CINXE.COM

Polarkoordinaten – Wikipedia

<!DOCTYPE html> <html class="client-nojs" lang="de" dir="ltr"> <head> <meta charset="UTF-8"> <title>Polarkoordinaten – Wikipedia</title> <script>(function(){var className="client-js";var cookie=document.cookie.match(/(?:^|; )dewikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t.",".\t,"],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy","wgMonthNames":["","Januar","Februar","März","April","Mai","Juni","Juli","August","September","Oktober","November","Dezember"],"wgRequestId":"12d5cd9e-8400-4c13-9ddd-f0eb2a97fd34","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Polarkoordinaten","wgTitle":"Polarkoordinaten","wgCurRevisionId":244630025,"wgRevisionId":244630025,"wgArticleId":44851,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"], "wgCategories":["Analysis","Analytische Geometrie","Koordinatensystem"],"wgPageViewLanguage":"de","wgPageContentLanguage":"de","wgPageContentModel":"wikitext","wgRelevantPageName":"Polarkoordinaten","wgRelevantArticleId":44851,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":true,"wgFlaggedRevsParams":{"tags":{"accuracy":{"levels":1}}},"wgStableRevisionId":244630025,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"de","pageLanguageDir":"ltr","pageVariantFallbacks":"de"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":50000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled" :true,"wgVector2022LanguageInHeader":false,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q62494","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.gadget.citeRef":"ready","ext.gadget.defaultPlainlinks":"ready","ext.gadget.dewikiCommonHide":"ready","ext.gadget.dewikiCommonLayout":"ready","ext.gadget.dewikiCommonStyle":"ready","ext.gadget.NavFrame":"ready","ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.styles.legacy":"ready","ext.flaggedRevs.basic":"ready","mediawiki.codex.messagebox.styles":"ready", "ext.visualEditor.desktopArticleTarget.noscript":"ready","codex-search-styles":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","mediawiki.toc","skins.vector.legacy.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.flaggedRevs.advanced","ext.gadget.createNewSection","ext.gadget.WikiMiniAtlas","ext.gadget.OpenStreetMap","ext.gadget.CommonsDirekt","ext.gadget.donateLink","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.compactlinks","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=de&amp;modules=codex-search-styles%7Cext.cite.styles%7Cext.flaggedRevs.basic%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cmediawiki.codex.messagebox.styles%7Cskins.vector.styles.legacy%7Cwikibase.client.init&amp;only=styles&amp;skin=vector"> <script async="" src="/w/load.php?lang=de&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=de&amp;modules=ext.gadget.NavFrame%2CciteRef%2CdefaultPlainlinks%2CdewikiCommonHide%2CdewikiCommonLayout%2CdewikiCommonStyle&amp;only=styles&amp;skin=vector"> <link rel="stylesheet" href="/w/load.php?lang=de&amp;modules=site.styles&amp;only=styles&amp;skin=vector"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/1/13/Polar_graph_paper.svg/1200px-Polar_graph_paper.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1137"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/1/13/Polar_graph_paper.svg/800px-Polar_graph_paper.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="758"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/1/13/Polar_graph_paper.svg/640px-Polar_graph_paper.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="606"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Polarkoordinaten – Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//de.m.wikipedia.org/wiki/Polarkoordinaten"> <link rel="alternate" type="application/x-wiki" title="Seite bearbeiten" href="/w/index.php?title=Polarkoordinaten&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (de)"> <link rel="EditURI" type="application/rsd+xml" href="//de.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://de.wikipedia.org/wiki/Polarkoordinaten"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.de"> <link rel="alternate" type="application/atom+xml" title="Atom-Feed für „Wikipedia“" href="/w/index.php?title=Spezial:Letzte_%C3%84nderungen&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin-vector-legacy mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Polarkoordinaten rootpage-Polarkoordinaten skin-vector action-view"><div id="mw-page-base" class="noprint"></div> <div id="mw-head-base" class="noprint"></div> <div id="content" class="mw-body" role="main"> <a id="top"></a> <div id="siteNotice"><!-- CentralNotice --></div> <div class="mw-indicators"> </div> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Polarkoordinaten</span></h1> <div id="bodyContent" class="vector-body"> <div id="siteSub" class="noprint">aus Wikipedia, der freien Enzyklopädie</div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="contentSub2"></div> <div id="jump-to-nav"></div> <a class="mw-jump-link" href="#mw-head">Zur Navigation springen</a> <a class="mw-jump-link" href="#searchInput">Zur Suche springen</a> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="de" dir="ltr"><div class="hintergrundfarbe1 rahmenfarbe1 navigation-not-searchable noprint hatnote navigation-not-searchable" style="border-bottom-style: solid; border-bottom-width: 1px; font-size:95%; margin-bottom:1em; padding: 0.25em; overflow: hidden; word-break: break-word; word-wrap: break-word;" id="Vorlage_Dieser_Artikel"><div class="noviewer noresize" style="display: table-cell; padding-bottom: 0.2em; padding-left: 0.25em; padding-right: 1em; padding-top: 0.2em; vertical-align: middle;" id="bksicon" aria-hidden="true" role="presentation"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/e/ea/Disambig-dark.svg/25px-Disambig-dark.svg.png" decoding="async" width="25" height="19" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/ea/Disambig-dark.svg/38px-Disambig-dark.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/ea/Disambig-dark.svg/50px-Disambig-dark.svg.png 2x" data-file-width="444" data-file-height="340" /></span></span></div> <div style="display: table-cell; vertical-align: middle; width: 100%;"> <div role="navigation"> Dieser Artikel behandelt <b>Polarkoordinaten</b> der Ebene sowie die eng damit verwandten <b>Zylinderkoordinaten</b> im Raum. Für <i>räumliche Polarkoordinaten</i> siehe den Artikel <a href="/wiki/Kugelkoordinaten" title="Kugelkoordinaten">Kugelkoordinaten</a>.</div> </div></div> <figure typeof="mw:File/Thumb"><a href="/wiki/Datei:Polar_graph_paper.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/13/Polar_graph_paper.svg/300px-Polar_graph_paper.svg.png" decoding="async" width="300" height="284" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/13/Polar_graph_paper.svg/450px-Polar_graph_paper.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/13/Polar_graph_paper.svg/600px-Polar_graph_paper.svg.png 2x" data-file-width="495" data-file-height="469" /></a><figcaption>Ein Polargitter verschiedener Winkel mit Grad-Angaben</figcaption></figure> <p>In der <a href="/wiki/Mathematik" title="Mathematik">Mathematik</a> und <a href="/wiki/Geod%C3%A4sie" title="Geodäsie">Geodäsie</a> versteht man unter einem <b>Polarkoordinatensystem</b> (auch: <b>Kreiskoordinatensystem</b>) ein <a href="/wiki/Zweidimensional" class="mw-redirect" title="Zweidimensional">zweidimensionales</a> <a href="/wiki/Koordinatensystem" title="Koordinatensystem">Koordinatensystem</a>, in dem jeder <a href="/wiki/Punkt_(Geometrie)" title="Punkt (Geometrie)">Punkt</a> in einer <a href="/wiki/Ebene_(Mathematik)" title="Ebene (Mathematik)">Ebene</a> durch den <a href="/wiki/Abstand" title="Abstand">Abstand</a> von einem vorgegebenen festen Punkt und durch den <a href="/wiki/Winkel" title="Winkel">Winkel</a> zu einer festen Richtung festgelegt wird. </p><p>Der feste Punkt wird als <i>Pol</i> bezeichnet; er entspricht dem Ursprung bei einem <a href="/wiki/Kartesisches_Koordinatensystem" title="Kartesisches Koordinatensystem">kartesischen Koordinatensystem</a>. Der vom Pol in der festgelegten Richtung ausgehende <a href="/wiki/Strahl_(Geometrie)" title="Strahl (Geometrie)">Strahl</a> heißt <i>Polarachse.</i> Der Abstand vom Pol wird meist mit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span> oder <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C1;<!-- ρ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f7d439671d1289b6a816e6af7a304be40608d64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.202ex; height:2.176ex;" alt="{\displaystyle \rho }"></span> bezeichnet und heißt <i>Radius</i> oder <i>Radialkoordinate,</i> der Winkel wird mit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span> oder <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B8;<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e5ab2664b422d53eb0c7df3b87e1360d75ad9af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:2.176ex;" alt="{\displaystyle \theta }"></span> bezeichnet und heißt <i>Winkelkoordinate, Polarwinkel, Azimut</i> oder <i>Argument.</i> </p><p>Polarkoordinaten bilden einen Spezialfall von <a href="/wiki/Orthogonale_Koordinaten" title="Orthogonale Koordinaten">orthogonalen Koordinaten</a>. Sie sind hilfreich, wenn sich das Verhältnis zwischen zwei Punkten leichter durch Winkel und Abstände beschreiben lässt, als dies mit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>- und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span>-Koordinaten der Fall wäre. In der Geodäsie sind Polarkoordinaten die häufigste Methode zur Einmessung von Punkten (<a href="/wiki/Polaraufnahme" title="Polaraufnahme">Polarmethode</a>). In der <a href="/wiki/Funknavigation" title="Funknavigation">Funknavigation</a> wird das Prinzip oft als „<a href="/wiki/Rho-Theta" title="Rho-Theta">Rho-Theta</a>“ (für Distanz- und Richtungsmessung) bezeichnet. </p><p>In der Mathematik wird die Winkelkoordinate im mathematisch positiven <a href="/wiki/Drehrichtung" title="Drehrichtung">Drehsinn</a> (Gegenuhrzeigersinn) gemessen. Wird gleichzeitig ein kartesisches Koordinatensystem benutzt, so dient in der Regel dessen Koordinatenursprung als Pol und die <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>-Achse als Polarachse. Die Winkelkoordinate wird also von der <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>-Achse aus in Richtung der <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span>-Achse gemessen. In der Geodäsie und in der Navigation wird das <a href="/wiki/Azimut" title="Azimut">Azimut</a> von der Nordrichtung aus im <a href="/wiki/Uhrzeigersinn" class="mw-redirect" title="Uhrzeigersinn">Uhrzeigersinn</a> gemessen. </p><p><a href="/wiki/Polarkoordinatenpapier" title="Polarkoordinatenpapier">Polarkoordinatenpapier</a> ist mit einem Polarkoordinatensystem bedruckt. </p> <div id="toc" class="toc" role="navigation" aria-labelledby="mw-toc-heading"><input type="checkbox" role="button" id="toctogglecheckbox" class="toctogglecheckbox" style="display:none" /><div class="toctitle" lang="de" dir="ltr"><h2 id="mw-toc-heading">Inhaltsverzeichnis</h2><span class="toctogglespan"><label class="toctogglelabel" for="toctogglecheckbox"></label></span></div> <ul> <li class="toclevel-1 tocsection-1"><a href="#Geschichte"><span class="tocnumber">1</span> <span class="toctext">Geschichte</span></a></li> <li class="toclevel-1 tocsection-2"><a href="#Polarkoordinaten_in_der_Ebene:_Kreiskoordinaten"><span class="tocnumber">2</span> <span class="toctext">Polarkoordinaten in der Ebene: Kreiskoordinaten</span></a> <ul> <li class="toclevel-2 tocsection-3"><a href="#Definition"><span class="tocnumber">2.1</span> <span class="toctext">Definition</span></a></li> <li class="toclevel-2 tocsection-4"><a href="#Umrechnung_zwischen_Polarkoordinaten_und_kartesischen_Koordinaten"><span class="tocnumber">2.2</span> <span class="toctext">Umrechnung zwischen Polarkoordinaten und kartesischen Koordinaten</span></a> <ul> <li class="toclevel-3 tocsection-5"><a href="#Umrechnung_von_Polarkoordinaten_in_kartesische_Koordinaten"><span class="tocnumber">2.2.1</span> <span class="toctext">Umrechnung von Polarkoordinaten in kartesische Koordinaten</span></a></li> <li class="toclevel-3 tocsection-6"><a href="#Umrechnung_von_kartesischen_Koordinaten_in_Polarkoordinaten"><span class="tocnumber">2.2.2</span> <span class="toctext">Umrechnung von kartesischen Koordinaten in Polarkoordinaten</span></a> <ul> <li class="toclevel-4 tocsection-7"><a href="#Berechnung_des_Winkels_im_Intervall_(−π,_π]_bzw._(−180°,180°]"><span class="tocnumber">2.2.2.1</span> <span class="toctext">Berechnung des Winkels im Intervall (−π, π] bzw. (−180°,180°]</span></a></li> <li class="toclevel-4 tocsection-8"><a href="#Berechnung_des_Winkels_im_Intervall_[0,_2π)_bzw._[0,_360°)"><span class="tocnumber">2.2.2.2</span> <span class="toctext">Berechnung des Winkels im Intervall [0, 2π) bzw. [0, 360°)</span></a></li> <li class="toclevel-4 tocsection-9"><a href="#Verschiebung_des_Winkels"><span class="tocnumber">2.2.2.3</span> <span class="toctext">Verschiebung des Winkels</span></a></li> </ul> </li> </ul> </li> <li class="toclevel-2 tocsection-10"><a href="#Koordinatenlinien"><span class="tocnumber">2.3</span> <span class="toctext">Koordinatenlinien</span></a></li> <li class="toclevel-2 tocsection-11"><a href="#Lokale_Basisvektoren_und_Orthogonalität"><span class="tocnumber">2.4</span> <span class="toctext">Lokale Basisvektoren und Orthogonalität</span></a></li> <li class="toclevel-2 tocsection-12"><a href="#Metrischer_Tensor"><span class="tocnumber">2.5</span> <span class="toctext">Metrischer Tensor</span></a></li> <li class="toclevel-2 tocsection-13"><a href="#Funktionaldeterminante"><span class="tocnumber">2.6</span> <span class="toctext">Funktionaldeterminante</span></a></li> <li class="toclevel-2 tocsection-14"><a href="#Flächenelement"><span class="tocnumber">2.7</span> <span class="toctext">Flächenelement</span></a></li> <li class="toclevel-2 tocsection-15"><a href="#Linienelement"><span class="tocnumber">2.8</span> <span class="toctext">Linienelement</span></a></li> <li class="toclevel-2 tocsection-16"><a href="#Ortsvektor,_Geschwindigkeit_und_Beschleunigung_in_Polarkoordinaten"><span class="tocnumber">2.9</span> <span class="toctext">Ortsvektor, Geschwindigkeit und Beschleunigung in Polarkoordinaten</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-17"><a href="#Räumliche_Polarkoordinaten:_Zylinder-,_Kegel-_und_Kugelkoordinaten"><span class="tocnumber">3</span> <span class="toctext">Räumliche Polarkoordinaten: Zylinder-, Kegel- und Kugelkoordinaten</span></a> <ul> <li class="toclevel-2 tocsection-18"><a href="#Zylinderkoordinaten"><span class="tocnumber">3.1</span> <span class="toctext">Zylinderkoordinaten</span></a> <ul> <li class="toclevel-3 tocsection-19"><a href="#Umrechnung_zwischen_Zylinderkoordinaten_und_kartesischen_Koordinaten"><span class="tocnumber">3.1.1</span> <span class="toctext">Umrechnung zwischen Zylinderkoordinaten und kartesischen Koordinaten</span></a></li> <li class="toclevel-3 tocsection-20"><a href="#Koordinatenlinien_und_Koordinatenflächen"><span class="tocnumber">3.1.2</span> <span class="toctext">Koordinatenlinien und Koordinatenflächen</span></a></li> <li class="toclevel-3 tocsection-21"><a href="#Lokale_Basisvektoren_und_Orthogonalität_2"><span class="tocnumber">3.1.3</span> <span class="toctext">Lokale Basisvektoren und Orthogonalität</span></a></li> <li class="toclevel-3 tocsection-22"><a href="#Metrischer_Tensor_2"><span class="tocnumber">3.1.4</span> <span class="toctext">Metrischer Tensor</span></a></li> <li class="toclevel-3 tocsection-23"><a href="#Funktionaldeterminante_2"><span class="tocnumber">3.1.5</span> <span class="toctext">Funktionaldeterminante</span></a></li> <li class="toclevel-3 tocsection-24"><a href="#Vektoranalysis"><span class="tocnumber">3.1.6</span> <span class="toctext">Vektoranalysis</span></a> <ul> <li class="toclevel-4 tocsection-25"><a href="#Gradient"><span class="tocnumber">3.1.6.1</span> <span class="toctext">Gradient</span></a></li> <li class="toclevel-4 tocsection-26"><a href="#Divergenz"><span class="tocnumber">3.1.6.2</span> <span class="toctext">Divergenz</span></a></li> <li class="toclevel-4 tocsection-27"><a href="#Rotation"><span class="tocnumber">3.1.6.3</span> <span class="toctext">Rotation</span></a></li> </ul> </li> <li class="toclevel-3 tocsection-28"><a href="#Ortsvektor,_Geschwindigkeit_und_Beschleunigung_in_Zylinderkoordinaten"><span class="tocnumber">3.1.7</span> <span class="toctext">Ortsvektor, Geschwindigkeit und Beschleunigung in Zylinderkoordinaten</span></a></li> </ul> </li> <li class="toclevel-2 tocsection-29"><a href="#Kegelkoordinaten_(Koordinaten-Transformation)"><span class="tocnumber">3.2</span> <span class="toctext">Kegelkoordinaten (Koordinaten-Transformation)</span></a> <ul> <li class="toclevel-3 tocsection-30"><a href="#Parameterdarstellung"><span class="tocnumber">3.2.1</span> <span class="toctext">Parameterdarstellung</span></a></li> <li class="toclevel-3 tocsection-31"><a href="#Flächennormalenvektor"><span class="tocnumber">3.2.2</span> <span class="toctext">Flächennormalenvektor</span></a></li> <li class="toclevel-3 tocsection-32"><a href="#Einheitsvektoren_der_Kegelkoordinaten_in_kartesischen_Komponenten"><span class="tocnumber">3.2.3</span> <span class="toctext">Einheitsvektoren der Kegelkoordinaten in kartesischen Komponenten</span></a></li> <li class="toclevel-3 tocsection-33"><a href="#Transformationsmatrizen"><span class="tocnumber">3.2.4</span> <span class="toctext">Transformationsmatrizen</span></a> <ul> <li class="toclevel-4 tocsection-34"><a href="#Jacobi-Matrix_(Funktionalmatrix)"><span class="tocnumber">3.2.4.1</span> <span class="toctext">Jacobi-Matrix (Funktionalmatrix)</span></a></li> <li class="toclevel-4 tocsection-35"><a href="#Transformationsmatrix_S"><span class="tocnumber">3.2.4.2</span> <span class="toctext">Transformationsmatrix S</span></a></li> </ul> </li> <li class="toclevel-3 tocsection-36"><a href="#Transformation_der_partiellen_Ableitungen"><span class="tocnumber">3.2.5</span> <span class="toctext">Transformation der partiellen Ableitungen</span></a></li> <li class="toclevel-3 tocsection-37"><a href="#Transformation_der_Einheitsvektoren"><span class="tocnumber">3.2.6</span> <span class="toctext">Transformation der Einheitsvektoren</span></a></li> <li class="toclevel-3 tocsection-38"><a href="#Transformation_von_Vektorfeldern"><span class="tocnumber">3.2.7</span> <span class="toctext">Transformation von Vektorfeldern</span></a></li> <li class="toclevel-3 tocsection-39"><a href="#Oberflächen-_und_Volumendifferential"><span class="tocnumber">3.2.8</span> <span class="toctext">Oberflächen- und Volumendifferential</span></a></li> <li class="toclevel-3 tocsection-40"><a href="#Transformierte_Vektor-Differentialoperatoren"><span class="tocnumber">3.2.9</span> <span class="toctext">Transformierte Vektor-Differentialoperatoren</span></a> <ul> <li class="toclevel-4 tocsection-41"><a href="#Nabla-Operator"><span class="tocnumber">3.2.9.1</span> <span class="toctext">Nabla-Operator</span></a></li> <li class="toclevel-4 tocsection-42"><a href="#Gradient_2"><span class="tocnumber">3.2.9.2</span> <span class="toctext">Gradient</span></a></li> <li class="toclevel-4 tocsection-43"><a href="#Divergenz_2"><span class="tocnumber">3.2.9.3</span> <span class="toctext">Divergenz</span></a></li> <li class="toclevel-4 tocsection-44"><a href="#Laplace-Operator"><span class="tocnumber">3.2.9.4</span> <span class="toctext">Laplace-Operator</span></a></li> <li class="toclevel-4 tocsection-45"><a href="#Rotation_2"><span class="tocnumber">3.2.9.5</span> <span class="toctext">Rotation</span></a></li> </ul> </li> </ul> </li> <li class="toclevel-2 tocsection-46"><a href="#Kugelkoordinaten"><span class="tocnumber">3.3</span> <span class="toctext">Kugelkoordinaten</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-47"><a href="#n-dimensionale_Polarkoordinaten"><span class="tocnumber">4</span> <span class="toctext"><i>n</i>-dimensionale Polarkoordinaten</span></a> <ul> <li class="toclevel-2 tocsection-48"><a href="#Umrechnung_in_kartesische_Koordinaten"><span class="tocnumber">4.1</span> <span class="toctext">Umrechnung in kartesische Koordinaten</span></a></li> <li class="toclevel-2 tocsection-49"><a href="#Funktionaldeterminante_3"><span class="tocnumber">4.2</span> <span class="toctext">Funktionaldeterminante</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-50"><a href="#Literatur"><span class="tocnumber">5</span> <span class="toctext">Literatur</span></a></li> <li class="toclevel-1 tocsection-51"><a href="#Weblinks"><span class="tocnumber">6</span> <span class="toctext">Weblinks</span></a></li> <li class="toclevel-1 tocsection-52"><a href="#Einzelnachweise"><span class="tocnumber">7</span> <span class="toctext">Einzelnachweise</span></a></li> </ul> </div> <div class="mw-heading mw-heading2"><h2 id="Geschichte">Geschichte</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Polarkoordinaten&amp;veaction=edit&amp;section=1" title="Abschnitt bearbeiten: Geschichte" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Polarkoordinaten&amp;action=edit&amp;section=1" title="Quellcode des Abschnitts bearbeiten: Geschichte"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Die Begriffe Winkel und Radius wurden bereits von den Menschen des Altertums im ersten Jahrtausend vor Christus verwendet. Der griechische Astronom <a href="/wiki/Hipparchos_(Astronom)" title="Hipparchos (Astronom)">Hipparchos</a> (190–120 v.&#160;Chr.) erstellte eine Tafel von trigonometrischen <a href="/wiki/Sehne_(Mathematik)" class="mw-redirect" title="Sehne (Mathematik)">Sehnenfunktionen</a>, um die Länge der <a href="/wiki/Chord_(Mathematik)" title="Chord (Mathematik)">Sehne</a> für die einzelnen Winkel zu finden. Mit Hilfe dieser Grundlage war es ihm möglich, die Polarkoordinaten zu nutzen, um damit die Position bestimmter Sterne festlegen zu können. Sein Werk umfasste jedoch nur einen Teil des Koordinatensystems.<sup id="cite_ref-milestones_1-0" class="reference"><a href="#cite_note-milestones-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> </p><p>In seiner Abhandlung <i>Über <a href="/wiki/Spirale" title="Spirale">Spiralen</a></i> beschreibt <a href="/wiki/Archimedes" title="Archimedes">Archimedes</a> eine Spirallinie mit einer Funktion, deren Radius sich abhängig von seinem Winkel ändert. Die Arbeit des Griechen umfasste jedoch noch kein volles Koordinatensystem. </p><p>Es gibt verschiedene Beschreibungen, um das Polarkoordinatensystem als Teil eines formalen Koordinatensystems zu definieren. Die gesamte Historie zu diesem Thema wird in dem Aufsatz <i>Origin of Polar Coordinates</i> (Ursprung der Polarkoordinaten) des <a href="/wiki/Harvard_University" title="Harvard University">Harvard</a>-Professors Julian Coolidge zusammengefasst und erläutert.<sup id="cite_ref-coolidge_2-0" class="reference"><a href="#cite_note-coolidge-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> Demnach führten <a href="/wiki/Gr%C3%A9goire_de_Saint-Vincent" title="Grégoire de Saint-Vincent">Grégoire de Saint-Vincent</a> und <a href="/wiki/Bonaventura_Cavalieri" title="Bonaventura Cavalieri">Bonaventura Cavalieri</a> diese Konzeption unabhängig voneinander in der Mitte des 17.&#160;Jahrhunderts ein. Saint-Vincent schrieb im Jahre 1625 auf privater Basis über dieses Thema und veröffentlichte seine Arbeit 1647, während Cavalieri seine Ausarbeitung 1635 veröffentlichte, wobei eine korrigierte Fassung 1653 erschien. Cavalieri benutzte Polarkoordinaten anfangs, um ein Problem in Bezug auf die Fläche der <a href="/wiki/Archimedische_Spirale" title="Archimedische Spirale">Archimedischen Spirale</a> zu lösen. Etwas später verwendete <a href="/wiki/Blaise_Pascal" title="Blaise Pascal">Blaise Pascal</a> Polarkoordinaten, um die Länge von <a href="/wiki/Parabel_(Mathematik)" title="Parabel (Mathematik)">parabolischen</a> Winkeln zu berechnen. </p><p>In dem Werk <i>Method of Fluxions</i> (Fluxionsmethode) (geschrieben 1671, veröffentlicht 1736) betrachtet Sir <a href="/wiki/Isaac_Newton" title="Isaac Newton">Isaac Newton</a> die Transformation zwischen Polarkoordinaten, auf die er sich als „Seventh Manner; For Spirals“, (Siebte Methode; Für Spiralen) bezog, und neun anderen Koordinatensystemen.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> </p><p>Es folgte <a href="/wiki/Jakob_I._Bernoulli" class="mw-redirect" title="Jakob I. Bernoulli">Jacob Bernoulli</a>, der in der Fachzeitschrift <i><a href="/wiki/Acta_Eruditorum" title="Acta Eruditorum">Acta Eruditorum</a></i> (1691) ein System verwendete, das aus einer Geraden und einem Punkt auf dieser Geraden bestand, die er <i>Polarachse</i> bzw. <i>Pol</i> nannte. Die Koordinaten wurden darin durch den Abstand von dem Pol und dem Winkel zu der Polarachse festgelegt. Bernoullis Arbeit reichte bis zu der Formulierung des <a href="/wiki/Kr%C3%BCmmungskreis" title="Krümmungskreis">Krümmungskreises</a> von Kurven, die er durch die genannten Koordinaten ausdrückte. </p><p>Der heute gebräuchliche Begriff <i>Polarkoordinaten</i> wurde von <a href="/wiki/Gregorio_Fontana_(Mathematiker)" title="Gregorio Fontana (Mathematiker)">Gregorio Fontana</a> schließlich eingeführt und in italienischen Schriften des 18.&#160;Jahrhunderts verwendet. Im Folgenden übernahm <a href="/wiki/George_Peacock" title="George Peacock">George Peacock</a> im Jahre 1816 diese Bezeichnung in die englische Sprache, als er die Arbeit von <a href="/wiki/Sylvestre_Lacroix" title="Sylvestre Lacroix">Sylvestre Lacroix</a> <i>Differential and Integral Calculus</i> (Differential und Integralberechnung) in seine Sprache übersetzte.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p><p><a href="/wiki/Alexis-Claude_Clairaut" title="Alexis-Claude Clairaut">Alexis-Claude Clairaut</a> hingegen war der erste, der über Polarkoordinaten in drei Dimensionen nachdachte, deren Entwicklung jedoch erst dem Schweizer Mathematiker <a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a> gelang.<sup id="cite_ref-coolidge_2-1" class="reference"><a href="#cite_note-coolidge-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Polarkoordinaten_in_der_Ebene:_Kreiskoordinaten">Polarkoordinaten in der Ebene: Kreiskoordinaten</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Polarkoordinaten&amp;veaction=edit&amp;section=2" title="Abschnitt bearbeiten: Polarkoordinaten in der Ebene: Kreiskoordinaten" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Polarkoordinaten&amp;action=edit&amp;section=2" title="Quellcode des Abschnitts bearbeiten: Polarkoordinaten in der Ebene: Kreiskoordinaten"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Definition">Definition</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Polarkoordinaten&amp;veaction=edit&amp;section=3" title="Abschnitt bearbeiten: Definition" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Polarkoordinaten&amp;action=edit&amp;section=3" title="Quellcode des Abschnitts bearbeiten: Definition"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Die Polarkoordinaten eines Punktes in der <a href="/wiki/Euklidische_Geometrie" title="Euklidische Geometrie">euklidischen</a> Ebene (ebene Polarkoordinaten) werden in Bezug auf einen <a href="/wiki/Koordinatenursprung" class="mw-redirect" title="Koordinatenursprung">Koordinatenursprung</a> (einen Punkt der Ebene) und eine Richtung (einen im Koordinatenursprung beginnenden <a href="/wiki/Strahl_(Geometrie)" title="Strahl (Geometrie)">Strahl</a>) angegeben. </p><p>Das Polarkoordinatensystem ist dadurch eindeutig festgelegt, dass ein ausgezeichneter Punkt, auch Pol genannt, den Ursprung/Nullpunkt des Koordinatensystems bildet. Ferner wird ein von ihm ausgehender Strahl als sogenannte Polachse ausgezeichnet. Letztlich muss noch eine Richtung (von zwei möglichen), die senkrecht zu dieser Polachse ist, als <i>positiv</i> definiert werden, um den Drehsinn / die Drehrichtung / die Orientierung festzulegen. Nun lässt sich ein Winkel, der Polarwinkel, zwischen einem beliebigen Strahl, der durch den Pol geht, und dieser ausgezeichneten Polachse definieren. Er ist nur bis auf ganzzahlige Umdrehungen um den Pol eindeutig, unabhängig davon, was als <a href="/wiki/Winkelma%C3%9F" title="Winkelmaß">Winkelmaß</a> für ihn gewählt wird. Auf der Polachse selbst erfolgt noch eine beliebige, aber feste Skalierung, um die radiale Einheitslänge zu definieren. Nun kann jedem Paar <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (r,\phi )\in \mathbb {R} _{0}^{+}\times \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>r</mi> <mo>,</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msubsup> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (r,\phi )\in \mathbb {R} _{0}^{+}\times \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f1a35dda6ac618687f2301b0a4a0b89faa9659df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:15.825ex; height:3.176ex;" alt="{\displaystyle (r,\phi )\in \mathbb {R} _{0}^{+}\times \mathbb {R} }"></span> ein Punkt der Ebene eindeutig zugeordnet werden, wobei man die erste Komponente als radiale Länge und die zweite als polaren Winkel ansieht. Solch ein Zahlenpaar bezeichnet man als (nicht notwendigerweise eindeutige) <b>Polarkoordinaten eines Punktes</b> in dieser Ebene. </p> <figure class="mw-default-size mw-halign-left" typeof="mw:File/Thumb"><a href="/wiki/Datei:Ebene_polarkoordinaten.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c5/Ebene_polarkoordinaten.svg/660px-Ebene_polarkoordinaten.svg.png" decoding="async" width="660" height="292" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c5/Ebene_polarkoordinaten.svg/990px-Ebene_polarkoordinaten.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c5/Ebene_polarkoordinaten.svg/1320px-Ebene_polarkoordinaten.svg.png 2x" data-file-width="1205" data-file-height="534" /></a><figcaption></figcaption></figure> <div style="clear:both;"></div> <dl><dd><small>Ebene Polarkoordinaten (mit Winkelangaben in Grad) und ihre Transformation in kartesische Koordinaten</small></dd></dl> <p>Die Koordinate <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span>, eine Länge, wird als Radius (in der Praxis auch als Abstand) und die Koordinate <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03D5;<!-- ϕ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72b1f30316670aee6270a28334bdf4f5072cdde4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.385ex; height:2.509ex;" alt="{\displaystyle \phi }"></span> als (Polar)<a href="/wiki/Winkel" title="Winkel">winkel</a> oder, in der Praxis (gelegentlich) auch als <a href="/wiki/Azimut" title="Azimut">Azimut</a> bezeichnet. </p><p>In der Mathematik wird meistens der Winkel im <i>Gegenuhrzeigersinn</i> als positiv definiert, wenn man senkrecht von oben auf die Ebene (Uhr) <i>schaut.</i> Also geht die <a href="/wiki/Drehrichtung" title="Drehrichtung">Drehrichtung</a> von <i>rechts</i> nach <i>oben</i> (und weiter nach <i>links</i>). Als Winkelmaß wird dabei der <a href="/wiki/Radiant_(Einheit)" title="Radiant (Einheit)">Radiant</a> als Winkeleinheit bevorzugt, weil es dann analytisch am elegantesten zu handhaben ist. Die Polarachse zeigt in grafischen Darstellungen des Koordinatensystems typischerweise nach <i>rechts.</i> </p> <div class="mw-heading mw-heading3"><h3 id="Umrechnung_zwischen_Polarkoordinaten_und_kartesischen_Koordinaten">Umrechnung zwischen Polarkoordinaten und kartesischen Koordinaten</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Polarkoordinaten&amp;veaction=edit&amp;section=4" title="Abschnitt bearbeiten: Umrechnung zwischen Polarkoordinaten und kartesischen Koordinaten" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Polarkoordinaten&amp;action=edit&amp;section=4" title="Quellcode des Abschnitts bearbeiten: Umrechnung zwischen Polarkoordinaten und kartesischen Koordinaten"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="Umrechnung_von_Polarkoordinaten_in_kartesische_Koordinaten">Umrechnung von Polarkoordinaten in kartesische Koordinaten</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Polarkoordinaten&amp;veaction=edit&amp;section=5" title="Abschnitt bearbeiten: Umrechnung von Polarkoordinaten in kartesische Koordinaten" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Polarkoordinaten&amp;action=edit&amp;section=5" title="Quellcode des Abschnitts bearbeiten: Umrechnung von Polarkoordinaten in kartesische Koordinaten"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Wenn man ein <a href="/wiki/Kartesisches_Koordinatensystem" title="Kartesisches Koordinatensystem">kartesisches Koordinatensystem</a> mit gleichem Ursprung wie das Polarkoordinatensystem, dabei die <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>-Achse in der Richtung der Polarachse, und schließlich die positive <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span>-Achse in Richtung des positiven Drehsinnes wählt –&#160;wie in der Abbildung oben rechts dargestellt&#160;–, so ergibt sich für die kartesischen Koordinaten <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> eines Punktes: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=r\cos \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mi>r</mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=r\cos \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ec84f3b8f3196698a3693a21f258e47f270302f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.882ex; height:2.176ex;" alt="{\displaystyle x=r\cos \varphi }"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=r\sin \varphi .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>=</mo> <mi>r</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y=r\sin \varphi .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e7ecba10b6710501c7226761c5b24b4c5c657f8e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.099ex; height:2.676ex;" alt="{\displaystyle y=r\sin \varphi .}"></span></dd></dl> <p>Mit komplexen Zahlen und <a href="/wiki/Komplexwertige_Funktion" title="Komplexwertige Funktion">komplexwertigen Funktionen</a> lässt sich dies schreiben als </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x+iy=r\exp(i\varphi ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>+</mo> <mi>i</mi> <mi>y</mi> <mo>=</mo> <mi>r</mi> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>i</mi> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x+iy=r\exp(i\varphi ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/daa13724fe6977f080acc6a621e8102b6603f3f2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.993ex; height:2.843ex;" alt="{\displaystyle x+iy=r\exp(i\varphi ).}"></span></dd></dl> <div class="mw-heading mw-heading4"><h4 id="Umrechnung_von_kartesischen_Koordinaten_in_Polarkoordinaten">Umrechnung von kartesischen Koordinaten in Polarkoordinaten</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Polarkoordinaten&amp;veaction=edit&amp;section=6" title="Abschnitt bearbeiten: Umrechnung von kartesischen Koordinaten in Polarkoordinaten" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Polarkoordinaten&amp;action=edit&amp;section=6" title="Quellcode des Abschnitts bearbeiten: Umrechnung von kartesischen Koordinaten in Polarkoordinaten"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Die Umrechnung von kartesischen Koordinaten in Polarkoordinaten ist etwas schwieriger, weil man mathematisch gesehen dabei immer auf eine (nicht den gesamten Wertebereich des Vollwinkels umfassende) <a href="/wiki/Trigonometrische_Funktion#Umkehrung" title="Trigonometrische Funktion">trigonometrische Umkehrfunktion</a> angewiesen ist. Zunächst kann aber der Radius <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span> mit dem <a href="/wiki/Satz_des_Pythagoras" title="Satz des Pythagoras">Satz des Pythagoras</a> einfach wie folgt berechnet werden: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r={\sqrt {x^{2}+y^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r={\sqrt {x^{2}+y^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/66fcac81cfac010069078ce8c999bd09f285567f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:13.91ex; height:4.843ex;" alt="{\displaystyle r={\sqrt {x^{2}+y^{2}}}}"></span></dd></dl> <p>Bei der Bestimmung des Winkels <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span> müssen zwei Besonderheiten der Polarkoordinaten berücksichtigt werden: </p> <ul><li>Für <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/894a83e863728b4ee2e12f3a999a09f5f2bf1c89" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.31ex; height:2.176ex;" alt="{\displaystyle r=0}"></span> ist der Winkel <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span> nicht eindeutig bestimmt, sondern könnte jeden beliebigen reellen Wert annehmen. Für eine eindeutige Transformationsvorschrift wird er häufig zu 0 definiert. Die nachfolgenden Formeln sind zur Vereinfachung ihrer Herleitung und Darstellung unter der Voraussetzung <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r\neq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>&#x2260;<!-- ≠ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r\neq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/034cc599221cc81da7ebd4c9090e1a988809b475" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.31ex; height:2.676ex;" alt="{\displaystyle r\neq 0}"></span> angegeben.</li> <li>Für <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r\neq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>&#x2260;<!-- ≠ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r\neq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/034cc599221cc81da7ebd4c9090e1a988809b475" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.31ex; height:2.676ex;" alt="{\displaystyle r\neq 0}"></span> ist der Winkel <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span> nur bis auf ganzzahlige Vielfache von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73efd1f6493490b058097060a572606d2c550a06" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.494ex; height:2.176ex;" alt="{\displaystyle 2\pi }"></span> bestimmt, da die Winkel <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi +2\pi k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> <mo>+</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi +2\pi k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01194f09d7fe1724d5c803053501067c8af2deb7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.066ex; height:2.676ex;" alt="{\displaystyle \varphi +2\pi k}"></span> (für <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k\in \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k\in \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59a12237af5f2ec5fc7c5023f439266bae1380f7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.602ex; height:2.176ex;" alt="{\displaystyle k\in \mathbb {Z} }"></span>) den gleichen Punkt beschreiben. Zum Zwecke einer einfachen und eindeutigen Transformationsvorschrift wird der Winkel <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span> auf ein halboffenes <a href="/wiki/Intervall_(Mathematik)" title="Intervall (Mathematik)">Intervall</a> der Länge <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73efd1f6493490b058097060a572606d2c550a06" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.494ex; height:2.176ex;" alt="{\displaystyle 2\pi }"></span> beschränkt. Üblicherweise werden dazu je nach Anwendungsgebiet die Intervalle <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (-\pi ,\pi ]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C0;<!-- π --></mi> <mo>,</mo> <mi>&#x03C0;<!-- π --></mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (-\pi ,\pi ]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7fbb1843079a9df3d3bbcce3249bb2599790de9c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.058ex; height:2.843ex;" alt="{\displaystyle (-\pi ,\pi ]}"></span> oder <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [0,2\pi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [0,2\pi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ec72cfde732f42822df3cbbe175b7465887eb80" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.242ex; height:2.843ex;" alt="{\displaystyle [0,2\pi )}"></span> gewählt.</li></ul> <p>Für die Berechnung von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span> kann jede der Gleichungen </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cos \varphi ={\frac {x}{r}};\quad \sin \varphi ={\frac {y}{r}};\quad \tan \varphi ={\frac {y}{x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mi>r</mi> </mfrac> </mrow> <mo>;</mo> <mspace width="1em" /> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>y</mi> <mi>r</mi> </mfrac> </mrow> <mo>;</mo> <mspace width="1em" /> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>y</mi> <mi>x</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cos \varphi ={\frac {x}{r}};\quad \sin \varphi ={\frac {y}{r}};\quad \tan \varphi ={\frac {y}{x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2d4041331c2ce772e8513461447afa11a0301072" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:37.38ex; height:4.843ex;" alt="{\displaystyle \cos \varphi ={\frac {x}{r}};\quad \sin \varphi ={\frac {y}{r}};\quad \tan \varphi ={\frac {y}{x}}}"></span></dd></dl> <p>benutzt werden. Allerdings ist der Winkel dadurch nicht eindeutig bestimmt, auch nicht im Intervall <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (-\pi ,\pi ]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C0;<!-- π --></mi> <mo>,</mo> <mi>&#x03C0;<!-- π --></mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (-\pi ,\pi ]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7fbb1843079a9df3d3bbcce3249bb2599790de9c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.058ex; height:2.843ex;" alt="{\displaystyle (-\pi ,\pi ]}"></span> oder <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [0,2\pi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [0,2\pi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ec72cfde732f42822df3cbbe175b7465887eb80" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.242ex; height:2.843ex;" alt="{\displaystyle [0,2\pi )}"></span>, weil keine der drei Funktionen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sin }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sin</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sin }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee55beec18afd710e7ab767964b915b020c65093" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.856ex; height:2.176ex;" alt="{\displaystyle \sin }"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cos }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cos</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cos }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e473a3de151d75296f141f9f482fe59d582a7509" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.111ex; height:1.676ex;" alt="{\displaystyle \cos }"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tan }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tan</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tan }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b57c91704d9ab0366a6436869e2968491efc5155" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.36ex; height:2.009ex;" alt="{\displaystyle \tan }"></span> in diesen Intervallen <a href="/wiki/Injektive_Funktion" title="Injektive Funktion">injektiv</a> ist. Die letzte Gleichung ist außerdem für <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/953917eaf52f2e1baad54c8c9e3d6f9bb3710cdc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.591ex; height:2.176ex;" alt="{\displaystyle x=0}"></span> nicht definiert. Deshalb ist eine Fallunterscheidung nötig, die davon abhängt, in welchem Quadranten sich der Punkt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x,y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x,y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41cf50e4a314ca8e2c30964baa8d26e5be7a9386" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.328ex; height:2.843ex;" alt="{\displaystyle (x,y)}"></span> befindet, das heißt von den Vorzeichen von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span>. </p><p>Mit komplexen Zahlen und <a href="/wiki/Komplexwertige_Funktion" title="Komplexwertige Funktion">komplexwertigen Funktionen</a> lässt sich die Transformation schreiben als </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ln(r)+i\varphi =\ln(x+iy).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>i</mi> <mi>&#x03C6;<!-- φ --></mi> <mo>=</mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>i</mi> <mi>y</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ln(r)+i\varphi =\ln(x+iy).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d0d95b0bb9946d7923e05b3d24f0d0583d54787c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.582ex; height:2.843ex;" alt="{\displaystyle \ln(r)+i\varphi =\ln(x+iy).}"></span></dd></dl> <div class="mw-heading mw-heading5"><h5 id="Berechnung_des_Winkels_im_Intervall_(−π,_π]_bzw._(−180°,180°]"><span id="Berechnung_des_Winkels_im_Intervall_.28.E2.88.92.CF.80.2C_.CF.80.5D_bzw._.28.E2.88.92180.C2.B0.2C180.C2.B0.5D"></span>Berechnung des Winkels im Intervall (−π, π] bzw. (−180°,180°]</h5><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Polarkoordinaten&amp;veaction=edit&amp;section=7" title="Abschnitt bearbeiten: Berechnung des Winkels im Intervall (−π, π] bzw. (−180°,180°]" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Polarkoordinaten&amp;action=edit&amp;section=7" title="Quellcode des Abschnitts bearbeiten: Berechnung des Winkels im Intervall (−π, π] bzw. (−180°,180°]"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Mit Hilfe des <a href="/wiki/Arkustangens" class="mw-redirect" title="Arkustangens">Arkustangens</a> kann <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span> wie folgt im Intervall <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (-\pi ,\pi ]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C0;<!-- π --></mi> <mo>,</mo> <mi>&#x03C0;<!-- π --></mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (-\pi ,\pi ]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7fbb1843079a9df3d3bbcce3249bb2599790de9c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.058ex; height:2.843ex;" alt="{\displaystyle (-\pi ,\pi ]}"></span> bzw. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (-180^{\circ },180^{\circ }]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <msup> <mn>180</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2218;<!-- ∘ --></mo> </mrow> </msup> <mo>,</mo> <msup> <mn>180</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2218;<!-- ∘ --></mo> </mrow> </msup> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (-180^{\circ },180^{\circ }]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52564e11cb8ecd24997d7929ef3ff9a87052b335" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.477ex; height:2.843ex;" alt="{\displaystyle (-180^{\circ },180^{\circ }]}"></span> bestimmt werden: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi ={\begin{cases}\arctan {\frac {y}{x}}&amp;\mathrm {f{\ddot {u}}r} \ x&gt;0\\\left(\arctan {\frac {y}{x}}\right)+\pi &amp;\mathrm {f{\ddot {u}}r} \ x&lt;0,\ y\geq 0\\\left(\arctan {\frac {y}{x}}\right)-\pi &amp;\mathrm {f{\ddot {u}}r} \ x&lt;0,\ y&lt;0\\+\pi /2&amp;\mathrm {f{\ddot {u}}r} \ x=0,\ y&gt;0\\-\pi /2&amp;\mathrm {f{\ddot {u}}r} \ x=0,\ y&lt;0\\\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mi>arctan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>y</mi> <mi>x</mi> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">f</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">u</mi> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mi mathvariant="normal">r</mi> </mrow> <mtext>&#xA0;</mtext> <mi>x</mi> <mo>&gt;</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>(</mo> <mrow> <mi>arctan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>y</mi> <mi>x</mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>&#x03C0;<!-- π --></mi> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">f</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">u</mi> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mi mathvariant="normal">r</mi> </mrow> <mtext>&#xA0;</mtext> <mi>x</mi> <mo>&lt;</mo> <mn>0</mn> <mo>,</mo> <mtext>&#xA0;</mtext> <mi>y</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>(</mo> <mrow> <mi>arctan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>y</mi> <mi>x</mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C0;<!-- π --></mi> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">f</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">u</mi> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mi mathvariant="normal">r</mi> </mrow> <mtext>&#xA0;</mtext> <mi>x</mi> <mo>&lt;</mo> <mn>0</mn> <mo>,</mo> <mtext>&#xA0;</mtext> <mi>y</mi> <mo>&lt;</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>+</mo> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">f</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">u</mi> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mi mathvariant="normal">r</mi> </mrow> <mtext>&#xA0;</mtext> <mi>x</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mtext>&#xA0;</mtext> <mi>y</mi> <mo>&gt;</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">f</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">u</mi> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mi mathvariant="normal">r</mi> </mrow> <mtext>&#xA0;</mtext> <mi>x</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mtext>&#xA0;</mtext> <mi>y</mi> <mo>&lt;</mo> <mn>0</mn> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi ={\begin{cases}\arctan {\frac {y}{x}}&amp;\mathrm {f{\ddot {u}}r} \ x&gt;0\\\left(\arctan {\frac {y}{x}}\right)+\pi &amp;\mathrm {f{\ddot {u}}r} \ x&lt;0,\ y\geq 0\\\left(\arctan {\frac {y}{x}}\right)-\pi &amp;\mathrm {f{\ddot {u}}r} \ x&lt;0,\ y&lt;0\\+\pi /2&amp;\mathrm {f{\ddot {u}}r} \ x=0,\ y&gt;0\\-\pi /2&amp;\mathrm {f{\ddot {u}}r} \ x=0,\ y&lt;0\\\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2003113a6e30d58f149e4d59bb126f5ad9971c89" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -7.17ex; margin-bottom: -0.334ex; width:40.962ex; height:16.009ex;" alt="{\displaystyle \varphi ={\begin{cases}\arctan {\frac {y}{x}}&amp;\mathrm {f{\ddot {u}}r} \ x&gt;0\\\left(\arctan {\frac {y}{x}}\right)+\pi &amp;\mathrm {f{\ddot {u}}r} \ x&lt;0,\ y\geq 0\\\left(\arctan {\frac {y}{x}}\right)-\pi &amp;\mathrm {f{\ddot {u}}r} \ x&lt;0,\ y&lt;0\\+\pi /2&amp;\mathrm {f{\ddot {u}}r} \ x=0,\ y&gt;0\\-\pi /2&amp;\mathrm {f{\ddot {u}}r} \ x=0,\ y&lt;0\\\end{cases}}}"></span></dd></dl> <p>Einige <a href="/wiki/Programmiersprache" title="Programmiersprache">Programmiersprachen</a> (so zuerst <a href="/wiki/Fortran" title="Fortran">Fortran 77</a>) und Anwendungsprogramme (etwa <a href="/wiki/Microsoft_Excel" title="Microsoft Excel">Microsoft Excel</a>) bieten eine Arkustangens-Funktion <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {arctan2} (x,y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>arctan2</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {arctan2} (x,y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4e476a05274fd52b59be5106d852d765eb4192fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.957ex; height:2.843ex;" alt="{\displaystyle \operatorname {arctan2} (x,y)}"></span> mit <a href="/wiki/Arctan2" title="Arctan2">zwei Argumenten</a> an, welche die dargestellten Fallunterscheidungen intern berücksichtigt und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span> für beliebige Werte von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> berechnet. </p><p>Zum selben Ergebnis kommt man, wenn man den Punkt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x,y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x,y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41cf50e4a314ca8e2c30964baa8d26e5be7a9386" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.328ex; height:2.843ex;" alt="{\displaystyle (x,y)}"></span> in der kartesischen Ebene als <a href="/wiki/Komplexe_Zahl#Darstellung_von_komplexen_Zahlen_in_der_komplexen_Zahlenebene" title="Komplexe Zahl">komplexe Zahl</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=x+\mathrm {i} y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>=</mo> <mi>x</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> </mrow> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z=x+\mathrm {i} y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f034e7d7b0ff90492fb520f9af4687b508f8e9d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.159ex; height:2.509ex;" alt="{\displaystyle z=x+\mathrm {i} y}"></span> auffasst und den Winkel </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi =\arg(z)=\Im (\ln z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> <mo>=</mo> <mi>arg</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi mathvariant="normal">&#x2111;<!-- ℑ --></mi> <mo stretchy="false">(</mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi =\arg(z)=\Im (\ln z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e0b3b790cf41b820116b5d3f90a9911022b3111" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.363ex; height:2.843ex;" alt="{\displaystyle \varphi =\arg(z)=\Im (\ln z)}"></span></dd></dl> <p>mittels der <i>Argument</i>-Funktion <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \arg }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>arg</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \arg }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec03a9c123925f400a40064ca491d268f9312956" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.237ex; height:2.009ex;" alt="{\displaystyle \arg }"></span> berechnet oder den Imaginärteil des Logarithmus von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"></span> nimmt. </p><p>Mit Hilfe des <a href="/wiki/Arkuskosinus" class="mw-redirect" title="Arkuskosinus">Arkuskosinus</a> kommt man mit nur zwei Fallunterscheidungen aus: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi ={\begin{cases}+\arccos {\frac {x}{r}}&amp;\mathrm {f{\ddot {u}}r} \ y\geq 0\\-\arccos {\frac {x}{r}}&amp;\mathrm {f{\ddot {u}}r} \ y&lt;0\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mo>+</mo> <mi>arccos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mi>r</mi> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">f</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">u</mi> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mi mathvariant="normal">r</mi> </mrow> <mtext>&#xA0;</mtext> <mi>y</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>arccos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mi>r</mi> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">f</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">u</mi> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mi mathvariant="normal">r</mi> </mrow> <mtext>&#xA0;</mtext> <mi>y</mi> <mo>&lt;</mo> <mn>0</mn> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi ={\begin{cases}+\arccos {\frac {x}{r}}&amp;\mathrm {f{\ddot {u}}r} \ y\geq 0\\-\arccos {\frac {x}{r}}&amp;\mathrm {f{\ddot {u}}r} \ y&lt;0\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64da1cee9ca86b7fa578eb4ba31bbd88c96b0544" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:29.078ex; height:6.176ex;" alt="{\displaystyle \varphi ={\begin{cases}+\arccos {\frac {x}{r}}&amp;\mathrm {f{\ddot {u}}r} \ y\geq 0\\-\arccos {\frac {x}{r}}&amp;\mathrm {f{\ddot {u}}r} \ y&lt;0\end{cases}}}"></span></dd></dl> <p>Durch Ausnutzen der Tatsache, dass in einem <a href="/wiki/Kreis_(Geometrie)" class="mw-redirect" title="Kreis (Geometrie)">Kreis</a> ein <a href="/wiki/Mittelpunktswinkel" class="mw-redirect" title="Mittelpunktswinkel">Mittelpunktswinkel</a> stets doppelt so groß ist wie der zugehörige <a href="/wiki/Umfangswinkel" class="mw-redirect" title="Umfangswinkel">Umfangswinkel</a>, kann das <i>Argument</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span> auch mit Hilfe der Arkustangens-Funktion mit weniger Fallunterscheidungen berechnet werden: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi ={\begin{cases}2\arctan {\frac {y}{r+x}}&amp;\mathrm {f{\ddot {u}}r} \ r+x\neq 0\\\pi &amp;\mathrm {f{\ddot {u}}r} \ r+x=0\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mn>2</mn> <mi>arctan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>y</mi> <mrow> <mi>r</mi> <mo>+</mo> <mi>x</mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">f</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">u</mi> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mi mathvariant="normal">r</mi> </mrow> <mtext>&#xA0;</mtext> <mi>r</mi> <mo>+</mo> <mi>x</mi> <mo>&#x2260;<!-- ≠ --></mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>&#x03C0;<!-- π --></mi> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">f</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">u</mi> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mi mathvariant="normal">r</mi> </mrow> <mtext>&#xA0;</mtext> <mi>r</mi> <mo>+</mo> <mi>x</mi> <mo>=</mo> <mn>0</mn> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi ={\begin{cases}2\arctan {\frac {y}{r+x}}&amp;\mathrm {f{\ddot {u}}r} \ r+x\neq 0\\\pi &amp;\mathrm {f{\ddot {u}}r} \ r+x=0\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/314eb4cebeeb63a88cbf735588e9ce6635e59d0e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:34.765ex; height:6.509ex;" alt="{\displaystyle \varphi ={\begin{cases}2\arctan {\frac {y}{r+x}}&amp;\mathrm {f{\ddot {u}}r} \ r+x\neq 0\\\pi &amp;\mathrm {f{\ddot {u}}r} \ r+x=0\end{cases}}}"></span></dd></dl> <div class="mw-heading mw-heading5"><h5 id="Berechnung_des_Winkels_im_Intervall_[0,_2π)_bzw._[0,_360°)"><span id="Berechnung_des_Winkels_im_Intervall_.5B0.2C_2.CF.80.29_bzw._.5B0.2C_360.C2.B0.29"></span>Berechnung des Winkels im Intervall [0, 2π) bzw. [0, 360°)</h5><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Polarkoordinaten&amp;veaction=edit&amp;section=8" title="Abschnitt bearbeiten: Berechnung des Winkels im Intervall [0, 2π) bzw. [0, 360°)" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Polarkoordinaten&amp;action=edit&amp;section=8" title="Quellcode des Abschnitts bearbeiten: Berechnung des Winkels im Intervall [0, 2π) bzw. [0, 360°)"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Die Berechnung des Winkels <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi '}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x2032;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi '}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41699a838e24ad24212d37ff18eabb15a7765cd4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.205ex; height:3.009ex;" alt="{\displaystyle \varphi &#039;}"></span> im Intervall <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [0,2\pi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [0,2\pi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ec72cfde732f42822df3cbbe175b7465887eb80" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.242ex; height:2.843ex;" alt="{\displaystyle [0,2\pi )}"></span> bzw. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [0^{\circ },360^{\circ })}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2218;<!-- ∘ --></mo> </mrow> </msup> <mo>,</mo> <msup> <mn>360</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2218;<!-- ∘ --></mo> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [0^{\circ },360^{\circ })}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0df35806bdeebb21aaa709288550ef0334081f10" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.344ex; height:2.843ex;" alt="{\displaystyle [0^{\circ },360^{\circ })}"></span> kann im Prinzip so durchgeführt werden, dass der Winkel zunächst wie vorstehend beschrieben im Intervall <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (-\pi ,\pi ]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C0;<!-- π --></mi> <mo>,</mo> <mi>&#x03C0;<!-- π --></mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (-\pi ,\pi ]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7fbb1843079a9df3d3bbcce3249bb2599790de9c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.058ex; height:2.843ex;" alt="{\displaystyle (-\pi ,\pi ]}"></span> berechnet wird und, nur falls er negativ ist, noch um <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73efd1f6493490b058097060a572606d2c550a06" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.494ex; height:2.176ex;" alt="{\displaystyle 2\pi }"></span> vergrößert wird: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi '={\begin{cases}\varphi +2\pi &amp;\mathrm {falls} \ \varphi &lt;0\\\varphi &amp;\mathrm {sonst} \end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mi>&#x03C6;<!-- φ --></mi> <mo>+</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">f</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">l</mi> <mi mathvariant="normal">l</mi> <mi mathvariant="normal">s</mi> </mrow> <mtext>&#xA0;</mtext> <mi>&#x03C6;<!-- φ --></mi> <mo>&lt;</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>&#x03C6;<!-- φ --></mi> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">s</mi> <mi mathvariant="normal">o</mi> <mi mathvariant="normal">n</mi> <mi mathvariant="normal">s</mi> <mi mathvariant="normal">t</mi> </mrow> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi '={\begin{cases}\varphi +2\pi &amp;\mathrm {falls} \ \varphi &lt;0\\\varphi &amp;\mathrm {sonst} \end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b6adfd5fa8674afc079a372f03a1e96a511b729" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:27.575ex; height:6.176ex;" alt="{\displaystyle \varphi &#039;={\begin{cases}\varphi +2\pi &amp;\mathrm {falls} \ \varphi &lt;0\\\varphi &amp;\mathrm {sonst} \end{cases}}}"></span></dd></dl> <p>Durch Abwandlung der ersten obenstehenden Formel kann <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi '}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x2032;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi '}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41699a838e24ad24212d37ff18eabb15a7765cd4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.205ex; height:3.009ex;" alt="{\displaystyle \varphi &#039;}"></span> wie folgt direkt im Intervall <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [0,2\pi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [0,2\pi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ec72cfde732f42822df3cbbe175b7465887eb80" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.242ex; height:2.843ex;" alt="{\displaystyle [0,2\pi )}"></span> bestimmt werden: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi '={\begin{cases}\arctan {\frac {y}{x}}&amp;\mathrm {f{\ddot {u}}r} \ x&gt;0,\ y\geq 0\\\arctan {\frac {y}{x}}+2\pi &amp;\mathrm {f{\ddot {u}}r} \ x&gt;0,\ y&lt;0\\\arctan {\frac {y}{x}}+\pi &amp;\mathrm {f{\ddot {u}}r} \ x&lt;0\\\pi /2&amp;\mathrm {f{\ddot {u}}r} \ x=0,\ y&gt;0\\3\pi /2&amp;\mathrm {f{\ddot {u}}r} \ x=0,\ y&lt;0\\\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mi>arctan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>y</mi> <mi>x</mi> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">f</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">u</mi> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mi mathvariant="normal">r</mi> </mrow> <mtext>&#xA0;</mtext> <mi>x</mi> <mo>&gt;</mo> <mn>0</mn> <mo>,</mo> <mtext>&#xA0;</mtext> <mi>y</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>arctan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>y</mi> <mi>x</mi> </mfrac> </mrow> <mo>+</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">f</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">u</mi> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mi mathvariant="normal">r</mi> </mrow> <mtext>&#xA0;</mtext> <mi>x</mi> <mo>&gt;</mo> <mn>0</mn> <mo>,</mo> <mtext>&#xA0;</mtext> <mi>y</mi> <mo>&lt;</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>arctan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>y</mi> <mi>x</mi> </mfrac> </mrow> <mo>+</mo> <mi>&#x03C0;<!-- π --></mi> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">f</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">u</mi> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mi mathvariant="normal">r</mi> </mrow> <mtext>&#xA0;</mtext> <mi>x</mi> <mo>&lt;</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">f</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">u</mi> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mi mathvariant="normal">r</mi> </mrow> <mtext>&#xA0;</mtext> <mi>x</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mtext>&#xA0;</mtext> <mi>y</mi> <mo>&gt;</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>3</mn> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">f</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">u</mi> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mi mathvariant="normal">r</mi> </mrow> <mtext>&#xA0;</mtext> <mi>x</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mtext>&#xA0;</mtext> <mi>y</mi> <mo>&lt;</mo> <mn>0</mn> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi '={\begin{cases}\arctan {\frac {y}{x}}&amp;\mathrm {f{\ddot {u}}r} \ x&gt;0,\ y\geq 0\\\arctan {\frac {y}{x}}+2\pi &amp;\mathrm {f{\ddot {u}}r} \ x&gt;0,\ y&lt;0\\\arctan {\frac {y}{x}}+\pi &amp;\mathrm {f{\ddot {u}}r} \ x&lt;0\\\pi /2&amp;\mathrm {f{\ddot {u}}r} \ x=0,\ y&gt;0\\3\pi /2&amp;\mathrm {f{\ddot {u}}r} \ x=0,\ y&lt;0\\\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1103544cb922ab7399f49cd1ff2ac65a830e34df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -7.17ex; margin-bottom: -0.334ex; width:40.679ex; height:16.009ex;" alt="{\displaystyle \varphi &#039;={\begin{cases}\arctan {\frac {y}{x}}&amp;\mathrm {f{\ddot {u}}r} \ x&gt;0,\ y\geq 0\\\arctan {\frac {y}{x}}+2\pi &amp;\mathrm {f{\ddot {u}}r} \ x&gt;0,\ y&lt;0\\\arctan {\frac {y}{x}}+\pi &amp;\mathrm {f{\ddot {u}}r} \ x&lt;0\\\pi /2&amp;\mathrm {f{\ddot {u}}r} \ x=0,\ y&gt;0\\3\pi /2&amp;\mathrm {f{\ddot {u}}r} \ x=0,\ y&lt;0\\\end{cases}}}"></span></dd></dl> <p>Die Formel mit dem Arkuskosinus kommt auch in diesem Fall mit nur zwei Fallunterscheidungen aus: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi '={\begin{cases}\arccos {\frac {x}{r}}&amp;\mathrm {f{\ddot {u}}r} \ y\geq 0\\2\pi -\arccos {\frac {x}{r}}&amp;\mathrm {f{\ddot {u}}r} \ y&lt;0\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mi>arccos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mi>r</mi> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">f</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">u</mi> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mi mathvariant="normal">r</mi> </mrow> <mtext>&#xA0;</mtext> <mi>y</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mo>&#x2212;<!-- − --></mo> <mi>arccos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mi>r</mi> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">f</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">u</mi> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mi mathvariant="normal">r</mi> </mrow> <mtext>&#xA0;</mtext> <mi>y</mi> <mo>&lt;</mo> <mn>0</mn> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi '={\begin{cases}\arccos {\frac {x}{r}}&amp;\mathrm {f{\ddot {u}}r} \ y\geq 0\\2\pi -\arccos {\frac {x}{r}}&amp;\mathrm {f{\ddot {u}}r} \ y&lt;0\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e4b04edf391e39829b26cc0231b412d5f4235ffc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:32.903ex; height:6.176ex;" alt="{\displaystyle \varphi &#039;={\begin{cases}\arccos {\frac {x}{r}}&amp;\mathrm {f{\ddot {u}}r} \ y\geq 0\\2\pi -\arccos {\frac {x}{r}}&amp;\mathrm {f{\ddot {u}}r} \ y&lt;0\end{cases}}}"></span></dd></dl> <div class="mw-heading mw-heading5"><h5 id="Verschiebung_des_Winkels">Verschiebung des Winkels</h5><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Polarkoordinaten&amp;veaction=edit&amp;section=9" title="Abschnitt bearbeiten: Verschiebung des Winkels" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Polarkoordinaten&amp;action=edit&amp;section=9" title="Quellcode des Abschnitts bearbeiten: Verschiebung des Winkels"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Bei geodätischen oder anderen Berechnungen können sich Azimute <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span> mit Werten außerhalb des üblichen Intervalls <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi _{\text{min}}\leq \varphi &lt;\varphi _{\text{min}}+2\pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>min</mtext> </mrow> </msub> <mo>&#x2264;<!-- ≤ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>&lt;</mo> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>min</mtext> </mrow> </msub> <mo>+</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi _{\text{min}}\leq \varphi &lt;\varphi _{\text{min}}+2\pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4e84b35e9b0e42ba3953e071b95337ff6072460" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.037ex; height:2.676ex;" alt="{\displaystyle \varphi _{\text{min}}\leq \varphi &lt;\varphi _{\text{min}}+2\pi }"></span> mit der unteren Grenze <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi _{\text{min}}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>min</mtext> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi _{\text{min}}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7573a50560753fae254fb4629adeb6831a6a6e0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.754ex; height:2.676ex;" alt="{\displaystyle \varphi _{\text{min}}=0}"></span> (oder auch <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi _{\text{min}}=-\pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>min</mtext> </mrow> </msub> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi _{\text{min}}=-\pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86d3664f84855a59e444f35f7541289d9bc28969" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.731ex; height:2.509ex;" alt="{\displaystyle \varphi _{\text{min}}=-\pi }"></span>) ergeben. Die Gleichung </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi =\varphi -2\pi \cdot {\bigl \lfloor }{\frac {\varphi -\varphi _{\text{min}}}{2\pi }}{\bigr \rfloor }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03D5;<!-- ϕ --></mi> <mo>=</mo> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">&#x230A;</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>min</mtext> </mrow> </msub> </mrow> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">&#x230B;</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi =\varphi -2\pi \cdot {\bigl \lfloor }{\frac {\varphi -\varphi _{\text{min}}}{2\pi }}{\bigr \rfloor }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2652ca2b7a1e5a9537990609cca079c9ca89f055" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:24.902ex; height:5.176ex;" alt="{\displaystyle \phi =\varphi -2\pi \cdot {\bigl \lfloor }{\frac {\varphi -\varphi _{\text{min}}}{2\pi }}{\bigr \rfloor }}"></span></dd></dl> <p>verschiebt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span> in das gewünschte Intervall, sodass also <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi \in \left[\varphi _{\text{min}},\,\varphi _{\text{min}}+2\pi \right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03D5;<!-- ϕ --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow> <mo>[</mo> <mrow> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>min</mtext> </mrow> </msub> <mo>,</mo> <mspace width="thinmathspace" /> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>min</mtext> </mrow> </msub> <mo>+</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi \in \left[\varphi _{\text{min}},\,\varphi _{\text{min}}+2\pi \right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c9c312fe020b1eaa79e2dcbe1d626c1a2380a3ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.519ex; height:2.843ex;" alt="{\displaystyle \phi \in \left[\varphi _{\text{min}},\,\varphi _{\text{min}}+2\pi \right)}"></span> gilt. Dabei ist <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\mapsto \lfloor x\rfloor }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mo fence="false" stretchy="false">&#x230A;<!-- ⌊ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">&#x230B;<!-- ⌋ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\mapsto \lfloor x\rfloor }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8f3b60078378682c77f591f9e387cbea7151dbe8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.338ex; height:2.843ex;" alt="{\displaystyle x\mapsto \lfloor x\rfloor }"></span> die zur nächsten Ganzzahl abrundende <a href="/wiki/Floor-Funktion" class="mw-redirect" title="Floor-Funktion">Floor-Funktion</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lfloor x\rfloor }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x230A;<!-- ⌊ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">&#x230B;<!-- ⌋ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lfloor x\rfloor }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/738c94c88678dd08a289f90a47a609ce44eedf14" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.394ex; height:2.843ex;" alt="{\displaystyle \lfloor x\rfloor }"></span> also für jedes reelle <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> die größte ganze Zahl, die nicht größer als <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> ist. </p> <div class="mw-heading mw-heading3"><h3 id="Koordinatenlinien">Koordinatenlinien</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Polarkoordinaten&amp;veaction=edit&amp;section=10" title="Abschnitt bearbeiten: Koordinatenlinien" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Polarkoordinaten&amp;action=edit&amp;section=10" title="Quellcode des Abschnitts bearbeiten: Koordinatenlinien"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Die beiden <a href="/wiki/Koordinatenlinie" title="Koordinatenlinie">Koordinatenlinien</a> durch den Punkt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (r_{0}\mid \varphi _{0})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&#x2223;<!-- ∣ --></mo> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (r_{0}\mid \varphi _{0})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a5c73165f6a4577da2a4bb7ad7380d3e858621f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.424ex; height:2.843ex;" alt="{\displaystyle (r_{0}\mid \varphi _{0})}"></span> mit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{0}\neq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&#x2260;<!-- ≠ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r_{0}\neq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d7071cab3295d8920e5ef6c6139e638f51124fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.364ex; height:2.676ex;" alt="{\displaystyle r_{0}\neq 0}"></span> sind die <a href="/wiki/Kurve_(Mathematik)" title="Kurve (Mathematik)">Kurven</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {k}}_{1}(r)={\begin{pmatrix}r\cos \varphi _{0}\\r\sin \varphi _{0}\end{pmatrix}},r\in [0,\infty [\quad und\quad {\vec {k}}_{2}(\varphi )={\begin{pmatrix}r_{0}\cos \varphi \\r_{0}\sin \varphi \end{pmatrix}},\varphi \in [0,2\pi [}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>k</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>r</mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mi>r</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>,</mo> <mi>r</mi> <mo>&#x2208;<!-- ∈ --></mo> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo stretchy="false">[</mo> <mspace width="1em" /> <mi>u</mi> <mi>n</mi> <mi>d</mi> <mspace width="1em" /> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>k</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mtd> </mtr> <mtr> <mtd> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>,</mo> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mo stretchy="false">[</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {k}}_{1}(r)={\begin{pmatrix}r\cos \varphi _{0}\\r\sin \varphi _{0}\end{pmatrix}},r\in [0,\infty [\quad und\quad {\vec {k}}_{2}(\varphi )={\begin{pmatrix}r_{0}\cos \varphi \\r_{0}\sin \varphi \end{pmatrix}},\varphi \in [0,2\pi [}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06ac39216d3fbbf35dcb058ff6008606f46cd18f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:70.979ex; height:6.176ex;" alt="{\displaystyle {\vec {k}}_{1}(r)={\begin{pmatrix}r\cos \varphi _{0}\\r\sin \varphi _{0}\end{pmatrix}},r\in [0,\infty [\quad und\quad {\vec {k}}_{2}(\varphi )={\begin{pmatrix}r_{0}\cos \varphi \\r_{0}\sin \varphi \end{pmatrix}},\varphi \in [0,2\pi [}"></span>,</dd></dl> <p>also eine <a href="/wiki/Strahl_(Geometrie)" title="Strahl (Geometrie)">Halbgerade</a>, die im Koordinatenursprung beginnt, sowie ein Kreis mit dem Radius <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb12fcfddb65e3d1e6a044215f6e833f0cd4337b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.103ex; height:2.009ex;" alt="{\displaystyle r_{0}}"></span> und dem Koordinatenursprung als Mittelpunkt. </p> <div class="mw-heading mw-heading3"><h3 id="Lokale_Basisvektoren_und_Orthogonalität"><span id="Lokale_Basisvektoren_und_Orthogonalit.C3.A4t"></span>Lokale Basisvektoren und Orthogonalität</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Polarkoordinaten&amp;veaction=edit&amp;section=11" title="Abschnitt bearbeiten: Lokale Basisvektoren und Orthogonalität" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Polarkoordinaten&amp;action=edit&amp;section=11" title="Quellcode des Abschnitts bearbeiten: Lokale Basisvektoren und Orthogonalität"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In geradlinigen Koordinatensystemen gibt es eine Basis für den gesamten <a href="/wiki/Vektorraum" title="Vektorraum">Vektorraum</a>, in krummlinigen muss an jedem Punkt eine lokale Basis berechnet werden. Die lokalen Basisvektoren <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle {\vec {b}}_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle {\vec {b}}_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2db0611cc9cff68458e90d4e2d857bf0cfa40772" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.148ex; height:3.176ex;" alt="{\displaystyle \textstyle {\vec {b}}_{1}}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle {\vec {b}}_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle {\vec {b}}_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/744ea3904fd207c10ad23e1c1b686a689b690874" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.148ex; height:3.176ex;" alt="{\displaystyle \textstyle {\vec {b}}_{2}}"></span> an einem Punkt sind Tangentenvektoren an die Koordinatenlinien und ergeben sich aus den Kurvengleichungen durch Ableitung nach dem Kurvenparameter. Zum selben Ergebnis gelangt man auch durch partielle Ableitung der Koordinatentransformation für den Ortsvektor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {r}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {r}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6aec3c9ce13b53e9e24c98e7cce4212627884c91" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.223ex; height:2.343ex;" alt="{\displaystyle {\vec {r}}}"></span> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {r}}={\begin{pmatrix}x\\y\end{pmatrix}}={\begin{pmatrix}r\cos \varphi \\r\sin \varphi \end{pmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>x</mi> </mtd> </mtr> <mtr> <mtd> <mi>y</mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>r</mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mtd> </mtr> <mtr> <mtd> <mi>r</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {r}}={\begin{pmatrix}x\\y\end{pmatrix}}={\begin{pmatrix}r\cos \varphi \\r\sin \varphi \end{pmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/93bfb832c5bebcd7939e3ee36fd0027f084ab1d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:23.549ex; height:6.176ex;" alt="{\displaystyle {\vec {r}}={\begin{pmatrix}x\\y\end{pmatrix}}={\begin{pmatrix}r\cos \varphi \\r\sin \varphi \end{pmatrix}}}"></span></dd></dl> <p>nach den Koordinaten <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {b}}_{1}={\frac {\partial {\vec {r}}}{\partial r}}={\begin{pmatrix}\cos \varphi \\\sin \varphi \end{pmatrix}}\quad }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>r</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mspace width="1em" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {b}}_{1}={\frac {\partial {\vec {r}}}{\partial r}}={\begin{pmatrix}\cos \varphi \\\sin \varphi \end{pmatrix}}\quad }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4bfc430c7abd3bee3fa25f93fd78b29871b05b39" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:23.236ex; height:6.176ex;" alt="{\displaystyle {\vec {b}}_{1}={\frac {\partial {\vec {r}}}{\partial r}}={\begin{pmatrix}\cos \varphi \\\sin \varphi \end{pmatrix}}\quad }"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \quad {\vec {b}}_{2}={\frac {\partial {\vec {r}}}{\partial \varphi }}={\begin{pmatrix}-r\sin \varphi \\r\cos \varphi \end{pmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="1em" /> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03C6;<!-- φ --></mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>r</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mtd> </mtr> <mtr> <mtd> <mi>r</mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \quad {\vec {b}}_{2}={\frac {\partial {\vec {r}}}{\partial \varphi }}={\begin{pmatrix}-r\sin \varphi \\r\cos \varphi \end{pmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a600cfeafb8f24677740aec0e5139985a6082c09" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:26.521ex; height:6.176ex;" alt="{\displaystyle \quad {\vec {b}}_{2}={\frac {\partial {\vec {r}}}{\partial \varphi }}={\begin{pmatrix}-r\sin \varphi \\r\cos \varphi \end{pmatrix}}}"></span>.</dd></dl> <p>Die Basisvektoren haben die Längen </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |{\vec {b}}_{1}|={\sqrt {{\vec {b}}_{1}{\vec {b}}_{1}}}=1\quad }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </msqrt> </mrow> <mo>=</mo> <mn>1</mn> <mspace width="1em" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |{\vec {b}}_{1}|={\sqrt {{\vec {b}}_{1}{\vec {b}}_{1}}}=1\quad }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c98216bded77911cea9187533a0a8e8be49ddf5c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:19.744ex; height:4.676ex;" alt="{\displaystyle |{\vec {b}}_{1}|={\sqrt {{\vec {b}}_{1}{\vec {b}}_{1}}}=1\quad }"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \quad |{\vec {b}}_{2}|={\sqrt {{\vec {b}}_{2}{\vec {b}}_{2}}}=r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </msqrt> </mrow> <mo>=</mo> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \quad |{\vec {b}}_{2}|={\sqrt {{\vec {b}}_{2}{\vec {b}}_{2}}}=r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4e3d70f30a7162e03215faa28d9220c4304d83fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:19.63ex; height:4.676ex;" alt="{\displaystyle \quad |{\vec {b}}_{2}|={\sqrt {{\vec {b}}_{2}{\vec {b}}_{2}}}=r}"></span></dd></dl> <p>und sind zueinander orthogonal, denn es gilt: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {b}}_{1}{\vec {b}}_{2}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {b}}_{1}{\vec {b}}_{2}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f51c4a4677ce15e5163110e8cfdf5ed6ed5f2b10" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.557ex; height:3.176ex;" alt="{\displaystyle {\vec {b}}_{1}{\vec {b}}_{2}=0}"></span>.</dd></dl> <p>Die entsprechenden Koordinatenlinien schneiden sich also rechtwinklig, die Polarkoordinaten bilden somit ein <a href="/wiki/Orthogonale_Koordinaten" title="Orthogonale Koordinaten">orthogonales Koordinatensystem</a>. </p><p>In der <a href="/wiki/Tensor" title="Tensor">Tensorrechnung</a> werden die lokalen Basisvektoren, die tangential zu den Koordinatenlinien verlaufen, wegen ihres Verhaltens bei <a href="/wiki/Koordinatentransformation" title="Koordinatentransformation">Koordinatentransformationen</a> als <a href="/wiki/Tensor#Ko-_und_Kontravarianz_von_Vektoren" title="Tensor">kovariant</a> bezeichnet. </p> <div class="mw-heading mw-heading3"><h3 id="Metrischer_Tensor">Metrischer Tensor</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Polarkoordinaten&amp;veaction=edit&amp;section=12" title="Abschnitt bearbeiten: Metrischer Tensor" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Polarkoordinaten&amp;action=edit&amp;section=12" title="Quellcode des Abschnitts bearbeiten: Metrischer Tensor"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Die Komponenten des kovarianten <a href="/wiki/Metrischer_Tensor" title="Metrischer Tensor">metrischen Tensors</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g=(g_{ij})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g=(g_{ij})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e36129d1e65f26b765daad53fc02c24f1a275aa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:8.61ex; height:3.009ex;" alt="{\displaystyle g=(g_{ij})}"></span> sind die Skalarprodukte der kovarianten lokalen Basisvektoren: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{ij}={\vec {b}}_{i}{\vec {b}}_{j}\quad (i,j\in \{1,2\})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mspace width="1em" /> <mo stretchy="false">(</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>&#x2208;<!-- ∈ --></mo> <mo fence="false" stretchy="false">{</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo fence="false" stretchy="false">}</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{ij}={\vec {b}}_{i}{\vec {b}}_{j}\quad (i,j\in \{1,2\})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c966f2ec22ae66c770b460f17ae7d01b721580cd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:25.033ex; height:3.509ex;" alt="{\displaystyle g_{ij}={\vec {b}}_{i}{\vec {b}}_{j}\quad (i,j\in \{1,2\})}"></span>.</dd></dl> <p>Nach den Rechnungen im vorigen Abschnitt ist damit </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g={\begin{pmatrix}1&amp;0\\0&amp;r^{2}\end{pmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g={\begin{pmatrix}1&amp;0\\0&amp;r^{2}\end{pmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f07a35cac7ab9fd531042bcb5365032291cbe64b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:13.975ex; height:6.176ex;" alt="{\displaystyle g={\begin{pmatrix}1&amp;0\\0&amp;r^{2}\end{pmatrix}}}"></span>.</dd></dl> <div class="mw-heading mw-heading3"><h3 id="Funktionaldeterminante">Funktionaldeterminante</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Polarkoordinaten&amp;veaction=edit&amp;section=13" title="Abschnitt bearbeiten: Funktionaldeterminante" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Polarkoordinaten&amp;action=edit&amp;section=13" title="Quellcode des Abschnitts bearbeiten: Funktionaldeterminante"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Aus den Umrechnungsformeln von Polarkoordinaten in kartesische Koordinaten <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=r\cos \varphi ,\,y=r\sin \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mi>r</mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>y</mi> <mo>=</mo> <mi>r</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=r\cos \varphi ,\,y=r\sin \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/90615acc5063bc3e40fe72dd13c6711ecc14cc64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.756ex; height:2.676ex;" alt="{\displaystyle x=r\cos \varphi ,\,y=r\sin \varphi }"></span> erhält man für die <a href="/wiki/Funktionaldeterminante" title="Funktionaldeterminante">Funktionaldeterminante</a> als <a href="/wiki/Determinante_(Mathematik)" class="mw-redirect" title="Determinante (Mathematik)">Determinante</a> der <a href="/wiki/Jacobi-Matrix" title="Jacobi-Matrix">Jacobi-Matrix</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \det J=\det {\frac {\partial (x,y)}{\partial (r,\varphi )}}={\begin{vmatrix}{\frac {\partial x}{\partial r}}&amp;{\frac {\partial x}{\partial \varphi }}\\{\frac {\partial y}{\partial r}}&amp;{\frac {\partial y}{\partial \varphi }}\end{vmatrix}}={\begin{vmatrix}\cos \varphi &amp;-r\sin \varphi \\\sin \varphi &amp;r\cos \varphi \end{vmatrix}}=r\cos ^{2}\varphi +r\sin ^{2}\varphi =r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">det</mo> <mi>J</mi> <mo>=</mo> <mo movablelimits="true" form="prefix">det</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mo stretchy="false">(</mo> <mi>r</mi> <mo>,</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>|</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>x</mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>r</mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>x</mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03C6;<!-- φ --></mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>y</mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>r</mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>y</mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03C6;<!-- φ --></mi> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>|</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>|</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>r</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mtd> <mtd> <mi>r</mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mtd> </mtr> </mtable> <mo>|</mo> </mrow> </mrow> <mo>=</mo> <mi>r</mi> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>+</mo> <mi>r</mi> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>=</mo> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \det J=\det {\frac {\partial (x,y)}{\partial (r,\varphi )}}={\begin{vmatrix}{\frac {\partial x}{\partial r}}&amp;{\frac {\partial x}{\partial \varphi }}\\{\frac {\partial y}{\partial r}}&amp;{\frac {\partial y}{\partial \varphi }}\end{vmatrix}}={\begin{vmatrix}\cos \varphi &amp;-r\sin \varphi \\\sin \varphi &amp;r\cos \varphi \end{vmatrix}}=r\cos ^{2}\varphi +r\sin ^{2}\varphi =r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0081b2012454c348d20d8f8a811a2ed0d46e8a17" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:77.725ex; height:9.176ex;" alt="{\displaystyle \det J=\det {\frac {\partial (x,y)}{\partial (r,\varphi )}}={\begin{vmatrix}{\frac {\partial x}{\partial r}}&amp;{\frac {\partial x}{\partial \varphi }}\\{\frac {\partial y}{\partial r}}&amp;{\frac {\partial y}{\partial \varphi }}\end{vmatrix}}={\begin{vmatrix}\cos \varphi &amp;-r\sin \varphi \\\sin \varphi &amp;r\cos \varphi \end{vmatrix}}=r\cos ^{2}\varphi +r\sin ^{2}\varphi =r}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Flächenelement"><span id="Fl.C3.A4chenelement"></span>Flächenelement</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Polarkoordinaten&amp;veaction=edit&amp;section=14" title="Abschnitt bearbeiten: Flächenelement" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Polarkoordinaten&amp;action=edit&amp;section=14" title="Quellcode des Abschnitts bearbeiten: Flächenelement"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Datei:Fl%C3%A4chenelement_Polarkoordinaten.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d5/Fl%C3%A4chenelement_Polarkoordinaten.svg/220px-Fl%C3%A4chenelement_Polarkoordinaten.svg.png" decoding="async" width="220" height="239" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d5/Fl%C3%A4chenelement_Polarkoordinaten.svg/330px-Fl%C3%A4chenelement_Polarkoordinaten.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d5/Fl%C3%A4chenelement_Polarkoordinaten.svg/440px-Fl%C3%A4chenelement_Polarkoordinaten.svg.png 2x" data-file-width="106" data-file-height="115" /></a><figcaption> Flächenelement der Breite <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r\cdot \mathrm {d} \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r\cdot \mathrm {d} \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aa3e0ed47c25d67215f548e1211bd0c952ce0ea9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.54ex; height:2.676ex;" alt="{\displaystyle r\cdot \mathrm {d} \varphi }"></span> und der Höhe <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {d} r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {d} r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6061c91ecd3f8919bce745870bb757249fe26bc3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.341ex; height:2.176ex;" alt="{\displaystyle \mathrm {d} r}"></span> in Polarkoordinaten</figcaption></figure> <p>Mit der Funktionaldeterminante ergibt sich für das Flächenelement in Polarkoordinaten: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {d} A=\mathrm {d} x\,\mathrm {d} y=|J|\,\mathrm {d} r\,\mathrm {d} \varphi =r\,\mathrm {d} r\,\mathrm {d} \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>A</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>x</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>y</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>r</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03C6;<!-- φ --></mi> <mo>=</mo> <mi>r</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>r</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {d} A=\mathrm {d} x\,\mathrm {d} y=|J|\,\mathrm {d} r\,\mathrm {d} \varphi =r\,\mathrm {d} r\,\mathrm {d} \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/533e020801aa71fa17d6f708bc978f5abd2c00ea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:33.458ex; height:2.843ex;" alt="{\displaystyle \mathrm {d} A=\mathrm {d} x\,\mathrm {d} y=|J|\,\mathrm {d} r\,\mathrm {d} \varphi =r\,\mathrm {d} r\,\mathrm {d} \varphi }"></span></dd></dl> <p>Wie das nebenstehende Bild zeigt, lässt sich das Flächenelement als ein differentielles Rechteck mit der Breite <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r\cdot \mathrm {d} \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r\cdot \mathrm {d} \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aa3e0ed47c25d67215f548e1211bd0c952ce0ea9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.54ex; height:2.676ex;" alt="{\displaystyle r\cdot \mathrm {d} \varphi }"></span> und der Höhe <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {d} r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {d} r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6061c91ecd3f8919bce745870bb757249fe26bc3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.341ex; height:2.176ex;" alt="{\displaystyle \mathrm {d} r}"></span> interpretieren. </p> <div class="mw-heading mw-heading3"><h3 id="Linienelement">Linienelement</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Polarkoordinaten&amp;veaction=edit&amp;section=15" title="Abschnitt bearbeiten: Linienelement" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Polarkoordinaten&amp;action=edit&amp;section=15" title="Quellcode des Abschnitts bearbeiten: Linienelement"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Aus den obigen Transformationsgleichungen </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=r\cos \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mi>r</mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=r\cos \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ec84f3b8f3196698a3693a21f258e47f270302f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.882ex; height:2.176ex;" alt="{\displaystyle x=r\cos \varphi }"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=r\sin \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>=</mo> <mi>r</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y=r\sin \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/134779a8ff7881855e5fee80bf520c212414de56" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.453ex; height:2.676ex;" alt="{\displaystyle y=r\sin \varphi }"></span></dd></dl> <p>folgen </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {d} x=\cos \varphi \,\mathrm {d} r-r\,\sin \varphi \,\mathrm {d} \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>x</mi> <mo>=</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>r</mi> <mo>&#x2212;<!-- − --></mo> <mi>r</mi> <mspace width="thinmathspace" /> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {d} x=\cos \varphi \,\mathrm {d} r-r\,\sin \varphi \,\mathrm {d} \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/550847c63db138c295457ddf492f46b95a140979" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.093ex; height:2.676ex;" alt="{\displaystyle \mathrm {d} x=\cos \varphi \,\mathrm {d} r-r\,\sin \varphi \,\mathrm {d} \varphi }"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {d} y=\sin \varphi \,\mathrm {d} r+r\,\cos \varphi \,\mathrm {d} \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>y</mi> <mo>=</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>r</mi> <mo>+</mo> <mi>r</mi> <mspace width="thinmathspace" /> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {d} y=\sin \varphi \,\mathrm {d} r+r\,\cos \varphi \,\mathrm {d} \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9dcf9e5e5736a7a3079ff2645c57b17588de270d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.919ex; height:2.676ex;" alt="{\displaystyle \mathrm {d} y=\sin \varphi \,\mathrm {d} r+r\,\cos \varphi \,\mathrm {d} \varphi }"></span></dd></dl> <p>Für das kartesische <a href="/wiki/Linienelement" class="mw-redirect" title="Linienelement">Linienelement</a> gilt </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {d} s^{2}=\mathrm {d} x^{2}+\mathrm {d} y^{2}\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {d} s^{2}=\mathrm {d} x^{2}+\mathrm {d} y^{2}\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f12bc531ebfb47e19fe1924f95ed5c45001f61fa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:16.947ex; height:3.009ex;" alt="{\displaystyle \mathrm {d} s^{2}=\mathrm {d} x^{2}+\mathrm {d} y^{2}\,}"></span></dd></dl> <p>wofür in Polarkoordinaten folgt: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {d} s^{2}=\mathrm {d} r^{2}+r^{2}\,\mathrm {d} \varphi ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <msup> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {d} s^{2}=\mathrm {d} r^{2}+r^{2}\,\mathrm {d} \varphi ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aa530dc43613039ad600c77f4778d0a6c757d2d2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.128ex; height:3.176ex;" alt="{\displaystyle \mathrm {d} s^{2}=\mathrm {d} r^{2}+r^{2}\,\mathrm {d} \varphi ^{2}}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Ortsvektor,_Geschwindigkeit_und_Beschleunigung_in_Polarkoordinaten"><span id="Ortsvektor.2C_Geschwindigkeit_und_Beschleunigung_in_Polarkoordinaten"></span>Ortsvektor, Geschwindigkeit und Beschleunigung in Polarkoordinaten</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Polarkoordinaten&amp;veaction=edit&amp;section=16" title="Abschnitt bearbeiten: Ortsvektor, Geschwindigkeit und Beschleunigung in Polarkoordinaten" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Polarkoordinaten&amp;action=edit&amp;section=16" title="Quellcode des Abschnitts bearbeiten: Ortsvektor, Geschwindigkeit und Beschleunigung in Polarkoordinaten"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Mit den lokalen Basiseinheitsvektoren </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {e}}_{r}={\begin{pmatrix}\cos \varphi \\\sin \varphi \end{pmatrix}}\quad }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mspace width="1em" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {e}}_{r}={\begin{pmatrix}\cos \varphi \\\sin \varphi \end{pmatrix}}\quad }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b7a63865de83671bfbf8e13ee689dcbf620a68e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:16.809ex; height:6.176ex;" alt="{\displaystyle {\vec {e}}_{r}={\begin{pmatrix}\cos \varphi \\\sin \varphi \end{pmatrix}}\quad }"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \quad {\vec {e}}_{\varphi }={\begin{pmatrix}-\sin \varphi \\\cos \varphi \end{pmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="1em" /> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C6;<!-- φ --></mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mtd> </mtr> <mtr> <mtd> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \quad {\vec {e}}_{\varphi }={\begin{pmatrix}-\sin \varphi \\\cos \varphi \end{pmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ec82886bdaf268eebeecf8e9843a5cba3ea865e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:19.082ex; height:6.176ex;" alt="{\displaystyle \quad {\vec {e}}_{\varphi }={\begin{pmatrix}-\sin \varphi \\\cos \varphi \end{pmatrix}}}"></span></dd></dl> <p>ergibt sich für den Ortsvektor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {r}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {r}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6aec3c9ce13b53e9e24c98e7cce4212627884c91" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.223ex; height:2.343ex;" alt="{\displaystyle {\vec {r}}}"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {r}}={\begin{pmatrix}x\\y\end{pmatrix}}={\begin{pmatrix}r\cos \varphi \\r\sin \varphi \end{pmatrix}}=r\,{\vec {e}}_{r}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>x</mi> </mtd> </mtr> <mtr> <mtd> <mi>y</mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>r</mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mtd> </mtr> <mtr> <mtd> <mi>r</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>=</mo> <mi>r</mi> <mspace width="thinmathspace" /> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {r}}={\begin{pmatrix}x\\y\end{pmatrix}}={\begin{pmatrix}r\cos \varphi \\r\sin \varphi \end{pmatrix}}=r\,{\vec {e}}_{r}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8728b699d70736c92f990e5d5b7241fea5161c66" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:30.28ex; height:6.176ex;" alt="{\displaystyle {\vec {r}}={\begin{pmatrix}x\\y\end{pmatrix}}={\begin{pmatrix}r\cos \varphi \\r\sin \varphi \end{pmatrix}}=r\,{\vec {e}}_{r}}"></span>.</dd></dl> <p>Ist der Ortsvektor abhängig von der Zeit, so müssen die Variablen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span> und damit auch die lokalen Basisvektoren abgeleitet werden: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\dot {{\vec {e}}_{r}}}={\begin{pmatrix}-\sin \varphi \\\cos \varphi \end{pmatrix}}\,{\dot {\varphi }}={\dot {\varphi }}\,{\vec {e}}_{\varphi }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mtd> </mtr> <mtr> <mtd> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mspace width="thinmathspace" /> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C6;<!-- φ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\dot {{\vec {e}}_{r}}}={\begin{pmatrix}-\sin \varphi \\\cos \varphi \end{pmatrix}}\,{\dot {\varphi }}={\dot {\varphi }}\,{\vec {e}}_{\varphi }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ed69aeecf341cafd0aeb597eb25efd53993ea37" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:25.898ex; height:6.176ex;" alt="{\displaystyle {\dot {{\vec {e}}_{r}}}={\begin{pmatrix}-\sin \varphi \\\cos \varphi \end{pmatrix}}\,{\dot {\varphi }}={\dot {\varphi }}\,{\vec {e}}_{\varphi }}"></span>.</dd></dl> <p>Mit der Produktregel ergibt sich somit für den Geschwindigkeitsvektor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\dot {\vec {r}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\dot {\vec {r}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d0622c7d4647179011ad0bc43548fc6abd756db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.257ex; height:2.843ex;" alt="{\displaystyle {\dot {\vec {r}}}}"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\dot {\vec {r}}}={\dot {r}}\,{\vec {e}}_{r}+r\,{\dot {{\vec {e}}_{r}}}={\dot {r}}\,{\vec {e}}_{r}+r\,{\dot {\varphi }}\,{\vec {e}}_{\varphi }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mspace width="thinmathspace" /> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> <mo>+</mo> <mi>r</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mspace width="thinmathspace" /> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> <mo>+</mo> <mi>r</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mspace width="thinmathspace" /> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C6;<!-- φ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\dot {\vec {r}}}={\dot {r}}\,{\vec {e}}_{r}+r\,{\dot {{\vec {e}}_{r}}}={\dot {r}}\,{\vec {e}}_{r}+r\,{\dot {\varphi }}\,{\vec {e}}_{\varphi }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04be98724028b6d4f82d0a90a2bd4ad9a2a9ea50" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:30.407ex; height:3.509ex;" alt="{\displaystyle {\dot {\vec {r}}}={\dot {r}}\,{\vec {e}}_{r}+r\,{\dot {{\vec {e}}_{r}}}={\dot {r}}\,{\vec {e}}_{r}+r\,{\dot {\varphi }}\,{\vec {e}}_{\varphi }}"></span>.</dd></dl> <p>Eine entsprechende Rechnung führt für die Beschleunigung <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\ddot {\vec {r}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\ddot {\vec {r}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f02da80a6ce3388352e6efdec76e57ecf79f87ba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.257ex; height:2.843ex;" alt="{\displaystyle {\ddot {\vec {r}}}}"></span> zu dem Ergebnis </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\ddot {\vec {r}}}=({\ddot {r}}-r{\dot {\varphi }}^{2})\,{\vec {e}}_{r}+(2{\dot {r}}{\dot {\varphi }}+r{\ddot {\varphi }})\,{\vec {e}}_{\varphi }.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>r</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> <mo>+</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C6;<!-- φ --></mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\ddot {\vec {r}}}=({\ddot {r}}-r{\dot {\varphi }}^{2})\,{\vec {e}}_{r}+(2{\dot {r}}{\dot {\varphi }}+r{\ddot {\varphi }})\,{\vec {e}}_{\varphi }.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a74fdca6eba29170aa4c2515e7969fdf348b3f8c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:34.145ex; height:3.509ex;" alt="{\displaystyle {\ddot {\vec {r}}}=({\ddot {r}}-r{\dot {\varphi }}^{2})\,{\vec {e}}_{r}+(2{\dot {r}}{\dot {\varphi }}+r{\ddot {\varphi }})\,{\vec {e}}_{\varphi }.}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Räumliche_Polarkoordinaten:_Zylinder-,_Kegel-_und_Kugelkoordinaten"><span id="R.C3.A4umliche_Polarkoordinaten:_Zylinder-.2C_Kegel-_und_Kugelkoordinaten"></span>Räumliche Polarkoordinaten: Zylinder-, Kegel- und Kugelkoordinaten</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Polarkoordinaten&amp;veaction=edit&amp;section=17" title="Abschnitt bearbeiten: Räumliche Polarkoordinaten: Zylinder-, Kegel- und Kugelkoordinaten" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Polarkoordinaten&amp;action=edit&amp;section=17" title="Quellcode des Abschnitts bearbeiten: Räumliche Polarkoordinaten: Zylinder-, Kegel- und Kugelkoordinaten"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Zylinderkoordinaten">Zylinderkoordinaten</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Polarkoordinaten&amp;veaction=edit&amp;section=18" title="Abschnitt bearbeiten: Zylinderkoordinaten" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Polarkoordinaten&amp;action=edit&amp;section=18" title="Quellcode des Abschnitts bearbeiten: Zylinderkoordinaten"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Datei:Cylindrical_Coordinates.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b7/Cylindrical_Coordinates.svg/220px-Cylindrical_Coordinates.svg.png" decoding="async" width="220" height="219" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b7/Cylindrical_Coordinates.svg/330px-Cylindrical_Coordinates.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b7/Cylindrical_Coordinates.svg/440px-Cylindrical_Coordinates.svg.png 2x" data-file-width="748" data-file-height="745" /></a><figcaption>Zylinderkoordinaten</figcaption></figure> <p><b>Zylinderkoordinaten</b> oder <b>zylindrische Koordinaten</b> sind im Wesentlichen ebene Polarkoordinaten, die um eine dritte Koordinate ergänzt sind. Diese dritte Koordinate beschreibt die Höhe eines Punktes senkrecht über (oder unter) der Ebene des Polarkoordinatensystems und wird im Allgemeinen mit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"></span> bezeichnet. Die Koordinate <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {\rho } }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C1;<!-- ρ --></mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {\rho } }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/79eaf0a86fad190175ebd4b205e4de3c96f231d2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.202ex; height:2.176ex;" alt="{\displaystyle \mathbf {\rho } }"></span> beschreibt jetzt nicht mehr den Abstand eines Punktes vom Koordinatenursprung, sondern von der <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"></span>-Achse. </p> <div class="mw-heading mw-heading4"><h4 id="Umrechnung_zwischen_Zylinderkoordinaten_und_kartesischen_Koordinaten">Umrechnung zwischen Zylinderkoordinaten und kartesischen Koordinaten</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Polarkoordinaten&amp;veaction=edit&amp;section=19" title="Abschnitt bearbeiten: Umrechnung zwischen Zylinderkoordinaten und kartesischen Koordinaten" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Polarkoordinaten&amp;action=edit&amp;section=19" title="Quellcode des Abschnitts bearbeiten: Umrechnung zwischen Zylinderkoordinaten und kartesischen Koordinaten"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Wenn man ein kartesisches Koordinatensystem so ausrichtet, dass die <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"></span>-Achsen zusammenfallen, die <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>-Achse in Richtung <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/192287b02f5764a18fe39f37b8199d72000aa220" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.781ex; height:2.676ex;" alt="{\displaystyle \varphi =0}"></span> zeigt und der Winkel <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span> von der <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>-Achse zur <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span>-Achse wächst (rechtsgerichtet ist), dann ergeben sich die folgenden Umrechnungsformeln: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=\rho \,\cos \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mi>&#x03C1;<!-- ρ --></mi> <mspace width="thinmathspace" /> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=\rho \,\cos \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c441e9c1027e3f3c6a62ecf34b22d16e98932738" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.423ex; height:2.176ex;" alt="{\displaystyle x=\rho \,\cos \varphi }"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=\rho \,\sin \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>=</mo> <mi>&#x03C1;<!-- ρ --></mi> <mspace width="thinmathspace" /> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y=\rho \,\sin \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0869f374369d0dc969a427ddd42d168542142782" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.993ex; height:2.676ex;" alt="{\displaystyle y=\rho \,\sin \varphi }"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>=</mo> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z=z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68fd4b155af06002932cef8fc09cbc67743cde8f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.275ex; height:1.676ex;" alt="{\displaystyle z=z}"></span></dd></dl> <p>Für die Umrechnung von kartesischen Koordinaten in Zylinderkoordinaten ergeben sich für <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C1;<!-- ρ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f7d439671d1289b6a816e6af7a304be40608d64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.202ex; height:2.176ex;" alt="{\displaystyle \rho }"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span> die gleichen Formeln wie bei den Polarkoordinaten. </p><p>Für Punkte auf der z-Achse gibt es keine eindeutige Koordinatendarstellung: hier ist <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C1;<!-- ρ --></mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ba6310b27df5f9c9b0b1732e08cce27b99d68cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.463ex; height:2.676ex;" alt="{\displaystyle \rho =0}"></span>, aber <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span> beliebig. </p> <div class="mw-heading mw-heading4"><h4 id="Koordinatenlinien_und_Koordinatenflächen"><span id="Koordinatenlinien_und_Koordinatenfl.C3.A4chen"></span>Koordinatenlinien und Koordinatenflächen</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Polarkoordinaten&amp;veaction=edit&amp;section=20" title="Abschnitt bearbeiten: Koordinatenlinien und Koordinatenflächen" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Polarkoordinaten&amp;action=edit&amp;section=20" title="Quellcode des Abschnitts bearbeiten: Koordinatenlinien und Koordinatenflächen"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Für die Koordinatentransformation als Vektorgleichung mit dem Ortsvektor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {r}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {r}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6aec3c9ce13b53e9e24c98e7cce4212627884c91" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.223ex; height:2.343ex;" alt="{\displaystyle {\vec {r}}}"></span> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {r}}={\begin{pmatrix}x\\y\\z\end{pmatrix}}={\begin{pmatrix}\rho \cos \varphi \\\rho \sin \varphi \\z\end{pmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>x</mi> </mtd> </mtr> <mtr> <mtd> <mi>y</mi> </mtd> </mtr> <mtr> <mtd> <mi>z</mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>&#x03C1;<!-- ρ --></mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mtd> </mtr> <mtr> <mtd> <mi>&#x03C1;<!-- ρ --></mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mtd> </mtr> <mtr> <mtd> <mi>z</mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {r}}={\begin{pmatrix}x\\y\\z\end{pmatrix}}={\begin{pmatrix}\rho \cos \varphi \\\rho \sin \varphi \\z\end{pmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6f577bc2b16609fd1fcbb8d59b0389c53816973f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.171ex; width:24.994ex; height:9.509ex;" alt="{\displaystyle {\vec {r}}={\begin{pmatrix}x\\y\\z\end{pmatrix}}={\begin{pmatrix}\rho \cos \varphi \\\rho \sin \varphi \\z\end{pmatrix}}}"></span></dd></dl> <p>ergeben sich für einen Punkt </p> <ul><li>die <a href="/wiki/Koordinatenlinie" title="Koordinatenlinie">Koordinatenlinien</a>, indem man jeweils zwei der drei Koordinaten fest lässt und die dritte den Kurvenparameter darstellt</li> <li>die <a href="/wiki/Koordinatenfl%C3%A4che" title="Koordinatenfläche">Koordinatenflächen</a>, indem man eine der drei Koordinaten fest lässt und die beiden anderen die Fläche parametrisieren.</li></ul> <p>Jeweils zwei Koordinatenflächen schneiden sich in einer Koordinatenlinie. Koordinatenlinien und Koordinatenflächen dienen dazu, die lokalen Basisvektoren (siehe unten) zu berechnen. </p><p>Durch den Punkt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\rho _{0}\mid \varphi _{0}\mid z_{0})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>&#x03C1;<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&#x2223;<!-- ∣ --></mo> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&#x2223;<!-- ∣ --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\rho _{0}\mid \varphi _{0}\mid z_{0})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f684e6a49839115c08cc2520866e7833108d3a2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.65ex; height:2.843ex;" alt="{\displaystyle (\rho _{0}\mid \varphi _{0}\mid z_{0})}"></span> mit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\rho _{0}\neq 0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>&#x03C1;<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&#x2260;<!-- ≠ --></mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\rho _{0}\neq 0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c1f55342f40b43a6ca6d81e8e30f05f89ba46a8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.326ex; height:2.843ex;" alt="{\displaystyle (\rho _{0}\neq 0)}"></span> verlaufen drei Koordinatenlinien. Es handelt sich dabei </p> <ul><li>für <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C1;<!-- ρ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f7d439671d1289b6a816e6af7a304be40608d64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.202ex; height:2.176ex;" alt="{\displaystyle \rho }"></span> als Kurvenparameter um eine <a href="/wiki/Strahl_(Geometrie)" title="Strahl (Geometrie)">Halbgerade</a>, die im Punkt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (0,0,z_{0})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (0,0,z_{0})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0e6f62ef19eb7b885f293be4f41da15ab2ac0068" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.337ex; height:2.843ex;" alt="{\displaystyle (0,0,z_{0})}"></span> beginnt und senkrecht zur z-Achse verläuft</li> <li>für <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span> als Kurvenparameter um einen Kreis senkrecht zur z-Achse mit dem Mittelpunkt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (0,0,z_{0})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (0,0,z_{0})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0e6f62ef19eb7b885f293be4f41da15ab2ac0068" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.337ex; height:2.843ex;" alt="{\displaystyle (0,0,z_{0})}"></span> und Radius <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho _{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C1;<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho _{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d9c04a9d26b86af8c6205ba2a6287fd655b6b714" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.256ex; height:2.176ex;" alt="{\displaystyle \rho _{0}}"></span></li> <li>für <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"></span> als Kurvenparameter um eine Gerade parallel zur z-Achse.</li></ul> <p>Als Koordinatenflächen durch den Punkt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\rho _{0}\mid \varphi _{0}\mid z_{0})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>&#x03C1;<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&#x2223;<!-- ∣ --></mo> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&#x2223;<!-- ∣ --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\rho _{0}\mid \varphi _{0}\mid z_{0})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f684e6a49839115c08cc2520866e7833108d3a2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.65ex; height:2.843ex;" alt="{\displaystyle (\rho _{0}\mid \varphi _{0}\mid z_{0})}"></span> mit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\rho _{0}\neq 0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>&#x03C1;<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&#x2260;<!-- ≠ --></mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\rho _{0}\neq 0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c1f55342f40b43a6ca6d81e8e30f05f89ba46a8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.326ex; height:2.843ex;" alt="{\displaystyle (\rho _{0}\neq 0)}"></span> ergeben sich </p> <ul><li>für konstanten Radius <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho _{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C1;<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho _{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d9c04a9d26b86af8c6205ba2a6287fd655b6b714" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.256ex; height:2.176ex;" alt="{\displaystyle \rho _{0}}"></span> eine Zylinderfläche mit der z-Achse als Zylinderachse</li> <li>für festen Winkel <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span> eine Halbebene mit der z-Achse als Rand</li> <li>für konstanten Wert von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e72d1d86e86355892b39b8eb32b964834e113bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.135ex; height:2.009ex;" alt="{\displaystyle z_{0}}"></span> eine Ebene senkrecht zur z-Achse.</li></ul> <div class="mw-heading mw-heading4"><h4 id="Lokale_Basisvektoren_und_Orthogonalität_2"><span id="Lokale_Basisvektoren_und_Orthogonalit.C3.A4t_2"></span>Lokale Basisvektoren und Orthogonalität</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Polarkoordinaten&amp;veaction=edit&amp;section=21" title="Abschnitt bearbeiten: Lokale Basisvektoren und Orthogonalität" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Polarkoordinaten&amp;action=edit&amp;section=21" title="Quellcode des Abschnitts bearbeiten: Lokale Basisvektoren und Orthogonalität"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In geradlinigen Koordinatensystemen gibt es eine Basis für den gesamten <a href="/wiki/Vektorraum" title="Vektorraum">Vektorraum</a>, in krummlinigen muss an jedem Punkt eine lokale Basis berechnet werden. Die lokalen Basisvektoren <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle {\vec {b}}_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle {\vec {b}}_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2db0611cc9cff68458e90d4e2d857bf0cfa40772" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.148ex; height:3.176ex;" alt="{\displaystyle \textstyle {\vec {b}}_{1}}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle {\vec {b}}_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle {\vec {b}}_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/744ea3904fd207c10ad23e1c1b686a689b690874" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.148ex; height:3.176ex;" alt="{\displaystyle \textstyle {\vec {b}}_{2}}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle {\vec {b}}_{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle {\vec {b}}_{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/793b74d9c69d7c2122c05a222e1242dc297efeb0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.148ex; height:3.176ex;" alt="{\displaystyle \textstyle {\vec {b}}_{3}}"></span> an einem Punkt sind Tangentenvektoren an die Koordinatenlinien und ergeben sich aus deren Kurvengleichungen durch Ableitung nach dem Kurvenparameter. Zum selben Ergebnis gelangt man auch durch partielle Ableitung der Koordinatentransformation für den Ortsvektor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {r}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {r}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6aec3c9ce13b53e9e24c98e7cce4212627884c91" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.223ex; height:2.343ex;" alt="{\displaystyle {\vec {r}}}"></span> nach den Koordinaten <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C1;<!-- ρ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f7d439671d1289b6a816e6af7a304be40608d64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.202ex; height:2.176ex;" alt="{\displaystyle \rho }"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {b}}_{1}={\frac {\partial {\vec {r}}}{\partial \rho }}={\begin{pmatrix}\cos \varphi \\\sin \varphi \\0\end{pmatrix}}\quad }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03C1;<!-- ρ --></mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mspace width="1em" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {b}}_{1}={\frac {\partial {\vec {r}}}{\partial \rho }}={\begin{pmatrix}\cos \varphi \\\sin \varphi \\0\end{pmatrix}}\quad }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c9f4659779498b2eabcd73ae5202f4b136ea390" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.171ex; width:23.882ex; height:9.509ex;" alt="{\displaystyle {\vec {b}}_{1}={\frac {\partial {\vec {r}}}{\partial \rho }}={\begin{pmatrix}\cos \varphi \\\sin \varphi \\0\end{pmatrix}}\quad }"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \quad {\vec {b}}_{2}={\frac {\partial {\vec {r}}}{\partial \varphi }}={\begin{pmatrix}-\rho \sin \varphi \\\rho \cos \varphi \\0\end{pmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="1em" /> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03C6;<!-- φ --></mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C1;<!-- ρ --></mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mtd> </mtr> <mtr> <mtd> <mi>&#x03C1;<!-- ρ --></mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \quad {\vec {b}}_{2}={\frac {\partial {\vec {r}}}{\partial \varphi }}={\begin{pmatrix}-\rho \sin \varphi \\\rho \cos \varphi \\0\end{pmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/20f3301c25566e857de2ad0f8ec579c95a3e1b09" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.171ex; width:27.32ex; height:9.509ex;" alt="{\displaystyle \quad {\vec {b}}_{2}={\frac {\partial {\vec {r}}}{\partial \varphi }}={\begin{pmatrix}-\rho \sin \varphi \\\rho \cos \varphi \\0\end{pmatrix}}}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \quad {\vec {b}}_{3}={\frac {\partial {\vec {r}}}{\partial z}}={\begin{pmatrix}0\\0\\1\end{pmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="1em" /> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>z</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \quad {\vec {b}}_{3}={\frac {\partial {\vec {r}}}{\partial z}}={\begin{pmatrix}0\\0\\1\end{pmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e12f93b8c7d242f58ee093603214909730524fc8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:20.026ex; height:9.176ex;" alt="{\displaystyle \quad {\vec {b}}_{3}={\frac {\partial {\vec {r}}}{\partial z}}={\begin{pmatrix}0\\0\\1\end{pmatrix}}}"></span>.</dd></dl> <p>Die Basisvektoren haben die Längen </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |{\vec {b}}_{1}|={\sqrt {{\vec {b}}_{1}{\vec {b}}_{1}}}=1\quad }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </msqrt> </mrow> <mo>=</mo> <mn>1</mn> <mspace width="1em" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |{\vec {b}}_{1}|={\sqrt {{\vec {b}}_{1}{\vec {b}}_{1}}}=1\quad }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c98216bded77911cea9187533a0a8e8be49ddf5c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:19.744ex; height:4.676ex;" alt="{\displaystyle |{\vec {b}}_{1}|={\sqrt {{\vec {b}}_{1}{\vec {b}}_{1}}}=1\quad }"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \quad |{\vec {b}}_{2}|={\sqrt {{\vec {b}}_{2}{\vec {b}}_{2}}}=\rho }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </msqrt> </mrow> <mo>=</mo> <mi>&#x03C1;<!-- ρ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \quad |{\vec {b}}_{2}|={\sqrt {{\vec {b}}_{2}{\vec {b}}_{2}}}=\rho }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e5573b1f6837d20501cfb1ad853458356eb9c287" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:19.783ex; height:4.676ex;" alt="{\displaystyle \quad |{\vec {b}}_{2}|={\sqrt {{\vec {b}}_{2}{\vec {b}}_{2}}}=\rho }"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \quad |{\vec {b}}_{3}|={\sqrt {{\vec {b}}_{3}{\vec {b}}_{3}}}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </msqrt> </mrow> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \quad |{\vec {b}}_{3}|={\sqrt {{\vec {b}}_{3}{\vec {b}}_{3}}}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2054ca42642806e6c829f783f133f5445def2ec1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:19.744ex; height:4.843ex;" alt="{\displaystyle \quad |{\vec {b}}_{3}|={\sqrt {{\vec {b}}_{3}{\vec {b}}_{3}}}=1}"></span></dd></dl> <p>und sind zueinander orthogonal. Eine Normierung ergibt die Einheitsvektoren: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {e}}_{\rho }={\frac {\frac {\partial {\vec {r}}}{\partial \rho }}{\left|{\frac {\partial {\vec {r}}}{\partial \rho }}\right|}}={\begin{pmatrix}\cos \varphi \\\sin \varphi \\0\end{pmatrix}},\quad {\vec {e}}_{\varphi }={\frac {\frac {\partial {\vec {r}}}{\partial \varphi }}{\left|{\frac {\partial {\vec {r}}}{\partial \varphi }}\right|}}={\begin{pmatrix}-\sin \varphi \\\cos \varphi \\0\end{pmatrix}},\quad {\vec {e}}_{z}={\frac {\frac {\partial {\vec {r}}}{\partial z}}{\left|{\frac {\partial {\vec {r}}}{\partial z}}\right|}}={\begin{pmatrix}0\\0\\1\end{pmatrix}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C1;<!-- ρ --></mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03C1;<!-- ρ --></mi> </mrow> </mfrac> <mrow> <mo>|</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03C1;<!-- ρ --></mi> </mrow> </mfrac> </mrow> <mo>|</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>,</mo> <mspace width="1em" /> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C6;<!-- φ --></mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03C6;<!-- φ --></mi> </mrow> </mfrac> <mrow> <mo>|</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03C6;<!-- φ --></mi> </mrow> </mfrac> </mrow> <mo>|</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mtd> </mtr> <mtr> <mtd> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>,</mo> <mspace width="1em" /> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>z</mi> </mrow> </mfrac> <mrow> <mo>|</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>z</mi> </mrow> </mfrac> </mrow> <mo>|</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {e}}_{\rho }={\frac {\frac {\partial {\vec {r}}}{\partial \rho }}{\left|{\frac {\partial {\vec {r}}}{\partial \rho }}\right|}}={\begin{pmatrix}\cos \varphi \\\sin \varphi \\0\end{pmatrix}},\quad {\vec {e}}_{\varphi }={\frac {\frac {\partial {\vec {r}}}{\partial \varphi }}{\left|{\frac {\partial {\vec {r}}}{\partial \varphi }}\right|}}={\begin{pmatrix}-\sin \varphi \\\cos \varphi \\0\end{pmatrix}},\quad {\vec {e}}_{z}={\frac {\frac {\partial {\vec {r}}}{\partial z}}{\left|{\frac {\partial {\vec {r}}}{\partial z}}\right|}}={\begin{pmatrix}0\\0\\1\end{pmatrix}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca5f25231d701c18cd00be959ef306cbec919731" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.505ex; width:75.179ex; height:10.009ex;" alt="{\displaystyle {\vec {e}}_{\rho }={\frac {\frac {\partial {\vec {r}}}{\partial \rho }}{\left|{\frac {\partial {\vec {r}}}{\partial \rho }}\right|}}={\begin{pmatrix}\cos \varphi \\\sin \varphi \\0\end{pmatrix}},\quad {\vec {e}}_{\varphi }={\frac {\frac {\partial {\vec {r}}}{\partial \varphi }}{\left|{\frac {\partial {\vec {r}}}{\partial \varphi }}\right|}}={\begin{pmatrix}-\sin \varphi \\\cos \varphi \\0\end{pmatrix}},\quad {\vec {e}}_{z}={\frac {\frac {\partial {\vec {r}}}{\partial z}}{\left|{\frac {\partial {\vec {r}}}{\partial z}}\right|}}={\begin{pmatrix}0\\0\\1\end{pmatrix}}.}"></span></dd></dl> <p>Die Basisvektoren <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {e}}_{\rho }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C1;<!-- ρ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {e}}_{\rho }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6553b63581d8e91eb8047a6365e405c4927bbd1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.305ex; height:3.009ex;" alt="{\displaystyle {\vec {e}}_{\rho }}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {e}}_{\varphi }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C6;<!-- φ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {e}}_{\varphi }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f4e6d6e1f4339badfe82648ea46a8b4909d9206" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.53ex; height:3.009ex;" alt="{\displaystyle {\vec {e}}_{\varphi }}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {e}}_{z}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {e}}_{z}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/94d7dc5dd50fc55f2d715e40e466e29e28a56ffb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.225ex; height:2.676ex;" alt="{\displaystyle {\vec {e}}_{z}}"></span> sind zueinander <a href="/wiki/Orthonormal" class="mw-redirect" title="Orthonormal">orthonormal</a> und bilden in dieser Reihenfolge ein Rechtssystem. </p><p>In der <a href="/wiki/Tensor" title="Tensor">Tensorrechnung</a> werden die lokalen Basisvektoren, die tangential zu den Koordinatenlinien verlaufen, wegen ihres Verhaltens bei <a href="/wiki/Koordinatentransformation" title="Koordinatentransformation">Koordinatentransformationen</a> als <a href="/wiki/Tensor#Ko-_und_Kontravarianz_von_Vektoren" title="Tensor">kovariant</a> bezeichnet. Die <a href="/wiki/Krummlinige_Koordinaten#Duale_Basis:_Kontravariante_Basis" title="Krummlinige Koordinaten">kontravarianten Basisvektoren</a> stehen senkrecht auf den Koordinatenflächen. </p> <div class="mw-heading mw-heading4"><h4 id="Metrischer_Tensor_2">Metrischer Tensor</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Polarkoordinaten&amp;veaction=edit&amp;section=22" title="Abschnitt bearbeiten: Metrischer Tensor" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Polarkoordinaten&amp;action=edit&amp;section=22" title="Quellcode des Abschnitts bearbeiten: Metrischer Tensor"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Die Komponenten des kovarianten <a href="/wiki/Metrischer_Tensor" title="Metrischer Tensor">metrischen Tensors</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g=(g_{ij})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g=(g_{ij})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e36129d1e65f26b765daad53fc02c24f1a275aa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:8.61ex; height:3.009ex;" alt="{\displaystyle g=(g_{ij})}"></span> sind die Skalarprodukte der kovarianten lokalen Basisvektoren: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{ij}={\vec {b}}_{i}{\vec {b}}_{j}\quad (i,j\in \{1,2,3\})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mspace width="1em" /> <mo stretchy="false">(</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>&#x2208;<!-- ∈ --></mo> <mo fence="false" stretchy="false">{</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo fence="false" stretchy="false">}</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{ij}={\vec {b}}_{i}{\vec {b}}_{j}\quad (i,j\in \{1,2,3\})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b2164cb46fab0b063d1f3176bb9cc89ce3317f12" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:27.229ex; height:3.509ex;" alt="{\displaystyle g_{ij}={\vec {b}}_{i}{\vec {b}}_{j}\quad (i,j\in \{1,2,3\})}"></span>.</dd></dl> <p>Nach den vorangegangenen Rechnungen ist damit </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g={\begin{pmatrix}1&amp;0&amp;0\\0&amp;\rho ^{2}&amp;0\\0&amp;0&amp;1\end{pmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msup> <mi>&#x03C1;<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g={\begin{pmatrix}1&amp;0&amp;0\\0&amp;\rho ^{2}&amp;0\\0&amp;0&amp;1\end{pmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2d391f51932ff08a8962a4ef976da217903b9b1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.171ex; width:18.259ex; height:9.509ex;" alt="{\displaystyle g={\begin{pmatrix}1&amp;0&amp;0\\0&amp;\rho ^{2}&amp;0\\0&amp;0&amp;1\end{pmatrix}}}"></span>.</dd></dl> <div class="mw-heading mw-heading4"><h4 id="Funktionaldeterminante_2">Funktionaldeterminante</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Polarkoordinaten&amp;veaction=edit&amp;section=23" title="Abschnitt bearbeiten: Funktionaldeterminante" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Polarkoordinaten&amp;action=edit&amp;section=23" title="Quellcode des Abschnitts bearbeiten: Funktionaldeterminante"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Die Hinzunahme der geradlinigen Koordinaten <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"></span> hat keinen Einfluss auf die Funktionaldeterminante: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \det {\frac {\partial (x,y,z)}{\partial (\rho ,\varphi ,z)}}={\begin{vmatrix}\cos \varphi &amp;-\rho \sin \varphi &amp;0\\\sin \varphi &amp;\rho \cos \varphi &amp;0\\0&amp;0&amp;1\end{vmatrix}}=\rho }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">det</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mo stretchy="false">(</mo> <mi>&#x03C1;<!-- ρ --></mi> <mo>,</mo> <mi>&#x03C6;<!-- φ --></mi> <mo>,</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>|</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C1;<!-- ρ --></mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mtd> <mtd> <mi>&#x03C1;<!-- ρ --></mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>|</mo> </mrow> </mrow> <mo>=</mo> <mi>&#x03C1;<!-- ρ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \det {\frac {\partial (x,y,z)}{\partial (\rho ,\varphi ,z)}}={\begin{vmatrix}\cos \varphi &amp;-\rho \sin \varphi &amp;0\\\sin \varphi &amp;\rho \cos \varphi &amp;0\\0&amp;0&amp;1\end{vmatrix}}=\rho }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/44280f1e65c56f52e1e05d4f102e15785c5506fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.171ex; width:41.888ex; height:9.509ex;" alt="{\displaystyle \det {\frac {\partial (x,y,z)}{\partial (\rho ,\varphi ,z)}}={\begin{vmatrix}\cos \varphi &amp;-\rho \sin \varphi &amp;0\\\sin \varphi &amp;\rho \cos \varphi &amp;0\\0&amp;0&amp;1\end{vmatrix}}=\rho }"></span></dd></dl> <p>Folglich ergibt sich für das Volumenelement <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {d} V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {d} V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b80507190aa9d38a279909db47b63657f2b62ba7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.08ex; height:2.176ex;" alt="{\displaystyle \mathrm {d} V}"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {d} V=\rho \,\mathrm {d} \rho \,\mathrm {d} \varphi \,\mathrm {d} z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>V</mi> <mo>=</mo> <mi>&#x03C1;<!-- ρ --></mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03C1;<!-- ρ --></mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03C6;<!-- φ --></mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {d} V=\rho \,\mathrm {d} \rho \,\mathrm {d} \varphi \,\mathrm {d} z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dea06ffdd733ce0fee83f72c8661a362c3ed4314" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.229ex; height:2.676ex;" alt="{\displaystyle \mathrm {d} V=\rho \,\mathrm {d} \rho \,\mathrm {d} \varphi \,\mathrm {d} z}"></span></dd></dl> <p>Das entspricht auch der Quadratwurzel des Betrags der Determinante des <a href="/wiki/Metrischer_Tensor" title="Metrischer Tensor">metrischen Tensors</a>, mit dessen Hilfe die Koordinatentransformation berechnet werden kann (siehe dazu <a href="/wiki/Laplace-Operator" title="Laplace-Operator">Laplace-Beltrami-Operator</a>). </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{pmatrix}\mathrm {d} x\\\mathrm {d} y\\\mathrm {d} z\end{pmatrix}}={\begin{pmatrix}\cos \varphi &amp;-\rho \sin \varphi &amp;0\\\sin \varphi &amp;\rho \cos \varphi &amp;0\\0&amp;0&amp;1\end{pmatrix}}\cdot {\begin{pmatrix}\mathrm {d} \rho \\\mathrm {d} \varphi \\\mathrm {d} z\end{pmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>x</mi> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>y</mi> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>z</mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C1;<!-- ρ --></mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mtd> <mtd> <mi>&#x03C1;<!-- ρ --></mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03C1;<!-- ρ --></mi> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03C6;<!-- φ --></mi> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>z</mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{pmatrix}\mathrm {d} x\\\mathrm {d} y\\\mathrm {d} z\end{pmatrix}}={\begin{pmatrix}\cos \varphi &amp;-\rho \sin \varphi &amp;0\\\sin \varphi &amp;\rho \cos \varphi &amp;0\\0&amp;0&amp;1\end{pmatrix}}\cdot {\begin{pmatrix}\mathrm {d} \rho \\\mathrm {d} \varphi \\\mathrm {d} z\end{pmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/55c62217a6aa566566d84a4cf116181116719765" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.171ex; width:43.653ex; height:9.509ex;" alt="{\displaystyle {\begin{pmatrix}\mathrm {d} x\\\mathrm {d} y\\\mathrm {d} z\end{pmatrix}}={\begin{pmatrix}\cos \varphi &amp;-\rho \sin \varphi &amp;0\\\sin \varphi &amp;\rho \cos \varphi &amp;0\\0&amp;0&amp;1\end{pmatrix}}\cdot {\begin{pmatrix}\mathrm {d} \rho \\\mathrm {d} \varphi \\\mathrm {d} z\end{pmatrix}}}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{pmatrix}\mathrm {d} \rho \\\mathrm {d} \varphi \\\mathrm {d} z\end{pmatrix}}={\begin{pmatrix}{\frac {x}{\sqrt {x^{2}+y^{2}}}}&amp;{\frac {y}{\sqrt {x^{2}+y^{2}}}}&amp;0\\{\frac {-y}{x^{2}+y^{2}}}&amp;{\frac {x}{x^{2}+y^{2}}}&amp;0\\0&amp;0&amp;1\end{pmatrix}}\cdot {\begin{pmatrix}\mathrm {d} x\\\mathrm {d} y\\\mathrm {d} z\end{pmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03C1;<!-- ρ --></mi> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03C6;<!-- φ --></mi> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>z</mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <msqrt> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>y</mi> <msqrt> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>&#x2212;<!-- − --></mo> <mi>y</mi> </mrow> <mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>x</mi> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>y</mi> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>z</mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{pmatrix}\mathrm {d} \rho \\\mathrm {d} \varphi \\\mathrm {d} z\end{pmatrix}}={\begin{pmatrix}{\frac {x}{\sqrt {x^{2}+y^{2}}}}&amp;{\frac {y}{\sqrt {x^{2}+y^{2}}}}&amp;0\\{\frac {-y}{x^{2}+y^{2}}}&amp;{\frac {x}{x^{2}+y^{2}}}&amp;0\\0&amp;0&amp;1\end{pmatrix}}\cdot {\begin{pmatrix}\mathrm {d} x\\\mathrm {d} y\\\mathrm {d} z\end{pmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52d00ea9cc6427c248860ed93672d552ba0331a6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.171ex; width:44.839ex; height:13.509ex;" alt="{\displaystyle {\begin{pmatrix}\mathrm {d} \rho \\\mathrm {d} \varphi \\\mathrm {d} z\end{pmatrix}}={\begin{pmatrix}{\frac {x}{\sqrt {x^{2}+y^{2}}}}&amp;{\frac {y}{\sqrt {x^{2}+y^{2}}}}&amp;0\\{\frac {-y}{x^{2}+y^{2}}}&amp;{\frac {x}{x^{2}+y^{2}}}&amp;0\\0&amp;0&amp;1\end{pmatrix}}\cdot {\begin{pmatrix}\mathrm {d} x\\\mathrm {d} y\\\mathrm {d} z\end{pmatrix}}}"></span></dd></dl> <div class="mw-heading mw-heading4"><h4 id="Vektoranalysis">Vektoranalysis</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Polarkoordinaten&amp;veaction=edit&amp;section=24" title="Abschnitt bearbeiten: Vektoranalysis" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Polarkoordinaten&amp;action=edit&amp;section=24" title="Quellcode des Abschnitts bearbeiten: Vektoranalysis"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Die folgenden Darstellungen des <a href="/wiki/Nabla-Operator" title="Nabla-Operator">Nabla-Operators</a> können in der gegebenen Form direkt auf skalare oder vektorwertige Felder in Zylinderkoordinaten angewendet werden. Man verfährt hierbei analog zur <a href="/wiki/Vektoranalysis" title="Vektoranalysis">Vektoranalysis</a> in kartesischen Koordinaten. </p> <div class="mw-heading mw-heading5"><h5 id="Gradient">Gradient</h5><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Polarkoordinaten&amp;veaction=edit&amp;section=25" title="Abschnitt bearbeiten: Gradient" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Polarkoordinaten&amp;action=edit&amp;section=25" title="Quellcode des Abschnitts bearbeiten: Gradient"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Die Darstellung des <a href="/wiki/Gradient_(Mathematik)" title="Gradient (Mathematik)">Gradienten</a> überträgt sich wie folgt von kartesischen in Zylinderkoordinaten: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla f={\frac {\partial f}{\partial \rho }}{\vec {e}}_{\rho }+{\frac {1}{\rho }}{\frac {\partial f}{\partial \varphi }}{\vec {e}}_{\varphi }+{\frac {\partial f}{\partial z}}{\vec {e}}_{z}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mi>f</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>f</mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03C1;<!-- ρ --></mi> </mrow> </mfrac> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C1;<!-- ρ --></mi> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>&#x03C1;<!-- ρ --></mi> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>f</mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03C6;<!-- φ --></mi> </mrow> </mfrac> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C6;<!-- φ --></mi> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>f</mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>z</mi> </mrow> </mfrac> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla f={\frac {\partial f}{\partial \rho }}{\vec {e}}_{\rho }+{\frac {1}{\rho }}{\frac {\partial f}{\partial \varphi }}{\vec {e}}_{\varphi }+{\frac {\partial f}{\partial z}}{\vec {e}}_{z}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f7f648f66e1a7dbbbe3b3ddf253e74800f9c8b9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:31.632ex; height:6.176ex;" alt="{\displaystyle \nabla f={\frac {\partial f}{\partial \rho }}{\vec {e}}_{\rho }+{\frac {1}{\rho }}{\frac {\partial f}{\partial \varphi }}{\vec {e}}_{\varphi }+{\frac {\partial f}{\partial z}}{\vec {e}}_{z}}"></span></dd></dl> <div class="mw-heading mw-heading5"><h5 id="Divergenz">Divergenz</h5><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Polarkoordinaten&amp;veaction=edit&amp;section=26" title="Abschnitt bearbeiten: Divergenz" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Polarkoordinaten&amp;action=edit&amp;section=26" title="Quellcode des Abschnitts bearbeiten: Divergenz"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Bei der <a href="/wiki/Divergenz_eines_Vektorfeldes" title="Divergenz eines Vektorfeldes">Divergenz</a> kommen noch weitere Terme hinzu, die sich aus den Ableitungen der von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C1;<!-- ρ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f7d439671d1289b6a816e6af7a304be40608d64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.202ex; height:2.176ex;" alt="{\displaystyle \rho }"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"></span> abhängigen Einheitsvektoren ergeben: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \cdot {\vec {A}}={\frac {1}{\rho }}{\frac {\partial }{\partial \rho }}(\rho A_{\rho })+{\frac {1}{\rho }}{\frac {\partial A_{\varphi }}{\partial \varphi }}+{\frac {\partial A_{z}}{\partial z}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>A</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>&#x03C1;<!-- ρ --></mi> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03C1;<!-- ρ --></mi> </mrow> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C1;<!-- ρ --></mi> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C1;<!-- ρ --></mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>&#x03C1;<!-- ρ --></mi> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C6;<!-- φ --></mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03C6;<!-- φ --></mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>z</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \cdot {\vec {A}}={\frac {1}{\rho }}{\frac {\partial }{\partial \rho }}(\rho A_{\rho })+{\frac {1}{\rho }}{\frac {\partial A_{\varphi }}{\partial \varphi }}+{\frac {\partial A_{z}}{\partial z}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec4dccff8fb9000ee6ae157f979d1f8b4f7e0551" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:37.51ex; height:6.343ex;" alt="{\displaystyle \nabla \cdot {\vec {A}}={\frac {1}{\rho }}{\frac {\partial }{\partial \rho }}(\rho A_{\rho })+{\frac {1}{\rho }}{\frac {\partial A_{\varphi }}{\partial \varphi }}+{\frac {\partial A_{z}}{\partial z}}}"></span></dd></dl> <div class="mw-heading mw-heading5"><h5 id="Rotation">Rotation</h5><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Polarkoordinaten&amp;veaction=edit&amp;section=27" title="Abschnitt bearbeiten: Rotation" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Polarkoordinaten&amp;action=edit&amp;section=27" title="Quellcode des Abschnitts bearbeiten: Rotation"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Die Darstellung der <a href="/wiki/Rotation_eines_Vektorfeldes" title="Rotation eines Vektorfeldes">Rotation</a> ist wie folgt: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \times {\vec {A}}=\left({\frac {1}{\rho }}{\frac {\partial A_{z}}{\partial \varphi }}-{\frac {\partial A_{\varphi }}{\partial z}}\right){\vec {e}}_{\rho }+\left({\frac {\partial A_{\rho }}{\partial z}}-{\frac {\partial A_{z}}{\partial \rho }}\right){\vec {e}}_{\varphi }+{\frac {1}{\rho }}\left({\frac {\partial }{\partial \rho }}(\rho A_{\varphi })-{\frac {\partial A_{\rho }}{\partial \varphi }}\right){\vec {e}}_{z}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>A</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>&#x03C1;<!-- ρ --></mi> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03C6;<!-- φ --></mi> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C6;<!-- φ --></mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>z</mi> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C1;<!-- ρ --></mi> </mrow> </msub> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C1;<!-- ρ --></mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>z</mi> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03C1;<!-- ρ --></mi> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C6;<!-- φ --></mi> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>&#x03C1;<!-- ρ --></mi> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03C1;<!-- ρ --></mi> </mrow> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C1;<!-- ρ --></mi> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C6;<!-- φ --></mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C1;<!-- ρ --></mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03C6;<!-- φ --></mi> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \times {\vec {A}}=\left({\frac {1}{\rho }}{\frac {\partial A_{z}}{\partial \varphi }}-{\frac {\partial A_{\varphi }}{\partial z}}\right){\vec {e}}_{\rho }+\left({\frac {\partial A_{\rho }}{\partial z}}-{\frac {\partial A_{z}}{\partial \rho }}\right){\vec {e}}_{\varphi }+{\frac {1}{\rho }}\left({\frac {\partial }{\partial \rho }}(\rho A_{\varphi })-{\frac {\partial A_{\rho }}{\partial \varphi }}\right){\vec {e}}_{z}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a12aa31731b437a3a5aa55984ee27d6dbe1340" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:81.147ex; height:6.343ex;" alt="{\displaystyle \nabla \times {\vec {A}}=\left({\frac {1}{\rho }}{\frac {\partial A_{z}}{\partial \varphi }}-{\frac {\partial A_{\varphi }}{\partial z}}\right){\vec {e}}_{\rho }+\left({\frac {\partial A_{\rho }}{\partial z}}-{\frac {\partial A_{z}}{\partial \rho }}\right){\vec {e}}_{\varphi }+{\frac {1}{\rho }}\left({\frac {\partial }{\partial \rho }}(\rho A_{\varphi })-{\frac {\partial A_{\rho }}{\partial \varphi }}\right){\vec {e}}_{z}}"></span></dd></dl> <div class="mw-heading mw-heading4"><h4 id="Ortsvektor,_Geschwindigkeit_und_Beschleunigung_in_Zylinderkoordinaten"><span id="Ortsvektor.2C_Geschwindigkeit_und_Beschleunigung_in_Zylinderkoordinaten"></span>Ortsvektor, Geschwindigkeit und Beschleunigung in Zylinderkoordinaten</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Polarkoordinaten&amp;veaction=edit&amp;section=28" title="Abschnitt bearbeiten: Ortsvektor, Geschwindigkeit und Beschleunigung in Zylinderkoordinaten" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Polarkoordinaten&amp;action=edit&amp;section=28" title="Quellcode des Abschnitts bearbeiten: Ortsvektor, Geschwindigkeit und Beschleunigung in Zylinderkoordinaten"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Mit den lokalen Basiseinheitsvektoren </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {e}}_{\rho }={\begin{pmatrix}\cos \varphi \\\sin \varphi \\0\end{pmatrix}}\quad }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C1;<!-- ρ --></mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mspace width="1em" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {e}}_{\rho }={\begin{pmatrix}\cos \varphi \\\sin \varphi \\0\end{pmatrix}}\quad }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/925425bda72a759e495e354dde61aed9e7453243" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.171ex; width:17.563ex; height:9.509ex;" alt="{\displaystyle {\vec {e}}_{\rho }={\begin{pmatrix}\cos \varphi \\\sin \varphi \\0\end{pmatrix}}\quad }"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \quad {\vec {e}}_{\varphi }={\begin{pmatrix}-\sin \varphi \\\cos \varphi \\0\end{pmatrix}}\quad }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="1em" /> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C6;<!-- φ --></mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mtd> </mtr> <mtr> <mtd> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mspace width="1em" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \quad {\vec {e}}_{\varphi }={\begin{pmatrix}-\sin \varphi \\\cos \varphi \\0\end{pmatrix}}\quad }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5a0927165f5cf56549b70a5bfe05cdda7dc09ee5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.171ex; width:22.05ex; height:9.509ex;" alt="{\displaystyle \quad {\vec {e}}_{\varphi }={\begin{pmatrix}-\sin \varphi \\\cos \varphi \\0\end{pmatrix}}\quad }"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \quad {\vec {e}}_{z}={\begin{pmatrix}0\\0\\1\end{pmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="1em" /> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \quad {\vec {e}}_{z}={\begin{pmatrix}0\\0\\1\end{pmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/971cb23000849dc7d08748346a010017c005e3a1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:13.627ex; height:9.176ex;" alt="{\displaystyle \quad {\vec {e}}_{z}={\begin{pmatrix}0\\0\\1\end{pmatrix}}}"></span></dd></dl> <p>ergibt sich für den Ortsvektor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {r}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {r}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6aec3c9ce13b53e9e24c98e7cce4212627884c91" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.223ex; height:2.343ex;" alt="{\displaystyle {\vec {r}}}"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {r}}={\begin{pmatrix}x\\y\\z\end{pmatrix}}={\begin{pmatrix}\rho \cos \varphi \\\rho \sin \varphi \\z\end{pmatrix}}=\rho \,{\vec {e}}_{\rho }+z\,{\vec {e}}_{z}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>x</mi> </mtd> </mtr> <mtr> <mtd> <mi>y</mi> </mtd> </mtr> <mtr> <mtd> <mi>z</mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>&#x03C1;<!-- ρ --></mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mtd> </mtr> <mtr> <mtd> <mi>&#x03C1;<!-- ρ --></mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mtd> </mtr> <mtr> <mtd> <mi>z</mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>=</mo> <mi>&#x03C1;<!-- ρ --></mi> <mspace width="thinmathspace" /> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C1;<!-- ρ --></mi> </mrow> </msub> <mo>+</mo> <mi>z</mi> <mspace width="thinmathspace" /> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {r}}={\begin{pmatrix}x\\y\\z\end{pmatrix}}={\begin{pmatrix}\rho \cos \varphi \\\rho \sin \varphi \\z\end{pmatrix}}=\rho \,{\vec {e}}_{\rho }+z\,{\vec {e}}_{z}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb7ffd02008c6386bc8be3eb5df4bbf4db254fce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.171ex; width:38.527ex; height:9.509ex;" alt="{\displaystyle {\vec {r}}={\begin{pmatrix}x\\y\\z\end{pmatrix}}={\begin{pmatrix}\rho \cos \varphi \\\rho \sin \varphi \\z\end{pmatrix}}=\rho \,{\vec {e}}_{\rho }+z\,{\vec {e}}_{z}}"></span>.</dd></dl> <p>Ist der Ortsvektor abhängig von der Zeit, so müssen die Variablen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C1;<!-- ρ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f7d439671d1289b6a816e6af7a304be40608d64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.202ex; height:2.176ex;" alt="{\displaystyle \rho }"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"></span> und damit auch die davon abhängigen lokalen Basisvektoren abgeleitet werden: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\dot {{\vec {e}}_{\rho }}}={\begin{pmatrix}-\sin \varphi \\\cos \varphi \\0\end{pmatrix}}\,{\dot {\varphi }}={\dot {\varphi }}\,{\vec {e}}_{\varphi }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C1;<!-- ρ --></mi> </mrow> </msub> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mtd> </mtr> <mtr> <mtd> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mspace width="thinmathspace" /> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C6;<!-- φ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\dot {{\vec {e}}_{\rho }}}={\begin{pmatrix}-\sin \varphi \\\cos \varphi \\0\end{pmatrix}}\,{\dot {\varphi }}={\dot {\varphi }}\,{\vec {e}}_{\varphi }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75a2197c9a8960939f4cd905e20df2f2c9c97f41" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.171ex; width:26.653ex; height:9.509ex;" alt="{\displaystyle {\dot {{\vec {e}}_{\rho }}}={\begin{pmatrix}-\sin \varphi \\\cos \varphi \\0\end{pmatrix}}\,{\dot {\varphi }}={\dot {\varphi }}\,{\vec {e}}_{\varphi }}"></span>.</dd></dl> <p>Mit der <a href="/wiki/Produktregel" title="Produktregel">Produktregel</a> ergibt sich somit für den Geschwindigkeitsvektor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\dot {\vec {r}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\dot {\vec {r}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d0622c7d4647179011ad0bc43548fc6abd756db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.257ex; height:2.843ex;" alt="{\displaystyle {\dot {\vec {r}}}}"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\dot {\vec {r}}}={\dot {\rho }}\,{\vec {e}}_{\rho }+\rho \,{\dot {{\vec {e}}_{\rho }}}+{\dot {z}}\,{\vec {e}}_{z}={\dot {\rho }}\,{\vec {e}}_{\rho }+\rho \,{\dot {\varphi }}\,{\vec {e}}_{\varphi }+{\dot {z}}\,{\vec {e}}_{z}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03C1;<!-- ρ --></mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mspace width="thinmathspace" /> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C1;<!-- ρ --></mi> </mrow> </msub> <mo>+</mo> <mi>&#x03C1;<!-- ρ --></mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C1;<!-- ρ --></mi> </mrow> </msub> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>z</mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mspace width="thinmathspace" /> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03C1;<!-- ρ --></mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mspace width="thinmathspace" /> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C1;<!-- ρ --></mi> </mrow> </msub> <mo>+</mo> <mi>&#x03C1;<!-- ρ --></mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mspace width="thinmathspace" /> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C6;<!-- φ --></mi> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>z</mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mspace width="thinmathspace" /> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\dot {\vec {r}}}={\dot {\rho }}\,{\vec {e}}_{\rho }+\rho \,{\dot {{\vec {e}}_{\rho }}}+{\dot {z}}\,{\vec {e}}_{z}={\dot {\rho }}\,{\vec {e}}_{\rho }+\rho \,{\dot {\varphi }}\,{\vec {e}}_{\varphi }+{\dot {z}}\,{\vec {e}}_{z}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/71b4c2497abde01723d5d227e51746e13a5cd1d7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:44.703ex; height:3.509ex;" alt="{\displaystyle {\dot {\vec {r}}}={\dot {\rho }}\,{\vec {e}}_{\rho }+\rho \,{\dot {{\vec {e}}_{\rho }}}+{\dot {z}}\,{\vec {e}}_{z}={\dot {\rho }}\,{\vec {e}}_{\rho }+\rho \,{\dot {\varphi }}\,{\vec {e}}_{\varphi }+{\dot {z}}\,{\vec {e}}_{z}}"></span>.</dd></dl> <p>Eine entsprechende Rechnung führt für die Beschleunigung <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\ddot {\vec {r}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\ddot {\vec {r}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f02da80a6ce3388352e6efdec76e57ecf79f87ba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.257ex; height:2.843ex;" alt="{\displaystyle {\ddot {\vec {r}}}}"></span> zu dem Ergebnis </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\ddot {\vec {r}}}=({\ddot {\rho }}-\rho {\dot {\varphi }}^{2})\,{\vec {e}}_{\rho }+(2{\dot {\rho }}{\dot {\varphi }}+\rho {\ddot {\varphi }})\,{\vec {e}}_{\varphi }+{\ddot {z}}\,{\vec {e}}_{z}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03C1;<!-- ρ --></mi> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C1;<!-- ρ --></mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C1;<!-- ρ --></mi> </mrow> </msub> <mo>+</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03C1;<!-- ρ --></mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mi>&#x03C1;<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C6;<!-- φ --></mi> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>z</mi> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mspace width="thinmathspace" /> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\ddot {\vec {r}}}=({\ddot {\rho }}-\rho {\dot {\varphi }}^{2})\,{\vec {e}}_{\rho }+(2{\dot {\rho }}{\dot {\varphi }}+\rho {\ddot {\varphi }})\,{\vec {e}}_{\varphi }+{\ddot {z}}\,{\vec {e}}_{z}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef755bcd0b9a74c1148c7cc4c3fce79cdb3cbdb5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:41.477ex; height:3.509ex;" alt="{\displaystyle {\ddot {\vec {r}}}=({\ddot {\rho }}-\rho {\dot {\varphi }}^{2})\,{\vec {e}}_{\rho }+(2{\dot {\rho }}{\dot {\varphi }}+\rho {\ddot {\varphi }})\,{\vec {e}}_{\varphi }+{\ddot {z}}\,{\vec {e}}_{z}.}"></span>.</dd></dl> <div class="mw-heading mw-heading3"><h3 id="Kegelkoordinaten_(Koordinaten-Transformation)"><span id="Kegelkoordinaten_.28Koordinaten-Transformation.29"></span>Kegelkoordinaten (Koordinaten-Transformation)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Polarkoordinaten&amp;veaction=edit&amp;section=29" title="Abschnitt bearbeiten: Kegelkoordinaten (Koordinaten-Transformation)" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Polarkoordinaten&amp;action=edit&amp;section=29" title="Quellcode des Abschnitts bearbeiten: Kegelkoordinaten (Koordinaten-Transformation)"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="Parameterdarstellung">Parameterdarstellung</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Polarkoordinaten&amp;veaction=edit&amp;section=30" title="Abschnitt bearbeiten: Parameterdarstellung" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Polarkoordinaten&amp;action=edit&amp;section=30" title="Quellcode des Abschnitts bearbeiten: Parameterdarstellung"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Die Parameterdarstellung des Kegels kann man wie folgt beschreiben. Mit der Abbildung <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overrightarrow {P}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>P</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overrightarrow {P}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a1dd77291be4fd776d0aadf3d35cc3285095490" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.682ex; height:3.676ex;" alt="{\displaystyle {\overrightarrow {P}}}"></span> lassen sich die Kegelkoordinaten in kartesische Koordinaten umrechnen. Mit der Abbildung <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overrightarrow {Q}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>Q</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overrightarrow {Q}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a94458af2af429ff8899d573506358c9694cc63c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.517ex; height:4.009ex;" alt="{\displaystyle {\overrightarrow {Q}}}"></span> lassen sich die kartesischen Koordinaten in Kegelkoordinaten umrechnen. </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overrightarrow {P}}(\gamma ,\varphi ,\chi )={\begin{pmatrix}x\\y\\z\end{pmatrix}}=\chi \cdot {\begin{pmatrix}\gamma \cos(\varphi )\\\gamma \sin(\varphi )\\1\end{pmatrix}}\quad \quad \quad {\overrightarrow {Q}}(x,y,z)={\begin{pmatrix}\gamma \\\varphi \\\chi \end{pmatrix}}={\begin{pmatrix}{\frac {1}{z}}{\sqrt {x^{2}+y^{2}}}\\\operatorname {arctan2} (x,y)\\z\end{pmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>P</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> <mo stretchy="false">(</mo> <mi>&#x03B3;<!-- γ --></mi> <mo>,</mo> <mi>&#x03C6;<!-- φ --></mi> <mo>,</mo> <mi>&#x03C7;<!-- χ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>x</mi> </mtd> </mtr> <mtr> <mtd> <mi>y</mi> </mtd> </mtr> <mtr> <mtd> <mi>z</mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>=</mo> <mi>&#x03C7;<!-- χ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>&#x03B3;<!-- γ --></mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mi>&#x03B3;<!-- γ --></mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mspace width="1em" /> <mspace width="1em" /> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>Q</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>&#x03B3;<!-- γ --></mi> </mtd> </mtr> <mtr> <mtd> <mi>&#x03C6;<!-- φ --></mi> </mtd> </mtr> <mtr> <mtd> <mi>&#x03C7;<!-- χ --></mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>z</mi> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>arctan2</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mi>z</mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overrightarrow {P}}(\gamma ,\varphi ,\chi )={\begin{pmatrix}x\\y\\z\end{pmatrix}}=\chi \cdot {\begin{pmatrix}\gamma \cos(\varphi )\\\gamma \sin(\varphi )\\1\end{pmatrix}}\quad \quad \quad {\overrightarrow {Q}}(x,y,z)={\begin{pmatrix}\gamma \\\varphi \\\chi \end{pmatrix}}={\begin{pmatrix}{\frac {1}{z}}{\sqrt {x^{2}+y^{2}}}\\\operatorname {arctan2} (x,y)\\z\end{pmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e057fd947e5d8e722076530b76a90bb0a26f5b7f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.505ex; width:86.43ex; height:10.176ex;" alt="{\displaystyle {\overrightarrow {P}}(\gamma ,\varphi ,\chi )={\begin{pmatrix}x\\y\\z\end{pmatrix}}=\chi \cdot {\begin{pmatrix}\gamma \cos(\varphi )\\\gamma \sin(\varphi )\\1\end{pmatrix}}\quad \quad \quad {\overrightarrow {Q}}(x,y,z)={\begin{pmatrix}\gamma \\\varphi \\\chi \end{pmatrix}}={\begin{pmatrix}{\frac {1}{z}}{\sqrt {x^{2}+y^{2}}}\\\operatorname {arctan2} (x,y)\\z\end{pmatrix}}}"></span> </p> <dl><dt>Umrechnung eines gegebenen Kegelsegments in Kegelkoordinaten</dt></dl> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Datei:Kegelsegment.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/50/Kegelsegment.png/220px-Kegelsegment.png" decoding="async" width="220" height="170" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/50/Kegelsegment.png/330px-Kegelsegment.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/50/Kegelsegment.png/440px-Kegelsegment.png 2x" data-file-width="9660" data-file-height="7480" /></a><figcaption>Kegelsegment mit Höhe h und den Radien r1 und r2</figcaption></figure> <p>Die Parameter eines Kegelsegments seien gegeben durch (siehe nebenstehende Abbildung): </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{1}\leq r\leq r_{2}\quad \quad \quad 0\leq \varphi \leq 2\pi \quad \quad \quad h=z_{2}-z_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2264;<!-- ≤ --></mo> <mi>r</mi> <mo>&#x2264;<!-- ≤ --></mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mspace width="1em" /> <mspace width="1em" /> <mspace width="1em" /> <mn>0</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x2264;<!-- ≤ --></mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mspace width="1em" /> <mspace width="1em" /> <mspace width="1em" /> <mi>h</mi> <mo>=</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r_{1}\leq r\leq r_{2}\quad \quad \quad 0\leq \varphi \leq 2\pi \quad \quad \quad h=z_{2}-z_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f25dab9b53be80a93c281c6bea2aacce3f1d6fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:48.31ex; height:2.676ex;" alt="{\displaystyle r_{1}\leq r\leq r_{2}\quad \quad \quad 0\leq \varphi \leq 2\pi \quad \quad \quad h=z_{2}-z_{1}}"></span>,</dd></dl> <p>Dann lassen sich die Grenzen in Kegelparametern wie folgt ausdrücken: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma _{1}={\frac {r_{2}-r_{1}}{h}}\quad \quad \chi _{1}={\frac {r_{1}}{\gamma _{1}}}=h\cdot {\frac {r_{1}}{r_{2}-r_{1}}}\quad \quad \chi _{2}={\frac {r_{2}}{\gamma _{1}}}=h\cdot {\frac {r_{2}}{r_{2}-r_{1}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mi>h</mi> </mfrac> </mrow> <mspace width="1em" /> <mspace width="1em" /> <msub> <mi>&#x03C7;<!-- χ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mfrac> </mrow> <mo>=</mo> <mi>h</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </mfrac> </mrow> <mspace width="1em" /> <mspace width="1em" /> <msub> <mi>&#x03C7;<!-- χ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mfrac> </mrow> <mo>=</mo> <mi>h</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma _{1}={\frac {r_{2}-r_{1}}{h}}\quad \quad \chi _{1}={\frac {r_{1}}{\gamma _{1}}}=h\cdot {\frac {r_{1}}{r_{2}-r_{1}}}\quad \quad \chi _{2}={\frac {r_{2}}{\gamma _{1}}}=h\cdot {\frac {r_{2}}{r_{2}-r_{1}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e27cb9f1cacc1f5291a3d1d76a5e567aa12d739" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:67.932ex; height:5.509ex;" alt="{\displaystyle \gamma _{1}={\frac {r_{2}-r_{1}}{h}}\quad \quad \chi _{1}={\frac {r_{1}}{\gamma _{1}}}=h\cdot {\frac {r_{1}}{r_{2}-r_{1}}}\quad \quad \chi _{2}={\frac {r_{2}}{\gamma _{1}}}=h\cdot {\frac {r_{2}}{r_{2}-r_{1}}}}"></span>.</dd></dl> <p>Die Parameter eines soliden Kegelsegmentes bewegen sich also im Bereich: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0\leq \gamma \leq \gamma _{1}\quad \quad \quad 0\leq \varphi \leq 2\pi \quad \quad \quad \chi _{1}\leq \chi \leq \chi _{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>&#x03B3;<!-- γ --></mi> <mo>&#x2264;<!-- ≤ --></mo> <msub> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mspace width="1em" /> <mspace width="1em" /> <mspace width="1em" /> <mn>0</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x2264;<!-- ≤ --></mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mspace width="1em" /> <mspace width="1em" /> <mspace width="1em" /> <msub> <mi>&#x03C7;<!-- χ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2264;<!-- ≤ --></mo> <mi>&#x03C7;<!-- χ --></mi> <mo>&#x2264;<!-- ≤ --></mo> <msub> <mi>&#x03C7;<!-- χ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0\leq \gamma \leq \gamma _{1}\quad \quad \quad 0\leq \varphi \leq 2\pi \quad \quad \quad \chi _{1}\leq \chi \leq \chi _{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f14636ab1c9049d7a296834a6c905936a593efa0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:48.86ex; height:2.676ex;" alt="{\displaystyle 0\leq \gamma \leq \gamma _{1}\quad \quad \quad 0\leq \varphi \leq 2\pi \quad \quad \quad \chi _{1}\leq \chi \leq \chi _{2}}"></span>.</dd></dl> <p>Für die entsprechende Mantelfläche dieses Kegelsegmentes gilt folgende Parameterdarstellung: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma =\gamma _{1}\quad \quad \quad 0\leq \varphi \leq 2\pi \quad \quad \quad \chi _{1}\leq \chi \leq \chi _{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B3;<!-- γ --></mi> <mo>=</mo> <msub> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mspace width="1em" /> <mspace width="1em" /> <mspace width="1em" /> <mn>0</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x2264;<!-- ≤ --></mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mspace width="1em" /> <mspace width="1em" /> <mspace width="1em" /> <msub> <mi>&#x03C7;<!-- χ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2264;<!-- ≤ --></mo> <mi>&#x03C7;<!-- χ --></mi> <mo>&#x2264;<!-- ≤ --></mo> <msub> <mi>&#x03C7;<!-- χ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma =\gamma _{1}\quad \quad \quad 0\leq \varphi \leq 2\pi \quad \quad \quad \chi _{1}\leq \chi \leq \chi _{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3762c79ab76aea300f50a4d453875a5c7301d6ee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:44.6ex; height:2.676ex;" alt="{\displaystyle \gamma =\gamma _{1}\quad \quad \quad 0\leq \varphi \leq 2\pi \quad \quad \quad \chi _{1}\leq \chi \leq \chi _{2}}"></span>.</dd></dl> <div class="mw-heading mw-heading4"><h4 id="Flächennormalenvektor"><span id="Fl.C3.A4chennormalenvektor"></span>Flächennormalenvektor</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Polarkoordinaten&amp;veaction=edit&amp;section=31" title="Abschnitt bearbeiten: Flächennormalenvektor" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Polarkoordinaten&amp;action=edit&amp;section=31" title="Quellcode des Abschnitts bearbeiten: Flächennormalenvektor"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Der <a href="/wiki/Normalenvektor" title="Normalenvektor">Flächennormalenvektor</a> ist orthogonal zur Mantelfläche des Kegels. Er wird benötigt, um z.&#160;B. Flussberechnungen durch die Mantelfläche durchzuführen. Den Flächeninhalt der Mantelfläche lässt sich als Doppelintegral über die Norm des Flächennormalenvektors berechnen. </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overrightarrow {n}}={\frac {\partial {\overrightarrow {P}}}{\partial \varphi }}\times {\frac {\partial {\overrightarrow {P}}}{\partial \chi }}=\chi \gamma \cdot {\begin{pmatrix}\cos(\varphi )\\\sin(\varphi )\\-\gamma \end{pmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>n</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>P</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03C6;<!-- φ --></mi> </mrow> </mfrac> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>P</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03C7;<!-- χ --></mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mi>&#x03C7;<!-- χ --></mi> <mi>&#x03B3;<!-- γ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B3;<!-- γ --></mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overrightarrow {n}}={\frac {\partial {\overrightarrow {P}}}{\partial \varphi }}\times {\frac {\partial {\overrightarrow {P}}}{\partial \chi }}=\chi \gamma \cdot {\begin{pmatrix}\cos(\varphi )\\\sin(\varphi )\\-\gamma \end{pmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7bfdf14846318fffa55e7b28518d180144b0673d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.171ex; width:36.689ex; height:9.509ex;" alt="{\displaystyle {\overrightarrow {n}}={\frac {\partial {\overrightarrow {P}}}{\partial \varphi }}\times {\frac {\partial {\overrightarrow {P}}}{\partial \chi }}=\chi \gamma \cdot {\begin{pmatrix}\cos(\varphi )\\\sin(\varphi )\\-\gamma \end{pmatrix}}}"></span> </p> <div class="mw-heading mw-heading4"><h4 id="Einheitsvektoren_der_Kegelkoordinaten_in_kartesischen_Komponenten">Einheitsvektoren der Kegelkoordinaten in kartesischen Komponenten</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Polarkoordinaten&amp;veaction=edit&amp;section=32" title="Abschnitt bearbeiten: Einheitsvektoren der Kegelkoordinaten in kartesischen Komponenten" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Polarkoordinaten&amp;action=edit&amp;section=32" title="Quellcode des Abschnitts bearbeiten: Einheitsvektoren der Kegelkoordinaten in kartesischen Komponenten"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Die Einheitsvektoren in kartesischen Komponenten erhält man durch <a href="/wiki/Norm_(Mathematik)" title="Norm (Mathematik)">Normierung</a> der <a href="/wiki/Tangentenvektor" class="mw-redirect" title="Tangentenvektor">Tangentenvektoren</a> der Parametrisierung. Der Tangentenvektor ergibt sich durch die erste <a href="/wiki/Partielle_Ableitung" title="Partielle Ableitung">partielle Ableitung</a> nach der jeweiligen Variablen. Diese drei Einheitsvektoren bilden eine Normalbasis. Es handelt sich hierbei nicht um eine <a href="/wiki/Orthonormalbasis" title="Orthonormalbasis">Orthonormalbasis</a>, da nicht alle Einheitsvektoren <a href="/wiki/Orthogonalit%C3%A4t" title="Orthogonalität">orthogonal</a> zueinander sind. </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overrightarrow {e_{\gamma }}}={\frac {\partial _{\gamma }{\overrightarrow {P}}}{\left\|\partial _{\gamma }{\overrightarrow {P}}\right\|}}={\begin{pmatrix}\cos(\varphi )\\\sin(\varphi )\\0\end{pmatrix}}\quad \quad {\overrightarrow {e_{\varphi }}}={\frac {\partial _{\varphi }{\overrightarrow {P}}}{\left\|\partial _{\varphi }{\overrightarrow {P}}\right\|}}={\begin{pmatrix}-\sin(\varphi )\\\cos(\varphi )\\0\end{pmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>P</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>P</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mspace width="1em" /> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C6;<!-- φ --></mi> </mrow> </msub> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C6;<!-- φ --></mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>P</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C6;<!-- φ --></mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>P</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overrightarrow {e_{\gamma }}}={\frac {\partial _{\gamma }{\overrightarrow {P}}}{\left\|\partial _{\gamma }{\overrightarrow {P}}\right\|}}={\begin{pmatrix}\cos(\varphi )\\\sin(\varphi )\\0\end{pmatrix}}\quad \quad {\overrightarrow {e_{\varphi }}}={\frac {\partial _{\varphi }{\overrightarrow {P}}}{\left\|\partial _{\varphi }{\overrightarrow {P}}\right\|}}={\begin{pmatrix}-\sin(\varphi )\\\cos(\varphi )\\0\end{pmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c92cf993698c2967349ff93242ee0aa25dfebd9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.171ex; width:62.928ex; height:10.509ex;" alt="{\displaystyle {\overrightarrow {e_{\gamma }}}={\frac {\partial _{\gamma }{\overrightarrow {P}}}{\left\|\partial _{\gamma }{\overrightarrow {P}}\right\|}}={\begin{pmatrix}\cos(\varphi )\\\sin(\varphi )\\0\end{pmatrix}}\quad \quad {\overrightarrow {e_{\varphi }}}={\frac {\partial _{\varphi }{\overrightarrow {P}}}{\left\|\partial _{\varphi }{\overrightarrow {P}}\right\|}}={\begin{pmatrix}-\sin(\varphi )\\\cos(\varphi )\\0\end{pmatrix}}}"></span> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overrightarrow {e_{\chi }}}={\frac {\partial _{\chi }{\overrightarrow {P}}}{\left\|\partial _{\chi }{\overrightarrow {P}}\right\|}}={\frac {1}{\sqrt {1+\gamma ^{2}}}}{\begin{pmatrix}\gamma \cos(\varphi )\\\gamma \sin(\varphi )\\1\end{pmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C7;<!-- χ --></mi> </mrow> </msub> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C7;<!-- χ --></mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>P</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C7;<!-- χ --></mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>P</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>&#x03B3;<!-- γ --></mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mi>&#x03B3;<!-- γ --></mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overrightarrow {e_{\chi }}}={\frac {\partial _{\chi }{\overrightarrow {P}}}{\left\|\partial _{\chi }{\overrightarrow {P}}\right\|}}={\frac {1}{\sqrt {1+\gamma ^{2}}}}{\begin{pmatrix}\gamma \cos(\varphi )\\\gamma \sin(\varphi )\\1\end{pmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f55247efdbb4d8bc66543fe3ae02c2a450513de7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.171ex; width:39.285ex; height:10.509ex;" alt="{\displaystyle {\overrightarrow {e_{\chi }}}={\frac {\partial _{\chi }{\overrightarrow {P}}}{\left\|\partial _{\chi }{\overrightarrow {P}}\right\|}}={\frac {1}{\sqrt {1+\gamma ^{2}}}}{\begin{pmatrix}\gamma \cos(\varphi )\\\gamma \sin(\varphi )\\1\end{pmatrix}}}"></span> </p> <div class="mw-heading mw-heading4"><h4 id="Transformationsmatrizen">Transformationsmatrizen</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Polarkoordinaten&amp;veaction=edit&amp;section=33" title="Abschnitt bearbeiten: Transformationsmatrizen" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Polarkoordinaten&amp;action=edit&amp;section=33" title="Quellcode des Abschnitts bearbeiten: Transformationsmatrizen"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading5"><h5 id="Jacobi-Matrix_(Funktionalmatrix)"><span id="Jacobi-Matrix_.28Funktionalmatrix.29"></span>Jacobi-Matrix (Funktionalmatrix)</h5><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Polarkoordinaten&amp;veaction=edit&amp;section=34" title="Abschnitt bearbeiten: Jacobi-Matrix (Funktionalmatrix)" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Polarkoordinaten&amp;action=edit&amp;section=34" title="Quellcode des Abschnitts bearbeiten: Jacobi-Matrix (Funktionalmatrix)"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Die <a href="/wiki/Jacobi-Matrix" title="Jacobi-Matrix">Funktionalmatrix</a> und ihre Inverse werden benötigt, um später die partiellen Ableitungen zu transformieren. </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle J_{f}={\frac {\partial \left(x,y,z\right)}{\partial \left(\gamma ,\varphi ,\chi \right)}}={\begin{pmatrix}\partial _{\gamma }x&amp;\partial _{\varphi }x&amp;\partial _{\chi }x\\\partial _{\gamma }y&amp;\partial _{\varphi }y&amp;\partial _{\chi }y\\\partial _{\gamma }z&amp;\partial _{\varphi }z&amp;\partial _{\chi }z\end{pmatrix}}={\begin{pmatrix}\chi \cos(\varphi )&amp;-\chi \gamma \sin(\varphi )&amp;\gamma \cos(\varphi )\\\chi \sin(\varphi )&amp;\chi \gamma \cos(\varphi )&amp;\gamma \sin(\varphi )\\0&amp;0&amp;1\end{pmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow> <mo>(</mo> <mrow> <mi>&#x03B3;<!-- γ --></mi> <mo>,</mo> <mi>&#x03C6;<!-- φ --></mi> <mo>,</mo> <mi>&#x03C7;<!-- χ --></mi> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <mi>x</mi> </mtd> <mtd> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C6;<!-- φ --></mi> </mrow> </msub> <mi>x</mi> </mtd> <mtd> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C7;<!-- χ --></mi> </mrow> </msub> <mi>x</mi> </mtd> </mtr> <mtr> <mtd> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <mi>y</mi> </mtd> <mtd> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C6;<!-- φ --></mi> </mrow> </msub> <mi>y</mi> </mtd> <mtd> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C7;<!-- χ --></mi> </mrow> </msub> <mi>y</mi> </mtd> </mtr> <mtr> <mtd> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <mi>z</mi> </mtd> <mtd> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C6;<!-- φ --></mi> </mrow> </msub> <mi>z</mi> </mtd> <mtd> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C7;<!-- χ --></mi> </mrow> </msub> <mi>z</mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>&#x03C7;<!-- χ --></mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C7;<!-- χ --></mi> <mi>&#x03B3;<!-- γ --></mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi>&#x03B3;<!-- γ --></mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mi>&#x03C7;<!-- χ --></mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi>&#x03C7;<!-- χ --></mi> <mi>&#x03B3;<!-- γ --></mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi>&#x03B3;<!-- γ --></mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle J_{f}={\frac {\partial \left(x,y,z\right)}{\partial \left(\gamma ,\varphi ,\chi \right)}}={\begin{pmatrix}\partial _{\gamma }x&amp;\partial _{\varphi }x&amp;\partial _{\chi }x\\\partial _{\gamma }y&amp;\partial _{\varphi }y&amp;\partial _{\chi }y\\\partial _{\gamma }z&amp;\partial _{\varphi }z&amp;\partial _{\chi }z\end{pmatrix}}={\begin{pmatrix}\chi \cos(\varphi )&amp;-\chi \gamma \sin(\varphi )&amp;\gamma \cos(\varphi )\\\chi \sin(\varphi )&amp;\chi \gamma \cos(\varphi )&amp;\gamma \sin(\varphi )\\0&amp;0&amp;1\end{pmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d0d2ced3847b59f1032d0d384d46c36c288dfa75" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.505ex; width:80.161ex; height:10.176ex;" alt="{\displaystyle J_{f}={\frac {\partial \left(x,y,z\right)}{\partial \left(\gamma ,\varphi ,\chi \right)}}={\begin{pmatrix}\partial _{\gamma }x&amp;\partial _{\varphi }x&amp;\partial _{\chi }x\\\partial _{\gamma }y&amp;\partial _{\varphi }y&amp;\partial _{\chi }y\\\partial _{\gamma }z&amp;\partial _{\varphi }z&amp;\partial _{\chi }z\end{pmatrix}}={\begin{pmatrix}\chi \cos(\varphi )&amp;-\chi \gamma \sin(\varphi )&amp;\gamma \cos(\varphi )\\\chi \sin(\varphi )&amp;\chi \gamma \cos(\varphi )&amp;\gamma \sin(\varphi )\\0&amp;0&amp;1\end{pmatrix}}}"></span> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle J_{f}^{-1}={\frac {\partial \left(\gamma ,\varphi ,\chi \right)}{\partial \left(x,y,z\right)}}={\begin{pmatrix}\partial _{x}\gamma &amp;\partial _{y}\gamma &amp;\partial _{z}\gamma \\\partial _{x}\varphi &amp;\partial _{y}\varphi &amp;\partial _{z}\varphi \\\partial _{x}\chi &amp;\partial _{y}\chi &amp;\partial _{z}\chi \end{pmatrix}}={\begin{pmatrix}{\frac {\cos(\varphi )}{\chi }}&amp;{\frac {\sin(\varphi )}{\chi }}&amp;-{\frac {\gamma }{\chi }}\\-{\frac {\sin(\varphi )}{\chi \gamma }}&amp;{\frac {\cos(\varphi )}{\chi \gamma }}&amp;0\\0&amp;0&amp;1\end{pmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow> <mo>(</mo> <mrow> <mi>&#x03B3;<!-- γ --></mi> <mo>,</mo> <mi>&#x03C6;<!-- φ --></mi> <mo>,</mo> <mi>&#x03C7;<!-- χ --></mi> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mi>&#x03B3;<!-- γ --></mi> </mtd> <mtd> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mi>&#x03B3;<!-- γ --></mi> </mtd> <mtd> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mi>&#x03B3;<!-- γ --></mi> </mtd> </mtr> <mtr> <mtd> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mi>&#x03C6;<!-- φ --></mi> </mtd> <mtd> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mi>&#x03C6;<!-- φ --></mi> </mtd> <mtd> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mi>&#x03C6;<!-- φ --></mi> </mtd> </mtr> <mtr> <mtd> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mi>&#x03C7;<!-- χ --></mi> </mtd> <mtd> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mi>&#x03C7;<!-- χ --></mi> </mtd> <mtd> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mi>&#x03C7;<!-- χ --></mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mrow> <mi>&#x03C7;<!-- χ --></mi> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mrow> <mi>&#x03C7;<!-- χ --></mi> </mfrac> </mrow> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B3;<!-- γ --></mi> <mi>&#x03C7;<!-- χ --></mi> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>&#x03C7;<!-- χ --></mi> <mi>&#x03B3;<!-- γ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>&#x03C7;<!-- χ --></mi> <mi>&#x03B3;<!-- γ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle J_{f}^{-1}={\frac {\partial \left(\gamma ,\varphi ,\chi \right)}{\partial \left(x,y,z\right)}}={\begin{pmatrix}\partial _{x}\gamma &amp;\partial _{y}\gamma &amp;\partial _{z}\gamma \\\partial _{x}\varphi &amp;\partial _{y}\varphi &amp;\partial _{z}\varphi \\\partial _{x}\chi &amp;\partial _{y}\chi &amp;\partial _{z}\chi \end{pmatrix}}={\begin{pmatrix}{\frac {\cos(\varphi )}{\chi }}&amp;{\frac {\sin(\varphi )}{\chi }}&amp;-{\frac {\gamma }{\chi }}\\-{\frac {\sin(\varphi )}{\chi \gamma }}&amp;{\frac {\cos(\varphi )}{\chi \gamma }}&amp;0\\0&amp;0&amp;1\end{pmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/84b06f97a70ab47da170809e2f2f2692b4943972" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:70.306ex; height:12.343ex;" alt="{\displaystyle J_{f}^{-1}={\frac {\partial \left(\gamma ,\varphi ,\chi \right)}{\partial \left(x,y,z\right)}}={\begin{pmatrix}\partial _{x}\gamma &amp;\partial _{y}\gamma &amp;\partial _{z}\gamma \\\partial _{x}\varphi &amp;\partial _{y}\varphi &amp;\partial _{z}\varphi \\\partial _{x}\chi &amp;\partial _{y}\chi &amp;\partial _{z}\chi \end{pmatrix}}={\begin{pmatrix}{\frac {\cos(\varphi )}{\chi }}&amp;{\frac {\sin(\varphi )}{\chi }}&amp;-{\frac {\gamma }{\chi }}\\-{\frac {\sin(\varphi )}{\chi \gamma }}&amp;{\frac {\cos(\varphi )}{\chi \gamma }}&amp;0\\0&amp;0&amp;1\end{pmatrix}}}"></span> </p> <div class="mw-heading mw-heading5"><h5 id="Transformationsmatrix_S">Transformationsmatrix S</h5><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Polarkoordinaten&amp;veaction=edit&amp;section=35" title="Abschnitt bearbeiten: Transformationsmatrix S" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Polarkoordinaten&amp;action=edit&amp;section=35" title="Quellcode des Abschnitts bearbeiten: Transformationsmatrix S"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Die <a href="/wiki/Basiswechsel_(Vektorraum)" title="Basiswechsel (Vektorraum)">Transformationsmatrix</a> wird benötigt, um die Einheitsvektoren und Vektorfelder zu transformieren. Die Matrix setzt sich aus den Einheitsvektoren der Parametrisierung als Spaltenvektoren zusammen. Genaueres findet man unter dem Artikel <a href="/wiki/Basiswechsel_(Vektorraum)" title="Basiswechsel (Vektorraum)">Basiswechsel</a>. </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S={\begin{pmatrix}{\overrightarrow {e_{\gamma }}}&amp;{\overrightarrow {e_{\varphi }}}&amp;{\overrightarrow {e_{\chi }}}\end{pmatrix}}={\begin{pmatrix}\cos(\varphi )&amp;-\sin(\varphi )&amp;{\frac {\gamma \cos(\varphi )}{\sqrt {1+\gamma ^{2}}}}\\\sin(\varphi )&amp;\cos(\varphi )&amp;{\frac {\gamma \sin(\varphi )}{\sqrt {1+\gamma ^{2}}}}\\0&amp;0&amp;{\frac {1}{\sqrt {1+\gamma ^{2}}}}\end{pmatrix}}\ ,\quad S^{-1}={\begin{pmatrix}\cos(\varphi )&amp;\sin(\varphi )&amp;-\gamma \\-\sin(\varphi )&amp;\cos(\varphi )&amp;0\\0&amp;0&amp;{\sqrt {1+\gamma ^{2}}}\end{pmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C6;<!-- φ --></mi> </mrow> </msub> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C7;<!-- χ --></mi> </mrow> </msub> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03B3;<!-- γ --></mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mrow> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03B3;<!-- γ --></mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mrow> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mtext>&#xA0;</mtext> <mo>,</mo> <mspace width="1em" /> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B3;<!-- γ --></mi> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S={\begin{pmatrix}{\overrightarrow {e_{\gamma }}}&amp;{\overrightarrow {e_{\varphi }}}&amp;{\overrightarrow {e_{\chi }}}\end{pmatrix}}={\begin{pmatrix}\cos(\varphi )&amp;-\sin(\varphi )&amp;{\frac {\gamma \cos(\varphi )}{\sqrt {1+\gamma ^{2}}}}\\\sin(\varphi )&amp;\cos(\varphi )&amp;{\frac {\gamma \sin(\varphi )}{\sqrt {1+\gamma ^{2}}}}\\0&amp;0&amp;{\frac {1}{\sqrt {1+\gamma ^{2}}}}\end{pmatrix}}\ ,\quad S^{-1}={\begin{pmatrix}\cos(\varphi )&amp;\sin(\varphi )&amp;-\gamma \\-\sin(\varphi )&amp;\cos(\varphi )&amp;0\\0&amp;0&amp;{\sqrt {1+\gamma ^{2}}}\end{pmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/071e60a3ada47629df2818a397e5747abe4d3421" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -8.671ex; width:97.847ex; height:18.509ex;" alt="{\displaystyle S={\begin{pmatrix}{\overrightarrow {e_{\gamma }}}&amp;{\overrightarrow {e_{\varphi }}}&amp;{\overrightarrow {e_{\chi }}}\end{pmatrix}}={\begin{pmatrix}\cos(\varphi )&amp;-\sin(\varphi )&amp;{\frac {\gamma \cos(\varphi )}{\sqrt {1+\gamma ^{2}}}}\\\sin(\varphi )&amp;\cos(\varphi )&amp;{\frac {\gamma \sin(\varphi )}{\sqrt {1+\gamma ^{2}}}}\\0&amp;0&amp;{\frac {1}{\sqrt {1+\gamma ^{2}}}}\end{pmatrix}}\ ,\quad S^{-1}={\begin{pmatrix}\cos(\varphi )&amp;\sin(\varphi )&amp;-\gamma \\-\sin(\varphi )&amp;\cos(\varphi )&amp;0\\0&amp;0&amp;{\sqrt {1+\gamma ^{2}}}\end{pmatrix}}}"></span> </p> <div class="mw-heading mw-heading4"><h4 id="Transformation_der_partiellen_Ableitungen">Transformation der partiellen Ableitungen</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Polarkoordinaten&amp;veaction=edit&amp;section=36" title="Abschnitt bearbeiten: Transformation der partiellen Ableitungen" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Polarkoordinaten&amp;action=edit&amp;section=36" title="Quellcode des Abschnitts bearbeiten: Transformation der partiellen Ableitungen"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Die <a href="/wiki/Partielle_Ableitung" title="Partielle Ableitung">partiellen Ableitungen</a> lassen sich mit der inversen Jacobi-Matrix transformieren. </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{pmatrix}{\frac {\partial }{\partial x}}&amp;{\frac {\partial }{\partial y}}&amp;{\frac {\partial }{\partial z}}\end{pmatrix}}^{T}=(J_{f}^{-1})^{T}\cdot {\begin{pmatrix}{\frac {\partial }{\partial \gamma }}&amp;{\frac {\partial }{\partial \varphi }}&amp;{\frac {\partial }{\partial \chi }}\end{pmatrix}}^{T}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>x</mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>y</mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>z</mi> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> <mo>=</mo> <mo stretchy="false">(</mo> <msubsup> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03B3;<!-- γ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03C6;<!-- φ --></mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03C7;<!-- χ --></mi> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{pmatrix}{\frac {\partial }{\partial x}}&amp;{\frac {\partial }{\partial y}}&amp;{\frac {\partial }{\partial z}}\end{pmatrix}}^{T}=(J_{f}^{-1})^{T}\cdot {\begin{pmatrix}{\frac {\partial }{\partial \gamma }}&amp;{\frac {\partial }{\partial \varphi }}&amp;{\frac {\partial }{\partial \chi }}\end{pmatrix}}^{T}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f67709b7cf82dc5a620de08ee621c0537a56797" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:47.09ex; height:5.176ex;" alt="{\displaystyle {\begin{pmatrix}{\frac {\partial }{\partial x}}&amp;{\frac {\partial }{\partial y}}&amp;{\frac {\partial }{\partial z}}\end{pmatrix}}^{T}=(J_{f}^{-1})^{T}\cdot {\begin{pmatrix}{\frac {\partial }{\partial \gamma }}&amp;{\frac {\partial }{\partial \varphi }}&amp;{\frac {\partial }{\partial \chi }}\end{pmatrix}}^{T}}"></span> </p><p>Als Ergebnis erhält man: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\partial }{\partial x}}={\frac {\cos(\varphi )}{\chi }}{\frac {\partial }{\partial \gamma }}-{\frac {\sin(\varphi )}{\gamma \chi }}{\frac {\partial }{\partial \varphi }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mrow> <mi>&#x03C7;<!-- χ --></mi> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03B3;<!-- γ --></mi> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>&#x03B3;<!-- γ --></mi> <mi>&#x03C7;<!-- χ --></mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03C6;<!-- φ --></mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\partial }{\partial x}}={\frac {\cos(\varphi )}{\chi }}{\frac {\partial }{\partial \gamma }}-{\frac {\sin(\varphi )}{\gamma \chi }}{\frac {\partial }{\partial \varphi }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24481f86587789e96a45cf5b07609c46b2a5209f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:30.811ex; height:6.343ex;" alt="{\displaystyle {\frac {\partial }{\partial x}}={\frac {\cos(\varphi )}{\chi }}{\frac {\partial }{\partial \gamma }}-{\frac {\sin(\varphi )}{\gamma \chi }}{\frac {\partial }{\partial \varphi }}}"></span> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\partial }{\partial y}}={\frac {\sin(\varphi )}{\chi }}{\frac {\partial }{\partial \gamma }}+{\frac {\cos(\varphi )}{\gamma \chi }}{\frac {\partial }{\partial \varphi }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>y</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mrow> <mi>&#x03C7;<!-- χ --></mi> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03B3;<!-- γ --></mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>&#x03B3;<!-- γ --></mi> <mi>&#x03C7;<!-- χ --></mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03C6;<!-- φ --></mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\partial }{\partial y}}={\frac {\sin(\varphi )}{\chi }}{\frac {\partial }{\partial \gamma }}+{\frac {\cos(\varphi )}{\gamma \chi }}{\frac {\partial }{\partial \varphi }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2055182ef7dc1beb39cb72fd7bb0096009fb8218" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:30.637ex; height:6.343ex;" alt="{\displaystyle {\frac {\partial }{\partial y}}={\frac {\sin(\varphi )}{\chi }}{\frac {\partial }{\partial \gamma }}+{\frac {\cos(\varphi )}{\gamma \chi }}{\frac {\partial }{\partial \varphi }}}"></span> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\partial }{\partial z}}={\frac {\partial }{\partial \chi }}-{\frac {\gamma }{\chi }}{\frac {\partial }{\partial \gamma }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>z</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03C7;<!-- χ --></mi> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B3;<!-- γ --></mi> <mi>&#x03C7;<!-- χ --></mi> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03B3;<!-- γ --></mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\partial }{\partial z}}={\frac {\partial }{\partial \chi }}-{\frac {\gamma }{\chi }}{\frac {\partial }{\partial \gamma }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9516260d2c932022c9321c96a11530d1378a0e52" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:18.498ex; height:6.009ex;" alt="{\displaystyle {\frac {\partial }{\partial z}}={\frac {\partial }{\partial \chi }}-{\frac {\gamma }{\chi }}{\frac {\partial }{\partial \gamma }}}"></span> </p> <div class="mw-heading mw-heading4"><h4 id="Transformation_der_Einheitsvektoren">Transformation der Einheitsvektoren</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Polarkoordinaten&amp;veaction=edit&amp;section=37" title="Abschnitt bearbeiten: Transformation der Einheitsvektoren" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Polarkoordinaten&amp;action=edit&amp;section=37" title="Quellcode des Abschnitts bearbeiten: Transformation der Einheitsvektoren"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Die <a href="/wiki/Einheitsvektor" title="Einheitsvektor">Einheitsvektoren</a> lassen sich mit der inversen Transformationsmatrix transformieren. </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{pmatrix}{\overrightarrow {e_{x}}}&amp;{\overrightarrow {e_{y}}}&amp;{\overrightarrow {e_{z}}}\end{pmatrix}}={\begin{pmatrix}{\overrightarrow {e_{\gamma }}}&amp;{\overrightarrow {e_{\varphi }}}&amp;{\overrightarrow {e_{\chi }}}\end{pmatrix}}\cdot S^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C6;<!-- φ --></mi> </mrow> </msub> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C7;<!-- χ --></mi> </mrow> </msub> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{pmatrix}{\overrightarrow {e_{x}}}&amp;{\overrightarrow {e_{y}}}&amp;{\overrightarrow {e_{z}}}\end{pmatrix}}={\begin{pmatrix}{\overrightarrow {e_{\gamma }}}&amp;{\overrightarrow {e_{\varphi }}}&amp;{\overrightarrow {e_{\chi }}}\end{pmatrix}}\cdot S^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ece4c0c7ff8af1f96d314287a4be7df38eec1cc9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:39.137ex; height:4.843ex;" alt="{\displaystyle {\begin{pmatrix}{\overrightarrow {e_{x}}}&amp;{\overrightarrow {e_{y}}}&amp;{\overrightarrow {e_{z}}}\end{pmatrix}}={\begin{pmatrix}{\overrightarrow {e_{\gamma }}}&amp;{\overrightarrow {e_{\varphi }}}&amp;{\overrightarrow {e_{\chi }}}\end{pmatrix}}\cdot S^{-1}}"></span> </p><p>Als Ergebnis erhält man: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overrightarrow {e_{x}}}=\cos(\varphi )\cdot {\overrightarrow {e_{\gamma }}}-\sin(\varphi )\cdot {\overrightarrow {e_{\varphi }}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> <mo>=</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C6;<!-- φ --></mi> </mrow> </msub> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overrightarrow {e_{x}}}=\cos(\varphi )\cdot {\overrightarrow {e_{\gamma }}}-\sin(\varphi )\cdot {\overrightarrow {e_{\varphi }}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1a47a2668c0f86e64ccff4b9d2af03bd047020e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; margin-top: -0.34ex; width:29.091ex; height:3.843ex;" alt="{\displaystyle {\overrightarrow {e_{x}}}=\cos(\varphi )\cdot {\overrightarrow {e_{\gamma }}}-\sin(\varphi )\cdot {\overrightarrow {e_{\varphi }}}}"></span> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overrightarrow {e_{y}}}=\sin(\varphi )\cdot {\overrightarrow {e_{\gamma }}}+\cos(\varphi )\cdot {\overrightarrow {e_{\varphi }}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> <mo>=</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> <mo>+</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C6;<!-- φ --></mi> </mrow> </msub> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overrightarrow {e_{y}}}=\sin(\varphi )\cdot {\overrightarrow {e_{\gamma }}}+\cos(\varphi )\cdot {\overrightarrow {e_{\varphi }}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b9958572a14773b83a1bb373716409eb1e101c7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; margin-top: -0.34ex; width:29.091ex; height:3.843ex;" alt="{\displaystyle {\overrightarrow {e_{y}}}=\sin(\varphi )\cdot {\overrightarrow {e_{\gamma }}}+\cos(\varphi )\cdot {\overrightarrow {e_{\varphi }}}}"></span> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overrightarrow {e_{z}}}={\sqrt {1+\gamma ^{2}}}\cdot {\overrightarrow {e_{\chi }}}-\gamma \cdot {\overrightarrow {e_{\gamma }}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C7;<!-- χ --></mi> </mrow> </msub> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B3;<!-- γ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overrightarrow {e_{z}}}={\sqrt {1+\gamma ^{2}}}\cdot {\overrightarrow {e_{\chi }}}-\gamma \cdot {\overrightarrow {e_{\gamma }}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8fbbd68ebf2a1923f60b0f253b55be0e34c2ad79" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:26.212ex; height:4.843ex;" alt="{\displaystyle {\overrightarrow {e_{z}}}={\sqrt {1+\gamma ^{2}}}\cdot {\overrightarrow {e_{\chi }}}-\gamma \cdot {\overrightarrow {e_{\gamma }}}}"></span> </p> <div class="mw-heading mw-heading4"><h4 id="Transformation_von_Vektorfeldern">Transformation von Vektorfeldern</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Polarkoordinaten&amp;veaction=edit&amp;section=38" title="Abschnitt bearbeiten: Transformation von Vektorfeldern" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Polarkoordinaten&amp;action=edit&amp;section=38" title="Quellcode des Abschnitts bearbeiten: Transformation von Vektorfeldern"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Vektorfeld" title="Vektorfeld">Vektorfelder</a> lassen sich durch Matrixmultiplikation mit der Transformationsmatrix transformieren. </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{pmatrix}F_{x}\\F_{y}\\F_{z}\end{pmatrix}}=S\cdot {\begin{pmatrix}F_{\gamma }\\F_{\varphi }\\F_{\chi }\end{pmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>=</mo> <mi>S</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C6;<!-- φ --></mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C7;<!-- χ --></mi> </mrow> </msub> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{pmatrix}F_{x}\\F_{y}\\F_{z}\end{pmatrix}}=S\cdot {\begin{pmatrix}F_{\gamma }\\F_{\varphi }\\F_{\chi }\end{pmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6eeb1d4b86e56ce442ae68ae2212a25f708e788d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.505ex; width:21.382ex; height:10.176ex;" alt="{\displaystyle {\begin{pmatrix}F_{x}\\F_{y}\\F_{z}\end{pmatrix}}=S\cdot {\begin{pmatrix}F_{\gamma }\\F_{\varphi }\\F_{\chi }\end{pmatrix}}}"></span> </p><p>Als Ergebnis erhält man: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{x}=\cos(\varphi )\cdot F_{\gamma }-\sin(\varphi )\cdot F_{\varphi }+{\frac {\gamma \cos(\varphi )}{\sqrt {1+\gamma ^{2}}}}\cdot F_{\chi }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C6;<!-- φ --></mi> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03B3;<!-- γ --></mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mrow> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C7;<!-- χ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{x}=\cos(\varphi )\cdot F_{\gamma }-\sin(\varphi )\cdot F_{\varphi }+{\frac {\gamma \cos(\varphi )}{\sqrt {1+\gamma ^{2}}}}\cdot F_{\chi }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb278f47698e502bb5abefaa6aea04f151da3828" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:46.783ex; height:7.009ex;" alt="{\displaystyle F_{x}=\cos(\varphi )\cdot F_{\gamma }-\sin(\varphi )\cdot F_{\varphi }+{\frac {\gamma \cos(\varphi )}{\sqrt {1+\gamma ^{2}}}}\cdot F_{\chi }}"></span> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{y}=\sin(\varphi )\cdot F_{\gamma }+\cos(\varphi )\cdot F_{\varphi }+{\frac {\gamma \sin(\varphi )}{\sqrt {1+\gamma ^{2}}}}\cdot F_{\chi }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo>=</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <mo>+</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C6;<!-- φ --></mi> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03B3;<!-- γ --></mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mrow> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C7;<!-- χ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{y}=\sin(\varphi )\cdot F_{\gamma }+\cos(\varphi )\cdot F_{\varphi }+{\frac {\gamma \sin(\varphi )}{\sqrt {1+\gamma ^{2}}}}\cdot F_{\chi }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c464f3b0c77ef5e9018d7492f84ea00be557daa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:46.66ex; height:7.009ex;" alt="{\displaystyle F_{y}=\sin(\varphi )\cdot F_{\gamma }+\cos(\varphi )\cdot F_{\varphi }+{\frac {\gamma \sin(\varphi )}{\sqrt {1+\gamma ^{2}}}}\cdot F_{\chi }}"></span> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{z}={\frac {1}{\sqrt {1+\gamma ^{2}}}}\cdot F_{\chi }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C7;<!-- χ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{z}={\frac {1}{\sqrt {1+\gamma ^{2}}}}\cdot F_{\chi }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3149cdd6ac9837d0e6fc5164043cb2e6c4363e7c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:19.526ex; height:6.509ex;" alt="{\displaystyle F_{z}={\frac {1}{\sqrt {1+\gamma ^{2}}}}\cdot F_{\chi }}"></span> </p> <div class="mw-heading mw-heading4"><h4 id="Oberflächen-_und_Volumendifferential"><span id="Oberfl.C3.A4chen-_und_Volumendifferential"></span>Oberflächen- und Volumendifferential</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Polarkoordinaten&amp;veaction=edit&amp;section=39" title="Abschnitt bearbeiten: Oberflächen- und Volumendifferential" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Polarkoordinaten&amp;action=edit&amp;section=39" title="Quellcode des Abschnitts bearbeiten: Oberflächen- und Volumendifferential"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Das Volumendifferential lässt sich über die Determinante der Jacobi-Matrix angeben. Dies bietet die Möglichkeit z.&#160;B. das Volumen eines Kegels per <a href="/wiki/Volumenintegral" title="Volumenintegral">Dreifachintegral</a> zu berechnen. </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle dV=\det J_{f}\cdot d\gamma d\chi d\varphi =\chi ^{2}\gamma \cdot d\gamma d\chi d\varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mi>V</mi> <mo>=</mo> <mo movablelimits="true" form="prefix">det</mo> <msub> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>d</mi> <mi>&#x03B3;<!-- γ --></mi> <mi>d</mi> <mi>&#x03C7;<!-- χ --></mi> <mi>d</mi> <mi>&#x03C6;<!-- φ --></mi> <mo>=</mo> <msup> <mi>&#x03C7;<!-- χ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>&#x03B3;<!-- γ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>d</mi> <mi>&#x03B3;<!-- γ --></mi> <mi>d</mi> <mi>&#x03C7;<!-- χ --></mi> <mi>d</mi> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle dV=\det J_{f}\cdot d\gamma d\chi d\varphi =\chi ^{2}\gamma \cdot d\gamma d\chi d\varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/77413a726b8402b1a760c84e71eb3846bd8e191f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:38.143ex; height:3.343ex;" alt="{\displaystyle dV=\det J_{f}\cdot d\gamma d\chi d\varphi =\chi ^{2}\gamma \cdot d\gamma d\chi d\varphi }"></span> </p><p>Das Oberflächendifferential lässt sich mit der Norm des Flächennormalenvektors angeben. Damit kann man z.&#160;B. per Doppelintegral den Flächeninhalt der Mantelfläche bestimmen. </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle dA=\|{\overrightarrow {n}}\|\cdot d\chi d\varphi =\chi \gamma {\sqrt {1+\gamma ^{2}}}\cdot d\chi d\varphi \quad {\text{wobei}}\quad \gamma ={\text{const.}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mi>A</mi> <mo>=</mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>n</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>d</mi> <mi>&#x03C7;<!-- χ --></mi> <mi>d</mi> <mi>&#x03C6;<!-- φ --></mi> <mo>=</mo> <mi>&#x03C7;<!-- χ --></mi> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>d</mi> <mi>&#x03C7;<!-- χ --></mi> <mi>d</mi> <mi>&#x03C6;<!-- φ --></mi> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>wobei</mtext> </mrow> <mspace width="1em" /> <mi>&#x03B3;<!-- γ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>const.</mtext> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle dA=\|{\overrightarrow {n}}\|\cdot d\chi d\varphi =\chi \gamma {\sqrt {1+\gamma ^{2}}}\cdot d\chi d\varphi \quad {\text{wobei}}\quad \gamma ={\text{const.}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/edbd7b5db839add05abe0958e5b9cd5552d3e1ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:60.128ex; height:4.843ex;" alt="{\displaystyle dA=\|{\overrightarrow {n}}\|\cdot d\chi d\varphi =\chi \gamma {\sqrt {1+\gamma ^{2}}}\cdot d\chi d\varphi \quad {\text{wobei}}\quad \gamma ={\text{const.}}}"></span> </p> <div class="mw-heading mw-heading4"><h4 id="Transformierte_Vektor-Differentialoperatoren">Transformierte Vektor-Differentialoperatoren</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Polarkoordinaten&amp;veaction=edit&amp;section=40" title="Abschnitt bearbeiten: Transformierte Vektor-Differentialoperatoren" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Polarkoordinaten&amp;action=edit&amp;section=40" title="Quellcode des Abschnitts bearbeiten: Transformierte Vektor-Differentialoperatoren"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading5"><h5 id="Nabla-Operator">Nabla-Operator</h5><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Polarkoordinaten&amp;veaction=edit&amp;section=41" title="Abschnitt bearbeiten: Nabla-Operator" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Polarkoordinaten&amp;action=edit&amp;section=41" title="Quellcode des Abschnitts bearbeiten: Nabla-Operator"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Eine Darstellung des <a href="/wiki/Nabla-Operator" title="Nabla-Operator">Nabla-Operators</a> in Kegelkoordinaten erhält man, indem man die transformierten Einheitsvektoren und partielle Ableitungen in den kartesischen Nabla-Operator einsetzt: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla =\left({\frac {1+\gamma ^{2}}{\chi }}{\frac {\partial }{\partial \gamma }}-\gamma {\frac {\partial }{\partial \chi }}\right)\cdot {\overrightarrow {e_{\gamma }}}+\left({\frac {1}{\gamma \chi }}{\frac {\partial }{\partial \varphi }}\right)\cdot {\overrightarrow {e_{\varphi }}}+{\sqrt {1+\gamma ^{2}}}\left({\frac {\partial }{\partial \chi }}-{\frac {\gamma }{\chi }}{\frac {\partial }{\partial \gamma }}\right)\cdot {\overrightarrow {e_{\chi }}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mi>&#x03C7;<!-- χ --></mi> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03B3;<!-- γ --></mi> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03C7;<!-- χ --></mi> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>&#x03B3;<!-- γ --></mi> <mi>&#x03C7;<!-- χ --></mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03C6;<!-- φ --></mi> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C6;<!-- φ --></mi> </mrow> </msub> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03C7;<!-- χ --></mi> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B3;<!-- γ --></mi> <mi>&#x03C7;<!-- χ --></mi> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03B3;<!-- γ --></mi> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C7;<!-- χ --></mi> </mrow> </msub> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla =\left({\frac {1+\gamma ^{2}}{\chi }}{\frac {\partial }{\partial \gamma }}-\gamma {\frac {\partial }{\partial \chi }}\right)\cdot {\overrightarrow {e_{\gamma }}}+\left({\frac {1}{\gamma \chi }}{\frac {\partial }{\partial \varphi }}\right)\cdot {\overrightarrow {e_{\varphi }}}+{\sqrt {1+\gamma ^{2}}}\left({\frac {\partial }{\partial \chi }}-{\frac {\gamma }{\chi }}{\frac {\partial }{\partial \gamma }}\right)\cdot {\overrightarrow {e_{\chi }}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8102d8ae6ba3e274b4d0ad5d2409d7c1db60f0da" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:79.94ex; height:6.343ex;" alt="{\displaystyle \nabla =\left({\frac {1+\gamma ^{2}}{\chi }}{\frac {\partial }{\partial \gamma }}-\gamma {\frac {\partial }{\partial \chi }}\right)\cdot {\overrightarrow {e_{\gamma }}}+\left({\frac {1}{\gamma \chi }}{\frac {\partial }{\partial \varphi }}\right)\cdot {\overrightarrow {e_{\varphi }}}+{\sqrt {1+\gamma ^{2}}}\left({\frac {\partial }{\partial \chi }}-{\frac {\gamma }{\chi }}{\frac {\partial }{\partial \gamma }}\right)\cdot {\overrightarrow {e_{\chi }}}}"></span></dd></dl> <div class="mw-heading mw-heading5"><h5 id="Gradient_2">Gradient</h5><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Polarkoordinaten&amp;veaction=edit&amp;section=42" title="Abschnitt bearbeiten: Gradient" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Polarkoordinaten&amp;action=edit&amp;section=42" title="Quellcode des Abschnitts bearbeiten: Gradient"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Den <a href="/wiki/Gradient_(Mathematik)" title="Gradient (Mathematik)">Gradienten</a> in Kegelkoordinaten erhält man, indem man den transformieren Nabla-Operator auf ein Skalarfeld in Kegelkoordinaten anwendet. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {grad} \phi =\nabla \phi =\left({\frac {1+\gamma ^{2}}{\chi }}{\frac {\partial \phi }{\partial \gamma }}-\gamma {\frac {\partial \phi }{\partial \chi }}\right)\cdot {\overrightarrow {e_{\gamma }}}+\left({\frac {1}{\gamma \chi }}{\frac {\partial \phi }{\partial \varphi }}\right)\cdot {\overrightarrow {e_{\varphi }}}+{\sqrt {1+\gamma ^{2}}}\left({\frac {\partial \phi }{\partial \chi }}-{\frac {\gamma }{\chi }}{\frac {\partial \phi }{\partial \gamma }}\right)\cdot {\overrightarrow {e_{\chi }}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>grad</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo>=</mo> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mi>&#x03D5;<!-- ϕ --></mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mi>&#x03C7;<!-- χ --></mi> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03B3;<!-- γ --></mi> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03C7;<!-- χ --></mi> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>&#x03B3;<!-- γ --></mi> <mi>&#x03C7;<!-- χ --></mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03C6;<!-- φ --></mi> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C6;<!-- φ --></mi> </mrow> </msub> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03C7;<!-- χ --></mi> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B3;<!-- γ --></mi> <mi>&#x03C7;<!-- χ --></mi> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03B3;<!-- γ --></mi> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C7;<!-- χ --></mi> </mrow> </msub> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {grad} \phi =\nabla \phi =\left({\frac {1+\gamma ^{2}}{\chi }}{\frac {\partial \phi }{\partial \gamma }}-\gamma {\frac {\partial \phi }{\partial \chi }}\right)\cdot {\overrightarrow {e_{\gamma }}}+\left({\frac {1}{\gamma \chi }}{\frac {\partial \phi }{\partial \varphi }}\right)\cdot {\overrightarrow {e_{\varphi }}}+{\sqrt {1+\gamma ^{2}}}\left({\frac {\partial \phi }{\partial \chi }}-{\frac {\gamma }{\chi }}{\frac {\partial \phi }{\partial \gamma }}\right)\cdot {\overrightarrow {e_{\chi }}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/36e103226b815b8a9ae248cfa465585ac6eb70f2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:90.972ex; height:6.343ex;" alt="{\displaystyle \operatorname {grad} \phi =\nabla \phi =\left({\frac {1+\gamma ^{2}}{\chi }}{\frac {\partial \phi }{\partial \gamma }}-\gamma {\frac {\partial \phi }{\partial \chi }}\right)\cdot {\overrightarrow {e_{\gamma }}}+\left({\frac {1}{\gamma \chi }}{\frac {\partial \phi }{\partial \varphi }}\right)\cdot {\overrightarrow {e_{\varphi }}}+{\sqrt {1+\gamma ^{2}}}\left({\frac {\partial \phi }{\partial \chi }}-{\frac {\gamma }{\chi }}{\frac {\partial \phi }{\partial \gamma }}\right)\cdot {\overrightarrow {e_{\chi }}}}"></span></dd></dl> <div class="mw-heading mw-heading5"><h5 id="Divergenz_2">Divergenz</h5><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Polarkoordinaten&amp;veaction=edit&amp;section=43" title="Abschnitt bearbeiten: Divergenz" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Polarkoordinaten&amp;action=edit&amp;section=43" title="Quellcode des Abschnitts bearbeiten: Divergenz"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Den Operator für die <a href="/wiki/Divergenz_eines_Vektorfeldes" title="Divergenz eines Vektorfeldes">Divergenz eines Vektorfeldes</a> erhält man, indem man den Nabla-Operator auf das Vektorfeld in Kegelkoordinaten anwendet: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {div} {\overrightarrow {F}}=\nabla \cdot {\overrightarrow {F}}={\frac {1}{\gamma \chi }}\cdot \left({\frac {\partial \left(F_{\gamma }\cdot \gamma \right)}{\partial \gamma }}+{\frac {\partial F_{\varphi }}{\partial \varphi }}\right)+{\frac {1}{\chi ^{2}{\sqrt {1+\gamma ^{2}}}}}{\frac {\partial \left(F_{\chi }\cdot \chi ^{2}\right)}{\partial \chi }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>div</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>F</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> <mo>=</mo> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>F</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>&#x03B3;<!-- γ --></mi> <mi>&#x03C7;<!-- χ --></mi> </mrow> </mfrac> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>&#x03B3;<!-- γ --></mi> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03B3;<!-- γ --></mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C6;<!-- φ --></mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03C6;<!-- φ --></mi> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <msup> <mi>&#x03C7;<!-- χ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C7;<!-- χ --></mi> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mi>&#x03C7;<!-- χ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03C7;<!-- χ --></mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {div} {\overrightarrow {F}}=\nabla \cdot {\overrightarrow {F}}={\frac {1}{\gamma \chi }}\cdot \left({\frac {\partial \left(F_{\gamma }\cdot \gamma \right)}{\partial \gamma }}+{\frac {\partial F_{\varphi }}{\partial \varphi }}\right)+{\frac {1}{\chi ^{2}{\sqrt {1+\gamma ^{2}}}}}{\frac {\partial \left(F_{\chi }\cdot \chi ^{2}\right)}{\partial \chi }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b6636e5f88db2b462639a8c3794360412eafda3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:71.544ex; height:7.343ex;" alt="{\displaystyle \operatorname {div} {\overrightarrow {F}}=\nabla \cdot {\overrightarrow {F}}={\frac {1}{\gamma \chi }}\cdot \left({\frac {\partial \left(F_{\gamma }\cdot \gamma \right)}{\partial \gamma }}+{\frac {\partial F_{\varphi }}{\partial \varphi }}\right)+{\frac {1}{\chi ^{2}{\sqrt {1+\gamma ^{2}}}}}{\frac {\partial \left(F_{\chi }\cdot \chi ^{2}\right)}{\partial \chi }}}"></span></dd></dl> <div class="mw-heading mw-heading5"><h5 id="Laplace-Operator">Laplace-Operator</h5><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Polarkoordinaten&amp;veaction=edit&amp;section=44" title="Abschnitt bearbeiten: Laplace-Operator" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Polarkoordinaten&amp;action=edit&amp;section=44" title="Quellcode des Abschnitts bearbeiten: Laplace-Operator"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Der Laplace-Operator <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32769037c408874e1890f77554c65f39c523ebe2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.936ex; height:2.176ex;" alt="{\displaystyle \Delta }"></span> ist die Divergenz eines Gradienten. In Kegelkoordinaten ergibt dies den folgenden Operator: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta \phi =\operatorname {div} (\operatorname {grad} \phi )=\left({\frac {1+\gamma ^{2}}{\chi ^{2}}}\right){\frac {\partial ^{2}\phi }{\partial \gamma ^{2}}}+\left({\frac {1+2\gamma ^{2}}{\gamma \chi ^{2}}}\right){\frac {\partial \phi }{\partial \gamma }}+\left({\frac {1}{\gamma \chi }}\right)^{2}{\frac {\partial ^{2}\phi }{\partial \varphi ^{2}}}+{\frac {\partial ^{2}\phi }{\partial \chi ^{2}}}-\left({\frac {2\gamma }{\chi }}\right){\frac {\partial ^{2}\phi }{\partial \gamma \partial \chi }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>&#x03D5;<!-- ϕ --></mi> <mo>=</mo> <mi>div</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>grad</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <msup> <mi>&#x03C7;<!-- χ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>+</mo> <mn>2</mn> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <mi>&#x03B3;<!-- γ --></mi> <msup> <mi>&#x03C7;<!-- χ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03B3;<!-- γ --></mi> </mrow> </mfrac> </mrow> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>&#x03B3;<!-- γ --></mi> <mi>&#x03C7;<!-- χ --></mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>&#x03C7;<!-- χ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>&#x03B3;<!-- γ --></mi> </mrow> <mi>&#x03C7;<!-- χ --></mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03B3;<!-- γ --></mi> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03C7;<!-- χ --></mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta \phi =\operatorname {div} (\operatorname {grad} \phi )=\left({\frac {1+\gamma ^{2}}{\chi ^{2}}}\right){\frac {\partial ^{2}\phi }{\partial \gamma ^{2}}}+\left({\frac {1+2\gamma ^{2}}{\gamma \chi ^{2}}}\right){\frac {\partial \phi }{\partial \gamma }}+\left({\frac {1}{\gamma \chi }}\right)^{2}{\frac {\partial ^{2}\phi }{\partial \varphi ^{2}}}+{\frac {\partial ^{2}\phi }{\partial \chi ^{2}}}-\left({\frac {2\gamma }{\chi }}\right){\frac {\partial ^{2}\phi }{\partial \gamma \partial \chi }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5cc168fb64d22b6c008ff0bf17b10e3fab3839db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:94.121ex; height:6.509ex;" alt="{\displaystyle \Delta \phi =\operatorname {div} (\operatorname {grad} \phi )=\left({\frac {1+\gamma ^{2}}{\chi ^{2}}}\right){\frac {\partial ^{2}\phi }{\partial \gamma ^{2}}}+\left({\frac {1+2\gamma ^{2}}{\gamma \chi ^{2}}}\right){\frac {\partial \phi }{\partial \gamma }}+\left({\frac {1}{\gamma \chi }}\right)^{2}{\frac {\partial ^{2}\phi }{\partial \varphi ^{2}}}+{\frac {\partial ^{2}\phi }{\partial \chi ^{2}}}-\left({\frac {2\gamma }{\chi }}\right){\frac {\partial ^{2}\phi }{\partial \gamma \partial \chi }}}"></span></dd></dl> <div class="mw-heading mw-heading5"><h5 id="Rotation_2">Rotation</h5><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Polarkoordinaten&amp;veaction=edit&amp;section=45" title="Abschnitt bearbeiten: Rotation" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Polarkoordinaten&amp;action=edit&amp;section=45" title="Quellcode des Abschnitts bearbeiten: Rotation"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Die <a href="/wiki/Rotation_eines_Vektorfeldes" title="Rotation eines Vektorfeldes">Rotation eines Vektorfeldes</a> lässt sich als <a href="/wiki/Kreuzprodukt" title="Kreuzprodukt">Kreuzprodukt</a> des Nabla-Operators mit den Elementen des Vektorfelds auffassen: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {rot} {\overrightarrow {F}}=\nabla \times {\overrightarrow {F}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>rot</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>F</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> <mo>=</mo> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>F</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {rot} {\overrightarrow {F}}=\nabla \times {\overrightarrow {F}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df6c61175ea3ae8dd326e54f96eb1231ff5a44c4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:16.595ex; height:3.676ex;" alt="{\displaystyle \operatorname {rot} {\overrightarrow {F}}=\nabla \times {\overrightarrow {F}}}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \qquad \quad =\left({\frac {\sqrt {1+\gamma ^{2}}}{\gamma \chi }}{\frac {\partial F_{\chi }}{\partial \varphi }}+{\frac {1}{\chi }}{\frac {\partial F_{\gamma }}{\partial \varphi }}-{\frac {1}{\chi }}{\frac {\partial \left(F_{\varphi }\cdot \chi \right)}{\partial \chi }}\right){\overrightarrow {e_{\gamma }}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="2em" /> <mspace width="1em" /> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> <mrow> <mi>&#x03B3;<!-- γ --></mi> <mi>&#x03C7;<!-- χ --></mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C7;<!-- χ --></mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03C6;<!-- φ --></mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>&#x03C7;<!-- χ --></mi> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03C6;<!-- φ --></mi> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>&#x03C7;<!-- χ --></mi> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C6;<!-- φ --></mi> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>&#x03C7;<!-- χ --></mi> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03C7;<!-- χ --></mi> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \qquad \quad =\left({\frac {\sqrt {1+\gamma ^{2}}}{\gamma \chi }}{\frac {\partial F_{\chi }}{\partial \varphi }}+{\frac {1}{\chi }}{\frac {\partial F_{\gamma }}{\partial \varphi }}-{\frac {1}{\chi }}{\frac {\partial \left(F_{\varphi }\cdot \chi \right)}{\partial \chi }}\right){\overrightarrow {e_{\gamma }}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d24670179c21d63f7ac0637d6cb6b6edab67ce91" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:55.543ex; height:7.509ex;" alt="{\displaystyle \qquad \quad =\left({\frac {\sqrt {1+\gamma ^{2}}}{\gamma \chi }}{\frac {\partial F_{\chi }}{\partial \varphi }}+{\frac {1}{\chi }}{\frac {\partial F_{\gamma }}{\partial \varphi }}-{\frac {1}{\chi }}{\frac {\partial \left(F_{\varphi }\cdot \chi \right)}{\partial \chi }}\right){\overrightarrow {e_{\gamma }}}}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \qquad \quad +\left({\frac {\partial F_{\gamma }}{\partial \chi }}+{\frac {\gamma }{\sqrt {1+\gamma ^{2}}}}{\frac {\partial F_{\chi }}{\partial \chi }}-{\frac {\gamma }{\chi }}{\frac {\partial F_{\gamma }}{\partial \gamma }}-{\frac {\sqrt {1+\gamma ^{2}}}{\chi }}{\frac {\partial F_{\chi }}{\partial \gamma }}\right){\overrightarrow {e_{\varphi }}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="2em" /> <mspace width="1em" /> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03C7;<!-- χ --></mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B3;<!-- γ --></mi> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C7;<!-- χ --></mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03C7;<!-- χ --></mi> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B3;<!-- γ --></mi> <mi>&#x03C7;<!-- χ --></mi> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03B3;<!-- γ --></mi> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> <mi>&#x03C7;<!-- χ --></mi> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C7;<!-- χ --></mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03B3;<!-- γ --></mi> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C6;<!-- φ --></mi> </mrow> </msub> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \qquad \quad +\left({\frac {\partial F_{\gamma }}{\partial \chi }}+{\frac {\gamma }{\sqrt {1+\gamma ^{2}}}}{\frac {\partial F_{\chi }}{\partial \chi }}-{\frac {\gamma }{\chi }}{\frac {\partial F_{\gamma }}{\partial \gamma }}-{\frac {\sqrt {1+\gamma ^{2}}}{\chi }}{\frac {\partial F_{\chi }}{\partial \gamma }}\right){\overrightarrow {e_{\varphi }}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c83648548bccb50ecabf393b2bfb0eb6d7f716c5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:64.925ex; height:7.509ex;" alt="{\displaystyle \qquad \quad +\left({\frac {\partial F_{\gamma }}{\partial \chi }}+{\frac {\gamma }{\sqrt {1+\gamma ^{2}}}}{\frac {\partial F_{\chi }}{\partial \chi }}-{\frac {\gamma }{\chi }}{\frac {\partial F_{\gamma }}{\partial \gamma }}-{\frac {\sqrt {1+\gamma ^{2}}}{\chi }}{\frac {\partial F_{\chi }}{\partial \gamma }}\right){\overrightarrow {e_{\varphi }}}}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \qquad \quad +\left({\frac {\sqrt {1+\gamma ^{2}}}{\chi \gamma }}{\frac {\partial (\gamma F_{\varphi })}{\partial \gamma }}-{\frac {\sqrt {\gamma ^{2}+1}}{\chi \gamma }}{\frac {\partial F_{\gamma }}{\partial \varphi }}-{\frac {1}{\chi }}{\frac {\partial F_{\chi }}{\partial \varphi }}\right){\overrightarrow {e_{\chi }}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="2em" /> <mspace width="1em" /> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> <mrow> <mi>&#x03C7;<!-- χ --></mi> <mi>&#x03B3;<!-- γ --></mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mo stretchy="false">(</mo> <mi>&#x03B3;<!-- γ --></mi> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C6;<!-- φ --></mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03B3;<!-- γ --></mi> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msqrt> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>1</mn> </msqrt> <mrow> <mi>&#x03C7;<!-- χ --></mi> <mi>&#x03B3;<!-- γ --></mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03C6;<!-- φ --></mi> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>&#x03C7;<!-- χ --></mi> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C7;<!-- χ --></mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03C6;<!-- φ --></mi> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C7;<!-- χ --></mi> </mrow> </msub> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \qquad \quad +\left({\frac {\sqrt {1+\gamma ^{2}}}{\chi \gamma }}{\frac {\partial (\gamma F_{\varphi })}{\partial \gamma }}-{\frac {\sqrt {\gamma ^{2}+1}}{\chi \gamma }}{\frac {\partial F_{\gamma }}{\partial \varphi }}-{\frac {1}{\chi }}{\frac {\partial F_{\chi }}{\partial \varphi }}\right){\overrightarrow {e_{\chi }}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b65ed5e3aae67dc9b94ae71b8a428281b4221842" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:60.253ex; height:7.509ex;" alt="{\displaystyle \qquad \quad +\left({\frac {\sqrt {1+\gamma ^{2}}}{\chi \gamma }}{\frac {\partial (\gamma F_{\varphi })}{\partial \gamma }}-{\frac {\sqrt {\gamma ^{2}+1}}{\chi \gamma }}{\frac {\partial F_{\gamma }}{\partial \varphi }}-{\frac {1}{\chi }}{\frac {\partial F_{\chi }}{\partial \varphi }}\right){\overrightarrow {e_{\chi }}}}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Kugelkoordinaten">Kugelkoordinaten</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Polarkoordinaten&amp;veaction=edit&amp;section=46" title="Abschnitt bearbeiten: Kugelkoordinaten" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Polarkoordinaten&amp;action=edit&amp;section=46" title="Quellcode des Abschnitts bearbeiten: Kugelkoordinaten"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure typeof="mw:File/Thumb"><a href="/wiki/Datei:Kugelkoord-def.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/69/Kugelkoord-def.svg/300px-Kugelkoord-def.svg.png" decoding="async" width="300" height="300" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/69/Kugelkoord-def.svg/450px-Kugelkoord-def.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/69/Kugelkoord-def.svg/600px-Kugelkoord-def.svg.png 2x" data-file-width="261" data-file-height="261" /></a><figcaption>Kugelkoordinaten</figcaption></figure> <div class="hauptartikel" role="navigation"><span class="hauptartikel-pfeil" title="siehe" aria-hidden="true" role="presentation">→&#160;</span><i><span class="hauptartikel-text">Hauptartikel</span>: <a href="/wiki/Kugelkoordinaten" title="Kugelkoordinaten">Kugelkoordinaten</a></i></div> <p>Kugelkoordinaten sind im Wesentlichen ebene Polarkoordinaten, die um eine dritte Koordinate ergänzt sind. Dies geschieht, indem man einen Winkel <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta \in [0,\pi ]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B8;<!-- θ --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mi>&#x03C0;<!-- π --></mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta \in [0,\pi ]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c833964ea08aa30df8b6f56664461a5499b38144" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.753ex; height:2.843ex;" alt="{\displaystyle \theta \in [0,\pi ]}"></span> für die dritte Achse spezifiziert. Diese dritte Koordinate beschreibt den Winkel zwischen dem Vektor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {r}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {r}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6aec3c9ce13b53e9e24c98e7cce4212627884c91" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.223ex; height:2.343ex;" alt="{\displaystyle {\vec {r}}}"></span> zum Punkt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span> und der <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"></span>-Achse. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B8;<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e5ab2664b422d53eb0c7df3b87e1360d75ad9af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:2.176ex;" alt="{\displaystyle \theta }"></span> ist genau dann null, wenn <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span> in der <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"></span>-Achse liegt. </p> <div class="mw-heading mw-heading2"><h2 id="n-dimensionale_Polarkoordinaten"><i>n</i>-dimensionale Polarkoordinaten</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Polarkoordinaten&amp;veaction=edit&amp;section=47" title="Abschnitt bearbeiten: n-dimensionale Polarkoordinaten" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Polarkoordinaten&amp;action=edit&amp;section=47" title="Quellcode des Abschnitts bearbeiten: n-dimensionale Polarkoordinaten"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Es lässt sich auch eine Verallgemeinerung der Polarkoordinaten mit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\geq 3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\geq 3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73136e4a27fe39c123d16a7808e76d3162ce42bb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.656ex; height:2.343ex;" alt="{\displaystyle n\geq 3}"></span> für einen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>-dimensionalen Raum mit kartesischen Koordinaten <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{i}\in \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{i}\in \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c16c64c292c38a4a3ebfee3be0ade520d4463413" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.648ex; height:2.509ex;" alt="{\displaystyle x_{i}\in \mathbb {R} }"></span> für <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i=1,\dotsc ,n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i=1,\dotsc ,n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e7f2132430a61b900cf2c4380774394ca9f09c8c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.636ex; height:2.509ex;" alt="{\displaystyle i=1,\dotsc ,n}"></span> angeben. Dazu führt man für jede <i>neue</i> Dimension (induktiver Aufbau über selbige) einen weiteren Winkel <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \vartheta _{n-2}\in [0,\pi ]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03D1;<!-- ϑ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mi>&#x03C0;<!-- π --></mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \vartheta _{n-2}\in [0,\pi ]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fd757b4fc3635a37579afba4382be3d4cda87789" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.356ex; height:2.843ex;" alt="{\displaystyle \vartheta _{n-2}\in [0,\pi ]}"></span> ein, der den Winkel zwischen dem Vektor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c520ee2cb6ccf8a93c89a8c58a8378796bd52e53" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.067ex; height:2.343ex;" alt="{\displaystyle x\in \mathbb {R} ^{n}}"></span> und der neuen, positiven Koordinatenachse für <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c5ea190699149306d242b70439e663559e3ffbe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.548ex; height:2.009ex;" alt="{\displaystyle x_{n}}"></span> angibt. Mit demselben Vorgehen kann in konsistenter Weise die Winkelkoordinate des 2-dimensionalen Raumes mittels <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi =\vartheta _{0}\in [0,\pi ]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> <mo>=</mo> <msub> <mi>&#x03D1;<!-- ϑ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mi>&#x03C0;<!-- π --></mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi =\vartheta _{0}\in [0,\pi ]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/049d26ceee7c1903d4aefcec69374863275f25f7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.709ex; height:2.843ex;" alt="{\displaystyle \varphi =\vartheta _{0}\in [0,\pi ]}"></span> induktiv aus dem Zahlenstrahl konstruiert werden, sofern für die radiale Koordinate auch negative Werte, also somit ganz <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span>, zugelassen wären. </p> <div class="mw-heading mw-heading3"><h3 id="Umrechnung_in_kartesische_Koordinaten">Umrechnung in kartesische Koordinaten</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Polarkoordinaten&amp;veaction=edit&amp;section=48" title="Abschnitt bearbeiten: Umrechnung in kartesische Koordinaten" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Polarkoordinaten&amp;action=edit&amp;section=48" title="Quellcode des Abschnitts bearbeiten: Umrechnung in kartesische Koordinaten"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Eine Umrechnungsvorschrift von diesen Koordinaten in kartesische Koordinaten wäre dann: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{array}{lcr}x_{1}&amp;=&amp;r\ \cos \varphi \ \sin \vartheta _{1}\ \sin \vartheta _{2}\ \cdots \ \sin \vartheta _{n-3}\ \sin \vartheta _{n-2}\\x_{2}&amp;=&amp;r\ \sin \varphi \ \sin \vartheta _{1}\ \sin \vartheta _{2}\ \cdots \ \sin \vartheta _{n-3}\ \sin \vartheta _{n-2}\\x_{3}&amp;=&amp;r\ \cos \vartheta _{1}\ \sin \vartheta _{2}\ \cdots \ \sin \vartheta _{n-3}\ \sin \vartheta _{n-2}\\x_{4}&amp;=&amp;r\ \cos \vartheta _{2}\ \cdots \ \sin \vartheta _{n-3}\ \sin \vartheta _{n-2}\\\vdots &amp;\vdots &amp;\vdots \qquad \qquad \qquad \quad \\x_{n-1}&amp;=&amp;r\ \cos \vartheta _{n-3}\ \sin \vartheta _{n-2}\\x_{n}&amp;=&amp;r\ \cos \vartheta _{n-2}\end{array}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="left center right" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mo>=</mo> </mtd> <mtd> <mi>r</mi> <mtext>&#xA0;</mtext> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mtext>&#xA0;</mtext> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03D1;<!-- ϑ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mtext>&#xA0;</mtext> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03D1;<!-- ϑ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mtext>&#xA0;</mtext> <mo>&#x22EF;<!-- ⋯ --></mo> <mtext>&#xA0;</mtext> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03D1;<!-- ϑ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> </mrow> </msub> <mtext>&#xA0;</mtext> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03D1;<!-- ϑ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mo>=</mo> </mtd> <mtd> <mi>r</mi> <mtext>&#xA0;</mtext> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mtext>&#xA0;</mtext> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03D1;<!-- ϑ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mtext>&#xA0;</mtext> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03D1;<!-- ϑ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mtext>&#xA0;</mtext> <mo>&#x22EF;<!-- ⋯ --></mo> <mtext>&#xA0;</mtext> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03D1;<!-- ϑ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> </mrow> </msub> <mtext>&#xA0;</mtext> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03D1;<!-- ϑ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <mo>=</mo> </mtd> <mtd> <mi>r</mi> <mtext>&#xA0;</mtext> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03D1;<!-- ϑ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mtext>&#xA0;</mtext> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03D1;<!-- ϑ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mtext>&#xA0;</mtext> <mo>&#x22EF;<!-- ⋯ --></mo> <mtext>&#xA0;</mtext> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03D1;<!-- ϑ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> </mrow> </msub> <mtext>&#xA0;</mtext> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03D1;<!-- ϑ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> </mtd> <mtd> <mo>=</mo> </mtd> <mtd> <mi>r</mi> <mtext>&#xA0;</mtext> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03D1;<!-- ϑ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mtext>&#xA0;</mtext> <mo>&#x22EF;<!-- ⋯ --></mo> <mtext>&#xA0;</mtext> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03D1;<!-- ϑ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> </mrow> </msub> <mtext>&#xA0;</mtext> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03D1;<!-- ϑ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo>&#x22EE;<!-- ⋮ --></mo> </mtd> <mtd> <mo>&#x22EE;<!-- ⋮ --></mo> </mtd> <mtd> <mo>&#x22EE;<!-- ⋮ --></mo> <mspace width="2em" /> <mspace width="2em" /> <mspace width="2em" /> <mspace width="1em" /> </mtd> </mtr> <mtr> <mtd> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mo>=</mo> </mtd> <mtd> <mi>r</mi> <mtext>&#xA0;</mtext> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03D1;<!-- ϑ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> </mrow> </msub> <mtext>&#xA0;</mtext> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03D1;<!-- ϑ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mtd> <mtd> <mo>=</mo> </mtd> <mtd> <mi>r</mi> <mtext>&#xA0;</mtext> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03D1;<!-- ϑ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msub> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{array}{lcr}x_{1}&amp;=&amp;r\ \cos \varphi \ \sin \vartheta _{1}\ \sin \vartheta _{2}\ \cdots \ \sin \vartheta _{n-3}\ \sin \vartheta _{n-2}\\x_{2}&amp;=&amp;r\ \sin \varphi \ \sin \vartheta _{1}\ \sin \vartheta _{2}\ \cdots \ \sin \vartheta _{n-3}\ \sin \vartheta _{n-2}\\x_{3}&amp;=&amp;r\ \cos \vartheta _{1}\ \sin \vartheta _{2}\ \cdots \ \sin \vartheta _{n-3}\ \sin \vartheta _{n-2}\\x_{4}&amp;=&amp;r\ \cos \vartheta _{2}\ \cdots \ \sin \vartheta _{n-3}\ \sin \vartheta _{n-2}\\\vdots &amp;\vdots &amp;\vdots \qquad \qquad \qquad \quad \\x_{n-1}&amp;=&amp;r\ \cos \vartheta _{n-3}\ \sin \vartheta _{n-2}\\x_{n}&amp;=&amp;r\ \cos \vartheta _{n-2}\end{array}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47cca68a0f512b76a38dee9233cd2be42f7b66cd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -11.338ex; width:54.05ex; height:23.676ex;" alt="{\displaystyle {\begin{array}{lcr}x_{1}&amp;=&amp;r\ \cos \varphi \ \sin \vartheta _{1}\ \sin \vartheta _{2}\ \cdots \ \sin \vartheta _{n-3}\ \sin \vartheta _{n-2}\\x_{2}&amp;=&amp;r\ \sin \varphi \ \sin \vartheta _{1}\ \sin \vartheta _{2}\ \cdots \ \sin \vartheta _{n-3}\ \sin \vartheta _{n-2}\\x_{3}&amp;=&amp;r\ \cos \vartheta _{1}\ \sin \vartheta _{2}\ \cdots \ \sin \vartheta _{n-3}\ \sin \vartheta _{n-2}\\x_{4}&amp;=&amp;r\ \cos \vartheta _{2}\ \cdots \ \sin \vartheta _{n-3}\ \sin \vartheta _{n-2}\\\vdots &amp;\vdots &amp;\vdots \qquad \qquad \qquad \quad \\x_{n-1}&amp;=&amp;r\ \cos \vartheta _{n-3}\ \sin \vartheta _{n-2}\\x_{n}&amp;=&amp;r\ \cos \vartheta _{n-2}\end{array}}}"></span></dd></dl> <p>Wie man nachweisen kann, gehen diese Polarkoordinaten für den Fall <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a02c8bd752d2cc859747ca1f3a508281bdbc3b34" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\displaystyle n=2}"></span> in die gewöhnlichen Polarkoordinaten und für <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c5a5a42ced00df920fad4ab2d4acdb960a4105b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\displaystyle n=3}"></span> in die Kugelkoordinaten über.<sup id="cite_ref-Amann-Escher_6-0" class="reference"><a href="#cite_note-Amann-Escher-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Funktionaldeterminante_3">Funktionaldeterminante</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Polarkoordinaten&amp;veaction=edit&amp;section=49" title="Abschnitt bearbeiten: Funktionaldeterminante" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Polarkoordinaten&amp;action=edit&amp;section=49" title="Quellcode des Abschnitts bearbeiten: Funktionaldeterminante"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Die <a href="/wiki/Funktionaldeterminante" title="Funktionaldeterminante">Funktionaldeterminante</a> der Transformation von Kugelkoordinaten in kartesische Koordinaten beträgt:<sup id="cite_ref-Amann-Escher_6-1" class="reference"><a href="#cite_note-Amann-Escher-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \det {\frac {\partial (x_{1},\dotsc ,x_{n})}{\partial (r,\vartheta _{1},\dotsc ,\vartheta _{n-2},\varphi )}}=r^{n-1}\sin \vartheta _{1}\left(\sin \vartheta _{2}\right)^{2}\dotsm \left(\sin \vartheta _{n-2}\right)^{n-2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">det</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mo stretchy="false">(</mo> <mi>r</mi> <mo>,</mo> <msub> <mi>&#x03D1;<!-- ϑ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>&#x03D1;<!-- ϑ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03D1;<!-- ϑ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msup> <mrow> <mo>(</mo> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03D1;<!-- ϑ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x22EF;<!-- ⋯ --></mo> <msup> <mrow> <mo>(</mo> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03D1;<!-- ϑ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \det {\frac {\partial (x_{1},\dotsc ,x_{n})}{\partial (r,\vartheta _{1},\dotsc ,\vartheta _{n-2},\varphi )}}=r^{n-1}\sin \vartheta _{1}\left(\sin \vartheta _{2}\right)^{2}\dotsm \left(\sin \vartheta _{n-2}\right)^{n-2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/19d557bad09c4eeebebd49ca81ee17cad430a9ac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:63.135ex; height:6.509ex;" alt="{\displaystyle \det {\frac {\partial (x_{1},\dotsc ,x_{n})}{\partial (r,\vartheta _{1},\dotsc ,\vartheta _{n-2},\varphi )}}=r^{n-1}\sin \vartheta _{1}\left(\sin \vartheta _{2}\right)^{2}\dotsm \left(\sin \vartheta _{n-2}\right)^{n-2}}"></span></dd></dl> <p>Damit beträgt das <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>-dimensionale Volumenelement: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{matrix}\mathrm {d} V&amp;=&amp;r^{n-1}\sin \vartheta _{1}\left(\sin \vartheta _{2}\right)^{2}\dotsm \left(\sin \vartheta _{n-2}\right)^{n-2}\mathrm {d} r\ \mathrm {d} \varphi \ \mathrm {d} \vartheta _{1}\dotsm \mathrm {d} \vartheta _{n-2}\\&amp;=&amp;r^{n-1}\ \mathrm {d} r\ \mathrm {d} \varphi \ \prod \limits _{j=1}^{n-2}(\sin \vartheta _{j})^{j}\ \mathrm {d} \vartheta _{j}\end{matrix}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>V</mi> </mtd> <mtd> <mo>=</mo> </mtd> <mtd> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03D1;<!-- ϑ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msup> <mrow> <mo>(</mo> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03D1;<!-- ϑ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x22EF;<!-- ⋯ --></mo> <msup> <mrow> <mo>(</mo> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03D1;<!-- ϑ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>r</mi> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03C6;<!-- φ --></mi> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <msub> <mi>&#x03D1;<!-- ϑ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <msub> <mi>&#x03D1;<!-- ϑ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd /> <mtd> <mo>=</mo> </mtd> <mtd> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>r</mi> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03C6;<!-- φ --></mi> <mtext>&#xA0;</mtext> <munderover> <mo movablelimits="false">&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </munderover> <mo stretchy="false">(</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03D1;<!-- ϑ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msup> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <msub> <mi>&#x03D1;<!-- ϑ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mtd> </mtr> </mtable> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{matrix}\mathrm {d} V&amp;=&amp;r^{n-1}\sin \vartheta _{1}\left(\sin \vartheta _{2}\right)^{2}\dotsm \left(\sin \vartheta _{n-2}\right)^{n-2}\mathrm {d} r\ \mathrm {d} \varphi \ \mathrm {d} \vartheta _{1}\dotsm \mathrm {d} \vartheta _{n-2}\\&amp;=&amp;r^{n-1}\ \mathrm {d} r\ \mathrm {d} \varphi \ \prod \limits _{j=1}^{n-2}(\sin \vartheta _{j})^{j}\ \mathrm {d} \vartheta _{j}\end{matrix}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74e4e58d7088d81960a4aba16b4442475366208c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.364ex; margin-bottom: -0.308ex; width:65.971ex; height:10.509ex;" alt="{\displaystyle {\begin{matrix}\mathrm {d} V&amp;=&amp;r^{n-1}\sin \vartheta _{1}\left(\sin \vartheta _{2}\right)^{2}\dotsm \left(\sin \vartheta _{n-2}\right)^{n-2}\mathrm {d} r\ \mathrm {d} \varphi \ \mathrm {d} \vartheta _{1}\dotsm \mathrm {d} \vartheta _{n-2}\\&amp;=&amp;r^{n-1}\ \mathrm {d} r\ \mathrm {d} \varphi \ \prod \limits _{j=1}^{n-2}(\sin \vartheta _{j})^{j}\ \mathrm {d} \vartheta _{j}\end{matrix}}.}"></span></dd></dl> <p>Anmerkung: <b><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>-dimensionale Zylinderkoordinaten</b> sind einfach ein Produkt / eine Zusammensetzung <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span>-dimensionaler Kugelkoordinaten und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (n-k)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (n-k)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/66e9f25b19fdb4fc155f89d4f926e9d9e4e440da" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.256ex; height:2.843ex;" alt="{\displaystyle (n-k)}"></span>-dimensionaler kartesischer Koordinaten mit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k\geq 2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k\geq 2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c797a67c0a51167d373c013a9a020f4568a11754" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.472ex; height:2.343ex;" alt="{\displaystyle k\geq 2}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n-k\geq 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n-k\geq 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/20a93b4034aae24097ffc20fbd657bed11e37200" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:9.707ex; height:2.343ex;" alt="{\displaystyle n-k\geq 1}"></span>. </p> <div class="mw-heading mw-heading2"><h2 id="Literatur">Literatur</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Polarkoordinaten&amp;veaction=edit&amp;section=50" title="Abschnitt bearbeiten: Literatur" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Polarkoordinaten&amp;action=edit&amp;section=50" title="Quellcode des Abschnitts bearbeiten: Literatur"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>W. Werner&#58; <cite style="font-style:italic">Vektoren und Tensoren als universelle Sprache in Physik und Technik</cite>. <span style="white-space:nowrap">Band<span style="display:inline-block;width:.2em">&#160;</span>1</span>. Springer Vieweg, <a href="/wiki/Spezial:ISBN-Suche/9783658252717" class="internal mw-magiclink-isbn">ISBN 978-3-658-25271-7</a>.<span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/de.wikipedia.org:Polarkoordinaten&amp;rft.au=W.+Werner&amp;rft.btitle=Vektoren+und+Tensoren+als+universelle+Sprache+in+Physik+und+Technik&amp;rft.genre=book&amp;rft.isbn=9783658252717&amp;rft.pub=Springer+Vieweg&amp;rft.volume=1" style="display:none">&#160;</span></li></ul> <div class="mw-heading mw-heading2"><h2 id="Weblinks">Weblinks</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Polarkoordinaten&amp;veaction=edit&amp;section=51" title="Abschnitt bearbeiten: Weblinks" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Polarkoordinaten&amp;action=edit&amp;section=51" title="Quellcode des Abschnitts bearbeiten: Weblinks"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Eric_Weisstein" title="Eric Weisstein">Eric W. Weisstein</a>: <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/PolarCoordinates.html"><i>Polar Coordinates</i>.</a> In: <i><a href="/wiki/MathWorld" title="MathWorld">MathWorld</a></i> (englisch).</li> <li><a rel="nofollow" class="external text" href="http://fooplot.com/">FooPlot: Funktionsplotter mit Polarkoordinaten</a></li> <li><a rel="nofollow" class="external text" href="https://additive.industrie.de/news/altana-verkauf-beteiligung-dp-polar-3d-systems/">3D-Drucker mit Polarkoordinatensteuerung</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Einzelnachweise">Einzelnachweise</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Polarkoordinaten&amp;veaction=edit&amp;section=52" title="Abschnitt bearbeiten: Einzelnachweise" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Polarkoordinaten&amp;action=edit&amp;section=52" title="Quellcode des Abschnitts bearbeiten: Einzelnachweise"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <ol class="references"> <li id="cite_note-milestones-1"><span class="mw-cite-backlink"><a href="#cite_ref-milestones_1-0">↑</a></span> <span class="reference-text"><span class="cite">Michael Friendly:&#32;<a rel="nofollow" class="external text" href="https://web.archive.org/web/20060925115456/http://www.math.yorku.ca/SCS/Gallery/milestone/sec4.html"><i>Milestones in the History of Thematic Cartography, Statistical Graphics, and Data Visualization.</i></a>&#32;Archiviert&#32;vom&#32;<style data-mw-deduplicate="TemplateStyles:r235239667">.mw-parser-output .dewiki-iconexternal>a{background-position:center right;background-repeat:no-repeat}body.skin-minerva .mw-parser-output .dewiki-iconexternal>a{background-image:url("https://upload.wikimedia.org/wikipedia/commons/a/a4/OOjs_UI_icon_external-link-ltr-progressive.svg")!important;background-size:10px;padding-right:13px!important}body.skin-timeless .mw-parser-output .dewiki-iconexternal>a,body.skin-monobook .mw-parser-output .dewiki-iconexternal>a{background-image:url("https://upload.wikimedia.org/wikipedia/commons/3/30/MediaWiki_external_link_icon.svg")!important;padding-right:13px!important}body.skin-vector .mw-parser-output .dewiki-iconexternal>a{background-image:url("https://upload.wikimedia.org/wikipedia/commons/9/96/Link-external-small-ltr-progressive.svg")!important;background-size:0.857em;padding-right:1em!important}</style><span class="dewiki-iconexternal"><a class="external text" href="https://redirecter.toolforge.org/?url=http%3A%2F%2Fwww.math.yorku.ca%2FSCS%2FGallery%2Fmilestone%2Fsec4.html">Original</a></span>&#32;am&#32;<span style="white-space:nowrap;">25.&#160;September 2006</span><span>;</span><span class="Abrufdatum">&#32;abgerufen am 10.&#160;September 2006</span>.</span><span style="display: none;" class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&amp;rfr_id=info%3Asid%2Fde.wikipedia.org%3APolarkoordinaten&amp;rft.title=Milestones+in+the+History+of+Thematic+Cartography%2C+Statistical+Graphics%2C+and+Data+Visualization&amp;rft.description=Milestones+in+the+History+of+Thematic+Cartography%2C+Statistical+Graphics%2C+and+Data+Visualization&amp;rft.identifier=https%3A%2F%2Fweb.archive.org%2Fweb%2F20060925115456%2Fhttp%3A%2F%2Fwww.math.yorku.ca%2FSCS%2FGallery%2Fmilestone%2Fsec4.html&amp;rft.creator=Michael+Friendly&amp;rft.source=http&#58;//www.math.yorku.ca/SCS/Gallery/milestone/sec4.html">&#160;</span></span> </li> <li id="cite_note-coolidge-2"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-coolidge_2-0">a</a></sup> <sup><a href="#cite_ref-coolidge_2-1">b</a></sup></span> <span class="reference-text">Julian Coolidge&#58; <cite style="font-style:italic">The Origin of Polar Coordinates</cite>. In: <cite style="font-style:italic">American Mathematical Monthly</cite>. <span style="white-space:nowrap">Nr.<span style="display:inline-block;width:.2em">&#160;</span>59</span>, 1952, <span style="white-space:nowrap">S.<span style="display:inline-block;width:.2em">&#160;</span>78–85</span> (<a rel="nofollow" class="external text" href="http://www-history.mcs.st-and.ac.uk/Extras/Coolidge_Polars.html">www-history.mcs.st-and.ac.uk</a>).<span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rfr_id=info:sid/de.wikipedia.org:Polarkoordinaten&amp;rft.atitle=The+Origin+of+Polar+Coordinates&amp;rft.au=Julian+Coolidge&amp;rft.date=1952&amp;rft.genre=journal&amp;rft.issue=59&amp;rft.jtitle=American+Mathematical+Monthly&amp;rft.pages=78-85" style="display:none">&#160;</span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><a href="#cite_ref-3">↑</a></span> <span class="reference-text">C.&#160;B. Boyer&#58; <cite style="font-style:italic">Newton as an Originator of Polar Coordinates</cite>. In: <cite style="font-style:italic">American Mathematical Monthly</cite>. <span style="white-space:nowrap">Nr.<span style="display:inline-block;width:.2em">&#160;</span>56</span>, 1949, <span style="white-space:nowrap">S.<span style="display:inline-block;width:.2em">&#160;</span>73–78</span>.<span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rfr_id=info:sid/de.wikipedia.org:Polarkoordinaten&amp;rft.atitle=Newton+as+an+Originator+of+Polar+Coordinates&amp;rft.au=C.+B.+Boyer&amp;rft.date=1949&amp;rft.genre=journal&amp;rft.issue=56&amp;rft.jtitle=American+Mathematical+Monthly&amp;rft.pages=73-78" style="display:none">&#160;</span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><a href="#cite_ref-4">↑</a></span> <span class="reference-text"><span class="cite">Jeff Miller:&#32;<a rel="nofollow" class="external text" href="http://jeff560.tripod.com/p.html"><i>Earliest Known Uses of Some of the Words of Mathematics.</i></a><span class="Abrufdatum">&#32;Abgerufen am 30.&#160;August 2009</span>.</span><span style="display: none;" class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&amp;rfr_id=info%3Asid%2Fde.wikipedia.org%3APolarkoordinaten&amp;rft.title=Earliest+Known+Uses+of+Some+of+the+Words+of+Mathematics&amp;rft.description=Earliest+Known+Uses+of+Some+of+the+Words+of+Mathematics&amp;rft.identifier=http%3A%2F%2Fjeff560.tripod.com%2Fp.html&amp;rft.creator=Jeff+Miller">&#160;</span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><a href="#cite_ref-5">↑</a></span> <span class="reference-text">David Eugene Smith&#58; <cite style="font-style:italic">History of Mathematics</cite>. <span style="white-space:nowrap">Band<span style="display:inline-block;width:.2em">&#160;</span>2</span>. Ginn and Co., Boston 1925, <span style="white-space:nowrap">S.<span style="display:inline-block;width:.2em">&#160;</span>324</span>.<span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/de.wikipedia.org:Polarkoordinaten&amp;rft.au=David+Eugene+Smith&amp;rft.btitle=History+of+Mathematics&amp;rft.date=1925&amp;rft.genre=book&amp;rft.pages=324&amp;rft.place=Boston&amp;rft.pub=Ginn+and+Co.&amp;rft.volume=2" style="display:none">&#160;</span></span> </li> <li id="cite_note-Amann-Escher-6"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-Amann-Escher_6-0">a</a></sup> <sup><a href="#cite_ref-Amann-Escher_6-1">b</a></sup></span> <span class="reference-text">Herbert Amann, Joachim Escher: <i>Analysis III.</i> Birkhäuser 2008, <a href="/wiki/Spezial:ISBN-Suche/9783764388836" class="internal mw-magiclink-isbn">ISBN 978-3-7643-8883-6</a>, S. 205 (<a rel="nofollow" class="external text" href="https://books.google.com/books?id=mYNNOm_INlMC&amp;pg=PA205#v=onepage">eingeschränkte Online-Kopie</a>&#32;in der Google-Buchsuche-<a href="https://de.wikisource.org/wiki/Wikisource:Google_Book_Search#Nutzung_eines_US-Proxys" class="extiw" title="s:Wikisource:Google Book Search">USA</a>).</span> </li> </ol> <div class="hintergrundfarbe1 rahmenfarbe1 navigation-not-searchable normdaten-typ-s" style="border-style: solid; border-width: 1px; clear: left; margin-bottom:1em; margin-top:1em; padding: 0.25em; overflow: hidden; word-break: break-word; word-wrap: break-word;" id="normdaten"> <div style="display: table-cell; vertical-align: middle; width: 100%;"> <div> Normdaten&#160;(Sachbegriff): <a href="/wiki/Gemeinsame_Normdatei" title="Gemeinsame Normdatei">GND</a>: <span class="plainlinks-print"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4323692-3">4323692-3</a></span> <span class="noprint">(<a rel="nofollow" class="external text" href="https://lobid.org/gnd/4323692-3">lobid</a>, <a rel="nofollow" class="external text" href="https://swb.bsz-bw.de/DB=2.104/SET=1/TTL=1/CMD?retrace=0&amp;trm_old=&amp;ACT=SRCHA&amp;IKT=2999&amp;SRT=RLV&amp;TRM=4323692-3">OGND</a><span class="metadata">, <a rel="nofollow" class="external text" href="https://prometheus.lmu.de/gnd/4323692-3">AKS</a></span>)</span> <span class="metadata"></span></div> </div></div></div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Abgerufen von „<a dir="ltr" href="https://de.wikipedia.org/w/index.php?title=Polarkoordinaten&amp;oldid=244630025">https://de.wikipedia.org/w/index.php?title=Polarkoordinaten&amp;oldid=244630025</a>“</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Wikipedia:Kategorien" title="Wikipedia:Kategorien">Kategorien</a>: <ul><li><a href="/wiki/Kategorie:Analysis" title="Kategorie:Analysis">Analysis</a></li><li><a href="/wiki/Kategorie:Analytische_Geometrie" title="Kategorie:Analytische Geometrie">Analytische Geometrie</a></li><li><a href="/wiki/Kategorie:Koordinatensystem" title="Kategorie:Koordinatensystem">Koordinatensystem</a></li></ul></div></div> </div> </div> <div id="mw-navigation"> <h2>Navigationsmenü</h2> <div id="mw-head"> <nav id="p-personal" class="mw-portlet mw-portlet-personal vector-user-menu-legacy vector-menu" aria-labelledby="p-personal-label" > <h3 id="p-personal-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Meine Werkzeuge</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anonuserpage" class="mw-list-item"><span title="Benutzerseite der IP-Adresse, von der aus du Änderungen durchführst">Nicht angemeldet</span></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Spezial:Meine_Diskussionsseite" title="Diskussion über Änderungen von dieser IP-Adresse [n]" accesskey="n"><span>Diskussionsseite</span></a></li><li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Spezial:Meine_Beitr%C3%A4ge" title="Eine Liste der Bearbeitungen, die von dieser IP-Adresse gemacht wurden [y]" accesskey="y"><span>Beiträge</span></a></li><li id="pt-createaccount" class="mw-list-item"><a href="/w/index.php?title=Spezial:Benutzerkonto_anlegen&amp;returnto=Polarkoordinaten" title="Wir ermutigen dich dazu, ein Benutzerkonto zu erstellen und dich anzumelden. Es ist jedoch nicht zwingend erforderlich."><span>Benutzerkonto erstellen</span></a></li><li id="pt-login" class="mw-list-item"><a href="/w/index.php?title=Spezial:Anmelden&amp;returnto=Polarkoordinaten" title="Anmelden ist zwar keine Pflicht, wird aber gerne gesehen. [o]" accesskey="o"><span>Anmelden</span></a></li> </ul> </div> </nav> <div id="left-navigation"> <nav id="p-namespaces" class="mw-portlet mw-portlet-namespaces vector-menu-tabs vector-menu-tabs-legacy vector-menu" aria-labelledby="p-namespaces-label" > <h3 id="p-namespaces-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Namensräume</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected mw-list-item"><a href="/wiki/Polarkoordinaten" title="Seiteninhalt anzeigen [c]" accesskey="c"><span>Artikel</span></a></li><li id="ca-talk" class="mw-list-item"><a href="/wiki/Diskussion:Polarkoordinaten" rel="discussion" title="Diskussion zum Seiteninhalt [t]" accesskey="t"><span>Diskussion</span></a></li> </ul> </div> </nav> <nav id="p-variants" class="mw-portlet mw-portlet-variants emptyPortlet vector-menu-dropdown vector-menu" aria-labelledby="p-variants-label" > <input type="checkbox" id="p-variants-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-variants" class="vector-menu-checkbox" aria-labelledby="p-variants-label" > <label id="p-variants-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Deutsch</span> </label> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </nav> </div> <div id="right-navigation"> <nav id="p-views" class="mw-portlet mw-portlet-views vector-menu-tabs vector-menu-tabs-legacy vector-menu" aria-labelledby="p-views-label" > <h3 id="p-views-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Ansichten</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected mw-list-item"><a href="/wiki/Polarkoordinaten"><span>Lesen</span></a></li><li id="ca-ve-edit" class="mw-list-item"><a href="/w/index.php?title=Polarkoordinaten&amp;veaction=edit" title="Diese Seite mit dem VisualEditor bearbeiten [v]" accesskey="v"><span>Bearbeiten</span></a></li><li id="ca-edit" class="collapsible mw-list-item"><a href="/w/index.php?title=Polarkoordinaten&amp;action=edit" title="Den Quelltext dieser Seite bearbeiten [e]" accesskey="e"><span>Quelltext bearbeiten</span></a></li><li id="ca-history" class="mw-list-item"><a href="/w/index.php?title=Polarkoordinaten&amp;action=history" title="Frühere Versionen dieser Seite [h]" accesskey="h"><span>Versionsgeschichte</span></a></li> </ul> </div> </nav> <nav id="p-cactions" class="mw-portlet mw-portlet-cactions emptyPortlet vector-menu-dropdown vector-menu" aria-labelledby="p-cactions-label" title="Weitere Optionen" > <input type="checkbox" id="p-cactions-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-cactions" class="vector-menu-checkbox" aria-labelledby="p-cactions-label" > <label id="p-cactions-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Weitere</span> </label> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </nav> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <h3 >Suche</h3> <form action="/w/index.php" id="searchform" class="vector-search-box-form"> <div id="simpleSearch" class="vector-search-box-inner" data-search-loc="header-navigation"> <input class="vector-search-box-input" type="search" name="search" placeholder="Wikipedia durchsuchen" aria-label="Wikipedia durchsuchen" autocapitalize="sentences" title="Durchsuche die Wikipedia [f]" accesskey="f" id="searchInput" > <input type="hidden" name="title" value="Spezial:Suche"> <input id="mw-searchButton" class="searchButton mw-fallbackSearchButton" type="submit" name="fulltext" title="Suche nach Seiten, die diesen Text enthalten" value="Suchen"> <input id="searchButton" class="searchButton" type="submit" name="go" title="Gehe direkt zu der Seite mit genau diesem Namen, falls sie vorhanden ist." value="Artikel"> </div> </form> </div> </div> </div> <div id="mw-panel" class="vector-legacy-sidebar"> <div id="p-logo" role="banner"> <a class="mw-wiki-logo" href="/wiki/Wikipedia:Hauptseite" title="Hauptseite"></a> </div> <nav id="p-navigation" class="mw-portlet mw-portlet-navigation vector-menu-portal portal vector-menu" aria-labelledby="p-navigation-label" > <h3 id="p-navigation-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Navigation</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Wikipedia:Hauptseite" title="Hauptseite besuchen [z]" accesskey="z"><span>Hauptseite</span></a></li><li id="n-topics" class="mw-list-item"><a href="/wiki/Portal:Wikipedia_nach_Themen"><span>Themenportale</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Spezial:Zuf%C3%A4llige_Seite" title="Zufällige Seite aufrufen [x]" accesskey="x"><span>Zufälliger Artikel</span></a></li> </ul> </div> </nav> <nav id="p-Mitmachen" class="mw-portlet mw-portlet-Mitmachen vector-menu-portal portal vector-menu" aria-labelledby="p-Mitmachen-label" > <h3 id="p-Mitmachen-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Mitmachen</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-Artikel-verbessern" class="mw-list-item"><a href="/wiki/Wikipedia:Beteiligen"><span>Artikel verbessern</span></a></li><li id="n-Neuerartikel" class="mw-list-item"><a href="/wiki/Hilfe:Neuen_Artikel_anlegen"><span>Neuen Artikel anlegen</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Autorenportal" title="Info-Zentrum über Beteiligungsmöglichkeiten"><span>Autorenportal</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/Hilfe:%C3%9Cbersicht" title="Übersicht über Hilfeseiten"><span>Hilfe</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Spezial:Letzte_%C3%84nderungen" title="Liste der letzten Änderungen in Wikipedia [r]" accesskey="r"><span>Letzte Änderungen</span></a></li><li id="n-contact" class="mw-list-item"><a href="/wiki/Wikipedia:Kontakt" title="Kontaktmöglichkeiten"><span>Kontakt</span></a></li><li id="n-sitesupport" class="mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_de.wikipedia.org&amp;uselang=de" title="Unterstütze uns"><span>Spenden</span></a></li> </ul> </div> </nav> <nav id="p-tb" class="mw-portlet mw-portlet-tb vector-menu-portal portal vector-menu" aria-labelledby="p-tb-label" > <h3 id="p-tb-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Werkzeuge</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Spezial:Linkliste/Polarkoordinaten" title="Liste aller Seiten, die hierher verlinken [j]" accesskey="j"><span>Links auf diese Seite</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Spezial:%C3%84nderungen_an_verlinkten_Seiten/Polarkoordinaten" rel="nofollow" title="Letzte Änderungen an Seiten, die von hier verlinkt sind [k]" accesskey="k"><span>Änderungen an verlinkten Seiten</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Spezial:Spezialseiten" title="Liste aller Spezialseiten [q]" accesskey="q"><span>Spezialseiten</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Polarkoordinaten&amp;oldid=244630025" title="Dauerhafter Link zu dieser Seitenversion"><span>Permanenter Link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Polarkoordinaten&amp;action=info" title="Weitere Informationen über diese Seite"><span>Seiten­­informationen</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Spezial:Zitierhilfe&amp;page=Polarkoordinaten&amp;id=244630025&amp;wpFormIdentifier=titleform" title="Hinweise, wie diese Seite zitiert werden kann"><span>Artikel zitieren</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Spezial:URL-K%C3%BCrzung&amp;url=https%3A%2F%2Fde.wikipedia.org%2Fwiki%2FPolarkoordinaten"><span>Kurzlink</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Spezial:QrCode&amp;url=https%3A%2F%2Fde.wikipedia.org%2Fwiki%2FPolarkoordinaten"><span>QR-Code herunterladen</span></a></li> </ul> </div> </nav> <nav id="p-coll-print_export" class="mw-portlet mw-portlet-coll-print_export vector-menu-portal portal vector-menu" aria-labelledby="p-coll-print_export-label" > <h3 id="p-coll-print_export-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Drucken/​exportieren</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Spezial:DownloadAsPdf&amp;page=Polarkoordinaten&amp;action=show-download-screen"><span>Als PDF herunterladen</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Polarkoordinaten&amp;printable=yes" title="Druckansicht dieser Seite [p]" accesskey="p"><span>Druckversion</span></a></li> </ul> </div> </nav> <nav id="p-wikibase-otherprojects" class="mw-portlet mw-portlet-wikibase-otherprojects vector-menu-portal portal vector-menu" aria-labelledby="p-wikibase-otherprojects-label" > <h3 id="p-wikibase-otherprojects-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">In anderen Projekten</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Polar_coordinate_system" hreflang="en"><span>Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q62494" title="Link zum verbundenen Objekt im Datenrepositorium [g]" accesskey="g"><span>Wikidata-Datenobjekt</span></a></li> </ul> </div> </nav> <nav id="p-lang" class="mw-portlet mw-portlet-lang vector-menu-portal portal vector-menu" aria-labelledby="p-lang-label" > <h3 id="p-lang-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">In anderen Sprachen</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af badge-Q17437796 badge-featuredarticle mw-list-item" title="exzellenter Artikel"><a href="https://af.wikipedia.org/wiki/Poolko%C3%B6rdinatestelsel" title="Poolkoördinatestelsel – Afrikaans" lang="af" hreflang="af" data-title="Poolkoördinatestelsel" data-language-autonym="Afrikaans" data-language-local-name="Afrikaans" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%86%D8%B8%D8%A7%D9%85_%D8%A7%D9%84%D8%A5%D8%AD%D8%AF%D8%A7%D8%AB%D9%8A%D8%A7%D8%AA_%D8%A7%D9%84%D9%82%D8%B7%D8%A8%D9%8A%D8%A9" title="نظام الإحداثيات القطبية – Arabisch" lang="ar" hreflang="ar" data-title="نظام الإحداثيات القطبية" data-language-autonym="العربية" data-language-local-name="Arabisch" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Coordenaes_polares" title="Coordenaes polares – Asturisch" lang="ast" hreflang="ast" data-title="Coordenaes polares" data-language-autonym="Asturianu" data-language-local-name="Asturisch" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Q%C3%BCtb_koordinat_sistemi" title="Qütb koordinat sistemi – Aserbaidschanisch" lang="az" hreflang="az" data-title="Qütb koordinat sistemi" data-language-autonym="Azərbaycanca" data-language-local-name="Aserbaidschanisch" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-ba mw-list-item"><a href="https://ba.wikipedia.org/wiki/%D0%9F%D0%BE%D0%BB%D1%8F%D1%80_%D0%BA%D0%BE%D0%BE%D1%80%D0%B4%D0%B8%D0%BD%D0%B0%D1%82%D0%B0%D0%BB%D0%B0%D1%80_%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B0%D2%BB%D1%8B" title="Поляр координаталар системаһы – Baschkirisch" lang="ba" hreflang="ba" data-title="Поляр координаталар системаһы" data-language-autonym="Башҡортса" data-language-local-name="Baschkirisch" class="interlanguage-link-target"><span>Башҡортса</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%9F%D0%B0%D0%BB%D1%8F%D1%80%D0%BD%D0%B0%D1%8F_%D1%81%D1%96%D1%81%D1%82%D1%8D%D0%BC%D0%B0_%D0%BA%D0%B0%D0%B0%D1%80%D0%B4%D1%8B%D0%BD%D0%B0%D1%82" title="Палярная сістэма каардынат – Belarussisch" lang="be" hreflang="be" data-title="Палярная сістэма каардынат" data-language-autonym="Беларуская" data-language-local-name="Belarussisch" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%9F%D0%BE%D0%BB%D1%8F%D1%80%D0%BD%D0%B0_%D0%BA%D0%BE%D0%BE%D1%80%D0%B4%D0%B8%D0%BD%D0%B0%D1%82%D0%BD%D0%B0_%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B0" title="Полярна координатна система – Bulgarisch" lang="bg" hreflang="bg" data-title="Полярна координатна система" data-language-autonym="Български" data-language-local-name="Bulgarisch" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%AA%E0%A7%8B%E0%A6%B2%E0%A6%BE%E0%A6%B0_%E0%A6%B8%E0%A7%8D%E0%A6%A5%E0%A6%BE%E0%A6%A8%E0%A6%BE%E0%A6%82%E0%A6%95_%E0%A6%AC%E0%A7%8D%E0%A6%AF%E0%A6%AC%E0%A6%B8%E0%A7%8D%E0%A6%A5%E0%A6%BE" title="পোলার স্থানাংক ব্যবস্থা – Bengalisch" lang="bn" hreflang="bn" data-title="পোলার স্থানাংক ব্যবস্থা" data-language-autonym="বাংলা" data-language-local-name="Bengalisch" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Polarni_koordinatni_sistem" title="Polarni koordinatni sistem – Bosnisch" lang="bs" hreflang="bs" data-title="Polarni koordinatni sistem" data-language-autonym="Bosanski" data-language-local-name="Bosnisch" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-ca badge-Q17437796 badge-featuredarticle mw-list-item" title="exzellenter Artikel"><a href="https://ca.wikipedia.org/wiki/Coordenades_polars" title="Coordenades polars – Katalanisch" lang="ca" hreflang="ca" data-title="Coordenades polars" data-language-autonym="Català" data-language-local-name="Katalanisch" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%D8%B3%DB%8C%D8%B3%D8%AA%D9%85%DB%8C_%D9%BE%DB%86%D8%AA%D8%A7%D9%86%DB%8C_%D8%AC%DB%95%D9%85%D8%B3%DB%95%D8%B1%DB%8C" title="سیستمی پۆتانی جەمسەری – Zentralkurdisch" lang="ckb" hreflang="ckb" data-title="سیستمی پۆتانی جەمسەری" data-language-autonym="کوردی" data-language-local-name="Zentralkurdisch" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Pol%C3%A1rn%C3%AD_soustava_sou%C5%99adnic" title="Polární soustava souřadnic – Tschechisch" lang="cs" hreflang="cs" data-title="Polární soustava souřadnic" data-language-autonym="Čeština" data-language-local-name="Tschechisch" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BE%D1%80%D0%B4%D0%B8%D0%BD%D0%B0%D1%82%D1%81%D0%B5%D0%BD_%D0%BF%D0%BE%D0%BB%D1%8F%D1%80%D0%BB%D0%B0_%D1%82%D1%8B%D1%82%C4%83%D0%BC%C4%95" title="Координатсен полярла тытăмĕ – Tschuwaschisch" lang="cv" hreflang="cv" data-title="Координатсен полярла тытăмĕ" data-language-autonym="Чӑвашла" data-language-local-name="Tschuwaschisch" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/System_cyfesurynnau_polar" title="System cyfesurynnau polar – Walisisch" lang="cy" hreflang="cy" data-title="System cyfesurynnau polar" data-language-autonym="Cymraeg" data-language-local-name="Walisisch" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Pol%C3%A6rt_koordinatsystem" title="Polært koordinatsystem – Dänisch" lang="da" hreflang="da" data-title="Polært koordinatsystem" data-language-autonym="Dansk" data-language-local-name="Dänisch" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%A0%CE%BF%CE%BB%CE%B9%CE%BA%CF%8C_%CF%83%CF%8D%CF%83%CF%84%CE%B7%CE%BC%CE%B1_%CF%83%CF%85%CE%BD%CF%84%CE%B5%CF%84%CE%B1%CE%B3%CE%BC%CE%AD%CE%BD%CF%89%CE%BD" title="Πολικό σύστημα συντεταγμένων – Griechisch" lang="el" hreflang="el" data-title="Πολικό σύστημα συντεταγμένων" data-language-autonym="Ελληνικά" data-language-local-name="Griechisch" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Polar_coordinate_system" title="Polar coordinate system – Englisch" lang="en" hreflang="en" data-title="Polar coordinate system" data-language-autonym="English" data-language-local-name="Englisch" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-eo badge-Q17437796 badge-featuredarticle mw-list-item" title="exzellenter Artikel"><a href="https://eo.wikipedia.org/wiki/Polusa_koordinatsistemo" title="Polusa koordinatsistemo – Esperanto" lang="eo" hreflang="eo" data-title="Polusa koordinatsistemo" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-es badge-Q17437798 badge-goodarticle mw-list-item" title="lesenswerter Artikel"><a href="https://es.wikipedia.org/wiki/Coordenadas_polares" title="Coordenadas polares – Spanisch" lang="es" hreflang="es" data-title="Coordenadas polares" data-language-autonym="Español" data-language-local-name="Spanisch" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Polaarkoordinaadid" title="Polaarkoordinaadid – Estnisch" lang="et" hreflang="et" data-title="Polaarkoordinaadid" data-language-autonym="Eesti" data-language-local-name="Estnisch" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Koordenatu_polar" title="Koordenatu polar – Baskisch" lang="eu" hreflang="eu" data-title="Koordenatu polar" data-language-autonym="Euskara" data-language-local-name="Baskisch" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%AF%D8%B3%D8%AA%DA%AF%D8%A7%D9%87_%D9%85%D8%AE%D8%AA%D8%B5%D8%A7%D8%AA_%D9%82%D8%B7%D8%A8%DB%8C" title="دستگاه مختصات قطبی – Persisch" lang="fa" hreflang="fa" data-title="دستگاه مختصات قطبی" data-language-autonym="فارسی" data-language-local-name="Persisch" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Napakoordinaatisto" title="Napakoordinaatisto – Finnisch" lang="fi" hreflang="fi" data-title="Napakoordinaatisto" data-language-autonym="Suomi" data-language-local-name="Finnisch" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Coordonn%C3%A9es_polaires" title="Coordonnées polaires – Französisch" lang="fr" hreflang="fr" data-title="Coordonnées polaires" data-language-autonym="Français" data-language-local-name="Französisch" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-frr mw-list-item"><a href="https://frr.wikipedia.org/wiki/Polaarkoordinaaten" title="Polaarkoordinaaten – Nordfriesisch" lang="frr" hreflang="frr" data-title="Polaarkoordinaaten" data-language-autonym="Nordfriisk" data-language-local-name="Nordfriesisch" class="interlanguage-link-target"><span>Nordfriisk</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/Comhordan%C3%A1id%C3%AD_polacha" title="Comhordanáidí polacha – Irisch" lang="ga" hreflang="ga" data-title="Comhordanáidí polacha" data-language-autonym="Gaeilge" data-language-local-name="Irisch" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Coordenadas_polares" title="Coordenadas polares – Galicisch" lang="gl" hreflang="gl" data-title="Coordenadas polares" data-language-autonym="Galego" data-language-local-name="Galicisch" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%A7%D7%95%D7%90%D7%95%D7%A8%D7%93%D7%99%D7%A0%D7%98%D7%95%D7%AA_%D7%A7%D7%95%D7%98%D7%91%D7%99%D7%95%D7%AA" title="קואורדינטות קוטביות – Hebräisch" lang="he" hreflang="he" data-title="קואורדינטות קוטביות" data-language-autonym="עברית" data-language-local-name="Hebräisch" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%A7%E0%A5%8D%E0%A4%B0%E0%A5%81%E0%A4%B5%E0%A5%80%E0%A4%AF_%E0%A4%A8%E0%A4%BF%E0%A4%B0%E0%A5%8D%E0%A4%A6%E0%A5%87%E0%A4%B6%E0%A4%BE%E0%A4%82%E0%A4%95_%E0%A4%AA%E0%A4%A6%E0%A5%8D%E0%A4%A7%E0%A4%A4%E0%A4%BF" title="ध्रुवीय निर्देशांक पद्धति – Hindi" lang="hi" hreflang="hi" data-title="ध्रुवीय निर्देशांक पद्धति" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Polarni_koordinatni_sustav" title="Polarni koordinatni sustav – Kroatisch" lang="hr" hreflang="hr" data-title="Polarni koordinatni sustav" data-language-autonym="Hrvatski" data-language-local-name="Kroatisch" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Pol%C3%A1rkoordin%C3%A1ta-rendszer" title="Polárkoordináta-rendszer – Ungarisch" lang="hu" hreflang="hu" data-title="Polárkoordináta-rendszer" data-language-autonym="Magyar" data-language-local-name="Ungarisch" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Sistem_koordinat_polar" title="Sistem koordinat polar – Indonesisch" lang="id" hreflang="id" data-title="Sistem koordinat polar" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesisch" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-io mw-list-item"><a href="https://io.wikipedia.org/wiki/Polala_koordinati" title="Polala koordinati – Ido" lang="io" hreflang="io" data-title="Polala koordinati" data-language-autonym="Ido" data-language-local-name="Ido" class="interlanguage-link-target"><span>Ido</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Skauthnitakerfi" title="Skauthnitakerfi – Isländisch" lang="is" hreflang="is" data-title="Skauthnitakerfi" data-language-autonym="Íslenska" data-language-local-name="Isländisch" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Sistema_di_coordinate_polari" title="Sistema di coordinate polari – Italienisch" lang="it" hreflang="it" data-title="Sistema di coordinate polari" data-language-autonym="Italiano" data-language-local-name="Italienisch" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E6%A5%B5%E5%BA%A7%E6%A8%99%E7%B3%BB" title="極座標系 – Japanisch" lang="ja" hreflang="ja" data-title="極座標系" data-language-autonym="日本語" data-language-local-name="Japanisch" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%9F%D0%BE%D0%BB%D1%8F%D1%80%D0%BB%D1%8B%D2%9B_%D0%BA%D0%BE%D0%BE%D1%80%D0%B4%D0%B8%D0%BD%D0%B0%D1%82%D0%B0%D0%BB%D0%B0%D1%80" title="Полярлық координаталар – Kasachisch" lang="kk" hreflang="kk" data-title="Полярлық координаталар" data-language-autonym="Қазақша" data-language-local-name="Kasachisch" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-ko badge-Q17437796 badge-featuredarticle mw-list-item" title="exzellenter Artikel"><a href="https://ko.wikipedia.org/wiki/%EA%B7%B9%EC%A2%8C%ED%91%9C%EA%B3%84" title="극좌표계 – Koreanisch" lang="ko" hreflang="ko" data-title="극좌표계" data-language-autonym="한국어" data-language-local-name="Koreanisch" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Systema_polare_coordinatarum" title="Systema polare coordinatarum – Latein" lang="la" hreflang="la" data-title="Systema polare coordinatarum" data-language-autonym="Latina" data-language-local-name="Latein" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Polin%C4%97_koordina%C4%8Di%C5%B3_sistema" title="Polinė koordinačių sistema – Litauisch" lang="lt" hreflang="lt" data-title="Polinė koordinačių sistema" data-language-autonym="Lietuvių" data-language-local-name="Litauisch" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Pol%C4%81r%C4%81_koordin%C4%81tu_sist%C4%93ma" title="Polārā koordinātu sistēma – Lettisch" lang="lv" hreflang="lv" data-title="Polārā koordinātu sistēma" data-language-autonym="Latviešu" data-language-local-name="Lettisch" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%9F%D0%BE%D0%BB%D0%B0%D1%80%D0%B5%D0%BD_%D0%BA%D0%BE%D0%BE%D1%80%D0%B4%D0%B8%D0%BD%D0%B0%D1%82%D0%B5%D0%BD_%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC" title="Поларен координатен систем – Mazedonisch" lang="mk" hreflang="mk" data-title="Поларен координатен систем" data-language-autonym="Македонски" data-language-local-name="Mazedonisch" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Sistem_koordinat_berkutub" title="Sistem koordinat berkutub – Malaiisch" lang="ms" hreflang="ms" data-title="Sistem koordinat berkutub" data-language-autonym="Bahasa Melayu" data-language-local-name="Malaiisch" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-my mw-list-item"><a href="https://my.wikipedia.org/wiki/%E1%80%9D%E1%80%AD%E1%80%AF%E1%80%84%E1%80%BA%E1%80%B8%E1%80%9C%E1%80%BE%E1%80%8A%E1%80%B7%E1%80%BA_%E1%80%A1%E1%80%99%E1%80%BE%E1%80%90%E1%80%BA%E1%80%81%E1%80%BB%E1%80%A1%E1%80%AD%E1%80%99%E1%80%BA" title="ဝိုင်းလှည့် အမှတ်ချအိမ် – Birmanisch" lang="my" hreflang="my" data-title="ဝိုင်းလှည့် အမှတ်ချအိမ်" data-language-autonym="မြန်မာဘာသာ" data-language-local-name="Birmanisch" class="interlanguage-link-target"><span>မြန်မာဘာသာ</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Poolco%C3%B6rdinaten" title="Poolcoördinaten – Niederländisch" lang="nl" hreflang="nl" data-title="Poolcoördinaten" data-language-autonym="Nederlands" data-language-local-name="Niederländisch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Polarkoordinatsystem" title="Polarkoordinatsystem – Norwegisch (Nynorsk)" lang="nn" hreflang="nn" data-title="Polarkoordinatsystem" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegisch (Nynorsk)" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Polarkoordinatsystem" title="Polarkoordinatsystem – Norwegisch (Bokmål)" lang="nb" hreflang="nb" data-title="Polarkoordinatsystem" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegisch (Bokmål)" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%AA%E0%A9%8B%E0%A8%B2%E0%A8%B0_%E0%A8%A8%E0%A8%BF%E0%A8%B0%E0%A8%A6%E0%A9%87%E0%A8%B8%E0%A8%BC%E0%A8%BE%E0%A8%82%E0%A8%95" title="ਪੋਲਰ ਨਿਰਦੇਸ਼ਾਂਕ – Punjabi" lang="pa" hreflang="pa" data-title="ਪੋਲਰ ਨਿਰਦੇਸ਼ਾਂਕ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="Punjabi" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Uk%C5%82ad_wsp%C3%B3%C5%82rz%C4%99dnych_biegunowych" title="Układ współrzędnych biegunowych – Polnisch" lang="pl" hreflang="pl" data-title="Układ współrzędnych biegunowych" data-language-autonym="Polski" data-language-local-name="Polnisch" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Coordenadas_polares" title="Coordenadas polares – Portugiesisch" lang="pt" hreflang="pt" data-title="Coordenadas polares" data-language-autonym="Português" data-language-local-name="Portugiesisch" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro badge-Q17437798 badge-goodarticle mw-list-item" title="lesenswerter Artikel"><a href="https://ro.wikipedia.org/wiki/Coordonate_polare" title="Coordonate polare – Rumänisch" lang="ro" hreflang="ro" data-title="Coordonate polare" data-language-autonym="Română" data-language-local-name="Rumänisch" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9F%D0%BE%D0%BB%D1%8F%D1%80%D0%BD%D0%B0%D1%8F_%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B0_%D0%BA%D0%BE%D0%BE%D1%80%D0%B4%D0%B8%D0%BD%D0%B0%D1%82" title="Полярная система координат – Russisch" lang="ru" hreflang="ru" data-title="Полярная система координат" data-language-autonym="Русский" data-language-local-name="Russisch" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sco mw-list-item"><a href="https://sco.wikipedia.org/wiki/Polar_coordinate_seestem" title="Polar coordinate seestem – Schottisch" lang="sco" hreflang="sco" data-title="Polar coordinate seestem" data-language-autonym="Scots" data-language-local-name="Schottisch" class="interlanguage-link-target"><span>Scots</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Polarne_koordinate" title="Polarne koordinate – Serbokroatisch" lang="sh" hreflang="sh" data-title="Polarne koordinate" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbokroatisch" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Polar_coordinate_system" title="Polar coordinate system – einfaches Englisch" lang="en-simple" hreflang="en-simple" data-title="Polar coordinate system" data-language-autonym="Simple English" data-language-local-name="einfaches Englisch" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Pol%C3%A1rna_s%C3%BAstava_s%C3%BAradn%C3%ADc" title="Polárna sústava súradníc – Slowakisch" lang="sk" hreflang="sk" data-title="Polárna sústava súradníc" data-language-autonym="Slovenčina" data-language-local-name="Slowakisch" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Polarni_koordinatni_sistem" title="Polarni koordinatni sistem – Slowenisch" lang="sl" hreflang="sl" data-title="Polarni koordinatni sistem" data-language-autonym="Slovenščina" data-language-local-name="Slowenisch" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Sistemi_koordinativ_polar" title="Sistemi koordinativ polar – Albanisch" lang="sq" hreflang="sq" data-title="Sistemi koordinativ polar" data-language-autonym="Shqip" data-language-local-name="Albanisch" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%9F%D0%BE%D0%BB%D0%B0%D1%80%D0%BD%D0%B8_%D0%BA%D0%BE%D0%BE%D1%80%D0%B4%D0%B8%D0%BD%D0%B0%D1%82%D0%BD%D0%B8_%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC" title="Поларни координатни систем – Serbisch" lang="sr" hreflang="sr" data-title="Поларни координатни систем" data-language-autonym="Српски / srpski" data-language-local-name="Serbisch" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Pol%C3%A4ra_koordinater" title="Polära koordinater – Schwedisch" lang="sv" hreflang="sv" data-title="Polära koordinater" data-language-autonym="Svenska" data-language-local-name="Schwedisch" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%B5%E0%AE%BE%E0%AE%B3%E0%AF%8D%E0%AE%AE%E0%AF%81%E0%AE%A9%E0%AF%88_%E0%AE%86%E0%AE%B3%E0%AF%8D%E0%AE%95%E0%AF%82%E0%AE%B1%E0%AF%8D%E0%AE%B1%E0%AF%81_%E0%AE%AE%E0%AF%81%E0%AE%B1%E0%AF%88%E0%AE%AE%E0%AF%88" title="வாள்முனை ஆள்கூற்று முறைமை – Tamil" lang="ta" hreflang="ta" data-title="வாள்முனை ஆள்கூற்று முறைமை" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%A3%E0%B8%B0%E0%B8%9A%E0%B8%9A%E0%B8%9E%E0%B8%B4%E0%B8%81%E0%B8%B1%E0%B8%94%E0%B9%80%E0%B8%8A%E0%B8%B4%E0%B8%87%E0%B8%82%E0%B8%B1%E0%B9%89%E0%B8%A7" title="ระบบพิกัดเชิงขั้ว – Thailändisch" lang="th" hreflang="th" data-title="ระบบพิกัดเชิงขั้ว" data-language-autonym="ไทย" data-language-local-name="Thailändisch" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Kutupsal_koordinat_sistemi" title="Kutupsal koordinat sistemi – Türkisch" lang="tr" hreflang="tr" data-title="Kutupsal koordinat sistemi" data-language-autonym="Türkçe" data-language-local-name="Türkisch" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk badge-Q17437798 badge-goodarticle mw-list-item" title="lesenswerter Artikel"><a href="https://uk.wikipedia.org/wiki/%D0%9F%D0%BE%D0%BB%D1%8F%D1%80%D0%BD%D0%B0_%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B0_%D0%BA%D0%BE%D0%BE%D1%80%D0%B4%D0%B8%D0%BD%D0%B0%D1%82" title="Полярна система координат – Ukrainisch" lang="uk" hreflang="uk" data-title="Полярна система координат" data-language-autonym="Українська" data-language-local-name="Ukrainisch" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/H%E1%BB%87_t%E1%BB%8Da_%C4%91%E1%BB%99_c%E1%BB%B1c" title="Hệ tọa độ cực – Vietnamesisch" lang="vi" hreflang="vi" data-title="Hệ tọa độ cực" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamesisch" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E6%9E%81%E5%9D%90%E6%A0%87%E7%B3%BB" title="极坐标系 – Wu" lang="wuu" hreflang="wuu" data-title="极坐标系" data-language-autonym="吴语" data-language-local-name="Wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E6%9E%81%E5%9D%90%E6%A0%87%E7%B3%BB" title="极坐标系 – Chinesisch" lang="zh" hreflang="zh" data-title="极坐标系" data-language-autonym="中文" data-language-local-name="Chinesisch" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E6%A5%B5%E5%9D%90%E6%A8%99%E7%B3%BB%E7%B5%B1" title="極坐標系統 – Kantonesisch" lang="yue" hreflang="yue" data-title="極坐標系統" data-language-autonym="粵語" data-language-local-name="Kantonesisch" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q62494#sitelinks-wikipedia" title="Links auf Artikel in anderen Sprachen bearbeiten" class="wbc-editpage">Links bearbeiten</a></span></div> </div> </nav> </div> </div> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> Diese Seite wurde zuletzt am 3. Mai 2024 um 14:45 Uhr bearbeitet.</li> <li id="footer-info-copyright"><div id="footer-info-copyright-stats" class="noprint"><a rel="nofollow" class="external text" href="https://pageviews.wmcloud.org/?pages=Polarkoordinaten&amp;project=de.wikipedia.org">Abrufstatistik</a>&#160;· <a rel="nofollow" class="external text" href="https://xtools.wmcloud.org/authorship/de.wikipedia.org/Polarkoordinaten?uselang=de">Autoren</a> </div><div id="footer-info-copyright-separator"><br /></div><div id="footer-info-copyright-info"> <p>Der Text ist unter der Lizenz <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by-sa/4.0/deed.de">„Creative-Commons Namensnennung – Weitergabe unter gleichen Bedingungen“</a> verfügbar; Informationen zu den Urhebern und zum Lizenzstatus eingebundener Mediendateien (etwa Bilder oder Videos) können im Regelfall durch Anklicken dieser abgerufen werden. Möglicherweise unterliegen die Inhalte jeweils zusätzlichen Bedingungen. Durch die Nutzung dieser Website erklären Sie sich mit den <span class="plainlinks"><a class="external text" href="https://foundation.wikimedia.org/wiki/Policy:Terms_of_Use/de">Nutzungsbedingungen</a> und der <a class="external text" href="https://foundation.wikimedia.org/wiki/Policy:Privacy_policy/de">Datenschutzrichtlinie</a></span> einverstanden.<br /> </p> Wikipedia® ist eine eingetragene Marke der Wikimedia Foundation Inc.</div></li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy/de">Datenschutz</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:%C3%9Cber_Wikipedia">Über Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:Impressum">Impressum</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Verhaltenskodex</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Entwickler</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/de.wikipedia.org">Statistiken</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Stellungnahme zu Cookies</a></li> <li id="footer-places-mobileview"><a href="//de.m.wikipedia.org/w/index.php?title=Polarkoordinaten&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile Ansicht</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> <script>(RLQ=window.RLQ||[]).push(function(){mw.log.warn("This page is using the deprecated ResourceLoader module \"codex-search-styles\".\n[1.43] Use a CodexModule with codexComponents to set your specific components used: https://www.mediawiki.org/wiki/Codex#Using_a_limited_subset_of_components");mw.config.set({"wgHostname":"mw-web.codfw.main-6df7948d6c-m6tm8","wgBackendResponseTime":185,"wgPageParseReport":{"limitreport":{"cputime":"0.385","walltime":"0.605","ppvisitednodes":{"value":2766,"limit":1000000},"postexpandincludesize":{"value":20622,"limit":2097152},"templateargumentsize":{"value":4395,"limit":2097152},"expansiondepth":{"value":12,"limit":100},"expensivefunctioncount":{"value":1,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":17818,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 215.871 1 -total"," 34.26% 73.964 2 Vorlage:Internetquelle"," 23.62% 50.981 4 Vorlage:Literatur"," 10.41% 22.470 1 Vorlage:Normdaten"," 9.43% 20.366 1 Vorlage:Google_Buch"," 8.14% 17.565 1 Vorlage:Wikidata-Registrierung"," 7.95% 17.163 2 Vorlage:Str_len"," 7.70% 16.625 1 Vorlage:MathWorld"," 6.38% 13.771 1 Vorlage:Referrer"," 5.55% 11.975 1 Vorlage:IconExternal"]},"scribunto":{"limitreport-timeusage":{"value":"0.052","limit":"10.000"},"limitreport-memusage":{"value":3784324,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-8cb5f4d85-dm6bt","timestamp":"20241126194502","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Polarkoordinaten","url":"https:\/\/de.wikipedia.org\/wiki\/Polarkoordinaten","sameAs":"http:\/\/www.wikidata.org\/entity\/Q62494","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q62494","author":{"@type":"Organization","name":"Autoren der Wikimedia-Projekte"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2003-07-14T11:06:21Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/1\/13\/Polar_graph_paper.svg","headline":"Kreiskoordinatensystem"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10