CINXE.COM
Search results for: luminescence properties
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: luminescence properties</title> <meta name="description" content="Search results for: luminescence properties"> <meta name="keywords" content="luminescence properties"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="luminescence properties" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="luminescence properties"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 9027</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: luminescence properties</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9027</span> Dy³+/Eu³+ Co-Activated Gadolinium Aluminate Borate Phosphor: Enhanced Luminescence and Color Output Tuning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Osama%20Madkhali">Osama Madkhali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> GdAl₃(BO₃)₄ phosphors, incorporating Dy³+ and Dy³+/Eu³+ activators, were successfully synthesized via the gel combustion method. Powder X-ray diffraction (XRD) was utilized to ascertain phase purity and assess the impact of dopant concentration on the crystallographic structure. Photoluminescence (PL) measurements revealed that luminescence properties' intensity and lifetime varied with Dy³+ and Eu³+ ion concentrations. The relationship between luminescence intensity and doping concentration was explored in the context of the energy transfer process between Eu³+ and Dy³+ ions. An increase in Eu³+ co-doping concentrations resulted in a decrease in luminescence lifetime. Energy transfer efficiency was significantly enhanced from 26% to 84% with Eu³+ co-doping, as evidenced by decay curve analysis. These findings position GdAl₃(BO₃)4: Dy³+, Eu³+ phosphors as promising candidates for LED applications in solid-state lighting and displays. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GdAl%E2%82%83%28BO%E2%82%83%29%E2%82%84%20phosphors" title="GdAl₃(BO₃)₄ phosphors">GdAl₃(BO₃)₄ phosphors</a>, <a href="https://publications.waset.org/abstracts/search?q=Dy%C2%B3%2B%2FEu%C2%B3%2B%20co-doping" title=" Dy³+/Eu³+ co-doping"> Dy³+/Eu³+ co-doping</a>, <a href="https://publications.waset.org/abstracts/search?q=photoluminescence%20%28PL%29%20measurements" title=" photoluminescence (PL) measurements"> photoluminescence (PL) measurements</a>, <a href="https://publications.waset.org/abstracts/search?q=luminescence%20properties" title=" luminescence properties"> luminescence properties</a>, <a href="https://publications.waset.org/abstracts/search?q=LED%20applications" title=" LED applications"> LED applications</a>, <a href="https://publications.waset.org/abstracts/search?q=solid-state%20lighting" title=" solid-state lighting"> solid-state lighting</a> </p> <a href="https://publications.waset.org/abstracts/181481/dy3eu3-co-activated-gadolinium-aluminate-borate-phosphor-enhanced-luminescence-and-color-output-tuning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181481.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">56</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9026</span> Optically Active Material Based on Bi₂O₃@Yb³⁺, Nd³⁺ with High Intensity of Upconversion Luminescence in Red and Green Region</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Artamonov">D. Artamonov</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Tsibulnikova"> A. Tsibulnikova</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Samusev"> I. Samusev</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Bryukhanov"> V. Bryukhanov</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kozhevnikov"> A. Kozhevnikov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The synthesis and luminescent properties of Yb₂O₃, Nd₂O₃@Bi₂O₃ complex with upconversion generation are discussed in this work. The obtained samples were measured in the visible region of the spectrum under excitation with a wavelength of 980 nm. The studies showed that the obtained complexes have a high degree of stability and intense luminescence in the wavelength range of 400-750 nm. Consideration of the time dependence of the intensity of the upconversion luminescence allowed us to conclude that the enhancement of the intensity occurs in the time interval from 5 to 30 min, followed by the appearance of a stationary mode. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lasers" title="lasers">lasers</a>, <a href="https://publications.waset.org/abstracts/search?q=luminescence" title=" luminescence"> luminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=upconversion%20photonics" title=" upconversion photonics"> upconversion photonics</a>, <a href="https://publications.waset.org/abstracts/search?q=rare%20earth%20metals" title=" rare earth metals"> rare earth metals</a> </p> <a href="https://publications.waset.org/abstracts/167659/optically-active-material-based-on-bi2o3-at-yb3-nd3-with-high-intensity-of-upconversion-luminescence-in-red-and-green-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167659.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9025</span> Optical Properties of Nanocrystalline Europium-Yttrium Titanate EuYTi2O7 </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Mrazek">J. Mrazek</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Skala"> R. Skala</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bysakh"> S. Bysakh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivan%20Kasik"> Ivan Kasik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lanthanide-doped yttrium titanium oxides, which crystallize in a pyrochlore structure with general formula (RExY1-x)2Ti2O7 (RE=rare earth element), have been extensively investigated in recent years for their interesting physical and chemical properties. Despite that the pure pyrochlore structure does not present luminescence ability, the presence of yttrium ions in the pyrochlore structure significantly improves the luminescence properties of the RE. Moreover, the luminescence properties of pyrochlores strongly depend on the size of formed nanocrystals. In this contribution, we present a versatile sol-gel synthesis of nanocrystalline EuYTi2O7pyrochlore. The nanocrystalline powders and thin films were prepared by the condensation of titanium(IV)butoxide with europium(III) chloride followed by the calcination. The introduced method leads to the formation of the highly-homogenous nanocrystalline EuYTi2O7 with tailored grain size ranging from 20 nm to 200 nm. The morphology and the structure of the formed nanocrystals are linked to the luminescence properties of Eu3+ ions incorporated into the pyrochlore lattice. The results of XRD and HRTEM analysis show that the Eu3+ and Y3+ ions are regularly distributed inside the lattice. The lifetime of Eu3+ ions in calcinated powders is regularly decreasing from 140 us to 68 us and the refractive index of prepared thin films regularly increases from 2.0 to 2.45 according to the calcination temperature. The shape of the luminescence spectra and the decrease of the lifetime correspond with the crystallinity of prepared powders. The results present fundamental information about the effect of the size of the nanocrystals to their luminescence properties. The promising application of prepared nanocrystals in the field of lasers and planar optical amplifiers is widely discussed in the contribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=europium" title="europium">europium</a>, <a href="https://publications.waset.org/abstracts/search?q=luminescence" title=" luminescence"> luminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocrystals" title=" nanocrystals"> nanocrystals</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel" title=" sol-gel"> sol-gel</a> </p> <a href="https://publications.waset.org/abstracts/7471/optical-properties-of-nanocrystalline-europium-yttrium-titanate-euyti2o7" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7471.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9024</span> Low-Temperature Luminescence Spectroscopy of Violet Sr-Al-O:Eu2+ Phosphor Particles </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Keiji%20Komatsu">Keiji Komatsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hayato%20Maruyama"> Hayato Maruyama</a>, <a href="https://publications.waset.org/abstracts/search?q=Ariyuki%20Kato"> Ariyuki Kato</a>, <a href="https://publications.waset.org/abstracts/search?q=Atsushi%20Nakamura"> Atsushi Nakamura</a>, <a href="https://publications.waset.org/abstracts/search?q=Shigeo%20Ohshio"> Shigeo Ohshio</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroki%20Akasaka"> Hiroki Akasaka</a>, <a href="https://publications.waset.org/abstracts/search?q=Hidetoshi%20Saitoh"> Hidetoshi Saitoh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Violet Sr–Al–O:Eu2+ phosphor particles were synthesized from a metal–ethylenediaminetetraacetic acid (EDTA) solution of Sr, Al, Eu, and particulate alumina via spray drying and sintering in a reducing atmosphere. The crystal structures and emission properties at 85–300 K were investigated. The composition of the violet Sr–Al–O:Eu2+ phosphor particles was determined from various Sr–Al–O:Eu2+ phosphors by their emission properties’ dependence on temperature. The highly crystalline SrAl12O19:Eu2+ emission phases were confirmed by their crystallite sizes and the activation energies for the 4f5d–8S7/2 transition of the Eu2+ ion. These results showed that the material identification for the violet Sr–Al–O:Eu2+ phosphor was accomplished by the low-temperature luminescence measurements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low%20temperature%20luminescence%20spectroscopy" title="low temperature luminescence spectroscopy">low temperature luminescence spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20identification" title=" material identification"> material identification</a>, <a href="https://publications.waset.org/abstracts/search?q=strontium%20aluminates%20phosphor" title=" strontium aluminates phosphor"> strontium aluminates phosphor</a>, <a href="https://publications.waset.org/abstracts/search?q=emission%20properties" title=" emission properties "> emission properties </a> </p> <a href="https://publications.waset.org/abstracts/10329/low-temperature-luminescence-spectroscopy-of-violet-sr-al-oeu2-phosphor-particles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10329.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9023</span> Synthesis of Rare Earth Doped Nano-Phosphors through the Use of Isobutyl Nitrite and Urea Fuels: Study of Microstructure and Luminescence Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Mahdi%20Rafiaei">Seyed Mahdi Rafiaei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this investigation, red emitting Eu³⁺ doped YVO₄ nano-phosphors have been synthesized via the facile combustion method using isobutyl nitrite and urea fuels, individually. Field-emission scanning electron microscope (FE-SEM) images, high resolution transmission electron microscope (TEM) images and X-ray diffraction (XRD) spectra reveal that the mentioned fuels can be used successfully to synthesis YVO₄: Eu³⁺ nano-particles. Interestingly, the fuels have a large effect on the size and morphology of nano-phosphors as well as luminescence properties. Noteworthy the use of isobutyl nitrite provides an average particle size of 65 nm, while the employment of urea, results in the formation of larger particles and also provides higher photoluminescence emission intensity. The improved luminescence performance is attributed to the condition of chemical reaction via the combustion synthesis and the size of synthesized phosphors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phosphors" title="phosphors">phosphors</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion" title=" combustion"> combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=fuels" title=" fuels"> fuels</a>, <a href="https://publications.waset.org/abstracts/search?q=luminescence" title=" luminescence"> luminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructure" title=" nanostructure"> nanostructure</a> </p> <a href="https://publications.waset.org/abstracts/93632/synthesis-of-rare-earth-doped-nano-phosphors-through-the-use-of-isobutyl-nitrite-and-urea-fuels-study-of-microstructure-and-luminescence-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93632.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9022</span> Two-Photon Fluorescence in N-Doped Graphene Quantum Dots</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chi%20Man%20Luk">Chi Man Luk</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming%20Kiu%20Tsang"> Ming Kiu Tsang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chi%20Fan%20Chan"> Chi Fan Chan</a>, <a href="https://publications.waset.org/abstracts/search?q=Shu%20Ping%20Lau">Shu Ping Lau</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nitrogen-doped graphene quantum dots (N-GQDs) were fabricated by microwave-assisted hydrothermal technique. The optical properties of the N-GQDs were studied. The luminescence of the N-GQDs can be tuned by varying the excitation wavelength. Furthermore, two-photon luminescence of the N-GQDs excited by near-infrared laser can be obtained. It is shown that N-doping play a key role on two-photon luminescence. The N-GQDs are expected to find application in biological applications including bioimaging and sensing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene%20quantum%20dots" title="graphene quantum dots">graphene quantum dots</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20doping" title=" nitrogen doping"> nitrogen doping</a>, <a href="https://publications.waset.org/abstracts/search?q=photoluminescence" title=" photoluminescence"> photoluminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=two-photon%20fluorescence" title=" two-photon fluorescence"> two-photon fluorescence</a> </p> <a href="https://publications.waset.org/abstracts/16856/two-photon-fluorescence-in-n-doped-graphene-quantum-dots" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16856.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">633</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9021</span> Unconventional Dating of Old Peepal Tree of Chandigarh (India) Using Optically Stimulated Luminescence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rita%20Rani">Rita Rani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramesh%20Kumar"> Ramesh Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The intend of the current study is to date an old grand Peepal tree that is still alive. The tree is situated in Kalibard village, Sector 9, Chandigarh (India). Due to its huge structure, it has got the status of ‘Heritage tree.’ Optically Stimulated Luminescence of sediments beneath the roots is used to determine the age of the tree. Optical dating is preferred over conventional dating methods due to more precession. The methodology includes OSL of quartz grain using SAR protocol for accumulated dose measurement. The age determination of an alive tree using sedimentary quartz is in close agreement with the approximated age provided by the related agency. This is the first attempt at using optically stimulated luminescence in the age determination of alive trees in this region. The study concludes that the Luminescence dating of alive trees is the nondestructive and more precise method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=luminescence" title="luminescence">luminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=dose%20rate" title=" dose rate"> dose rate</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20dating" title=" optical dating"> optical dating</a>, <a href="https://publications.waset.org/abstracts/search?q=sediments" title=" sediments"> sediments</a> </p> <a href="https://publications.waset.org/abstracts/140440/unconventional-dating-of-old-peepal-tree-of-chandigarh-india-using-optically-stimulated-luminescence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140440.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9020</span> Silver Nanoparticles-Enhanced Luminescence Spectra of Silicon Nanocrystals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khamael%20M.%20Abualnaja">Khamael M. Abualnaja</a>, <a href="https://publications.waset.org/abstracts/search?q=Lidija%20%C5%A0iller"> Lidija Šiller</a>, <a href="https://publications.waset.org/abstracts/search?q=Benjamin%20R.%20Horrocks"> Benjamin R. Horrocks </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal-enhanced luminescence of silicon nano crystals (SiNCs) was determined using two different particle sizes of silver nano particles (AgNPs). SiNCs have been characterized by scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photo electron spectroscopy (XPS). It is found that the SiNCs are crystalline with an average diameter of 65 nm and FCC lattice. AgNPs were synthesized using photochemical reduction of AgNO3 with sodium dodecyl sulphate (SDS). The enhanced luminescence of SiNCs by AgNPs was evaluated by confocal Raman microspectroscopy. Enhancement up to ×9 and ×3 times were observed for SiNCs that mixed with AgNPs which have an average particle size of 100 nm and 30 nm, respectively. Silver NPs-enhanced luminescence of SiNCs occurs as a result of the coupling between the excitation laser light and the plasmon bands of AgNPs; thus this intense field at AgNPs surface couples strongly to SiNCs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=silver%20nanoparticles" title="silver nanoparticles">silver nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20enhanced%20raman%20spectroscopy%20%28SERS%29" title=" surface enhanced raman spectroscopy (SERS)"> surface enhanced raman spectroscopy (SERS)</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon%20nanocrystals" title=" silicon nanocrystals"> silicon nanocrystals</a>, <a href="https://publications.waset.org/abstracts/search?q=luminescence" title=" luminescence "> luminescence </a> </p> <a href="https://publications.waset.org/abstracts/17402/silver-nanoparticles-enhanced-luminescence-spectra-of-silicon-nanocrystals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17402.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9019</span> Covalently Conjugated Gold–Porphyrin Nanostructures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Spitaleri">L. Spitaleri</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20M.%20A.%20Gangemi"> C. M. A. Gangemi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Purrello"> R. Purrello</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Nicotra"> G. Nicotra</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Trusso%20Sfrazzetto"> G. Trusso Sfrazzetto</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Casella"> G. Casella</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Casarin"> M. Casarin</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Gulino"> A. Gulino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hybrid molecular–nanoparticle materials, obtained with a bottom-up approach, are suitable for the fabrication of functional nanostructures showing structural control and well-defined properties, i.e., optical, electronic or catalytic properties, in the perspective of applications in different fields of nanotechnology. Gold nanoparticles (Au NPs) exhibit important chemical, electronic and optical properties due to their size, shape and electronic structures. In fact, Au NPs containing no more than 30-40 atoms are only luminescent because they can be considered as large molecules with discrete energy levels, while nano-sized Au NPs only show the surface plasmon resonance. Hence, it appears that gold nanoparticles can alternatively be luminescent or plasmonic, and this represents a severe constraint for their use as an optical material. The aim of this work was the fabrication of nanoscale assembly of Au NPs covalently anchored to each other by means of novel bi-functional porphyrin molecules that work as bridges between different gold nanoparticles. This functional architecture shows a strong surface plasmon due to the Au nanoparticles and a strong luminescence signal coming from porphyrin molecules, thus, behaving like an artificial organized plasmonic and fluorescent network. The self-assembly geometry of this porphyrin on the Au NPs was studied by investigation of the conformational properties of the porphyrin derivative at the DFT level. The morphology, electronic structure and optical properties of the conjugated Au NPs – porphyrin system were investigated by TEM, XPS, UV–vis and Luminescence. The present nanostructures can be used for plasmon-enhanced fluorescence, photocatalysis, nonlinear optics, etc., under atmospheric conditions since our system is not reactive to air nor water and does not need to be stored in a vacuum or inert gas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gold%20nanoparticle" title="gold nanoparticle">gold nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=porphyrin" title=" porphyrin"> porphyrin</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20plasmon%20resonance" title=" surface plasmon resonance"> surface plasmon resonance</a>, <a href="https://publications.waset.org/abstracts/search?q=luminescence" title=" luminescence"> luminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructures" title=" nanostructures"> nanostructures</a> </p> <a href="https://publications.waset.org/abstracts/142391/covalently-conjugated-gold-porphyrin-nanostructures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142391.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9018</span> Study of Nanocrystalline Scintillator for Alpha Particles Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azadeh%20Farzaneh">Azadeh Farzaneh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Abdi"> Mohammad Reza Abdi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Quaranta"> A. Quaranta</a>, <a href="https://publications.waset.org/abstracts/search?q=Matteo%20Dalla%20Palma"> Matteo Dalla Palma</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyedshahram%20Mortazavi"> Seyedshahram Mortazavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We report on the synthesis of cesium-iodide nanoparticles using sol-gel technique. The structural properties of CsI nanoparticles were characterized by X-ray diffraction and Scanning Electron Microscope (SEM) Also, optical properties were followed by optical absorption and UV–vis fluorescence. Intense photoluminescence is also observed, with some spectral tuning possible with ripening time getting a range of emission photon wavelength approximately from 366 to 350 nm. The size effect on CsI luminescence leads to an increase in scintillation light yield, a redshift of the emission bands of the on_center and off_center self_trapped excitons (STEs) and an increase in the contribution of the off_center STEs to the net intrinsic emission yield. The energy transfer from the matrix to CsI nanoparticles is a key characteristic for scintillation detectors. So the scintillation spectra to alpha particles of sample were monitored. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title="nanoparticles">nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=luminescence" title=" luminescence"> luminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=sol%20gel" title=" sol gel"> sol gel</a>, <a href="https://publications.waset.org/abstracts/search?q=scintillator" title=" scintillator"> scintillator</a> </p> <a href="https://publications.waset.org/abstracts/57403/study-of-nanocrystalline-scintillator-for-alpha-particles-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57403.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">599</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9017</span> Sol-Gel Erbium-Doped Silica-Hafnia Planar Waveguides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustapha%20El%20Mataouy">Mustapha El Mataouy</a>, <a href="https://publications.waset.org/abstracts/search?q=Abellatif%20Aaliti"> Abellatif Aaliti</a>, <a href="https://publications.waset.org/abstracts/search?q=Mouhamed%20Khaddor"> Mouhamed Khaddor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Erbium actived silica-hafnia planar waveguides have been prepared by sol-gel route. The films were deposited on vitreous silica substrates using dip-coating technique. The parameters of preparation have been chosen to optimize the waveguides for operation in the near infrared (NIR) region, and to increase the luminescence efficiency of the metastable 4I13/2 state of Erbium ions. The waveguides properties were determined by m-lines spectroscopy, loss measurements. Waveguide Raman and luminescence spectroscopy were used to obtain information about the structure of the prepared films and about the dynamical process related to the emission in the C telecom band (1530nm-1565nm) of the Erbium ions. The results are discussed with the aim of comparing the structural and optical properties of Erbium activated silica-hafnia planar waveguides with different molar ratio of Si / Hf. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=erbium" title="erbium">erbium</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20amplifiers" title=" optical amplifiers"> optical amplifiers</a>, <a href="https://publications.waset.org/abstracts/search?q=silica-hafnia" title=" silica-hafnia"> silica-hafnia</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel" title=" sol-gel"> sol-gel</a>, <a href="https://publications.waset.org/abstracts/search?q=waveguide" title=" waveguide"> waveguide</a> </p> <a href="https://publications.waset.org/abstracts/59785/sol-gel-erbium-doped-silica-hafnia-planar-waveguides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59785.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9016</span> Enhancing the Luminescence of Alkyl-Capped Silicon Quantum Dots by Using Metal Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khamael%20M.%20Abualnaja">Khamael M. Abualnaja</a>, <a href="https://publications.waset.org/abstracts/search?q=Lidija%20%C5%A0iller"> Lidija Šiller</a>, <a href="https://publications.waset.org/abstracts/search?q=Ben%20R.%20Horrocks"> Ben R. Horrocks</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal enhanced luminescence of alkyl-capped silicon quantum dots (C11-SiQDs) was obtained by mixing C11-SiQDs with silver nanoparticles (AgNPs). C11-SiQDs have been synthesized by galvanostatic method of p-Si (100) wafers followed by a thermal hydrosilation reaction of 1-undecene in refluxing toluene in order to extract alkyl-capped silicon quantum dots from porous Si. The chemical characterization of C11-SiQDs was carried out using X-ray photoemission spectroscopy (XPS). C11-SiQDs have a crystalline structure with a diameter of 5 nm. Silver nanoparticles (AgNPs) of two different sizes were synthesized also using photochemical reduction of silver nitrate with sodium dodecyl sulphate. The synthesized Ag nanoparticles have a polycrystalline structure with an average particle diameter of 100 nm and 30 nm, respectively. A significant enhancement up to 10 and 4 times in the luminescence intensities was observed for AgNPs100/C11-SiQDs and AgNPs30/C11-SiQDs mixtures, respectively using 488 nm as an excitation source. The enhancement in luminescence intensities occurs as a result of the coupling between the excitation laser light and the plasmon bands of Ag nanoparticles; thus this intense field at Ag nanoparticles surface couples strongly to C11-SiQDs. The results suggest that the larger Ag nanoparticles i.e.100 nm caused an optimum enhancement in the luminescence intensity of C11-SiQDs which reflect the strong interaction between the localized surface plasmon resonance of AgNPs and the electric field forming a strong polarization near C11-SiQDs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=silicon%20quantum%20dots" title="silicon quantum dots">silicon quantum dots</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20nanoparticles%20%28AgNPs%29" title=" silver nanoparticles (AgNPs)"> silver nanoparticles (AgNPs)</a>, <a href="https://publications.waset.org/abstracts/search?q=luminescence" title=" luminescence"> luminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=plasmon" title=" plasmon"> plasmon</a> </p> <a href="https://publications.waset.org/abstracts/34663/enhancing-the-luminescence-of-alkyl-capped-silicon-quantum-dots-by-using-metal-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34663.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9015</span> Synthesis and Surface Engineering of Lanthanide Nanoparticles for NIR Luminescence Imaging and Photodynamic Therapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syue-Liang%20Lin">Syue-Liang Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Allen%20Chang"> C. Allen Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Luminescence imaging is an important technique used in biomedical research and clinical diagnostic applications in recent years. Concurrently, the development of NIR luminescence probes / imaging contrast agents has helped the understanding of the structural and functional properties of cells and animals. Photodynamic therapy (PDT) is used clinically to treat a wide range of medical conditions, but the therapeutic efficacy of general PDT for deeper tumor was limited by the penetration of excitation source. The tumor targeting biomedical nanomaterials UCNP@PS (upconversion nanoparticle conjugated with photosensitizer) for photodynamic therapy and near-infrared imaging of cancer will be developed in our study. Synthesis and characterization of biomedical nanomaterials were completed in this studies. The spectrum of UCNP was characterized by photoluminescence spectroscopy and the morphology was characterized by Transmission Electron Microscope (TEM). TEM and XRD analyses indicated that these nanoparticles are about 20~50 nm with hexagonal phase. NaYF₄:Ln³⁺ (Ln= Yb, Nd, Er) upconversion nanoparticles (UCNPs) with core / shell structure, synthesized by thermal decomposition method in 300°C, have the ability to emit visible light (upconversion: 540 nm, 660 nm) and near-infrared with longer wavelength (downconversion: NIR: 980 nm, 1525 nm) by absorbing 800 nm NIR laser. The information obtained from these studies would be very useful for applications of these nanomaterials for bio-luminescence imaging and photodynamic therapy of deep tumor tissue in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Near%20Infrared%20%28NIR%29" title="Near Infrared (NIR)">Near Infrared (NIR)</a>, <a href="https://publications.waset.org/abstracts/search?q=lanthanide" title=" lanthanide"> lanthanide</a>, <a href="https://publications.waset.org/abstracts/search?q=core-shell%20structure" title=" core-shell structure"> core-shell structure</a>, <a href="https://publications.waset.org/abstracts/search?q=upconversion" title=" upconversion"> upconversion</a>, <a href="https://publications.waset.org/abstracts/search?q=theranostics" title=" theranostics"> theranostics</a> </p> <a href="https://publications.waset.org/abstracts/71701/synthesis-and-surface-engineering-of-lanthanide-nanoparticles-for-nir-luminescence-imaging-and-photodynamic-therapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71701.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9014</span> Spectroscopic Study of Tb³⁺ Doped Calcium Aluminozincate Phosphor for Display and Solid-State Lighting Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sumandeep%20Kaur">Sumandeep Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Allam%20Srinivasa%20Rao"> Allam Srinivasa Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=Mula%20Jayasimhadri"> Mula Jayasimhadri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, rare earth (RE) ions doped inorganic luminescent materials are seeking great attention due to their excellent physical and chemical properties. These materials offer high thermal and chemical stability and exhibit good luminescence properties due to the presence of RE ions. The luminescent properties of these materials are attributed to their intra-configurational f-f transitions in RE ions. A series of Tb³⁺ doped calcium aluminozincate has been synthesized via sol-gel method. The structural and morphological studies have been carried out by recording X-ray diffraction patterns and SEM image. The luminescent spectra have been recorded for a comprehensive study of their luminescence properties. The XRD profile reveals the single-phase orthorhombic crystal structure with an average crystallite size of 65 nm as calculated by using DebyeScherrer equation. The SEM image exhibits completely random, irregular morphology of micron size particles of the prepared samples. The optimization of luminescence has been carried out by varying the dopant Tb³⁺ concentration within the range from 0.5 to 2.0 mol%. The as-synthesized phosphors exhibit intense emission at 544 nm pumped at 478 nm excitation wavelength. The optimized Tb³⁺ concentration has been found to be 1.0 mol% in the present host lattice. The decay curves show bi-exponential fitting for the as-synthesized phosphor. The colorimetric studies show green emission with CIE coordinates (0.334, 0.647) lying in green region for the optimized Tb³⁺ concentration. This report reveals the potential utility of Tb³⁺ doped calcium aluminozincate phosphors for display and solid-state lighting devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concentration%20quenching" title="concentration quenching">concentration quenching</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphor" title=" phosphor"> phosphor</a>, <a href="https://publications.waset.org/abstracts/search?q=photoluminescence" title=" photoluminescence"> photoluminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a> </p> <a href="https://publications.waset.org/abstracts/88461/spectroscopic-study-of-tb3-doped-calcium-aluminozincate-phosphor-for-display-and-solid-state-lighting-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88461.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9013</span> Lanthanide-Mediated Aggregation of Glutathione-Capped Gold Nanoclusters Exhibiting Strong Luminescence and Fluorescence Turn-on for Sensing Alkaline Phosphatase</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jyun-Guo%20You">Jyun-Guo You</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei-Lung%20Tseng"> Wei-Lung Tseng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Herein, this study represents a synthetic route for producing highly luminescent AuNCs based on the integration of two concepts, including thiol-induced luminescence enhancement of ligand-insufficient GSH-AuNCs and Ce3+-induced aggregation of GSH-AuNCs. The synthesis of GSH-AuNCs was conducted by modifying the previously reported procedure. To produce more Au(I)-GSH complexes on the surface of ligand-insufficient GSH-AuNCs, the extra GSH is added to attach onto the AuNC surface. The formed ligand-sufficient GSH-AuNCs (LS-GSH-AuNCs) emit relatively strong luminescence. The luminescence of LS-GSH-AuNCs is further enhanced by the coordination of two carboxylic groups (pKa1 = 2 and pKa2 = 3.5) of GSH and lanthanide ions, which induce the self-assembly of LS-GSH-AuNCs. As a result, the quantum yield of the self-assembled LS-GSH-AuNCs (SA-AuNCs) was improved to be 13%. Interestingly, the SA-AuNCs were dissembled into LS-GSH-AuNCs in the presence of adenosine triphosphate (ATP) because of the formation of the ATP- lanthanide ion complexes. Our assay was employed to detect alkaline phosphatase (ALP) activity over the range of 0.1−10 U/mL with a limit of detection (LOD) of 0.03 U/mL. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=self-assembly" title="self-assembly">self-assembly</a>, <a href="https://publications.waset.org/abstracts/search?q=lanthanide%20ion" title=" lanthanide ion"> lanthanide ion</a>, <a href="https://publications.waset.org/abstracts/search?q=adenosine%20triphosphate" title=" adenosine triphosphate"> adenosine triphosphate</a>, <a href="https://publications.waset.org/abstracts/search?q=alkaline%20phosphatase" title=" alkaline phosphatase"> alkaline phosphatase</a> </p> <a href="https://publications.waset.org/abstracts/83573/lanthanide-mediated-aggregation-of-glutathione-capped-gold-nanoclusters-exhibiting-strong-luminescence-and-fluorescence-turn-on-for-sensing-alkaline-phosphatase" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83573.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9012</span> Ho-Doped Lithium Niobate Thin Films: Raman Spectroscopy, Structure and Luminescence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Edvard%20Kokanyan">Edvard Kokanyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Narine%20Babajanyan"> Narine Babajanyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ninel%20Kokanyan"> Ninel Kokanyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Marco%20Bazzan"> Marco Bazzan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lithium niobate (LN) crystals, renowned for their exceptional nonlinear optical, electro-optical, piezoelectric, and photorefractive properties, stand as foundational materials in diverse fields of study and application. While they have long been utilized in frequency converters of laser radiation, electro-optical modulators, and holographic information recording media, LN crystals doped with rare earth ions represent a compelling frontier for modern compact devices. These materials exhibit immense potential as key components in infrared lasers, optical sensors, self-cooling systems, and radiation balanced laser setups. In this study, we present the successful synthesis of Ho-doped lithium niobate (LN:Ho) thin films on sapphire substrates employing the Sol-Gel technique. The films exhibit a strong crystallographic orientation along the perpendicular direction to the substrate surface, with X-ray diffraction analysis confirming the predominant alignment of the film's "c" axis, notably evidenced by the intense (006) reflection peak. Further characterization through Raman spectroscopy, employing a confocal Raman microscope (LabRAM HR Evolution) with exciting wavelengths of 532 nm and 785 nm, unraveled intriguing insights. Under excitation with a 785 nm laser, Raman scattering obeyed selection rules, while employing a 532 nm laser unveiled additional forbidden lines reminiscent of behaviors observed in bulk LN:Ho crystals. These supplementary lines were attributed to luminescence induced by excitation at 532 nm. Leveraging data from anti-Stokes Raman lines facilitated the disentanglement of luminescence spectra from the investigated samples. Surface scanning affirmed the uniformity of both structure and luminescence across the thin films. Notably, despite the robust orientation of the "c" axis perpendicular to the substrate surface, Raman signals indicated a stochastic distribution of "a" and "b" axes, validating the mosaic structure of the films along the mentioned axis. This study offers valuable insights into the structural properties of Ho-doped lithium niobate thin films, with the observed luminescence behavior holding significant promise for potential applications in optoelectronic devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lithium%20niobate" title="lithium niobate">lithium niobate</a>, <a href="https://publications.waset.org/abstracts/search?q=Sol-Gel" title=" Sol-Gel"> Sol-Gel</a>, <a href="https://publications.waset.org/abstracts/search?q=luminescence" title=" luminescence"> luminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=Raman%20spectroscopy" title=" Raman spectroscopy"> Raman spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/183395/ho-doped-lithium-niobate-thin-films-raman-spectroscopy-structure-and-luminescence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183395.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">60</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9011</span> A Luminescence Study of Bi³⁺ Codoping on Eu³⁺ Doped YPO₄</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Yaiphaba">N. Yaiphaba</a>, <a href="https://publications.waset.org/abstracts/search?q=Elizabeth%20C.%20H."> Elizabeth C. H.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> YPO₄ nanoparticles codoped with Eu³⁺(5 at.%) and Bi³⁺(0, 1, 3, 5, 7, 10, 12, 15, 20 at.%) have been prepared in poly acrylic acid (PAA)-H₂O medium by hydrothermal synthesis by maintaining a temperature of 180oC. The crystalline structure of as-prepared and 500oC annealed samples transforms from tetragonal (JCPDS-11-0254) to hexagonal phase (JCPDS-42-0082) with increasing concentration of Bi³⁺ ions. However, 900oC annealed samples exhibit tetragonal structure. The crystallite size of the particles varies from 19-50 nm. The luminescence intensity increases at lower concentration of Bi³⁺ ions and then decreases with increasing Bi3+ ion concentrations. The luminescence intensity further increases on annealing at 500oC and 900oC. Further, 900oC annealed samples show sharp increase in luminescence intensity. Moreover, the samples follow bi-exponential decay indicating energy transfer from donor to the activator or non-uniform distribution of ions in the samples. The samples on excitation at 318 nm exhibit near white emission while at 394 nm excitation show emission in the red region. The as-prepared samples are redispersible and have potential applications in display devices, metal ion sensing, biological labelling, etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=charge%20transfer" title="charge transfer">charge transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitizer" title=" sensitizer"> sensitizer</a>, <a href="https://publications.waset.org/abstracts/search?q=activator" title=" activator"> activator</a>, <a href="https://publications.waset.org/abstracts/search?q=annealing" title=" annealing"> annealing</a> </p> <a href="https://publications.waset.org/abstracts/159353/a-luminescence-study-of-bi3-codoping-on-eu3-doped-ypo4" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159353.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9010</span> InP/ZnS Core-Shell and InP/ZnS/ZnS Core-Multishell Quantum Dots for Improved luminescence Efficiency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Imen%20Harabi">Imen Harabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanae%20Toura"> Hanae Toura</a>, <a href="https://publications.waset.org/abstracts/search?q=Safa%20Jemai"> Safa Jemai</a>, <a href="https://publications.waset.org/abstracts/search?q=Bernabe%20Mari%20Soucase"> Bernabe Mari Soucase</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A promising alternative to traditional Quantum Dots QD materials, which contain toxic heavy elements such as lead and cadmium, sheds light on indium phosphide quantum dots (InP QDs) Owing to improve the quantum yields of photoluminescence and other properties. InP, InP/ZnS core/shell and InP/ZnS/ZnS core/shell/shell Quantum Dots (QDs) were synthetized by the hot injection method. The optical and structural properties of the core InP QDs, InP/ZnS QDs, and InP/ZnS/ZnS QDs have being considered by several techniques such as X-ray diffraction, transmission electron microscopy, optical spectroscopy, and photoluminescence. The average diameter of InP, InP/ZnS, and InP/ZnS/ZnS Quantum Dots (QDs) was varying between 10 nm, 5.4 nm, and 4.10 nm. This experience revealed that the surface morphology of the Quantum Dots has a more regular spherical form with color variation of the QDs in solution. The emission peak of colloidal InP Quantum Dots was around 530 nm, while in InP/ZnS, the emission peak is displayed and located at 598 nm. whilst for InP/ZnS/ZnS is placed at 610 nm. Furthermore, an enhanced PL emission due to a passivation effect in the ZnS-covered InP QDs was obtained. Add the XRD information FWHM of the principal peak of InP QDs was 63 nm, while for InP/ZnS was 41 nm and InP/ZnS/ZnS was 33 nm. The effect of the Zinc stearate precursor concentration on the optical, structural, surface chemical of InP and InP/ZnS and InP/ZnS/ZnS QDs will be discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indium%20phosphide" title="indium phosphide">indium phosphide</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20dot" title=" quantum dot"> quantum dot</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticle" title=" nanoparticle"> nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=core-shell" title=" core-shell"> core-shell</a>, <a href="https://publications.waset.org/abstracts/search?q=multishell" title=" multishell"> multishell</a>, <a href="https://publications.waset.org/abstracts/search?q=luminescence" title=" luminescence"> luminescence</a> </p> <a href="https://publications.waset.org/abstracts/145518/inpzns-core-shell-and-inpznszns-core-multishell-quantum-dots-for-improved-luminescence-efficiency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145518.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9009</span> Effect of Graphene on the Structural and Optical Properties of Ceria:Graphene Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Udayabhaskar">R. Udayabhaskar</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20V.%20Mangalaraja"> R. V. Mangalaraja</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20T.%20Perarasu"> V. T. Perarasu</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Farhang%20Sahlevani"> Saeed Farhang Sahlevani</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Karthikeyan"> B. Karthikeyan</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Contreras"> David Contreras</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bandgap engineering of CeO₂ nanocrystals is of high interest for many research groups to meet the requirement of desired applications. The band gap of CeO₂ nanostructures can be modified by varying the particle size, morphology and dopants. Anchoring the metal oxide nanostructures on graphene sheets will result in composites with improved properties than the parent materials. The presence of graphene sheets will acts a support for the growth, influences the morphology and provides external paths for electronic transitions. Thus, the controllable synthesis of ceria:graphene composites with various morphologies and the understanding of the optical properties is highly important for the usage of these materials in various applications. The development of ceria and ceria:graphene composites with low cost, rapid synthesis with tunable optical properties is still desirable. By this work, we discuss the synthesis of pure ceria (nanospheres) and ceria:graphene composites (nano-rice like morphology) by using commercial microwave oven as a cost effective and environmentally friendly approach. The influence of the graphene on the crystallinity, morphology, band gap and luminescence of the synthesized samples were analyzed. The average crystallite size obtained by using Scherrer formula of the CeO₂ nanostructures showed a decreasing trend with increasing the graphene loading. The higher graphene loaded ceria composite clearly depicted morphology of nano-rice like in shape with the diameter below 10 nm and the length over 50 nm. The presence of graphene and ceria related vibrational modes (100-4000 cm⁻¹) confirmed the successful formation of composites. We observed an increase in band gap (blue shift) with increasing loading amount of graphene. Further, the luminescence related to various F-centers was quenched in the composites. The authors gratefully acknowledge the FONDECYT Project No.: 3160142 and BECA Conicyt National Doctorado2017 No. 21170851 Government of Chile, Santiago, for the financial assistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceria" title="ceria">ceria</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=luminescence" title=" luminescence"> luminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=blue%20shift" title=" blue shift"> blue shift</a>, <a href="https://publications.waset.org/abstracts/search?q=band%20gap%20widening" title=" band gap widening"> band gap widening</a> </p> <a href="https://publications.waset.org/abstracts/88360/effect-of-graphene-on-the-structural-and-optical-properties-of-ceriagraphene-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88360.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9008</span> Luminescence and Local Environment: Identification of Thermal History</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Veronique%20Jubera">Veronique Jubera</a>, <a href="https://publications.waset.org/abstracts/search?q=Guillaume%20Salek"> Guillaume Salek</a>, <a href="https://publications.waset.org/abstracts/search?q=Manuel%20Gaudon"> Manuel Gaudon</a>, <a href="https://publications.waset.org/abstracts/search?q=Alain%20Garcia"> Alain Garcia</a>, <a href="https://publications.waset.org/abstracts/search?q=Alain%20Demourgues"> Alain Demourgues</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Luminescence of transition metal and rare earth elements cover ultraviolet to far infrared wavelengths. Applications of phosphors are numerous. One can cite lighting, sensing, laser, energy, medical or military applications. But regarding each domain, specific criteria are required and they can be achieved with a strong control of the chemical composition. Emission of doped materials can be tailored with modifications of the local environment of the cations. For instance, the increase of the crystal field effect shifts the divalent manganese radiative transitions from the green to the red color. External factor as heat-treatment can induce changes of the doping element location or modify the unit cell crystalline symmetry. By controlling carefully the synthesis route, it is possible to initiate emission shift and to establish the thermal history of a compound. We propose to demonstrate through the luminescence of divalent manganese and trivalent rare earth doped oxide, that it is possible to follow the thermal history of a material. After optimization of the synthesis route, structural and optical properties are discussed. Finally, thermal calibration graphs are successfully established on these doped compounds. This makes these materials promising probe for thermal sensing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=emission" title="emission">emission</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20sensing" title=" thermal sensing"> thermal sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=transition%20metal" title=" transition metal"> transition metal</a>, <a href="https://publications.waset.org/abstracts/search?q=rare%20eath%20element" title=" rare eath element"> rare eath element</a> </p> <a href="https://publications.waset.org/abstracts/60286/luminescence-and-local-environment-identification-of-thermal-history" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60286.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9007</span> Scientific Investigation for an Ancient Egyptian Polychrome Wooden Stele </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Abdrabou">Ahmed Abdrabou</a>, <a href="https://publications.waset.org/abstracts/search?q=Medhat%20Abdalla"> Medhat Abdalla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The studied stele dates back to Third Intermediate Period (1075-664) B.C in an ancient Egypt. It is made of wood and covered with painted gesso layers. This study aims to use a combination of multi spectral imaging {visible, infrared (IR), Visible-induced infrared luminescence (VIL), Visible-induced ultraviolet luminescence (UVL) and ultraviolet reflected (UVR)}, along with portable x-ray fluorescence in order to map and identify the pigments as well as to provide a deeper understanding of the painting techniques. Moreover; the authors were significantly interested in the identification of wood species. Multispectral imaging acquired in 3 spectral bands, ultraviolet (360-400 nm), visible (400-780 nm) and infrared (780-1100 nm) using (UV Ultraviolet-induced luminescence (UVL), UV Reflected (UVR), Visible (VIS), Visible-induced infrared luminescence (VIL) and Infrared photography. False color images are made by digitally editing the VIS with IR or UV images using Adobe Photoshop. Optical Microscopy (OM), potable X-ray fluorescence spectroscopy (p-XRF) and Fourier Transform Infrared Spectroscopy (FTIR) were used in this study. Mapping and imaging techniques provided useful information about the spatial distribution of pigments, in particular visible-induced luminescence (VIL) which allowed the spatial distribution of Egyptian blue pigment to be mapped and every region containing Egyptian blue, even down to single crystals in some instances, is clearly visible as a bright white area; however complete characterization of the pigments requires the use of p. XRF spectroscopy. Based on the elemental analysis found by P.XRF, we conclude that the artists used mixtures of the basic mineral pigments to achieve a wider palette of hues. Identification of wood species Microscopic identification indicated that the wood used was Sycamore Fig (Ficus sycomorus L.) which is recorded as being native to Egypt and was used to make wooden artifacts since at least the Fifth Dynasty. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polychrome%20wooden%20stele" title="polychrome wooden stele">polychrome wooden stele</a>, <a href="https://publications.waset.org/abstracts/search?q=multispectral%20imaging" title=" multispectral imaging"> multispectral imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=IR%20luminescence" title=" IR luminescence"> IR luminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=Wood%20identification" title=" Wood identification"> Wood identification</a>, <a href="https://publications.waset.org/abstracts/search?q=Sycamore%20Fig" title=" Sycamore Fig"> Sycamore Fig</a>, <a href="https://publications.waset.org/abstracts/search?q=p-XRF" title=" p-XRF "> p-XRF </a> </p> <a href="https://publications.waset.org/abstracts/58954/scientific-investigation-for-an-ancient-egyptian-polychrome-wooden-stele" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58954.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9006</span> A Theoretical Overview of Thermoluminescence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sadhana%20Agrawal">Sadhana Agrawal</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarkeshwari%20Verma"> Tarkeshwari Verma</a>, <a href="https://publications.waset.org/abstracts/search?q=Shmbhavi%20Katyayan"> Shmbhavi Katyayan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The magnificently accentuating phenomenon of luminescence has gathered a lot of attentions from last few decades. Probably defined as the one involving emission of light from certain kinds of substances on absorbing various energies in the form of external stimulus, the phenomenon claims a versatile pertinence. First observed and reported in an extract of Ligrium Nephriticum by Monards, the phenomenon involves turning of crystal clear water into colorful fluid when comes in contact with the special wood. In words of Sir G.G. Stokes, the phenomenon actually involves three different techniques – absorption, excitation and emission. With variance in external stimulus, the corresponding luminescence phenomenon is obtained. Here, this paper gives a concise discussion of thermoluminescence which is one of the types of luminescence obtained when the external stimulus is given in form of heat energy. A deep insight of thermoluminescence put forward a qualitative analysis of various parameters such as glow curves peaks, trap depth, frequency factors and order of kinetics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=frequency%20factor" title="frequency factor">frequency factor</a>, <a href="https://publications.waset.org/abstracts/search?q=glow%20curve%20peaks" title=" glow curve peaks"> glow curve peaks</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoluminescence" title=" thermoluminescence"> thermoluminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=trap%20depth" title=" trap depth"> trap depth</a> </p> <a href="https://publications.waset.org/abstracts/47928/a-theoretical-overview-of-thermoluminescence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47928.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9005</span> The Effect of Yb3+ Concentration on Spectroscopic properties of Strontium Cerate Doped with Tm3+ and Yb3+</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yeon%20Woo%20Seo">Yeon Woo Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=Haeyoung%20Choi"> Haeyoung Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jung%20Hyun%20%20Jeong"> Jung Hyun Jeong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, the UC phosphors have attracted much attention owing to their wide applicability in areas such as biological fluorescence labeling, three-dimensional color displays, temperature sensor, solar cells, white light emitting diodes (WLEDs), fiber optic communication, anti-counterfeiting and other areas. The UC efficiency is mainly dependent on the host lattice and the interaction between the host lattice and doped ions. Up to date, various host matrices, such as oxides, fluorides, vanadates and phosphates, have been investigated as efficient UC luminescent hosts. Recently, oxide materials with low phonon energy have been investigated as the host matrices of UC materials due to their high chemical durability and physical stability. A series of Sr2CeO4: Tm3+/Yb3+ phosphors with different concentrations of Yb3+ ions have been successfully prepared using the high-energy ball milling method. In this study, we reported the UC luminescent properties of Tm3+/Yb3+ ions co-doped Sr2CeO4 phosphors under an excitation wavelength of 975 nm. Furthermore, the structural and morphological characteristics, as well as the UC luminescence mechanism were investigated in detail. The X-ray diffraction patterns confirmed their orthorhombic structure. Under 975 nm excitation, the emission peaks were observed at 478 nm (blue) and 652 nm (red), corresponding to the 1G4 → 3H6 and 1G4 → 3F4 transitions of Tm3+, respectively. The optimized doping concentration of Yb3+ ion was 10 mol%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Strontium%20Cerate" title="Strontium Cerate">Strontium Cerate</a>, <a href="https://publications.waset.org/abstracts/search?q=up-conversion" title=" up-conversion"> up-conversion</a>, <a href="https://publications.waset.org/abstracts/search?q=luminescence" title=" luminescence"> luminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=Tm3%2B" title=" Tm3+"> Tm3+</a>, <a href="https://publications.waset.org/abstracts/search?q=Yb3%2B" title=" Yb3+"> Yb3+</a> </p> <a href="https://publications.waset.org/abstracts/75852/the-effect-of-yb3-concentration-on-spectroscopic-properties-of-strontium-cerate-doped-with-tm3-and-yb3" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75852.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9004</span> Application of Laser Spectroscopy for Detection of Actinides and Lanthanides in Solutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Igor%20Izosimov">Igor Izosimov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work is devoted to applications of the Time-resolved laser-induced luminescence (TRLIF) spectroscopy and time-resolved laser-induced chemiluminescence spectroscopy for detection of lanthanides and actinides. Results of the experiments on Eu, Sm, U, and Pu detection in solutions are presented. The limit of uranyl detection (LOD) in urine in our TRLIF experiments was up to 5 pg/ml. In blood plasma LOD was 0.1 ng/ml and after mineralization was up to 8pg/ml – 10pg/ml. In pure solution, the limit of detection of europium was 0.005ng/ml and samarium, 0.07ng/ml. After addition urine, the limit of detection of europium was 0.015 ng/ml and samarium, 0.2 ng/ml. Pu, Np, and some U compounds do not produce direct luminescence in solutions, but when excited by laser radiation, they can induce chemiluminescence of some chemiluminogen (luminol in our experiments). It is shown that multi-photon scheme of chemiluminescence excitation makes chemiluminescence not only a highly sensitive but also a highly selective tool for the detection of lanthanides/actinides in solutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=actinides%2Flanthanides%20detection" title="actinides/lanthanides detection">actinides/lanthanides detection</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20spectroscopy%20with%20time%20resolution" title=" laser spectroscopy with time resolution"> laser spectroscopy with time resolution</a>, <a href="https://publications.waset.org/abstracts/search?q=luminescence%2Fchemiluminescence" title=" luminescence/chemiluminescence"> luminescence/chemiluminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=solutions" title=" solutions"> solutions</a> </p> <a href="https://publications.waset.org/abstracts/61605/application-of-laser-spectroscopy-for-detection-of-actinides-and-lanthanides-in-solutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61605.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9003</span> Investigation of the Carbon Dots Optical Properties Using Laser Scanning Confocal Microscopy and TimE-resolved Fluorescence Microscopy </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Stepanova">M. S. Stepanova</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20V.%20Zakharov"> V. V. Zakharov</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20D.%20Khavlyuk"> P. D. Khavlyuk</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20D.%20Skurlov"> I. D. Skurlov</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Y.%20Dubovik"> A. Y. Dubovik</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20L.%20Rogach"> A. L. Rogach</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon dots are small carbon-based spherical nanoparticles, which are typically less than 10 nm in size that can be modified with surface passivation and heteroatoms doping. The light-absorbing ability of carbon dots has attracted a significant amount of attention in photoluminescence for bioimaging and fluorescence sensing applications owing to their advantages, such as tunable fluorescence emission, photo- and thermostability and low toxicity. In this study, carbon dots were synthesized by the solvothermal method from citric acid and ethylenediamine dissolved in water. The solution was heated for 5 hours at 200°C and then cooled down to room temperature. The carbon dots films were obtained by evaporation from a high-concentration aqueous solution. The increase of both luminescence intensity and light transmission was obtained as a result of a 405 nm laser exposure to a part of the carbon dots film, which was detected using a confocal laser scanning microscope (LSM 710, Zeiss). Blueshift up to 35 nm of the luminescence spectrum is observed as luminescence intensity, which is increased more than twofold. The exact value of the shift depends on the time of the laser exposure. This shift can be caused by the modification of surface groups at the carbon dots, which are responsible for long-wavelength luminescence. In addition, a shift of the absorption peak by 10 nm and a decrease in the optical density at the wavelength of 350 nm is detected, which is responsible for the absorption of surface groups. The obtained sample was also studied with time-resolved confocal fluorescence microscope (MicroTime 100, PicoQuant), which made it possible to receive a time-resolved photoluminescence image and construct emission decays of the laser-exposed and non-exposed areas. 5 MHz pulse rate impulse laser has been used as a photoluminescence excitation source. Photoluminescence decay was approximated by two exhibitors. The laser-exposed area has the amplitude of the first-lifetime component (A1) twice as much as before, with increasing τ1. At the same time, the second-lifetime component (A2) decreases. These changes evidence a modification of the surface groups of carbon dots. The detected effect can be used to create thermostable fluorescent marks, the physical size of which is bounded by the diffraction limit of the optics (~ 200-300 nm) used for exposure and to improve the optical properties of carbon dots or in the field of optical encryption. Acknowledgements: This work was supported by the Ministry of Science and Higher Education of Russian Federation, goszadanie no. 2019-1080 and financially supported by Government of Russian Federation, Grant 08-08. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20dots" title="carbon dots">carbon dots</a>, <a href="https://publications.waset.org/abstracts/search?q=photoactivation" title=" photoactivation"> photoactivation</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20properties" title=" optical properties"> optical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=photoluminescence%20and%20absorption%20spectra" title=" photoluminescence and absorption spectra"> photoluminescence and absorption spectra</a> </p> <a href="https://publications.waset.org/abstracts/124983/investigation-of-the-carbon-dots-optical-properties-using-laser-scanning-confocal-microscopy-and-time-resolved-fluorescence-microscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124983.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9002</span> Quantum Confinement in LEEH Capped CdS Nanocrystalline</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mihir%20Hota">Mihir Hota</a>, <a href="https://publications.waset.org/abstracts/search?q=Namita%20Jena"> Namita Jena</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20N.%20Sahu"> S. N. Sahu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> LEEH (L-cysteine ethyl ester hydrochloride) capped CdS semiconductor nanocrystals are grown at 800C using a simple chemical route. Photoluminescence (PL), Optical absorption (UV) and Transmission Electron Microscopy (TEM) have been carried out to evaluate the structural and optical properties of the nanocrystal. Optical absorption studies have been carried out to optimize the sample. XRD and TEM analysis shows that the nanocrystal belongs to FCC structure having average size of 3nm while a bandgap of 2.84eV is estimated from Photoluminescence analysis. The nanocrystal emits bluish light when excited with 355nm LASER. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cadmium%20sulphide" title="cadmium sulphide">cadmium sulphide</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructures" title=" nanostructures"> nanostructures</a>, <a href="https://publications.waset.org/abstracts/search?q=luminescence" title=" luminescence"> luminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20properties" title=" optical properties"> optical properties</a> </p> <a href="https://publications.waset.org/abstracts/59943/quantum-confinement-in-leeh-capped-cds-nanocrystalline" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59943.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9001</span> Photoresponse of Epitaxial GaN Films Grown by Plasma-Assisted Molecular Beam Epitaxy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nisha%20Prakash">Nisha Prakash</a>, <a href="https://publications.waset.org/abstracts/search?q=Kritika%20Anand"> Kritika Anand</a>, <a href="https://publications.waset.org/abstracts/search?q=Arun%20Barvat"> Arun Barvat</a>, <a href="https://publications.waset.org/abstracts/search?q=Prabir%20Pal"> Prabir Pal</a>, <a href="https://publications.waset.org/abstracts/search?q=Sonachand%20Adhikari"> Sonachand Adhikari</a>, <a href="https://publications.waset.org/abstracts/search?q=Suraj%20P.%20Khanna"> Suraj P. Khanna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Group-III nitride semiconductors (GaN, AlN, InN and their ternary and quaternary compounds) have attracted a great deal of attention for the development of high-performance Ultraviolet (UV) photodetectors. Any midgap defect states in the epitaxial grown film have a direct influence on the photodetectors responsivity. The proportion of the midgap defect states can be controlled by the growth parameters. To study this we have grown high quality epitaxial GaN films on MOCVD- grown GaN template using plasma-assisted molecular beam epitaxy (PAMBE) with different growth parameters. Optical and electrical properties of the films were characterized by room temperature photoluminescence and photoconductivity measurements, respectively. The observed persistent photoconductivity behaviour is proportional to the yellow luminescence (YL) and the absolute responsivity has been found to decrease with decreasing YL. The results will be discussed in more detail later. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gallium%20nitride" title="gallium nitride">gallium nitride</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma-assisted%20molecular%20beam%20epitaxy" title=" plasma-assisted molecular beam epitaxy"> plasma-assisted molecular beam epitaxy</a>, <a href="https://publications.waset.org/abstracts/search?q=photoluminescence" title=" photoluminescence"> photoluminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=photoconductivity" title=" photoconductivity"> photoconductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=persistent%20photoconductivity" title=" persistent photoconductivity"> persistent photoconductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=yellow%20luminescence" title=" yellow luminescence"> yellow luminescence</a> </p> <a href="https://publications.waset.org/abstracts/29135/photoresponse-of-epitaxial-gan-films-grown-by-plasma-assisted-molecular-beam-epitaxy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29135.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9000</span> Spectroscopic Studies and Reddish Luminescence Enhancement with the Increase in Concentration of Europium Ions in Oxy-Fluoroborate Glasses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahamuda%20Sk">Mahamuda Sk</a>, <a href="https://publications.waset.org/abstracts/search?q=Srinivasa%20Rao%20Allam"> Srinivasa Rao Allam</a>, <a href="https://publications.waset.org/abstracts/search?q=Vijaya%20Prakash%20G."> Vijaya Prakash G.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The different concentrations of Eu3+ ions doped in Oxy-fluoroborate glasses of composition 60 B2O3-10 BaF2-10 CaF2-15 CaF2- (5-x) Al2O3 -x Eu2O3 where x = 0.1, 0.5, 1.0 and 2.0 mol%, have been prepared by conventional melt quenching technique and are characterized through absorption and photoluminescence (PL), decay, color chromaticity and Confocal measurements. The absorption spectra of all the glasses consists of six peaks corresponding to the transitions 7F0→5D2, 7F0→5D1, 7F1→5D1, 7F1→5D0, 7F0→7F6 and 7F1→7F6 respectively. The experimental oscillator strengths with and without thermal corrections have been evaluated using absorption spectra. Judd-Ofelt (JO) intensity parameters (Ω2 and Ω4) have been evaluated from the photoluminescence spectra of all the glasses. PL spectra of all the glasses have been recorded at excitation wavelengths 395 nm (conventional excitation source) and 410 nm (diode laser) to observe the intensity variation in the PL spectra. All the spectra consists of five emission peaks corresponding to the transitions 5D0→7FJ (J = 0, 1, 2, 3 and 4). Surprisingly no concentration quenching is observed on PL spectra. Among all the glasses the glass with 2.0 mol% of Eu3+ ion concentration possesses maximum intensity for the transition 5D0→7F2 (612 nm) in bright red region. The JO parameters derived from the photoluminescence spectra have been used to evaluate the essential radiative properties such as transition probability (A), radiative lifetime (τR), branching ratio (βR) and peak stimulated emission cross-section (σse) for the 5D0→7FJ (J = 0, 1, 2, 3 and 4) transitions of the Eu3+ ions. The decay rates of the 5D0 fluorescent level of Eu3+ ions in the title glasses are found to be single exponential for all the studied Eu3+ ion concentrations. A marginal increase in lifetime of the 5D0 level has been noticed with increase in Eu3+ ion concentration from 0.1 mol% to 2.0 mol%. Among all the glasses, the glass with 2.0 mol% of Eu3+ ion concentration possesses maximum values of branching ratio, stimulated emission cross-section and quantum efficiency for the transition 5D0→7F2 (612 nm) in bright red region. The color chromaticity coordinates are also evaluated to confirm the reddish luminescence from these glasses. These color coordinates exactly fall in the bright red region. Confocal images also recorded to confirm reddish luminescence from these glasses. From all the obtained results in the present study, it is suggested that the glass with 2.0 mol% of Eu3+ ion concentration is suitable to emit bright red color laser. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Europium" title="Europium">Europium</a>, <a href="https://publications.waset.org/abstracts/search?q=Judd-Ofelt%20parameters" title=" Judd-Ofelt parameters"> Judd-Ofelt parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=laser" title=" laser"> laser</a>, <a href="https://publications.waset.org/abstracts/search?q=luminescence" title=" luminescence"> luminescence</a> </p> <a href="https://publications.waset.org/abstracts/46830/spectroscopic-studies-and-reddish-luminescence-enhancement-with-the-increase-in-concentration-of-europium-ions-in-oxy-fluoroborate-glasses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46830.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8999</span> Structure and Optical Properties of Potassium Doped Zinc Oxide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lila%20A.%20Alkhattaby">Lila A. Alkhattaby</a>, <a href="https://publications.waset.org/abstracts/search?q=Norah%20A.%20Alsayegh"> Norah A. Alsayegh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20S.%20Ansari"> Mohammad S. Ansari</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20O.%20Ansari"> Mohammad O. Ansari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we doped zinc oxide ZnO with potassium K we have synthesized using the sol-gel method. Structural properties were depicted by X-ray diffractometer (XRD) and energy distribution spectroscopy, X-ray diffraction studies confirm the nanosized of the particles and favored orientations along the (100), (002), (101), (102), (110), (103), (200), and (112) planes confirm the hexagonal wurtzite structure of ZnO NPs. The optical properties study using the UV-Vis spectroscopy. The band gap decreases from 4.05 eV to 3.88 eV, the lowest band gap at 10% doped concentration. The photoluminescence (PL) spectroscopy results show two main peaks, a sharp peak at ≈ 384 nm in the UV region and a broad peak around 479 nm in the visible region. The highest intensity of the band-edge luminescence was for 2% doped concentration because of the combined effect of the decreased probability of nonradiative recombination and has better crystallinity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=K%20doped%20ZnO" title="K doped ZnO">K doped ZnO</a>, <a href="https://publications.waset.org/abstracts/search?q=photoluminescence%20spectroscopy" title=" photoluminescence spectroscopy"> photoluminescence spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=UV-Vis%20spectroscopy" title=" UV-Vis spectroscopy"> UV-Vis spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=x-ray%20spectroscopy" title=" x-ray spectroscopy"> x-ray spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/142665/structure-and-optical-properties-of-potassium-doped-zinc-oxide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142665.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8998</span> U11 Functionalised Luminescent Gold Nanoclusters for Pancreatic Tumor Cells Labelling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Regina%20M.%20Chiechio">Regina M. Chiechio</a>, <a href="https://publications.waset.org/abstracts/search?q=R%C3%A9mi%20Leguev%C3%A9l"> Rémi Leguevél</a>, <a href="https://publications.waset.org/abstracts/search?q=Helene%20Solhi"> Helene Solhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Marie%20Madeleine%20Gueguen"> Marie Madeleine Gueguen</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephanie%20Dutertre"> Stephanie Dutertre</a>, <a href="https://publications.waset.org/abstracts/search?q=Xavier"> Xavier</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Pierre%20Bazureau"> Jean-Pierre Bazureau</a>, <a href="https://publications.waset.org/abstracts/search?q=Olivier%20Mignen"> Olivier Mignen</a>, <a href="https://publications.waset.org/abstracts/search?q=Pascale%20Even-Hernandez"> Pascale Even-Hernandez</a>, <a href="https://publications.waset.org/abstracts/search?q=Paolo%20Musumeci"> Paolo Musumeci</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Jose%20Lo%20Faro"> Maria Jose Lo Faro</a>, <a href="https://publications.waset.org/abstracts/search?q=Valerie%20Marchi"> Valerie Marchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thanks to their ultra-small size, high electron density, and low toxicity, gold nanoclusters (Au NCs) have unique photoelectrochemical and luminescence properties that make them very interesting for diagnosis bio-imaging and theranostics. These applications require control of their delivery and interaction with cells; for this reason, the surface chemistry of Au NCs is essential to determine their interaction with the targeted biological objects. Here we demonstrate their ability as markers of pancreatic tumor cells. By functionalizing the surface of the NCs with a recognition peptite (U11), the nanostructures are able to preferentially bind to pancreatic cancer cells via a receptor (uPAR) overexpressed by these cells. Furthermore, the NCs can mark even the nucleus without the need of fixing the cells. These nanostructures can therefore be used as a non-toxic, multivalent luminescent platform, capable of selectively recognizing tumor cells for bioimaging, drug delivery, and radiosensitization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gold%20nanoclusters" title="gold nanoclusters">gold nanoclusters</a>, <a href="https://publications.waset.org/abstracts/search?q=luminescence" title=" luminescence"> luminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=biomarkers" title=" biomarkers"> biomarkers</a>, <a href="https://publications.waset.org/abstracts/search?q=pancreatic%20cancer" title=" pancreatic cancer"> pancreatic cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedical%20applications" title=" biomedical applications"> biomedical applications</a>, <a href="https://publications.waset.org/abstracts/search?q=bioimaging" title=" bioimaging"> bioimaging</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescent%20probes" title=" fluorescent probes"> fluorescent probes</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20delivery" title=" drug delivery"> drug delivery</a> </p> <a href="https://publications.waset.org/abstracts/146031/u11-functionalised-luminescent-gold-nanoclusters-for-pancreatic-tumor-cells-labelling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146031.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=luminescence%20properties&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=luminescence%20properties&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=luminescence%20properties&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=luminescence%20properties&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=luminescence%20properties&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=luminescence%20properties&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=luminescence%20properties&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=luminescence%20properties&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=luminescence%20properties&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=luminescence%20properties&page=300">300</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=luminescence%20properties&page=301">301</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=luminescence%20properties&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>