CINXE.COM

Search results for: K. Satya Prasad

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: K. Satya Prasad</title> <meta name="description" content="Search results for: K. Satya Prasad"> <meta name="keywords" content="K. Satya Prasad"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="K. Satya Prasad" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="K. Satya Prasad"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 242</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: K. Satya Prasad</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">242</span> An Efficient Resource Management Algorithm for Mobility Management in Wireless Mesh Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mallikarjuna%20Rao%20Yamarthy">Mallikarjuna Rao Yamarthy</a>, <a href="https://publications.waset.org/abstracts/search?q=Subramanyam%20Makam%20Venkata"> Subramanyam Makam Venkata</a>, <a href="https://publications.waset.org/abstracts/search?q=Satya%20Prasad%20Kodati"> Satya Prasad Kodati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of the proposed work is to reduce the overall network traffic incurred by mobility management, packet delivery cost and to increase the resource utilization. The proposed algorithm, An Efficient Resource Management Algorithm (ERMA) for mobility management in wireless mesh networks, relies on pointer based mobility management scheme. Whenever a mesh client moves from one mesh router to another, the pointer is set up dynamically between the previous mesh router and current mesh router based on the distance constraints. The algorithm evaluated for signaling cost, data delivery cost and total communication cost performance metrics. The proposed algorithm is demonstrated for both internet sessions and intranet sessions. The proposed algorithm yields significantly better performance in terms of signaling cost, data delivery cost, and total communication cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20delivery%20cost" title="data delivery cost">data delivery cost</a>, <a href="https://publications.waset.org/abstracts/search?q=mobility%20management" title=" mobility management"> mobility management</a>, <a href="https://publications.waset.org/abstracts/search?q=pointer%20forwarding" title=" pointer forwarding"> pointer forwarding</a>, <a href="https://publications.waset.org/abstracts/search?q=resource%20management" title=" resource management"> resource management</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20mesh%20networks" title=" wireless mesh networks"> wireless mesh networks</a> </p> <a href="https://publications.waset.org/abstracts/76159/an-efficient-resource-management-algorithm-for-mobility-management-in-wireless-mesh-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76159.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">241</span> Investigation of Chord Protocol in Peer to Peer Wireless Mesh Network with Mobility</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Prasanna%20Murali%20Krishna">P. Prasanna Murali Krishna</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20V.%20Subramanyam"> M. V. Subramanyam</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Satya%20Prasad"> K. Satya Prasad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> File sharing in networks are generally achieved using Peer-to-Peer (P2P) applications. Structured P2P approaches are widely used in adhoc networks due to its distributed and scalability features. Efficient mechanisms are required to handle the huge amount of data distributed to all peers. The intrinsic characteristics of P2P system makes for easier content distribution when compared to client-server architecture. All the nodes in a P2P network act as both client and server, thus, distributing data takes lesser time when compared to the client-server method. CHORD protocol is a resource routing based where nodes and data items are structured into a 1- dimensional ring. The structured lookup algorithm of Chord is advantageous for distributed P2P networking applications. Though, structured approach improves lookup performance in a high bandwidth wired network it could contribute to unnecessary overhead in overlay networks leading to degradation of network performance. In this paper, the performance of existing CHORD protocol on Wireless Mesh Network (WMN) when nodes are static and dynamic is investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wireless%20mesh%20network%20%28WMN%29" title="wireless mesh network (WMN)">wireless mesh network (WMN)</a>, <a href="https://publications.waset.org/abstracts/search?q=structured%20P2P%0D%0Anetworks" title=" structured P2P networks"> structured P2P networks</a>, <a href="https://publications.waset.org/abstracts/search?q=peer%20to%20peer%20resource%20sharing" title=" peer to peer resource sharing"> peer to peer resource sharing</a>, <a href="https://publications.waset.org/abstracts/search?q=CHORD%20Protocol" title=" CHORD Protocol"> CHORD Protocol</a>, <a href="https://publications.waset.org/abstracts/search?q=DHT" title=" DHT"> DHT</a> </p> <a href="https://publications.waset.org/abstracts/34950/investigation-of-chord-protocol-in-peer-to-peer-wireless-mesh-network-with-mobility" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34950.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">480</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">240</span> Morphology and Mineralogy of Acid Treated Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Hari%20Prasad%20Reddy">P. Hari Prasad Reddy</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20H.%20Rama%20Vara%20Prasad"> C. H. Rama Vara Prasad</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Kalyan%20Kumar"> G. Kalyan Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the morphological and mineralogical changes occurring in the soil due to immediate and prolonged interaction with different concentrations of phosphoric acid and sulphuric acid. In order to assess the effect of acid contamination, a series of sediment volume, scanning electron microscopy and X-ray diffraction analysis tests were carried out on soil samples were exposed to different concentrations (1N, 4N and 8N) of phosphoric and sulphuric acid. Experimental results show that both acids showed severe morphological and mineralogical changes with synthesis of neogenic formations mainly at higher concentrations (4N and 8N) and at prolonged duration of interaction (28 and 80 days). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phosphoric%20acid" title="phosphoric acid">phosphoric acid</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscopy" title=" scanning electron microscopy"> scanning electron microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=sulphuric%20acid" title=" sulphuric acid"> sulphuric acid</a>, <a href="https://publications.waset.org/abstracts/search?q=x-ray%20diffraction%20analysis" title=" x-ray diffraction analysis"> x-ray diffraction analysis</a> </p> <a href="https://publications.waset.org/abstracts/39715/morphology-and-mineralogy-of-acid-treated-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39715.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">239</span> Perception of Faculties Towards Online Teaching-Learning Activities during COVID-19 Pandemic: A Cross-Sectional Study at a Tertiary Care Center in Eastern Nepal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deependra%20Prasad%20Sarraf">Deependra Prasad Sarraf</a>, <a href="https://publications.waset.org/abstracts/search?q=Gajendra%20Prasad%20Rauniar"> Gajendra Prasad Rauniar</a>, <a href="https://publications.waset.org/abstracts/search?q=Robin%20Maskey"> Robin Maskey</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajiv%20Maharjan"> Rajiv Maharjan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Shrestha"> Ashish Shrestha</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramayan%20Prasad%20Kushwaha"> Ramayan Prasad Kushwaha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objectives: To assess the perception of faculties towards online teaching-learning activities conducted during the COVID-19 pandemic and to identify barriers and facilitators to conducting online teaching-learning activities in our context. Methods: A cross-sectional study was conducted among faculties at B. P. Koirala Institute of Health Sciences using a 26-item semi-structured questionnaire. A Google Form was prepared, and its link was sent to the faculties via email. Descriptive statistics were calculated, and findings were presented as tables and graphs. Results: Out of 158 faculties, the majority were male (66.46%), medical faculties (85.44%), and assistant professors (46.84%). Only 16 (10.13%) faculties had received formal training regarding preparing and/or delivering online teaching learning activities. Out of 158, 133 (84.18%) faculties faced technical and internet issues. The most common advantage and disadvantage of online teaching learning activities perceived by the faculties were ‘not limited to time or place’ (94.30%) and ‘lack of interaction with the students’ (82.28%), respectively. Majority (94.3%) of them had a positive perception towards online teaching-learning activities conducted during COVID-19 pandemic. Slow internet connection (91.77%) and frequent electricity interruption (82.91%) were the most common perceived barriers to online teaching-learning. Conclusions: Most of the faculties had a positive perception towards online teaching-learning activities. Academic leaders and stakeholders should provide uninterrupted internet and electricity connectivity, training on online teaching-learning platform, and timely technical support. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=COVID-19%20pandemic" title="COVID-19 pandemic">COVID-19 pandemic</a>, <a href="https://publications.waset.org/abstracts/search?q=faculties" title=" faculties"> faculties</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20education" title=" medical education"> medical education</a>, <a href="https://publications.waset.org/abstracts/search?q=perception" title=" perception"> perception</a> </p> <a href="https://publications.waset.org/abstracts/154718/perception-of-faculties-towards-online-teaching-learning-activities-during-covid-19-pandemic-a-cross-sectional-study-at-a-tertiary-care-center-in-eastern-nepal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154718.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">238</span> An Ecological Grandeur: Environmental Ethics in Buddhist Perspective</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Merina%20Islam">Merina Islam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are many environmental problems. Various counter measures have been taken for environmental problems. Philosophy is an important contributor to environmental studies as it takes deep interest in meaning analysis of the concept environment and other related concepts. The Buddhist frame, which is virtue ethical, remains a better alternative to the traditional environmental outlook. Granting the unique role of man in immoral deliberations, the Buddhist approach, however, maintains a holistic concept of ecological harmony. Buddhist environmental ethics is more concerned about the complete moral community, the total ecosystem, than any particular species within the community. The moral reorientation proposed here has resemblance to the concept of 'deep ecology. Given the present day prominence of virtue ethics, we need to explore further into the Buddhist virtue theory, so that a better framework to treat the natural world would be ensured. Environment has turned out to be one of the most widely discussed issues in the recent times. Buddhist concepts such as Pratityasamutpadavada, Samvrit Satya, Paramartha Satya, Shunyata, Sanghatvada, Bodhisattva, Santanvada and others deal with interdependence in terms of both internal as well external ecology. The internal ecology aims at mental well-being whereas external ecology deals with physical well-being. The fundamental Buddhist concepts for dealing with environmental Problems are where the environment has the same value as humans as from the two Buddhist doctrines of the Non-duality of Life and its Environment and the Origination in Dependence; and the inevitability of overcoming environmental problems through the practice of the way of the Bodhisattva, because environmental problems are evil for people and nature. Buddhism establishes that there is a relationship among all the constituents of the world. There is nothing in the world which is independent from any other thing. Everything is dependent on others. The realization that everything in the universe is mutually interdependent also shows that the man cannot keep itself unaffected from ecology. This paper would like to focus how the Buddhist’s identification of nature and the Dhamma can contribute toward transforming our understanding, attitudes, and actions regarding the care of the earth. Environmental Ethics in Buddhism presents a logical and thorough examination of the metaphysical and ethical dimensions of early Buddhist literature. From the Buddhist viewpoint, humans are not in a category that is distinct and separate from other sentient beings, nor are they intrinsically superior. All sentient beings are considered to have the Buddha-nature, that is, the potential to become fully enlightened. Buddhists do not believe in treating of non-human sentient beings as objects for human consumption. The significance of Buddhist theory of interdependence can be understood from the fact that it shows that one’s happiness or suffering originates from ones realization or non-realization respectively of the dependent nature of everything. It is obvious, even without emphasis, which in the context of deep ecological crisis of today there is a need to infuse the consciousness of interdependence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Buddhism" title="Buddhism">Buddhism</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20ecology" title=" deep ecology"> deep ecology</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20problems" title=" environmental problems"> environmental problems</a>, <a href="https://publications.waset.org/abstracts/search?q=Pratityasamutpadavada" title=" Pratityasamutpadavada"> Pratityasamutpadavada</a> </p> <a href="https://publications.waset.org/abstracts/51392/an-ecological-grandeur-environmental-ethics-in-buddhist-perspective" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51392.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">237</span> Optimizing Resource Management in Cloud Computing through Blockchain-Enabled Cost Transparency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raghava%20Satya%20SaiKrishna%20Dittakavi">Raghava Satya SaiKrishna Dittakavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cloud computing has revolutionized how businesses and individuals store, access, and process data, increasing efficiency and reducing infrastructure costs. However, the need for more transparency in cloud service billing often raises concerns about overcharging and hidden fees, hindering the realization of the full potential of cloud computing. This research paper explores how blockchain technology can be leveraged to introduce cost transparency and accountability in cloud computing services. We present a comprehensive analysis of blockchain-enabled solutions that enhance cost visibility, facilitate auditability, and promote trust in cloud service providers. Through this study, we aim to provide insights into the potential benefits and challenges of implementing blockchain in the cloud computing domain, leading to improved cost management and customer satisfaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blockchain" title="blockchain">blockchain</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20computing" title=" cloud computing"> cloud computing</a>, <a href="https://publications.waset.org/abstracts/search?q=cost%20transparency" title=" cost transparency"> cost transparency</a>, <a href="https://publications.waset.org/abstracts/search?q=blockchain%20technology" title=" blockchain technology"> blockchain technology</a> </p> <a href="https://publications.waset.org/abstracts/173705/optimizing-resource-management-in-cloud-computing-through-blockchain-enabled-cost-transparency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173705.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">236</span> Diversity and Utilize of Ignored, Underutilized, and Uncommercialized Horticultural Species in Nepal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prakriti%20Chand">Prakriti Chand</a>, <a href="https://publications.waset.org/abstracts/search?q=Binayak%20Prasad%20Rajbhandari"> Binayak Prasad Rajbhandari</a>, <a href="https://publications.waset.org/abstracts/search?q=Ram%20Prasad%20Mainali"> Ram Prasad Mainali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Local indigenous community in Lalitpur, Nepal, use Ignored, Underutilized and Uncommercialized Horticultural Species (IUUHS) for medicine, food, spice, pickles, and religious purposes. But, research and exploration about usage, status, potentialities, and importance of these future sustainable crops are inadequately documented and have been ignored for a positive food transformation system. The study aimed to assess the use and diversity of NUWHS in terms of current status investigation, documentation, management, and future potentialities of IUUHS. A wide range of participatory tools through the household survey ( 100 respondents), 8 focus group discussions, 20 key informant interviews was followed by individual assessment, participatory rural assessments and supplemented by literature review. This study recorded 95 IUUHS belonging to 43 families, of which 92 were angiosperms, 2 pteridophytes, and 1 gymnosperm. Twenty seven species had multiple uses. The IUUHS observed during the study were 31 vegetables, 20 fruits, 14 wild species, 7 spices, 7 pulses, 7 pickle, 7 medicine, and 2 religious species. Vegetables and fruits were the most observed category of IUUHS. Eighty nine species were observed as medicinally valued species, and 86% of the women had taken over all the agricultural activities. 84% of respondents used these species during food deficient period. IUUHS have future potential as an alternative food to major staple crops due to its remarkable ability to be adapted in marginal soil and thrive harsh climatic condition. There are various constraints regarding the utilization and development of IUUHS, which needs initiation of promotion, utilization, management, and conservation of species from the grass root level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agrobiodiversity" title="agrobiodiversity">agrobiodiversity</a>, <a href="https://publications.waset.org/abstracts/search?q=Ignored%20and%20underutilized%20species" title=" Ignored and underutilized species"> Ignored and underutilized species</a>, <a href="https://publications.waset.org/abstracts/search?q=uncultivated%20horticultural%20species" title=" uncultivated horticultural species"> uncultivated horticultural species</a>, <a href="https://publications.waset.org/abstracts/search?q=diversity%20use" title=" diversity use"> diversity use</a> </p> <a href="https://publications.waset.org/abstracts/141568/diversity-and-utilize-of-ignored-underutilized-and-uncommercialized-horticultural-species-in-nepal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141568.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">235</span> Eu³⁺ Ions Doped-SnO₂ for Effective Degradation of Malachite Green Dye</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ritu%20Malik">Ritu Malik</a>, <a href="https://publications.waset.org/abstracts/search?q=Vijay%20K.%20Tomer"> Vijay K. Tomer</a>, <a href="https://publications.waset.org/abstracts/search?q=Satya%20P.%20Nehra"> Satya P. Nehra</a>, <a href="https://publications.waset.org/abstracts/search?q=Anshu%20Nehra"> Anshu Nehra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Visible light sensitive Eu³⁺ doped-SnO₂ nanoparticles were successfully synthesized via the hydrothermal method and extensively characterized by a combination of X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM) and N₂ adsorption-desorption isotherms (BET). Their photocatalytic activities were evaluated using Malachite Green (MG) as decomposition objective by varying the concentration of Eu³⁺ in SnO₂. The XRD analysis showed that lanthanides phase was not observed on lower loadings of Eu³⁺ ions doped-SnO₂. Eu³⁺ ions can enhance the photocatalytic activity of SnO₂ to some extent as compared with pure SnO₂, and it was found that 3 wt% Eu³⁺ -doped SnO₂ is the most effective photocatalyst due to its lowest band gap, crystallite size and also the highest surface area. The photocatalytic tests indicate that at the optimum conditions, illumination time 40 min, pH 65, 0.3 g/L photocatalyst loading and 50 ppm dye concentration, the dye removal efficiency was 98%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photocatalyst" title="photocatalyst">photocatalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=visible%20light" title=" visible light"> visible light</a>, <a href="https://publications.waset.org/abstracts/search?q=lanthanide" title=" lanthanide"> lanthanide</a>, <a href="https://publications.waset.org/abstracts/search?q=SnO%E2%82%82" title=" SnO₂ "> SnO₂ </a> </p> <a href="https://publications.waset.org/abstracts/64846/eu3-ions-doped-sno2-for-effective-degradation-of-malachite-green-dye" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64846.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">234</span> Magnetoresistance Transition from Negative to Positive in Functionalization of Carbon Nanotube and Composite with Polyaniline</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krishna%20Prasad%20Maity">Krishna Prasad Maity</a>, <a href="https://publications.waset.org/abstracts/search?q=Narendra%20Tanty"> Narendra Tanty</a>, <a href="https://publications.waset.org/abstracts/search?q=Ananya%20Patra"> Ananya Patra</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Prasad"> V. Prasad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon nanotube (CNT) is a well-known material for very good electrical, thermal conductivity and high tensile strength. Because of that, it’s widely used in many fields like nanotechnology, electronics, optics, etc. In last two decades, polyaniline (PANI) with CNT and functionalized CNT (fCNT) have been promising materials in application of gas sensing, electromagnetic shielding, electrode of capacitor etc. So, the study of electrical conductivity of PANI/CNT and PANI/fCNT is important to understand the charge transport and interaction between PANI and CNT in the composite. It is observed that a transition in magnetoresistance (MR) with lowering temperature, increasing magnetic field and decreasing CNT percentage in CNT/PANI composite. Functionalization of CNT prevent the nanotube aggregation, improves interfacial interaction, dispersion and stabilized in polymer matrix. However, it shortens the length, breaks C-C sp² bonds and enhances the disorder creating defects on the side walls. We have studied electrical resistivity and MR in PANI with CNT and fCNT composites for different weight percentages down to the temperature 4.2K and up to magnetic field 5T. Resistivity increases significantly in composite at low temperature due to functionalization of CNT compared to only CNT. Interestingly a transition from negative to positive magnetoresistance has been observed when the filler is changed from pure CNT to functionalized CNT after a certain percentage (10wt%) as the effect of more disorder in fCNT/PANI composite. The transition of MR has been explained on the basis of polaron-bipolaron model. The long-range Coulomb interaction between two polarons screened by disorder in the composite of fCNT/PANI, increases the effective on-site Coulomb repulsion energy to form bipolaron which leads to change the sign of MR from negative to positive. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coulomb%20interaction" title="coulomb interaction">coulomb interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetoresistance%20transition" title=" magnetoresistance transition"> magnetoresistance transition</a>, <a href="https://publications.waset.org/abstracts/search?q=polyaniline%20composite" title=" polyaniline composite"> polyaniline composite</a>, <a href="https://publications.waset.org/abstracts/search?q=polaron-bipolaron" title=" polaron-bipolaron"> polaron-bipolaron</a> </p> <a href="https://publications.waset.org/abstracts/98940/magnetoresistance-transition-from-negative-to-positive-in-functionalization-of-carbon-nanotube-and-composite-with-polyaniline" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98940.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">233</span> Effect of Honey on Rate of Healing of Socket after Tooth Extraction in Rabbits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deependra%20Prasad%20Sarraf">Deependra Prasad Sarraf</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Shrestha"> Ashish Shrestha</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehul%20Rajesh%20Jaisani"> Mehul Rajesh Jaisani</a>, <a href="https://publications.waset.org/abstracts/search?q=Gajendra%20Prasad%20Rauniar"> Gajendra Prasad Rauniar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Honey is the worlds’ oldest known wound dressing. Its wound healing properties are not fully established till today. Concerns about antibiotic resistance, and a renewed interest in natural remedies have prompted the resurgence in the antimicrobial and wound healing properties of Honey. Evidence from animal studies and some trials has suggested that honey may accelerate wound healing in burns, infected wounds and open wounds. None of these reports have documented the effect of honey on the healing of socket after tooth extraction. Therefore, the present experimental study was planned to evaluate the efficacy of honey on the healing of socket after tooth extraction in rabbits. Materials and Methods: An experimental study was conducted in six New Zealand White rabbits. Extraction of first premolar tooth on both sides of the lower jaw was done under anesthesia produced by Ketamine and Xylazine followed by application of honey on one socket (test group) and normal saline (control group) in the opposite socket. The intervention was continued for two more days. On the 7th day, the biopsy was taken from the extraction site, and histopathological examination was done. Student’s t-test was used for comparison between the groups and differences were considered to be statistically significant at p-value less than 0.05. Results: There was a significant difference between control group and test group in terms of fibroblast proliferation (p = 0.0019) and bony trabeculae formation (p=0.0003). Inflammatory cells were also observed in both groups, and it was not significant (p=1.0). Overlying epithelium was hyperplastic in both the groups. Conclusion: The study showed that local application of honey promoted the rapid healing process particularly by increasing fibroblast proliferation and bony trabeculae. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=honey" title="honey">honey</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction%20wound" title=" extraction wound"> extraction wound</a>, <a href="https://publications.waset.org/abstracts/search?q=Nepal" title=" Nepal"> Nepal</a>, <a href="https://publications.waset.org/abstracts/search?q=healing" title=" healing"> healing</a> </p> <a href="https://publications.waset.org/abstracts/67176/effect-of-honey-on-rate-of-healing-of-socket-after-tooth-extraction-in-rabbits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67176.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">232</span> Advanced Mouse Cursor Control and Speech Recognition Module</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prasad%20Kalagura">Prasad Kalagura</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Veeresh%20kumar"> B. Veeresh kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We constructed an interface system that would allow a similarly paralyzed user to interact with a computer with almost full functional capability. A real-time tracking algorithm is implemented based on adaptive skin detection and motion analysis. The clicking of the mouse is activated by the user's eye blinking through a sensor. The keyboard function is implemented by voice recognition kit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=embedded%20ARM7%20processor" title="embedded ARM7 processor">embedded ARM7 processor</a>, <a href="https://publications.waset.org/abstracts/search?q=mouse%20pointer%20control" title=" mouse pointer control"> mouse pointer control</a>, <a href="https://publications.waset.org/abstracts/search?q=voice%20recognition" title=" voice recognition "> voice recognition </a> </p> <a href="https://publications.waset.org/abstracts/31757/advanced-mouse-cursor-control-and-speech-recognition-module" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31757.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">578</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">231</span> Collaborative Planning and Forecasting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neha%20Asthana">Neha Asthana</a>, <a href="https://publications.waset.org/abstracts/search?q=Vishal%20Krishna%20Prasad"> Vishal Krishna Prasad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Collaborative planning and forecasting are the innovative and systematic approaches towards productive integration and assimilation of data synergized into information. The changing and variable market dynamics have persuaded global business chains to incorporate collaborative planning and forecasting as an imperative tool. Thus, it is essential for the supply chains to constantly improvise, update its nature, and mould as per changing global environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=information%20transfer" title="information transfer">information transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=forecasting" title=" forecasting"> forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20management" title=" supply chain management"> supply chain management</a> </p> <a href="https://publications.waset.org/abstracts/7060/collaborative-planning-and-forecasting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7060.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">230</span> Magnetohydrodynamic (MHD) Effects on Micropolar-Newtonian Fluid Flow through a Composite Porous Channel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Satya%20Deo">Satya Deo</a>, <a href="https://publications.waset.org/abstracts/search?q=Deepak%20Kumar%20Maurya"> Deepak Kumar Maurya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study investigates the ow of a Newtonian fluid sandwiched between two rectangular porous channels filled with micropolar fluid in the presence of a uniform magnetic field applied in a direction perpendicular to that of the fluid motion. The governing equations of micropolar fluid are modified by Nowacki's approach. For respective porous channels, expressions for velocity vectors, microrotations, stresses (shear and couple) are obtained analytically. Continuity of velocities, continuities of micro rotations and continuity of stresses are used at the porous interfaces; conditions of no-slip and no spin are applied at the impervious boundaries of the composite channel. Numerical values of flow rate, wall shear stresses and couple stresses at the porous interfaces are calculated for different values of various parameters. Graphs of the ow rate and fluid velocity are plotted and their behaviors are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=couple%20stress" title="couple stress">couple stress</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20rate" title=" flow rate"> flow rate</a>, <a href="https://publications.waset.org/abstracts/search?q=Hartmann%20number" title=" Hartmann number"> Hartmann number</a>, <a href="https://publications.waset.org/abstracts/search?q=micropolar%20fluids" title=" micropolar fluids"> micropolar fluids</a> </p> <a href="https://publications.waset.org/abstracts/130440/magnetohydrodynamic-mhd-effects-on-micropolar-newtonian-fluid-flow-through-a-composite-porous-channel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130440.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">229</span> Comparison of Feedforward Back Propagation and Self-Organizing Map for Prediction of Crop Water Stress Index of Rice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aschalew%20Cherie%20Workneh">Aschalew Cherie Workneh</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20S.%20Hari%20Prasad"> K. S. Hari Prasad</a>, <a href="https://publications.waset.org/abstracts/search?q=Chandra%20Shekhar%20Prasad%20Ojha"> Chandra Shekhar Prasad Ojha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the increase in water scarcity, the crop water stress index (CWSI) is receiving significant attention these days, especially in arid and semiarid regions, for quantifying water stress and effective irrigation scheduling. Nowadays, machine learning techniques such as neural networks are being widely used to determine CWSI. In the present study, the performance of two artificial neural networks, namely, Self-Organizing Maps (SOM) and Feed Forward-Back Propagation Artificial Neural Networks (FF-BP-ANN), are compared while determining the CWSI of rice crop. Irrigation field experiments with varying degrees of irrigation were conducted at the irrigation field laboratory of the Indian Institute of Technology, Roorkee, during the growing season of the rice crop. The CWSI of rice was computed empirically by measuring key meteorological variables (relative humidity, air temperature, wind speed, and canopy temperature) and crop parameters (crop height and root depth). The empirically computed CWSI was compared with SOM and FF-BP-ANN predicted CWSI. The upper and lower CWSI baselines are computed using multiple regression analysis. The regression analysis showed that the lower CWSI baseline for rice is a function of crop height (h), air vapor pressure deficit (AVPD), and wind speed (u), whereas the upper CWSI baseline is a function of crop height (h) and wind speed (u). The performance of SOM and FF-BP-ANN were compared by computing Nash-Sutcliffe efficiency (NSE), index of agreement (d), root mean squared error (RMSE), and coefficient of correlation (R²). It is found that FF-BP-ANN performs better than SOM while predicting the CWSI of rice crops. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20networks%3B%20crop%20water%20stress%20index%3B%20canopy%20temperature" title="artificial neural networks; crop water stress index; canopy temperature">artificial neural networks; crop water stress index; canopy temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction%20capability" title=" prediction capability"> prediction capability</a> </p> <a href="https://publications.waset.org/abstracts/157887/comparison-of-feedforward-back-propagation-and-self-organizing-map-for-prediction-of-crop-water-stress-index-of-rice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157887.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">228</span> An Integrated Mathematical Approach to Measure the Capacity of MMTS </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bayan%20Bevrani">Bayan Bevrani</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20L.%20Burdett"> Robert L. Burdett</a>, <a href="https://publications.waset.org/abstracts/search?q=Prasad%20K.%20D.%20V.%20Yarlagadda"> Prasad K. D. V. Yarlagadda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article focuses upon multi-modal transportation systems (MMTS) and the issues surrounding the determination of system capacity. For that purpose a multi-objective framework is advocated that integrates all the different modes and many different competing capacity objectives. This framework is analytical in nature and facilitates a variety of capacity querying and capacity expansion planning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analytical%20model" title="analytical model">analytical model</a>, <a href="https://publications.waset.org/abstracts/search?q=capacity%20analysis" title=" capacity analysis"> capacity analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=capacity%20query" title=" capacity query"> capacity query</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-modal%20transportation%20system%20%28MMTS%29" title=" multi-modal transportation system (MMTS)"> multi-modal transportation system (MMTS)</a> </p> <a href="https://publications.waset.org/abstracts/40444/an-integrated-mathematical-approach-to-measure-the-capacity-of-mmts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40444.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">227</span> Surprising Behaviour of Kaolinitic Soils under Alkaline Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Hari%20Prasad%20Reddy">P. Hari Prasad Reddy</a>, <a href="https://publications.waset.org/abstracts/search?q=Shimna%20Paulose"> Shimna Paulose</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Sai%20Kumar"> V. Sai Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20H.%20Rama%20Vara%20Prasad"> C. H. Rama Vara Prasad </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil environment gets contaminated due to rapid industrialisation, agricultural-chemical application and improper disposal of waste generated by the society. Unexpected volume changes can occur in soil in the presence of certain contaminants usually after the long duration of interaction. Alkali is one of the major soil contaminant that has a considerable effect on behaviour of soils and capable of inducing swelling potential in soil. Chemical heaving of clayey soils occurs when they are wetted by aqueous solutions of alkalis. Mineralogical composition of the soil is one of the main factors influencing soil- alkali interaction. In the present work, studies are carried out to understand the swell potential of soils due to soil-alkali interaction with different concentrations of NaOH solution. Locally available soil, namely, red earth containing kaolinite which is of non-swelling nature is selected for the study. In addition to this, two commercially available clayey soils, namely ball clay and china clay containing mainly of kaolinite are selected to understand the effect of alkali interaction in various kaolinitic soils. Non-swelling red earth shows maximum swell at lower concentrations of alkali solution (0.1N) and a slightly decreasing trend of swelling with further increase in concentration (1N, 4N, and 8N). Marginal decrease in swell potential with increase in concentration indicates that the increased concentration of alkali solution exists as free solution in case of red earth. China clay and ball clay both falling under kaolinite group of clay minerals, show swelling with alkaline solution. At lower concentrations of alkali solution both the soils shows similar swell behaviour, but at higher concentration of alkali solution ball clay shows high swell potential compared to china clay which may be due to lack of well ordered crystallinity in ball clay compared to china clay. The variations in the results obtained were corroborated by carrying XRD and SEM studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkali" title="alkali">alkali</a>, <a href="https://publications.waset.org/abstracts/search?q=kaolinite" title=" kaolinite"> kaolinite</a>, <a href="https://publications.waset.org/abstracts/search?q=swell%20potential" title=" swell potential"> swell potential</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a> </p> <a href="https://publications.waset.org/abstracts/23569/surprising-behaviour-of-kaolinitic-soils-under-alkaline-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23569.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">502</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">226</span> Microkinetic Modelling of NO Reduction on Pt Catalysts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vishnu%20S.%20Prasad">Vishnu S. Prasad</a>, <a href="https://publications.waset.org/abstracts/search?q=Preeti%20Aghalayam"> Preeti Aghalayam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The major harmful automobile exhausts are nitric oxide (NO) and unburned hydrocarbon (HC). Reduction of NO using unburned fuel HC as a reductant is the technique used in hydrocarbon-selective catalytic reduction (HC-SCR). In this work, we study the microkinetic modelling of NO reduction using propene as a reductant on Pt catalysts. The selectivity of NO reduction to N<sub>2</sub>O is detected in some ranges of operating conditions, whereas the effect of inlet O<sub>2</sub>% causes a number of changes in the feasible regimes of operation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microkinetic%20modelling" title="microkinetic modelling">microkinetic modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=NOx" title=" NOx"> NOx</a>, <a href="https://publications.waset.org/abstracts/search?q=platinum%20on%20alumina%20catalysts" title=" platinum on alumina catalysts"> platinum on alumina catalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=selective%20catalytic%20reduction" title=" selective catalytic reduction"> selective catalytic reduction</a> </p> <a href="https://publications.waset.org/abstracts/53965/microkinetic-modelling-of-no-reduction-on-pt-catalysts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53965.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">225</span> Synthesis, Characterization and Application of Undoped and Fe Doped TiO₂ (Ti₁₋ₓFeₓO₂; X=0.01, 0.02, 0.03) Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sudhakar%20Saroj">Sudhakar Saroj</a>, <a href="https://publications.waset.org/abstracts/search?q=Satya%20Vir%20Singh"> Satya Vir Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Undoped and Fe doped TiO₂, Ti₁₋ₓFeₓO₂ (x=0.00, 0.01, 0.03, 0.05, 0.07 and 0.09) have been synthesized by solution combustion method using Titanium (IV) oxide as a precursor, and also were characterized by XRD, DRS, FTIR, XPS, SEM, and EDX. The formation of anatase phase of undoped and Fe TiO₂ nanoparticles were confirmed by XRD, and the average crystallite size was determined by Debye-Scherer's equation. The DRS analysis indicates the shifting of light absorbance in visible region from UV region with increasing the doping concentration in TiO₂. The vibrational band of the Ti-O lattice was confirmed by the FT-IR spectrum. The XPS results confirm the presence of elements of titanium, oxygen and iron in the synthesized samples and determine the binding energy of elements. SEM image of the above-synthesized nanoparticles showed the spherical shape of nanoparticles. The purities of the synthesized nanoparticles were confirmed by EDX analysis. The photocatalytic activities of the synthesized nanoparticles were tested by studying the degradation of dye (Direct Blue 199) in the photocatalytic reactor. The Ti₀.₉₇Fe₀.₀₃O₂ photocatalyst shows highest photodegradation activity among all the synthesized undoped and Fe doped TiO₂ photocatalyst. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=direct%20blue%20199" title="direct blue 199">direct blue 199</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO%E2%82%82" title=" TiO₂"> TiO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=photodegradation" title=" photodegradation"> photodegradation</a> </p> <a href="https://publications.waset.org/abstracts/85357/synthesis-characterization-and-application-of-undoped-and-fe-doped-tio2-ti1feo2-x001-002-003-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85357.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">224</span> Generative AI: A Comparison of Conditional Tabular Generative Adversarial Networks and Conditional Tabular Generative Adversarial Networks with Gaussian Copula in Generating Synthetic Data with Synthetic Data Vault</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lakshmi%20Prayaga">Lakshmi Prayaga</a>, <a href="https://publications.waset.org/abstracts/search?q=Chandra%20Prayaga.%20Aaron%20Wade"> Chandra Prayaga. Aaron Wade</a>, <a href="https://publications.waset.org/abstracts/search?q=Gopi%20Shankar%20Mallu"> Gopi Shankar Mallu</a>, <a href="https://publications.waset.org/abstracts/search?q=Harsha%20Satya%20Pola"> Harsha Satya Pola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Synthetic data generated by Generative Adversarial Networks and Autoencoders is becoming more common to combat the problem of insufficient data for research purposes. However, generating synthetic data is a tedious task requiring extensive mathematical and programming background. Open-source platforms such as the Synthetic Data Vault (SDV) and Mostly AI have offered a platform that is user-friendly and accessible to non-technical professionals to generate synthetic data to augment existing data for further analysis. The SDV also provides for additions to the generic GAN, such as the Gaussian copula. We present the results from two synthetic data sets (CTGAN data and CTGAN with Gaussian Copula) generated by the SDV and report the findings. The results indicate that the ROC and AUC curves for the data generated by adding the layer of Gaussian copula are much higher than the data generated by the CTGAN. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=synthetic%20data%20generation" title="synthetic data generation">synthetic data generation</a>, <a href="https://publications.waset.org/abstracts/search?q=generative%20adversarial%20networks" title=" generative adversarial networks"> generative adversarial networks</a>, <a href="https://publications.waset.org/abstracts/search?q=conditional%20tabular%20GAN" title=" conditional tabular GAN"> conditional tabular GAN</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaussian%20copula" title=" Gaussian copula"> Gaussian copula</a> </p> <a href="https://publications.waset.org/abstracts/183000/generative-ai-a-comparison-of-conditional-tabular-generative-adversarial-networks-and-conditional-tabular-generative-adversarial-networks-with-gaussian-copula-in-generating-synthetic-data-with-synthetic-data-vault" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183000.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">223</span> Eco-Friendly Preservative Treated Bamboo Culm: Compressive Strength Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Perminder%20JitKaur">Perminder JitKaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Santosh%20Satya"> Santosh Satya</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20K.%20Pant"> K. K. Pant</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20N.%20Naik"> S. N. Naik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bamboo is extensively used in construction industry. Low durability of bamboo due to fungus infestation and termites attack under storage puts certain constrains for it usage as modern structural material. Looking at many chemical formulations for bamboo treatment leading to severe harmful environment effects, research on eco-friendly preservatives for bamboo treatment has been initiated world-over. In the present studies, eco-friendly preservative for bamboo treatment has been developed. To validate its application for structural purposes, investigation of effect of treatment on compressive strength has been investigated. Neem oil(25%) integrated with copper naphthenate (0.3%) on dilution with kerosene oil impregnated into bamboo culm at 2 bar pressure, has shown weight loss of only 3.15% in soil block analysis method. The results of compressive strength analysis using The results from compressive strength analysis using HEICO Automatic Compression Testing Machine, reveal that preservative treatment has not altered the structural properties of bamboo culms. Compressive strength of control (11.72 N/mm2) and above treated samples (11.71 N/mm2) was found to be comparable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20strictus" title="D. strictus">D. strictus</a>, <a href="https://publications.waset.org/abstracts/search?q=bamboo" title=" bamboo"> bamboo</a>, <a href="https://publications.waset.org/abstracts/search?q=neem%20oil" title=" neem oil"> neem oil</a>, <a href="https://publications.waset.org/abstracts/search?q=presure%20treatment" title=" presure treatment"> presure treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a> </p> <a href="https://publications.waset.org/abstracts/19457/eco-friendly-preservative-treated-bamboo-culm-compressive-strength-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19457.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">222</span> Isotype and Logical Positivism: A Critical Understanding through Intersemiotic Translation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Satya%20Girish%20Goparaju">Satya Girish Goparaju</a>, <a href="https://publications.waset.org/abstracts/search?q=Sushmita%20Pareek"> Sushmita Pareek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper examines two sets of pictograms published in Neurath’s books Basic by Isotype and International Pictorial Language in order to investigate the reasons for pictorial language having become an end in itself despite its potential to be relevant, especially in the 21st century digital age of heightened interlingual engagement. ISOTYPE was developed by Otto Neurath to be an ‘international language’ (pictorial) in the late 1920s. It was derived from the philosophy of logical positivism (of the Vienna Circle), which believed that language can be reduced to sets of direct experiences as bare symbols, devoid of the emotive and expressive functions. In his book International Picture Language, Neurath noted that any language is less clear-cut in one or the other way, and hence the pictorial language was justified. However, Isotype, as an ambitious version of logical positivism in practice distanced itself from the semiotic theories of language, and therefore his pictograms were defined as an independent set of signs rather than signs as a part of the language. This paper attempts to investigate intersemiotic translation in the form of Isotypes and trace the effects of logical positivism on Neurath’s concept of isotypes; the ‘international language’. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intersemiotic%20translation" title="intersemiotic translation">intersemiotic translation</a>, <a href="https://publications.waset.org/abstracts/search?q=isotype" title=" isotype"> isotype</a>, <a href="https://publications.waset.org/abstracts/search?q=logical%20positivism" title=" logical positivism"> logical positivism</a>, <a href="https://publications.waset.org/abstracts/search?q=Otto%20Neurath" title=" Otto Neurath"> Otto Neurath</a>, <a href="https://publications.waset.org/abstracts/search?q=translation%20studies" title=" translation studies"> translation studies</a> </p> <a href="https://publications.waset.org/abstracts/139183/isotype-and-logical-positivism-a-critical-understanding-through-intersemiotic-translation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139183.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">221</span> The Application of Image Analyzer to Study the Effects of Pericarp in the Imbibition Process of Melia dubia Seeds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Satya%20Srii">Satya Srii</a>, <a href="https://publications.waset.org/abstracts/search?q=V."> V.</a>, <a href="https://publications.waset.org/abstracts/search?q=Nethra"> Nethra</a>, <a href="https://publications.waset.org/abstracts/search?q=N."> N. </a> </p> <p class="card-text"><strong>Abstract:</strong></p> An image analyzer system is described to study the process of imbibition in Melia dubia seeds. The experimental system consisted of control C (seeds with intact pericarp) with two treatments, namely T1 (seeds with pericarp punctured) and T2 (naked seeds without pericarp). The measurement software in the image analyzer can determine the area and perimeter as descriptors of changes in seed size during swelling resulting from imbibition. Using the area and perimeter parameter, the imbibition process in C, T1, and T2 was described by a series of curves similar to the triphasic pattern of water uptake, with the extent and rate depending upon the treatment. Naked seeds without pericarp (T2) took lesser time to reach phase III during imbition followed by seeds with pericarp punctured (T1) while the seeds with intact pericarp (C) were the slowest to attain phase III. This shows the effect of pericarp in acting as a potential inhibitor to imbibition inducing a large delay in germination. The sensitivity and feasibility of the method to investigate individual seeds within a population imply that the image analyzer has high potential in seed biology studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=germination" title="germination">germination</a>, <a href="https://publications.waset.org/abstracts/search?q=imbibition" title=" imbibition"> imbibition</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20analyzer" title=" image analyzer"> image analyzer</a>, <a href="https://publications.waset.org/abstracts/search?q=Melia%20dubia" title=" Melia dubia"> Melia dubia</a>, <a href="https://publications.waset.org/abstracts/search?q=pericarp" title=" pericarp"> pericarp</a> </p> <a href="https://publications.waset.org/abstracts/124407/the-application-of-image-analyzer-to-study-the-effects-of-pericarp-in-the-imbibition-process-of-melia-dubia-seeds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124407.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">220</span> Ordered Mesoporous WO₃-TiO₂ Nanocomposites for Enhanced Xylene Gas Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vijay%20K.%20Tomer">Vijay K. Tomer</a>, <a href="https://publications.waset.org/abstracts/search?q=Ritu%20Malik"> Ritu Malik</a>, <a href="https://publications.waset.org/abstracts/search?q=Satya%20P.%20Nehra"> Satya P. Nehra</a>, <a href="https://publications.waset.org/abstracts/search?q=Anshu%20Sharma"> Anshu Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Highly ordered mesoporous WO₃-TiO₂ nanohybrids with large intrinsic surface area and highly ordered pore channels were synthesized using mesoporous silica, KIT-6 as hard template using a nanocasting strategy. The nanohybrid samples were characterized by a variety of physico-chemical techniques including X-ray diffraction, Nitrogen adsorption-desorption isotherms, and high resolution transmission electron microscope. The nanohybrids were tested for detection of important indoor Volatile Organic Compounds (VOCs) including acetone, ethanol, n-butanol, toluene, and xylene. The sensing result illustrates that the nanocomposite sensor was highly responsive towards xylene gas at relatively lower operating temperature. A rapid response and recovery time, highly linear response and excellent stability in the concentration ranges from 1 to 100 ppm was observed for xylene gas. It is believed that the promising results of this study can be utilized in the synthesis of ordered mesoporous nanostructures which can extend its configuration for the development of new age e-nose type sensors with enhanced gas-sensing performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanohybrids" title="nanohybrids">nanohybrids</a>, <a href="https://publications.waset.org/abstracts/search?q=response" title=" response"> response</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor" title=" sensor"> sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=VOCs" title=" VOCs"> VOCs</a>, <a href="https://publications.waset.org/abstracts/search?q=xylene" title=" xylene"> xylene</a> </p> <a href="https://publications.waset.org/abstracts/64845/ordered-mesoporous-wo3-tio2-nanocomposites-for-enhanced-xylene-gas-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64845.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">219</span> Detecting Covid-19 Fake News Using Deep Learning Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=AnjalI%20A.%20Prasad">AnjalI A. Prasad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, social media played an important role in spreading misinformation or fake news. This study analyzes the fake news related to the COVID-19 pandemic spread in social media. This paper aims at evaluating and comparing different approaches that are used to mitigate this issue, including popular deep learning approaches, such as CNN, RNN, LSTM, and BERT algorithm for classification. To evaluate models’ performance, we used accuracy, precision, recall, and F1-score as the evaluation metrics. And finally, compare which algorithm shows better result among the four algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BERT" title="BERT">BERT</a>, <a href="https://publications.waset.org/abstracts/search?q=CNN" title=" CNN"> CNN</a>, <a href="https://publications.waset.org/abstracts/search?q=LSTM" title=" LSTM"> LSTM</a>, <a href="https://publications.waset.org/abstracts/search?q=RNN" title=" RNN"> RNN</a> </p> <a href="https://publications.waset.org/abstracts/135210/detecting-covid-19-fake-news-using-deep-learning-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135210.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">218</span> Heavy Metal Pollution in Soils of Yelagirihills,Tamilnadu by EDXRF Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chandrasekaran">Chandrasekaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Ravisankar%20N.%20Harikrishnan"> Ravisankar N. Harikrishnan</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajalakshmi"> Rajalakshmi</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20K.%20Satapathy%20M.%20V.%20R.%20Prasad"> K. K. Satapathy M. V. R. Prasad</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20V.%20Kanagasabapathy"> K. V. Kanagasabapathy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heavy metals were considered as highly toxic environmental pollutants to soil ecosystem and human health. In present study the 12 heavy metals (Mg, Al, K, Ca, Ti, Fe, V, Cr, Mn, Co,Ni and Zn.) are determined in soils of Yelagiri hills, Tamilnadu by energy dispersive X-ray fluorescence technique. Metal concentrations were used to quantify pollution contamination factors such as enrichment factor (EF), geo-accumulation index (Igeo) and contamination factor (CF) are calculated and reported. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil" title="soil">soil</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=EDXRF" title=" EDXRF"> EDXRF</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution%20contamination%20factors" title=" pollution contamination factors"> pollution contamination factors</a> </p> <a href="https://publications.waset.org/abstracts/24169/heavy-metal-pollution-in-soils-of-yelagirihillstamilnadu-by-edxrf-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24169.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">217</span> Biosurfactant-Mediated Nanoparticle Synthesis by Bacillus subtilis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Satya%20Eswari%20Jujjavarapu">Satya Eswari Jujjavarapu</a>, <a href="https://publications.waset.org/abstracts/search?q=Swasti%20Dhagat"> Swasti Dhagat</a>, <a href="https://publications.waset.org/abstracts/search?q=Lata%20%20Upadhyay"> Lata Upadhyay</a>, <a href="https://publications.waset.org/abstracts/search?q=Reecha%20Sahu"> Reecha Sahu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Silver nanoparticles have a broad range of antimicrobial and antifungal properties ranging from soaps, pastes to sterilization and drug delivery systems. These can be synthesized by physical, chemical and biological methods; biological methods being the most popular owing to their non-toxic nature and reduced energy requirements. Microbial surfactants, produced on the microbial cell surface or excreted extracellularly are an alternative to synthetic surfactants for the production of silver nanoparticles. Hence, they are also called as green molecules. Microbial lipopeptide surfactants (biosurfactant) exhibit anti-tumor and anti-microbial properties and can be used as drug delivery agents. In this study, biosurfactant was synthesized by using a strain of acillus subtilis. The biosurfactant thus produced was analysed by emulsification assay, oil spilling test, and haemolytic test. Biosurfactant-mediated silver nanoparticles were synthesised by microwave irradiation of the culture supernatant and further characterized by UV–vis spectroscopy for a range of 400-600 nm. The UV–vis spectra showed a surface plasmon resonance vibration band at 410 nm corresponding to the peak of silver nanoparticles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosurfactant" title="biosurfactant">biosurfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=Bacillus%20subtilis" title=" Bacillus subtilis"> Bacillus subtilis</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20nano%20particle" title=" silver nano particle"> silver nano particle</a>, <a href="https://publications.waset.org/abstracts/search?q=lipopeptide" title=" lipopeptide"> lipopeptide</a> </p> <a href="https://publications.waset.org/abstracts/65052/biosurfactant-mediated-nanoparticle-synthesis-by-bacillus-subtilis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65052.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">216</span> Charcoal Production from Invasive Species: Suggested Shift for Increased Household Income and Forest Plant Diversity in Nepal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kishor%20Prasad%20Bhatta">Kishor Prasad Bhatta</a>, <a href="https://publications.waset.org/abstracts/search?q=Suman%20Ghimire"> Suman Ghimire</a>, <a href="https://publications.waset.org/abstracts/search?q=Durga%20Prasad%20Joshi"> Durga Prasad Joshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Invasive Alien Species (IAS) are considered waste forest resources in Nepal. The rapid expansion of IAS is one of the nine main drivers of forest degradation, though the extent and distribution of this species are not well known. Further, the knowledge of the impact of IAS removal on forest plant diversity is hardly known, and the possibilities of income generation from them at the grass-root communities are rarely documented. Systematic sampling of 1% with nested circular plots of 500 square meters was performed in IAS removed and non-removed area, each of 30 hectares in Udayapur Community Forest User Group (CFUG), Chitwan, central Nepal to observe whether the removal of IAS contributed to an increase in plant diversity. In addition, ten entrepreneurs of Udaypur CFUG, involved in the charcoal production, briquette making and marketing were interviewed and interacted as well as their record keeping booklets were reviewed to understand if the charcoal production contributed to their income and employment. The average annual precipitation and temperature of the study area is 2100 mm and 34 degree Celsius respectively with Shorea robusta as main tree species and Eupatorium odoratum as dominant IAS. All the interviewed households were from the ̔below-poverty-line’ category as per Community Forestry Guidelines. A higher Shannon-Weiner plant diversity index at regeneration level was observed in IAS removed areas (2.43) than in control site (1.95). Furthermore, the number of tree seedlings and saplings in the IAS harvested blocks were significantly higher (p < 0.005) compared to the unharvested one. The sale of charcoal produced through the pyrolysis of IAS in ̔ Bio-energy kilns’ contributed for an average increased income of 30.95 % (Nepalese rupees 31,000) of the involved households. Despite above factors, some operational policy hurdles related to charcoal transport and taxation existed at field level. This study suggests that plant diversity could be increased through the removal of IAS, and considerable economic benefits could be achieved if charcoal is substantially produced and utilized. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=briquette" title="briquette">briquette</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20bene%EF%AC%81ts" title=" economic benefits"> economic benefits</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrolysis" title=" pyrolysis"> pyrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=regeneration" title=" regeneration"> regeneration</a> </p> <a href="https://publications.waset.org/abstracts/80867/charcoal-production-from-invasive-species-suggested-shift-for-increased-household-income-and-forest-plant-diversity-in-nepal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80867.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">215</span> An Evaluative Approach for Successful Implementation of Lean and Green Manufacturing in Indian SMEs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Satya%20S.%20N.%20Narayana">Satya S. N. Narayana</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Parthiban"> P. Parthiban</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Niranjan"> T. Niranjan</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Kannan"> N. Kannan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Enterprises adopt methodologies to increase their business performance and to stay competent in the volatile global market. Lean manufacturing is one such manufacturing paradigm which focuses on reduction of cost by elimination of wastes or non-value added activities. With increased awareness about social responsibility and the necessary to meet the terms of the environmental policy, green manufacturing is becoming increasingly important for industries. Large plants have more resources, have started implementing lean and green practices and they are getting good results. Small and medium scale enterprises (SMEs) are facing problems in implementing lean and green concept. This paper aims to identify the key issues for implementation of lean and green concept in Indian SMEs. The key factors identified based on literature review and expert opinions are grouped into different levels by Modified Interpretive Structural Modeling (MISM) to explore the importance among the factors to implement lean and green manufacturing. Finally, Fuzzy Analytic Network Process (FANP) method has been used to determine the extent to which the main principles of lean and green manufacturing have been carried out in the six Indian medium scale manufacturing industries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lean%20manufacturing" title="lean manufacturing">lean manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20manufacturing" title=" green manufacturing"> green manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=MISM" title=" MISM"> MISM</a>, <a href="https://publications.waset.org/abstracts/search?q=FANP" title=" FANP"> FANP</a> </p> <a href="https://publications.waset.org/abstracts/52263/an-evaluative-approach-for-successful-implementation-of-lean-and-green-manufacturing-in-indian-smes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52263.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">542</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">214</span> On Optimum Stratification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20G.%20M.%20Khan">M. G. M. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20D.%20Prasad"> V. D. Prasad</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20K.%20Rao"> D. K. Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this manuscript, we discuss the problem of determining the optimum stratification of a study (or main) variable based on the auxiliary variable that follows a uniform distribution. If the stratification of survey variable is made using the auxiliary variable it may lead to substantial gains in precision of the estimates. This problem is formulated as a Nonlinear Programming Problem (NLPP), which turn out to multistage decision problem and is solved using dynamic programming technique. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=auxiliary%20variable" title="auxiliary variable">auxiliary variable</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20programming%20technique" title=" dynamic programming technique"> dynamic programming technique</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20programming%20problem" title=" nonlinear programming problem"> nonlinear programming problem</a>, <a href="https://publications.waset.org/abstracts/search?q=optimum%20stratification" title=" optimum stratification"> optimum stratification</a>, <a href="https://publications.waset.org/abstracts/search?q=uniform%20distribution" title=" uniform distribution"> uniform distribution</a> </p> <a href="https://publications.waset.org/abstracts/6677/on-optimum-stratification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">213</span> Labyrinth Fractal on a Convex Quadrilateral</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harsha%20Gopalakrishnan">Harsha Gopalakrishnan</a>, <a href="https://publications.waset.org/abstracts/search?q=Srijanani%20Anurag%20Prasad"> Srijanani Anurag Prasad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quadrilateral labyrinth fractals are a new type of fractals that are introduced in this paper. They belong to a unique class of fractals on any plane quadrilateral. The previously researched labyrinth fractals on the unit square and triangle inspire this form of fractal. This work describes how to construct a quadrilateral labyrinth fractal and looks at the circumstances in which it can be understood as the attractor of an iterated function system. Furthermore, some of its topological properties and the Hausdorff and box-counting dimensions of the quadrilateral labyrinth fractals are studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fractals" title="fractals">fractals</a>, <a href="https://publications.waset.org/abstracts/search?q=labyrinth%20fractals" title=" labyrinth fractals"> labyrinth fractals</a>, <a href="https://publications.waset.org/abstracts/search?q=dendrites" title=" dendrites"> dendrites</a>, <a href="https://publications.waset.org/abstracts/search?q=iterated%20function%20system" title=" iterated function system"> iterated function system</a>, <a href="https://publications.waset.org/abstracts/search?q=Haus-Dorff%20dimension" title=" Haus-Dorff dimension"> Haus-Dorff dimension</a>, <a href="https://publications.waset.org/abstracts/search?q=box-counting%20dimension" title=" box-counting dimension"> box-counting dimension</a>, <a href="https://publications.waset.org/abstracts/search?q=non-self%20similar" title=" non-self similar"> non-self similar</a>, <a href="https://publications.waset.org/abstracts/search?q=non-self%20affine" title=" non-self affine"> non-self affine</a>, <a href="https://publications.waset.org/abstracts/search?q=connected" title=" connected"> connected</a>, <a href="https://publications.waset.org/abstracts/search?q=path%20connected" title=" path connected"> path connected</a> </p> <a href="https://publications.waset.org/abstracts/174613/labyrinth-fractal-on-a-convex-quadrilateral" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174613.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=K.%20Satya%20Prasad&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=K.%20Satya%20Prasad&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=K.%20Satya%20Prasad&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=K.%20Satya%20Prasad&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=K.%20Satya%20Prasad&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=K.%20Satya%20Prasad&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=K.%20Satya%20Prasad&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=K.%20Satya%20Prasad&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=K.%20Satya%20Prasad&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10