CINXE.COM

Search results for: agricultural production systems

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: agricultural production systems</title> <meta name="description" content="Search results for: agricultural production systems"> <meta name="keywords" content="agricultural production systems"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="agricultural production systems" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="agricultural production systems"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 11990</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: agricultural production systems</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11990</span> Complex Analysis of Annual Plats Utilization for Particleboard Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Petra%20Gajda%C4%8Dov%C3%A1">Petra Gajdačová</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The presented research deals with a complex evaluation of after-harvest remnants utilization for particleboard production. Agricultural crops that are in the Czech Republic widely grown are in the scope of interest. Researches dealing with composites from agricultural rests solved mostly physical and mechanical properties of produced materials. For the commercialization of these results, however, one another step is essential. It is needed to evaluate the composites production from agricultural rests more comprehensive, take into account all aspects that affect their production, not only material characteristics of produced composites. In this study, descriptive, comparative and synthesis methods were used. Results of this research include a supply stability forecast, technical and technological differences of production of particleboards from agricultural rests and quantification of an economical potential of the agricultural rests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20crops" title="agricultural crops">agricultural crops</a>, <a href="https://publications.waset.org/abstracts/search?q=annual%20plant" title=" annual plant"> annual plant</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20material" title=" composite material"> composite material</a>, <a href="https://publications.waset.org/abstracts/search?q=particleboard" title=" particleboard"> particleboard</a> </p> <a href="https://publications.waset.org/abstracts/96090/complex-analysis-of-annual-plats-utilization-for-particleboard-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96090.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11989</span> Exploring the Impact of Location on Urban and Peri-Urban Farming: A Case Study from Lusaka, Zambia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cecilia%20Elisabeth%20F%C3%A5hraeus">Cecilia Elisabeth Fåhraeus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In 2016, this author conducted a study on agricultural livelihoods in urban and peri-urban low-income settings in Lusaka, Zambia. The overarching aim was to determine the impact of physical space on agricultural activities, with a particular emphasis on geographical distinctions between urban and peri-urban environments. Agricultural activities among the areas’ residents were mapped through questionnaires, interviews and observations, and included variables such as type of activity and product; degree of marketization; inputs; location of production, storage and vending; labour distribution; production constraints, and associated mobility patterns, among others. The study confirmed that spatial idiosyncrasies of urban and peri-urban environments both enabled and constrained agricultural activity, but not always as anticipated. There were also cross-cutting issues on which physical space appeared to have a limited impact. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20production%20systems" title="agricultural production systems">agricultural production systems</a>, <a href="https://publications.waset.org/abstracts/search?q=geography" title=" geography"> geography</a>, <a href="https://publications.waset.org/abstracts/search?q=low-income%20settlements" title=" low-income settlements"> low-income settlements</a>, <a href="https://publications.waset.org/abstracts/search?q=Lusaka" title=" Lusaka"> Lusaka</a>, <a href="https://publications.waset.org/abstracts/search?q=peri-urban" title=" peri-urban"> peri-urban</a>, <a href="https://publications.waset.org/abstracts/search?q=urban" title=" urban"> urban</a> </p> <a href="https://publications.waset.org/abstracts/61787/exploring-the-impact-of-location-on-urban-and-peri-urban-farming-a-case-study-from-lusaka-zambia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61787.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11988</span> The Use of Fertilizers in the Context of Agricultural Extension</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Altalb">Ahmed Altalb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fertilizers are natural materials, or industrial contain nutrients, which help to improve soil fertility and is considered (nitrogen, phosphorus, and potassium) is important elements for the growth of crops properly. Fertilization is necessary in order to improve the quality of agricultural products and the recovery in agricultural activities. The use of organic fertilizers and chemical lead to reduce the loss of nutrients in agricultural soils, and this leads to an increase in the production of agricultural crops. Fertilizers are one of the key factors in the increase of agricultural production as well as other factors such as irrigation and improved seeds and Prevention and others; the fertilizers will continue to be a cornerstone of the agriculture in order to produce the food to feed of world population. The use of fertilizers has become commonplace today, especially the chemical fertilizers for the development of agricultural production, due to the provision of nutrients for plants and in high concentrations and easily dissolves in water and ease of use. The choose the right type of fertilizer depends on the soil type and the type of crop. In this subject, find the relationship between the agricultural extension and the optimal use of fertilizers. The extension plays the important role in the advise and educate of farmers in how they optimal use the fertilizers in a scientific way. This article aims to identify the concept the fertilizers. Identify the role of fertilizers in increasing the agricultural production, identify the role of agricultural extension in the optimal use of fertilizers and rural development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural" title="agricultural">agricultural</a>, <a href="https://publications.waset.org/abstracts/search?q=extension" title=" extension"> extension</a>, <a href="https://publications.waset.org/abstracts/search?q=fertilizers" title=" fertilizers"> fertilizers</a>, <a href="https://publications.waset.org/abstracts/search?q=production" title=" production"> production</a> </p> <a href="https://publications.waset.org/abstracts/68290/the-use-of-fertilizers-in-the-context-of-agricultural-extension" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68290.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">437</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11987</span> A Multicriteria Mathematical Programming Model for Farm Planning in Greece </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Basil%20Manos">Basil Manos</a>, <a href="https://publications.waset.org/abstracts/search?q=Parthena%20Chatzinikolaou"> Parthena Chatzinikolaou</a>, <a href="https://publications.waset.org/abstracts/search?q=Fedra%20Kiomourtzi"> Fedra Kiomourtzi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a Multicriteria Mathematical Programming model for farm planning and sustainable optimization of agricultural production. The model can be used as a tool for the analysis and simulation of agricultural production plans, as well as for the study of impacts of various measures of Common Agriculture Policy in the member states of European Union. The model can achieve the optimum production plan of a farm or an agricultural region combining in one utility function different conflicting criteria as the maximization of gross margin and the minimization of fertilizers used, under a set of constraints for land, labor, available capital, Common Agricultural Policy etc. The proposed model was applied to the region of Larisa in central Greece. The optimum production plan achieves a greater gross return, a less fertilizers use, and a less irrigated water use than the existent production plan. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainable%20optimization" title="sustainable optimization">sustainable optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=multicriteria%20analysis" title=" multicriteria analysis"> multicriteria analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=agricultural%20production" title=" agricultural production"> agricultural production</a>, <a href="https://publications.waset.org/abstracts/search?q=farm%20planning" title=" farm planning"> farm planning</a> </p> <a href="https://publications.waset.org/abstracts/23688/a-multicriteria-mathematical-programming-model-for-farm-planning-in-greece" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23688.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">604</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11986</span> Negotiating Increased Food Production with African Indigenous Agricultural Knowledge: The Ugandan Case</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harriet%20Najjemba">Harriet Najjemba</a>, <a href="https://publications.waset.org/abstracts/search?q=Simon%20Peter%20Rutabajuuka"> Simon Peter Rutabajuuka</a>, <a href="https://publications.waset.org/abstracts/search?q=Deo%20Katono%20Nzarwa"> Deo Katono Nzarwa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Scientific agricultural knowledge was introduced in Africa, including Uganda, during colonial rule. While this form of knowledge was introduced as part of Western scientific canon, African indigenous knowledge was not destroyed and has remained vital in food production. Modern scientific methods were devoted to export crops while food crop production was left to Africans who continued to use indigenous knowledge. Today, indigenous agricultural knowledge still provides farming skills and practices, more than a century since modern scientific agricultural knowledge was introduced in Uganda. It is evident that there is need to promote the still useful and more accessible indigenous agricultural practices in order to sustain increased food production. It is also important to have a tailor made agricultural knowledge system that combines practical indigenous practices with financially viable western scientific agricultural practices for sustained food production. The proposed paper will explain why the African indigenous agricultural knowledge has persisted and survived for over a century after colonial introduction of western scientific agricultural knowledge. The paper draws on research findings for a PhD study at Makerere University, Uganda. The study uses both written and oral sources, including colonial and postcolonial archival documents, and interviews. It critiques the parameters within which Western farming methods were introduced to African farmers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=food%20production" title="food production">food production</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20shortage" title=" food shortage"> food shortage</a>, <a href="https://publications.waset.org/abstracts/search?q=indigenous%20agricultural%20knowledge" title=" indigenous agricultural knowledge"> indigenous agricultural knowledge</a>, <a href="https://publications.waset.org/abstracts/search?q=western%20scientific%20agricultural%20practices" title=" western scientific agricultural practices"> western scientific agricultural practices</a> </p> <a href="https://publications.waset.org/abstracts/41245/negotiating-increased-food-production-with-african-indigenous-agricultural-knowledge-the-ugandan-case" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41245.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11985</span> A Statistical Approach to Classification of Agricultural Regions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Vural">Hasan Vural</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Turkey is a favorable country to produce a great variety of agricultural products because of her different geographic and climatic conditions which have been used to divide the country into four main and seven sub regions. This classification into seven regions traditionally has been used in order to data collection and publication especially related with agricultural production. Afterwards, nine agricultural regions were considered. Recently, the governmental body which is responsible of data collection and dissemination (Turkish Institute of Statistics-TIS) has used 12 classes which include 11 sub regions and Istanbul province. This study aims to evaluate these classification efforts based on the acreage of ten main crops in a ten years time period (1996-2005). The panel data grouped in 11 subregions has been evaluated by cluster and multivariate statistical methods. It was concluded that from the agricultural production point of view, it will be rather meaningful to consider three main and eight sub-agricultural regions throughout the country. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20region" title="agricultural region">agricultural region</a>, <a href="https://publications.waset.org/abstracts/search?q=factorial%20analysis" title=" factorial analysis"> factorial analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=cluster%20analysis" title=" cluster analysis"> cluster analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=" title=" "> </a> </p> <a href="https://publications.waset.org/abstracts/49118/a-statistical-approach-to-classification-of-agricultural-regions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49118.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11984</span> The Effect of Enzymatic Keratin Hydrolysate on the Susceptibility of Cellulosic-Elastomeric Material to Biodecomposition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20H.%20Tshela%20Ntumba">Y. H. Tshela Ntumba</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Przepi%C3%B3rkowska"> A. Przepiórkowska</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Procho%C5%84"> M. Prochoń</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polymeric materials have become an integral part of every aspect of today's industry. They have wide applications, inter alia, in areas such as medicine, food industry and agriculture. In agriculture, for example, they are used for the production of pots, irrigation systems and for soil mulching. The aim of this study was the attempt to produce a biodecomposable agricultural mat, by coating cotton fabric with a blend of carboxylated styrene-butadiene latex (LBSK) containing the enzymatic hydrolyzate of keratin from cattle hair, which would serve as a material for mulching. The production of such material allows the beneficial management of burdensome tannery waste constituted by keratin from cattle hair and at the same time, the production of agricultural mats that much faster undergo decomposition than commonly used polyethylene mats. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20mat" title="agricultural mat">agricultural mat</a>, <a href="https://publications.waset.org/abstracts/search?q=biodecomposition" title=" biodecomposition"> biodecomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradation" title=" biodegradation"> biodegradation</a>, <a href="https://publications.waset.org/abstracts/search?q=carboxylated%20butadiene-styrene%20latex" title=" carboxylated butadiene-styrene latex"> carboxylated butadiene-styrene latex</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulosic-elastomeric%20material" title=" cellulosic-elastomeric material"> cellulosic-elastomeric material</a>, <a href="https://publications.waset.org/abstracts/search?q=keratin%20hydrolyzate" title=" keratin hydrolyzate"> keratin hydrolyzate</a>, <a href="https://publications.waset.org/abstracts/search?q=mulching" title=" mulching"> mulching</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20hydrolyzate" title=" protein hydrolyzate"> protein hydrolyzate</a> </p> <a href="https://publications.waset.org/abstracts/10015/the-effect-of-enzymatic-keratin-hydrolysate-on-the-susceptibility-of-cellulosic-elastomeric-material-to-biodecomposition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10015.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11983</span> An Approach of High Scalable Production Capacity by Adaption of the Concept &#039;Everything as a Service&#039;</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Johannes%20Atug">Johannes Atug</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefan%20Braunreuther"> Stefan Braunreuther</a>, <a href="https://publications.waset.org/abstracts/search?q=Gunther%20Reinhart"> Gunther Reinhart</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Volatile markets, as well as increasing global competition in manufacturing, lead to a high demand of flexible and agile production systems. These advanced production systems in turn conduct to high capital expenditure along with high investment risks. Developments in production regarding digitalization and cyber-physical systems result to a merger of informational- and operational technology. The approach of this paper is to benefit from this merger and present a framework of a production network with scalable production capacity and low capital expenditure by adaptation of the IT concept 'everything as a service' into the production environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20manufacturing%20system" title="digital manufacturing system">digital manufacturing system</a>, <a href="https://publications.waset.org/abstracts/search?q=everything%20as%20a%20service" title=" everything as a service"> everything as a service</a>, <a href="https://publications.waset.org/abstracts/search?q=reconfigurable%20production" title=" reconfigurable production"> reconfigurable production</a>, <a href="https://publications.waset.org/abstracts/search?q=value%20network" title=" value network"> value network</a> </p> <a href="https://publications.waset.org/abstracts/75074/an-approach-of-high-scalable-production-capacity-by-adaption-of-the-concept-everything-as-a-service" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75074.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11982</span> Linkages Between Climate Change, Agricultural Productivity, Food Security and Economic Growth</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jih%C3%A8ne%20Khalifa">Jihène Khalifa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study analyzed the relationships between Tunisia’s economic growth, food security, agricultural productivity, and climate change using the ARDL model for the period from 1990 to 2022. The ARDL model reveals a positive correlation between economic growth and lagged agricultural productivity. Additionally, the vector autoregressive (VAR) model highlights the beneficial impact of lagged agricultural productivity on economic growth and the negative effect of rainfall on economic growth. Granger causality analysis identifies unidirectional relationships from economic growth to agricultural productivity, crop production, food security, and temperature variations, as well as from temperature variations to crop production. Furthermore, a bidirectional causality is established between crop production and food security. The study underscores the impact of climate change on crop production and suggests the need for adaptive strategies to mitigate these climate effects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=economic%20growth" title="economic growth">economic growth</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture" title=" agriculture"> agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20security" title=" food security"> food security</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=ARDl" title=" ARDl"> ARDl</a>, <a href="https://publications.waset.org/abstracts/search?q=VAR" title=" VAR"> VAR</a> </p> <a href="https://publications.waset.org/abstracts/189244/linkages-between-climate-change-agricultural-productivity-food-security-and-economic-growth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">31</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11981</span> Renewable Energy from Local Waste for Producing of Processed Agricultural Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ruedee%20Niyomrath">Ruedee Niyomrath</a>, <a href="https://publications.waset.org/abstracts/search?q=Somboon%20Sarasit"> Somboon Sarasit</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaisri%20Tharaswatpipat"> Chaisri Tharaswatpipat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research aims to study the potential of local waste material in quantity and quality. The potential for such local forms of waste material used as renewable energy for the production of processed agricultural products. The results of this study are useful to producers of agricultural products to use fuel that in local, reduce production costs, and conservation. The results showed that Samut Songkhram is a small province located in the central Thailand, sea area, and subdivided into 3 districts. This province has a population of 80 percent of farmers and agriculture with 50 percent of the area planted to coconut growing. Productivity of coconut help create value for the primacy of the province. Waste materials from coconut have quantity and quality potentials for processing biomass into charcoal as the renewable energy for the production of processed agricultural products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=waste" title="waste">waste</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=producing%20of%20product" title=" producing of product"> producing of product</a>, <a href="https://publications.waset.org/abstracts/search?q=processed%20agricultural%20products" title=" processed agricultural products"> processed agricultural products</a> </p> <a href="https://publications.waset.org/abstracts/16430/renewable-energy-from-local-waste-for-producing-of-processed-agricultural-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16430.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11980</span> Closed Greenhouse Production Systems for Smart Plant Production in Urban Areas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=U.%20Schmidt">U. Schmidt</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Dannehl"> D. Dannehl</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Schuch"> I. Schuch</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Suhl"> J. Suhl</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Rocksch"> T. Rocksch</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Salazar-Moreno"> R. Salazar-Moreno</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Fitz-Rodrigues"> E. Fitz-Rodrigues</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Rojano%20Aquilar"> A. Rojano Aquilar</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Lopez%20Cruz"> I. Lopez Cruz</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Navas%20Gomez"> G. Navas Gomez</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20A.%20Abraham"> R. A. Abraham</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20C.%20Irineo"> L. C. Irineo</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20G.%20Gilberto"> N. G. Gilberto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The integration of agricultural production systems into urban areas is a challenge for the coming decades. Because of increasing greenhouse gas emission and rising resource consumption as well as costs in animal husbandry, the dietary habits of people in the 21st century have to focus on herbal foods. Intensive plant cultivation systems in large cities and megacities require a smart coupling of information, material and energy flow with the urban infrastructure in terms of Horticulture 4.0. In recent years, many puzzle pieces have been developed for these closed processes at the Humboldt University. To compile these for an urban plant production, it has to be optimized and networked with urban infrastructure systems. In the field of heat energy production, it was shown that with closed greenhouse technology and patented heat exchange and storage technology energy can be provided for heating and domestic hot water supply in the city. Closed water circuits can be drastically reducing the water requirements of plant production in urban areas. Ion sensitive sensors and new disinfection methods can help keep circulating nutrient solutions in the system for a longer time in urban plant production greenhouses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=semi%20closed" title="semi closed">semi closed</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouses" title=" greenhouses"> greenhouses</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20farming" title=" urban farming"> urban farming</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20heat%20collector" title=" solar heat collector"> solar heat collector</a>, <a href="https://publications.waset.org/abstracts/search?q=closed%20water%20cycles" title=" closed water cycles"> closed water cycles</a>, <a href="https://publications.waset.org/abstracts/search?q=aquaponics" title=" aquaponics"> aquaponics</a> </p> <a href="https://publications.waset.org/abstracts/65385/closed-greenhouse-production-systems-for-smart-plant-production-in-urban-areas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65385.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11979</span> A Critical Review of Mechanization in Rice Farming in Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Suheiti">K. Suheiti</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Soni"> P. Soni</a>, <a href="https://publications.waset.org/abstracts/search?q=Yardha"> Yardha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Challenges ahead of Indonesian agricultural development include increasing rural welfare, food needs, and the provision of employment through resource optimization that are laid out in agribusiness system. The agricultural system also responsive to the changing strategic environment. However, mounting pressure of population increase and changes in land-uses, require intensive use of agricultural land with modern agricultural machinery. Similarly, environmentally friendly technologies should continue to be developed in an effort to build and develop a good farming practice model. This paper explains the development of agricultural mechanization in Indonesia, particularly on rice production. The method of the research was analyze secondary data, tabulation and interpretation. The result showed, there was a variety of tools and agricultural machinery that have been produced and used by farmers to support national food security. The role of mechanization was needed to support national rice production and food security achievement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=farming" title="farming">farming</a>, <a href="https://publications.waset.org/abstracts/search?q=Indonesia" title=" Indonesia"> Indonesia</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanization" title=" mechanization"> mechanization</a>, <a href="https://publications.waset.org/abstracts/search?q=rice" title=" rice "> rice </a> </p> <a href="https://publications.waset.org/abstracts/34494/a-critical-review-of-mechanization-in-rice-farming-in-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34494.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">494</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11978</span> Optimization of the Energy Management for a Solar System of an Agricultural Greenhouse</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nora%20Arbaoui">Nora Arbaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachid%20Tadili"> Rachid Tadili</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilham%20Ihoume"> Ilham Ihoume</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To improve the climatic conditions and increase production in the greenhouse during the winter season under the Mediterranean climate, this thesis project proposes a design of an integrated and autonomous solar system for heating, cooling, and conservation of production in an agricultural greenhouse. To study the effectiveness of this system, experiments are conducted in two similar agricultural greenhouses oriented north-south. The first greenhouse is equipped with an active solar system integrated into the double glazing of the greenhouse’s roof, while the second greenhouse has no system, it serves as a controlled greenhouse for comparing thermal and agronomic performance The solar system allowed for an average increase in the indoor temperature of the experimental greenhouse of 6°C compared to the outdoor environment and 4°C compared to the control greenhouse. This improvement in temperature has a favorable effect on the plants' climate and subsequently positively affects their development, quality, and production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20system" title="solar system">solar system</a>, <a href="https://publications.waset.org/abstracts/search?q=agricultural%20greenhouse" title=" agricultural greenhouse"> agricultural greenhouse</a>, <a href="https://publications.waset.org/abstracts/search?q=heating" title=" heating"> heating</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling" title=" cooling"> cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=storage" title=" storage"> storage</a>, <a href="https://publications.waset.org/abstracts/search?q=drying" title=" drying"> drying</a> </p> <a href="https://publications.waset.org/abstracts/158806/optimization-of-the-energy-management-for-a-solar-system-of-an-agricultural-greenhouse" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158806.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11977</span> Knowledge and Ontology Engineering in Continuous Monitoring of Production Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maciej%20Zar%C4%99ba">Maciej Zaręba</a>, <a href="https://publications.waset.org/abstracts/search?q=S%C5%82awomir%20Lasota"> Sławomir Lasota</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The monitoring of manufacturing processes is an important issue in nowadays ERP systems. The identification and analysis of appropriate data for the units that take part in the production process are ones of the most crucial problems. In this paper, the authors introduce a new approach towards modelling the relation between production units, signals, and factors possible to obtain from the production system. The main idea for the system is based on the ontology of production units. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20operation%20management" title="manufacturing operation management">manufacturing operation management</a>, <a href="https://publications.waset.org/abstracts/search?q=OWL" title=" OWL"> OWL</a>, <a href="https://publications.waset.org/abstracts/search?q=ontology%20implementation" title=" ontology implementation"> ontology implementation</a>, <a href="https://publications.waset.org/abstracts/search?q=ontology%20modeling" title=" ontology modeling"> ontology modeling</a> </p> <a href="https://publications.waset.org/abstracts/155251/knowledge-and-ontology-engineering-in-continuous-monitoring-of-production-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155251.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11976</span> Dental Pathologies and Agriculture: Literature Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ricardo%20Andr%C3%A9s%20M%C3%A1rquez%20Ortiz">Ricardo Andrés Márquez Ortiz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: The objective of this literature review is to compile updated information from studies that have addressed the association between dental pathologies and agriculture. Materials and method: The research carried out corresponds to a documentary study of ex post facto retrospective, historiographic, and bibliometric design. An exhaustive bibliographic review search was carried out in databases and the Internet, books and articles on dental anthropology, archeology, and dentistry, on the relationship between dental pathologies and agriculture in prehistoric and current populations from different parts of the world. Subsequently, data collection was carried out through the ATLAS.ti computer program. Conclusions: In an influential article by Turner, which addresses the correlation between caries and the way of subsistence of both prehistoric and modern populations (hunting and gathering, mixed and agricultural economies), an average of 1.3% was found in hunter-gatherer societies, and 10.4% in agricultural societies. Sreebny compared global grain supply data (rice, wheat and corn) with DMF (spoiled, lost and blocked) rates. He concluded that rice has no association with dental caries, corn has a negative correlation, and wheat has a positive correlation. Additionally, intensive monoculture agricultural production systems cause an increase in dental pathologies. Meanwhile, polyculture agriculture, which leads to a more varied diet, generates a better state of dental health. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dental%20pathologies" title="dental pathologies">dental pathologies</a>, <a href="https://publications.waset.org/abstracts/search?q=agricultural%20production%20systems" title=" agricultural production systems"> agricultural production systems</a>, <a href="https://publications.waset.org/abstracts/search?q=extensive%20agriculture" title=" extensive agriculture"> extensive agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=dental%20anthropology" title=" dental anthropology"> dental anthropology</a> </p> <a href="https://publications.waset.org/abstracts/185767/dental-pathologies-and-agriculture-literature-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185767.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">44</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11975</span> A Review: Global Crisis Effects on Agriculture and Animal Production in Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhittin%20Fatih%20Demirhan">Muhittin Fatih Demirhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sibel%20Alapala%20Demirhan"> Sibel Alapala Demirhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agriculture, is also regarded as the primary activity area in all economies. When international comparisons are made Turkey has comparative advantages in agricultural potential. However, it is diffi cult to say that Turkey's agricultural productivity and use of technology is well developed in terms of sufficieny. Turkey, in terms of agricultural production, is one of the rare self-sufficient countries, but for supplying excessive demand of its domesticproduction to foreign markets to obtain the necessary income it is rather insufficient. On the basis of wrong policies implemented during the crisis and found that bottlenecks in agriculture and animal husbandry or agriculture policies of the IMF and World Bank are imposed on countries like Turkey. The IMF and the World Bank, the reduction of support in the agricultural and livestock Turkey, is known to put pressure for the abolition. Under these circumstances, our farmers, livestock producers and breeders of, not a chance to compete in the same market with EU producers. Animal products that capture the productivity levels of developed countries, seems to be our chance to compete with the quality and hygiene criteria. Thus, the discussion of the issue must be raised as for the sector's contribution to the economy in terms of further increasing production of the existing potential in mobilization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20development" title="agricultural development">agricultural development</a>, <a href="https://publications.waset.org/abstracts/search?q=animal%20production" title=" animal production"> animal production</a>, <a href="https://publications.waset.org/abstracts/search?q=competition" title=" competition"> competition</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20crisis" title=" economic crisis"> economic crisis</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20supply" title=" food supply"> food supply</a> </p> <a href="https://publications.waset.org/abstracts/45512/a-review-global-crisis-effects-on-agriculture-and-animal-production-in-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45512.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11974</span> Livestock Production in Vietnam: Technical Efficiency and Productivity Performance Based on Regional Differences</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Diep%20Thanh%20Tung">Diep Thanh Tung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to measure technical efficiency and examine productivity performance of livestock production in regions of Vietnam based on a panel data of 2008–2012. After four years, although there are improvements in efficiency of some regions, low technical efficiency, poor performance of productivity and its compositions are dominant features in almost regions. Households which much depend on livestock income in agricultural income or agricultural income in total income are more vulnerable than the others in term of livestock production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20envelopment%20analysis" title="data envelopment analysis">data envelopment analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=meta-frontier" title=" meta-frontier"> meta-frontier</a>, <a href="https://publications.waset.org/abstracts/search?q=Malmquist" title=" Malmquist"> Malmquist</a>, <a href="https://publications.waset.org/abstracts/search?q=technical%20efficiency" title=" technical efficiency"> technical efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=livestock%20production" title=" livestock production"> livestock production</a> </p> <a href="https://publications.waset.org/abstracts/22117/livestock-production-in-vietnam-technical-efficiency-and-productivity-performance-based-on-regional-differences" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22117.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">706</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11973</span> Identification of the Relationship Between Signals in Continuous Monitoring of Production Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maciej%20Zar%C4%99ba">Maciej Zaręba</a>, <a href="https://publications.waset.org/abstracts/search?q=S%C5%82awomir%20Lasota"> Sławomir Lasota</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding the dependencies between the input signal, that controls the production system and signals, that capture its output, is of a great importance in intelligent systems. The method for identification of the relationship between signals in continuous monitoring of production systems is described in the paper. The method discovers the correlation between changes in the states derived from input signals and resulting changes in the states of output signals of the production system. The method is able to handle system inertia, which determines the time shift of the relationship between the input and output. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20operation%20management" title="manufacturing operation management">manufacturing operation management</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20relationship" title=" signal relationship"> signal relationship</a>, <a href="https://publications.waset.org/abstracts/search?q=continuous%20monitoring" title=" continuous monitoring"> continuous monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20systems" title=" production systems"> production systems</a> </p> <a href="https://publications.waset.org/abstracts/155368/identification-of-the-relationship-between-signals-in-continuous-monitoring-of-production-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155368.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11972</span> Environmental Performance of Olive Oil Production in Greece</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Tsarouhas">P. Tsarouhas</a>, <a href="https://publications.waset.org/abstracts/search?q=Ch.%20Achillas"> Ch. Achillas</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Aidonis"> D. Aidonis</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Folinas"> D. Folinas</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Maslis"> V. Maslis</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Moussiopoulos"> N. Moussiopoulos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agricultural production is a sector with high socioeconomic significance and key implications on employment and nutritional security. However, the impacts of agrifood production and consumption patterns on the environment are considerable, mainly due to the demand of large inputs of resources. This paper presents a case study of olive oil production in Greece, an important agri-product especially for countries in the Mediterranean basin. Life Cycle Analysis has been used to quantify the environmental performance of olive oil production. All key parameters that are associated with the life cycle of olive oil production are studied and environmental “hotspots” are diagnosed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LCA" title="LCA">LCA</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20oil%20production" title=" olive oil production"> olive oil production</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20impact" title=" environmental impact"> environmental impact</a>, <a href="https://publications.waset.org/abstracts/search?q=case%20study" title=" case study"> case study</a>, <a href="https://publications.waset.org/abstracts/search?q=Greece" title=" Greece"> Greece</a> </p> <a href="https://publications.waset.org/abstracts/14486/environmental-performance-of-olive-oil-production-in-greece" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14486.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11971</span> Data Integration in a GIS Geographic Information System Mapping of Agriculture in Semi-Arid Region of Setif, Algeria </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20Riahi">W. Riahi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20L.%20Mansour"> M. L. Mansour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using tools of data processing such as geographic information system (GIS) for the contribution of the space management becomes more and more frequent. It allows collecting and analyzing diverse natural information relative to the same territory. Space technologies play crucial role in agricultural phenomenon analysis. For this, satellite images treatment were used to classify vegetation density and particularly agricultural areas in Setif province by making recourse to the Normalized Difference Vegetation Index (NDVI). This step was completed by mapping agricultural activities of the province by using ArcGIS.10 software in order to display an overall view and to realize spatial analysis of various themes combined between them which are chosen according to their strategic importance in different thematic maps. The synthesis map elaborately showed that geographic information system can contribute significantly to agricultural management by describing potentialities and development opportunities of production systems and agricultural sectors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GIS" title="GIS">GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite%20image" title=" satellite image"> satellite image</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture" title=" agriculture"> agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=NDVI" title=" NDVI"> NDVI</a>, <a href="https://publications.waset.org/abstracts/search?q=thematic%20map" title=" thematic map"> thematic map</a> </p> <a href="https://publications.waset.org/abstracts/18455/data-integration-in-a-gis-geographic-information-system-mapping-of-agriculture-in-semi-arid-region-of-setif-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18455.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11970</span> A Study on Fundamental Problems for Small and Medium Agricultural Machinery Industries in Central Region Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Thepnarintra">P. Thepnarintra</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Nikorn"> S. Nikorn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agricultural machinery industry plays an important role in the industrial development especially the production industry of the country. There has been continuing development responding to the higher demand of the production. However, the problem in agricultural machinery production still exists. Thus, the purpose of this research is to investigate problems on fundamental factors of industry based on the entrepreneurs’ point of view. The focus was on the small and medium size industry receiving a factory license typed number 0660 from the Department of Industrial Works. The investigation was on the comparison between the management of the small and medium size agricultural industry in 3 provinces in the central region of Thailand. Population in this study consisted of 189 company managers or managing directors, of which 101 were from the small size and 88 were from the medium size industry. The data were analyzed to find percentage, arithmetic mean, and standard deviation with independent sample T-test at the statistical significance .05. The results showed that the small and medium size agricultural machinery manufacturers in the central region of Thailand reported high problems in every aspect. When compared the problems on basic factors in running the business, it was found that there was no difference statistically at .05 in managing of the small and medium size agricultural machinery manufacturers. However, there was a statistically significant difference between the small and medium size agricultural machinery manufacturers on the aspect of policy and services of the government. The problems reported by the small and medium size agricultural machinery manufacturers were the services on public tap water and the problem on politic and stability of the country. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20machinery" title="agricultural machinery">agricultural machinery</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturers" title=" manufacturers"> manufacturers</a>, <a href="https://publications.waset.org/abstracts/search?q=problems" title=" problems"> problems</a>, <a href="https://publications.waset.org/abstracts/search?q=on%20running%20the%20business" title=" on running the business"> on running the business</a> </p> <a href="https://publications.waset.org/abstracts/1882/a-study-on-fundamental-problems-for-small-and-medium-agricultural-machinery-industries-in-central-region-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1882.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11969</span> Productivity and Structural Design of Manufacturing Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ryspek%20Usubamatov">Ryspek Usubamatov</a>, <a href="https://publications.waset.org/abstracts/search?q=Tan%20San%20Chin"> Tan San Chin</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarken%20Kapaeva"> Sarken Kapaeva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Productivity of the manufacturing systems depends on technological processes, a technical data of machines and a structure of systems. Technology is presented by the machining mode and data, a technical data presents reliability parameters and auxiliary time for discrete production processes. The term structure of manufacturing systems includes the number of serial and parallel production machines and links between them. Structures of manufacturing systems depend on the complexity of technological processes. Mathematical models of productivity rate for manufacturing systems are important attributes that enable to define best structure by criterion of a productivity rate. These models are important tool in evaluation of the economical efficiency for production systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=productivity" title="productivity">productivity</a>, <a href="https://publications.waset.org/abstracts/search?q=structure" title=" structure"> structure</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20systems" title=" manufacturing systems"> manufacturing systems</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20design" title=" structural design"> structural design</a> </p> <a href="https://publications.waset.org/abstracts/3403/productivity-and-structural-design-of-manufacturing-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3403.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">584</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11968</span> Simulation Model for Evaluating the Impact of Adaptive E-Learning in the Agricultural Sector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maria%20Nabakooza">Maria Nabakooza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Efficient agricultural production is very significant in attaining food sufficiency and security in the world. Many methods are employed by the farmers while attending to their gardens, from manual to mechanized, with Farmers range from subsistence to commercial depending on the motive. This creates a lacuna in the modes of operation in this field as different farmers will take different approaches. This has led to many e-Learning courses being introduced to address this gap. Many e-learning systems use advanced network technologies like Web services, grid computing to promote learning at any time and any place. Many of the existing systems have not inculcated the applicability of the modules in them, the tools to be used and further access whether they are the right tools for the right job. A thorough investigation into the applicability of adaptive eLearning in the agricultural sector has not been taken into account; enabling the assumption that eLearning is the right tool for boosting productivity in this sector. This study comes in to provide an insight and thorough analysis as to whether adaptive eLearning is the right tool for boosting agricultural productivity. The Simulation will adopt a system dynamics modeling approach as a way of examining causality and effect relationship. This study will provide teachers with an insight into which tools they should adopt in designing, and provide students the opportunities to achieve an orderly learning experience through adaptive navigating e-learning services. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agriculture" title="agriculture">agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive" title=" adaptive"> adaptive</a>, <a href="https://publications.waset.org/abstracts/search?q=e-learning" title=" e-learning"> e-learning</a>, <a href="https://publications.waset.org/abstracts/search?q=technology" title=" technology"> technology</a> </p> <a href="https://publications.waset.org/abstracts/63388/simulation-model-for-evaluating-the-impact-of-adaptive-e-learning-in-the-agricultural-sector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63388.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11967</span> Life Cycle Assessment of Bioethanol from Feedstocks in Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thanapat%20Chaireongsirikul">Thanapat Chaireongsirikul</a>, <a href="https://publications.waset.org/abstracts/search?q=Apichit%20Svang-Ariyaskul"> Apichit Svang-Ariyaskul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An analysis of mass balance, energy performance, and environmental impact assessment were performed to evaluate bioethanol production in Thailand. Thailand is an agricultural country. Thai government plans to increase the use of alternative energy to 20 percent by 2022. One of the primary campaigns is to promote a bioethanol production from abundant biomass resources such as bitter cassava, molasses and sugarcane. The bioethanol production is composed of three stages: cultivation, pretreatment, and bioethanol conversion. All of mass, material, fuel, and energy were calculated to determine the environmental impact of three types of bioethanol production: bioethanol production from cassava (CBP), bioethanol production from molasses (MBP), and bioethanol production from rice straw (RBP). The results showed that bioethanol production from cassava has the best environmental performance. CBP contributes less impact when compared to the other processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioethanol%20production" title="bioethanol production">bioethanol production</a>, <a href="https://publications.waset.org/abstracts/search?q=biofuel" title=" biofuel"> biofuel</a>, <a href="https://publications.waset.org/abstracts/search?q=LCA" title=" LCA"> LCA</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20engineering" title=" chemical engineering"> chemical engineering</a> </p> <a href="https://publications.waset.org/abstracts/8268/life-cycle-assessment-of-bioethanol-from-feedstocks-in-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8268.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11966</span> Role of Agriculture Equipment toward Food Security: Case Study of Agriculture Equipment Assistance during President Joko Widodo Era in Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raihan%20Zahirah%20Mauludy%20Ridwan">Raihan Zahirah Mauludy Ridwan</a>, <a href="https://publications.waset.org/abstracts/search?q=Frisca%20Devi%20Choirina"> Frisca Devi Choirina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Indonesia is an agrarian country endowed by fertile soil, supportive weather, and natural resources which can support agricultural activities. There are commodities which produced by local farmers. Even though Indonesia had commodities, it still imports stocks of staple food. To reduce the dependency on imported staple food, President Joko Widodo wants to generate more locally-produced staple food by giving 69.000 tractors, free seeds, and fertilizers to the local farmers. In Indonesia, the problem revolves around the amount of food production especially rice derived from farmers who cannot afford technologies which can support the agricultural activities. Moreover, they cannot afford seeds and fertilizers which can make the production of commodities more effective and have high quality. Therefore, the paper would like to answer how agriculture equipment assistance during President Joko Widodo era can give significant impact towards food security. The purpose of this paper is to explore the role of agriculture equipment assistance and its impact towards Indonesia’s food security. This paper uses Boserup and Ruthenberg theory of agricultural intensification to link agriculture equipment and intensification of production which in the end will have impact towards food security through case study method. The paper affirms that the role of agricultural equipment assistance toward food security in Indonesia is significant toward Indonesia’s food production and security. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20equipment" title="agricultural equipment">agricultural equipment</a>, <a href="https://publications.waset.org/abstracts/search?q=agricultural%20intensification" title=" agricultural intensification"> agricultural intensification</a>, <a href="https://publications.waset.org/abstracts/search?q=Boserup" title=" Boserup"> Boserup</a>, <a href="https://publications.waset.org/abstracts/search?q=Indonesia" title=" Indonesia"> Indonesia</a>, <a href="https://publications.waset.org/abstracts/search?q=Joko%20Widodo" title=" Joko Widodo"> Joko Widodo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruthenberg" title=" Ruthenberg"> Ruthenberg</a> </p> <a href="https://publications.waset.org/abstracts/93213/role-of-agriculture-equipment-toward-food-security-case-study-of-agriculture-equipment-assistance-during-president-joko-widodo-era-in-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93213.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11965</span> Tourist Attraction through Agricultural Way of Life: A Case Study at Tra Que Village, Quang Nam Province, Vietnam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ha%20Van%20Trung">Ha Van Trung</a>, <a href="https://publications.waset.org/abstracts/search?q=Suchint%20Simaraks"> Suchint Simaraks</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agro-tourism is a form of rural tourism that has actively developed in recent years. Tra Que vegetable village has developed this type of tourism to meet the needs of visitors to visit and experience. However, in the process of agricultural tourism development, Tra Que village is facing many issues related to the agricultural way of life, affecting the attraction of tourists. The purpose of this study is to find those issues. The survey questionnaire of 71 households and a semi-structured group interview of 30 households has been applied for the data collection. Research results show that there is a shortage of young workers, lack of training in tourism and agricultural production, and households only exploit a few agricultural activities for tourism. The number of households receiving tourists tends to decrease, and the number of households selling products to tourists at farms accounts for a small proportion. These will affect sustainable agro-tourism development in the future. Focusing on training local households in tourism and agricultural production, encourage young generation to preserve the agricultural way of life, upgrade infrastructure and public services, develop agro-products and tourism services will contribute to the sustainable development of agro-tourism in Tra Que vegetable village in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agro-tourism" title="agro-tourism">agro-tourism</a>, <a href="https://publications.waset.org/abstracts/search?q=way%20of%20life" title=" way of life"> way of life</a>, <a href="https://publications.waset.org/abstracts/search?q=Vietnamese%20tourists" title=" Vietnamese tourists"> Vietnamese tourists</a>, <a href="https://publications.waset.org/abstracts/search?q=Tra%20Que%20vegetable%20village" title=" Tra Que vegetable village"> Tra Que vegetable village</a> </p> <a href="https://publications.waset.org/abstracts/129647/tourist-attraction-through-agricultural-way-of-life-a-case-study-at-tra-que-village-quang-nam-province-vietnam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129647.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11964</span> Agroforestry Systems: A Sustainable Strategy of the Agricultural Systems of Cumaral (Meta), Colombia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amanda%20Silva%20Parra">Amanda Silva Parra</a>, <a href="https://publications.waset.org/abstracts/search?q=Dayra%20Yisel%20Garc%C3%ADa%20Ramirez"> Dayra Yisel García Ramirez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In developing countries, agricultural "modernization" has led to a loss of biodiversity and inefficiency of agricultural systems, manifested in increases in Greenhouse Gas Emissions (GHG) and the C footprint, generating the susceptibility of systems agriculture to environmental problems, loss of biodiversity, depletion of natural resources, soil degradation and loss of nutrients, and a decrease in the supply of products that affect food security for peoples and nations. Each year agriculture emits 10 to 12% (5.1 to 6.1 Gt CO2eq per year) of the total estimated GHG emissions (51 Gt CO2 eq per year). The FAO recommends that countries that have not yet done so consider declaring sustainable agriculture as an essential or strategic activity of public interest within the framework of green economies to better face global climate change. The objective of this research was to estimate the balance of GHG in agricultural systems of Cumaral, Meta (Colombia), to contribute to the recovery and sustainable operation of agricultural systems that guarantee food security and face changes generated by the climate in a more intelligent way. To determine the GHG balances, the IPCC methodologies were applied with a Tier 1 and 2 level of use. It was estimated that all the silvopastoral systems evaluated play an important role in this reconversion compared to conventional systems such as improved pastures. and degraded pastures due to their ability to capture C both in soil and in biomass, generating positive GHG balances, guaranteeing greater sustainability of soil and air resources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20capture" title=" carbon capture"> carbon capture</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20sustainability" title=" environmental sustainability"> environmental sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=GHG%20mitigation" title=" GHG mitigation"> GHG mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=silvopastoral%20systems" title=" silvopastoral systems"> silvopastoral systems</a> </p> <a href="https://publications.waset.org/abstracts/147182/agroforestry-systems-a-sustainable-strategy-of-the-agricultural-systems-of-cumaral-meta-colombia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147182.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11963</span> Regenerative Agriculture: A Green Economy Tool for a Sustainable Crop Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meisam%20Zargar">Meisam Zargar</a>, <a href="https://publications.waset.org/abstracts/search?q=Yurii%20Pleskachov"> Yurii Pleskachov</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Abdelkader"> Mostafa Abdelkader</a>, <a href="https://publications.waset.org/abstracts/search?q=Aldaibe%20Ahmed"> Aldaibe Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Bayat"> Maryam Bayat</a>, <a href="https://publications.waset.org/abstracts/search?q=Malek%20H.%20Walli"> Malek H. Walli</a>, <a href="https://publications.waset.org/abstracts/search?q=Shimendi%20Okbagabir"> Shimendi Okbagabir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increased need of humankind for foodstuffs highlights the intensification of agricultural production. It is necessary either to increase the size of the sown area or to look for new approaches to improve agricultural land productivity. Developing new areas for cultivation is possible due to the intensification of soil cultivation. Nevertheless, this will decrease the effectiveness of de-carbonization programs since this approach will inevitably increase greenhouse gas emissions. Therefore, searching for new solutions to conserve natural resources while obtaining stable predicted crop yields is a vital scientific and technical task. For a long time, destructive land use methods have been used in crop production. The present stage of civilization's development and implementation of new techniques and methods of tillage and crops require the solution of technological, economic, and environmental problems simultaneously with the possibility of creating conditions for the regeneration of soil resources. Implementing these approaches became possible due to the development of new technology for the cultivation of crops based on the exact selective impact on the object of processing. This technology of particular effects of TIV combines the positive accumulated experience of traditional farming systems and resource-saving approaches. Particularly high-quality indicators and cost savings with introducing TIV can be achieved when used on row crops, including vegetables and melons. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20machinery" title="agricultural machinery">agricultural machinery</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetable" title=" vegetable"> vegetable</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation" title=" irrigation"> irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=strip%20system" title=" strip system"> strip system</a> </p> <a href="https://publications.waset.org/abstracts/190121/regenerative-agriculture-a-green-economy-tool-for-a-sustainable-crop-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190121.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">29</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11962</span> Food and Agricultural Waste Management for Sustainable Agriculture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shubhangi%20Salokhe">Shubhangi Salokhe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agriculture encompasses crop and livestock production, forestry, and fisheries for food and non-food products. Farmers combine land, water, commercial inputs, labor, and their management skills into practices and systems that produce food and fibre. Harvesting of agricultural produce is either followed by the processing of fresh produce or storage for later consumption. All these activities result in a vast generation of waste in terms of crop residue or food waste. So, a large amount of agricultural waste is produced every year. Waste arising from food and agricultural sectors has the potential for vast applications. So, agricultural waste management is an essential component of sustainable agriculture. The major portion of the waste comes from the residues of crops on farms, food processing, livestock, aquaculture, and agro-industry waste. Therefore, management of these agricultural wastes is an important task, and it requires robust strategic planning. It can contribute to three pillars of sustainable agriculture development. It protects the environment (environmental pillar), enhances the livelihoods of farmers (economic pillar), and can contribute to increasing the sustainability of the agricultural sector (social pillar). This paper addresses the essential technological aspects, possible solutions, and sound policy concerns to accomplish long-term way out of agriculture waste management and to minimize the negative impact of waste on the environment. The author has developed a sustainable agriculture waste management model for improving the sustainability of agriculture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agriculture" title="agriculture">agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=development" title=" development"> development</a>, <a href="https://publications.waset.org/abstracts/search?q=management" title=" management"> management</a>, <a href="https://publications.waset.org/abstracts/search?q=waste" title=" waste"> waste</a> </p> <a href="https://publications.waset.org/abstracts/185982/food-and-agricultural-waste-management-for-sustainable-agriculture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185982.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">50</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11961</span> Assessment of Conditions and Experience for Plantation of Agro-Energy Crops on Degraded Agricultural Land in Serbia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Djordjevic%20J.%20Sladjana">Djordjevic J. Sladjana</a>, <a href="https://publications.waset.org/abstracts/search?q=Djordjevic-Milo%C5%A1evi%C4%87%20B.%20Suzana"> Djordjevic-Milošević B. Suzana</a>, <a href="https://publications.waset.org/abstracts/search?q=Milo%C5%A1evi%C4%87%20M.%20Slobodan"> Milošević M. Slobodan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The potential of biomass as a renewable energy source leads Serbia to be the top of European countries by the amount of available but unused biomass. Technologies for its use are available and ecologically acceptable. Moreover, they are not expensive high-tech solutions even for the poor investment environment of Serbia, while other options seem to be less achievable. From the other point of view, Serbia has a huge percentage of unused agriculture land. Agricultural production in Serbia languishes: a large share of agricultural land therefore remains untreated, and there is a significant proportion of degraded land. From all the above, biomass intended for energy production is becoming an increasingly important factor in the stabilization of agricultural activities. Orientation towards the growing bioenergy crops versus conventional crop cultivation becomes an interesting option. The aim of this paper is to point out the possibility of growing energy crops in accordance with the conditions and cultural practice in rural areas of Serbia. First of all, the cultivation of energy crops on lower quality land is being discussed, in order to revitalize the rural areas of crops through their inclusion into potential energy sector. Next is the theme of throwing more light on the increase in the area under this competitive agricultural production to correct land use in terms of climate change in Serbia. The goal of this paper is to point out the contribution of the share of biomass in energy production and consumption, and the effect of reducing the negative environmental impact. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agro-energy%20crops" title="agro-energy crops">agro-energy crops</a>, <a href="https://publications.waset.org/abstracts/search?q=conditions%20for%20plantation" title=" conditions for plantation"> conditions for plantation</a>, <a href="https://publications.waset.org/abstracts/search?q=revitalization%20of%20rural%20areas" title=" revitalization of rural areas"> revitalization of rural areas</a>, <a href="https://publications.waset.org/abstracts/search?q=degraded%20and%20unused%20soils" title=" degraded and unused soils"> degraded and unused soils</a> </p> <a href="https://publications.waset.org/abstracts/48429/assessment-of-conditions-and-experience-for-plantation-of-agro-energy-crops-on-degraded-agricultural-land-in-serbia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48429.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=agricultural%20production%20systems&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=agricultural%20production%20systems&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=agricultural%20production%20systems&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=agricultural%20production%20systems&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=agricultural%20production%20systems&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=agricultural%20production%20systems&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=agricultural%20production%20systems&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=agricultural%20production%20systems&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=agricultural%20production%20systems&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=agricultural%20production%20systems&amp;page=399">399</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=agricultural%20production%20systems&amp;page=400">400</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=agricultural%20production%20systems&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10