CINXE.COM
Search results for: powder x-ray diffraction
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: powder x-ray diffraction</title> <meta name="description" content="Search results for: powder x-ray diffraction"> <meta name="keywords" content="powder x-ray diffraction"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="powder x-ray diffraction" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="powder x-ray diffraction"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2056</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: powder x-ray diffraction</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2056</span> Production of Amorphous Boron Powder via Chemical Vapor Deposition (CVD)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meltem%20Bolluk">Meltem Bolluk</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Duman"> Ismail Duman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Boron exhibits the properties of high melting temperature (2273K to 2573 K), high hardness (Mohs: 9,5), low density (2,340 g/cm3), high chemical resistance, high strength, and semiconductivity (band gap:1,6-2,1 eV). These superior properties enable to use it in several high-tech areas from electronics to nuclear industry and especially in high temperature metallurgy. Amorphous boron and crystalline boron have different application areas. Amorphous boron powder (directly amorphous and/or α-rhombohedral) is preferred in rocket firing, airbag inflating and in fabrication of superconducting MgB2 wires. The conventional ways to produce elemental boron with a purity of 85 pct to 95 prc are metallothermic reduction, fused salt electrolysis and mechanochemical synthesis; but the only way to produce high-purity boron powders is Chemical Vapour Deposition (Hot Surface CVD). In this study; amorphous boron powders with a minimum purity of 99,9 prc were synthesized in quartz tubes using BCl3-H2 gas mixture by CVD. Process conditions based on temperature and gas flow rate were determined. Thermodynamical interpretation of BCl3-H2 system for different temperatures and molar rates were performed using Fact Sage software. The characterization of powders was examined by using Xray diffraction (XRD), Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM), Stereo Microscope (SM), Helium gas pycnometer analysis. The purities of final products were determined by titration after lime fusion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amorphous%20boron" title="amorphous boron">amorphous boron</a>, <a href="https://publications.waset.org/abstracts/search?q=CVD" title=" CVD"> CVD</a>, <a href="https://publications.waset.org/abstracts/search?q=powder%20production" title=" powder production"> powder production</a>, <a href="https://publications.waset.org/abstracts/search?q=powder%20characterization" title=" powder characterization"> powder characterization</a> </p> <a href="https://publications.waset.org/abstracts/57325/production-of-amorphous-boron-powder-via-chemical-vapor-deposition-cvd" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57325.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2055</span> Preparation and Characterization of Nano-Metronidazole by Planetary Ball-Milling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahriar%20Ghammamy">Shahriar Ghammamy</a>, <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Gholipoor"> Maryam Gholipoor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metronidazole nano -powders with the average mean particle size around 90 nm were synthesized by high-energy milling using a planetary ball mill is provided. The Scattering factors, milling of time,the ball size and ball to powder ratio on the material properties powder by the Ray diffraction (XRD) study, scanning electron microscopy (SEM), IR. It has been observed that the density of nano-sized grinding balls as ball to powder ratio depends. Using the dispersion factor, the density Can be reduced below the initial particle size was achieved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metronidazole" title="metronidazole">metronidazole</a>, <a href="https://publications.waset.org/abstracts/search?q=ball-milling" title=" ball-milling"> ball-milling</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD%20diffraction" title=" XRD diffraction"> XRD diffraction</a> </p> <a href="https://publications.waset.org/abstracts/16630/preparation-and-characterization-of-nano-metronidazole-by-planetary-ball-milling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16630.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2054</span> High-Temperature X-Ray Powder Diffraction of Secondary Gypsum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Gazdi%C4%8D">D. Gazdič</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20H%C3%A1jkov%C3%A1"> I. Hájková</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Fridrichov%C3%A1"> M. Fridrichová</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper involved the performance of a high-temperature X-Ray powder diffraction analysis (XRD) of a sample of chemical gypsum generated in the production of titanium white; this gypsum originates by neutralizing highly acidic water with limestone suspension. Specifically, it was gypsum formed in the first stage of neutralization when the resulting material contains, apart from gypsum, a number of waste products resulting from the decomposition of ilmenite by sulphuric acid. So it can be described as red titanogypsum. By conducting the experiment using XRD apparatus Bruker D8 Advance with a Cu anode (λkα=1.54184 Å) equipped with high-temperature chamber Anton Paar HTK 16, it was possible to identify clearly in the sample each phase transition in the system of CaSO4•xH2O. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anhydrite" title="anhydrite">anhydrite</a>, <a href="https://publications.waset.org/abstracts/search?q=gypsum" title=" gypsum"> gypsum</a>, <a href="https://publications.waset.org/abstracts/search?q=bassanite" title=" bassanite"> bassanite</a>, <a href="https://publications.waset.org/abstracts/search?q=hematite" title=" hematite"> hematite</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=powder" title=" powder"> powder</a>, <a href="https://publications.waset.org/abstracts/search?q=high-temperature" title=" high-temperature "> high-temperature </a> </p> <a href="https://publications.waset.org/abstracts/15577/high-temperature-x-ray-powder-diffraction-of-secondary-gypsum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15577.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2053</span> The Effect of Fuel Type on Synthesis of CeO2-MgO Nano-Powder by Combustion Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Ghafoori-Najafabadi">F. Ghafoori-Najafabadi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Sarraf-Mamoory"> R. Sarraf-Mamoory</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Riahi-Noori"> N. Riahi-Noori </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, nanocrystalline CeO2-MgO powders were synthesized by combustion reactions using citric acid, ethylene glycol, and glycine as different fuels and nitrate as an oxidant. The powders obtained with different kinds of fuels are characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The size and morphology of the particles and the extent of agglomeration in the powders were studied using SEM analysis. It is observed that the variation of fuel has an intense influence on the particle size and morphology of the resulting powder. X-ray diffraction revealed that any combined phases were observed, and that MgO and CeO2 phases were formed, separately. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticle" title="nanoparticle">nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion%20synthesis" title=" combustion synthesis"> combustion synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=CeO2-MgO" title=" CeO2-MgO"> CeO2-MgO</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-powder" title=" nano-powder"> nano-powder</a> </p> <a href="https://publications.waset.org/abstracts/11254/the-effect-of-fuel-type-on-synthesis-of-ceo2-mgo-nano-powder-by-combustion-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11254.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2052</span> Structural and Magnetic Properties of Milled Nickel Powder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20M.%20Lemine">O. M. Lemine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of milling parameters on the structural and magnetic properties of nickel powder was investigated. The samples were characterized by X-ray powder diffraction and vibrating sample magnetometer (VSM). The results did not reveal any phase change of nickel during the milling. The average crystallite size decreases with a prolongation of milling times, whereas the lattice parameters increase. The hysteresis loop reveals the intrinsic magnetic behaviour. It was observed an increase in the magnetization which can be correlated to the volume expansion showed by XRD results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nickel%20powders" title="nickel powders">nickel powders</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocrystallines" title=" nanocrystallines"> nanocrystallines</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=VSM" title=" VSM"> VSM</a> </p> <a href="https://publications.waset.org/abstracts/6125/structural-and-magnetic-properties-of-milled-nickel-powder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6125.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2051</span> Characterization of Titanium -Niobium Alloys by Powder Metallurgy as İmplant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eyy%C3%BCp%20Murat%20Karakurt">Eyyüp Murat Karakurt</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan%20Huang">Yan Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Kaya">Mehmet Kaya</a>, <a href="https://publications.waset.org/abstracts/search?q=H%C3%BCseyin%20Demirta%C5%9F">Hüseyin Demirtaş</a>, <a href="https://publications.waset.org/abstracts/search?q=Alper%20%C4%B0ncesu">Alper İncesu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, Ti-(x) Nb (at. %) master alloys (x:10, 20, and 30) were fabricated following a standard powder metallurgy route and were sintered at 1200 ˚C for 6h, under 300 MPa by powder metallurgy method. The effect of the Nb concentration in Ti matrix and porosity level was examined experimentally. For metallographic examination, the alloys were analysed by optical microscopy and energy dispersive spectrometry analysis. In addition, X-ray diffraction was performed on the alloys to determine which compound formed in the microstructure. The compression test was applied to the alloys to understand the mechanical behaviors of the alloys. According to Nb concentration in Ti matrix, the β phase increased. Also, porosity level played a crucial role on the mechanical performance of the alloys. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nb%20concentration" title="Nb concentration">Nb concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=porosity%20level" title=" porosity level"> porosity level</a>, <a href="https://publications.waset.org/abstracts/search?q=powder%20metallurgy" title=" powder metallurgy"> powder metallurgy</a>, <a href="https://publications.waset.org/abstracts/search?q=The%20%CE%B2%20phase" title=" The β phase"> The β phase</a> </p> <a href="https://publications.waset.org/abstracts/143340/characterization-of-titanium-niobium-alloys-by-powder-metallurgy-as-implant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143340.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2050</span> Magnetic Structure and Transitions in 45% Mn Substituted HoFeO₃: A Neutron Diffraction Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karthika%20Chandran">Karthika Chandran</a>, <a href="https://publications.waset.org/abstracts/search?q=Pulkit%20Prakash"> Pulkit Prakash</a>, <a href="https://publications.waset.org/abstracts/search?q=Amitabh%20Das"> Amitabh Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Santhosh%20P.%20N."> Santhosh P. N.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rare earth orthoferrites (RFeO₃) exhibit interesting and useful magnetic properties like multiferroicity, magnetodielectric coupling, spin reorientation (SR) and exchange bias. B site doped RFeO₃ are attracting attention due to the complex and tuneable magnetic transitions. In this work, 45% Mn-doped HoFeO₃ polycrystalline sample (HoFe₀.₅₅Mn₀.₄₅O₃) was synthesized by a solid-state reaction method. The magnetic structure and transitions were studied by magnetization measurements and neutron powder diffraction methods. The neutron diffraction patterns were taken at 13 different temperatures from 7°K to 300°K (7°K and 25°K to 300°K in 25°K intervals). The Rietveld refinement was carried out by using a FULLPROF suite. The magnetic space groups and the irreducible representations were obtained by SARAh module. The room temperature neutron diffraction refinement results indicate that the sample crystallizes in an orthorhombic perovskite structure with Pnma space group with lattice parameters a = 5.6626(3) Ǻ, b = 7.5241(3) Ǻ and c = 5.2704(2) Ǻ. The temperature dependent magnetization (M-T) studies indicate the presence of two magnetic transitions in the system ( TN Fe/Mn~330°K and TSR Fe/Mn ~290°K). The inverse susceptibility vs. temperature curve shows a linear behavior above 330°K. The Curie-Weiss fit in this region gives negative Curie constant (-34.9°K) indicating the antiferromagnetic nature of the transition. The neutron diffraction refinement results indicate the presence of mixed magnetic phases Γ₄(AₓFᵧG <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neutron%20powder%20diffraction" title="neutron powder diffraction">neutron powder diffraction</a>, <a href="https://publications.waset.org/abstracts/search?q=rare%20earth%20orthoferrites" title=" rare earth orthoferrites"> rare earth orthoferrites</a>, <a href="https://publications.waset.org/abstracts/search?q=Rietveld%20analysis" title=" Rietveld analysis"> Rietveld analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=spin%20reorientation" title=" spin reorientation"> spin reorientation</a> </p> <a href="https://publications.waset.org/abstracts/105883/magnetic-structure-and-transitions-in-45-mn-substituted-hofeo3-a-neutron-diffraction-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105883.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2049</span> Magnetic Properties of Sr-Ferrite Nano-Powder Synthesized by Sol-Gel Auto-Combustion Method </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Ghobeiti-Hasab">M. Ghobeiti-Hasab</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Shariati"> Z. Shariati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, strontium ferrite (SrO.6Fe2O3) was synthesized by the sol-gel auto-combustion process. The thermal behavior of powder obtained from self-propagating combustion of initial gel was evaluated by simultaneous differential thermal analysis (DTA) and thermo gravimetric (TG), from room temperature to 1200°C. The as-burnt powder was calcined at various temperatures from 700-900°C to achieve the single-phase Sr-ferrite. Phase composition, morphology and magnetic properties were investigated using X-ray diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM) techniques. Results showed that the single-phase and nano-sized hexagonal strontium ferrite particles were formed at calcination temperature of 800°C with crystallite size of 27 nm and coercivity of 6238 Oe. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hard%20magnet" title="hard magnet">hard magnet</a>, <a href="https://publications.waset.org/abstracts/search?q=Sr-ferrite" title=" Sr-ferrite"> Sr-ferrite</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel%20auto-combustion" title=" sol-gel auto-combustion"> sol-gel auto-combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-powder" title=" nano-powder"> nano-powder</a> </p> <a href="https://publications.waset.org/abstracts/13710/magnetic-properties-of-sr-ferrite-nano-powder-synthesized-by-sol-gel-auto-combustion-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13710.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2048</span> Synthesis of Mg/B Containing Compound in a Modified Microwave Oven</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G%C3%BCl%C5%9Fah%20%C3%87elik%20G%C3%BCl">Gülşah Çelik Gül</a>, <a href="https://publications.waset.org/abstracts/search?q=Figen%20Kurtulu%C5%9F"> Figen Kurtuluş</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnesium containing boron compounds with hexagonal structure have been drawn much attention due to their superconductive nature. The main target of this work is new modified microwave oven by on our own has an ability about passing through a gas in the oven medium for attainment of oxygen-free compounds such as c-BN. Mg containing boride was synthesized by modified-microwave method under nitrogen atmosphere using amorphous boron and magnesium source in appropriate molar ratio. Microwave oven with oxygen free environment has been modified to aimed to obtain magnesium boride without oxygen. Characterizations were done by powder X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. Mg containing boride, generally named magnesium boride, with amorphous character without oxygen is obtained via designed microwave oven system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnesium%20containing%20boron%20compounds" title="magnesium containing boron compounds">magnesium containing boron compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20microwave%20synthesis" title=" modified microwave synthesis"> modified microwave synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=powder%20X-ray%20diffraction" title=" powder X-ray diffraction"> powder X-ray diffraction</a>, <a href="https://publications.waset.org/abstracts/search?q=FTIR" title=" FTIR"> FTIR</a> </p> <a href="https://publications.waset.org/abstracts/68256/synthesis-of-mgb-containing-compound-in-a-modified-microwave-oven" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68256.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2047</span> Preparation of Nanocrystalline Mesoporous ThO2 Via Surfactant Assisted Sol-gel Procedure </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Mohseni">N. Mohseni</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Janitabar"> S. Janitabar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.J.%20Ahmadi"> S.J. Ahmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Roshanzamir"> M. Roshanzamir</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Thaghizadeh"> M. Thaghizadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There has been proposed a technique for getting thorium dioxide mesoporous nanocrystalline. In this paper thorium dioxide powder was synthesized through the sol-gel method using hydrated thorium nitrate and ammonium hydroxide as starting materials and Triton X100 as surfactant. ThO2 gel was characterized by thermogravimetric (TG), and prepared ThO2 powder was subjected to scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer-Emett-Teller (BET) analyses studies. Detailed analyses show that prepared powder consisted of phase with the space group Fm3m of thoria and its crystalline size was 27 nm. The thoria possesses 16.7 m2/g surface area and the pore volume and size calculated to be 0.0423 cc/g and 1.947 nm, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mesoporous" title="mesoporous">mesoporous</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocrystalline" title=" nanocrystalline"> nanocrystalline</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel" title="sol-gel">sol-gel</a>, <a href="https://publications.waset.org/abstracts/search?q=thoria" title=" thoria "> thoria </a> </p> <a href="https://publications.waset.org/abstracts/24862/preparation-of-nanocrystalline-mesoporous-tho2-via-surfactant-assisted-sol-gel-procedure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24862.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2046</span> Analysis of the Recovery of Burnility Index and Reduction of CO2 for Cement Manufacturing Utilizing Waste Cementitious Powder as Alternative Raw Material of Limestone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kwon%20Eunhee">Kwon Eunhee</a>, <a href="https://publications.waset.org/abstracts/search?q=Park%20Dongcheon"> Park Dongcheon</a>, <a href="https://publications.waset.org/abstracts/search?q=Jung%20Jaemin"> Jung Jaemin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In countries around the world, environmental regulations are being strengthened, and Korea is no exception to this trend, which means that environment pollution and the environmental load have recently become a significant issue. For this reason, in this study limestone was replaced with cementitious powder to reduce the volume of construction waste as well as the emission of carbon dioxide caused by Tal-carbonate reaction. The research found that cementitious powder can be used as a substitute for limestone. However, the mix proportions of fine aggregate and powder included in the cementitious powder appear to have a great effect on substitution. Thus, future research should focus on developing a technology that can effectively separate and discharge fine aggregate and powder in the cementitious powder. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=waste%20cementitious%20powder" title="waste cementitious powder">waste cementitious powder</a>, <a href="https://publications.waset.org/abstracts/search?q=fine%20aggregate%20powder" title=" fine aggregate powder"> fine aggregate powder</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2%20emission" title=" CO2 emission"> CO2 emission</a>, <a href="https://publications.waset.org/abstracts/search?q=decarbonation%20reaction" title=" decarbonation reaction"> decarbonation reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=calcining%20process" title=" calcining process "> calcining process </a> </p> <a href="https://publications.waset.org/abstracts/17362/analysis-of-the-recovery-of-burnility-index-and-reduction-of-co2-for-cement-manufacturing-utilizing-waste-cementitious-powder-as-alternative-raw-material-of-limestone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17362.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">490</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2045</span> Preparation and Structural Analysis of Nano-Ciprofloxacin by Fourier Transform X-Ray Diffraction, Infra-Red Spectroscopy, and Semi Electron Microscope (SEM)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahriar%20Ghammamy">Shahriar Ghammamy</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehrnoosh%20Saboony"> Mehrnoosh Saboony</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: To evaluate the spectral specification (IR-XRD and SEM) of nano-ciprofloxacin that prepared by up-down method (satellite mill). Methods: the ciprofloxacin was minimized to nano-scale with satellite mill and its characterization evaluated by Infrared spectroscopy, XRD diffraction and semi electron microscope (SEM). Expectation enhances the antibacterial property of nano-ciprofloxacin in comparison to ciprofloxacin. IR spectrum of nano-ciprofloxacin compared with spectrum of ciprofloxacin, and both of them were almost agreement with a difference: the peaks in spectrum of nano-ciprofloxacin were sharper than peaks in spectrum of ciprofloxacin. X-Ray powder diffraction analysis of nano-ciprofloxacin shows the diameter of particles equal to 90.9nm. (on the basis of Scherer Equation). SEM image shows the global shape for nano-ciprofloxacin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibiotic" title="antibiotic">antibiotic</a>, <a href="https://publications.waset.org/abstracts/search?q=ciprofloxacin" title=" ciprofloxacin"> ciprofloxacin</a>, <a href="https://publications.waset.org/abstracts/search?q=nano" title=" nano"> nano</a>, <a href="https://publications.waset.org/abstracts/search?q=IR" title=" IR"> IR</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a> </p> <a href="https://publications.waset.org/abstracts/16676/preparation-and-structural-analysis-of-nano-ciprofloxacin-by-fourier-transform-x-ray-diffraction-infra-red-spectroscopy-and-semi-electron-microscope-sem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16676.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">514</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2044</span> Preparation and Structural Analysis of Nano Ciprofloxacin by Fourier Transform Infra-Red Spectroscopy, X-Ray Diffraction and Semi Electron Microscope (SEM)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahriar%20Ghammamy">Shahriar Ghammamy</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehrnoosh%20Saboony"> Mehrnoosh Saboony</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: to evaluate the spectral specification(IR-XRD and SEM) of nano ciprofloxacin that prepared by up-down method (satellite mill). Methods: the ciprofloxacin was minimized to nano-scale with satellite mill and it,s characterization evaluated by Infrared spectroscopy, XRD diffraction and semi electron microscope (SEM). Expectation: to enhance the antibacterial property of nano ciprofloxacin in comparison to ciprofloxacin.IR spectrum of nano ciprofloxacin compared with spectrum of ciprofloxacin, and both of them were almost agreement with a difference: the peaks in spectrum of nano ciprofloxacin was sharper than peaks in spectrum of ciprofloxacin. X-Ray powder diffraction analysis of nano ciprofloxacin showes the diameter of particles equal to 90.9 nm (on the basis of scherrer equation). SEM image showes the global shape for nano ciprofloxacin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibiotic" title="antibiotic">antibiotic</a>, <a href="https://publications.waset.org/abstracts/search?q=ciprofloxacin" title=" ciprofloxacin"> ciprofloxacin</a>, <a href="https://publications.waset.org/abstracts/search?q=nano" title=" nano"> nano</a>, <a href="https://publications.waset.org/abstracts/search?q=IR" title=" IR"> IR</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a> </p> <a href="https://publications.waset.org/abstracts/16667/preparation-and-structural-analysis-of-nano-ciprofloxacin-by-fourier-transform-infra-red-spectroscopy-x-ray-diffraction-and-semi-electron-microscope-sem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16667.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2043</span> Microstructure Characterization of the Ball Milled Fe50Al30Ni20 (%.wt) Powder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Nakib">C. Nakib</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Ammouchi"> N. Ammouchi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Otmani"> A. Otmani</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Djekoun"> A. Djekoun</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Gren%C3%A8che"> J. M. Grenèche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> B2-structured FeAl was synthesized by an abrupt reaction during mechanical alloying (MA) of the elemental powders of Fe, Al and Ni. The structural, microstructural and morphological changes occurring in the studied material during MA were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Two crystalline phases were found, the major one corresponding to FeAl bcc phase with a crystallite size less than 10 nm, a lattice strain up to 1.6% and a dislocation density of about 2.3 1016m-2. The other phase in low proportion was corresponding to Fe (Al,Ni) solid solution. SEM images showed an irregular morphology of powder particles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mechanical%20alloying" title="mechanical alloying">mechanical alloying</a>, <a href="https://publications.waset.org/abstracts/search?q=ternary%20composition" title=" ternary composition"> ternary composition</a>, <a href="https://publications.waset.org/abstracts/search?q=dislocation%20density" title=" dislocation density"> dislocation density</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20properties" title=" structural properties"> structural properties</a> </p> <a href="https://publications.waset.org/abstracts/16694/microstructure-characterization-of-the-ball-milled-fe50al30ni20-wt-powder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16694.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2042</span> The Effect of the Incorporation of Glass Powder into Cement Sorel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rim%20Zgueb">Rim Zgueb</a>, <a href="https://publications.waset.org/abstracts/search?q=Noureddine%20Yacoubi"> Noureddine Yacoubi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The work concerns thermo-mechanical properties of cement Sorel mixed with different proportions of glass powder. Five specimens were developed. Four different glass powder mixtures were developed 5%, 10%, 15% and 20% with one control sample without glass powder. The research presented in this study focused on evaluating the effects of replacing portion of glass powder with various percentages of cement Sorel. The influence of the glass powder on the thermal conductivity, thermal diffusivity, bulk density and compressive strength of the cement Sorel at 28 days of curing were determined. The thermal property of cement was measured by using Photothermal deflection technique PTD. The results revealed that the glass powder additive affected greatly on the thermal properties of the cement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cement%20sorel" title="cement sorel">cement sorel</a>, <a href="https://publications.waset.org/abstracts/search?q=photothermal%20deflection%20technique" title=" photothermal deflection technique"> photothermal deflection technique</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20diffusivity" title=" thermal diffusivity"> thermal diffusivity</a> </p> <a href="https://publications.waset.org/abstracts/59649/the-effect-of-the-incorporation-of-glass-powder-into-cement-sorel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2041</span> X-Ray Diffraction, Microstructure, and Mössbauer Studies of Nanostructured Materials Obtained by High-Energy Ball Milling </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Boudinar">N. Boudinar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Djekoun"> A. Djekoun</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Otmani"> A. Otmani</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Bouzabata"> B. Bouzabata</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Greneche"> J. M. Greneche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High-energy ball milling is a solid-state powder processing technique that allows synthesizing a variety of equilibrium and non-equilibrium alloy phases starting from elemental powders. The advantage of this process technology is that the powder can be produced in large quantities and the processing parameters can be easily controlled, thus it is a suitable method for commercial applications. It can also be used to produce amorphous and nanocrystalline materials in commercially relevant amounts and is also amenable to the production of a variety of alloy compositions. Mechanical alloying (high-energy ball milling) provides an inter-dispersion of elements through a repeated cold welding and fracture of free powder particles; the grain size decreases to nano metric scale and the element mix together. Progressively, the concentration gradients disappear and eventually the elements are mixed at the atomic scale. The end products depend on many parameters such as the milling conditions and the thermodynamic properties of the milled system. Here, the mechanical alloying technique has been used to prepare nano crystalline Fe_50 and Fe_64 wt.% Ni alloys from powder mixtures. Scanning electron microscopy (SEM) with energy-dispersive, X-ray analyses and Mössbauer spectroscopy were used to study the mixing at nanometric scale. The Mössbauer Spectroscopy confirmed the ferromagnetic ordering and was use to calculate the distribution of hyperfin field. The Mössbauer spectrum for both alloys shows the existence of a ferromagnetic phase attributed to γ-Fe-Ni solid solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanocrystalline" title="nanocrystalline">nanocrystalline</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20alloying" title=" mechanical alloying"> mechanical alloying</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20diffraction" title=" X-ray diffraction"> X-ray diffraction</a>, <a href="https://publications.waset.org/abstracts/search?q=M%C3%B6ssbauer%20spectroscopy" title=" Mössbauer spectroscopy"> Mössbauer spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20transformations" title=" phase transformations"> phase transformations</a> </p> <a href="https://publications.waset.org/abstracts/21823/x-ray-diffraction-microstructure-and-mossbauer-studies-of-nanostructured-materials-obtained-by-high-energy-ball-milling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21823.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">437</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2040</span> A Brief Review of Titanium Powders Used in Laser Powder-Bed Fusion Additive Manufacturing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Alhajeri">Ali Alhajeri</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarig%20Makki"> Tarig Makki</a>, <a href="https://publications.waset.org/abstracts/search?q=Mosa%20Almutahhar"> Mosa Almutahhar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Ahmed"> Mohammed Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Usman%20Ali"> Usman Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal powder is the raw material used for laser powder-bed fusion (LPBF) additive manufacturing (AM). There are many metal materials that can be used in LPBF. The properties of these materials are varied between each other, which can affect the building part. The objective of this paper is to do an overview of the titanium powders available in LBPF. Comparison between different literature works will lead us to study the similarities and differences between the powder properties such as size, shape, and chemical composition. Furthermore, the results of this paper will point out the significant titanium powder properties in order to clearly illustrate their effect on the build parts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LPBF" title="LPBF">LPBF</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium" title=" titanium"> titanium</a>, <a href="https://publications.waset.org/abstracts/search?q=Ti-6Al-4V" title=" Ti-6Al-4V"> Ti-6Al-4V</a>, <a href="https://publications.waset.org/abstracts/search?q=Ti-5553" title=" Ti-5553"> Ti-5553</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20powder" title=" metal powder"> metal powder</a>, <a href="https://publications.waset.org/abstracts/search?q=AM" title=" AM"> AM</a> </p> <a href="https://publications.waset.org/abstracts/151600/a-brief-review-of-titanium-powders-used-in-laser-powder-bed-fusion-additive-manufacturing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151600.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2039</span> Effect of Dietary Spirulina Powder on Growth Performance, Body Composition, Hematological, Biological and Immunological Parameters of Oscar Fish, Astronotus ocellatus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Negar%20Ghotbeddin">Negar Ghotbeddin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the changes in survival, growth, body composition, hematological, biochemical and immunological parameters of oscar fish (Astronotus ocellatus) have been investigated with dietary spirulina powder supplementation. Total of 300 fish with an initial weight of 8.37 ± 0.36 was distributed to three treatments and one control (0%). The fish were fed 8 weeks with diets containing different concentrations of S. powder: (control (0%), 2.5%, 5%, and 10%). Then sampling was done, and different parameters were measured by standard methods. Growth performance such as weight gain (%), specific growth rate (SGR) and feed conversion ratio (FCR) significantly improved in fish fed with S. powder (p < 0.5). Crude protein significantly increased in the S. powder supplemented groups (p < 0.5). However, crude lipid decreased with the increasing of dietary S. powder levels. Total protein increased in fish fed with 10% S. powder. Triglycerides and cholesterol decreased with the increasing of dietary S. powder levels. Immunological parameters including C3 and C4 increased significantly with the increasing of dietary S. powder levels, and lysozyme was improved in 10% S. powder. Results of this study indicated that S. powder had positive effects on Oscar fish and the best values were observed at 10 % S. powder. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spirulina%20powder" title="spirulina powder">spirulina powder</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20performance" title=" growth performance"> growth performance</a>, <a href="https://publications.waset.org/abstracts/search?q=body%20composition" title=" body composition"> body composition</a>, <a href="https://publications.waset.org/abstracts/search?q=hematology" title=" hematology"> hematology</a>, <a href="https://publications.waset.org/abstracts/search?q=immunity" title=" immunity"> immunity</a>, <a href="https://publications.waset.org/abstracts/search?q=Astronotus%20ocellatus" title=" Astronotus ocellatus"> Astronotus ocellatus</a> </p> <a href="https://publications.waset.org/abstracts/104805/effect-of-dietary-spirulina-powder-on-growth-performance-body-composition-hematological-biological-and-immunological-parameters-of-oscar-fish-astronotus-ocellatus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104805.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2038</span> Using Recycled Wastes (Glass Powder) as Partially Replacement for Cement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Passant%20Youssef">Passant Youssef</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20El-Tair"> Ahmed El-Tair</a>, <a href="https://publications.waset.org/abstracts/search?q=Amr%20El-Nemr"> Amr El-Nemr </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lately, with the environmental changes, enthusiasts trigger to stop the contamination of environment. Thus, various efforts were exerted for innovating environmental friendly concrete to sustain as a ‘Green Building’ material. Green building materials consider the cement industry as one of the most sources of air pollutant with high rate of carbon dioxide (CO₂) emissions. Several methods were developed to extensively reduce the influence of cement industry on environment. These methods such as using supplementary cementitious material or improving the cement manufacturing process are still under investigation. However, with the presence of recycled wastes from construction and finishing materials, the use of supplementary cementitious materials seems to provide an economic solution. Furthermore, it improves the mechanical properties of cement paste, in addition to; it modulates the workability and durability of concrete. In this paper, the glass powder was considered to be used as partial replacement of cement. This study provided the mechanical influence for using the glass powder as partial replacement of cement. In addition, it examines the microstructure of cement mortar using scanning electron microscope and X-ray diffraction. The cement in concrete is replaced by waste glass powder in steps of 5%, 10%, 15%, 20% and 25% by weight of cement and its effects on compressive and flexure strength were determined after 7 and 28 days. It was found that the 5% glass powder replacement increased the 7 days compressive strength by 20.5%, however, there was no increase in compressive strength after 28 days; which means that the glass powder did not react in the cement mortar due to its amorphous nature on the long run, and it can act as fine aggregate better that cement replacement. As well as, the 5% and 10% glass powder replacement increased the 28 days flexural strength by 46.9%. SEM micrographs showed very dense matrix for the optimum specimen compared to control specimen as well; some glass particles were clearly observed. High counts of silica were optimized from XRD while amorphous materials such as calcium silicate cannot be directly detected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supplementary%20materials" title="supplementary materials">supplementary materials</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20powder" title=" glass powder"> glass powder</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=cementitious%20materials" title=" cementitious materials"> cementitious materials</a> </p> <a href="https://publications.waset.org/abstracts/76780/using-recycled-wastes-glass-powder-as-partially-replacement-for-cement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76780.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2037</span> Inventive Synthesis and Characterization of a Cesium Molybdate Compound: CsBi(MoO4)2</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G%C3%BCl%C5%9Fah%20%C3%87elik%20G%C3%BCl">Gülşah Çelik Gül</a>, <a href="https://publications.waset.org/abstracts/search?q=Figen%20Kurtulu%C5%9F"> Figen Kurtuluş</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cesium molybdates with general formula CsMIII(MoO4)2, where MIII = Bi, Dy, Pr, Er, exhibit rich polymorphism, and crystallize in a layered structure. These properties cause intensive studies on cesium molybdates. CsBi(MoO4)2 was synthesized by microwave method by using cerium sulphate, bismuth oxide and molybdenum (VI) oxide in an appropriate molar ratio. Characterizations were done by x-ray diffraction (XRD), fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy/energy dispersive analyze (SEM/EDS), thermo gravimetric/differantial thermal analysis (TG/DTA). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cesium%20bismuth%20dimolybdate" title="cesium bismuth dimolybdate">cesium bismuth dimolybdate</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20synthesis" title=" microwave synthesis"> microwave synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=powder%20x-ray%20diffraction" title=" powder x-ray diffraction"> powder x-ray diffraction</a>, <a href="https://publications.waset.org/abstracts/search?q=rare%20earth%20dimolybdates" title=" rare earth dimolybdates"> rare earth dimolybdates</a> </p> <a href="https://publications.waset.org/abstracts/27059/inventive-synthesis-and-characterization-of-a-cesium-molybdate-compound-csbimoo42" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27059.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">518</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2036</span> Microstructural Evolution of Maraging Steels from Powder Particles to Additively Manufactured Samples</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyedamirreza%20Shamsdini">Seyedamirreza Shamsdini</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Mohammadi"> Mohsen Mohammadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, 18Ni-300 maraging steel powder particles are investigated by studying particle size distribution along with their morphology and grain structure. The powder analysis shows mostly spherical morphologies with cellular structures. A laser-based additive manufacturing process, selective laser melting (SLM) is used to produce samples for further investigation of mechanical properties and microstructure. Several uniaxial tensile tests are performed on the as-built parts to evaluate the mechanical properties. The macroscopic properties, as well as microscopic studies, are then investigated on the printed parts. Hardness measurements, as well as porosity levels, are measured for each sample and are correlated with microstructures through electron microscopy techniques such as Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The grain structure is studied for the as-printed specimens and compared to the powder particle microstructure. The cellular structure of the printed samples is observed to have dendritic forms with dendrite width dimensions similar to the powder particle cells. The process parameter is changed, and the study is performed for different powder layer thickness, and the resultant mechanical properties and grain structure are shown to be similar. A phase study is conducted both on the powder and the printed samples using X-Ray Diffraction (XRD) techniques, and the austenite phase is observed to at first decrease due to the manufacturing process and again during the uniaxial tensile deformation. The martensitic structure is formed in the first stage based on the heating cycles of the manufacturing process and the remaining austenite is shown to be transformed to martensite due to different deformation mechanisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=maraging%20steel" title=" maraging steel"> maraging steel</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/123896/microstructural-evolution-of-maraging-steels-from-powder-particles-to-additively-manufactured-samples" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2035</span> Reactivation of Hydrated Cement and Recycled Concrete Powder by Thermal Treatment for Partial Replacement of Virgin Cement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gustave%20Semugaza">Gustave Semugaza</a>, <a href="https://publications.waset.org/abstracts/search?q=Anne%20Zora%20Gierth"> Anne Zora Gierth</a>, <a href="https://publications.waset.org/abstracts/search?q=Tommy%20Mielke"> Tommy Mielke</a>, <a href="https://publications.waset.org/abstracts/search?q=Marianela%20Escobar%20Castillo"> Marianela Escobar Castillo</a>, <a href="https://publications.waset.org/abstracts/search?q=Nat%20Doru%20C.%20Lupascu"> Nat Doru C. Lupascu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The generation of Construction and Demolition Waste (CDW) has globally increased enormously due to the enhanced need in construction, renovation, and demolition of construction structures. Several studies investigated the use of CDW materials in the production of new concrete and indicated the lower mechanical properties of the resulting concrete. Many other researchers considered the possibility of using the Hydrated Cement Powder (HCP) to replace a part of Ordinary Portland Cement (OPC), but only very few investigated the use of Recycled Concrete Powder (RCP) from CDW. The partial replacement of OPC for making new concrete intends to decrease the CO₂ emissions associated with OPC production. However, the RCP and HCP need treatment to produce the new concrete of required mechanical properties. The thermal treatment method has proven to improve HCP properties before their use. Previous research has stated that for using HCP in concrete, the optimum results are achievable by heating HCP between 400°C and 800°C. The optimum heating temperature depends on the type of cement used to make the Hydrated Cement Specimens (HCS), the crushing and heating method of HCP, and the curing method of the Rehydrated Cement Specimens (RCS). This research assessed the quality of recycled materials by using different techniques such as X-ray Diffraction (XRD), Differential Scanning Calorimetry (DSC) and thermogravimetry (TG), Scanning electron Microscopy (SEM), and X-ray Fluorescence (XRF). These recycled materials were thermally pretreated at different temperatures from 200°C to 1000°C. Additionally, the research investigated to what extent the thermally treated recycled cement could partially replace the OPC and if the new concrete produced would achieve the required mechanical properties. The mechanical properties were evaluated on the RCS, obtained by mixing the Dehydrated Cement Powder and Recycled Powder (DCP and DRP) with water (w/c = 0.6 and w/c = 0.45). The research used the compressive testing machine for compressive strength testing, and the three-point bending test was used to assess the flexural strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrated%20cement%20powder" title="hydrated cement powder">hydrated cement powder</a>, <a href="https://publications.waset.org/abstracts/search?q=dehydrated%20cement%20powder" title=" dehydrated cement powder"> dehydrated cement powder</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20concrete%20powder" title=" recycled concrete powder"> recycled concrete powder</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20treatment" title=" thermal treatment"> thermal treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=reactivation" title=" reactivation"> reactivation</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20performance" title=" mechanical performance"> mechanical performance</a> </p> <a href="https://publications.waset.org/abstracts/148142/reactivation-of-hydrated-cement-and-recycled-concrete-powder-by-thermal-treatment-for-partial-replacement-of-virgin-cement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148142.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2034</span> Experimental Study of Iron Metal Powder Compacting by Controlled Impact</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Todor%20N.%20Penchev">Todor N. Penchev</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitar%20N.%20Karastoianov"> Dimitar N. Karastoianov</a>, <a href="https://publications.waset.org/abstracts/search?q=Stanislav%20D.%20Gyoshev"> Stanislav D. Gyoshev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For compacting of iron powder are used hydraulic presses and high velocity hammers. In this paper are presented initial research on application of an innovative powder compacting method, which uses a hammer working with controlled impact. The results show that by this method achieves the reduction of rebounds and improve efficiency of impact, compared with a high-speed compacting. Depending on the power of the engine (industrial rocket engine), this effect may be amplified to such an extent as to obtain a impact without rebound (sticking impact) and in long-time action of the impact force. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=powder%20metallurgy" title="powder metallurgy">powder metallurgy</a>, <a href="https://publications.waset.org/abstracts/search?q=impact" title=" impact"> impact</a>, <a href="https://publications.waset.org/abstracts/search?q=iron%20powder%20compacting" title=" iron powder compacting"> iron powder compacting</a>, <a href="https://publications.waset.org/abstracts/search?q=rocket%20engine" title=" rocket engine"> rocket engine</a> </p> <a href="https://publications.waset.org/abstracts/33204/experimental-study-of-iron-metal-powder-compacting-by-controlled-impact" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33204.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">521</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2033</span> Powder Flow with Normalized Powder Particles Size Distribution and Temperature Analyses in Laser Melting Deposition: Analytical Modelling and Experimental Validation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Arif%20Mahmood">Muhammad Arif Mahmood</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrei%20C.%20Popescu"> Andrei C. Popescu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mihai%20Oane"> Mihai Oane</a>, <a href="https://publications.waset.org/abstracts/search?q=Diana%20Chioibascu"> Diana Chioibascu</a>, <a href="https://publications.waset.org/abstracts/search?q=Carmen%20Ristoscu"> Carmen Ristoscu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ion%20N.%20Mihailescu"> Ion N. Mihailescu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Powder flow and temperature distributions are recognized as influencing factors during laser melting deposition (LMD) process, that not only affect the consolidation rate but also characteristics of the deposited layers. Herewith, two simplified analytical models will be presented to simulate the powder flow with the inclusion of powder particles size distribution in Gaussian form, under three powder jet nozzles, and temperature analyses during LMD process. The output of the 1st model will serve as the input in the 2nd model. The models will be validated with experimental data, i.e., weight measurement method for powder particles distribution and infrared imaging for temperature analyses. This study will increase the cost-efficiency of the LMD process by adjustment of the operating parameters for reaching optimal powder debit and energy. This research has received funds under the Marie Sklodowska-Curie grant agreement No. 764935, from the European Union’s Horizon 2020 research and innovation program. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser%20additive%20manufacturing" title="laser additive manufacturing">laser additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=powder%20particles%20size%20distribution%20in%20Gaussian%20form" title=" powder particles size distribution in Gaussian form"> powder particles size distribution in Gaussian form</a>, <a href="https://publications.waset.org/abstracts/search?q=powder%20stream%20distribution" title=" powder stream distribution"> powder stream distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20analyses" title=" temperature analyses"> temperature analyses</a> </p> <a href="https://publications.waset.org/abstracts/122315/powder-flow-with-normalized-powder-particles-size-distribution-and-temperature-analyses-in-laser-melting-deposition-analytical-modelling-and-experimental-validation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122315.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2032</span> XRD and Image Analysis of Low Carbon Type Recycled Cement Using Waste Cementitious Powder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyeonuk%20Shin">Hyeonuk Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Hun%20Song"> Hun Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongsik%20Chu"> Yongsik Chu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jongkyu%20Lee"> Jongkyu Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Dongcheon%20Park"> Dongcheon Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although much current research has been devoted to reusing concrete in the form of recycled aggregate, insufficient attention has been given to researching the utilization of waste concrete powder, which constitutes 20 % or more of waste concrete and therefore the majority of waste cementitious powder is currently being discarded or buried in landfills. This study consists of foundational research for the purpose of reusing waste cementitious powder in the form of recycled cement that can answer the need for low carbon green growth. Progressing beyond the conventional practice of using the waste cementitious powder as inert filler material, this study contributes to the aim of manufacturing high value added materials that exploits the chemical properties of the waste cementitious powder, by presenting a pre-treatment method for the material and an optimal method of proportioning the mix of materials to develop a low carbon type of recycled cement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Low%20carbon%20type%20cement" title="Low carbon type cement">Low carbon type cement</a>, <a href="https://publications.waset.org/abstracts/search?q=Waste%20cementitious%20%20powder" title=" Waste cementitious powder"> Waste cementitious powder</a>, <a href="https://publications.waset.org/abstracts/search?q=Waste%20recycling" title=" Waste recycling"> Waste recycling</a> </p> <a href="https://publications.waset.org/abstracts/17681/xrd-and-image-analysis-of-low-carbon-type-recycled-cement-using-waste-cementitious-powder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17681.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">464</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2031</span> Synthesis and Characterization of Akermanite Nanoparticles (AMN) as a Bio-Ceramic Nano Powder by Sol-Gel Method for Use in Biomedical</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyedmahdi%20Mousavihashemi">Seyedmahdi Mousavihashemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural Akermanite (NAM) has been successfully prepared by a modified sol-gel method. Optimization in calcination temperature and mechanical ball milling resulted in a pure and nano-sized powder which characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and Fourier transform infrared Spectroscopy (FT–IR). We hypothesized that nano-sized Akermanite (AM) would mimic more efficiently the nanocrystal structure and function of natural bone apatite, owing to the higher surface area, compare to conventional micron-size Akermanite (AM). Accordingly, we used the unique advantage of nanotechnology to improve novel nano akermanite particles as a potential candidate for bone tissue regeneration whether as a per implant filling powder or in combination with other biomaterials as a composite scaffold. Pure Akermanite (PAM) powders were successfully obtained via a simple sol-gel method followed by calcination at 1250 °C. Mechanical grinding in a ceramic ball mill for 7 hours resulted in akermanite (AM) nanoparticles in the range of about 30- 45 nm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomedical%20engineering" title="biomedical engineering">biomedical engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20composite" title=" nano composite"> nano composite</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=TEM" title=" TEM"> TEM</a> </p> <a href="https://publications.waset.org/abstracts/53220/synthesis-and-characterization-of-akermanite-nanoparticles-amn-as-a-bio-ceramic-nano-powder-by-sol-gel-method-for-use-in-biomedical" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53220.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2030</span> Investigation of NiO/V₂O₅ Powder Composite as Cathode Material for Lithium-Ion Batteries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Katia%20Ayouz-Chebout">Katia Ayouz-Chebout</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatima%20Boudeffar"> Fatima Boudeffar</a>, <a href="https://publications.waset.org/abstracts/search?q=Maha%20Ayat"> Maha Ayat</a>, <a href="https://publications.waset.org/abstracts/search?q=Malika%20Berouaken"> Malika Berouaken</a>, <a href="https://publications.waset.org/abstracts/search?q=Chafiaa%20Yaddaden"> Chafiaa Yaddaden</a>, <a href="https://publications.waset.org/abstracts/search?q=Saloua%20Merazga"> Saloua Merazga</a>, <a href="https://publications.waset.org/abstracts/search?q=Nouredine%20Gabouze"> Nouredine Gabouze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transition metal oxide composites have been widely reported in energy storage and conversion systems. In this regard, an attempt has been made to synthesize NiO@V₂O₅ nanocomposite. The structures and morphology of synthesized powder are investigated by X-ray diffraction, scanning electron microscope (SEM), and Attenuated Total Reflection (ATR). The electrochemical properties and performances as cathode electrodes based on active material NiO@V₂O₅ were studied by cyclic voltammetry (CV), between potential bias [0.01V to 3V], with scanning speed of 0,1mVs⁻¹, the galvanostatic charge/discharge (CDG) for 100 cycles was also measured. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20nanobelts" title="composite nanobelts">composite nanobelts</a>, <a href="https://publications.waset.org/abstracts/search?q=vanadium%20pentoxide" title=" vanadium pentoxide"> vanadium pentoxide</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel%20oxide" title=" nickel oxide"> nickel oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=Li-ion%20batteries" title=" Li-ion batteries"> Li-ion batteries</a> </p> <a href="https://publications.waset.org/abstracts/192131/investigation-of-niov2o5-powder-composite-as-cathode-material-for-lithium-ion-batteries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192131.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">23</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2029</span> Pioneer Synthesis and Characterization of Boron Containing Hard Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G%C3%BCl%C5%9Fah%20%C3%87elik%20G%C3%BCl">Gülşah Çelik Gül</a>, <a href="https://publications.waset.org/abstracts/search?q=Figen%20Kurtulu%C5%9F"> Figen Kurtuluş</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The first laboratory synthesis of hard materials such as diamond proceeded to attack of developing materials with high hardness to compete diamond. Boron rich solids are good candidates owing to their short interatomic bond lengths and strong covalent character. Boron containing hard material was synthesized by modified-microwave method under nitrogen atmosphere by using a fuel (glycine or urea), amorphous boron and/or boric acid in appropriate molar ratio. Characterizations were done by x-ray diffraction (XRD), fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy/energy dispersive analyze (SEM/EDS), thermo gravimetric/differantial thermal analysis (TG/DTA). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boron%20containing%20materials" title="boron containing materials">boron containing materials</a>, <a href="https://publications.waset.org/abstracts/search?q=hard%20materials" title=" hard materials"> hard materials</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20synthesis" title=" microwave synthesis"> microwave synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=powder%20X-ray%20diffraction" title=" powder X-ray diffraction "> powder X-ray diffraction </a> </p> <a href="https://publications.waset.org/abstracts/27062/pioneer-synthesis-and-characterization-of-boron-containing-hard-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27062.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">593</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2028</span> Structural and Electrochemical Characterization of Columnar-Structured Mn-Doped Bi26Mo10O69-d Electrolytes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maria%20V.%20Morozova">Maria V. Morozova</a>, <a href="https://publications.waset.org/abstracts/search?q=Zoya%20A.%20Mikhaylovskaya"> Zoya A. Mikhaylovskaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20S.%20Buyanova"> Elena S. Buyanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Sofia%20A.%20Petrova"> Sofia A. Petrova</a>, <a href="https://publications.waset.org/abstracts/search?q=Ksenia%20V.%20Arishina"> Ksenia V. Arishina</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20G.%20Zaharov"> Robert G. Zaharov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work is devoted to the investigation of two series of doped bismuth molybdates: Bi₂₆-₂ₓMn₂ₓMo₁₀O₆₉-d and Bi₂₆Mo₁₀-₂yMn₂yO₆₉-d. Complex oxides were synthesized by conventional solid state technology and by co-precipitation method. The products were identified by powder diffraction. The powders and ceramic samples were examined by means of densitometry, laser diffraction, and electron microscopic methods. Porosity of the ceramic materials was estimated using the hydrostatic method. The electrical conductivity measurements were carried out using impedance spectroscopy method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bismuth%20molybdate" title="bismuth molybdate">bismuth molybdate</a>, <a href="https://publications.waset.org/abstracts/search?q=columnar%20structures" title=" columnar structures"> columnar structures</a>, <a href="https://publications.waset.org/abstracts/search?q=impedance%20spectroscopy" title=" impedance spectroscopy"> impedance spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen%20ionic%20conductors" title=" oxygen ionic conductors"> oxygen ionic conductors</a> </p> <a href="https://publications.waset.org/abstracts/38423/structural-and-electrochemical-characterization-of-columnar-structured-mn-doped-bi26mo10o69-d-electrolytes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38423.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">436</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2027</span> Friction Coefficient of Epiphen Epoxy System Filled with Powder Resulting from the Grinding of Pine Needles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Graur">I. Graur</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Bria"> V. Bria</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Muntenita"> C. Muntenita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent ecological interests have resulted in scientific concerns regarding natural-organic powder composites. Because natural-organic powders are cheap and biodegradable, green composites represent a substantial contribution in polymer science area. The aim of this study is to point out the effect of natural-organic powder resulting from the grinding of pine needles used as a modifying agent for Epiphen epoxy resin and is focused on friction coefficient behavior. A pin-on-disc setup is used for friction coefficient experiments. Epiphen epoxy resin was used with the different ratio of organic powder from the grinding of pine needles. Because of the challenges of natural organic powder, more and more companies are looking at organic composite materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epoxy" title="epoxy">epoxy</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20coefficient" title=" friction coefficient"> friction coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20powder" title=" organic powder"> organic powder</a>, <a href="https://publications.waset.org/abstracts/search?q=pine%20needles" title=" pine needles"> pine needles</a> </p> <a href="https://publications.waset.org/abstracts/96794/friction-coefficient-of-epiphen-epoxy-system-filled-with-powder-resulting-from-the-grinding-of-pine-needles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96794.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=powder%20x-ray%20diffraction&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=powder%20x-ray%20diffraction&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=powder%20x-ray%20diffraction&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=powder%20x-ray%20diffraction&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=powder%20x-ray%20diffraction&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=powder%20x-ray%20diffraction&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=powder%20x-ray%20diffraction&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=powder%20x-ray%20diffraction&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=powder%20x-ray%20diffraction&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=powder%20x-ray%20diffraction&page=68">68</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=powder%20x-ray%20diffraction&page=69">69</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=powder%20x-ray%20diffraction&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>