354,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[], "wgRedirectedFrom":"Manhattan_distance","wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":20000,"wgInternalRedirectTargetUrl":"/wiki/Taxicab_geometry","wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q573509","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true, "wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["mediawiki.action.view.redirect","ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar", "ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.5"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/0/08/Manhattan_distance.svg/1200px-Manhattan_distance.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1200"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/0/08/Manhattan_distance.svg/800px-Manhattan_distance.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="800"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/0/08/Manhattan_distance.svg/640px-Manhattan_distance.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="640"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Taxicab geometry - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Taxicab_geometry"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Taxicab_geometry&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Taxicab_geometry"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Taxicab_geometry rootpage-Taxicab_geometry skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Taxicab+geometry" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Taxicab+geometry" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Taxicab+geometry" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Taxicab+geometry" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Formal_definition" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Formal_definition"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Formal definition</span> </div> </a> <ul id="toc-Formal_definition-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>History</span> </div> </a> <ul id="toc-History-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Properties" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Properties</span> </div> </a> <button aria-controls="toc-Properties-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Properties subsection</span> </button> <ul id="toc-Properties-sublist" class="vector-toc-list"> <li id="toc-Spheres" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Spheres"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Spheres</span> </div> </a> <ul id="toc-Spheres-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Arc_length" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Arc_length"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Arc length</span> </div> </a> <ul id="toc-Arc_length-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Triangle_congruence" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Triangle_congruence"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Triangle congruence</span> </div> </a> <ul id="toc-Triangle_congruence-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Applications" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Applications"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Applications</span> </div> </a> <button aria-controls="toc-Applications-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Applications subsection</span> </button> <ul id="toc-Applications-sublist" class="vector-toc-list"> <li id="toc-Compressed_sensing" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Compressed_sensing"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Compressed sensing</span> </div> </a> <ul id="toc-Compressed_sensing-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Differences_of_frequency_distributions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Differences_of_frequency_distributions"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Differences of frequency distributions</span> </div> </a> <ul id="toc-Differences_of_frequency_distributions-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Further reading</span> </div> </a> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links_2" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>External links</span> </div> </a> <ul id="toc-External_links_2-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Taxicab geometry</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 24 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-24" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">24 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Manhattan-metriek" title="Manhattan-metriek – Afrikaans" lang="af" hreflang="af" data-title="Manhattan-metriek" data-language-autonym="Afrikaans" data-language-local-name="Afrikaans" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%87%D9%86%D8%AF%D8%B3%D8%A9_%D8%B3%D9%8A%D8%A7%D8%B1%D8%A9_%D8%A7%D9%84%D8%A3%D8%AC%D8%B1%D8%A9" title="هندسة سيارة الأجرة – Arabic" lang="ar" hreflang="ar" data-title="هندسة سيارة الأجرة" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Geometria_del_taxista" title="Geometria del taxista – Catalan" lang="ca" hreflang="ca" data-title="Geometria del taxista" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Manhattansk%C3%A1_metrika" title="Manhattanská metrika – Czech" lang="cs" hreflang="cs" data-title="Manhattanská metrika" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Manhattan-Metrik" title="Manhattan-Metrik – German" lang="de" hreflang="de" data-title="Manhattan-Metrik" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Geometr%C3%ADa_del_taxista" title="Geometría del taxista – Spanish" lang="es" hreflang="es" data-title="Geometría del taxista" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%81%D8%A7%D8%B5%D9%84%D9%87_%D9%85%D9%86%D9%87%D8%AA%D9%86" title="فاصله منهتن – Persian" lang="fa" hreflang="fa" data-title="فاصله منهتن" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Distance_de_Manhattan" title="Distance de Manhattan – French" lang="fr" hreflang="fr" data-title="Distance de Manhattan" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EB%A7%A8%ED%95%B4%ED%8A%BC_%EA%B1%B0%EB%A6%AC" title="맨해튼 거리 – Korean" lang="ko" hreflang="ko" data-title="맨해튼 거리" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Jarak_Manhattan" title="Jarak Manhattan – Indonesian" lang="id" hreflang="id" data-title="Jarak Manhattan" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Geometria_del_taxi" title="Geometria del taxi – Italian" lang="it" hreflang="it" data-title="Geometria del taxi" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%92%D7%90%D7%95%D7%9E%D7%98%D7%A8%D7%99%D7%99%D7%AA_%D7%A0%D7%94%D7%92%D7%99_%D7%94%D7%9E%D7%95%D7%A0%D7%99%D7%95%D7%AA" title="גאומטריית נהגי המוניות – Hebrew" lang="he" hreflang="he" data-title="גאומטריית נהגי המוניות" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%9F%E0%B4%BE%E0%B4%95%E0%B5%8D%E0%B4%B8%E0%B4%BF%E0%B4%95%E0%B4%BE%E0%B4%AC%E0%B5%8D_%E0%B4%9C%E0%B5%8D%E0%B4%AF%E0%B4%BE%E0%B4%AE%E0%B4%BF%E0%B4%A4%E0%B4%BF" title="ടാക്സികാബ് ജ്യാമിതി – Malayalam" lang="ml" hreflang="ml" data-title="ടാക്സികാബ് ജ്യാമിതി" data-language-autonym="മലയാളം" data-language-local-name="Malayalam" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Manhattan-metriek" title="Manhattan-metriek – Dutch" lang="nl" hreflang="nl" data-title="Manhattan-metriek" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%83%9E%E3%83%B3%E3%83%8F%E3%83%83%E3%82%BF%E3%83%B3%E8%B7%9D%E9%9B%A2" title="マンハッタン距離 – Japanese" lang="ja" hreflang="ja" data-title="マンハッタン距離" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Geometria_do_t%C3%A1xi" title="Geometria do táxi – Portuguese" lang="pt" hreflang="pt" data-title="Geometria do táxi" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Distan%C8%9B%C4%83_Manhattan" title="Distanță Manhattan – Romanian" lang="ro" hreflang="ro" data-title="Distanță Manhattan" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A0%D0%B0%D1%81%D1%81%D1%82%D0%BE%D1%8F%D0%BD%D0%B8%D0%B5_%D0%B3%D0%BE%D1%80%D0%BE%D0%B4%D1%81%D0%BA%D0%B8%D1%85_%D0%BA%D0%B2%D0%B0%D1%80%D1%82%D0%B0%D0%BB%D0%BE%D0%B2" title="Расстояние городских кварталов – Russian" lang="ru" hreflang="ru" data-title="Расстояние городских кварталов" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Manhattan_distance" title="Manhattan distance – Simple English" lang="en-simple" hreflang="en-simple" data-title="Manhattan distance" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Manhattangeometri" title="Manhattangeometri – Swedish" lang="sv" hreflang="sv" data-title="Manhattangeometri" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9C%D0%B0%D0%BD%D0%B3%D0%B5%D1%82%D1%82%D0%B5%D0%BD%D1%81%D1%8C%D0%BA%D0%B0_%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D0%BA%D0%B0" title="Мангеттенська метрика – Ukrainian" lang="uk" hreflang="uk" data-title="Мангеттенська метрика" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Kho%E1%BA%A3ng_c%C3%A1ch_Manhattan" title="Khoảng cách Manhattan – Vietnamese" lang="vi" hreflang="vi" data-title="Khoảng cách Manhattan" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E6%9B%BC%E5%85%8B%E9%A0%93%E8%B7%9D%E9%9B%A2" title="曼克頓距離 – Cantonese" lang="yue" hreflang="yue" data-title="曼克頓距離" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E6%9B%BC%E5%93%88%E9%A0%93%E8%B7%9D%E9%9B%A2" title="曼哈頓距離 – Chinese" lang="zh" hreflang="zh" data-title="曼哈頓距離" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q573509#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Taxicab_geometry" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Taxicab_geometry" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Taxicab_geometry"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Taxicab_geometry&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Taxicab_geometry&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Taxicab_geometry"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Taxicab_geometry&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Taxicab_geometry&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Taxicab_geometry" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Taxicab_geometry" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Taxicab_geometry&amp;oldid=1259671220" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Taxicab_geometry&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Taxicab_geometry&amp;id=1259671220&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FTaxicab_geometry"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FTaxicab_geometry"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Taxicab_geometry&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Taxicab_geometry&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q573509" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"><span class="mw-redirectedfrom">(Redirected from <a href="/w/index.php?title=Manhattan_distance&amp;redirect=no" class="mw-redirect" title="Manhattan distance">Manhattan distance</a>)</span></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Type of metric geometry</div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Manhattan_distance.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/08/Manhattan_distance.svg/260px-Manhattan_distance.svg.png" decoding="async" width="260" height="260" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/08/Manhattan_distance.svg/390px-Manhattan_distance.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/08/Manhattan_distance.svg/520px-Manhattan_distance.svg.png 2x" data-file-width="283" data-file-height="283" /></a><figcaption>In taxicab geometry, the lengths of the red, blue, green, and yellow paths all equal <span class="texhtml">12</span>, the taxicab distance between the opposite corners, and all four paths are shortest paths. Instead, in Euclidean geometry, the red, blue, and yellow paths still have length <span class="texhtml">12</span> but the green path is the unique shortest path, with length equal to the Euclidean distance between the opposite corners, <span class="texhtml">6√2 ≈ 8.49</span>.</figcaption></figure> <p><b>Taxicab geometry</b> or <b>Manhattan geometry</b> is <a href="/wiki/Geometry" title="Geometry">geometry</a> where the familiar <a href="/wiki/Euclidean_distance" title="Euclidean distance">Euclidean distance</a> is ignored, and the <a href="/wiki/Distance" title="Distance">distance</a> between two <a href="/wiki/Point_(geometry)" title="Point (geometry)">points</a> is instead defined to be the sum of the <a href="/wiki/Absolute_difference" title="Absolute difference">absolute differences</a> of their respective <a href="/wiki/Cartesian_coordinate" class="mw-redirect" title="Cartesian coordinate">Cartesian coordinates</a>, a distance function (or <a href="/wiki/Metric_(mathematics)" class="mw-redirect" title="Metric (mathematics)">metric</a>) called the <i>taxicab distance</i>, <i>Manhattan distance</i>, or <i>city block distance</i>. The name refers to the island of <a href="/wiki/Manhattan" title="Manhattan">Manhattan</a>, or generically any planned city with a <a href="/wiki/Rectangular_grid" class="mw-redirect" title="Rectangular grid">rectangular grid</a> of streets, in which a taxicab can only travel along grid directions. In taxicab geometry, the distance between any two points equals the length of their shortest grid path. This different definition of distance also leads to a different definition of the length of a curve, for which a <a href="/wiki/Line_segment" title="Line segment">line segment</a> between any two points has the same length as a grid path between those points rather than its Euclidean length. </p><p>The taxicab distance is also sometimes known as <i>rectilinear distance</i> or <span class="texhtml"><i>L</i><sup>1</sup></span> distance (see <a href="/wiki/Lp_space" title="Lp space"><i>L<sup>p</sup></i> space</a>).<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> This geometry has been used in <a href="/wiki/Regression_analysis" title="Regression analysis">regression analysis</a> since the 18th century, and is often referred to as <a href="/wiki/Lasso_(statistics)" title="Lasso (statistics)">LASSO</a>. Its geometric interpretation dates to <a href="/wiki/Non-Euclidean_geometry" title="Non-Euclidean geometry">non-Euclidean geometry</a> of the 19th century and is due to <a href="/wiki/Hermann_Minkowski" title="Hermann Minkowski">Hermann Minkowski</a>. </p><p>In the two-<a href="/wiki/Dimension" title="Dimension">dimensional</a> <a href="/wiki/Real_coordinate_space" title="Real coordinate space">real coordinate space</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d349b099a2e00103b347c5f640a30e0af2a6ee18" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.379ex; height:3.009ex;" alt="{\displaystyle \mathbb {R} ^{2},}"></span> the taxicab distance between two points <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x_{1},y_{1})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x_{1},y_{1})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7fc74086e56542bd28b46a84faaee3cebdd4a899" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.421ex; height:2.843ex;" alt="{\displaystyle (x_{1},y_{1})}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x_{2},y_{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x_{2},y_{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d52d44e16a796acee486af49af05f678566d181a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.421ex; height:2.843ex;" alt="{\displaystyle (x_{2},y_{2})}"></span> is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>|</mo> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mo>|</mo> </mrow> <mo>+</mo> <mrow> <mo>|</mo> <mrow> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mo>|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e3960547778409b4a265ae0a4699fd427af8ae1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.263ex; height:2.843ex;" alt="{\displaystyle \left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|}"></span>. That is, it is the sum of the <a href="/wiki/Absolute_value" title="Absolute value">absolute values</a> of the differences in both coordinates. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Formal_definition">Formal definition</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Taxicab_geometry&amp;action=edit&amp;section=1" title="Edit section: Formal definition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The taxicab distance, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d_{\text{T}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>T</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d_{\text{T}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f4d5eb2e94e044af816d58dfda284471b49c4037" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.628ex; height:2.509ex;" alt="{\displaystyle d_{\text{T}}}"></span>, between two points <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {p} =(p_{1},p_{2},\dots ,p_{n}){\text{ and }}\mathbf {q} =(q_{1},q_{2},\dots ,q_{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;and&#xA0;</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">q</mi> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {p} =(p_{1},p_{2},\dots ,p_{n}){\text{ and }}\mathbf {q} =(q_{1},q_{2},\dots ,q_{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/769212eb9991464f8efe460e64a6115deeb28747" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:43.323ex; height:2.843ex;" alt="{\displaystyle \mathbf {p} =(p_{1},p_{2},\dots ,p_{n}){\text{ and }}\mathbf {q} =(q_{1},q_{2},\dots ,q_{n})}"></span> in an <i>n</i>-dimensional <a href="/wiki/Real_coordinate_space" title="Real coordinate space">real coordinate space</a> with fixed <a href="/wiki/Cartesian_coordinate_system" title="Cartesian coordinate system">Cartesian coordinate system</a>, is the sum of the lengths of the projections of the <a href="/wiki/Line_segment" title="Line segment">line segment</a> between the points onto the <a href="/wiki/Coordinate_axes" class="mw-redirect" title="Coordinate axes">coordinate axes</a>. More formally,<span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d_{\text{T}}(\mathbf {p} ,\mathbf {q} )=\left\|\mathbf {p} -\mathbf {q} \right\|_{\text{T}}=\sum _{i=1}^{n}\left|p_{i}-q_{i}\right|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>T</mtext> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">q</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">q</mi> </mrow> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>T</mtext> </mrow> </msub> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow> <mo>|</mo> <mrow> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mo>|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d_{\text{T}}(\mathbf {p} ,\mathbf {q} )=\left\|\mathbf {p} -\mathbf {q} \right\|_{\text{T}}=\sum _{i=1}^{n}\left|p_{i}-q_{i}\right|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e84f3874e1eb36a8881a8248cf83037b455360cb" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:35.736ex; height:6.843ex;" alt="{\displaystyle d_{\text{T}}(\mathbf {p} ,\mathbf {q} )=\left\|\mathbf {p} -\mathbf {q} \right\|_{\text{T}}=\sum _{i=1}^{n}\left|p_{i}-q_{i}\right|}"></span>For example, in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e150115ab9f63023215109595b76686a1ff890fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{2}}"></span>, the taxicab distance between <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {p} =(p_{1},p_{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {p} =(p_{1},p_{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8264bf7cc18cde2dbf382a0befc761c5629308a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.874ex; height:2.843ex;" alt="{\displaystyle \mathbf {p} =(p_{1},p_{2})}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {q} =(q_{1},q_{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">q</mi> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {q} =(q_{1},q_{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aadede69f21d954ef6befd75d03e75769b91a837" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.54ex; height:2.843ex;" alt="{\displaystyle \mathbf {q} =(q_{1},q_{2})}"></span> is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left|p_{1}-q_{1}\right|+\left|p_{2}-q_{2}\right|.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>|</mo> <mrow> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mo>|</mo> </mrow> <mo>+</mo> <mrow> <mo>|</mo> <mrow> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mo>|</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left|p_{1}-q_{1}\right|+\left|p_{2}-q_{2}\right|.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48c6b7a51283f697fec276f0923e36d0c34c84f2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.772ex; height:2.843ex;" alt="{\displaystyle \left|p_{1}-q_{1}\right|+\left|p_{2}-q_{2}\right|.}"></span> </p> <div class="mw-heading mw-heading2"><h2 id="History">History</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Taxicab_geometry&amp;action=edit&amp;section=2" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <i>L</i><sup>1</sup> metric was used in <a href="/wiki/Regression_analysis" title="Regression analysis">regression analysis</a>, as a measure of <a href="/wiki/Goodness_of_fit" title="Goodness of fit">goodness of fit</a>, in 1757 by <a href="/wiki/Roger_Joseph_Boscovich" title="Roger Joseph Boscovich">Roger Joseph Boscovich</a>.<sup id="cite_ref-Stigler19862_2-0" class="reference"><a href="#cite_note-Stigler19862-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> The interpretation of it as a distance between points in a geometric space dates to the late 19th century and the development of <a href="/wiki/Non-Euclidean_geometries" class="mw-redirect" title="Non-Euclidean geometries">non-Euclidean geometries</a>. Notably it appeared in 1910 in the works of both <a href="/wiki/Frigyes_Riesz" title="Frigyes Riesz">Frigyes Riesz</a> and <a href="/wiki/Hermann_Minkowski" title="Hermann Minkowski">Hermann Minkowski</a>. The formalization of <a href="/wiki/Lp_space" title="Lp space"><i>L</i><sup>p</sup> spaces</a>, which include taxicab geometry as a special case, is credited to Riesz.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> In developing the <a href="/wiki/Geometry_of_numbers" title="Geometry of numbers">geometry of numbers</a>, <a href="/wiki/Hermann_Minkowski" title="Hermann Minkowski">Hermann Minkowski</a> established his <a href="/wiki/Minkowski_inequality" title="Minkowski inequality">Minkowski inequality</a>, stating that these spaces define <a href="/wiki/Normed_vector_space" title="Normed vector space">normed vector spaces</a>.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> </p><p>The name <i>taxicab geometry</i> was introduced by <a href="/wiki/Karl_Menger" title="Karl Menger">Karl Menger</a> in a 1952 booklet <i>You Will Like Geometry</i>, accompanying a geometry exhibit intended for the general public at the <a href="/wiki/Museum_of_Science_and_Industry_(Chicago)" title="Museum of Science and Industry (Chicago)">Museum of Science and Industry</a> in Chicago.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Properties">Properties</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Taxicab_geometry&amp;action=edit&amp;section=3" title="Edit section: Properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Thought of as an additional structure layered on <a href="/wiki/Euclidean_space" title="Euclidean space">Euclidean space</a>, taxicab distance depends on the <a href="/wiki/Orientation_(geometry)" title="Orientation (geometry)">orientation</a> of the coordinate system and is changed by Euclidean <a href="/wiki/Rotation" title="Rotation">rotation</a> of the space, but is unaffected by <a href="/wiki/Translation_(geometry)" title="Translation (geometry)">translation</a> or axis-aligned <a href="/wiki/Reflection_(mathematics)" title="Reflection (mathematics)">reflections</a>. Taxicab geometry satisfies all of <a href="/wiki/Hilbert%27s_axioms" title="Hilbert&#39;s axioms">Hilbert's axioms</a> (a formalization of <a href="/wiki/Euclidean_geometry" title="Euclidean geometry">Euclidean geometry</a>) except that the congruence of angles cannot be defined to precisely match the Euclidean concept, and under plausible definitions of congruent taxicab angles, the <a href="/wiki/Congruence_(geometry)#Determining_congruence" title="Congruence (geometry)">side-angle-side axiom</a> is not satisfied as in general triangles with two taxicab-congruent sides and a taxicab-congruent angle between them are not <a href="/wiki/Congruence_(geometry)#Congruence_of_triangles" title="Congruence (geometry)">congruent triangles</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Spheres">Spheres</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Taxicab_geometry&amp;action=edit&amp;section=4" title="Edit section: Spheres"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:TaxicabGeometryCircle.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/de/TaxicabGeometryCircle.svg/180px-TaxicabGeometryCircle.svg.png" decoding="async" width="180" height="496" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/de/TaxicabGeometryCircle.svg/270px-TaxicabGeometryCircle.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/de/TaxicabGeometryCircle.svg/360px-TaxicabGeometryCircle.svg.png 2x" data-file-width="214" data-file-height="590" /></a><figcaption>Grid points on a circle in taxicab geometry as the grid is made finer</figcaption></figure> <p>In any <a href="/wiki/Metric_space" title="Metric space">metric space</a>, a <a href="/wiki/Sphere#Metric_spaces" title="Sphere">sphere</a> is a set of points at a fixed distance, the <i><a href="/wiki/Radius" title="Radius">radius</a></i>, from a specific <i><a href="/wiki/Centre_(geometry)" title="Centre (geometry)">center</a></i> point. Whereas a Euclidean sphere is round and rotationally symmetric, under the taxicab distance, the shape of a sphere is a <a href="/wiki/Cross-polytope" title="Cross-polytope">cross-polytope</a>, the <i>n</i>-dimensional generalization of a <a href="/wiki/Regular_octahedron" class="mw-redirect" title="Regular octahedron">regular octahedron</a>, whose points <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {p} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {p} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dd73e3862cb92b016721b8c492eadb4e8a577527" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.485ex; height:2.009ex;" alt="{\displaystyle \mathbf {p} }"></span> satisfy the equation: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d_{\text{T}}(\mathbf {p} ,\mathbf {c} )=\sum _{i=1}^{n}|p_{i}-c_{i}|=r,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>T</mtext> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mi>r</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d_{\text{T}}(\mathbf {p} ,\mathbf {c} )=\sum _{i=1}^{n}|p_{i}-c_{i}|=r,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d551a33ea4362f5e49edbb9292dafba19e4519ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:27.688ex; height:6.843ex;" alt="{\displaystyle d_{\text{T}}(\mathbf {p} ,\mathbf {c} )=\sum _{i=1}^{n}|p_{i}-c_{i}|=r,}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {c} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {c} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8798d172f59e21f2ce193a3118d4063d19353ded" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.188ex; height:1.676ex;" alt="{\displaystyle \mathbf {c} }"></span> is the center and <i>r</i> is the radius. Points <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {p} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {p} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dd73e3862cb92b016721b8c492eadb4e8a577527" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.485ex; height:2.009ex;" alt="{\displaystyle \mathbf {p} }"></span> on the <a href="/wiki/Unit_sphere" title="Unit sphere">unit sphere</a>, a sphere of radius 1 centered at the <a href="/wiki/Origin_(mathematics)" title="Origin (mathematics)">origin</a>, satisfy the equation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle d_{\text{T}}(\mathbf {p} ,\mathbf {0} )=\sum _{i=1}^{n}|p_{i}|=1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>T</mtext> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">0</mn> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle d_{\text{T}}(\mathbf {p} ,\mathbf {0} )=\sum _{i=1}^{n}|p_{i}|=1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a5217ec9407f2598f25b5f9f747dffd898a4b8f3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:25.303ex; height:3.176ex;" alt="{\textstyle d_{\text{T}}(\mathbf {p} ,\mathbf {0} )=\sum _{i=1}^{n}|p_{i}|=1.}"></span> </p><p>In two dimensional taxicab geometry, the sphere (called a <i><a href="/wiki/Circle" title="Circle">circle</a></i>) is a <a href="/wiki/Square" title="Square">square</a> oriented diagonally to the coordinate axes. The image to the right shows in red the set of all points on a square grid with a fixed distance from the blue center. As the grid is made finer, the red points become more numerous, and in the limit tend to a continuous tilted square. Each side has taxicab length 2<i>r</i>, so the <a href="/wiki/Circumference" title="Circumference">circumference</a> is 8<i>r</i>. Thus, in taxicab geometry, the value of the analog of the circle constant <a href="/wiki/Pi" title="Pi">π</a>, the ratio of circumference to <a href="/wiki/Diameter" title="Diameter">diameter</a>, is equal to 4. </p><p>A closed <i><a href="/wiki/Ball_(mathematics)#In_general_metric_spaces" title="Ball (mathematics)">ball</a></i> (or closed <i><a href="/wiki/Disk_(mathematics)" title="Disk (mathematics)">disk</a></i> in the 2-dimensional case) is a filled-in sphere, the set of points at distance less than or equal to the radius from a specific center. For <a href="/wiki/Cellular_automata" class="mw-redirect" title="Cellular automata">cellular automata</a> on a square grid, a taxicab <a href="/wiki/Disk_(mathematics)" title="Disk (mathematics)">disk</a> is the <a href="/wiki/Von_Neumann_neighborhood" title="Von Neumann neighborhood">von Neumann neighborhood</a> of range <i>r</i> of its center. </p><p>A circle of radius <i>r</i> for the <a href="/wiki/Chebyshev_distance" title="Chebyshev distance">Chebyshev distance</a> (<a href="/wiki/Lp_space" title="Lp space">L<sub>∞</sub> metric</a>) on a plane is also a square with side length 2<i>r</i> parallel to the coordinate axes, so planar Chebyshev distance can be viewed as equivalent by rotation and scaling to planar taxicab distance. However, this equivalence between L<sub>1</sub> and L<sub>∞</sub> metrics does not generalize to higher dimensions. </p><p>Whenever each pair in a collection of these circles has a nonempty intersection, there exists an intersection point for the whole collection; therefore, the Manhattan distance forms an <a href="/wiki/Injective_metric_space" title="Injective metric space">injective metric space</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Arc_length">Arc length</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Taxicab_geometry&amp;action=edit&amp;section=5" title="Edit section: Arc length"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y=f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2311a6a75c54b0ea085a381ba472c31d59321514" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.672ex; height:2.843ex;" alt="{\displaystyle y=f(x)}"></span> be a <a href="/wiki/Differentiable_function" title="Differentiable function">continuously differentiable</a> function. Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01d131dfd7673938b947072a13a9744fe997e632" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:1.676ex;" alt="{\displaystyle s}"></span> be the taxicab <a href="/wiki/Arc_length" title="Arc length">arc length</a> of the <a href="/wiki/Graph_of_a_function" title="Graph of a function">graph</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> on some interval <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [a,b]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [a,b]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c4b788fc5c637e26ee98b45f89a5c08c85f7935" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.555ex; height:2.843ex;" alt="{\displaystyle [a,b]}"></span>. Take a <a href="/wiki/Partition_of_an_interval" title="Partition of an interval">partition</a> of the interval into equal infinitesimal subintervals, and let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta s_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta s_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a369483db37c9ede89254f876794b6373c400435" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.826ex; height:2.509ex;" alt="{\displaystyle \Delta s_{i}}"></span> be the taxicab length of the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i^{\text{th}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>th</mtext> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i^{\text{th}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76cc827ec109594f9da6862138d76775cd733866" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.588ex; height:2.676ex;" alt="{\displaystyle i^{\text{th}}}"></span> subarc. Then<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta s_{i}=\Delta x_{i}+\Delta y_{i}=\Delta x_{i}+|f(x_{i})-f(x_{i-1})|.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>+</mo> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta s_{i}=\Delta x_{i}+\Delta y_{i}=\Delta x_{i}+|f(x_{i})-f(x_{i-1})|.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4d662985c31c2debd77323cc243db076d5a8b514" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:45.025ex; height:2.843ex;" alt="{\displaystyle \Delta s_{i}=\Delta x_{i}+\Delta y_{i}=\Delta x_{i}+|f(x_{i})-f(x_{i-1})|.}"></span> </p><p>By the <a href="/wiki/Mean_value_theorem" title="Mean value theorem">mean value theorem</a>, there exists some point <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{i}^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{i}^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d4aad224eaab545bb11af7a02363e59addaad6d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.384ex; height:2.843ex;" alt="{\displaystyle x_{i}^{*}}"></span> between <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e87000dd6142b81d041896a30fe58f0c3acb2158" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.129ex; height:2.009ex;" alt="{\displaystyle x_{i}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{i-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{i-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db345bb67bd140474742faf5d2fff314daa04e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.23ex; height:2.009ex;" alt="{\displaystyle x_{i-1}}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x_{i})-f(x_{i-1})=f'(x_{i}^{*})dx_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mo stretchy="false">)</mo> <mi>d</mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x_{i})-f(x_{i-1})=f'(x_{i}^{*})dx_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83db3e73ace182ebfbdbb19bff20ea9ab9e07838" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:28.018ex; height:3.176ex;" alt="{\displaystyle f(x_{i})-f(x_{i-1})=f&#039;(x_{i}^{*})dx_{i}}"></span>.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> Then the previous equation can be written </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta s_{i}=\Delta x_{i}+|f'(x_{i}^{*})|\Delta x_{i}=\Delta x_{i}(1+|f'(x_{i}^{*})|).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta s_{i}=\Delta x_{i}+|f'(x_{i}^{*})|\Delta x_{i}=\Delta x_{i}(1+|f'(x_{i}^{*})|).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ff8d21354ab1336eb53fec55d5ff0fc8087f59a7" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:46.502ex; height:3.176ex;" alt="{\displaystyle \Delta s_{i}=\Delta x_{i}+|f&#039;(x_{i}^{*})|\Delta x_{i}=\Delta x_{i}(1+|f&#039;(x_{i}^{*})|).}"></span> </p><p> Then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01d131dfd7673938b947072a13a9744fe997e632" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:1.676ex;" alt="{\displaystyle s}"></span> is given as the sum of every partition of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01d131dfd7673938b947072a13a9744fe997e632" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:1.676ex;" alt="{\displaystyle s}"></span> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [a,b]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [a,b]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c4b788fc5c637e26ee98b45f89a5c08c85f7935" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.555ex; height:2.843ex;" alt="{\displaystyle [a,b]}"></span> as they get <a href="/wiki/Arbitrarily_large" title="Arbitrarily large">arbitrarily small</a>.</p><figure typeof="mw:File/Thumb"><a href="/wiki/File:Three_monotone_increasing_or_decreasing_curves_with_same_endpoints.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f9/Three_monotone_increasing_or_decreasing_curves_with_same_endpoints.png/221px-Three_monotone_increasing_or_decreasing_curves_with_same_endpoints.png" decoding="async" width="221" height="218" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f9/Three_monotone_increasing_or_decreasing_curves_with_same_endpoints.png/332px-Three_monotone_increasing_or_decreasing_curves_with_same_endpoints.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f9/Three_monotone_increasing_or_decreasing_curves_with_same_endpoints.png/442px-Three_monotone_increasing_or_decreasing_curves_with_same_endpoints.png 2x" data-file-width="668" data-file-height="658" /></a><figcaption>Curves defined by monotone increasing or decreasing functions have the same taxicab arc length as long as they share the same endpoints.</figcaption></figure><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}s&amp;=\lim _{n\rightarrow \infty }\sum _{i=1}^{n}\Delta x_{i}(1+|f'(x_{i}^{*})|)\\&amp;=\int _{a}^{b}1+|f'(x)|\,dx\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>s</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}s&amp;=\lim _{n\rightarrow \infty }\sum _{i=1}^{n}\Delta x_{i}(1+|f'(x_{i}^{*})|)\\&amp;=\int _{a}^{b}1+|f'(x)|\,dx\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/747c0c949be9722bd24e0c0b6e7163f4236793a9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.171ex; width:30.712ex; height:13.509ex;" alt="{\displaystyle {\begin{aligned}s&amp;=\lim _{n\rightarrow \infty }\sum _{i=1}^{n}\Delta x_{i}(1+|f&#039;(x_{i}^{*})|)\\&amp;=\int _{a}^{b}1+|f&#039;(x)|\,dx\end{aligned}}}"></span> </p><p>To test this, take the taxicab circle of <a href="/wiki/Radius" title="Radius">radius</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span> centered at the origin. Its curve in the first <a href="/wiki/Quadrant_(plane_geometry)" title="Quadrant (plane geometry)">quadrant</a> is given by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=-x+r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> <mo>+</mo> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=-x+r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7da138bd28c1cc5bb876452c9e30d875d30a70b8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.543ex; height:2.843ex;" alt="{\displaystyle f(x)=-x+r}"></span> whose length is </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s=\int _{0}^{r}1+|-1|dx=2r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msubsup> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mn>2</mn> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s=\int _{0}^{r}1+|-1|dx=2r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/087ce6d12b169e2b94e99736c212b180d019eb99" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:25.168ex; height:5.843ex;" alt="{\displaystyle s=\int _{0}^{r}1+|-1|dx=2r}"></span> </p><p>Multiplying this value by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 4}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>4</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 4}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/295b4bf1de7cd3500e740e0f4f0635db22d87b42" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 4}"></span> to account for the remaining quadrants gives <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 8r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>8</mn> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 8r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d8dcfa16125a9636e338b236833257b608bcba43" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.211ex; height:2.176ex;" alt="{\displaystyle 8r}"></span>, which agrees with the <a href="/wiki/Circumference" title="Circumference">circumference</a> of a taxicab circle.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> Now take the <a href="/wiki/Euclidean_geometry" title="Euclidean geometry">Euclidean</a> circle of radius <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span> centered at the origin, which is given by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)={\sqrt {r^{2}-x^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)={\sqrt {r^{2}-x^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3218f29a2d00d33d4716ace8f06eb9399235871" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.167ex; height:3.509ex;" alt="{\displaystyle f(x)={\sqrt {r^{2}-x^{2}}}}"></span>. Its arc length in the first quadrant is given by </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}s&amp;=\int _{0}^{r}1+|{\frac {-x}{\sqrt {r^{2}-x^{2}}}}|dx\\&amp;=x+{\sqrt {r^{2}-x^{2}}}{\bigg |}_{0}^{r}\\&amp;=r-(-r)\\&amp;=2r\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>s</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msubsup> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> </mrow> <msqrt> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>d</mi> <mi>x</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mi>x</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="2.047em" minsize="2.047em">|</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msubsup> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mi>r</mi> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>r</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mn>2</mn> <mi>r</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}s&amp;=\int _{0}^{r}1+|{\frac {-x}{\sqrt {r^{2}-x^{2}}}}|dx\\&amp;=x+{\sqrt {r^{2}-x^{2}}}{\bigg |}_{0}^{r}\\&amp;=r-(-r)\\&amp;=2r\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a8fdaf6450fab9be1c6b76a9fee532d31fbab4b0" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -8.671ex; width:27.095ex; height:18.509ex;" alt="{\displaystyle {\begin{aligned}s&amp;=\int _{0}^{r}1+|{\frac {-x}{\sqrt {r^{2}-x^{2}}}}|dx\\&amp;=x+{\sqrt {r^{2}-x^{2}}}{\bigg |}_{0}^{r}\\&amp;=r-(-r)\\&amp;=2r\end{aligned}}}"></span> </p><p>Accounting for the remaining quadrants gives <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 4\times 2r=8r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>4</mn> <mo>&#x00D7;<!-- × --></mo> <mn>2</mn> <mi>r</mi> <mo>=</mo> <mn>8</mn> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 4\times 2r=8r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2bc0ece94fb8ce888a944477f9da28f51add34ac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:11.524ex; height:2.176ex;" alt="{\displaystyle 4\times 2r=8r}"></span> again. Therefore, the <a href="/wiki/Circumference" title="Circumference">circumference</a> of the taxicab circle and the <a href="/wiki/Euclidean_geometry" title="Euclidean geometry">Euclidean</a> circle in the taxicab <a href="/wiki/Metric_space" title="Metric space">metric</a> are equal.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> In fact, for any function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> that is monotonic and <a href="/wiki/Differentiable_function" title="Differentiable function">differentiable</a> with a continuous <a href="/wiki/Derivative" title="Derivative">derivative</a> over an interval <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [a,b]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [a,b]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c4b788fc5c637e26ee98b45f89a5c08c85f7935" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.555ex; height:2.843ex;" alt="{\displaystyle [a,b]}"></span>, the arc length of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> over <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [a,b]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [a,b]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c4b788fc5c637e26ee98b45f89a5c08c85f7935" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.555ex; height:2.843ex;" alt="{\displaystyle [a,b]}"></span> is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (b-a)+\mid f(b)-f(a)\mid }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>b</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mo>&#x2223;<!-- ∣ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2223;<!-- ∣ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (b-a)+\mid f(b)-f(a)\mid }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05b87d354d673be52e91028bc676f4802651a214" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.513ex; height:2.843ex;" alt="{\displaystyle (b-a)+\mid f(b)-f(a)\mid }"></span>.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Triangle_congruence">Triangle congruence</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Taxicab_geometry&amp;action=edit&amp;section=6" title="Edit section: Triangle congruence"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Congruencetriangletaxicab.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/18/Congruencetriangletaxicab.png/391px-Congruencetriangletaxicab.png" decoding="async" width="391" height="197" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/18/Congruencetriangletaxicab.png/587px-Congruencetriangletaxicab.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/18/Congruencetriangletaxicab.png/782px-Congruencetriangletaxicab.png 2x" data-file-width="1696" data-file-height="856" /></a><figcaption>Two taxicab right isoceles triangles. Three angles and two legs are congruent, but the triangles are not congruent. Therefore, ASASA is not a congruence theorem in taxicab geometry.</figcaption></figure> <p>Two triangles are congruent if and only if three corresponding sides are equal in distance and three corresponding angles are equal in measure. There are several theorems that guarantee <a href="/wiki/Congruence_(geometry)" title="Congruence (geometry)">triangle congruence</a> in Euclidean geometry, namely Angle-Angle-Side (AAS), Angle-Side-Angle (ASA), Side-Angle-Side (SAS), and Side-Side-Side (SSS). In taxicab geometry, however, only SASAS guarantees triangle congruence.<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> </p><p>Take, for example, two right isosceles taxicab triangles whose angles measure 45-90-45. The two legs of both triangles have a taxicab length 2, but the <a href="/wiki/Hypotenuse" title="Hypotenuse">hypotenuses</a> are not congruent. This counterexample eliminates AAS, ASA, and SAS. It also eliminates AASS, AAAS, and even ASASA. Having three congruent angles and two sides does not guarantee triangle congruence in taxicab geometry. Therefore, the only triangle congruence theorem in taxicab geometry is SASAS, where all three corresponding sides must be congruent and at least two corresponding angles must be congruent.<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> This result is mainly due to the fact that the length of a line segment depends on its orientation in taxicab geometry. </p> <div class="mw-heading mw-heading2"><h2 id="Applications">Applications</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Taxicab_geometry&amp;action=edit&amp;section=7" title="Edit section: Applications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Compressed_sensing">Compressed sensing</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Taxicab_geometry&amp;action=edit&amp;section=8" title="Edit section: Compressed sensing"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In solving an <a href="/wiki/Underdetermined_system" title="Underdetermined system">underdetermined system</a> of linear equations, the <a href="/wiki/Regularization_(mathematics)" title="Regularization (mathematics)">regularization</a> term for the parameter vector is expressed in terms of the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ell _{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x2113;<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ell _{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/361ddd720474aa41cb05453e03424fb7999d3b02" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.024ex; height:2.509ex;" alt="{\displaystyle \ell _{1}}"></span> norm (taxicab geometry) of the vector.<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> This approach appears in the signal recovery framework called <a href="/wiki/Compressed_sensing" title="Compressed sensing">compressed sensing</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Differences_of_frequency_distributions">Differences of frequency distributions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Taxicab_geometry&amp;action=edit&amp;section=9" title="Edit section: Differences of frequency distributions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Taxicab geometry can be used to assess the differences in discrete frequency distributions. For example, in <a href="/wiki/RNA_splicing" title="RNA splicing">RNA splicing</a> positional distributions of <a href="/wiki/Hexamers" class="mw-redirect" title="Hexamers">hexamers</a>, which plot the probability of each hexamer appearing at each given <a href="/wiki/Nucleotide" title="Nucleotide">nucleotide</a> near a splice site, can be compared with L1-distance. Each position distribution can be represented as a vector where each entry represents the likelihood of the hexamer starting at a certain nucleotide. A large L1-distance between the two vectors indicates a significant difference in the nature of the distributions while a small distance denotes similarly shaped distributions. This is equivalent to measuring the area between the two distribution curves because the area of each segment is the absolute difference between the two curves' likelihoods at that point. When summed together for all segments, it provides the same measure as L1-distance.<sup id="cite_ref-lim2_14-0" class="reference"><a href="#cite_note-lim2-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Taxicab_geometry&amp;action=edit&amp;section=10" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Minkowski_distance_examples.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/eb/Minkowski_distance_examples.svg/220px-Minkowski_distance_examples.svg.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/eb/Minkowski_distance_examples.svg/330px-Minkowski_distance_examples.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/eb/Minkowski_distance_examples.svg/440px-Minkowski_distance_examples.svg.png 2x" data-file-width="512" data-file-height="512" /></a><figcaption>Comparison of Chebyshev, Euclidean and taxicab distances for the hypotenuse of a 3-4-5 triangle on a chessboard</figcaption></figure> <ul><li><a href="/wiki/Chebyshev_distance" title="Chebyshev distance">Chebyshev distance</a></li> <li><a href="/wiki/Hamming_distance" title="Hamming distance">Hamming distance</a> – The number of bits differing between two strings of binary digits</li> <li><a href="/wiki/Lee_distance" title="Lee distance">Lee distance</a></li> <li><a href="/wiki/Orthogonal_convex_hull" title="Orthogonal convex hull">Orthogonal convex hull</a>&#160;– Minimal superset that intersects each axis-parallel line in an interval</li> <li><a href="/wiki/Staircase_paradox" title="Staircase paradox">Staircase paradox</a> – The paradox that the limit of the lengths of finer and finer "staircase curves" does not tend to the length of the diagonal line segment the curves tend towards</li></ul> <div style="clear:both;" class=""></div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Taxicab_geometry&amp;action=edit&amp;section=11" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a rel="nofollow" class="external text" href="https://math.stackexchange.com/q/4365387/29780">Taxicab metric with stoplights</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Taxicab_geometry&amp;action=edit&amp;section=12" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFBlack" class="citation web cs1">Black, Paul E. <a rel="nofollow" class="external text" href="https://xlinux.nist.gov/dads/HTML/manhattanDistance.html">"Manhattan distance"</a>. <i>Dictionary of Algorithms and Data Structures</i><span class="reference-accessdate">. Retrieved <span class="nowrap">October 6,</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Dictionary+of+Algorithms+and+Data+Structures&amp;rft.atitle=Manhattan+distance&amp;rft.aulast=Black&amp;rft.aufirst=Paul+E.&amp;rft_id=https%3A%2F%2Fxlinux.nist.gov%2Fdads%2FHTML%2FmanhattanDistance.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATaxicab+geometry" class="Z3988"></span></span> </li> <li id="cite_note-Stigler19862-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-Stigler19862_2-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStigler1986" class="citation book cs1">Stigler, Stephen M. (1986). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/historyofstatist00stig"><i>The History of Statistics: The Measurement of Uncertainty before 1900</i></a></span>. Harvard University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780674403406" title="Special:BookSources/9780674403406"><bdi>9780674403406</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">October 6,</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+History+of+Statistics%3A+The+Measurement+of+Uncertainty+before+1900&amp;rft.pub=Harvard+University+Press&amp;rft.date=1986&amp;rft.isbn=9780674403406&amp;rft.aulast=Stigler&amp;rft.aufirst=Stephen+M.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fhistoryofstatist00stig&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATaxicab+geometry" class="Z3988"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRiesz1910" class="citation journal cs1 cs1-prop-foreign-lang-source"><a href="/wiki/Frigyes_Riesz" title="Frigyes Riesz">Riesz, Frigyes</a> (1910). <a rel="nofollow" class="external text" href="https://zenodo.org/record/2456593">"Untersuchungen über Systeme integrierbarer Funktionen"</a>. <i>Mathematische Annalen</i> (in German). <b>69</b> (4): 449–497. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01457637">10.1007/BF01457637</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/10338.dmlcz%2F128558">10338.dmlcz/128558</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:120242933">120242933</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Mathematische+Annalen&amp;rft.atitle=Untersuchungen+%C3%BCber+Systeme+integrierbarer+Funktionen&amp;rft.volume=69&amp;rft.issue=4&amp;rft.pages=449-497&amp;rft.date=1910&amp;rft_id=info%3Ahdl%2F10338.dmlcz%2F128558&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A120242933%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2FBF01457637&amp;rft.aulast=Riesz&amp;rft.aufirst=Frigyes&amp;rft_id=https%3A%2F%2Fzenodo.org%2Frecord%2F2456593&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATaxicab+geometry" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMinkowski1910" class="citation book cs1 cs1-prop-foreign-lang-source"><a href="/wiki/Hermann_Minkowski" title="Hermann Minkowski">Minkowski, Hermann</a> (1910). <a rel="nofollow" class="external text" href="https://archive.org/details/geometriederzahl00minkrich"><i>Geometrie der Zahlen</i></a> (in German). Leipzig and Berlin: R. G. Teubner. <a href="/wiki/JFM_(identifier)" class="mw-redirect" title="JFM (identifier)">JFM</a>&#160;<a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&amp;q=an:41.0239.03">41.0239.03</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0249269">0249269</a><span class="reference-accessdate">. Retrieved <span class="nowrap">October 6,</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Geometrie+der+Zahlen&amp;rft.place=Leipzig+and+Berlin&amp;rft.pub=R.+G.+Teubner&amp;rft.date=1910&amp;rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A41.0239.03%23id-name%3DJFM&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0249269%23id-name%3DMR&amp;rft.aulast=Minkowski&amp;rft.aufirst=Hermann&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fgeometriederzahl00minkrich&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATaxicab+geometry" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMenger1952" class="citation cs1">Menger, Karl (1952). <i>You Will Like Geometry. A Guide Book for the Illinois Institute of Technology Geometry Exhibition</i>. Chicago: Museum of Science and Industry.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=You+Will+Like+Geometry.+A+Guide+Book+for+the+Illinois+Institute+of+Technology+Geometry+Exhibition&amp;rft.place=Chicago&amp;rft.pub=Museum+of+Science+and+Industry&amp;rft.date=1952&amp;rft.aulast=Menger&amp;rft.aufirst=Karl&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATaxicab+geometry" class="Z3988"></span> <div class="paragraphbreak" style="margin-top:0.5em"></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGolland1990" class="citation journal cs1">Golland, Louise (1990). "Karl Menger and Taxicab Geometry". <i>Mathematics Magazine</i>. <b>63</b> (5): 326–327. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F0025570x.1990.11977548">10.1080/0025570x.1990.11977548</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Mathematics+Magazine&amp;rft.atitle=Karl+Menger+and+Taxicab+Geometry&amp;rft.volume=63&amp;rft.issue=5&amp;rft.pages=326-327&amp;rft.date=1990&amp;rft_id=info%3Adoi%2F10.1080%2F0025570x.1990.11977548&amp;rft.aulast=Golland&amp;rft.aufirst=Louise&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATaxicab+geometry" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHeinbockel2012" class="citation book cs1">Heinbockel, J.H. (2012). <i>Introduction to Calculus Volume II</i>. Old Dominion University. pp.&#160;54–55.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+Calculus+Volume+II&amp;rft.pages=54-55&amp;rft.pub=Old+Dominion+University&amp;rft.date=2012&amp;rft.aulast=Heinbockel&amp;rft.aufirst=J.H.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATaxicab+geometry" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPenot1988" class="citation journal cs1">Penot, J.P. (1988-01-01). <a rel="nofollow" class="external text" href="https://doi.org/10.1080/02331938808843330">"On the mean value theorem"</a>. <i>Optimization</i>. <b>19</b> (2): 147–156. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F02331938808843330">10.1080/02331938808843330</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0233-1934">0233-1934</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Optimization&amp;rft.atitle=On+the+mean+value+theorem&amp;rft.volume=19&amp;rft.issue=2&amp;rft.pages=147-156&amp;rft.date=1988-01-01&amp;rft_id=info%3Adoi%2F10.1080%2F02331938808843330&amp;rft.issn=0233-1934&amp;rft.aulast=Penot&amp;rft.aufirst=J.P.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1080%2F02331938808843330&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATaxicab+geometry" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPetrovićMaleševićBanjacObradović2014" class="citation conference cs1">Petrović, Maja; Malešević, Branko; Banjac, Bojan; Obradović, Ratko (2014). <i>Geometry of some taxicab curves</i>. 4th International Scientific Conference on Geometry and Graphics. Serbian Society for Geometry and Graphics, University of Niš, Srbija. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1405.7579">1405.7579</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=conference&amp;rft.btitle=Geometry+of+some+taxicab+curves&amp;rft.pub=Serbian+Society+for+Geometry+and+Graphics%2C+University+of+Ni%C5%A1%2C+Srbija&amp;rft.date=2014&amp;rft_id=info%3Aarxiv%2F1405.7579&amp;rft.aulast=Petrovi%C4%87&amp;rft.aufirst=Maja&amp;rft.au=Male%C5%A1evi%C4%87%2C+Branko&amp;rft.au=Banjac%2C+Bojan&amp;rft.au=Obradovi%C4%87%2C+Ratko&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATaxicab+geometry" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKemp2018" class="citation thesis cs1">Kemp, Aubrey (2018). <i>Generalizing and Transferring Mathematical Definitions from Euclidean to Taxicab Geometry</i> (PhD thesis). Georgia State University. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.57709%2F12521263">10.57709/12521263</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adissertation&amp;rft.title=Generalizing+and+Transferring+Mathematical+Definitions+from+Euclidean+to+Taxicab+Geometry&amp;rft.inst=Georgia+State+University&amp;rft.date=2018&amp;rft_id=info%3Adoi%2F10.57709%2F12521263&amp;rft.aulast=Kemp&amp;rft.aufirst=Aubrey&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATaxicab+geometry" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFThompson2011" class="citation journal cs1">Thompson, Kevin P. (2011). <a rel="nofollow" class="external text" href="https://dergipark.org.tr/en/pub/iejg/issue/47488/599514">"The Nature of Length, Area, and Volume in Taxicab Geometry"</a>. <i>International Electronic Journal of Geometry</i>. <b>4</b> (2): 193–207. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1101.2922">1101.2922</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=International+Electronic+Journal+of+Geometry&amp;rft.atitle=The+Nature+of+Length%2C+Area%2C+and+Volume+in+Taxicab+Geometry&amp;rft.volume=4&amp;rft.issue=2&amp;rft.pages=193-207&amp;rft.date=2011&amp;rft_id=info%3Aarxiv%2F1101.2922&amp;rft.aulast=Thompson&amp;rft.aufirst=Kevin+P.&amp;rft_id=https%3A%2F%2Fdergipark.org.tr%2Fen%2Fpub%2Fiejg%2Fissue%2F47488%2F599514&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATaxicab+geometry" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMironychev2018" class="citation journal cs1">Mironychev, Alexander (2018). "SAS and SSA Conditions for Congruent Triangles". <i>Journal of Mathematics and System Science</i>. <b>8</b> (2): 59–66.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Mathematics+and+System+Science&amp;rft.atitle=SAS+and+SSA+Conditions+for+Congruent+Triangles&amp;rft.volume=8&amp;rft.issue=2&amp;rft.pages=59-66&amp;rft.date=2018&amp;rft.aulast=Mironychev&amp;rft.aufirst=Alexander&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATaxicab+geometry" class="Z3988"></span></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTHOMPSONDRAY2000" class="citation journal cs1">THOMPSON, KEVIN; DRAY, TEVIAN (2000). <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/24340535">"Taxicab Angles and Trigonometry"</a>. <i>Pi Mu Epsilon Journal</i>. <b>11</b> (2): 87–96. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0031-952X">0031-952X</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/24340535">24340535</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Pi+Mu+Epsilon+Journal&amp;rft.atitle=Taxicab+Angles+and+Trigonometry&amp;rft.volume=11&amp;rft.issue=2&amp;rft.pages=87-96&amp;rft.date=2000&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F24340535%23id-name%3DJSTOR&amp;rft.issn=0031-952X&amp;rft.aulast=THOMPSON&amp;rft.aufirst=KEVIN&amp;rft.au=DRAY%2C+TEVIAN&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F24340535&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATaxicab+geometry" class="Z3988"></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDonoho2006" class="citation journal cs1">Donoho, David L. (March 23, 2006). "For most large underdetermined systems of linear equations the minimal <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ell _{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x2113;<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ell _{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/361ddd720474aa41cb05453e03424fb7999d3b02" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.024ex; height:2.509ex;" alt="{\displaystyle \ell _{1}}"></span>-norm solution is also the sparsest solution". <i>Communications on Pure and Applied Mathematics</i>. <b>59</b> (6): 797–829. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fcpa.20132">10.1002/cpa.20132</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:8510060">8510060</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Communications+on+Pure+and+Applied+Mathematics&amp;rft.atitle=For+most+large+underdetermined+systems+of+linear+equations+the+minimal+MATH+RENDER+ERROR-norm+solution+is+also+the+sparsest+solution&amp;rft.volume=59&amp;rft.issue=6&amp;rft.pages=797-829&amp;rft.date=2006-03-23&amp;rft_id=info%3Adoi%2F10.1002%2Fcpa.20132&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A8510060%23id-name%3DS2CID&amp;rft.aulast=Donoho&amp;rft.aufirst=David+L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATaxicab+geometry" class="Z3988"></span></span> </li> <li id="cite_note-lim2-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-lim2_14-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLimFerrarisFillouxRaphael2011" class="citation journal cs1">Lim, Kian Huat; Ferraris, Luciana; Filloux, Madeleine E.; Raphael, Benjamin J.; Fairbrother, William G. (July 5, 2011). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3131313">"Using positional distribution to identify splicing elements and predict pre-mRNA processing defects in human genes"</a>. <i>Proceedings of the National Academy of Sciences of the United States of America</i>. <b>108</b> (27): 11093–11098. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2011PNAS..10811093H">2011PNAS..10811093H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1073%2Fpnas.1101135108">10.1073/pnas.1101135108</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3131313">3131313</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/21685335">21685335</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+of+the+United+States+of+America&amp;rft.atitle=Using+positional+distribution+to+identify+splicing+elements+and+predict+pre-mRNA+processing+defects+in+human+genes&amp;rft.volume=108&amp;rft.issue=27&amp;rft.pages=11093-11098&amp;rft.date=2011-07-05&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3131313%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F21685335&amp;rft_id=info%3Adoi%2F10.1073%2Fpnas.1101135108&amp;rft_id=info%3Abibcode%2F2011PNAS..10811093H&amp;rft.aulast=Lim&amp;rft.aufirst=Kian+Huat&amp;rft.au=Ferraris%2C+Luciana&amp;rft.au=Filloux%2C+Madeleine+E.&amp;rft.au=Raphael%2C+Benjamin+J.&amp;rft.au=Fairbrother%2C+William+G.&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3131313&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATaxicab+geometry" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Taxicab_geometry&amp;action=edit&amp;section=13" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGardner1997" class="citation book cs1"><a href="/wiki/Martin_Gardner" title="Martin Gardner">Gardner, Martin</a> (1997). <a rel="nofollow" class="external text" href="https://archive.org/details/springer_10.1007-978-0-387-30389-5/page/n164/">"10. Taxicab Geometry"</a>. <i>The Last Recreations</i>. Copernicus. pp.&#160;159–176. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-387-94929-1" title="Special:BookSources/0-387-94929-1"><bdi>0-387-94929-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=10.+Taxicab+Geometry&amp;rft.btitle=The+Last+Recreations&amp;rft.pages=159-176&amp;rft.pub=Copernicus&amp;rft.date=1997&amp;rft.isbn=0-387-94929-1&amp;rft.aulast=Gardner&amp;rft.aufirst=Martin&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fspringer_10.1007-978-0-387-30389-5%2Fpage%2Fn164%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATaxicab+geometry" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKrause1975" class="citation book cs1">Krause, Eugene F. (1975). <i>Taxicab Geometry</i>. Addison-Wesley. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0201039346" title="Special:BookSources/0201039346"><bdi>0201039346</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Taxicab+Geometry&amp;rft.pub=Addison-Wesley&amp;rft.date=1975&amp;rft.isbn=0201039346&amp;rft.aulast=Krause&amp;rft.aufirst=Eugene+F.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATaxicab+geometry" class="Z3988"></span> Reprinted by Dover (1986), <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-486-25202-7" title="Special:BookSources/0-486-25202-7">0-486-25202-7</a>.</li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links_2">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Taxicab_geometry&amp;action=edit&amp;section=14" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><span class="citation mathworld" id="Reference-Mathworld-Taxicab_Metric"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeisstein" class="citation web cs1"><a href="/wiki/Eric_W._Weisstein" title="Eric W. Weisstein">Weisstein, Eric W.</a> <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/TaxicabMetric.html">"Taxicab Metric"</a>. <i><a href="/wiki/MathWorld" title="MathWorld">MathWorld</a></i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=MathWorld&amp;rft.atitle=Taxicab+Metric&amp;rft.au=Weisstein%2C+Eric+W.&amp;rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FTaxicabMetric.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATaxicab+geometry" class="Z3988"></span></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMalkevitch2007" class="citation web cs1">Malkevitch, Joe (October 1, 2007). <a rel="nofollow" class="external text" href="http://www.ams.org/publicoutreach/feature-column/fcarc-taxi">"Taxi!"</a>. <i>American Mathematical Society</i><span class="reference-accessdate">. Retrieved <span class="nowrap">October 6,</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=American+Mathematical+Society&amp;rft.atitle=Taxi%21&amp;rft.date=2007-10-01&amp;rft.aulast=Malkevitch&amp;rft.aufirst=Joe&amp;rft_id=http%3A%2F%2Fwww.ams.org%2Fpublicoutreach%2Ffeature-column%2Ffcarc-taxi&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATaxicab+geometry" class="Z3988"></span></li></ul> <p><br /> </p> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Lp_spaces" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Lp_spaces" title="Template:Lp spaces"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Lp_spaces" title="Template talk:Lp spaces"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Lp_spaces" title="Special:EditPage/Template:Lp spaces"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Lp_spaces" style="font-size:114%;margin:0 4em"><a href="/wiki/Lp_space" title="Lp space">Lp spaces</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Basic concepts</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Banach_space" title="Banach space">Banach</a>&#160;&amp;&#160;<a href="/wiki/Hilbert_space" title="Hilbert space">Hilbert spaces</a></li> <li><a href="/wiki/Lp_space" title="Lp space"><i>L</i><sup><i>p</i></sup> spaces</a></li> <li><a href="/wiki/Measure_(mathematics)" title="Measure (mathematics)">Measure</a> <ul><li><a href="/wiki/Lebesgue_measure" title="Lebesgue measure">Lebesgue</a></li></ul></li> <li><a href="/wiki/Measure_space" title="Measure space">Measure space</a></li> <li><a href="/wiki/Measurable_space" title="Measurable space">Measurable space</a>/<a href="/wiki/Measurable_function" title="Measurable function">function</a></li> <li><a href="/wiki/Minkowski_distance" title="Minkowski distance">Minkowski distance</a></li> <li><a href="/wiki/Sequence_space" title="Sequence space">Sequence spaces</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/L1_space" class="mw-redirect" title="L1 space"><i>L</i><sup>1</sup> spaces</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Integrable_function" class="mw-redirect" title="Integrable function">Integrable function</a></li> <li><a href="/wiki/Lebesgue_integration" class="mw-redirect" title="Lebesgue integration">Lebesgue integration</a></li> <li><a class="mw-selflink selflink">Taxicab geometry</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/L2_space" class="mw-redirect" title="L2 space"><i>L</i><sup>2</sup> spaces</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bessel%27s_inequality" title="Bessel&#39;s inequality">Bessel's</a></li> <li><a href="/wiki/Cauchy%E2%80%93Schwarz_inequality" title="Cauchy–Schwarz inequality">Cauchy–Schwarz</a></li> <li><a href="/wiki/Euclidean_distance" title="Euclidean distance">Euclidean distance</a></li> <li><a href="/wiki/Hilbert_space" title="Hilbert space">Hilbert space</a></li> <li><a href="/wiki/Parseval%27s_identity" title="Parseval&#39;s identity">Parseval's identity</a></li> <li><a href="/wiki/Polarization_identity" title="Polarization identity">Polarization identity</a></li> <li><a href="/wiki/Pythagorean_theorem" title="Pythagorean theorem">Pythagorean theorem</a></li> <li><a href="/wiki/Square-integrable_function" title="Square-integrable function">Square-integrable function</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/L-infinity" title="L-infinity"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{\infty }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{\infty }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b9ab400cc4dfd865180cd84c72dc894ca457671f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.458ex; height:2.343ex;" alt="{\displaystyle L^{\infty }}"></span> spaces</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bounded_function" title="Bounded function">Bounded function</a></li> <li><a href="/wiki/Chebyshev_distance" title="Chebyshev distance">Chebyshev distance</a></li> <li><a href="/wiki/Infimum_and_supremum" title="Infimum and supremum">Infimum and supremum</a> <ul><li><a href="/wiki/Essential_infimum_and_essential_supremum" title="Essential infimum and essential supremum">Essential</a></li></ul></li> <li><a href="/wiki/Uniform_norm" title="Uniform norm">Uniform norm</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Maps</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Almost_everywhere" title="Almost everywhere">Almost everywhere</a></li> <li><a href="/wiki/Convergence_almost_everywhere" class="mw-redirect" title="Convergence almost everywhere">Convergence almost everywhere</a></li> <li><a href="/wiki/Convergence_in_measure" title="Convergence in measure">Convergence in measure</a></li> <li><a href="/wiki/Function_space" title="Function space">Function space</a></li> <li><a href="/wiki/Integral_transform" title="Integral transform">Integral transform</a></li> <li><a href="/wiki/Locally_integrable_function" title="Locally integrable function">Locally integrable function</a></li> <li><a href="/wiki/Measurable_function" title="Measurable function">Measurable function</a></li> <li><a href="/wiki/Symmetric_decreasing_rearrangement" title="Symmetric decreasing rearrangement">Symmetric decreasing rearrangement</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Inequalities</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Babenko%E2%80%93Beckner_inequality" title="Babenko–Beckner inequality">Babenko–Beckner</a></li> <li><a href="/wiki/Chebyshev%27s_inequality" title="Chebyshev&#39;s inequality">Chebyshev's</a></li> <li><a href="/wiki/Clarkson%27s_inequalities" title="Clarkson&#39;s inequalities">Clarkson's</a></li> <li><a href="/wiki/Hanner%27s_inequalities" title="Hanner&#39;s inequalities">Hanner's</a></li> <li><a href="/wiki/Hausdorff%E2%80%93Young_inequality" title="Hausdorff–Young inequality">Hausdorff–Young</a></li> <li><a href="/wiki/H%C3%B6lder%27s_inequality" title="Hölder&#39;s inequality">Hölder's</a></li> <li><a href="/wiki/Markov%27s_inequality" title="Markov&#39;s inequality">Markov's</a></li> <li><a href="/wiki/Minkowski_inequality" title="Minkowski inequality">Minkowski</a></li> <li><a href="/wiki/Young%27s_convolution_inequality" title="Young&#39;s convolution inequality">Young's convolution</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Category:Theorems_in_analysis" title="Category:Theorems in analysis">Results</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Marcinkiewicz_interpolation_theorem" title="Marcinkiewicz interpolation theorem">Marcinkiewicz interpolation theorem</a></li> <li><a href="/wiki/Plancherel_theorem" title="Plancherel theorem">Plancherel theorem</a></li> <li><a href="/wiki/Riemann%E2%80%93Lebesgue_lemma" title="Riemann–Lebesgue lemma">Riemann–Lebesgue</a></li> <li><a href="/wiki/Riesz%E2%80%93Fischer_theorem" title="Riesz–Fischer theorem">Riesz–Fischer theorem</a></li> <li><a href="/wiki/Riesz%E2%80%93Thorin_theorem" title="Riesz–Thorin theorem">Riesz–Thorin theorem</a></li></ul> </div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><span style="font-size:85%;">For <a href="/wiki/Lebesgue_measure" title="Lebesgue measure">Lebesgue measure</a></span></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Isoperimetric_inequality" title="Isoperimetric inequality">Isoperimetric inequality</a></li> <li><a href="/wiki/Brunn%E2%80%93Minkowski_theorem" title="Brunn–Minkowski theorem">Brunn–Minkowski theorem</a> <ul><li><a href="/wiki/Milman%27s_reverse_Brunn%E2%80%93Minkowski_inequality" title="Milman&#39;s reverse Brunn–Minkowski inequality">Milman's reverse</a></li></ul></li> <li><a href="/wiki/Minkowski%E2%80%93Steiner_formula" title="Minkowski–Steiner formula">Minkowski–Steiner formula</a></li> <li><a href="/wiki/Pr%C3%A9kopa%E2%80%93Leindler_inequality" title="Prékopa–Leindler inequality">Prékopa–Leindler inequality</a></li> <li><a href="/wiki/Vitale%27s_random_Brunn%E2%80%93Minkowski_inequality" title="Vitale&#39;s random Brunn–Minkowski inequality">Vitale's random Brunn–Minkowski inequality</a></li></ul> </div></td></tr></tbody></table><div> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Applications&#160;&amp;&#160;related</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bochner_space" title="Bochner space">Bochner space</a></li> <li><a href="/wiki/Fourier_analysis" title="Fourier analysis">Fourier analysis</a></li> <li><a href="/wiki/Lorentz_space" title="Lorentz space">Lorentz space</a></li> <li><a href="/wiki/Probability_theory" title="Probability theory">Probability theory</a></li> <li><a href="/wiki/Quasinorm" title="Quasinorm">Quasinorm</a></li> <li><a href="/wiki/Real_analysis" title="Real analysis">Real analysis</a></li> <li><a href="/wiki/Sobolev_space" title="Sobolev space">Sobolev space</a></li> <li><a href="/wiki/*-algebra" title="*-algebra">*-algebra</a> <ul><li><a href="/wiki/C*-algebra" title="C*-algebra">C*-algebra</a></li> <li><a href="/wiki/Von_Neumann_algebra" title="Von Neumann algebra">Von Neumann</a></li></ul></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐api‐int.codfw.main‐664bdf464b‐mwvg6 Cached time: 20241128194315 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.768 seconds Real time usage: 0.981 seconds Preprocessor visited node count: 2121/1000000 Post‐expand include size: 55232/2097152 bytes Template argument size: 939/2097152 bytes Highest expansion depth: 14/100 Expensive parser function count: 1/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 75690/5000000 bytes Lua time usage: 0.502/10.000 seconds Lua memory usage: 14094551/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 739.017 1 -total 35.64% 263.395 1 Template:Reflist 22.52% 166.413 1 Template:Annotated_link 17.67% 130.552 2 Template:Navbox 17.48% 129.160 1 Template:Lp_spaces 14.78% 109.254 2 Template:Cite_web 10.77% 79.612 1 Template:Short_description 9.97% 73.670 8 Template:Cite_journal 7.02% 51.852 2 Template:Pagetype 4.95% 36.617 5 Template:Cite_book --> <!-- Saved in parser cache with key enwiki:pcache:408354:|#|:idhash:canonical and timestamp 20241128194315 and revision id 1259671220. Rendering was triggered because: api-parse --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&amp;useformat=desktop" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Taxicab_geometry&amp;oldid=1259671220">https://en.wikipedia.org/w/index.php?title=Taxicab_geometry&amp;oldid=1259671220</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Digital_geometry" title="Category:Digital geometry">Digital geometry</a></li><li><a href="/wiki/Category:Distance" title="Category:Distance">Distance</a></li><li><a href="/wiki/Category:Mathematical_chess_problems" title="Category:Mathematical chess problems">Mathematical chess problems</a></li><li><a href="/wiki/Category:Metric_geometry" title="Category:Metric geometry">Metric geometry</a></li><li><a href="/wiki/Category:Norms_(mathematics)" title="Category:Norms (mathematics)">Norms (mathematics)</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1_German-language_sources_(de)" title="Category:CS1 German-language sources (de)">CS1 German-language sources (de)</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_matches_Wikidata" title="Category:Short description matches Wikidata">Short description matches Wikidata</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 26 November 2024, at 12:43<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Taxicab_geometry&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-78f4c97c5d-z8ncw","wgBackendResponseTime":165,"wgPageParseReport":{"limitreport":{"cputime":"0.768","walltime":"0.981","ppvisitednodes":{"value":2121,"limit":1000000},"postexpandincludesize":{"value":55232,"limit":2097152},"templateargumentsize":{"value":939,"limit":2097152},"expansiondepth":{"value":14,"limit":100},"expensivefunctioncount":{"value":1,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":75690,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 739.017 1 -total"," 35.64% 263.395 1 Template:Reflist"," 22.52% 166.413 1 Template:Annotated_link"," 17.67% 130.552 2 Template:Navbox"," 17.48% 129.160 1 Template:Lp_spaces"," 14.78% 109.254 2 Template:Cite_web"," 10.77% 79.612 1 Template:Short_description"," 9.97% 73.670 8 Template:Cite_journal"," 7.02% 51.852 2 Template:Pagetype"," 4.95% 36.617 5 Template:Cite_book"]},"scribunto":{"limitreport-timeusage":{"value":"0.502","limit":"10.000"},"limitreport-memusage":{"value":14094551,"limit":52428800}},"cachereport":{"origin":"mw-api-int.codfw.main-664bdf464b-mwvg6","timestamp":"20241128194315","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Taxicab geometry","url":"https:\/\/en.wikipedia.org\/wiki\/Taxicab_geometry","sameAs":"http:\/\/www.wikidata.org\/entity\/Q573509","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q573509","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2003-12-19T21:40:59Z","dateModified":"2024-11-26T12:43:50Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/0\/08\/Manhattan_distance.svg","headline":"type of metric geometry"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10