CINXE.COM

Search results for: sustainable material

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: sustainable material</title> <meta name="description" content="Search results for: sustainable material"> <meta name="keywords" content="sustainable material"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="sustainable material" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="sustainable material"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 10863</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: sustainable material</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10863</span> Development of Low-Cost Vibro-Acoustic, and Fire-Resistant, Insulation Material from Natural and Sustainable Sources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Nasir">K. Nasir</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Ahmad"> S. Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Khan"> A. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Benkreira"> H. Benkreira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The topic of the research is to develop sustainable fire-resistant materials for vibration and acoustic damping of structure and airborne noises from sustainable recycled materials and biodegradable binders. The paper reports, methods and techniques of enhancing fire resistive, vibration and acoustic properties of building insulation materials made from natural resources like wood and recycled materials like rubber and textile waste. The structures are designed to optimize the number, size and stratification of closed (heat insulating) and open (noise insulating) pores. The samples produced are tested for their heat and noise insulating properties, including vibration damping and their structural properties (airflow resistivity, porosity, tortuosity and elastic modulus). The structural properties are then used in theoretical models to check the acoustic insulation measurements. Initial data indicate that one layer of such material can yield as much as 18 times more damping, increasing the loss factor by 18%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fire%20resistant" title="fire resistant">fire resistant</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20damping" title=" vibration damping"> vibration damping</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustic%20material" title=" acoustic material"> acoustic material</a>, <a href="https://publications.waset.org/abstracts/search?q=vibro-acoustic" title=" vibro-acoustic"> vibro-acoustic</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20insulation" title=" thermal insulation"> thermal insulation</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20material" title=" sustainable material"> sustainable material</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20cost%20materials" title=" low cost materials"> low cost materials</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20materials" title=" recycled materials"> recycled materials</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20material" title=" construction material"> construction material</a> </p> <a href="https://publications.waset.org/abstracts/106069/development-of-low-cost-vibro-acoustic-and-fire-resistant-insulation-material-from-natural-and-sustainable-sources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106069.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10862</span> Affordable and Sustainable Housing Construction: Case Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tony%20Rizk">Tony Rizk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent material advances and cost efficiencies are transforming the housing industry away from traditional lumber and gypsum material to alternate fiberboard material that is workable and resistant to fire, mold, and pest infestation. The use of these materials may add to the initial cost of construction. However, the life cycle (cradle to grave) cost of houses using these construction materials and methods are lower than the life cycle costs using traditional housing construction materials and methods. This paper will present four (4) case studies of sustainable house projects. Each project was designed and constructed using earthen-based, sustainable fiberboard material that is resistant to fire, mold, and infestation and fabricated at a very low material calorific value. These house projects have a living space ranging from 625 sq. ft. for an accessory dwelling unit and up to 3,200 sq. ft. 1-story and 2-story homes. For each case study, we will present the house engineering design and construction method, the initial construction costs, a summary of the life cycle costs, and a comparison to the life cycle cost of traditional housing available in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=residential%20housing" title="residential housing">residential housing</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20housing" title=" sustainable housing"> sustainable housing</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20cost" title=" life cycle cost"> life cycle cost</a>, <a href="https://publications.waset.org/abstracts/search?q=fire%20resistance" title=" fire resistance"> fire resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=mold" title=" mold"> mold</a>, <a href="https://publications.waset.org/abstracts/search?q=infestation%20resistance" title=" infestation resistance"> infestation resistance</a> </p> <a href="https://publications.waset.org/abstracts/151099/affordable-and-sustainable-housing-construction-case-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151099.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10861</span> Review on the Role of Sustainability Techniques in Development of Green Building</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ubaid%20Ur%20Rahman">Ubaid Ur Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Waqar%20Younas"> Waqar Younas</a>, <a href="https://publications.waset.org/abstracts/search?q=Sooraj%20Kumar%20Chhabira"> Sooraj Kumar Chhabira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Environmentally sustainable building construction has experienced significant growth during the past 10 years at international level. This paper shows that the conceptual framework adopts sustainability techniques in construction to develop environment friendly building called green building. Waste occurs during the different construction phases which causes the environmental problems like, deposition of waste on ground surface creates major problems such as bad smell. It also gives birth to different health diseases and produces toxic waste agent which is specifically responsible for making soil infertile. Old recycled building material is used in the construction of new building. Sustainable construction is economical and saves energy sources. Sustainable construction is the major responsibility of designer and project manager. The designer has to fulfil the client demands while keeping the design environment friendly. Project manager has to deliver and execute sustainable construction according to sustainable design. Steel is the most appropriate sustainable construction material. It is more durable and easily recyclable. Steel occupies less area and has more tensile and compressive strength than concrete, making it a better option for sustainable construction as compared to other building materials. New technology like green roof has made the environment pleasant, and has reduced the construction cost. It minimizes economic, social and environmental issues. This paper presents an overview of research related to the material use of green building and by using this research recommendation are made which can be followed in the construction industry. In this paper, we go through detailed analysis on construction material. By making suitable adjustments to project management practices it is shown that a green building improves the cost efficiency of the project, makes it environmental friendly and also meets future generation demands. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainable%20construction" title="sustainable construction">sustainable construction</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20building" title=" green building"> green building</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20waste%20material" title=" recycled waste material"> recycled waste material</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a> </p> <a href="https://publications.waset.org/abstracts/73467/review-on-the-role-of-sustainability-techniques-in-development-of-green-building" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73467.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10860</span> Development and Characterization of a Bio-Sourced Composite Material Based on Phase Change Material and Hemp Shives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hachmi%20Toifane">Hachmi Toifane</a>, <a href="https://publications.waset.org/abstracts/search?q=Pierre%20Tittelein"> Pierre Tittelein</a>, <a href="https://publications.waset.org/abstracts/search?q=Anh%20Dung%20Tran%20Le"> Anh Dung Tran Le</a>, <a href="https://publications.waset.org/abstracts/search?q=Laurent%20Zalewsi"> Laurent Zalewsi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study introduces a composite material composed of bio-sourced phase-change material (PCM) of plant origin combined with hemp shives, developed in response to environmental challenges in the construction sector. The state of the art emphasizes the low thermal storage capacity of bio-based materials and highlights increasing need for developing sustainable materials that offer optimal thermal, mechanical, and hydric performances. The combining of PCM's thermal properties and hygric properties of hemp shives results in a material that combines lightness, strength, and hygrothermal regulation. Various formulations are being assessed and compared to conventional hemp concrete. Thermal characterization includes the measurements of thermal conductivity and numerical simulations to evaluate the thermal storage capacity. The results indicate that the addition of PCM significantly enhances the material's thermal storage capacity, positioning this one as a promising, eco-friendly solution for sustainable construction and for improving the energy efficiency of buildings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hemp%20composite" title="hemp composite">hemp composite</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-sourced%20phase%20change%20material" title=" bio-sourced phase change material"> bio-sourced phase change material</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20storage" title=" thermal storage"> thermal storage</a>, <a href="https://publications.waset.org/abstracts/search?q=hemp%20shives" title=" hemp shives"> hemp shives</a> </p> <a href="https://publications.waset.org/abstracts/178263/development-and-characterization-of-a-bio-sourced-composite-material-based-on-phase-change-material-and-hemp-shives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178263.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">45</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10859</span> Material Research for Sustainable Design: An Exploration Towards the Application of Foam into Textile and Fashion Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jichi%20Wu">Jichi Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Though fast fashion and consumption do boost the economy and push the progress of the industry, they have also caused a mass of waste, which has led to great pressure on the environment. This project mainly focuses on how to develop new sustainable textile and fashion design through recycling, upcycling, and reusing. Substantial field researches were implemented from the very beginning, including collecting reusable material from recycling centers. Hot-pressed composite materials, hand-cutting, and weaving were finally selected as the core material/method of this project after attempts and experiments. Four pieces of menswear, as well as hats and other decorative products made from wasted foams and fabrics, were successfully manufactured. Results show that foam is not only possible for furniture but also for clothing. It helps people to realize that foam is warm, heatproof, anti-slippery, and crease-resistant. So, all advantages could inspire people that even common materials could have new usage and are worthy of upcycling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainable%20design" title="sustainable design">sustainable design</a>, <a href="https://publications.waset.org/abstracts/search?q=foam" title=" foam"> foam</a>, <a href="https://publications.waset.org/abstracts/search?q=upcycling" title=" upcycling"> upcycling</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle" title=" life cycle"> life cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=textile%20design" title=" textile design"> textile design</a> </p> <a href="https://publications.waset.org/abstracts/131107/material-research-for-sustainable-design-an-exploration-towards-the-application-of-foam-into-textile-and-fashion-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131107.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10858</span> Sustainable Housing in Steel: Prospects for Future World of Developing Countries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Poorva%20Kulkarni">Poorva Kulkarni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Developing countries are having significant additions to existing population of urban areas with loads of migrants from rural areas. There is a tremendous need to provide accommodation facility to cater to rapidly growing urban population. This leads to unprecedented growth in urban areas since the temporary shelters are constructed with any available material. Architecture in a broader sense serves to humanity in terms of making life of people happy and comfortable by providing comfortable shelters. It is also the need of the time for an architect to be extremely sensitive towards nature by providing design solution of human shelters with minimum impact on the environment. The sensitive approach towards designing of housing units and provision of comfortable and affordable housing units should go hand in hand for future growth of developing countries. Steel has proved itself a versatile material in terms of strength, uniformity and ease of operation and many such other advantages. Steel can be used as the most promising material for modern construction practices. The current research paper focuses on how effectively steel can be used probably in combination with other construction material to achieve the mentioned objectives for sustainable housing. The research available on sustainable housing in steel is studied along with few case studies of buildings with the efficient use of steel providing a solution with affordability and minimum harm to the environment. The research will conclude the effective solutions exploring possibilities of use of steel for sustainable housing units. The researcher shows how the use of steel in combination with other materials for human shelters can promote sustainable housing for community living which is the need of the time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=community%20living" title="community living">community living</a>, <a href="https://publications.waset.org/abstracts/search?q=steel" title=" steel"> steel</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20housing" title=" sustainable housing"> sustainable housing</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20area" title=" urban area"> urban area</a> </p> <a href="https://publications.waset.org/abstracts/73219/sustainable-housing-in-steel-prospects-for-future-world-of-developing-countries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73219.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10857</span> Sustainable Manufacturing Framework for Small and Medium Enterprises</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajan%20Deglurkar">Rajan Deglurkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research carried out in this piece of work is on 'Framework of Sustainable Manufacturing for Small and Medium Enterprises'. It consists of elucidation of concepts about sustainable manufacturing and sustainable product development with critical review performed on seven techniques of sustainable manufacturing. The work also covers the survey about critical review of awareness in the market with respect to the manufacturers and the consumers. The factors and challenges for sustainable manufacturing implementation are reviewed and simple framework is constructed for the small and medium enterprise for successful implementation of sustainable manufacturing and sustainable product. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title="sustainable development">sustainable development</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20manufacturing" title=" sustainable manufacturing"> sustainable manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=resource%20efficiency" title=" resource efficiency"> resource efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=framework%20for%20sustainable%20manufacturing" title=" framework for sustainable manufacturing"> framework for sustainable manufacturing</a> </p> <a href="https://publications.waset.org/abstracts/11856/sustainable-manufacturing-framework-for-small-and-medium-enterprises" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11856.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">514</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10856</span> Design for Sustainability as a Key Driver for Exploring the Potential of Cork Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Spase%20Janevski">Spase Janevski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We, as designers, should be aware of the consequences of our material selection, at the early stages of the design process. Some of the designer’s decisions can have a very significant impact on design for sustainability. The influence of this concept has led to years of research studies into eco-friendly materials and their potentials for creating new sustainable products. In order to answer the question, 'how cork has become a design trend', this paper will present an overview of the implications of the concept of design for sustainability on the potential uses of cork material. A decade ago, cork as a material had an association with wine stoppers, but with the evolution of sustainable product design as part of the concept of design for sustainability, cork now offers product designers a wide range of new materials and applications. The purpose of this paper is to show how the phenomenon of sustainability has had an impact on the progress of the material which is currently not being an integral component of the design material palette. At the beginning, the nature of the relationship between cork and sustainability will be explained through the following stages: 1) fundamental understanding of the concept of Design for Sustainability and the importance of material selection for sustainable product design, and 2) the importance of cork oak trees for the environment and the environmental impacts of cork products. In order to examine and present the influence of the sustainability on the innovation in cork applications, the paper will provide a historical overview of designing with cork. The overview will consist of four stages: 1) pre-industrial period - the period when ancient nations used cork and amphoras to store their wine; 2) industrial period - emergence and industrialization of well-known wine stoppers; 3) post-industrial period - commercializing cork products in the area of floors and coverings and first developments in industrial research; and 4) the period when large cork realized the importance of sustainability and started to focus more markedly on research and development. The existence of new cork materials, the investigation in new applications and the investment in new innovations have proved that the sustainability approach has had a great influence on the revival of this material. In addition, the paper will present some of the new cork innovative materials and applications and their potentials for designing promising and sustainable solutions with additive manufacturing technologies, such as 3D printing. Lastly, the paper will introduce some questions for further study, such as the environmental impacts of the new hybrid materials and the gap between cork industry and cork research and development teams. The paper concludes by stating that cork is not only a material for wine stoppers anymore, thanks to the awareness of the concept of design for sustainability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cork" title="cork">cork</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20for%20sustainability" title=" design for sustainability"> design for sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=innovation" title=" innovation"> innovation</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20materials" title=" sustainable materials"> sustainable materials</a> </p> <a href="https://publications.waset.org/abstracts/103947/design-for-sustainability-as-a-key-driver-for-exploring-the-potential-of-cork-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103947.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10855</span> Sustainable Material Selection for Buildings: Analytic Network Process Method and Life Cycle Assessment Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samira%20Mahmoudkelayeh">Samira Mahmoudkelayeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Katayoun%20Taghizade"> Katayoun Taghizade</a>, <a href="https://publications.waset.org/abstracts/search?q=Mitra%20Pourvaziri"> Mitra Pourvaziri</a>, <a href="https://publications.waset.org/abstracts/search?q=Elnaz%20Asadian"> Elnaz Asadian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over the recent decades, depletion of resources and environmental concerns made researchers and practitioners present sustainable approaches. Since construction process consumes a great deal of both renewable and non-renewable resources, it is of great significance regarding environmental impacts. Choosing sustainable construction materials is a remarkable strategy presented in many researches and has a significant effect on building’s environmental footprint. This paper represents an assessment framework for selecting best sustainable materials for exterior enclosure in the city of Tehran based on sustainability principles (eco-friendly, cost effective and socio-cultural viable solutions). To perform a comprehensive analysis of environmental impacts, life cycle assessment, a cradle to grave approach is used. A questionnaire survey of construction experts has been conducted to determine the relative importance of criteria. Analytic Network Process (ANP) is applied as a multi-criteria decision-making method to choose sustainable material which consider interdependencies of criteria and sub-criteria. Finally, it prioritizes and aggregates relevant criteria into ultimate assessed score. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainable%20materials" title="sustainable materials">sustainable materials</a>, <a href="https://publications.waset.org/abstracts/search?q=building" title=" building"> building</a>, <a href="https://publications.waset.org/abstracts/search?q=analytic%20network%20process" title=" analytic network process"> analytic network process</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title=" life cycle assessment"> life cycle assessment</a> </p> <a href="https://publications.waset.org/abstracts/61351/sustainable-material-selection-for-buildings-analytic-network-process-method-and-life-cycle-assessment-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61351.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10854</span> Characteristics of Different Volumes of Waste Cellular Concrete Powder-Cement Paste for Sustainable Construction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Abed">Mohammed Abed</a>, <a href="https://publications.waset.org/abstracts/search?q=Rita%20Nemes"> Rita Nemes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cellular concrete powder (CCP) is not used widely as supplementary cementitious material, but in the literature, its efficiency is proved when it used as a replacement of cement in concrete mixtures. In this study, different amounts of raw CCP (CCP as a waste material without any industrial modification) will be used to investigate the characteristics of cement pastes and the effects of CCP on the properties of the cement pastes. It is an attempt to produce green binder paste, which is useful for sustainable construction applications. The fresh and hardened properties of a number of CCP blended cement paste will be tested in different life periods, and the optimized CCP volume will be reported with more significant investigations on durability properties. Different replacing of mass percentage (low and high) of the cement mass will be conducted (0%, 10%, 15%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90%). The consistency, flexural strength, and compressive strength will be the base indicator for the further properties' investigations. The CCP replacement until 50% have been tested until 7 days, and the initial results showed a linear relationship between strength and the percentage of the replacement; that is an optimistic indicator for further replacement percentages of waste CCP. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellular%20concrete%20powder" title="cellular concrete powder">cellular concrete powder</a>, <a href="https://publications.waset.org/abstracts/search?q=supplementary%20cementitious%20material" title=" supplementary cementitious material"> supplementary cementitious material</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20construction" title=" sustainable construction"> sustainable construction</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20concrete" title=" green concrete"> green concrete</a> </p> <a href="https://publications.waset.org/abstracts/85329/characteristics-of-different-volumes-of-waste-cellular-concrete-powder-cement-paste-for-sustainable-construction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85329.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10853</span> The Sustainable Design Approaches of Vernacular Architecture in Anatolia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mine%20Tana%C3%A7%20Zeren">Mine Tanaç Zeren</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The traditional architectural style or the vernacular architecture can be considered modern and permanent in terms of reflecting the community’s lifestyle, reasonable interpretation of the material and the structure, and the building and the environment relationship’s integrity. When vernacular architecture is examined, it is seen that sustainable building design approaches are achieved at the very beginning by adapting to climate conditions. The aim of the sustainable design approach is to maintain to adapt to the characteristics of the topography of the land and to the climatic conditions, minimizing the energy use by the building material and structural elements. Traditional Turkish House, as one of the representatives of the traditional and vernacular architecture in Anatolia, has a sustainable building design approach as well, which can be read both from the space organization, the section, the volume, and the building components and building details. The only effective factor that human beings cannot change and have to adapt their constructions and settlements to is climate. The vernacular settlements of vernacular architecture in Anatolia, “Traditional Turkish Houses,” are generally formed as concentric settlements in desert conditions and climates or separate and dependently formations according to the wind and the sun in moist areas. They obtain the sustainable building design criteria. This paper aims to put forward the sustainable building design approaches of vernacular architecture in Anatolia. There are four main different climatic conditions depending on the regional differentiations in Anatolia. Taking these different climatic and topographic conditions into account, it has been seen that the vernacular housing features shape and differentiate from each other due to the changing conditions. What is differentiating is the space organization, design of the shelter of the building, material, and structural system used. In this paper, the sustainable building design approaches of Anatolian vernacular architecture will be examined within these four different vernacular settlements located in Aegean Region, Marmara Region, Black Sea Region, and Eastern Region. These differentiated features and how these features differentiate in order to maintain the sustainability criteria will be the main discussion part of the paper. The methodology of this paper will briefly define these differentiations and the sustainable design criteria. The sustainable design approaches and these differentiated items will be read through the design criteria of the shelter of the building and the material selection criteria according to climatic conditions. The methods of preventing energy loss will be examined. At the end of this research, it is going to be seen that the houses located in different parts of Anatolia, depending on climate and topographic conditions to be able to adapt to the environment and maintain sustainability, differ from each other in terms of space organization, structural system, and material use, design of the shelter of the building <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainability%20of%20vernacular%20architecture" title="sustainability of vernacular architecture">sustainability of vernacular architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20design%20criteria%20of%20traditional%20Turkish%20houses" title=" sustainable design criteria of traditional Turkish houses"> sustainable design criteria of traditional Turkish houses</a>, <a href="https://publications.waset.org/abstracts/search?q=Turkish%20houses" title=" Turkish houses"> Turkish houses</a>, <a href="https://publications.waset.org/abstracts/search?q=vernacular%20architecture" title=" vernacular architecture"> vernacular architecture</a> </p> <a href="https://publications.waset.org/abstracts/161309/the-sustainable-design-approaches-of-vernacular-architecture-in-anatolia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161309.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10852</span> A Sustainable Design Model by Integrated Evaluation of Closed-loop Design and Supply Chain Using a Mathematical Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuan-Jye%20Tseng">Yuan-Jye Tseng</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Shiuan%20Chen"> Yi-Shiuan Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presented a sustainable design model for integrated evaluation of the design and supply chain of a product for the sustainable objectives. To design a product, there can be alternative ways to assign the detailed specifications to fulfill the same design objectives. In the design alternative cases, different material and manufacturing processes with various supply chain activities may be required for the production. Therefore, it is required to evaluate the different design cases based on the sustainable objectives. In this research, a closed-loop design model is developed by integrating the forward design model and reverse design model. From the supply chain point of view, the decisions in the forward design model are connected with the forward supply chain. The decisions in the reverse design model are connected with the reverse supply chain considering the sustainable objectives. The purpose of this research is to develop a mathematical model for analyzing the design cases by integrated evaluating the criteria in the closed-loop design and the closed-loop supply chain. The decision variables are built to represent the design cases of the forward design and reverse design. The cost parameters in a forward design include the costs of material and manufacturing processes. The cost parameters in a reverse design include the costs of recycling, disassembly, reusing, remanufacturing, and disposing. The mathematical model is formulated to minimize the total cost under the design constraints. In practical applications, the decisions of the mathematical model can be used for selecting a design case for the purpose of sustainable design of a product. An example product is demonstrated in the paper. The test result shows that the sustainable design model is useful for integrated evaluation of the design and the supply chain to achieve the sustainable objectives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=closed-loop%20design" title="closed-loop design">closed-loop design</a>, <a href="https://publications.waset.org/abstracts/search?q=closed-loop%20supply%20chain" title=" closed-loop supply chain"> closed-loop supply chain</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20evaluation" title=" design evaluation"> design evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20management" title=" supply chain management"> supply chain management</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20design%20model" title=" sustainable design model"> sustainable design model</a> </p> <a href="https://publications.waset.org/abstracts/51473/a-sustainable-design-model-by-integrated-evaluation-of-closed-loop-design-and-supply-chain-using-a-mathematical-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51473.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10851</span> Partial Replacement of Lateritic Soil with Crushed Rock Sand (Stone Dust) in Compressed Earth Brick Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Jungudo">A. M. Jungudo</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Lasan"> M. A. Lasan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Affordable housing has long been one of the basic necessities of life to man. The ever rising prices of building materials are one of the major causes of housing shortage in many developing countries. Breaching the gap of housing needs in developing countries like Nigeria is an awaiting task longing for attention. This is due to lack of research in the development of local materials that will suit the troubled economies of these countries. The use of earth material to meet the housing needs is a sustainable option and its material is freely available universally. However, people are doubtful of using the earth material due to its modest outlook and uncertain durability. This research aims at enhancing the durability of Compressed Earth Bricks (CEBs) using stone dust as a stabilizer. The result indicates that partial replacement of lateritic soil with stone dust at 30% improves its compressive strength along with abrasive resistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earth%20construction" title="earth construction">earth construction</a>, <a href="https://publications.waset.org/abstracts/search?q=durability" title=" durability"> durability</a>, <a href="https://publications.waset.org/abstracts/search?q=stone%20dust" title=" stone dust"> stone dust</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable" title=" sustainable"> sustainable</a> </p> <a href="https://publications.waset.org/abstracts/113416/partial-replacement-of-lateritic-soil-with-crushed-rock-sand-stone-dust-in-compressed-earth-brick-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113416.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10850</span> Sustainable Enterprise Theory: A Starting Point for Reporting Sustainable Business Values </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arne%20Fagerstrom">Arne Fagerstrom</a>, <a href="https://publications.waset.org/abstracts/search?q=Gary%20Cunningham"> Gary Cunningham</a>, <a href="https://publications.waset.org/abstracts/search?q=Fredrik%20Hartwig"> Fredrik Hartwig</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a theory of sustainable enterprises, sustainable enterprise theory (SET), is developed. The sustainable enterprise theory can only be a valid theory if knowledge about life and nature is complete. Knowledge limitations should not stop enterprises from doing business with a goal of better long-term life on earth. Life demands stewardship of the resources used during one’s lifetime. This paper develops a model influenced by (the classical) enterprise theory and resource theory that includes more than money in the business activities of an enterprise. The sustainable enterprise theory is then used in an analysis of accountability and in discussions about sustainable businesses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainable%20business" title="sustainable business">sustainable business</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability%20reporting" title=" sustainability reporting"> sustainability reporting</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20values" title=" sustainable values"> sustainable values</a>, <a href="https://publications.waset.org/abstracts/search?q=theory%20of%20the%20firm" title=" theory of the firm"> theory of the firm</a> </p> <a href="https://publications.waset.org/abstracts/81453/sustainable-enterprise-theory-a-starting-point-for-reporting-sustainable-business-values" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81453.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">580</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10849</span> The Sustainability of Eco–City Model: Green and Energy Efficiency Technology-Related Framing and Selectivity Issues in Eco–City Projects in Stockholm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Simon%20Elias%20Bibri">Simon Elias Bibri</a>, <a href="https://publications.waset.org/abstracts/search?q=Vera%20Minavere%20Bardici"> Vera Minavere Bardici</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article, we investigate framing, discursive and material selectivity as important issues that need to be addressed in the planning of eco–city as a model of sustainable urban form. Focusing on the Stockholm region in Sweden, we discuss issues of the contribution of eco–city model to sustainability and examine key themes associated with the construction of the discourse on eco–city projects, namely the integration of environmental, economic, and social sustainability as well as design and technology as solutions in urban projects documents pertaining specifically to Hammarby Sjöstad and Stockholm Royal Seaport. The article is divided into four sections. First, we elucidate the concept and problem of framing and discursive and material selectivity. Second, we briefly discuss the discourse of sustainability, sustainable urban forms, and eco–city, pointing out some key issues that need to be addressed in sustainable urban planning. In the third and main section of the article, we investigate plans and projects for sustainable urban development, focusing on framing and discursive and material selectivity issues in the construction of the discourse on eco–city projects in Stockholm and discussing the findings in terms of the integration of sustainability dimensions, the economic benefits of and the negative environmental effects of energy efficiency and green technology, the shaping influence of cultural frames, the links of eco–city to macro–processes of regulation, the technological orientation of eco–city projects and the associated selectivity aspects. The article concludes with a call for further research for the possibilities for a more environmentally sound and holistic approach to sustainable urban forms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=framing" title="framing">framing</a>, <a href="https://publications.waset.org/abstracts/search?q=selectivity" title=" selectivity"> selectivity</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=eco%E2%80%93city" title=" eco–city"> eco–city</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20urban%20form" title=" sustainable urban form"> sustainable urban form</a>, <a href="https://publications.waset.org/abstracts/search?q=design" title=" design"> design</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20technology" title=" green technology"> green technology</a>, <a href="https://publications.waset.org/abstracts/search?q=Hammarby%20Sj%C3%B6stad" title=" Hammarby Sjöstad"> Hammarby Sjöstad</a>, <a href="https://publications.waset.org/abstracts/search?q=Stockholm%20Royal%20Seaport" title=" Stockholm Royal Seaport"> Stockholm Royal Seaport</a> </p> <a href="https://publications.waset.org/abstracts/30637/the-sustainability-of-eco-city-model-green-and-energy-efficiency-technology-related-framing-and-selectivity-issues-in-eco-city-projects-in-stockholm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30637.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10848</span> Sustainable Rehabilation of Ancient Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ram%20Narayan%20Khare">Ram Narayan Khare</a>, <a href="https://publications.waset.org/abstracts/search?q=Aradhna%20Shrivastava"> Aradhna Shrivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=Adhyatma%20Khare"> Adhyatma Khare</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper focuses on the damage that has been occurred in the Ancient structures due to various factors such as rainfall, climate, insects, lifespan and also most important lack of technologies in the era of its construction. The structure is of lime surkhi masonry and is made a century ago. It has crossed its durability but is of historical importance for the area, that is the reason why it needs utmost importance for its Rehabilitation. The paper deals with the damage that has been occurred in the structure and how to repair and renovate the same keeping in mind that the material deviation could not take place because it shows how in ancient era structures are made of. The building has used lime surkhi mortar along with wood apple as fibrous material for providing adhesiveness in masonry binding. The paper helps in sustainable retrofitting of the structure without changing the integrity of the structure. This helps in maintaining the originality of structure in present era and also help in providing information to the upcoming generation how ancient civil construction has been carried out that withstand even more than a century. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lime%20Surkhi%20masonry" title="Lime Surkhi masonry">Lime Surkhi masonry</a>, <a href="https://publications.waset.org/abstracts/search?q=rehabilitation" title=" rehabilitation"> rehabilitation</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title=" sustainable development"> sustainable development</a>, <a href="https://publications.waset.org/abstracts/search?q=historical%20building" title=" historical building"> historical building</a> </p> <a href="https://publications.waset.org/abstracts/188980/sustainable-rehabilation-of-ancient-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188980.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">36</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10847</span> Supplier Selection Using Sustainable Criteria in Sustainable Supply Chain Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Richa%20Grover">Richa Grover</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahul%20Grover"> Rahul Grover</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Balaji%20Rao"> V. Balaji Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=Kavish%20Kejriwal"> Kavish Kejriwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Selection of suppliers is a crucial problem in the supply chain management. On top of that, sustainable supplier selection is the biggest challenge for the organizations. Environment protection and social problems have been of concern to society in recent years, and the traditional supplier selection does not consider about this factor; therefore, this research work focuses on introducing sustainable criteria into the structure of supplier selection criteria. Sustainable Supply Chain Management (SSCM) is the management and administration of material, information, and money flows, as well as coordination among business along the supply chain. All three dimensions - economic, environmental, and social - of sustainable development needs to be taken care of. Purpose of this research is to maximize supply chain profitability, maximize social wellbeing of supply chain and minimize environmental impacts. Problem statement is selection of suppliers in a sustainable supply chain network by ranking the suppliers against sustainable criteria identified. The aim of this research is twofold: To find out what are the sustainable parameters that can be applied to the supply chain, and to determine how these parameters can effectively be used in supplier selection. Multicriteria decision making tools will be used to rank both criteria and suppliers. AHP Analysis will be used to find out ratings for the criteria identified. It is a technique used for efficient decision making. TOPSIS will be used to find out rating for suppliers and then ranking them. TOPSIS is a MCDM problem solving method which is based on the principle that the chosen option should have the maximum distance from the negative ideal solution (NIS) and the minimum distance from the ideal solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainable%20supply%20chain%20management" title="sustainable supply chain management">sustainable supply chain management</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20criteria" title=" sustainable criteria"> sustainable criteria</a>, <a href="https://publications.waset.org/abstracts/search?q=MCDM%20tools" title=" MCDM tools"> MCDM tools</a>, <a href="https://publications.waset.org/abstracts/search?q=AHP%20analysis" title=" AHP analysis"> AHP analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=TOPSIS%20method" title=" TOPSIS method"> TOPSIS method</a> </p> <a href="https://publications.waset.org/abstracts/49574/supplier-selection-using-sustainable-criteria-in-sustainable-supply-chain-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49574.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10846</span> Sustainable Living Where the Immaterial Matters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maria%20Hadjisoteriou">Maria Hadjisoteriou</a>, <a href="https://publications.waset.org/abstracts/search?q=Yiorgos%20Hadjichristou"> Yiorgos Hadjichristou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to explore and provoke a debate, through the work of the design studio, “living where the immaterial matters” of the architecture department of the University of Nicosia, on the role that the “immaterial matter” can play in enhancing innovative sustainable architecture and viewing the cities as sustainable organisms that always grow and alter. The blurring, juxtaposing binary of immaterial and matter, as the theoretical backbone of the Unit is counterbalanced by the practicalities of the contested sites of the last divided capital Nicosia with its ambiguous green line and the ghost city of Famagusta in the island of Cyprus. Jonathan Hill argues that the ‘immaterial is as important to architecture as the material concluding that ‘Immaterial–Material’ weaves the two together, so that they are in conjunction not opposition’. This understanding of the relationship of the immaterial vs material set the premises and the departing point of our argument, and talks about new recipes for creating hybrid public space that can lead to the unpredictability of a complex and interactive, sustainable city. We hierarchized the human experience as a priority. We distinguish the notion of space and place referring to Heidegger’s ‘building dwelling thinking’: ‘a distinction between space and place, where spaces gain authority not from ‘space’ appreciated mathematically but ‘place’ appreciated through human experience’. Following the above, architecture and the city are seen as one organism. The notions of boundaries, porous borders, fluidity, mobility, and spaces of flows are the lenses of the investigation of the unit’s methodology, leading to the notion of a new hybrid urban environment, where the main constituent elements are in a flux relationship. The material and the immaterial flows of the town are seen interrelated and interwoven with the material buildings and their immaterial contents, yielding to new sustainable human built environments. The above premises consequently led to choices of controversial sites. Indisputably a provoking site was the ghost town of Famagusta where the time froze back in 1974. Inspired by the fact that the nature took over the a literally dormant, decaying city, a sustainable rebirthing was seen as an opportunity where both nature and built environment, material and immaterial are interwoven in a new emergent urban environment. Similarly, we saw the dividing ‘green line’ of Nicosia completely failing to prevent the trespassing of images, sounds and whispers, smells and symbols that define the two prevailing cultures and becoming a porous creative entity which tends to start reuniting instead of separating , generating sustainable cultures and built environments. The authors would like to contribute to the debate by introducing a question about a new recipe of cooking the built environment. Can we talk about a new ‘urban recipe’: ‘cooking architecture and city’ to deliver an ever changing urban sustainable organism, whose identity will mainly depend on the interrelationship of the immaterial and material constituents? <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blurring%20zones" title="blurring zones">blurring zones</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20borders" title=" porous borders"> porous borders</a>, <a href="https://publications.waset.org/abstracts/search?q=spaces%20of%20flow" title=" spaces of flow"> spaces of flow</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20recipe" title=" urban recipe"> urban recipe</a> </p> <a href="https://publications.waset.org/abstracts/30651/sustainable-living-where-the-immaterial-matters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30651.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10845</span> A Study of Shigeru Ban&#039;s Environmentally-Sensitive Design Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Duygu%20Merve%20Bulut">Duygu Merve Bulut</a>, <a href="https://publications.waset.org/abstracts/search?q=Fehime%20Yesim%20Gurani"> Fehime Yesim Gurani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Japanese architect Shigeru Ban has succeeded in bringing a different understanding to the modern architectural design approach with both the material selection and the techniques he used while combining the material with the design. Ban, who reflects his respect to people and nature with his designs, has encouraged that design should be done with economic materials, easily accessible and understandable for everyone. Because of this, Ban has attracted attention and appreciated in the architectural world with his environmentally-sensitive design ideology and humanitarian projects. In order to understand Ban’s environmentally-sensitive design approach, with this article, Ban’s projects which have used natural materials; the projects of Ban’s Japenese Pavilion in Germany, Papertainer Museum in South Korea, Centre Pompidou-Metz in France and Cardboard Cathedral in New Zealand were examined and analyzed. In the following parts, 'paper tube' technology that creates awareness in architectural area, which developed and applied by Ban; has been examined in terms of building material and structure of sustainable space design. As a result of this review, Ban’s approach is evaluated in terms of its contribution to the understanding of sustainable design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ecological%20design" title="ecological design">ecological design</a>, <a href="https://publications.waset.org/abstracts/search?q=environmentally-sensitive%20design" title=" environmentally-sensitive design"> environmentally-sensitive design</a>, <a href="https://publications.waset.org/abstracts/search?q=paper%20tube" title=" paper tube"> paper tube</a>, <a href="https://publications.waset.org/abstracts/search?q=Shigeru%20Ban" title=" Shigeru Ban"> Shigeru Ban</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability "> sustainability </a> </p> <a href="https://publications.waset.org/abstracts/81577/a-study-of-shigeru-bans-environmentally-sensitive-design-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81577.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">499</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10844</span> Earthquake Resistant Sustainable Steel Green Building</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arup%20Saha%20Chaudhuri">Arup Saha Chaudhuri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Structural steel is a very ductile material with high strength carrying capacity, thus it is very useful to make earthquake resistant buildings. It is a homogeneous material also. The member section and the structural system can be made very efficient for economical design. As the steel is recyclable and reused, it is a green material. The embodied energy for the efficiently designed steel structure is less than the RC structure. For sustainable green building steel is the best material nowadays. Moreover, pre-engineered and pre-fabricated faster construction methodologies help the development work to complete within the stipulated time. In this paper, the usefulness of Eccentric Bracing Frame (EBF) in steel structure over Moment Resisting Frame (MRF) and Concentric Bracing Frame (CBF) is shown. Stability of the steel structures against horizontal forces especially in seismic condition is efficiently possible by Eccentric bracing systems with economic connection details. The EBF is pin–ended, but the beam-column joints are designed for pin ended or for full connectivity. The EBF has several desirable features for seismic resistance. In comparison with CBF system, EBF system can be designed for appropriate stiffness and drift control. The link beam is supposed to yield in shear or flexure before initiation of yielding or buckling of the bracing member in tension or compression. The behavior of a 2-D steel frame is observed under seismic loading condition in the present paper. Ductility and brittleness of the frames are compared with respect to time period of vibration and dynamic base shear. It is observed that the EBF system is better than MRF system comparing the time period of vibration and base shear participation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=steel%20building" title="steel building">steel building</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20and%20sustainable" title=" green and sustainable"> green and sustainable</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20resistant" title=" earthquake resistant"> earthquake resistant</a>, <a href="https://publications.waset.org/abstracts/search?q=EBF%20system" title=" EBF system"> EBF system</a> </p> <a href="https://publications.waset.org/abstracts/78519/earthquake-resistant-sustainable-steel-green-building" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78519.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10843</span> Teaching &#039;Sustainable Architecture&#039; to Pre-School Children by School Building for a Clean Future</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cimen%20Ozburak">Cimen Ozburak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pollution and the consumption of natural resources are significant global concerns. These problems have to be resolved in order to create a cleaner environment for the world. It is believed that sustainable building designs may reduce environmental problems throughout the world. It is known that if children receive environmental education in early childhood, they will be more likely to construct sustainable living systems and environment when they are older. School buildings can be used as educational material for teaching the natural and artificial environment in environmental education. In this study, the effect of school buildings on environmental education is examined by using the literature review method along with various examples. The selected examples in the study were analyzed according to 4 main criteria of LEED green building certification systems. These are the use of sustainable utilization of land, efficient utilization of water, efficient utilization of energy and efficient utilization of materials. According to the literature review, children who are educated in buildings designed according to these criteria, they will be environmentally sensitive individuals when they are older. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clean%20future" title="clean future">clean future</a>, <a href="https://publications.waset.org/abstracts/search?q=educational%20sustainable%20pre-schools" title=" educational sustainable pre-schools"> educational sustainable pre-schools</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20education" title=" environmental education"> environmental education</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20systems" title=" sustainable systems"> sustainable systems</a> </p> <a href="https://publications.waset.org/abstracts/69944/teaching-sustainable-architecture-to-pre-school-children-by-school-building-for-a-clean-future" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69944.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">253</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10842</span> The Effect of Cassava Starch on Compressive Strength and Tear Strength of Alginate Impression Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mirna%20Febriani">Mirna Febriani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Statement of problem. Alginate impression material is an imported material and a dentist always used this material to make impression of teeth and oral cavity tissues. Purpose. The aim of this study was to compare about compressive strength and tear strength of alginate impression material and alginate impression material combined with cassava. Material and methods.Property measured included compressive strength and tear strength. Results.The compressive strength and tear strength of the impression materials tested of a comparable ANSI/ADA standard no.18.The compressive strength and tear strength alginate impression material combined with cassava have lower than the compressive strength and tear strength alginate impression material. The alginate impression material combined with cassava has more water and silica content more decrease than alginate impression material. Conclusions.We concluded that compressive strength and tear strength of alginate impression material combined with cassava has lower than alginate impression material without cassava starch. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title="compressive strength">compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=tear%20strength" title=" tear strength"> tear strength</a>, <a href="https://publications.waset.org/abstracts/search?q=Cassava%20starch" title=" Cassava starch"> Cassava starch</a>, <a href="https://publications.waset.org/abstracts/search?q=alginate" title=" alginate"> alginate</a> </p> <a href="https://publications.waset.org/abstracts/64938/the-effect-of-cassava-starch-on-compressive-strength-and-tear-strength-of-alginate-impression-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10841</span> Sustainable Development as a Part of Development and Foreign Trade in Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sadife%20G%C3%BCng%C3%B6r">Sadife Güngör</a>, <a href="https://publications.waset.org/abstracts/search?q=Sevilay%20Konya"> Sevilay Konya </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sustainable development is an economic development scope which covers the economic growth included environmental factors. With the help of economic development, the needs of the future generations are going to be met the needs. As it is aimed the environmental conscious, sustainable development focuses on decreasing the damage of natural sources. From this point of view, while sustainable development is environmentally conscious, it also improving the life standards of individuals. The relationship between development and foreign trade on sustainable development is theoretically searched in this study. In the second part, sustainable development at world and EU is searched and in the last part, the sustainability of trade and development in Turkey is stated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=development" title="development">development</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title=" sustainable development"> sustainable development</a>, <a href="https://publications.waset.org/abstracts/search?q=foreign%20trade" title=" foreign trade"> foreign trade</a>, <a href="https://publications.waset.org/abstracts/search?q=Turkey" title=" Turkey"> Turkey</a> </p> <a href="https://publications.waset.org/abstracts/18256/sustainable-development-as-a-part-of-development-and-foreign-trade-in-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18256.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10840</span> The Efects of Viable Marketing on Sustainable Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gabriela%20Tutuanu">Gabriela Tutuanu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The economic, social and environmental undesirable impact of the existing development pattern pushes to the adoption and use of a new development paradigm that of sustainable development. This paper intends to substantiate how the marketing can help the sustainable development. It begins with the subjects of sustainable development and sustainable marketing as they are discussed in literature. The sustainable development is a three dimensional concept which embeds the economic dimension, the social dimension and the environmental dimension that ask to have in view the simultaneous pursuit of economic prosperity, social equity and environmental quality. A major challenge to achieve these goals at business level and to integrate all three dimensions of sustainability is the sustainable marketing. The sustainable marketing is a relationship marketing that aims at building lasting relationships with the social and natural environment on a long-term thinking and futurity and this philosophy allows helping all three dimensions of sustainability. As marketing solutions that could contribute to the sustainable development. We advance the stimulation of sustainable demand, the constant innovation and improvement of sustainable products, the design and use of customized communication, a multichannel distribution network and the sale of sustainable products and services at fair prices. Their implementation will increase the economic, social and environmental sustainability at a large extent in the future if they are supported by political, governmental and legal authorities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title="sustainable development">sustainable development</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20marketing" title=" sustainable marketing"> sustainable marketing</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20demand" title=" sustainable demand"> sustainable demand</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20product" title=" sustainable product"> sustainable product</a>, <a href="https://publications.waset.org/abstracts/search?q=credible%20communication" title=" credible communication"> credible communication</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-channel%20distribution%20network" title=" multi-channel distribution network"> multi-channel distribution network</a>, <a href="https://publications.waset.org/abstracts/search?q=fair%20price" title=" fair price "> fair price </a> </p> <a href="https://publications.waset.org/abstracts/22338/the-efects-of-viable-marketing-on-sustainable-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22338.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10839</span> An Assessment of Existing Material Management Process in Building Construction Projects in Nepal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Uttam%20Neupane">Uttam Neupane</a>, <a href="https://publications.waset.org/abstracts/search?q=Narendra%20Budha"> Narendra Budha</a>, <a href="https://publications.waset.org/abstracts/search?q=Subash%20Kumar%20Bhattarai"> Subash Kumar Bhattarai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Material management is an essential part in construction project management. There are a number of material management problems in the Nepalese construction industry, which contribute to an inefficient material management system. Ineffective material management can cause waste of time and money thus increasing the problem of time and cost overrun. An assessment of material management system with gap and solution was carried out on 20 construction projects implemented by the Federal Level Project Implementation Unit (FPIU); Kaski district of Nepal. To improve the material management process, the respondents have provided possible solutions to overcome the gaps seen in the current material management process. The possible solutions are preparation of material schedule in line with the construction schedule for material requirement planning, verifications of material and locating of source, purchasing of the required material in advance before commencement of work, classifying the materials, and managing the inventory based on their usage value and eliminating and reduction in wastages during the overall material management process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=material%20management" title="material management">material management</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20site" title=" construction site"> construction site</a>, <a href="https://publications.waset.org/abstracts/search?q=inventory" title=" inventory"> inventory</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20project" title=" construction project"> construction project</a> </p> <a href="https://publications.waset.org/abstracts/181880/an-assessment-of-existing-material-management-process-in-building-construction-projects-in-nepal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181880.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10838</span> Approaches to Eco-Friendly Architecture: Modules Assembled Specially to Conserve</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arshleen%20Kaur">Arshleen Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarang%20Barbarwar"> Sarang Barbarwar</a>, <a href="https://publications.waset.org/abstracts/search?q=Madhusudan%20Hamirwasia"> Madhusudan Hamirwasia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sustainable architecture is going to be the soul of construction in the near future, with building material as a vital link connecting sustainability to construction. The priority in Architecture has shifted from having a lesser negative footprint to having a positive footprint on Earth. The design has to be eco-centric as well as anthro-centric so as to attain its true purpose. Brick holds the same importance like a cell holds in one’s body. The study focuses on this basic building block with an experimental material and technique known as Module Assembled Specially to Conserve (MASC). The study explores the usage and construction of these modules in the construction of buildings. It also shows the impact assessment of the modules on the environment and its significance in reducing the carbon footprint of the construction industry. The aspects like cost-effectiveness, ease of working and reusability of MASC have been studied as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anthro-centric" title="anthro-centric">anthro-centric</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20footprint" title=" carbon footprint"> carbon footprint</a>, <a href="https://publications.waset.org/abstracts/search?q=eco-centric" title=" eco-centric"> eco-centric</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable" title=" sustainable"> sustainable</a> </p> <a href="https://publications.waset.org/abstracts/126333/approaches-to-eco-friendly-architecture-modules-assembled-specially-to-conserve" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126333.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10837</span> Optimizing Sustainable Graphene Production: Extraction of Graphite from Spent Primary and Secondary Batteries for Advanced Material Synthesis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pratima%20Kumari">Pratima Kumari</a>, <a href="https://publications.waset.org/abstracts/search?q=Sukha%20Ranjan%20Samadder"> Sukha Ranjan Samadder</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research aims to contribute to the sustainable production of graphene materials by exploring the extraction of graphite from spent primary and secondary batteries. The increasing demand for graphene materials, a versatile and high-performance material, necessitates environmentally friendly methods for its synthesis. The process involves a well-planned methodology, beginning with the gathering and categorization of batteries, followed by the disassembly and careful removal of graphite from anode structures. The use of environmentally friendly solvents and mechanical techniques ensures an efficient and eco-friendly extraction of graphite. Advanced approaches such as the modified Hummers' method and chemical reduction process are utilized for the synthesis of graphene materials, with a focus on optimizing parameters. Various analytical techniques such as Fourier-transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, and Raman spectroscopy were employed to validate the quality and structure of the produced graphene materials. The major findings of this study reveal the successful implementation of the methodology, leading to the production of high-quality graphene materials suitable for advanced material applications. Thorough characterization using various advanced techniques validates the structural integrity and purity of the graphene. The economic viability of the process is demonstrated through a comprehensive economic analysis, highlighting the potential for large-scale production. This research contributes to the field of sustainable production of graphene materials by offering a systematic methodology that efficiently transforms spent batteries into valuable graphene resources. Furthermore, the findings not only showcase the potential for upcycling electronic waste but also address the pressing need for environmentally conscious processes in advanced material synthesis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spent%20primary%20batteries" title="spent primary batteries">spent primary batteries</a>, <a href="https://publications.waset.org/abstracts/search?q=spent%20secondary%20batteries" title=" spent secondary batteries"> spent secondary batteries</a>, <a href="https://publications.waset.org/abstracts/search?q=graphite%20extraction" title=" graphite extraction"> graphite extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=advanced%20material%20synthesis" title=" advanced material synthesis"> advanced material synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=circular%20economy%20approach" title=" circular economy approach"> circular economy approach</a> </p> <a href="https://publications.waset.org/abstracts/182210/optimizing-sustainable-graphene-production-extraction-of-graphite-from-spent-primary-and-secondary-batteries-for-advanced-material-synthesis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182210.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">54</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10836</span> Studyt on New Strategies of Sustainable Neighbourhood Design Based on the 2014 Waf</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhou%20Xiaowen%20China">Zhou Xiaowen China</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Sanming%20China"> Zhang Sanming China</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Neighbourhood space as a very important part of city spaces, is an organic combination of material environment and spiritual achievement in people’ daily life, and has a real impact upon the sustainable development of the whole city. Looking back on the past 2014 World Architecture Festival (WAF), 4 out of 35winning buildings were neighbourhood designs, and all of them mentioned about space-sharing and sustainable development. In this paper, three award-winning cases were studied, including the world building of the year—the chapel (Vietnam, A21 studio), The Carve (Norway, A-Lab) and House for Trees (Vietnam, Vo Trong Nghia Architects). Urban context, planning, space construction and sustainable technology were discussed. Based on those, it was discovered that passive energy-saving technologies have been paid more and more attention, sharing space has been designed ingeniously, and the architectural forms of them reflect social inclusion and equity. This paper is aimed at summarizing the excellent works on the Festival and providing reference for the future design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neighbourhood%20design" title="neighbourhood design">neighbourhood design</a>, <a href="https://publications.waset.org/abstracts/search?q=2014%20World%20Architecture%20Festival%20%28WAF%29" title=" 2014 World Architecture Festival (WAF)"> 2014 World Architecture Festival (WAF)</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title=" sustainable development"> sustainable development</a>, <a href="https://publications.waset.org/abstracts/search?q=space-sharing" title=" space-sharing"> space-sharing</a> </p> <a href="https://publications.waset.org/abstracts/30389/studyt-on-new-strategies-of-sustainable-neighbourhood-design-based-on-the-2014-waf" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30389.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10835</span> Sustainable Tourism Development: Assessment of Egyptian Sustainable Resorts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Riham%20A.%20Ragheb">Riham A. Ragheb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tourism can do a great deal of good in destinations, whether it be by bringing economic benefits to local communities, helping with conservation efforts or in placing a value on aspects of cultural heritage. As responsive travelers, we must all try to do more of the good and less of the negative. This is simply description of the sustainable tourism. This paper aims to set some criteria of successful sustainable tourism development and then through these criteria analyzing the development of some resorts in Egypt known as sustainable resorts. Hence, a comprehensive improvement of the touristic areas is certainly needed to ensure a successful sustainable tourism development radiated the sense of uniformity and coherence. Egypt can benefit from these criteria to develop its resorts in order to preserve and revitalize its unique natural character and achieve mixed uses and tourism development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Egypt" title="Egypt">Egypt</a>, <a href="https://publications.waset.org/abstracts/search?q=resorts" title=" resorts"> resorts</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20tourism" title=" sustainable tourism"> sustainable tourism</a>, <a href="https://publications.waset.org/abstracts/search?q=tourism%20development" title=" tourism development"> tourism development</a> </p> <a href="https://publications.waset.org/abstracts/40916/sustainable-tourism-development-assessment-of-egyptian-sustainable-resorts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40916.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10834</span> Application of Mobile Aluminium Light Structure Housing System in Sustainable Building Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wang%20Haining">Wang Haining</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Hong"> Zhang Hong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In China, rapid urbanization needs more and more buildings constructed for the growing population in cities. With the help of the methodology which contains investigation, contrastive analysis, design based on component with BIM and experiment before real construction, this research based on mobile light structure system, trying to the sustainable problems partly in present China by systematic study. The system cannot replace the permanent heavy structure completely. So the goal is the improvement of the whole building system by the addition of light structure. This house system uses modularized envelopes and standardized connections, which are pre-fabricated and assembled in factories and transported like containers. Aluminum is used as the structural material in this system, and inorganic thermal insulation material used in the envelope, which have high fireproof properties. The relationship between manufactory and construction of the system is progressive hierarchy. They exist as First Industrial, Second Industrial, Third Industrial and Site Assembly Stage. It could maximize the land usage capacity by fully exploit the area where normal permanent architecture can't take advantage of. Not only the building system itself especially the thermal isolated materials used and active solar photovoltaic system equipped can save energy, but also the way of product development is sustainable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum%20house" title="aluminum house">aluminum house</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20Structure" title=" light Structure"> light Structure</a>, <a href="https://publications.waset.org/abstracts/search?q=rapid%20assembly" title=" rapid assembly"> rapid assembly</a>, <a href="https://publications.waset.org/abstracts/search?q=repeat%20construction" title=" repeat construction"> repeat construction</a> </p> <a href="https://publications.waset.org/abstracts/34709/application-of-mobile-aluminium-light-structure-housing-system-in-sustainable-building-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">492</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sustainable%20material&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sustainable%20material&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sustainable%20material&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sustainable%20material&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sustainable%20material&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sustainable%20material&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sustainable%20material&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sustainable%20material&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sustainable%20material&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sustainable%20material&amp;page=362">362</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sustainable%20material&amp;page=363">363</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sustainable%20material&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10