CINXE.COM
Search results for: automated palynology
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: automated palynology</title> <meta name="description" content="Search results for: automated palynology"> <meta name="keywords" content="automated palynology"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="automated palynology" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="automated palynology"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 874</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: automated palynology</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">874</span> Comparison of Machine Learning and Deep Learning Algorithms for Automatic Classification of 80 Different Pollen Species</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Endrick%20Barnacin">Endrick Barnacin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Luc%20Henry"> Jean-Luc Henry</a>, <a href="https://publications.waset.org/abstracts/search?q=Jimmy%20Nagau"> Jimmy Nagau</a>, <a href="https://publications.waset.org/abstracts/search?q=Jack%20Molinie"> Jack Molinie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Palynology is a field of interest in many disciplines due to its multiple applications: chronological dating, climatology, allergy treatment, and honey characterization. Unfortunately, the analysis of a pollen slide is a complicated and time consuming task that requires the intervention of experts in the field, which are becoming increasingly rare due to economic and social conditions. That is why the need for automation of this task is urgent. A lot of studies have investigated the subject using different standard image processing descriptors and sometimes hand-crafted ones.In this work, we make a comparative study between classical feature extraction methods (Shape, GLCM, LBP, and others) and Deep Learning (CNN, Autoencoders, Transfer Learning) to perform a recognition task over 80 regional pollen species. It has been found that the use of Transfer Learning seems to be more precise than the other approaches <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pollens%20identification" title="pollens identification">pollens identification</a>, <a href="https://publications.waset.org/abstracts/search?q=features%20extraction" title=" features extraction"> features extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=pollens%20classification" title=" pollens classification"> pollens classification</a>, <a href="https://publications.waset.org/abstracts/search?q=automated%20palynology" title=" automated palynology"> automated palynology</a> </p> <a href="https://publications.waset.org/abstracts/148945/comparison-of-machine-learning-and-deep-learning-algorithms-for-automatic-classification-of-80-different-pollen-species" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148945.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">873</span> Logistic Model Tree and Expectation-Maximization for Pollen Recognition and Grouping</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Endrick%20Barnacin">Endrick Barnacin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Luc%20Henry"> Jean-Luc Henry</a>, <a href="https://publications.waset.org/abstracts/search?q=Jack%20Molini%C3%A9"> Jack Molinié</a>, <a href="https://publications.waset.org/abstracts/search?q=Jimmy%20Nagau"> Jimmy Nagau</a>, <a href="https://publications.waset.org/abstracts/search?q=H%C3%A9l%C3%A8ne%20Delatte"> Hélène Delatte</a>, <a href="https://publications.waset.org/abstracts/search?q=G%C3%A9rard%20Lebreton"> Gérard Lebreton</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Palynology is a field of interest for many disciplines. It has multiple applications such as chronological dating, climatology, allergy treatment, and even honey characterization. Unfortunately, the analysis of a pollen slide is a complicated and time-consuming task that requires the intervention of experts in the field, which is becoming increasingly rare due to economic and social conditions. So, the automation of this task is a necessity. Pollen slides analysis is mainly a visual process as it is carried out with the naked eye. That is the reason why a primary method to automate palynology is the use of digital image processing. This method presents the lowest cost and has relatively good accuracy in pollen retrieval. In this work, we propose a system combining recognition and grouping of pollen. It consists of using a Logistic Model Tree to classify pollen already known by the proposed system while detecting any unknown species. Then, the unknown pollen species are divided using a cluster-based approach. Success rates for the recognition of known species have been achieved, and automated clustering seems to be a promising approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pollen%20recognition" title="pollen recognition">pollen recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=logistic%20model%20tree" title=" logistic model tree"> logistic model tree</a>, <a href="https://publications.waset.org/abstracts/search?q=expectation-maximization" title=" expectation-maximization"> expectation-maximization</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20binary%20pattern" title=" local binary pattern"> local binary pattern</a> </p> <a href="https://publications.waset.org/abstracts/111314/logistic-model-tree-and-expectation-maximization-for-pollen-recognition-and-grouping" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111314.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">872</span> A Common Automated Programming Platform for Knowledge Based Software Engineering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ivan%20Stanev">Ivan Stanev</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Koleva"> Maria Koleva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A common platform for automated programming (CPAP) is defined in details. Two versions of CPAP are described: Cloud-based (including the set of components for classic programming, and the set of components for combined programming) and KBASE based (including the set of components for automated programming, and the set of components for ontology programming). Four KBASE products (module for automated programming of robots, intelligent product manual, intelligent document display, and intelligent form generator) are analyzed and CPAP contributions to automated programming are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automated%20programming" title="automated programming">automated programming</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20computing" title=" cloud computing"> cloud computing</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge%20based%20software%20engineering" title=" knowledge based software engineering"> knowledge based software engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=service%20oriented%20architecture" title=" service oriented architecture"> service oriented architecture</a> </p> <a href="https://publications.waset.org/abstracts/40829/a-common-automated-programming-platform-for-knowledge-based-software-engineering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40829.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">871</span> KBASE Technological Framework - Requirements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ivan%20Stanev">Ivan Stanev</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Koleva"> Maria Koleva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Automated software development issues are addressed in this paper. Layers and packages of a Common Platform for Automated Programming (CPAP) are defined based on Service Oriented Architecture, Cloud computing, Knowledge based automated software engineering (KBASE) and Method of automated programming. Tools of seven leading companies (AWS of Amazon, Azure of Microsoft, App Engine of Google, vCloud of VMWare, Bluemix of IBM, Helion of HP, OCPaaS of Oracle) are analyzed in the context of CPAP. Based on the results of the analysis CPAP requirements are formulated <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automated%20programming" title="automated programming">automated programming</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20computing" title=" cloud computing"> cloud computing</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge%20based%20software%20engineering" title=" knowledge based software engineering"> knowledge based software engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=service%20oriented%20architecture" title=" service oriented architecture"> service oriented architecture</a> </p> <a href="https://publications.waset.org/abstracts/40820/kbase-technological-framework-requirements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40820.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">870</span> Palynology of the Cretaceous Deposits of the Southeast Sirt Basin, Libya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Mahmud%20Gaddah">Khaled Mahmud Gaddah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cretaceous deposits in the southeast of the Sirt Basin of Libya occur in several grabens that formed during a major phase of rifting related to the opening of the Tethys. They include continental deposits of Early Cretaceous age that belong to the Nubian Formation and marginal to fully marine deposits of Late Cretaceous age that belong to the Lidam Formation and transitional beds. The sequence was extensively sampled from twenty-two boreholes and palynologically analysed. Much of the sequence is barren. However, subordinate shales in all formations yield diverse assemblages of poorly to well preserved and thermally middle to post mature palynomorphs. Most of the assemblages contain non-marine palynomorphs (spores, pollen, and freshwater algae), although some contain rare marine elements (dinoflagellate cysts and acritarchs). The palynofloras enabled the recognition of six assemblage zones of the late Barremian-Turonian age based on the dominant and base/top occurrences of stratigraphically useful palynomorphs: AI (Afropollisspp.-Aequitriraditesspinulosus) of late Barremian age; AIIa (Scenedesmusbifidus-S. sp.) of late Barremian?-early Aptian age; AIIb (Afropollisoperculatus-A. zonatus) of Aptian age; AIII (Crybelosporitespannuceus-Afropollisjardinus) of early Albian age; AIV (Subtilisphaera sp.-Lophosphaeridiumspp.) of Cenomanian-?Turonian age; AIV (Pediastrumbifidites-Leiosphaeridiaspp.) of Cenomanian?-Turonian age. These assemblages are comparable to others from Northern Gondwana (particularly from Libya and Egypt) and correspond to established Cretaceous palynofloral provinces. Palynofacies analysis is used to interpret the depositional environments, and five palynofacies types are recognised that reflect increasing marine influence up section. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=palynology" title="palynology">palynology</a>, <a href="https://publications.waset.org/abstracts/search?q=palynomorphs" title=" palynomorphs"> palynomorphs</a>, <a href="https://publications.waset.org/abstracts/search?q=palynofacies" title=" palynofacies"> palynofacies</a>, <a href="https://publications.waset.org/abstracts/search?q=tethys" title=" tethys"> tethys</a>, <a href="https://publications.waset.org/abstracts/search?q=sirt%20basin" title=" sirt basin"> sirt basin</a> </p> <a href="https://publications.waset.org/abstracts/149823/palynology-of-the-cretaceous-deposits-of-the-southeast-sirt-basin-libya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149823.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">869</span> Optimal Trajectories for Highly Automated Driving</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christian%20Rathgeber">Christian Rathgeber</a>, <a href="https://publications.waset.org/abstracts/search?q=Franz%20Winkler"> Franz Winkler</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoyu%20Kang"> Xiaoyu Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Steffen%20M%C3%BCller"> Steffen Müller</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this contribution two approaches for calculating optimal trajectories for highly automated vehicles are presented and compared. The first one is based on a non-linear vehicle model, used for evaluation. The second one is based on a simplified model and can be implemented on a current ECU. In usual driving situations both approaches show very similar results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=trajectory%20planning" title="trajectory planning">trajectory planning</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20method" title=" direct method"> direct method</a>, <a href="https://publications.waset.org/abstracts/search?q=indirect%20method" title=" indirect method"> indirect method</a>, <a href="https://publications.waset.org/abstracts/search?q=highly%20automated%20driving" title=" highly automated driving"> highly automated driving</a> </p> <a href="https://publications.waset.org/abstracts/22622/optimal-trajectories-for-highly-automated-driving" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22622.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">533</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">868</span> Knowledge Based Automated Software Engineering Platform Used for the Development of Bulgarian E-Customs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ivan%20Stanev">Ivan Stanev</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Koleva"> Maria Koleva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Described are challenges to the Bulgarian e-Customs (BeC) related to low level of interoperability and standardization, inefficient use of available infrastructure, lack of centralized identification and authorization, extremely low level of software process automation, and insufficient quality of data stored in official registers. The technical requirements for BeC are prepared with a focus on domain independent common platform, specialized customs and excise components, high scalability, flexibility, and reusability. The Knowledge Based Automated Software Engineering (KBASE) Common Platform for Automated Programming (CPAP) is selected as an instrument covering BeC requirements for standardization, programming automation, knowledge interpretation and cloud computing. BeC stage 3 results are presented and analyzed. BeC.S3 development trends are identified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=service%20oriented%20architecture" title="service oriented architecture">service oriented architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20computing" title=" cloud computing"> cloud computing</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge%20based%20automated%20software%20engineering" title=" knowledge based automated software engineering"> knowledge based automated software engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=common%20platform%20for%20automated%20programming" title=" common platform for automated programming"> common platform for automated programming</a>, <a href="https://publications.waset.org/abstracts/search?q=e-customs" title=" e-customs"> e-customs</a> </p> <a href="https://publications.waset.org/abstracts/83167/knowledge-based-automated-software-engineering-platform-used-for-the-development-of-bulgarian-e-customs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83167.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">867</span> Automated Java Testing: JUnit versus AspectJ</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manish%20Jain">Manish Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Dinesh%20Gopalani"> Dinesh Gopalani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Growing dependency of mankind on software technology increases the need for thorough testing of the software applications and automated testing techniques that support testing activities. We have outlined our testing strategy for performing various types of automated testing of Java applications using AspectJ which has become the de-facto standard for Aspect Oriented Programming (AOP). Likewise JUnit, a unit testing framework is the most popular Java testing tool. In this paper, we have evaluated our proposed AOP approach for automated testing and JUnit on various parameters. First we have provided the similarity between the two approaches and then we have done a detailed comparison of the two testing techniques on factors like lines of testing code, learning curve, testing of private members etc. We established that our AOP testing approach using AspectJ has got several advantages and is thus particularly more effective than JUnit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aspect%20oriented%20programming" title="aspect oriented programming">aspect oriented programming</a>, <a href="https://publications.waset.org/abstracts/search?q=AspectJ" title=" AspectJ"> AspectJ</a>, <a href="https://publications.waset.org/abstracts/search?q=aspects" title=" aspects"> aspects</a>, <a href="https://publications.waset.org/abstracts/search?q=JU-nit" title=" JU-nit"> JU-nit</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20testing" title=" software testing"> software testing</a> </p> <a href="https://publications.waset.org/abstracts/82341/automated-java-testing-junit-versus-aspectj" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82341.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">866</span> Business and Psychological Principles Integrated into Automated Capital Investment Systems through Mathematical Algorithms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cristian%20Pauna">Cristian Pauna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With few steps away from the 2020, investments in financial markets is a common activity nowadays. In the electronic trading environment, the automated investment software has become a major part in the business intelligence system of any modern financial company. The investment decisions are assisted and/or made automatically by computers using mathematical algorithms today. The complexity of these algorithms requires computer assistance in the investment process. This paper will present several investment strategies that can be automated with algorithmic trading for Deutscher Aktienindex DAX30. It was found that, based on several price action mathematical models used for high-frequency trading some investment strategies can be optimized and improved for automated investments with good results. This paper will present the way to automate these investment decisions. Automated signals will be built using all of these strategies. Three major types of investment strategies were found in this study. The types are separated by the target length and by the exit strategy used. The exit decisions will be also automated and the paper will present the specificity for each investment type. A comparative study will be also included in this paper in order to reveal the differences between strategies. Based on these results, the profit and the capital exposure will be compared and analyzed in order to qualify the investment methodologies presented and to compare them with any other investment system. As conclusion, some major investment strategies will be revealed and compared in order to be considered for inclusion in any automated investment system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Algorithmic%20trading" title="Algorithmic trading">Algorithmic trading</a>, <a href="https://publications.waset.org/abstracts/search?q=automated%20investment%20systems" title=" automated investment systems"> automated investment systems</a>, <a href="https://publications.waset.org/abstracts/search?q=limit%20conditions" title=" limit conditions"> limit conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=trading%20principles" title=" trading principles"> trading principles</a>, <a href="https://publications.waset.org/abstracts/search?q=trading%20strategies" title=" trading strategies"> trading strategies</a> </p> <a href="https://publications.waset.org/abstracts/97254/business-and-psychological-principles-integrated-into-automated-capital-investment-systems-through-mathematical-algorithms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97254.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">865</span> Towards Automated Remanufacturing of Marine and Offshore Engineering Components </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aprilia">Aprilia</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Liang%20Keith%20Nguyen"> Wei Liang Keith Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Shu%20Beng%20Tor"> Shu Beng Tor</a>, <a href="https://publications.waset.org/abstracts/search?q=Gerald%20Gim%20Lee%20Seet"> Gerald Gim Lee Seet</a>, <a href="https://publications.waset.org/abstracts/search?q=Chee%20Kai%20Chua"> Chee Kai Chua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Automated remanufacturing process is of great interest in today’s marine and offshore industry. Most of the current remanufacturing processes are carried out manually and hence they are error prone, labour-intensive and costly. In this paper, a conceptual framework for automated remanufacturing is presented. This framework involves the integration of 3D non-contact digitization, adaptive surface reconstruction, additive manufacturing and machining operation. Each operation is operated and interconnected automatically as one system. The feasibility of adaptive surface reconstruction on marine and offshore engineering components is also discussed. Several engineering components were evaluated and the results showed that this proposed system is feasible. Conclusions are drawn and further research work is discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20surface%20reconstruction" title="adaptive surface reconstruction">adaptive surface reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=automated%20remanufacturing" title=" automated remanufacturing"> automated remanufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=automatic%20repair" title=" automatic repair"> automatic repair</a>, <a href="https://publications.waset.org/abstracts/search?q=reverse%20engineering" title=" reverse engineering"> reverse engineering</a> </p> <a href="https://publications.waset.org/abstracts/57009/towards-automated-remanufacturing-of-marine-and-offshore-engineering-components" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57009.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">864</span> Improvement of Microscopic Detection of Acid-Fast Bacilli for Tuberculosis by Artificial Intelligence-Assisted Microscopic Platform and Medical Image Recognition System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hsiao-Chuan%20Huang">Hsiao-Chuan Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=King-Lung%20Kuo"> King-Lung Kuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Mei-Hsin%20Lo"> Mei-Hsin Lo</a>, <a href="https://publications.waset.org/abstracts/search?q=Hsiao-Yun%20Chou"> Hsiao-Yun Chou</a>, <a href="https://publications.waset.org/abstracts/search?q=Yusen%20Lin"> Yusen Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The most robust and economical method for laboratory diagnosis of TB is to identify mycobacterial bacilli (AFB) under acid-fast staining despite its disadvantages of low sensitivity and labor-intensive. Though digital pathology becomes popular in medicine, an automated microscopic system for microbiology is still not available. A new AI-assisted automated microscopic system, consisting of a microscopic scanner and recognition program powered by big data and deep learning, may significantly increase the sensitivity of TB smear microscopy. Thus, the objective is to evaluate such an automatic system for the identification of AFB. A total of 5,930 smears was enrolled for this study. An intelligent microscope system (TB-Scan, Wellgen Medical, Taiwan) was used for microscopic image scanning and AFB detection. 272 AFB smears were used for transfer learning to increase the accuracy. Referee medical technicians were used as Gold Standard for result discrepancy. Results showed that, under a total of 1726 AFB smears, the automated system's accuracy, sensitivity and specificity were 95.6% (1,650/1,726), 87.7% (57/65), and 95.9% (1,593/1,661), respectively. Compared to culture, the sensitivity for human technicians was only 33.8% (38/142); however, the automated system can achieve 74.6% (106/142), which is significantly higher than human technicians, and this is the first of such an automated microscope system for TB smear testing in a controlled trial. This automated system could achieve higher TB smear sensitivity and laboratory efficiency and may complement molecular methods (eg. GeneXpert) to reduce the total cost for TB control. Furthermore, such an automated system is capable of remote access by the internet and can be deployed in the area with limited medical resources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=TB%20smears" title="TB smears">TB smears</a>, <a href="https://publications.waset.org/abstracts/search?q=automated%20microscope" title=" automated microscope"> automated microscope</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title=" artificial intelligence"> artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20imaging" title=" medical imaging"> medical imaging</a> </p> <a href="https://publications.waset.org/abstracts/136682/improvement-of-microscopic-detection-of-acid-fast-bacilli-for-tuberculosis-by-artificial-intelligence-assisted-microscopic-platform-and-medical-image-recognition-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136682.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">863</span> Feedback of an Automated Hospital about the Performance of an Automated Drug Dispensing System’s Implementation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bouami%20Hind">Bouami Hind</a>, <a href="https://publications.waset.org/abstracts/search?q=Millot%20Patrick"> Millot Patrick</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The implementation of automated devices in life-critical systems such as hospitals can bring a new set of challenges related to automation malfunctions. While automation has been identified as great leverage for the medication dispensing system’s security and efficiency, it also increases the complexity of the organization. In particular, the installation and operation stage of automated devices can be complex when malfunctions related to automated systems occur. This paper aims to document operators’ situation awareness about the malfunctions of automated drug delivery systems (ADCs) during their implementation through Saint Brieuc hospital’s feedback. Our evaluation approach has been deployed in Saint Brieuc hospital center’s pharmacy, which has been equipped with automated nominative drug dispensing systems since January of 2021. The analysis of Saint Brieuc hospital center pharmacy’s automation revealed numerous malfunctions related to the implementation of Automated Delivery Cabinets. It appears that the targeted performance is not reached in the first year of implementation in this case study. Also, errors have been collected in patients' automated treatments’ production such as lack of drugs in pill boxes or nominative carnets, excess of drugs, wrong location of the drug, drug blister damaged, non-compliant sachet, or ticket errors. Saint Brieuc hospital center’s pharmacy is doing a tremendous job of setting up and monitoring performance indicators from the beginning of automation and throughout ADC’s operation to control ADC’s malfunctions and meet the performance targeted by the hospital. Health professionals, including pharmacists, biomedical engineers and directors of work, technical services and safety, are heavily involved in an automation project. This study highlights the importance of the evaluation of ADCs’ performance throughout the implementation process and the hospital’s team involvement in automation supervision and management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=life-critical%20systems" title="life-critical systems">life-critical systems</a>, <a href="https://publications.waset.org/abstracts/search?q=situation%20awareness" title=" situation awareness"> situation awareness</a>, <a href="https://publications.waset.org/abstracts/search?q=automated%20delivery%20cabinets" title=" automated delivery cabinets"> automated delivery cabinets</a>, <a href="https://publications.waset.org/abstracts/search?q=implementation" title=" implementation"> implementation</a>, <a href="https://publications.waset.org/abstracts/search?q=risks%20and%20malfunctions" title=" risks and malfunctions"> risks and malfunctions</a> </p> <a href="https://publications.waset.org/abstracts/155125/feedback-of-an-automated-hospital-about-the-performance-of-an-automated-drug-dispensing-systems-implementation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155125.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">862</span> Contribution of Automated Early Warning Score Usage to Patient Safety</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Phang%20Moon%20Leng">Phang Moon Leng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Automated Early Warning Scores is a newly developed clinical decision tool that is used to streamline and improve the process of obtaining a patient’s vital signs so a clinical decision can be made at an earlier stage to prevent the patient from further deterioration. This technology provides immediate update on the score and clinical decision to be taken based on the outcome. This paper aims to study the use of an automated early warning score system on whether the technology has assisted the hospital in early detection and escalation of clinical condition and improve patient outcome. The hospital adopted the Modified Early Warning Scores (MEWS) Scoring System and MEWS Clinical Response into Philips IntelliVue Guardian Automated Early Warning Score equipment and studied whether the process has been leaned, whether the use of technology improved the usage & experience of the nurses, and whether the technology has improved patient care and outcome. It was found the steps required to obtain vital signs has been significantly reduced and is used more frequently to obtain patient vital signs. The number of deaths, and length of stay has significantly decreased as clinical decisions can be made and escalated more quickly with the Automated EWS. The automated early warning score equipment has helped improve work efficiency by removing the need for documenting into patient’s EMR. The technology streamlines clinical decision-making and allows faster care and intervention to be carried out and improves overall patient outcome which translates to better care for patient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automated%20early%20warning%20score" title="automated early warning score">automated early warning score</a>, <a href="https://publications.waset.org/abstracts/search?q=clinical%20quality%20and%20safety" title=" clinical quality and safety"> clinical quality and safety</a>, <a href="https://publications.waset.org/abstracts/search?q=patient%20safety" title=" patient safety"> patient safety</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20technology" title=" medical technology"> medical technology</a> </p> <a href="https://publications.waset.org/abstracts/148109/contribution-of-automated-early-warning-score-usage-to-patient-safety" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148109.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">861</span> Automated Driving Deep Neural Networks Model Accuracy and Performance Assessment in a Simulated Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20Tena-Gago">David Tena-Gago</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20M.%20Alcaraz%20Calero"> Jose M. Alcaraz Calero</a>, <a href="https://publications.waset.org/abstracts/search?q=Qi%20Wang"> Qi Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The evolution and integration of automated vehicles have become more and more tangible in recent years. State-of-the-art technological advances in the field of camera-based Artificial Intelligence (AI) and computer vision greatly favor the performance and reliability of the Advanced Driver Assistance System (ADAS), leading to a greater knowledge of vehicular operation and resembling human behavior. However, the exclusive use of this technology still seems insufficient to control vehicular operation at 100%. To reveal the degree of accuracy of the current camera-based automated driving AI modules, this paper studies the structure and behavior of one of the main solutions in a controlled testing environment. The results obtained clearly outline the lack of reliability when using exclusively the AI model in the perception stage, thereby entailing using additional complementary sensors to improve its safety and performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accuracy%20assessment" title="accuracy assessment">accuracy assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=AI-driven%20mobility" title=" AI-driven mobility"> AI-driven mobility</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title=" artificial intelligence"> artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=automated%20vehicles" title=" automated vehicles"> automated vehicles</a> </p> <a href="https://publications.waset.org/abstracts/149282/automated-driving-deep-neural-networks-model-accuracy-and-performance-assessment-in-a-simulated-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149282.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">860</span> An Overview of Posterior Fossa Associated Pathologies and Segmentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samuel%20J.%20Ahmad">Samuel J. Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Zhu"> Michael Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20J.%20Kobets"> Andrew J. Kobets</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Segmentation tools continue to advance, evolving from manual methods to automated contouring technologies utilizing convolutional neural networks. These techniques have evaluated ventricular and hemorrhagic volumes in the past but may be applied in novel ways to assess posterior fossa-associated pathologies such as Chiari malformations. Herein, we summarize literature pertaining to segmentation in the context of this and other posterior fossa-based diseases such as trigeminal neuralgia, hemifacial spasm, and posterior fossa syndrome. A literature search for volumetric analysis of the posterior fossa identified 27 papers where semi-automated, automated, manual segmentation, linear measurement-based formulas, and the Cavalieri estimator were utilized. These studies produced superior data than older methods utilizing formulas for rough volumetric estimations. The most commonly used segmentation technique was semi-automated segmentation (12 studies). Manual segmentation was the second most common technique (7 studies). Automated segmentation techniques (4 studies) and the Cavalieri estimator (3 studies), a point-counting method that uses a grid of points to estimate the volume of a region, were the next most commonly used techniques. The least commonly utilized segmentation technique was linear measurement-based formulas (1 study). Semi-automated segmentation produced accurate, reproducible results. However, it is apparent that there does not exist a single semi-automated software, open source or otherwise, that has been widely applied to the posterior fossa. Fully-automated segmentation via such open source software as FSL and Freesurfer produced highly accurate posterior fossa segmentations. Various forms of segmentation have been used to assess posterior fossa pathologies and each has its advantages and disadvantages. According to our results, semi-automated segmentation is the predominant method. However, atlas-based automated segmentation is an extremely promising method that produces accurate results. Future evolution of segmentation technologies will undoubtedly yield superior results, which may be applied to posterior fossa related pathologies. Medical professionals will save time and effort analyzing large sets of data due to these advances. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chiari" title="chiari">chiari</a>, <a href="https://publications.waset.org/abstracts/search?q=posterior%20fossa" title=" posterior fossa"> posterior fossa</a>, <a href="https://publications.waset.org/abstracts/search?q=segmentation" title=" segmentation"> segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=volumetric" title=" volumetric"> volumetric</a> </p> <a href="https://publications.waset.org/abstracts/146042/an-overview-of-posterior-fossa-associated-pathologies-and-segmentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146042.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">859</span> Current Design Approach for Seismic Resistant Automated Rack Supported Warehouses: Strong Points and Critical Aspects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Agnese%20Natali">Agnese Natali</a>, <a href="https://publications.waset.org/abstracts/search?q=Francesco%20Morelli"> Francesco Morelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Walter%20Salvatore"> Walter Salvatore</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Automated Rack Supported Warehouses (ARSWs) are structures currently designed as steel racks. Even if there are common characteristics, there are differences that don’t allow to adopt the same design approach. Aiming to highlight the factors influencing the design and the behavior of ARSWs, a set of 5 structures designed by 5 European companies specialized in this field is used to perform both a critical analysis of the design approaches and the assessment of the seismic performance, which is used to point out the criticalities and the necessity of new design philosophy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=steel%20racks" title="steel racks">steel racks</a>, <a href="https://publications.waset.org/abstracts/search?q=automated%20rack%20supported%20warehouse" title=" automated rack supported warehouse"> automated rack supported warehouse</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20walled%20cold-formed%20elements" title=" thin walled cold-formed elements"> thin walled cold-formed elements</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20assessment" title=" seismic assessment"> seismic assessment</a> </p> <a href="https://publications.waset.org/abstracts/143717/current-design-approach-for-seismic-resistant-automated-rack-supported-warehouses-strong-points-and-critical-aspects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143717.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">858</span> Conceptual Design of an Automated Biomethane Test Using Interacting Criteria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vassilis%20C.%20Moulianitis">Vassilis C. Moulianitis</a>, <a href="https://publications.waset.org/abstracts/search?q=Evgenios%20Scourboutis"> Evgenios Scourboutis</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilias%20Katsanis"> Ilias Katsanis</a>, <a href="https://publications.waset.org/abstracts/search?q=Paraskevas%20Papanikos"> Paraskevas Papanikos</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikolas%20Zacharopoulos"> Nikolas Zacharopoulos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the conceptual design of an automated biomethane potential measurement system. First, the design specifications for the BMP system and the basic components of the system will be presented. Three concepts that meet the design specifications will be presented. The basic characteristics of each concept will be analyzed in detail. The concepts will be evaluated using a set of design criteria that includes flexibility, cost, size, complexity, aesthetics, and accessibility in order to determine the best solution. The evaluation will be based on the discrete Choquet integral. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automated%20biomethane%20test" title="automated biomethane test">automated biomethane test</a>, <a href="https://publications.waset.org/abstracts/search?q=conceptual%20mechatronics%20design" title=" conceptual mechatronics design"> conceptual mechatronics design</a>, <a href="https://publications.waset.org/abstracts/search?q=concept%20evaluation" title=" concept evaluation"> concept evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=Choquet%20integral" title=" Choquet integral"> Choquet integral</a> </p> <a href="https://publications.waset.org/abstracts/160417/conceptual-design-of-an-automated-biomethane-test-using-interacting-criteria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160417.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">857</span> Mobile Application Testing Matrix and Challenges</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bakhtiar%20Amen">Bakhtiar Amen</a>, <a href="https://publications.waset.org/abstracts/search?q=Sardasht%20Mahmood"> Sardasht Mahmood</a>, <a href="https://publications.waset.org/abstracts/search?q=Joan%20Lu"> Joan Lu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The adoption of smartphones and the usages of mobile applications are increasing rapidly. Consequently, within limited time-range, mobile Internet usages have managed to take over the desktop usages particularly since the first smartphone-touched application released by iPhone in 2007. This paper is proposed to provide solution and answer the most demandable questions related to mobile application automated and manual testing limitations. Moreover, Mobile application testing requires agility and physically testing. Agile testing is to detect bugs through automated tools, whereas the compatibility testing is more to ensure that the apps operates on mobile OS (Operation Systems) as well as on the different real devices. Moreover, we have managed to answer automated or manual questions through two mobile application case studies MES (Mobile Exam System) and MLM (Mobile Lab Mate) by creating test scripts for both case studies and our experiment results have been discussed and evaluated on whether to adopt test on real devices or on emulators? In addition to this, we have introduced new mobile application testing matrix for the testers and some enterprises to obtain knowledge from. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mobile%20app%20testing" title="mobile app testing">mobile app testing</a>, <a href="https://publications.waset.org/abstracts/search?q=testing%20matrix" title=" testing matrix"> testing matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=automated" title=" automated"> automated</a>, <a href="https://publications.waset.org/abstracts/search?q=manual%20testing" title=" manual testing "> manual testing </a> </p> <a href="https://publications.waset.org/abstracts/23955/mobile-application-testing-matrix-and-challenges" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23955.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">478</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">856</span> Active Treatment of Water Chemistry for Swimming Pools Using Novel Automated System (NAS)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Asiri">Saeed Asiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Novel Automated System (NAS) has the control system of the level of chlorine and acid (i.e. pH level) through a feedback in three forms of synchronous alerts. The feedback is in the form of an alert voice, a visible color, and a message on a digital screen. In addition, NAS contains a slide-in container in which chemicals are used to treat the problems of chlorine and acid levels independently. Moreover, NAS has a net in front of it to clean the pool on the surface of the water from leaves and wastes and so on which is controlled through a remote control. The material used is a lightweight aluminum with mechanical and electric parts integrated with each other. In fact, NAS is qualified to serve as an assistant security guard for swimming pools because it has the characteristics that make it unique and smart. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=novel%20automated%20system" title="novel automated system">novel automated system</a>, <a href="https://publications.waset.org/abstracts/search?q=pool%20safety" title=" pool safety"> pool safety</a>, <a href="https://publications.waset.org/abstracts/search?q=maintenance" title=" maintenance"> maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=pH%20level" title=" pH level"> pH level</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20screen" title=" digital screen"> digital screen</a> </p> <a href="https://publications.waset.org/abstracts/171081/active-treatment-of-water-chemistry-for-swimming-pools-using-novel-automated-system-nas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171081.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">855</span> Ta-DAH: Task Driven Automated Hardware Design of Free-Flying Space Robots</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lucy%20Jackson">Lucy Jackson</a>, <a href="https://publications.waset.org/abstracts/search?q=Celyn%20Walters"> Celyn Walters</a>, <a href="https://publications.waset.org/abstracts/search?q=Steve%20Eckersley"> Steve Eckersley</a>, <a href="https://publications.waset.org/abstracts/search?q=Mini%20Rai"> Mini Rai</a>, <a href="https://publications.waset.org/abstracts/search?q=Simon%20Hadfield"> Simon Hadfield</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Space robots will play an integral part in exploring the universe and beyond. A correctly designed space robot will facilitate OOA, satellite servicing and ADR. However, problems arise when trying to design such a system as it is a highly complex multidimensional problem into which there is little research. Current design techniques are slow and specific to terrestrial manipulators. This paper presents a solution to the slow speed of robotic hardware design, and generalizes the technique to free-flying space robots. It presents Ta-DAH Design, an automated design approach that utilises a multi-objective cost function in an iterative and automated pipeline. The design approach leverages prior knowledge and facilitates the faster output of optimal designs. The result is a system that can optimise the size of the base spacecraft, manipulator and some key subsystems for any given task. Presented in this work is the methodology behind Ta-DAH Design and a number optimal space robot designs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=space%20robots" title="space robots">space robots</a>, <a href="https://publications.waset.org/abstracts/search?q=automated%20design" title=" automated design"> automated design</a>, <a href="https://publications.waset.org/abstracts/search?q=on-orbit%20operations" title=" on-orbit operations"> on-orbit operations</a>, <a href="https://publications.waset.org/abstracts/search?q=hardware%20design" title=" hardware design"> hardware design</a> </p> <a href="https://publications.waset.org/abstracts/150830/ta-dah-task-driven-automated-hardware-design-of-free-flying-space-robots" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150830.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">854</span> Battery Replacement Strategy for Electric AGVs in an Automated Container Terminal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiheon%20Park">Jiheon Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Taekwang%20Kim"> Taekwang Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwang%20Ryel%20Ryu"> Kwang Ryel Ryu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electric automated guided vehicles (AGVs) are becoming popular in many automated container terminals nowadays because they are pollution-free and environmentally friendly vehicles for transporting the containers within the terminal. Since efficient operation of AGVs is critical for the productivity of the container terminal, the replacement of batteries of the AGVs must be conducted in a strategic way to minimize undesirable transportation interruptions. While a too frequent replacement may lead to a loss of terminal productivity by delaying container deliveries, missing the right timing of battery replacement can result in a dead AGV that causes a severer productivity loss due to the extra efforts required to finish post treatment. In this paper, we propose a strategy for battery replacement based on a scoring function of multiple criteria taking into account the current battery level, the distances to different battery stations, and the progress of the terminal job operations. The strategy is optimized using a genetic algorithm with the objectives of minimizing the total time spent for battery replacement as well as maximizing the terminal productivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AGV%20operation" title="AGV operation">AGV operation</a>, <a href="https://publications.waset.org/abstracts/search?q=automated%20container%20terminal" title=" automated container terminal"> automated container terminal</a>, <a href="https://publications.waset.org/abstracts/search?q=battery%20replacement" title=" battery replacement"> battery replacement</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20AGV" title=" electric AGV"> electric AGV</a>, <a href="https://publications.waset.org/abstracts/search?q=strategy%20optimization" title=" strategy optimization"> strategy optimization</a> </p> <a href="https://publications.waset.org/abstracts/43477/battery-replacement-strategy-for-electric-agvs-in-an-automated-container-terminal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43477.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">853</span> Enhancing Quality Management Systems through Automated Controls and Neural Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shara%20Toibayeva">Shara Toibayeva</a>, <a href="https://publications.waset.org/abstracts/search?q=Irbulat%20Utepbergenov"> Irbulat Utepbergenov</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyazzat%20Issabekova"> Lyazzat Issabekova</a>, <a href="https://publications.waset.org/abstracts/search?q=Aidana%20Bodesova"> Aidana Bodesova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The article discusses the importance of quality assessment as a strategic tool in business and emphasizes the significance of the effectiveness of quality management systems (QMS) for enterprises. The evaluation of these systems takes into account the specificity of quality indicators, the multilevel nature of the system, and the need for optimal selection of the number of indicators and evaluation of the system state, which is critical for making rational management decisions. Methods and models of automated enterprise quality management are proposed, including an intelligent automated quality management system integrated with the Management Information and Control System. These systems make it possible to automate the implementation and support of QMS, increasing the validity, efficiency, and effectiveness of management decisions by automating the functions performed by decision makers and personnel. The paper also emphasizes the use of recurrent neural networks to improve automated quality management. Recurrent neural networks (RNNs) are used to analyze and process sequences of data, which is particularly useful in the context of document quality assessment and non-conformance detection in quality management systems. These networks are able to account for temporal dependencies and complex relationships between different data elements, which improves the accuracy and efficiency of automated decisions. The project was supported by a grant from the Ministry of Education and Science of the Republic of Kazakhstan under the Zhas Galym project No. AR 13268939, dedicated to research and development of digital technologies to ensure consistency of QMS regulatory documents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automated%20control%20system" title="automated control system">automated control system</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20management" title=" quality management"> quality management</a>, <a href="https://publications.waset.org/abstracts/search?q=document%20structure" title=" document structure"> document structure</a>, <a href="https://publications.waset.org/abstracts/search?q=formal%20language" title=" formal language"> formal language</a> </p> <a href="https://publications.waset.org/abstracts/188968/enhancing-quality-management-systems-through-automated-controls-and-neural-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188968.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">39</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">852</span> A Controlled Natural Language Assisted Approach for the Design and Automated Processing of Service Level Agreements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christopher%20Schwarz">Christopher Schwarz</a>, <a href="https://publications.waset.org/abstracts/search?q=Katrin%20Riegler"> Katrin Riegler</a>, <a href="https://publications.waset.org/abstracts/search?q=Erwin%20Zinser"> Erwin Zinser</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The management of outsourcing relationships between IT service providers and their customers proofs to be a critical issue that has to be stipulated by means of Service Level Agreements (SLAs). Since service requirements differ from customer to customer, SLA content and language structures vary largely, standardized SLA templates may not be used and an automated processing of SLA content is not possible. Hence, SLA management is usually a time-consuming and inefficient manual process. For overcoming these challenges, this paper presents an innovative and ITIL V3-conform approach for automated SLA design and management using controlled natural language in enterprise collaboration portals. The proposed novel concept is based on a self-developed controlled natural language that follows a subject-predicate-object approach to specify well-defined SLA content structures that act as templates for customized contracts and support automated SLA processing. The derived results eventually enable IT service providers to automate several SLA request, approval and negotiation processes by means of workflows and business rules within an enterprise collaboration portal. The illustrated prototypical realization gives evidence of the practical relevance in service-oriented scenarios as well as the high flexibility and adaptability of the presented model. Thus, the prototype enables the automated creation of well defined, customized SLA documents, providing a knowledge representation that is both human understandable and machine processable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automated%20processing" title="automated processing">automated processing</a>, <a href="https://publications.waset.org/abstracts/search?q=controlled%20natural%20language" title=" controlled natural language"> controlled natural language</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge%20representation" title=" knowledge representation"> knowledge representation</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20technology%20outsourcing" title=" information technology outsourcing"> information technology outsourcing</a>, <a href="https://publications.waset.org/abstracts/search?q=service%20level%20management" title=" service level management"> service level management</a> </p> <a href="https://publications.waset.org/abstracts/5964/a-controlled-natural-language-assisted-approach-for-the-design-and-automated-processing-of-service-level-agreements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5964.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">851</span> Risk Management Approach for a Secure and Performant Integration of Automated Drug Dispensing Systems in Hospitals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hind%20Bouami">Hind Bouami</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrick%20Millot"> Patrick Millot</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Medication dispensing system is a life-critical system whose failure may result in preventable adverse events leading to longer patient stays in hospitals or patient death. Automation has led to great improvements in life-critical systems as it increased safety, efficiency, and comfort. However, critical risks related to medical organization complexity and automated solutions integration can threaten drug dispensing security and performance. Knowledge about the system’s complexity aspects and human machine parameters to control for automated equipment’s security and performance will help operators to secure their automation process and to optimize their system’s reliability. In this context, this study aims to document the operator’s situation awareness about automation risks and parameters involved in automation security and performance. Our risk management approach has been deployed in the North Luxembourg hospital center’s pharmacy, which is equipped with automated drug dispensing systems since 2009. With more than 4 million euros of gains generated, North Luxembourg hospital center’s success story was enabled by the management commitment, pharmacy’s involvement in the implementation and improvement of the automation project, and the close collaboration between the pharmacy and Sinteco’s firm to implement the necessary innovation and organizational actions for automated solutions integration security and performance. An analysis of the actions implemented by the hospital and the parameters involved in automated equipment’s integration security and performance has been made. The parameters to control for automated equipment’s integration security and performance are human aspects (6.25%), technical aspects (50%), and human-machine interaction (43.75%). The implementation of an anthropocentric analysis system before automation would have prevented and optimized the control of risks related to automation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Automated%20drug%20delivery%20systems" title="Automated drug delivery systems">Automated drug delivery systems</a>, <a href="https://publications.waset.org/abstracts/search?q=Hospitals" title=" Hospitals"> Hospitals</a>, <a href="https://publications.waset.org/abstracts/search?q=Human-centered%20automated%20system" title=" Human-centered automated system"> Human-centered automated system</a>, <a href="https://publications.waset.org/abstracts/search?q=Risk%20management" title=" Risk management"> Risk management</a> </p> <a href="https://publications.waset.org/abstracts/129716/risk-management-approach-for-a-secure-and-performant-integration-of-automated-drug-dispensing-systems-in-hospitals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">850</span> Running the Athena Vortex Lattice Code in JAVA through the Java Native Interface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paul%20Okonkwo">Paul Okonkwo</a>, <a href="https://publications.waset.org/abstracts/search?q=Howard%20Smith"> Howard Smith</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes a methodology to integrate the Athena Vortex Lattice Aerodynamic Software for automated operation in a multivariate optimisation of the Blended Wing Body Aircraft. The Athena Vortex Lattice code developed at the Massachusetts Institute of Technology allows for the aerodynamic analysis of aircraft using the vortex lattice method. Ordinarily, the Athena Vortex Lattice operation requires a text file containing the aircraft geometry to be loaded into the AVL solver in order to determine the aerodynamic forces and moments. However, automated operation will be required to enable integration into a multidisciplinary optimisation framework. Automated AVL operation within the JAVA design environment will nonetheless require a modification and recompilation of AVL source code into an executable file capable of running on windows and other platforms without the –X11 libraries. This paper describes the procedure for the integrating the FORTRAN written AVL software for automated operation within the multivariate design synthesis optimisation framework for the conceptual design of the BWB aircraft. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamics" title="aerodynamics">aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=automation" title=" automation"> automation</a>, <a href="https://publications.waset.org/abstracts/search?q=optimisation" title=" optimisation"> optimisation</a>, <a href="https://publications.waset.org/abstracts/search?q=AVL" title=" AVL"> AVL</a>, <a href="https://publications.waset.org/abstracts/search?q=JNI" title=" JNI"> JNI</a> </p> <a href="https://publications.waset.org/abstracts/22131/running-the-athena-vortex-lattice-code-in-java-through-the-java-native-interface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22131.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">565</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">849</span> Improved Pattern Matching Applied to Surface Mounting Devices Components Localization on Automated Optical Inspection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pedro%20M.%20A.%20Vitoriano">Pedro M. A. Vitoriano</a>, <a href="https://publications.waset.org/abstracts/search?q=Tito.%20G.%20Amaral"> Tito. G. Amaral</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Automated Optical Inspection (AOI) Systems are commonly used on Printed Circuit Boards (PCB) manufacturing. The use of this technology has been proven as highly efficient for process improvements and quality achievements. The correct extraction of the component for posterior analysis is a critical step of the AOI process. Nowadays, the Pattern Matching Algorithm is commonly used, although this algorithm requires extensive calculations and is time consuming. This paper will present an improved algorithm for the component localization process, with the capability of implementation in a parallel execution system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AOI" title="AOI">AOI</a>, <a href="https://publications.waset.org/abstracts/search?q=automated%20optical%20inspection" title=" automated optical inspection"> automated optical inspection</a>, <a href="https://publications.waset.org/abstracts/search?q=SMD" title=" SMD"> SMD</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20mounting%20devices" title=" surface mounting devices"> surface mounting devices</a>, <a href="https://publications.waset.org/abstracts/search?q=pattern%20matching" title=" pattern matching"> pattern matching</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20execution" title=" parallel execution"> parallel execution</a> </p> <a href="https://publications.waset.org/abstracts/59624/improved-pattern-matching-applied-to-surface-mounting-devices-components-localization-on-automated-optical-inspection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59624.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">848</span> Developing an Automated Protocol for the Wristband Extraction Process Using Opentrons</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tei%20Kim">Tei Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Brooklynn%20McNeil"> Brooklynn McNeil</a>, <a href="https://publications.waset.org/abstracts/search?q=Kathryn%20Dunn"> Kathryn Dunn</a>, <a href="https://publications.waset.org/abstracts/search?q=Douglas%20I.%20Walker"> Douglas I. Walker</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To better characterize the relationship between complex chemical exposures and disease, our laboratory uses an approach that combines low-cost, polydimethylsiloxane (silicone) wristband samplers that absorb many of the chemicals we are exposed to with untargeted high-resolution mass spectrometry (HRMS) to characterize 1000’s of chemicals at a time. In studies with human populations, these wristbands can provide an important measure of our environment: however, there is a need to use this approach in large cohorts to study exposures associated with the disease. To facilitate the use of silicone samplers in large scale population studies, the goal of this research project was to establish automated sample preparation methods that improve throughput, robustness, and scalability of analytical methods for silicone wristbands. Using the Opentron OT2 automated liquid platform, which provides a low-cost and opensource framework for automated pipetting, we created two separate workflows that translate the manual wristband preparation method to a fully automated protocol that requires minor intervention by the operator. These protocols include a sequence generation step, which defines the location of all plates and labware according to user-specified settings, and a transfer protocol that includes all necessary instrument parameters and instructions for automated solvent extraction of wristband samplers. These protocols were written in Python and uploaded to GitHub for use by others in the research community. Results from this project show it is possible to establish automated and open source methods for the preparation of silicone wristband samplers to support profiling of many environmental exposures. Ongoing studies include deployment in longitudinal cohort studies to investigate the relationship between personal chemical exposure and disease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioinformatics" title="bioinformatics">bioinformatics</a>, <a href="https://publications.waset.org/abstracts/search?q=automation" title=" automation"> automation</a>, <a href="https://publications.waset.org/abstracts/search?q=opentrons" title=" opentrons"> opentrons</a>, <a href="https://publications.waset.org/abstracts/search?q=research" title=" research"> research</a> </p> <a href="https://publications.waset.org/abstracts/157079/developing-an-automated-protocol-for-the-wristband-extraction-process-using-opentrons" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157079.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">847</span> Investigation of Factors Influencing Perceived Comfort During Take-Over in Automated Driving</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Miriam%20Sch%C3%A4ffer">Miriam Schäffer</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinayak%20Mudgal"> Vinayak Mudgal</a>, <a href="https://publications.waset.org/abstracts/search?q=Wolfram%20Remlinger"> Wolfram Remlinger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The functions of automated driving will initially be limited to certain so-called Operating Driving Domains (ODD). Within the ODDs, the automated vehicle can handle all situations autonomously. In the event of a critical system failure, the vehicle will establish a condition of minimal risk or offer the driver to take over control of the vehicle. When the vehicle leaves the ODD, the driver is also prompted to take over vehicle control. During automated driving, the driver is legally allowed to perform non-driving-related activities (NDRAs) for the first time. When requested to take over, the driver must return from the NDRA state to a driving-ready state. The driver’s NDRA state may imply the use of items that are necessary for the NDRA or interior modifications. Since perceived comfort is an important factor in both manual and automated driving, a study was conducted in a static driving simulator to investigate factors that influence perceived comfort during the take-over process. Based on a literature review of factors influencing perceived comfort in different domains, selected parameters such as the TOR modality or elements to support handing over the item used for the NDRA to the interior were varied. Perceived comfort and discomfort were assessed using an adapted version of a standardized comfort questionnaire, as well as other previously identified aspects of comfort. The NDRA conducted was Using a Smartphone (playing Tetris) because of its high relevance as a future NDRA. The results show the potential to increase perceived comfort through interior adaptations and support elements. Further research should focus on different layouts of the investigated factors, as well as under different conditions, such as time budget, actions required within the intervention in the vehicle control system, and vehicle interior dimensions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automated%20driving" title="automated driving">automated driving</a>, <a href="https://publications.waset.org/abstracts/search?q=comfort" title=" comfort"> comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=take-over" title=" take-over"> take-over</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle%20interior" title=" vehicle interior"> vehicle interior</a> </p> <a href="https://publications.waset.org/abstracts/190133/investigation-of-factors-influencing-perceived-comfort-during-take-over-in-automated-driving" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190133.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">20</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">846</span> True Single SKU Script: Applying the Automated Test to Set Software Properties in a Global Software Development Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Brigido">Antonio Brigido</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Meireles"> Maria Meireles</a>, <a href="https://publications.waset.org/abstracts/search?q=Francisco%20Barros"> Francisco Barros</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaspar%20Mota"> Gaspar Mota</a>, <a href="https://publications.waset.org/abstracts/search?q=Fernanda%20Terra"> Fernanda Terra</a>, <a href="https://publications.waset.org/abstracts/search?q=Lidia%20Melo"> Lidia Melo</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcelo%20Reis"> Marcelo Reis</a>, <a href="https://publications.waset.org/abstracts/search?q=Camilo%20Souza"> Camilo Souza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the globalization of the software process advances, companies are increasingly committed to improving software development technologies across multiple locations. On the other hand, working with teams distributed in different locations also raises new challenges. In this sense, automated processes can help to improve the quality of process execution. Therefore, this work presents the development of a tool called TSS Script that automates the sample preparation process for carrier requirements validation tests. The objective of the work is to obtain significant gains in execution time and reducing errors in scenario preparation. To estimate the gains over time, the executions performed in an automated and manual way were timed. In addition, a questionnaire-based survey was developed to discover new requirements and improvements to include in this automated support. The results show an average gain of 46.67% of the total hours worked, referring to sample preparation. The use of the tool avoids human errors, and for this reason, it adds greater quality and speed to the process. Another relevant factor is the fact that the tester can perform other activities in parallel with sample preparation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Android" title="Android">Android</a>, <a href="https://publications.waset.org/abstracts/search?q=GSD" title=" GSD"> GSD</a>, <a href="https://publications.waset.org/abstracts/search?q=automated%20testing%20tool" title=" automated testing tool"> automated testing tool</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20products" title=" mobile products"> mobile products</a> </p> <a href="https://publications.waset.org/abstracts/139796/true-single-sku-script-applying-the-automated-test-to-set-software-properties-in-a-global-software-development-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139796.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">845</span> Parameters Influencing Human Machine Interaction in Hospitals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hind%20Bouami">Hind Bouami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Handling life-critical systems complexity requires to be equipped with appropriate technology and the right human agents’ functions such as knowledge, experience, and competence in problem’s prevention and solving. Human agents are involved in the management and control of human-machine system’s performance. Documenting human agent’s situation awareness is crucial to support human-machine designers’ decision-making. Knowledge about risks, critical parameters and factors that can impact and threaten automation system’s performance should be collected using preventive and retrospective approaches. This paper aims to document operators’ situation awareness through the analysis of automated organizations’ feedback. The analysis of automated hospital pharmacies feedbacks helps to identify and control critical parameters influencing human machine interaction in order to enhance system’s performance and security. Our human machine system evaluation approach has been deployed in Macon hospital center’s pharmacy which is equipped with automated drug dispensing systems since 2015. Automation’s specifications are related to technical aspects, human-machine interaction, and human aspects. The evaluation of drug delivery automation performance in Macon hospital center has shown that the performance of the automated activity depends on the performance of the automated solution chosen, and also on the control of systemic factors. In fact, 80.95% of automation specification related to the chosen Sinteco’s automated solution is met. The performance of the chosen automated solution is involved in 28.38% of automation specifications performance in Macon hospital center. The remaining systemic parameters involved in automation specifications performance need to be controlled. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=life-critical%20systems" title="life-critical systems">life-critical systems</a>, <a href="https://publications.waset.org/abstracts/search?q=situation%20awareness" title=" situation awareness"> situation awareness</a>, <a href="https://publications.waset.org/abstracts/search?q=human-machine%20interaction" title=" human-machine interaction"> human-machine interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=decision-making" title=" decision-making"> decision-making</a> </p> <a href="https://publications.waset.org/abstracts/139410/parameters-influencing-human-machine-interaction-in-hospitals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139410.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automated%20palynology&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automated%20palynology&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automated%20palynology&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automated%20palynology&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automated%20palynology&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automated%20palynology&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automated%20palynology&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automated%20palynology&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automated%20palynology&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automated%20palynology&page=29">29</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automated%20palynology&page=30">30</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automated%20palynology&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>