CINXE.COM

Search results for: flow instability

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: flow instability</title> <meta name="description" content="Search results for: flow instability"> <meta name="keywords" content="flow instability"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="flow instability" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="flow instability"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 5248</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: flow instability</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5248</span> Experimental Investigations of a Modified Taylor-Couette Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Esmael">Ahmed Esmael</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20El%20Shrif"> Ali El Shrif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study the instability problem of a modified Taylor-Couette flow between two vertical coaxial cylinders of radius R1, R2 is considered. The modification is based on the wavy shape of the inner cylinder surface, where inner cylinders with different surface amplitude and wavelength are used. The study aims to discover the effect of the inner surface geometry on the instability phenomenon that undergoes Taylor-Couette flow. The study reveals that the transition processes depends strongly on the amplitude and wavelength of the inner cylinder surface and resulting in flow instabilities that are strongly different from that encountered in the case of the classical Taylor-Couette flow. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrodynamic%20instability" title="hydrodynamic instability">hydrodynamic instability</a>, <a href="https://publications.waset.org/abstracts/search?q=Modified%20Taylor-Couette%20Flow" title=" Modified Taylor-Couette Flow"> Modified Taylor-Couette Flow</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence" title=" turbulence"> turbulence</a>, <a href="https://publications.waset.org/abstracts/search?q=Taylor%20vortices" title=" Taylor vortices"> Taylor vortices</a> </p> <a href="https://publications.waset.org/abstracts/24825/experimental-investigations-of-a-modified-taylor-couette-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24825.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5247</span> Instability by Weak Precession of the Flow in a Rapidly Rotating Sphere</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Kida">S. Kida</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We consider the flow of an incompressible viscous fluid in a precessing sphere whose spin and precession axes are orthogonal to each other. The flow is characterized by two non-dimensional parameters, the Reynolds number Re and the Poincare number Po. For which values of (Re, Po) will the flow approach a steady state from an arbitrary initial condition? To answer it we are searching the instability boundary of the steady states in the whole (Re, Po) plane. Here, we focus the rapidly rotating and weakly precessing limit, i.e., Re >> 1 and Po << 1. The steady flow was obtained by the asymptotic expansion for small ε=Po Re¹/² << 1. The flow exhibits nearly a solid-body rotation in the whole sphere except for a thin boundary layer which develops over the sphere surface. The thickness of this boundary layer is of O(δ), where δ=Re⁻¹/², except where two circular critical bands of thickness of O(δ⁴/⁵) and of width of O(δ²/⁵) which are located away from the spin axis by about 60°. We perform the linear stability analysis of the steady flow. We assume that the disturbances are localized in the critical bands and make an expansion analysis in terms of ε to derive the eigenvalue problem for the growth rate of the disturbance, which is solved numerically. As the solution, we obtain an asymptote of the stability boundary as Po=28.36Re⁻⁰.⁸. This agrees excellently with the corresponding laboratory experiments and numerical simulations. One of the most popular instability mechanisms so far is the parametric instability, which turns out, however, not to give the correct stability boundary. The present instability is different from the parametric instability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer" title="boundary layer">boundary layer</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20band" title=" critical band"> critical band</a>, <a href="https://publications.waset.org/abstracts/search?q=instability" title=" instability"> instability</a>, <a href="https://publications.waset.org/abstracts/search?q=precessing%20sphere" title=" precessing sphere"> precessing sphere</a> </p> <a href="https://publications.waset.org/abstracts/99149/instability-by-weak-precession-of-the-flow-in-a-rapidly-rotating-sphere" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99149.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5246</span> Instability of H2-O2-CO2 Premixed Flames on Flat Burner </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaewpradap%20Amornrat">Kaewpradap Amornrat</a>, <a href="https://publications.waset.org/abstracts/search?q=Endo%20Takahiro"> Endo Takahiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Kadowaki%20Satoshi"> Kadowaki Satoshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The combustion of hydrogen-oxygen (H2-O2) mixtures was investigated to consider the reduction of carbon dioxide (CO2) and nitrogen oxide (NOx) as the greenhouse emission. Normally, the flame speed of combustion H2-O2 mixtures are very fast thus it is necessary to control the limit of mixtures with CO2 addition as H2-O2-CO2 combustion. The limit of hydrogen was set and replaced by CO2 with O2:CO2 ratio as 1:3.76, 1:4 and 1:5 for this study. In this study, the combustion of H2-O2 -CO2 on flat burner at equivalence ratio =0.5 was investigated for 10, 15 and 20 L/min of flow rate mixtures. When the ratio of CO2 increases, the power spectral density is lower, the size of attractor and cellular flame become larger because the decrease of hydrogen replaced by CO2 affects the diffusive-thermal instability. Moreover, the flow rate mixtures increases, the power spectral density increases, the size of reconstructed attractor and cell size become smaller due to decreasing of instability. The results show that the variation of CO2 and mixture flow rate affects the instability of cellular premixed flames on flat burner. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=instability" title="instability">instability</a>, <a href="https://publications.waset.org/abstracts/search?q=H2-O2-CO2%20combustion" title=" H2-O2-CO2 combustion"> H2-O2-CO2 combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=flat%20burner" title=" flat burner"> flat burner</a>, <a href="https://publications.waset.org/abstracts/search?q=diffusive-thermal%20instability" title=" diffusive-thermal instability"> diffusive-thermal instability</a> </p> <a href="https://publications.waset.org/abstracts/17224/instability-of-h2-o2-co2-premixed-flames-on-flat-burner" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17224.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5245</span> The Effect of Development of Two-Phase Flow Regimes on the Stability of Gas Lift Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khalid.%20M.%20O.%20Elmabrok">Khalid. M. O. Elmabrok</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20L.%20Burby"> M. L. Burby</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20G.%20Nasr"> G. G. Nasr</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flow instability during gas lift operation is caused by three major phenomena &ndash; the density wave oscillation, the casing heading pressure and the flow perturbation within the two-phase flow region. This paper focuses on the causes and the effect of flow instability during gas lift operation and suggests ways to control it in order to maximise productivity during gas lift operations. A laboratory-scale two-phase flow system to study the effects of flow perturbation was designed and built. The apparatus is comprised of a 2 m long by 66 mm ID transparent PVC pipe with air injection point situated at 0.1 m above the base of the pipe. This is the point where stabilised bubbles were visibly clear after injection. Air is injected into the water filled transparent pipe at different flow rates and pressures. The behavior of the different sizes of the bubbles generated within the two-phase region was captured using a digital camera and the images were analysed using the advanced image processing package. It was observed that the average maximum bubbles sizes increased with the increase in the length of the vertical pipe column from 29.72 to 47 mm. The increase in air injection pressure from 0.5 to 3 bars increased the bubble sizes from 29.72 mm to 44.17 mm and then decreasing when the pressure reaches 4 bars. It was observed that at higher bubble velocity of 6.7 m/s, larger diameter bubbles coalesce and burst due to high agitation and collision with each other. This collapse of the bubbles causes pressure drop and reverse flow within two phase flow and is the main cause of the flow instability phenomena. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20lift%20instability" title="gas lift instability">gas lift instability</a>, <a href="https://publications.waset.org/abstracts/search?q=bubbles%20forming" title=" bubbles forming"> bubbles forming</a>, <a href="https://publications.waset.org/abstracts/search?q=bubbles%20collapsing" title=" bubbles collapsing"> bubbles collapsing</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a> </p> <a href="https://publications.waset.org/abstracts/48541/the-effect-of-development-of-two-phase-flow-regimes-on-the-stability-of-gas-lift-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48541.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5244</span> Analysis of Two-Phase Flow Instabilities in Conventional Channel of Nuclear Power Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Abdur%20Rashid%20Sarkar">M. Abdur Rashid Sarkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Riffat%20Mahmud"> Riffat Mahmud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Boiling heat transfer plays a crucial role in cooling nuclear reactor for safe electricity generation. A two phase flow is susceptible to thermal-hydrodynamic instabilities, which may cause flow oscillations of constant amplitude or diverging amplitude. These oscillations may induce boiling crisis, disturb control systems, or cause mechanical damage. Based on their mechanisms, various types of instabilities can be classified for a nuclear reactor. From a practical engineering point of view one of the major design difficulties in dealing with multiphase flow is that the mass, momentum, and energy transfer rates and processes may be quite sensitive to the geometric configuration of the heat transfer surface. Moreover, the flow within each phase or component will clearly depend on that geometric configuration. The complexity of this two-way coupling presents a major challenge in the study of multiphase flows and there is much that remains to be done. Yet, the parametric effects on flow instability such as the effect of aspect ratio, pressure drop, channel length, its orientation inlet subcooling and surface roughness etc. have been analyzed. Another frequently occurring instability, known as the Kelvin–Helmholtz instability has been briefly reviewed. Various analytical techniques for predicting parametric effect on the instability are analyzed in terms of their applicability and accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=two%20phase%20flows" title="two phase flows">two phase flows</a>, <a href="https://publications.waset.org/abstracts/search?q=boiling%20crisis" title=" boiling crisis"> boiling crisis</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal-hydrodynamic%20instabilities" title=" thermal-hydrodynamic instabilities"> thermal-hydrodynamic instabilities</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20cooled%20nuclear%20reactors" title=" water cooled nuclear reactors"> water cooled nuclear reactors</a>, <a href="https://publications.waset.org/abstracts/search?q=kelvin%E2%80%93helmholtz%20instability" title=" kelvin–helmholtz instability"> kelvin–helmholtz instability</a> </p> <a href="https://publications.waset.org/abstracts/40906/analysis-of-two-phase-flow-instabilities-in-conventional-channel-of-nuclear-power-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40906.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5243</span> Hydromagnetic Linear Instability Analysis of Giesekus Fluids in Taylor-Couette Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Godazandeh">K. Godazandeh</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Sadeghy"> K. Sadeghy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, the effect of magnetic field on the hydrodynamic instability of Taylor-Couette flow between two concentric rotating cylinders has been numerically investigated. At the beginning the basic flow has been solved using continuity, Cauchy equations (with regards to Lorentz force) and the constitutive equations of a viscoelastic model called "Giesekus" model. Small perturbations, considered to be normal mode, have been superimposed to the basic flow and the unsteady perturbation equations have been derived consequently. Neglecting non-linear terms, the general eigenvalue problem obtained has been solved using pseudo spectral method (combination of Chebyshev polynomials). The objective of the calculations is to study the effect of magnetic fields on the onset of first mode of instability (axisymmetric mode) for different dimensionless parameters of the flow. The results show that the stability picture is highly influenced by the magnetic field. When magnetic field increases, it first has a destabilization effect which changes to stabilization effect due to more increase of magnetic fields. Therefor there is a critical magnetic number (Hartmann number) for instability of Taylor-Couette flow. Also, the effect of magnetic field is more dominant in large gaps. Also based on the results obtained, magnetic field shows a more considerable effect on the stability at higher Weissenberg numbers (at higher elasticity), while the "mobility factor" changes show no dominant role on the intense of suction and injection effect on the flow's instability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title="magnetic field">magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=Taylor-Couette%20flow" title=" Taylor-Couette flow"> Taylor-Couette flow</a>, <a href="https://publications.waset.org/abstracts/search?q=Giesekus%20model" title=" Giesekus model"> Giesekus model</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudo%20spectral%20method" title=" pseudo spectral method"> pseudo spectral method</a>, <a href="https://publications.waset.org/abstracts/search?q=Chebyshev%20polynomials" title=" Chebyshev polynomials"> Chebyshev polynomials</a>, <a href="https://publications.waset.org/abstracts/search?q=Hartmann%20number" title=" Hartmann number"> Hartmann number</a>, <a href="https://publications.waset.org/abstracts/search?q=Weissenberg%20number" title=" Weissenberg number"> Weissenberg number</a>, <a href="https://publications.waset.org/abstracts/search?q=mobility%20factor" title=" mobility factor"> mobility factor</a> </p> <a href="https://publications.waset.org/abstracts/13488/hydromagnetic-linear-instability-analysis-of-giesekus-fluids-in-taylor-couette-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13488.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5242</span> Effect of Hydraulic Diameter on Flow Boiling Instability in a Single Microtube with Vertical Upward Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qian%20You">Qian You</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Hassan"> Ibrahim Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyes%20Kadem"> Lyes Kadem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experiment is conducted to fundamentally investigate flow oscillation characteristics in different sizes of single microtubes in vertical upward flow direction. Three microtubes have 0.889 mm, 0.533 mm, and 0.305 mm hydraulic diameters with 100 mm identical heated length. The mass flux of the working fluid FC-72 varies from 700 kg/m2•s to 1400 kg/m2•s, and the heat flux is uniformly applied on the tube surface up to 9.4 W/cm2. The subcooled inlet temperature is maintained around 24°C during the experiment. The effect of hydraulic diameter and mass flux are studied. The results showed that they have interactions on the flow oscillations occurrence and behaviors. The onset of flow instability (OFI), which is a threshold of unstable flow, usually appears in large microtube with diversified and sustained flow oscillations, while the transient point, which is the point when the flow turns from one stable state to another suddenly, is more observed in small microtube without characterized flow oscillations due to the bubble confinement. The OFI/transient point occurs early as hydraulic diameter reduces at a given mass flux. The increased mass flux can delay the OFI/transient point occurrence in large hydraulic diameter, but no significant effect in small size. Although the only transient point is observed in the smallest tube, it appears at small heat flux and is not sensitive to mass flux; hence, the smallest microtube is not recommended since increasing heat flux may cause local dryout. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flow%20boiling%20instability" title="flow boiling instability">flow boiling instability</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20diameter%20effect" title=" hydraulic diameter effect"> hydraulic diameter effect</a>, <a href="https://publications.waset.org/abstracts/search?q=a%20single%20microtube" title=" a single microtube"> a single microtube</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20upward%20flow" title=" vertical upward flow"> vertical upward flow</a> </p> <a href="https://publications.waset.org/abstracts/29887/effect-of-hydraulic-diameter-on-flow-boiling-instability-in-a-single-microtube-with-vertical-upward-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29887.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">600</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5241</span> Flow Field Analysis of a Liquid Ejector Pump Using Embedded Large Eddy Simulation Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qasim%20Zaheer">Qasim Zaheer</a>, <a href="https://publications.waset.org/abstracts/search?q=Jehanzeb%20Masud"> Jehanzeb Masud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The understanding of entrainment and mixing phenomenon in the ejector pump is of pivotal importance for designing and performance estimation. In this paper, the existence of turbulent vortical structures due to Kelvin-Helmholtz instability at the free surface between the motive and the entrained fluids streams are simulated using Embedded LES methodology. The efficacy of Embedded LES for simulation of complex flow field of ejector pump is evaluated using ANSYS Fluent®. The enhanced mixing and entrainment process due to breaking down of larger eddies into smaller ones as a consequence of Vortex Stretching phenomenon is captured in this study. Moreover, the flow field characteristics of ejector pump like pressure velocity fields and mass flow rates are analyzed and validated against the experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kelvin%20Helmholtz%20instability" title="Kelvin Helmholtz instability">Kelvin Helmholtz instability</a>, <a href="https://publications.waset.org/abstracts/search?q=embedded%20LES" title=" embedded LES"> embedded LES</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20flow%20field" title=" complex flow field"> complex flow field</a>, <a href="https://publications.waset.org/abstracts/search?q=ejector%20pump" title=" ejector pump"> ejector pump</a> </p> <a href="https://publications.waset.org/abstracts/65909/flow-field-analysis-of-a-liquid-ejector-pump-using-embedded-large-eddy-simulation-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65909.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5240</span> The Richtmyer-Meshkov Instability Impacted by the Interface with Different Components Distribution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sheng-Bo%20Zhang">Sheng-Bo Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Huan-Hao%20Zhang"> Huan-Hao Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhi-Hua%20Chen"> Zhi-Hua Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun%20Zheng"> Chun Zheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the Richtmyer-Meshkov instability has been studied numerically by using the high-resolution Roe scheme based on the two-dimensional unsteady Euler equation, which was caused by the interaction between shock wave and the helium circular light gas cylinder with different component distributions. The numerical results further discuss the deformation process of the gas cylinder, the wave structure of the flow field and quantitatively analyze the characteristic dimensions (length, height, and central axial width) of the gas cylinder, the volume compression ratio of the cylinder over time. In addition, the flow mechanism of shock-driven interface gas mixing is analyzed from multiple perspectives by combining it with the flow field pressure, velocity, circulation, and gas mixing rate. Then the effects of different initial component distribution conditions on interface instability are investigated. The results show when the diffusion interface transit to the sharp interface, the reflection coefficient gradually increases on both sides of the interface. When the incident shock wave interacts with the cylinder, the transmission of the shock wave will transit from conventional transmission to unconventional transmission. At the same time, the reflected shock wave is gradually strengthened, and the transmitted shock wave is gradually weakened, which leads to an increase in the Richtmyer-Meshkov instability. Moreover, the Atwood number on both sides of the interface also increases as the diffusion interface transit to the sharp interface, which leads to an increase in the Rayleigh-Taylor instability and the Kelvin-Helmholtz instability. Therefore, the increase in instability will lead to an increase the circulation, resulting in an increase in the growth rate of gas mixing rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shock%20wave" title="shock wave">shock wave</a>, <a href="https://publications.waset.org/abstracts/search?q=He%20light%20cylinder" title=" He light cylinder"> He light cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=Richtmyer-Meshkov%20instability" title=" Richtmyer-Meshkov instability"> Richtmyer-Meshkov instability</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaussian%20distribution" title=" Gaussian distribution"> Gaussian distribution</a> </p> <a href="https://publications.waset.org/abstracts/164153/the-richtmyer-meshkov-instability-impacted-by-the-interface-with-different-components-distribution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164153.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5239</span> Pull-In Instability Determination of Microcapacitive Sensor for Measuring Special Range of Pressure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yashar%20Haghighatfar">Yashar Haghighatfar</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahrzad%20Mirhosseini"> Shahrzad Mirhosseini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pull-in instability is a nonlinear and crucial effect that is important for the design of microelectromechanical system devices. In this paper, the appropriate electrostatic voltage range is determined by measuring fluid flow pressure via micro pressure sensor based microbeam. The microbeam deflection contains two parts, the static and perturbation deflection of static. The second order equation regarding the equivalent stiffness, mass and damping matrices based on Galerkin method is introduced to predict pull-in instability due to the external voltage. Also the reduced order method is used for solving the second order nonlinear equation of motion. Furthermore, in the present study, the micro capacitive pressure sensor is designed for measuring special fluid flow pressure range. The results show that the measurable pressure range can be optimized, regarding damping field and external voltage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MEMS" title="MEMS">MEMS</a>, <a href="https://publications.waset.org/abstracts/search?q=pull-in%20instability" title=" pull-in instability"> pull-in instability</a>, <a href="https://publications.waset.org/abstracts/search?q=electrostatically%20actuated%20microbeam" title=" electrostatically actuated microbeam"> electrostatically actuated microbeam</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced%20order%20method" title=" reduced order method"> reduced order method</a> </p> <a href="https://publications.waset.org/abstracts/94193/pull-in-instability-determination-of-microcapacitive-sensor-for-measuring-special-range-of-pressure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94193.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5238</span> Prediction of Critical Flow Rate in Tubular Heat Exchangers for the Onset of Damaging Flow-Induced Vibrations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Khulief">Y. Khulief</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bashmal"> S. Bashmal</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Said"> S. Said</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Al-Otaibi"> D. Al-Otaibi</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Mansour"> K. Mansour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The prediction of flow rates at which the vibration-induced instability takes place in tubular heat exchangers due to cross-flow is of major importance to the performance and service life of such equipment. In this paper, the semi-analytical model for square tube arrays was extended and utilized to study the triangular tube patterns. A laboratory test rig with instrumented test section is used to measure the fluidelastic coefficients to be used for tuning the mathematical model. The test section can be made of any bundle pattern. In this study, two test sections were constructed for both the normal triangular and the rotated triangular tube arrays. The developed scheme is utilized in predicting the onset of flow-induced instability in the two triangular tube arrays. The results are compared to those obtained for two other bundle configurations. The results of the four different tube patterns are viewed in the light of TEMA predictions. The comparison demonstrated that TEMA guidelines are more conservative in all configurations considered <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluid-structure%20interaction" title="fluid-structure interaction">fluid-structure interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-flow" title=" cross-flow"> cross-flow</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20exchangers" title=" heat exchangers"> heat exchangers</a>, <a href="https://publications.waset.org/abstracts/search?q=" title=" "> </a> </p> <a href="https://publications.waset.org/abstracts/2481/prediction-of-critical-flow-rate-in-tubular-heat-exchangers-for-the-onset-of-damaging-flow-induced-vibrations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2481.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5237</span> Relationship between Interfacial Instabilities and Mechanical Strength of Multilayer Symmetric Polymer Melts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Ranjbaran%20Madiseh">Mohammad Ranjbaran Madiseh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, an experimental apparatus has been developed for observing interfacial stability and deformation of multilayer pressure-driven channel flows. The interface instability of the co-extrusion flow of polyethylene and polypropylene is studied experimentally in a slit geometry. By investigating the growing interfacial wave (IW) and tensile stress of extrudate samples, a relationship between interfacial instability (II) and mechanical properties of polypropylene (PP) and high-density polyethylene (HDPE) has been established. It is shown that the mechanism of interfacial strength is related to interfacial instabilities as well as interfacial strength. It is shown that there is an ability to forecast the quality of final products in the co-extrusion process. In this study, it is found that the instability is controlled by its dominant wave number, which is associated with maximum tensile stress at the interface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interfacial%20instability" title="interfacial instability">interfacial instability</a>, <a href="https://publications.waset.org/abstracts/search?q=interfacial%20strength" title=" interfacial strength"> interfacial strength</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20number" title=" wave number"> wave number</a>, <a href="https://publications.waset.org/abstracts/search?q=interfacial%20wave" title=" interfacial wave"> interfacial wave</a> </p> <a href="https://publications.waset.org/abstracts/156768/relationship-between-interfacial-instabilities-and-mechanical-strength-of-multilayer-symmetric-polymer-melts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156768.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5236</span> Interfacial Instability and Mixing Behavior between Two Liquid Layers Bounded in Finite Volumes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lei%20Li">Lei Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming%20M.%20Chai"> Ming M. Chai</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiao%20X.%20Lu"> Xiao X. Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jia%20W.%20Wang"> Jia W. Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The mixing process of two liquid layers in a cylindrical container includes the upper liquid with higher density rushing into the lower liquid with lighter density, the lower liquid rising into the upper liquid, meanwhile the two liquid layers having interactions with each other, forming vortices, spreading or dispersing in others, entraining or mixing with others. It is a complex process constituted of flow instability, turbulent mixing and other multiscale physical phenomena and having a fast evolution velocity. In order to explore the mechanism of the process and make further investigations, some experiments about the interfacial instability and mixing behavior between two liquid layers bounded in different volumes are carried out, applying the planar laser induced fluorescence (PLIF) and the high speed camera (HSC) techniques. According to the results, the evolution of interfacial instability between immiscible liquid develops faster than theoretical rate given by the Rayleigh-Taylor Instability (RTI) theory. It is reasonable to conjecture that some mechanisms except the RTI play key roles in the mixture process of two liquid layers. From the results, it is shown that the invading velocity of the upper liquid into the lower liquid does not depend on the upper liquid's volume (height). Comparing to the cases that the upper and lower containers are of identical diameter, in the case that the lower liquid volume increases to larger geometric space, the upper liquid spreads and expands into the lower liquid more quickly during the evolution of interfacial instability, indicating that the container wall has important influence on the mixing process. In the experiments of miscible liquid layers’ mixing, the diffusion time and pattern of the liquid interfacial mixing also does not depend on the upper liquid's volumes, and when the lower liquid volume increases to larger geometric space, the action of the bounded wall on the liquid falling and rising flow will decrease, and the liquid interfacial mixing effects will also attenuate. Therefore, it is also concluded that the volume weight of upper heavier liquid is not the reason of the fast interfacial instability evolution between the two liquid layers and the bounded wall action is limited to the unstable and mixing flow. The numerical simulations of the immiscible liquid layers’ interfacial instability flow using the VOF method show the typical flow pattern agree with the experiments. However the calculated instability development is much slower than the experimental measurement. The numerical simulation of the miscible liquids’ mixing, which applying Fick’s diffusion law to the components’ transport equation, shows a much faster mixing rate than the experiments on the liquids’ interface at the initial stage. It can be presumed that the interfacial tension plays an important role in the interfacial instability between the two liquid layers bounded in finite volume. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interfacial%20instability%20and%20mixing" title="interfacial instability and mixing">interfacial instability and mixing</a>, <a href="https://publications.waset.org/abstracts/search?q=two%20liquid%20layers" title=" two liquid layers"> two liquid layers</a>, <a href="https://publications.waset.org/abstracts/search?q=Planar%20Laser%20Induced%20Fluorescence%20%28PLIF%29" title=" Planar Laser Induced Fluorescence (PLIF)"> Planar Laser Induced Fluorescence (PLIF)</a>, <a href="https://publications.waset.org/abstracts/search?q=High%20Speed%20Camera%20%28HSC%29" title=" High Speed Camera (HSC)"> High Speed Camera (HSC)</a>, <a href="https://publications.waset.org/abstracts/search?q=interfacial%20energy%20and%20tension" title=" interfacial energy and tension"> interfacial energy and tension</a>, <a href="https://publications.waset.org/abstracts/search?q=Cahn-Hilliard%20Navier-Stokes%20%28CHNS%29%20equations" title=" Cahn-Hilliard Navier-Stokes (CHNS) equations"> Cahn-Hilliard Navier-Stokes (CHNS) equations</a> </p> <a href="https://publications.waset.org/abstracts/68285/interfacial-instability-and-mixing-behavior-between-two-liquid-layers-bounded-in-finite-volumes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68285.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5235</span> Numerical Investigation of the Transverse Instability in Radiation Pressure Acceleration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Q.%20Shao">F. Q. Shao</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Q.%20Wang"> W. Q. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Yin"> Y. Yin</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20P.%20Yu"> T. P. Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20B.%20Zou"> D. B. Zou</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Ouyang"> J. M. Ouyang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Radiation Pressure Acceleration (RPA) mechanism is very promising in laser-driven ion acceleration because of high laser-ion energy conversion efficiency. Although some experiments have shown the characteristics of RPA, the energy of ions is quite limited. The ion energy obtained in experiments is only several MeV/u, which is much lower than theoretical prediction. One possible limiting factor is the transverse instability incited in the RPA process. The transverse instability is basically considered as the Rayleigh-Taylor (RT) instability, which is a kind of interfacial instability and occurs when a light fluid pushes against a heavy fluid. Multi-dimensional particle-in-cell (PIC) simulations show that the onset of transverse instability will destroy the acceleration process and broaden the energy spectrum of fast ions during the RPA dominant ion acceleration processes. The evidence of the RT instability driven by radiation pressure has been observed in a laser-foil interaction experiment in a typical RPA regime, and the dominant scale of RT instability is close to the laser wavelength. The development of transverse instability in the radiation-pressure-acceleration dominant laser-foil interaction is numerically examined by two-dimensional particle-in-cell simulations. When a laser interacts with a foil with modulated surface, the internal instability is quickly incited and it develops. The linear growth and saturation of the transverse instability are observed, and the growth rate is numerically diagnosed. In order to optimize interaction parameters, a method of information entropy is put forward to describe the chaotic degree of the transverse instability. With moderate modulation, the transverse instability shows a low chaotic degree and a quasi-monoenergetic proton beam is produced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=information%20entropy" title="information entropy">information entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20pressure%20acceleration" title=" radiation pressure acceleration"> radiation pressure acceleration</a>, <a href="https://publications.waset.org/abstracts/search?q=Rayleigh-Taylor%20instability" title=" Rayleigh-Taylor instability"> Rayleigh-Taylor instability</a>, <a href="https://publications.waset.org/abstracts/search?q=transverse%20instability" title=" transverse instability"> transverse instability</a> </p> <a href="https://publications.waset.org/abstracts/46130/numerical-investigation-of-the-transverse-instability-in-radiation-pressure-acceleration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46130.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5234</span> Influence of Internal Heat Source on Thermal Instability in a Horizontal Porous Layer with Mass Flow and Inclined Temperature Gradient</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anjanna%20Matta">Anjanna Matta</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20A.%20L.%20Narayana"> P. A. L. Narayana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An investigation has been presented to analyze the effect of internal heat source on the onset of Hadley-Prats flow in a horizontal fluid saturated porous medium. We examine a better understanding of the combined influence of the heat source and mass flow effect by using linear stability analysis. The resultant eigenvalue problem is solved by using shooting and Runga-Kutta methods for evaluate critical thermal Rayleight number with respect to various flow governing parameters. It is identified that the flow is switch from stabilizing to destabilizing as the horizontal thermal Rayleigh number is enhanced. The heat source and mass flow increases resulting a stronger destabilizing effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=linear%20stability%20analysis" title="linear stability analysis">linear stability analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20source" title=" heat source"> heat source</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20medium" title=" porous medium"> porous medium</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20flow" title=" mass flow"> mass flow</a> </p> <a href="https://publications.waset.org/abstracts/25283/influence-of-internal-heat-source-on-thermal-instability-in-a-horizontal-porous-layer-with-mass-flow-and-inclined-temperature-gradient" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25283.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">721</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5233</span> An Industrial Steady State Sequence Disorder Model for Flow Controlled Multi-Input Single-Output Queues in Manufacturing Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anthony%20John%20Walker">Anthony John Walker</a>, <a href="https://publications.waset.org/abstracts/search?q=Glen%20Bright"> Glen Bright</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The challenge faced by manufactures, when producing custom products, is that each product needs exact components. This can cause work-in-process instability due to component matching constraints imposed on assembly cells. Clearing type flow control policies have been used extensively in mediating server access between multiple arrival processes. Although the stability and performance of clearing policies has been well formulated and studied in the literature, the growth in arrival to departure sequence disorder for each arriving job, across a serving resource, is still an area for further analysis. In this paper, a closed form industrial model has been formulated that characterizes arrival-to-departure sequence disorder through stable manufacturing systems under clearing type flow control policy. Specifically addressed are the effects of sequence disorder imposed on a downstream assembly cell in terms of work-in-process instability induced through component matching constraints. Results from a simulated manufacturing system show that steady state average sequence disorder in parallel upstream processing cells can be balanced in order to decrease downstream assembly system instability. Simulation results also show that the closed form model accurately describes the growth and limiting behavior of average sequence disorder between parts arriving and departing from a manufacturing system flow controlled via clearing policy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=assembly%20system%20constraint" title="assembly system constraint">assembly system constraint</a>, <a href="https://publications.waset.org/abstracts/search?q=custom%20products" title=" custom products"> custom products</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20sequence%20disorder" title=" discrete sequence disorder"> discrete sequence disorder</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20control" title=" flow control"> flow control</a> </p> <a href="https://publications.waset.org/abstracts/41956/an-industrial-steady-state-sequence-disorder-model-for-flow-controlled-multi-input-single-output-queues-in-manufacturing-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41956.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5232</span> Designing an Intelligent Voltage Instability System in Power Distribution Systems in the Philippines Using IEEE 14 Bus Test System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pocholo%20Rodriguez">Pocholo Rodriguez</a>, <a href="https://publications.waset.org/abstracts/search?q=Anne%20Bernadine%20Ocampo"> Anne Bernadine Ocampo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ian%20Benedict%20Chan"> Ian Benedict Chan</a>, <a href="https://publications.waset.org/abstracts/search?q=Janric%20Micah%20Gray"> Janric Micah Gray</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The state of an electric power system may be classified as either stable or unstable. The borderline of stability is at any condition for which a slight change in an unfavourable direction of any pertinent quantity will cause instability. Voltage instability in power distribution systems could lead to voltage collapse and thus power blackouts. The researchers will present an intelligent system using back propagation algorithm that can detect voltage instability and output voltage of a power distribution and classify it as stable or unstable. The researchers’ work is the use of parameters involved in voltage instability as input parameters to the neural network for training and testing purposes that can provide faster detection and monitoring of the power distribution system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=back-propagation%20algorithm" title="back-propagation algorithm">back-propagation algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20instability" title=" load instability"> load instability</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20distribution%20system" title=" power distribution system"> power distribution system</a> </p> <a href="https://publications.waset.org/abstracts/65086/designing-an-intelligent-voltage-instability-system-in-power-distribution-systems-in-the-philippines-using-ieee-14-bus-test-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65086.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5231</span> Inclined Convective Instability in a Porous Layer Saturated with Non-Newtonian Fluid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rashmi%20Dubey">Rashmi Dubey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study aims at investigating the onset of thermal convection in an inclined porous layer saturated with a non-Newtonian fluid. The layer is infinitely extended and has a finite width confined between two boundaries with constant pressure conditions, where the lower one is maintained at a higher temperature. Over the years, this area of research has attracted many scientists and researchers, for it has a plethora of applications in the fields of sciences and engineering, such as in civil engineering, geothermal sites, petroleum industries, etc.Considering the possibilities in a practical scenario, an inclined porous layer is considered, which can be used to develop a generalized model applicable to any inclination. Using the isobaric boundaries, the hydrodynamic boundary conditions are derived for the power-law model and are used to obtain the basic state flow. The convection in the basic state flow is driven by the thermal buoyancy in the flow system and is carried away further due to hydrodynamic boundaries. A linear stability analysis followed by a normal-mode analysis is done to investigate the onset of convection in the buoyancy-driven flow. The analysis shows that the convective instability is always initiated by the non-traveling modes for the Newtonian fluid, but prevails in the form of oscillatory modes, for up to a certain inclination of the porous layer. However, different behavior is observed for the dilatant and pseudoplastic fluids. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20convection" title="thermal convection">thermal convection</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20stability" title=" linear stability"> linear stability</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20media%20flow" title=" porous media flow"> porous media flow</a>, <a href="https://publications.waset.org/abstracts/search?q=Inclined%20porous%20layer" title=" Inclined porous layer"> Inclined porous layer</a> </p> <a href="https://publications.waset.org/abstracts/147401/inclined-convective-instability-in-a-porous-layer-saturated-with-non-newtonian-fluid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147401.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5230</span> Numerical Investigation of the Effect of Sidewalls on Low-Speed Finite Width Cavity Flows</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Foo%20Kok">Foo Kok</a>, <a href="https://publications.waset.org/abstracts/search?q=Varun%20Thangamani"> Varun Thangamani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rectangular cavities with a full-span or finite-width configuration have been the basis of much previous research on cavity flows. However, much less attention has been given to the influence of sidewalls, in particular, on low-speed cavity flows. In this study, the flow characteristics of two separate low-speed finite-width cavities with a Reynolds number of 𝑅𝑒𝐷 = 10⁴ are examined using large eddy simulations. Two different lateral boundary conditions are used to investigate the influence of sidewalls on the self-sustaining oscillations and the three-dimensional flow fields inside the cavities. The results show that the full-span finite width cavities are less sensitive to the sidewall effect at a low length-to-width ratio 𝐿/𝐷. The increase in 𝐿/𝐷 leads to a departure from two-dimensional instability and results in the loss of spanwise homogeneity. The analysis of the spanwise flow structures shows that these effects correspond closely to the declination of the centrifugal force from the primary recirculation zone. Such effects are also reflected in the distinct modulation of the secondary vortices in the primary recirculation zone, which suggests that the instabilities observed in the full-span finite-width cavity flows are predominantly dependent on the secondary motion from the primary recirculation zone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LES" title="LES">LES</a>, <a href="https://publications.waset.org/abstracts/search?q=cavity%20flows" title=" cavity flows"> cavity flows</a>, <a href="https://publications.waset.org/abstracts/search?q=unsteady%20shear%20layer" title=" unsteady shear layer"> unsteady shear layer</a>, <a href="https://publications.waset.org/abstracts/search?q=instability%20modes" title=" instability modes"> instability modes</a>, <a href="https://publications.waset.org/abstracts/search?q=secondary%20flow" title=" secondary flow"> secondary flow</a> </p> <a href="https://publications.waset.org/abstracts/182312/numerical-investigation-of-the-effect-of-sidewalls-on-low-speed-finite-width-cavity-flows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182312.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5229</span> Weak Instability in Direct Integration Methods for Structural Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shuenn-Yih%20Chang">Shuenn-Yih Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chiu-Li%20Huang"> Chiu-Li Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Three structure-dependent integration methods have been developed for solving equations of motion, which are second-order ordinary differential equations, for structural dynamics and earthquake engineering applications. Although they generally have the same numerical properties, such as explicit formulation, unconditional stability and second-order accuracy, a different performance is found in solving the free vibration response to either linear elastic or nonlinear systems with high frequency modes. The root cause of this different performance in the free vibration responses is analytically explored herein. As a result, it is verified that a weak instability is responsible for the different performance of the integration methods. In general, a weak instability will result in an inaccurate solution or even numerical instability in the free vibration responses of high frequency modes. As a result, a weak instability must be prohibited for time integration methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20analysis" title="dynamic analysis">dynamic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20frequency" title=" high frequency"> high frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=integration%20method" title=" integration method"> integration method</a>, <a href="https://publications.waset.org/abstracts/search?q=overshoot" title=" overshoot"> overshoot</a>, <a href="https://publications.waset.org/abstracts/search?q=weak%20instability" title=" weak instability"> weak instability</a> </p> <a href="https://publications.waset.org/abstracts/107364/weak-instability-in-direct-integration-methods-for-structural-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107364.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5228</span> Landslide Hazard Assessment Using Physically Based Mathematical Models in Agricultural Terraces at Douro Valley in North of Portugal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Bateira">C. Bateira</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Fernandes"> J. Fernandes</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Costa"> A. Costa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Douro Demarked Region (DDR) is a production Porto wine region. On the NE of Portugal, the strong incision of the Douro valley developed very steep slopes, organized with agriculture terraces, have experienced an intense and deep transformation in order to implement the mechanization of the work. The old terrace system, based on stone vertical wall support structure, replaced by terraces with earth embankments experienced a huge terrace instability. This terrace instability has important economic and financial consequences on the agriculture enterprises. This paper presents and develops cartographic tools to access the embankment instability and identify the area prone to instability. The priority on this evaluation is related to the use of physically based mathematical models and develop a validation process based on an inventory of the past embankment instability. We used the shallow landslide stability model (SHALSTAB) based on physical parameters such us cohesion (c’), friction angle(ф), hydraulic conductivity, soil depth, soil specific weight (ϱ), slope angle (α) and contributing areas by Multiple Flow Direction Method (MFD). A terraced area can be analysed by this models unless we have very detailed information representative of the terrain morphology. The slope angle and the contributing areas depend on that. We can achieve that propose using digital elevation models (DEM) with great resolution (pixel with 40cm side), resulting from a set of photographs taken by a flight at 100m high with pixel resolution of 12cm. The slope angle results from this DEM. In the other hand, the MFD contributing area models the internal flow and is an important element to define the spatial variation of the soil saturation. That internal flow is based on the DEM. That is supported by the statement that the interflow, although not coincident with the superficial flow, have important similitude with it. Electrical resistivity monitoring values which related with the MFD contributing areas build from a DEM of 1m resolution and revealed a consistent correlation. That analysis, performed on the area, showed a good correlation with R2 of 0,72 and 0,76 at 1,5m and 2m depth, respectively. Considering that, a DEM with 1m resolution was the base to model the real internal flow. Thus, we assumed that the contributing area of 1m resolution modelled by MFD is representative of the internal flow of the area. In order to solve this problem we used a set of generalized DEMs to build the contributing areas used in the SHALSTAB. Those DEMs, with several resolutions (1m and 5m), were built from a set of photographs with 50cm resolution taken by a flight with 5km high. Using this maps combination, we modelled several final maps of terrace instability and performed a validation process with the contingency matrix. The best final instability map resembles the slope map from a DEM of 40cm resolution and a MFD map from a DEM of 1m resolution with a True Positive Rate (TPR) of 0,97, a False Positive Rate of 0,47, Accuracy (ACC) of 0,53, Precision (PVC) of 0,0004 and a TPR/FPR ratio of 2,06. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20terraces" title="agricultural terraces">agricultural terraces</a>, <a href="https://publications.waset.org/abstracts/search?q=cartography" title=" cartography"> cartography</a>, <a href="https://publications.waset.org/abstracts/search?q=landslides" title=" landslides"> landslides</a>, <a href="https://publications.waset.org/abstracts/search?q=SHALSTAB" title=" SHALSTAB"> SHALSTAB</a>, <a href="https://publications.waset.org/abstracts/search?q=vineyards" title=" vineyards"> vineyards</a> </p> <a href="https://publications.waset.org/abstracts/73771/landslide-hazard-assessment-using-physically-based-mathematical-models-in-agricultural-terraces-at-douro-valley-in-north-of-portugal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73771.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5227</span> Simulation of Ammonia-Water Two Phase Flow in Bubble Pump</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jemai%20Rabeb">Jemai Rabeb</a>, <a href="https://publications.waset.org/abstracts/search?q=Benhmidene%20Ali"> Benhmidene Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Hidouri%20Khaoula"> Hidouri Khaoula</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaouachi%20Bechir"> Chaouachi Bechir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The diffusion-absorption refrigeration cycle consists of a generator bubble pump, an absorber, an evaporator and a condenser, and usually operates with ammonia/water/ hydrogen or helium as the working fluid. The aim of this paper is to study the stability problem a bubble pump. In fact instability can caused a reduction of bubble pump efficiency. To achieve this goal, we have simulated the behaviour of two-phase flow in a bubble pump by using a drift flow model. Equations of a drift flow model are formulated in the transitional regime, non-adiabatic condition and thermodynamic equilibrium between the liquid and vapour phases. Equations resolution allowed to define void fraction, and liquid and vapour velocities, as well as pressure and mixing enthalpy. Ammonia-water mixing is used as working fluid, where ammonia mass fraction in the inlet is 0.6. Present simulation is conducted out for a heating flux of 2 kW/m&sup2; to 5 kW/m&sup2; and bubble pump tube length of 1 m and 2.5 mm of inner diameter. Simulation results reveal oscillations of vapour and liquid velocities along time. Oscillations decrease with time and with heat flux. For sufficient time the steady state is established, it is characterised by constant liquid velocity and void fraction values. However, vapour velocity does not have the same behaviour, it increases for steady state too. On the other hand, pressure drop oscillations are studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bubble%20pump" title="bubble pump">bubble pump</a>, <a href="https://publications.waset.org/abstracts/search?q=drift%20flow%20model" title=" drift flow model"> drift flow model</a>, <a href="https://publications.waset.org/abstracts/search?q=instability" title=" instability"> instability</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/66839/simulation-of-ammonia-water-two-phase-flow-in-bubble-pump" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66839.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5226</span> Triggering Supersonic Boundary-Layer Instability by Small-Scale Vortex Shedding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guohua%20Tu">Guohua Tu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhi%20Fu"> Zhi Fu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhiwei%20Hu"> Zhiwei Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Neil%20D%20Sandham"> Neil D Sandham</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianqiang%20Chen"> Jianqiang Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tripping of boundary-layers from laminar to turbulent flow, which may be necessary in specific practical applications, requires high amplitude disturbances to be introduced into the boundary layers without large drag penalties. As a possible improvement on fixed trip devices, a technique based on vortex shedding for enhancing supersonic flow transition is demonstrated in the present paper for a Mach 1.5 boundary layer. The compressible Navier-Stokes equations are solved directly using a high-order (fifth-order in space and third-order in time) finite difference method for small-scale cylinders suspended transversely near the wall. For cylinders with proper diameter and mount location, asymmetry vortices shed within the boundary layer are capable of tripping laminar-turbulent transition. Full three-dimensional simulations showed that transition was enhanced. A parametric study of the size and mounting location of the cylinder is carried out to identify the most effective setup. It is also found that the vortex shedding can be suppressed by some factors such as wall effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer%20instability" title="boundary layer instability">boundary layer instability</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer%20transition" title=" boundary layer transition"> boundary layer transition</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20shedding" title=" vortex shedding"> vortex shedding</a>, <a href="https://publications.waset.org/abstracts/search?q=supersonic%20flows" title=" supersonic flows"> supersonic flows</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20control" title=" flow control"> flow control</a> </p> <a href="https://publications.waset.org/abstracts/61412/triggering-supersonic-boundary-layer-instability-by-small-scale-vortex-shedding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61412.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5225</span> Assessment of Collapse Potential of Degrading SDOF Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muzaffer%20Borekci">Muzaffer Borekci</a>, <a href="https://publications.waset.org/abstracts/search?q=Murat%20Serdar%20Kir%C3%A7il"> Murat Serdar Kirçil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Predicting the collapse potential of a structure during earthquakes is an important issue in earthquake engineering. Many researchers proposed different methods to assess the collapse potential of structures under the effect of strong ground motions. However most of them did not consider degradation and softening effect in hysteretic behavior. In this study, collapse potential of SDOF systems caused by dynamic instability with stiffness and strength degradation has been investigated. An equation was proposed for the estimation of collapse period of SDOF system which is a limit value of period for dynamic instability. If period of the considered SDOF system is shorter than the collapse period then the relevant system exhibits dynamic instability and collapse occurs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=collapse" title="collapse">collapse</a>, <a href="https://publications.waset.org/abstracts/search?q=degradation" title=" degradation"> degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20instability" title=" dynamic instability"> dynamic instability</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20response" title=" seismic response "> seismic response </a> </p> <a href="https://publications.waset.org/abstracts/19772/assessment-of-collapse-potential-of-degrading-sdof-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5224</span> The Solution of Nonlinear Partial Differential Equation for The Phenomenon of Instability in Homogeneous Porous Media by Homotopy Analysis Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kajal%20K.%20Patel">Kajal K. Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20Mehta"> M. N. Mehta</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20R.%20Singh"> T. R. Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When water is injected in oil formatted area in secondary oil recovery process the instability occurs near common interface due to viscosity difference of injected water and native oil. The governing equation gives rise to the non-linear partial differential equation and its solution has been obtained by Homotopy analysis method with appropriate guess value of the solution together with some conditions and standard relations. The solution gives the average cross-sectional area occupied by the schematic fingers during the occurs of instability phenomenon. The numerical and graphical presentation has developed by using Maple software. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capillary%20pressure" title="capillary pressure">capillary pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=homotopy%20analysis%20method" title=" homotopy analysis method"> homotopy analysis method</a>, <a href="https://publications.waset.org/abstracts/search?q=instability%20phenomenon" title=" instability phenomenon"> instability phenomenon</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity "> viscosity </a> </p> <a href="https://publications.waset.org/abstracts/15845/the-solution-of-nonlinear-partial-differential-equation-for-the-phenomenon-of-instability-in-homogeneous-porous-media-by-homotopy-analysis-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15845.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">496</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5223</span> Analysis of Vortical Structures Generated by the Swirler of Combustion Chamber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vladislav%20A.%20Nazukin">Vladislav A. Nazukin</a>, <a href="https://publications.waset.org/abstracts/search?q=Valery%20G.%20Avgustinovich"> Valery G. Avgustinovich</a>, <a href="https://publications.waset.org/abstracts/search?q=Vakhtang%20V.%20Tsatiashvili"> Vakhtang V. Tsatiashvili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The most important part of modern lean low NOx combustors is a premixer where swirlers are often used for intensification of mixing processes and further formation of required flow pattern in combustor liner. Swirling flow leads to formation of complex eddy structures causing flow perturbations. It is able to cause combustion instability. Therefore, at design phase, it is necessary to pay great attention to aerodynamics of premixers. Analysis based on unsteady CFD modeling of swirling flow in production combustor swirler showed presence of large number of different eddy structures that can be conditionally divided into three types relative to its location of origin and a propagation path. Further, features of each eddy type were subsequently defined. Comparison of calculated and experimental pressure fluctuations spectrums verified correctness of computations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DES%20simulation" title="DES simulation">DES simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=swirler" title=" swirler"> swirler</a>, <a href="https://publications.waset.org/abstracts/search?q=vortical%20structures" title=" vortical structures"> vortical structures</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion%20chamber" title=" combustion chamber"> combustion chamber</a> </p> <a href="https://publications.waset.org/abstracts/15056/analysis-of-vortical-structures-generated-by-the-swirler-of-combustion-chamber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15056.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5222</span> A New Approach in a Problem of a Supersonic Panel Flutter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20V.%20Belubekyan">M. V. Belubekyan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20R.%20Martirosyan"> S. R. Martirosyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> On the example of an elastic rectangular plate streamlined by a supersonic gas flow, we have investigated the phenomenon of divergence and of panel flatter of the overrunning of the gas flow at a free edge under assumption of the presence of concentrated inertial masses and moments at the free edge. We applied a new approach of finding of solution of these problems, which was developed based on the algorithm for an analytical solution finding. This algorithm is easy to use for theoretical studies for the wides circle of nonconservative problems of linear elastic stability. We have established the relation between the characteristics of natural vibrations of the plate and velocity of the streamlining gas flow, which enables one to draw some conclusions on the stability of disturbed motion of the plate depending on the parameters of the system plate-flow. Its solution shows that either the divergence or the localized divergence and the flutter instability are possible. The regions of the stability and instability in space of parameters of the problem are identified. We have investigated the dynamic behavior of the disturbed motion of the panel near the boundaries of region of the stability. The safe and dangerous boundaries of region of the stability are found. The transition through safe boundary of the region of the stability leads to the divergence or localized divergence arising in the vicinity of free edge of the rectangular plate. The transition through dangerous boundary of the region of the stability leads to the panel flutter. The deformations arising at the flutter are more dangerous to the skin of the modern aircrafts and rockets resulting to the loss of the strength and appearance of the fatigue cracks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stability" title="stability">stability</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20plate" title=" elastic plate"> elastic plate</a>, <a href="https://publications.waset.org/abstracts/search?q=divergence" title=" divergence"> divergence</a>, <a href="https://publications.waset.org/abstracts/search?q=localized%20divergence" title=" localized divergence"> localized divergence</a>, <a href="https://publications.waset.org/abstracts/search?q=supersonic%20panels%20flutter" title=" supersonic panels flutter"> supersonic panels flutter</a> </p> <a href="https://publications.waset.org/abstracts/30630/a-new-approach-in-a-problem-of-a-supersonic-panel-flutter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30630.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">461</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5221</span> Countercurrent Flow Simulation of Gas-Solid System in a Purge Column Using Computational Fluid Dynamics Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20J.%20Jamaleddine">T. J. Jamaleddine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purge columns or degasser vessels are widely used in the polyolefin process for removing trapped hydrocarbons and in-excess catalyst residues from the polymer particles. A uniform distribution of purged gases coupled with a plug-flow characteristic inside the column system is desirable to obtain optimum desorption characteristics of trapped hydrocarbon and catalyst residues. Computational Fluid Dynamics (CFD) approach is a promising tool for design optimization of these vessels. The success of this approach is profoundly dependent on the solution strategy and the choice of geometrical layout at the vessel outlet. Filling the column with solids and initially solving for the solids flow minimized numerical diffusion substantially. Adopting a cylindrical configuration at the vessel outlet resulted in less numerical instability and resembled the hydrodynamics flow of solids in the hopper segment reasonably well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=degasser%20vessel" title=" degasser vessel"> degasser vessel</a>, <a href="https://publications.waset.org/abstracts/search?q=gas-solids%20flow" title=" gas-solids flow"> gas-solids flow</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20purging" title=" gas purging"> gas purging</a>, <a href="https://publications.waset.org/abstracts/search?q=purge%20column" title=" purge column"> purge column</a>, <a href="https://publications.waset.org/abstracts/search?q=species%20transport" title=" species transport"> species transport</a> </p> <a href="https://publications.waset.org/abstracts/115365/countercurrent-flow-simulation-of-gas-solid-system-in-a-purge-column-using-computational-fluid-dynamics-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115365.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5220</span> Recurrent Anterior Gleno-Humeral Instability Management by Modified Latarjet Procedure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tarek%20Aly">Tarek Aly</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The shoulder is the most mobile joint whose stability requires the interaction of both dynamic and static stabilizers. Its wide range of movement predisposes to a high susceptibility to dislocation, accounting for nearly 50% of all dislocations. This trauma typically results in ligament injury (e.g., labral tear, capsular strain) or bony fracture (e.g., loss of glenoid or humeral head bone), which frequently causes recurrent instability. Patients with significant glenoid defects may require Latarjet procedure, which involves transferring the coracoid to the antero-inferior glenoid rim. In spite of outstanding results, 15 to 30% of cases suffer complications. In this article, we discuss the diagnosis of recurrent shoulder instability, the surgical technique and various complications of Latarjet procedure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=recurrent" title="recurrent">recurrent</a>, <a href="https://publications.waset.org/abstracts/search?q=anterior%20gleno-humeral%20instability" title=" anterior gleno-humeral instability"> anterior gleno-humeral instability</a>, <a href="https://publications.waset.org/abstracts/search?q=latarjet" title=" latarjet"> latarjet</a>, <a href="https://publications.waset.org/abstracts/search?q=unstable%20shoulder" title=" unstable shoulder"> unstable shoulder</a> </p> <a href="https://publications.waset.org/abstracts/176387/recurrent-anterior-gleno-humeral-instability-management-by-modified-latarjet-procedure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176387.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5219</span> Resistive Instability in a Multi Ions Hall Thrusters Plasma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sukhmander%20Singh">Sukhmander Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hall thrusters are preferred over chemical thrusters because of its high exhaust velocity (around 10 times higher) and high specific impulse. The propellant Xenon is ionized inside the channel and controlled by the magnetic field. The strength of the magnetic field is such that only electrons get magnetized and ions remain unmagnetized because of larger Larmor radius as compared with the length of the channel of the device. There is quite a possibility of the existence of multi ions in a Hall thruster plasma because of dust contribution or another process which take place in the chamber. In this paper, we have derived the dispersion relation for multi ions resistive instability in a hall plasma. The analytical approach is also used to find out the propagating speed and the growth rate of the instability. In addition, some growing waves are also found to exist in the plasma. The dispersion relation is solved numerically to see the behavior of the instability with the plasma parameters viz, the temperature of plasma species, wave number, drift velocity, collision frequency, magnetic field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=instability" title="instability">instability</a>, <a href="https://publications.waset.org/abstracts/search?q=resisitive" title=" resisitive"> resisitive</a>, <a href="https://publications.waset.org/abstracts/search?q=thrusters" title=" thrusters"> thrusters</a>, <a href="https://publications.waset.org/abstracts/search?q=waves" title=" waves"> waves</a> </p> <a href="https://publications.waset.org/abstracts/108866/resistive-instability-in-a-multi-ions-hall-thrusters-plasma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108866.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flow%20instability&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flow%20instability&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flow%20instability&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flow%20instability&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flow%20instability&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flow%20instability&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flow%20instability&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flow%20instability&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flow%20instability&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flow%20instability&amp;page=174">174</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flow%20instability&amp;page=175">175</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flow%20instability&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10