CINXE.COM
Search results for: pendulum test
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: pendulum test</title> <meta name="description" content="Search results for: pendulum test"> <meta name="keywords" content="pendulum test"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="pendulum test" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="pendulum test"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 9245</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: pendulum test</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9245</span> The Exploitation of Balancing an Inverted Pendulum System Using Sliding Mode Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sheren%20H.%20Salah">Sheren H. Salah</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Y.%20Ben%20Sasi"> Ahmed Y. Ben Sasi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The inverted pendulum system is a classic control problem that is used in universities around the world. It is a suitable process to test prototype controllers due to its high non-linearities and lack of stability. The inverted pendulum represents a challenging control problem, which continually moves toward an uncontrolled state. This paper presents the possibility of balancing an inverted pendulum system using sliding mode control (SMC). The goal is to determine which control strategy delivers better performance with respect to pendulum’s angle and cart's position. Therefore, proportional-integral-derivative (PID) is used for comparison. Results have proven SMC control produced better response compared to PID control in both normal and noisy systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inverted%20pendulum%20%28IP%29" title="inverted pendulum (IP)">inverted pendulum (IP)</a>, <a href="https://publications.waset.org/abstracts/search?q=proportional-integral%20derivative%20%28PID%29" title=" proportional-integral derivative (PID)"> proportional-integral derivative (PID)</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20mode%20control%20%28SMC%29" title=" sliding mode control (SMC)"> sliding mode control (SMC)</a>, <a href="https://publications.waset.org/abstracts/search?q=systems%20and%20control%20engineering" title=" systems and control engineering"> systems and control engineering</a> </p> <a href="https://publications.waset.org/abstracts/12504/the-exploitation-of-balancing-an-inverted-pendulum-system-using-sliding-mode-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12504.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">587</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9244</span> Simulation and Analysis of Inverted Pendulum Controllers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sheren%20H.%20Salah">Sheren H. Salah </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The inverted pendulum is a highly nonlinear and open-loop unstable system. An inverted pendulum (IP) is a pendulum which has its mass above its pivot point. It is often implemented with the pivot point mounted on a cart that can move horizontally and may be called a cart and pole. The characteristics of the inverted pendulum make identification and control more challenging. This paper presents the simulation study of several control strategies for an inverted pendulum system. The goal is to determine which control strategy delivers better performance with respect to pendulum’s angle. The inverted pendulum represents a challenging control problem, which continually moves toward an uncontrolled state. For controlling the inverted pendulum. The simulation study that sliding mode control (SMC) control produced better response compared to Genetic Algorithm Control (GAs) and proportional-integral-derivative(PID) control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Inverted%20Pendulum%20%28IP%29%20Proportional-Integral-Derivative%20%28PID%29" title="Inverted Pendulum (IP) Proportional-Integral-Derivative (PID)">Inverted Pendulum (IP) Proportional-Integral-Derivative (PID)</a>, <a href="https://publications.waset.org/abstracts/search?q=Genetic%20Algorithm%20Control%20%28GAs%29" title=" Genetic Algorithm Control (GAs)"> Genetic Algorithm Control (GAs)</a>, <a href="https://publications.waset.org/abstracts/search?q=Sliding%20Mode%20Control%20%28SMC%29" title=" Sliding Mode Control (SMC)"> Sliding Mode Control (SMC)</a> </p> <a href="https://publications.waset.org/abstracts/27914/simulation-and-analysis-of-inverted-pendulum-controllers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27914.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">555</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9243</span> Modeling of a Pendulum Test Including Skin and Muscles under Compression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20J.%20Kang">M. J. Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20N.%20Jo"> Y. N. Jo</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20H.%20Yoo"> H. H. Yoo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pendulum tests were used to identify a stretch reflex and diagnose spasticity. Some researches tried to make a mathematical model to simulate the motions. Thighs are subject to compressive forces due to gravity during a pendulum test. Therefore, it affects knee trajectories. However, the most studies on the pendulum tests did not consider that conditions. We used Kelvin-Voight model as compression model of skin and muscles. In this study, we investigated viscoelastic behaviors of skin and muscles using gelatin blocks from experiments of the vibration of the compliantly supported beam. Then we calculated a dynamic stiffness and loss factors from the experiment and estimated a damping coefficient of the model. We also did pendulum tests of human lower limbs to validate the stiffness and damping coefficient of a skin model. To simulate the pendulum motion, we derive equations of motion. We used stretch reflex activation model to estimate muscle forces induced by the stretch reflex. To validate the results, we compared the activation with electromyography signals during experiments. The compression behavior of skin and muscles in this study can be applied to analyze sitting posture as wee as developing surgical techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kelvin-Voight%20model" title="Kelvin-Voight model">Kelvin-Voight model</a>, <a href="https://publications.waset.org/abstracts/search?q=pendulum%20test" title=" pendulum test"> pendulum test</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20and%20muscles%20under%20compression" title=" skin and muscles under compression"> skin and muscles under compression</a>, <a href="https://publications.waset.org/abstracts/search?q=stretch%20reflex" title=" stretch reflex"> stretch reflex</a> </p> <a href="https://publications.waset.org/abstracts/32596/modeling-of-a-pendulum-test-including-skin-and-muscles-under-compression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32596.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">445</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9242</span> Balancing and Synchronization Control of a Two Wheel Inverted Pendulum Vehicle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shiuh-Jer%20Huang">Shiuh-Jer Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shin-Ham%20Lee"> Shin-Ham Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheam-Chyun%20Lin"> Sheam-Chyun Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A two wheel inverted pendulum (TWIP) vehicle is built with two hub DC motors for motion control evaluation. Arduino Nano micro-processor is chosen as the control kernel for this electric test plant. Accelerometer and gyroscope sensors are built in to measure the tilt angle and angular velocity of the inverted pendulum vehicle. Since the TWIP has significantly hub motor dead zone and nonlinear system dynamics characteristics, the vehicle system is difficult to control by traditional model based controller. The intelligent model-free fuzzy sliding mode controller (FSMC) was employed as the main control algorithm. Then, intelligent controllers are designed for TWIP balance control, and two wheels synchronization control purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=balance%20control" title="balance control">balance control</a>, <a href="https://publications.waset.org/abstracts/search?q=synchronization%20control" title=" synchronization control"> synchronization control</a>, <a href="https://publications.waset.org/abstracts/search?q=two-wheel%20inverted%20pendulum" title=" two-wheel inverted pendulum"> two-wheel inverted pendulum</a>, <a href="https://publications.waset.org/abstracts/search?q=TWIP" title=" TWIP"> TWIP</a> </p> <a href="https://publications.waset.org/abstracts/49049/balancing-and-synchronization-control-of-a-two-wheel-inverted-pendulum-vehicle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49049.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9241</span> Numerical and Experimental Investigation of a Mechanical System with a Pendulum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andrzej%20Mitura">Andrzej Mitura</a>, <a href="https://publications.waset.org/abstracts/search?q=Krzysztof%20Kecik"> Krzysztof Kecik</a>, <a href="https://publications.waset.org/abstracts/search?q=Michal%20Augustyniak"> Michal Augustyniak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a numerical and experimental research of a nonlinear two degrees of freedom system. The tested system consists of a mechanical oscillator (the primary subsystem) with the attached pendulum (the secondary subsystem). The oscillator is suspended on a linear (or nonlinear) coil spring and a nonlinear magnetorheorogical damper and it is excited kinematically. Added pendulum can be used to reduce vibration of a primary subsystem or to energy harvesting. The numerical and experimental investigations showed that the pendulum can perform several types of motion, for example: chaotic motion, constant position in lower or upper (stable inverted pendulum), rotation, symmetrical or asymmetrical swinging vibrations. The main objective of this study is to determine an influence of system parameters for increasing the zone when the pendulum rotates. As a final effect a semi-active control method to change the pendulum solution on the rotation is proposed. To the implementation of this method the magnetorheorogical damper is applied. Continuous rotation of the pendulum is desirable for recovery of energy. The work is financed by Grant no. 0234/IP2/2011/71 from the Polish Ministry of Science and Higher Education in years 2012-2014. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autoparametric%20vibrations" title="autoparametric vibrations">autoparametric vibrations</a>, <a href="https://publications.waset.org/abstracts/search?q=chaos%20and%20rotation%20control" title=" chaos and rotation control"> chaos and rotation control</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetorheological%20damper" title=" magnetorheological damper"> magnetorheological damper</a> </p> <a href="https://publications.waset.org/abstracts/2621/numerical-and-experimental-investigation-of-a-mechanical-system-with-a-pendulum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2621.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9240</span> Neural Adaptive Controller for a Class of Nonlinear Pendulum Dynamical System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Rahimi%20Khoygani">Mohammad Reza Rahimi Khoygani</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Ghasemi"> Reza Ghasemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, designing direct adaptive neural controller is applied for a class of a nonlinear pendulum dynamic system. The radial basis function (RBF) is used for the Neural network (NN). The adaptive neural controller is robust in presence of external and internal uncertainties. Both the effectiveness of the controller and robustness against disturbances are the merits of this paper. The promising performance of the proposed controllers investigates in simulation results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20control" title="adaptive control">adaptive control</a>, <a href="https://publications.waset.org/abstracts/search?q=pendulum%20dynamical%20system" title=" pendulum dynamical system"> pendulum dynamical system</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20control" title=" nonlinear control"> nonlinear control</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20neural%20controller" title=" adaptive neural controller"> adaptive neural controller</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20dynamical" title=" nonlinear dynamical"> nonlinear dynamical</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=RBF" title=" RBF"> RBF</a>, <a href="https://publications.waset.org/abstracts/search?q=driven%20pendulum" title=" driven pendulum"> driven pendulum</a>, <a href="https://publications.waset.org/abstracts/search?q=position%20control" title=" position control "> position control </a> </p> <a href="https://publications.waset.org/abstracts/13649/neural-adaptive-controller-for-a-class-of-nonlinear-pendulum-dynamical-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">670</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9239</span> Designing Intelligent Adaptive Controller for Nonlinear Pendulum Dynamical System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Ghasemi">R. Ghasemi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Rahimi%20Khoygani"> M. R. Rahimi Khoygani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes the designing direct adaptive neural controller to apply for a class of a nonlinear pendulum dynamic system. The radial basis function (RBF) neural adaptive controller is robust in presence of external and internal uncertainties. Both the effectiveness of the controller and robustness against disturbances are importance of this paper. The simulation results show the promising performance of the proposed controller. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20neural%20controller" title="adaptive neural controller">adaptive neural controller</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20dynamical" title=" nonlinear dynamical"> nonlinear dynamical</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=RBF" title=" RBF"> RBF</a>, <a href="https://publications.waset.org/abstracts/search?q=driven%20pendulum" title=" driven pendulum"> driven pendulum</a>, <a href="https://publications.waset.org/abstracts/search?q=position%20control" title=" position control "> position control </a> </p> <a href="https://publications.waset.org/abstracts/13745/designing-intelligent-adaptive-controller-for-nonlinear-pendulum-dynamical-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13745.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9238</span> Investigating the Form of the Generalised Equations of Motion of the N-Bob Pendulum and Computing Their Solution Using MATLAB</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Divij%20Gupta">Divij Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pendular systems have a range of both mathematical and engineering applications, ranging from modelling the behaviour of a continuous mass-density rope to utilisation as Tuned Mass Dampers (TMD). Thus, it is of interest to study the differential equations governing the motion of such systems. Here we attempt to generalise these equations of motion for the plane compound pendulum with a finite number of N point masses. A Lagrangian approach is taken, and we attempt to find the generalised form for the Euler-Lagrange equations of motion for the i-th bob of the N -bob pendulum. The co-ordinates are parameterized as angular quantities to reduce the number of degrees of freedom from 2N to N to simplify the form of the equations. We analyse the form of these equations up to N = 4 to determine the general form of the equation. We also develop a MATLAB program to compute a solution to the system for a given input value of N and a given set of initial conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=classical%20mechanics" title="classical mechanics">classical mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20equation" title=" differential equation"> differential equation</a>, <a href="https://publications.waset.org/abstracts/search?q=lagrangian%20analysis" title=" lagrangian analysis"> lagrangian analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=pendulum" title=" pendulum"> pendulum</a> </p> <a href="https://publications.waset.org/abstracts/113019/investigating-the-form-of-the-generalised-equations-of-motion-of-the-n-bob-pendulum-and-computing-their-solution-using-matlab" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113019.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9237</span> Study of Gait Stability Evaluation Technique Based on Linear Inverted Pendulum Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kang%20Sungjae">Kang Sungjae</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research proposes a gait stability evaluation technique based on the linear inverted pendulum model and moving support foot Zero Moment Point. With this, an improvement towards the gait analysis of the orthosis walk is validated. The application of Lagrangian mechanics approximation to the solutions of the dynamics equations for the linear inverted pendulum does not only simplify the solution, but it provides a smooth Zero Moment Point for the double feet support phase. The Zero Moment Point gait analysis techniques mentioned above validates reference trajectories for the center of mass of the gait orthosis, the timing of the steps and landing position references for the swing feet. The stability evaluation technique are tested with a 6 DOF powered gait orthosis. The results obtained are promising for implementations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=locomotion" title="locomotion">locomotion</a>, <a href="https://publications.waset.org/abstracts/search?q=center%20of%20mass" title=" center of mass"> center of mass</a>, <a href="https://publications.waset.org/abstracts/search?q=gait%20stability" title=" gait stability"> gait stability</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20inverted%20pendulum%20model" title=" linear inverted pendulum model"> linear inverted pendulum model</a> </p> <a href="https://publications.waset.org/abstracts/14498/study-of-gait-stability-evaluation-technique-based-on-linear-inverted-pendulum-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14498.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">517</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9236</span> Vibration Analysis of Pendulum in a Viscous Fluid by Analytical Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arash%20Jafari">Arash Jafari</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Taghaddosi"> Mehdi Taghaddosi</a>, <a href="https://publications.waset.org/abstracts/search?q=Azin%20Parvin"> Azin Parvin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a vibrational differential equation governing on swinging single-degree-of-freedom pendulum in a viscous fluid has been investigated. The damping process is characterized according to two different regimes: at first, damping in stationary viscous fluid, in the second, damping in flowing viscous fluid with constant velocity. Our purpose is to enhance the ability of solving the mentioned nonlinear differential equation with a simple and innovative approach. Comparisons are made between new method and Numerical Method (rkf45). The results show that this method is very effective and simple and can be applied for other nonlinear problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oscillating%20systems" title="oscillating systems">oscillating systems</a>, <a href="https://publications.waset.org/abstracts/search?q=angular%20frequency%20and%20damping%20ratio" title=" angular frequency and damping ratio"> angular frequency and damping ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=pendulum%20at%20fluid" title=" pendulum at fluid"> pendulum at fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=locus%20of%20maximum" title=" locus of maximum"> locus of maximum</a> </p> <a href="https://publications.waset.org/abstracts/58354/vibration-analysis-of-pendulum-in-a-viscous-fluid-by-analytical-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58354.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9235</span> Nonlinear Control of Mobile Inverted Pendulum: Theory and Experiment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Sankaranarayanan">V. Sankaranarayanan</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Amrita%20Sundari"> V. Amrita Sundari</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunit%20P.%20Gopal"> Sunit P. Gopal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the design and implementation of a nonlinear controller for the point to point control of a mobile inverted pendulum (MIP). The controller is designed based on the kinematic model of the MIP to stabilize all the four coordinates. The stability of the closed-loop system is proved using Lyapunov stability theory. The proposed controller is validated through numerical simulations and also implemented in a laboratory prototype. The results are presented to evaluate the performance of the proposed closed loop system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mobile%20inverted%20pendulum" title="mobile inverted pendulum">mobile inverted pendulum</a>, <a href="https://publications.waset.org/abstracts/search?q=switched%20control" title=" switched control"> switched control</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20systems" title=" nonlinear systems"> nonlinear systems</a>, <a href="https://publications.waset.org/abstracts/search?q=lyapunov%20stability" title=" lyapunov stability"> lyapunov stability</a> </p> <a href="https://publications.waset.org/abstracts/56547/nonlinear-control-of-mobile-inverted-pendulum-theory-and-experiment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56547.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9234</span> Design and Motion Control of a Two-Wheel Inverted Pendulum Robot </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shiuh-Jer%20Huang">Shiuh-Jer Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Su-Shean%20Chen"> Su-Shean Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheam-Chyun%20Lin"> Sheam-Chyun Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two-wheel inverted pendulum robot (TWIPR) is designed with two-hub DC motors for human riding and motion control evaluation. In order to measure the tilt angle and angular velocity of the inverted pendulum robot, accelerometer and gyroscope sensors are chosen. The mobile robot’s moving position and velocity were estimated based on DC motor built in hall sensors. The control kernel of this electric mobile robot is designed with embedded Arduino Nano microprocessor. A handle bar was designed to work as steering mechanism. The intelligent model-free fuzzy sliding mode control (FSMC) was employed as the main control algorithm for this mobile robot motion monitoring with different control purpose adjustment. The intelligent controllers were designed for balance control, and moving speed control purposes of this robot under different operation conditions and the control performance were evaluated based on experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=balance%20control" title="balance control">balance control</a>, <a href="https://publications.waset.org/abstracts/search?q=speed%20control" title=" speed control"> speed control</a>, <a href="https://publications.waset.org/abstracts/search?q=intelligent%20controller" title=" intelligent controller"> intelligent controller</a>, <a href="https://publications.waset.org/abstracts/search?q=two%20wheel%20inverted%20pendulum" title=" two wheel inverted pendulum"> two wheel inverted pendulum</a> </p> <a href="https://publications.waset.org/abstracts/90056/design-and-motion-control-of-a-two-wheel-inverted-pendulum-robot" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90056.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">224</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9233</span> Passive and Active Spatial Pendulum Tuned Mass Damper with Two Tuning Frequencies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20T.%20A.%20Mohammed">W. T. A. Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Eltaeb"> M. Eltaeb</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Kashani"> R. Kashani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The first bending modes of tall asymmetric structures in the two lateral X and Y-directions have two different natural frequencies. To add tuned damping to these bending modes, one needs to either a) use two pendulum-tuned mass dampers (PTMDs) with one tuning frequency, each PTMD targeting one of the bending modes, or b) use one PTMD with two tuning frequencies (one in each lateral directions). Option (a), being more massive, requiring more space, and being more expensive, is less attractive than option (b). Considering that the tuning frequency of a pendulum depends mainly on the pendulum length, one way of realizing option (b) is by constraining the swinging length of the pendulum in one direction but not in the other; such PTMD is dubbed passive Bi-PTMD. Alternatively, option (b) can be realized by actively setting the tuning frequencies of the PTMD in the two directions. In this work, accurate physical models of passive Bi-PTMD and active PTMD are developed and incorporated into the numerical model of a tall asymmetric structure. The model of PTMDs plus structure is used for a)synthesizing such PTMDs for particular applications and b)evaluating their damping effectiveness in mitigating the dynamic lateral responses of their target asymmetric structures, perturbed by wind load in X and Y-directions. Depending on how elaborate the control scheme is, the active PTMD can either be made to yield the same damping effectiveness as the passive Bi-PTMD of the same size or the passive Bi-TMD twice as massive as the active PTMD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20tuned%20mass%20damper" title="active tuned mass damper">active tuned mass damper</a>, <a href="https://publications.waset.org/abstracts/search?q=high-rise%20building" title=" high-rise building"> high-rise building</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-frequency%20tuning" title=" multi-frequency tuning"> multi-frequency tuning</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20control" title=" vibration control"> vibration control</a> </p> <a href="https://publications.waset.org/abstracts/164535/passive-and-active-spatial-pendulum-tuned-mass-damper-with-two-tuning-frequencies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164535.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9232</span> Static Output Feedback Control of a Two-Wheeled Inverted Pendulum Using Sliding Mode Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yankun%20Yang">Yankun Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinggang%20Yan"> Xinggang Yan</a>, <a href="https://publications.waset.org/abstracts/search?q=Konstantinos%20Sirlantzis"> Konstantinos Sirlantzis</a>, <a href="https://publications.waset.org/abstracts/search?q=Gareth%20Howells"> Gareth Howells</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a static output feedback sliding mode control method to regulate a two-wheeled inverted pendulum system with considerations of matched and unmatched uncertainties. A sliding surface is designed and the associated sliding motion stability is analysed based on the reduced-order dynamics. A static output sliding mode control law is synthesised to drive the system to the sliding surface and maintain a sliding motion afterwards. The nonlinear bounds on the uncertainties are employed in the stability analysis and control design to improve the robustness. The simulation results demonstrate the effectiveness of the proposed control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=two-wheeled%20inverted%20pendulum" title="two-wheeled inverted pendulum">two-wheeled inverted pendulum</a>, <a href="https://publications.waset.org/abstracts/search?q=output%20feedback%20sliding%20mode%20control" title=" output feedback sliding mode control"> output feedback sliding mode control</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20systems" title=" nonlinear systems"> nonlinear systems</a>, <a href="https://publications.waset.org/abstracts/search?q=robotics" title=" robotics"> robotics</a> </p> <a href="https://publications.waset.org/abstracts/139281/static-output-feedback-control-of-a-two-wheeled-inverted-pendulum-using-sliding-mode-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139281.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9231</span> Fuzzy Control and Pertinence Functions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luiz%20F.%20J.%20Maia">Luiz F. J. Maia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an approach to fuzzy control, with the use of new pertinence functions, applied in the case of an inverted pendulum. Appropriate definitions of pertinence functions to fuzzy sets make possible the implementation of the controller with only one control rule, resulting in a smooth control surface. The fuzzy control system can be implemented with analog devices, affording a true real-time performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=control%20surface" title="control surface">control surface</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20control" title=" fuzzy control"> fuzzy control</a>, <a href="https://publications.waset.org/abstracts/search?q=Inverted%20pendulum" title=" Inverted pendulum"> Inverted pendulum</a>, <a href="https://publications.waset.org/abstracts/search?q=pertinence%20functions" title=" pertinence functions"> pertinence functions</a> </p> <a href="https://publications.waset.org/abstracts/2467/fuzzy-control-and-pertinence-functions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2467.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9230</span> Decoupled Dynamic Control of Unicycle Robot Using Integral Linear Quadratic Regulator and Sliding Mode Controller</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shweda%20Mohan">Shweda Mohan</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20L.%20Nandagopal"> J. L. Nandagopal</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Amritha"> S. Amritha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper focuses on the dynamic modelling of unicycle robot. Two main concepts used for balancing unicycle robot are: reaction wheel pendulum and inverted pendulum. The pitch axis is modelled as inverted pendulum and roll axis is modelled as reaction wheel pendulum. The unicycle yaw dynamics is not considered which makes the derivation of dynamics relatively simple. For the roll controller, sliding-mode controller has been adopted and optimal methods are used to minimize switching-function chattering. For pitch controller, an LQR controller has been implemented to drive the unicycle robot to follow the desired velocity trajectory. The pitching and rolling balance could be achieved by two DC motors. Unicycle robot is a non-holonomic, non-linear, static unbalance system that has the minimal number of point contact to the ground, therefore, it is a perfect platform for researchers to study motion and balance control. These real-time solutions will be a viable solution for advanced robotic systems and controls. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=decoupled%20dynamics" title="decoupled dynamics">decoupled dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20quadratic%20regulator%20%28LQR%29%20control" title=" linear quadratic regulator (LQR) control"> linear quadratic regulator (LQR) control</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov%20function%20sliding%20mode%20control" title=" Lyapunov function sliding mode control"> Lyapunov function sliding mode control</a>, <a href="https://publications.waset.org/abstracts/search?q=unicycle%20robot" title=" unicycle robot"> unicycle robot</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity%20and%20trajectory%20control" title=" velocity and trajectory control"> velocity and trajectory control</a> </p> <a href="https://publications.waset.org/abstracts/47161/decoupled-dynamic-control-of-unicycle-robot-using-integral-linear-quadratic-regulator-and-sliding-mode-controller" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47161.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9229</span> Robust Model Predictive Controller for Uncertain Nonlinear Wheeled Inverted Pendulum Systems: A Tube-Based Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tran%20Gia%20Khanh">Tran Gia Khanh</a>, <a href="https://publications.waset.org/abstracts/search?q=Dao%20Phuong%20Nam"> Dao Phuong Nam</a>, <a href="https://publications.waset.org/abstracts/search?q=Do%20Trong%20Tan"> Do Trong Tan</a>, <a href="https://publications.waset.org/abstracts/search?q=Nguyen%20Van%20Huong"> Nguyen Van Huong</a>, <a href="https://publications.waset.org/abstracts/search?q=Mai%20Xuan%20Sinh"> Mai Xuan Sinh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents the problem of tube-based robust model predictive controller for a class of continuous-time systems in the presence of input disturbances. The main objective is to point out the state trajectory of closed system being maintained inside a sequence of tubes. An estimation of attraction region of the closed system is pointed out based on input state stability (ISS) theory and linearized model in each time interval. The theoretical analysis and simulation results demonstrate the performance of the proposed algorithm for a wheeled inverted pendulum system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=input%20state%20stability%20%28ISS%29" title="input state stability (ISS)">input state stability (ISS)</a>, <a href="https://publications.waset.org/abstracts/search?q=tube-based%20robust%20MPC" title=" tube-based robust MPC"> tube-based robust MPC</a>, <a href="https://publications.waset.org/abstracts/search?q=continuous-time%20nonlinear%20systems" title=" continuous-time nonlinear systems"> continuous-time nonlinear systems</a>, <a href="https://publications.waset.org/abstracts/search?q=wheeled%20inverted%20pendulum" title=" wheeled inverted pendulum"> wheeled inverted pendulum</a> </p> <a href="https://publications.waset.org/abstracts/80455/robust-model-predictive-controller-for-uncertain-nonlinear-wheeled-inverted-pendulum-systems-a-tube-based-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80455.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9228</span> Assessment of Runway Micro Texture Using Surface Laser Scanners: An Explorative Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gerard%20Van%20Es">Gerard Van Es</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the use of a high resolution surface laser scanner to assess the micro texture of runway surfaces was investigated experimentally. Micro texture is one of the important surface components that helps to provide high braking friction between aircraft tires and a wet runway surface. Algorithms to derive different parameters that characterise micro texture was developed. Surface scans with a high resolution laser scanner were conducted on 40 different runway (like) surfaces. For each surface micro texture parameters were calculated from the laser scan data. These results were correlated with results obtained from a British pendulum tester that was used on the same surface. Results obtained with the British pendulum tester are generally considered to be indicative for the micro texture related friction characteristics. The results show that a meaningful correlation can be found between different parameters that characterise micro texture obtained with the laser scanner and the British pendulum tester results. Surface laser scanners are easier to operate and give more consistent results than a British pendulum tester. Therefore for airport operators surface laser scanners can be a useful tool to determine if their runway becomes slippery when wet due to a smooth micro texture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=runway%20friction" title="runway friction">runway friction</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20texture" title=" micro texture"> micro texture</a>, <a href="https://publications.waset.org/abstracts/search?q=aircraft%20braking%20performance" title=" aircraft braking performance"> aircraft braking performance</a>, <a href="https://publications.waset.org/abstracts/search?q=slippery%20runways" title=" slippery runways"> slippery runways</a> </p> <a href="https://publications.waset.org/abstracts/151466/assessment-of-runway-micro-texture-using-surface-laser-scanners-an-explorative-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151466.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9227</span> Influence of Glass Plates Different Boundary Conditions on Human Impact Resistance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alberto%20Sanchidri%C3%A1n">Alberto Sanchidrián</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20A.%20Parra"> José A. Parra</a>, <a href="https://publications.waset.org/abstracts/search?q=Jes%C3%BAs%20Alonso"> Jesús Alonso</a>, <a href="https://publications.waset.org/abstracts/search?q=Juli%C3%A1n%20Pecharrom%C3%A1n"> Julián Pecharromán</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonia%20Pacios"> Antonia Pacios</a>, <a href="https://publications.waset.org/abstracts/search?q=Consuelo%20Huerta"> Consuelo Huerta </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Glass is a commonly used material in building; there is not a unique design solution as plates with a different number of layers and interlayers may be used. In most façades, a security glazing have to be used according to its performance in the impact pendulum. The European Standard EN 12600 establishes an impact test procedure for classification under the point of view of the human security, of flat plates with different thickness, using a pendulum of two tires and 50 kg mass that impacts against the plate from different heights. However, this test does not replicate the actual dimensions and border conditions used in building configurations and so the real stress distribution is not determined with this test. The influence of different boundary conditions, as the ones employed in construction sites, is not well taking into account when testing the behaviour of safety glazing and there is not a detailed procedure and criteria to determinate the glass resistance against human impact. To reproduce the actual boundary conditions on site, when needed, the pendulum test is arranged to be used "in situ", with no account for load control, stiffness, and without a standard procedure. Fracture stress of small and large glass plates fit a Weibull distribution with quite a big dispersion so conservative values are adopted for admissible fracture stress under static loads. In fact, test performed for human impact gives a fracture strength two or three times higher, and many times without a total fracture of the glass plate. Newest standards, as for example DIN 18008-4, states for an admissible fracture stress 2.5 times higher than the ones used for static and wing loads. Now two working areas are open: a) to define a standard for the ‘in situ’ test; b) to prepare a laboratory procedure that allows testing with more real stress distribution. To work on both research lines a laboratory that allows to test medium size specimens with different border conditions, has been developed. A special steel frame allows reproducing the stiffness of the glass support substructure, including a rigid condition used as reference. The dynamic behaviour of the glass plate and its support substructure have been characterized with finite elements models updated with modal tests results. In addition, a new portable impact machine is being used to get enough force and direction control during the impact test. Impact based on 100 J is used. To avoid problems with broken glass plates, the test have been done using an aluminium plate of 1000 mm x 700 mm size and 10 mm thickness supported on four sides; three different substructure stiffness conditions are used. A detailed control of the dynamic stiffness and the behaviour of the plate is done with modal tests. Repeatability of the test and reproducibility of results prove that procedure to control both, stiffness of the plate and the impact level, is necessary. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glass%20plates" title="glass plates">glass plates</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20impact%20test" title=" human impact test"> human impact test</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20test" title=" modal test"> modal test</a>, <a href="https://publications.waset.org/abstracts/search?q=plate%20boundary%20conditions" title=" plate boundary conditions"> plate boundary conditions</a> </p> <a href="https://publications.waset.org/abstracts/51418/influence-of-glass-plates-different-boundary-conditions-on-human-impact-resistance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51418.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9226</span> Adaptive Optimal Controller for Uncertain Inverted Pendulum System: A Dynamic Programming Approach for Continuous Time System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dao%20Phuong%20Nam">Dao Phuong Nam</a>, <a href="https://publications.waset.org/abstracts/search?q=Tran%20Van%20Tuyen"> Tran Van Tuyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Do%20Trong%20Tan"> Do Trong Tan</a>, <a href="https://publications.waset.org/abstracts/search?q=Bui%20Minh%20Dinh"> Bui Minh Dinh</a>, <a href="https://publications.waset.org/abstracts/search?q=Nguyen%20Van%20Huong"> Nguyen Van Huong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we investigate the adaptive optimal control law for continuous-time systems with input disturbances and unknown parameters. This paper extends previous works to obtain the robust control law of uncertain systems. Through theoretical analysis, an adaptive dynamic programming (ADP) based optimal control is proposed to stabilize the closed-loop system and ensure the convergence properties of proposed iterative algorithm. Moreover, the global asymptotic stability (GAS) for closed system is also analyzed. The theoretical analysis for continuous-time systems and simulation results demonstrate the performance of the proposed algorithm for an inverted pendulum system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=approximate%2Fadaptive%20dynamic%20programming" title="approximate/adaptive dynamic programming">approximate/adaptive dynamic programming</a>, <a href="https://publications.waset.org/abstracts/search?q=ADP" title=" ADP"> ADP</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20optimal%20control%20law" title=" adaptive optimal control law"> adaptive optimal control law</a>, <a href="https://publications.waset.org/abstracts/search?q=input%20state%20stability" title=" input state stability"> input state stability</a>, <a href="https://publications.waset.org/abstracts/search?q=ISS" title=" ISS"> ISS</a>, <a href="https://publications.waset.org/abstracts/search?q=inverted%20pendulum" title=" inverted pendulum"> inverted pendulum</a> </p> <a href="https://publications.waset.org/abstracts/80356/adaptive-optimal-controller-for-uncertain-inverted-pendulum-system-a-dynamic-programming-approach-for-continuous-time-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80356.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9225</span> Two Kinds of Self-Oscillating Circuits Mechanically Demonstrated</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shiang-Hwua%20Yu">Shiang-Hwua Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Po-Hsun%20Wu"> Po-Hsun Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study introduces two types of self-oscillating circuits that are frequently found in power electronics applications. Special effort is made to relate the circuits to the analogous mechanical systems of some important scientific inventions: Galileo’s pendulum clock and Coulomb’s friction model. A little touch of related history and philosophy of science will hopefully encourage curiosity, advance the understanding of self-oscillating systems and satisfy the aspiration of some students for scientific literacy. Finally, the two self-oscillating circuits are applied to design a simple class-D audio amplifier. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=self-oscillation" title="self-oscillation">self-oscillation</a>, <a href="https://publications.waset.org/abstracts/search?q=sigma-delta%20modulator" title=" sigma-delta modulator"> sigma-delta modulator</a>, <a href="https://publications.waset.org/abstracts/search?q=pendulum%20clock" title=" pendulum clock"> pendulum clock</a>, <a href="https://publications.waset.org/abstracts/search?q=Coulomb%20friction" title=" Coulomb friction"> Coulomb friction</a>, <a href="https://publications.waset.org/abstracts/search?q=class-D%20amplifier" title=" class-D amplifier"> class-D amplifier</a> </p> <a href="https://publications.waset.org/abstracts/9932/two-kinds-of-self-oscillating-circuits-mechanically-demonstrated" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9932.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9224</span> Fall Avoidance Control of Wheeled Inverted Pendulum Type Robotic Wheelchair While Climbing Stairs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nan%20Ding">Nan Ding</a>, <a href="https://publications.waset.org/abstracts/search?q=Motoki%20Shino"> Motoki Shino</a>, <a href="https://publications.waset.org/abstracts/search?q=Nobuyasu%20Tomokuni"> Nobuyasu Tomokuni</a>, <a href="https://publications.waset.org/abstracts/search?q=Genki%20Murata"> Genki Murata</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The wheelchair is the major means of transport for physically disabled people. However, it cannot overcome architectural barriers such as curbs and stairs. In this paper, the authors proposed a method to avoid falling down of a wheeled inverted pendulum type robotic wheelchair for climbing stairs. The problem of this system is that the feedback gain of the wheels cannot be set high due to modeling errors and gear backlash, which results in the movement of wheels. Therefore, the wheels slide down the stairs or collide with the side of the stairs, and finally the wheelchair falls down. To avoid falling down, the authors proposed a slider control strategy based on skyhook model in order to decrease the movement of wheels, and a rotary link control strategy based on the staircase dimensions in order to avoid collision or slide down. The effectiveness of the proposed fall avoidance control strategy was validated by ODE simulations and the prototype wheelchair. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EPW" title="EPW">EPW</a>, <a href="https://publications.waset.org/abstracts/search?q=fall%20avoidance%20control" title=" fall avoidance control"> fall avoidance control</a>, <a href="https://publications.waset.org/abstracts/search?q=skyhook" title=" skyhook"> skyhook</a>, <a href="https://publications.waset.org/abstracts/search?q=wheeled%20inverted%20pendulum" title=" wheeled inverted pendulum"> wheeled inverted pendulum</a> </p> <a href="https://publications.waset.org/abstracts/63772/fall-avoidance-control-of-wheeled-inverted-pendulum-type-robotic-wheelchair-while-climbing-stairs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9223</span> Seismic Fragility of Base-Isolated Multi-Story Piping System in Critical Facilities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bu%20Seog%20Ju">Bu Seog Ju</a>, <a href="https://publications.waset.org/abstracts/search?q=Ho%20Young%20Son"> Ho Young Son</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20Hee%20Ryu"> Yong Hee Ryu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is focused on the evaluation of seismic fragility of multi-story piping system installed in critical structures, isolated with triple friction pendulum bearing. The concept of this study is to isolate the critical building structure as well as nonstructural component, especially piping system in order to mitigate the earthquake damage and achieve the reliable seismic design. Then, the building system and multi-story piping system was modeled in OpenSees. In particular, the triple friction pendulum isolator was accounted for the vertical and horizontal coupling behavior in the building system subjected to seismic ground motions. Consequently, in order to generate the seismic fragility of base-isolated multi-story piping system, 21 selected seismic ground motions were carried out, by using Monte Carlo Simulation accounted for the uncertainties in demand. Finally, the system-level fragility curves corresponding to the limit state of the piping system was conducted at each T-joint system, which was commonly failure points in piping systems during and after an earthquake. Additionally, the system-level fragilities were performed to the first floor and second floor level in critical structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fragility" title="fragility">fragility</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20pendulum%20bearing" title=" friction pendulum bearing"> friction pendulum bearing</a>, <a href="https://publications.waset.org/abstracts/search?q=nonstructural%20component" title=" nonstructural component"> nonstructural component</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic" title=" seismic"> seismic</a> </p> <a href="https://publications.waset.org/abstracts/96709/seismic-fragility-of-base-isolated-multi-story-piping-system-in-critical-facilities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9222</span> Bidirectional Pendulum Vibration Absorbers with Homogeneous Variable Tangential Friction: Modelling and Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emiliano%20Matta">Emiliano Matta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Passive resonant vibration absorbers are among the most widely used dynamic control systems in civil engineering. They typically consist in a single-degree-of-freedom mechanical appendage of the main structure, tuned to one structural target mode through frequency and damping optimization. One classical scheme is the pendulum absorber, whose mass is constrained to move along a curved trajectory and is damped by viscous dashpots. Even though the principle is well known, the search for improved arrangements is still under way. In recent years this investigation inspired a type of bidirectional pendulum absorber (BPA), consisting of a mass constrained to move along an optimal three-dimensional (3D) concave surface. For such a BPA, the surface principal curvatures are designed to ensure a bidirectional tuning of the absorber to both principal modes of the main structure, while damping is produced either by horizontal viscous dashpots or by vertical friction dashpots, connecting the BPA to the main structure. In this paper, a variant of BPA is proposed, where damping originates from the variable tangential friction force which develops between the pendulum mass and the 3D surface as a result of a spatially-varying friction coefficient pattern. Namely, a friction coefficient is proposed that varies along the pendulum surface in proportion to the modulus of the 3D surface gradient. With such an assumption, the dissipative model of the absorber can be proven to be nonlinear homogeneous in the small displacement domain. The resulting homogeneous BPA (HBPA) has a fundamental advantage over conventional friction-type absorbers, because its equivalent damping ratio results independent on the amplitude of oscillations, and therefore its optimal performance does not depend on the excitation level. On the other hand, the HBPA is more compact than viscously damped BPAs because it does not need the installation of dampers. This paper presents the analytical model of the HBPA and an optimal methodology for its design. Numerical simulations of single- and multi-story building structures under wind and earthquake loads are presented to compare the HBPA with classical viscously damped BPAs. It is shown that the HBPA is a promising alternative to existing BPA types and that homogeneous tangential friction is an effective means to realize systems provided with amplitude-independent damping. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amplitude-independent%20damping" title="amplitude-independent damping">amplitude-independent damping</a>, <a href="https://publications.waset.org/abstracts/search?q=homogeneous%20friction" title=" homogeneous friction"> homogeneous friction</a>, <a href="https://publications.waset.org/abstracts/search?q=pendulum%20nonlinear%20dynamics" title=" pendulum nonlinear dynamics"> pendulum nonlinear dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20control" title=" structural control"> structural control</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20resonant%20absorbers" title=" vibration resonant absorbers"> vibration resonant absorbers</a> </p> <a href="https://publications.waset.org/abstracts/93327/bidirectional-pendulum-vibration-absorbers-with-homogeneous-variable-tangential-friction-modelling-and-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93327.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9221</span> Application of Seismic Isolators in Kutahya City Hospital Project Utilizing Double Friction Pendulum Type Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaan%20Yamanturk">Kaan Yamanturk</a>, <a href="https://publications.waset.org/abstracts/search?q=Cihan%20Dogruoz"> Cihan Dogruoz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seismic isolators have been utilized around the world to protect the structures, nonstructural components and contents from the damaging effects of earthquakes. In Structural Engineering, seismic isolation is used for protecting buildings and its vibration-sensitive contents from earthquakes. Seismic isolation is a passive control system that lowers effective earthquake forces by utilizing flexible bearings. One of the most significant isolation systems is seismic isolators. In this paper, double pendulum type Teflon coated seismic isolators utilized in a city hospital project by Guris Construction and Engineering Co. Inc, located in Kutahya, Turkey, have been investigated. Totally, 498 seismic isolators were applied in the project. These isolators are double friction pendulum type seismic isolation devices. The review of current practices is also examined in this study. The focus of this study is related to the application of passive seismic isolation systems for buildings as practiced in Kutahya City Hospital Project. Based on the study, the acceleration at the top floor will be 0.18 g and it will decrease 0.01 g in every floor. Therefore, seismic isolators are very important for buildings located in earthquake zones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=maximum%20considered%20earthquake" title="maximum considered earthquake">maximum considered earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=moment%20resisting%20frame" title=" moment resisting frame"> moment resisting frame</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20isolator" title=" seismic isolator"> seismic isolator</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20design" title=" seismic design"> seismic design</a> </p> <a href="https://publications.waset.org/abstracts/109879/application-of-seismic-isolators-in-kutahya-city-hospital-project-utilizing-double-friction-pendulum-type-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109879.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9220</span> Dissipation Capacity of Steel Building with Fiction Pendulum Base-Isolation System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Ras">A. Ras</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Nait%20Zerrad"> I. Nait Zerrad</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Benmouna"> N. Benmouna</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Boumechra"> N. Boumechra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Use of base isolators in the seismic design of structures has attracted considerable attention in recent years. The major concern in the design of these structures is to have enough lateral stability to resist wind and seismic forces. There are different systems providing such isolation, among them there are friction- pendulum base isolation systems (FPS) which are rather widely applied nowadays involving to both affordable cost and high fundamental periods. These devices are characterised by a stiff resistance against wind loads and to be flexible to the seismic tremors, which make them suitable for different situations. In this paper, a 3D numerical investigation is done considering the seismic response of a twelve-storey steel building retrofitted with a FPS. Fast nonlinear time history analysis (FNA) of Boumerdes earthquake (Algeria, May 2003) is considered for analysis and carried out using SAP2000 software. Comparisons between fixed base, bearing base isolated and braced structures are shown in a tabulated and graphical format. The results of the various alternatives studies to compare the structural response without and with this device of dissipation energy thus obtained were discussed and the conclusions showed the interesting potential of the FPS isolator. This system may to improve the dissipative capacities of the structure without increasing its rigidity in a significant way which contributes to optimize the quantity of steel necessary for its general stability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20dissipation" title="energy dissipation">energy dissipation</a>, <a href="https://publications.waset.org/abstracts/search?q=friction-pendulum%20system" title=" friction-pendulum system"> friction-pendulum system</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20analysis" title=" nonlinear analysis"> nonlinear analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20structure" title=" steel structure"> steel structure</a> </p> <a href="https://publications.waset.org/abstracts/54047/dissipation-capacity-of-steel-building-with-fiction-pendulum-base-isolation-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54047.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9219</span> Balancing a Rotary Inverted Pendulum System Using Robust Generalized Dynamic Inverse: Design and Experiment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20M.%20Mehedi">Ibrahim M. Mehedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Uzair%20Ansari"> Uzair Ansari</a>, <a href="https://publications.waset.org/abstracts/search?q=Ubaid%20M.%20Al-Saggaf"> Ubaid M. Al-Saggaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulrahman%20H.%20Bajodah"> Abdulrahman H. Bajodah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a methodology for balancing a rotary inverted pendulum system using Robust Generalized Dynamic Inversion (RGDI) under influence of parametric variations and external disturbances. In GDI control, dynamic constraints are formulated in the form of asymptotically stable differential equation which encapsulates the control objectives. The constraint differential equations are based on the deviation function of the angular position and its rates from their reference values. The constraint dynamics are inverted using Moore-Penrose Generalized Inverse (MPGI) to realize the control expression. The GDI singularity problem is addressed by augmenting a dynamic scale factor in the interpretation of MPGI which guarantee asymptotically stable position tracking. An additional term based on Sliding Mode Control is appended within GDI control to make it robust against parametric variations, disturbances and tracking performance deterioration due to generalized inversion scaling. The stability of the closed loop system is ensured by using positive definite Lyapunov energy function that guarantees semi-global practically stable position tracking. Numerical simulations are conducted on the dynamic model of rotary inverted pendulum system to analyze the efficiency of proposed RGDI control law. The comparative study is also presented, in which the performance of RGDI control is compared with Linear Quadratic Regulator (LQR) and is verified through experiments. Numerical simulations and real-time experiments demonstrate better tracking performance abilities and robustness features of RGDI control in the presence of parametric uncertainties and disturbances. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=generalized%20dynamic%20inversion" title="generalized dynamic inversion">generalized dynamic inversion</a>, <a href="https://publications.waset.org/abstracts/search?q=lyapunov%20stability" title=" lyapunov stability"> lyapunov stability</a>, <a href="https://publications.waset.org/abstracts/search?q=rotary%20inverted%20pendulum%20system" title=" rotary inverted pendulum system"> rotary inverted pendulum system</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20mode%20control" title=" sliding mode control"> sliding mode control</a> </p> <a href="https://publications.waset.org/abstracts/86904/balancing-a-rotary-inverted-pendulum-system-using-robust-generalized-dynamic-inverse-design-and-experiment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86904.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9218</span> Application of Fourier Series Based Learning Control on Mechatronic Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sandra%20Ba%C3%9Fler">Sandra Baßler</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20D%C3%BCnow"> Peter Dünow</a>, <a href="https://publications.waset.org/abstracts/search?q=Mathias%20Marquardt"> Mathias Marquardt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A Fourier series based learning control (FSBLC) algorithm for tracking trajectories of mechanical systems with unknown nonlinearities is presented. Two processes are introduced to which the FSBLC with PD controller is applied. One is a simplified service robot capable of climbing stairs due to special wheels and the other is a propeller driven pendulum with nearly the same requirements on control. Additionally to the investigation of learning the feed forward for the desired trajectories some considerations on the implementation of such an algorithm on low cost microcontroller hardware are made. Simulations of the service robot as well as practical experiments on the pendulum show the capability of the used FSBLC algorithm to perform the task of improving control behavior for repetitive task of such mechanical systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climbing%20stairs" title="climbing stairs">climbing stairs</a>, <a href="https://publications.waset.org/abstracts/search?q=FSBLC" title=" FSBLC"> FSBLC</a>, <a href="https://publications.waset.org/abstracts/search?q=ILC" title=" ILC"> ILC</a>, <a href="https://publications.waset.org/abstracts/search?q=service%20robot" title=" service robot"> service robot</a> </p> <a href="https://publications.waset.org/abstracts/47470/application-of-fourier-series-based-learning-control-on-mechatronic-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47470.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9217</span> Automating Test Activities: Test Cases Creation, Test Execution, and Test Reporting with Multiple Test Automation Tools</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Loke%20Mun%20Sei">Loke Mun Sei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Software testing has become a mandatory process in assuring the software product quality. Hence, test management is needed in order to manage the test activities conducted in the software test life cycle. This paper discusses on the challenges faced in the software test life cycle, and how the test processes and test activities, mainly on test cases creation, test execution, and test reporting is being managed and automated using several test automation tools, i.e. Jira, Robot Framework, and Jenkins. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=test%20automation%20tools" title="test automation tools">test automation tools</a>, <a href="https://publications.waset.org/abstracts/search?q=test%20case" title=" test case"> test case</a>, <a href="https://publications.waset.org/abstracts/search?q=test%20execution" title=" test execution"> test execution</a>, <a href="https://publications.waset.org/abstracts/search?q=test%20reporting" title=" test reporting"> test reporting</a> </p> <a href="https://publications.waset.org/abstracts/31605/automating-test-activities-test-cases-creation-test-execution-and-test-reporting-with-multiple-test-automation-tools" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31605.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">583</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9216</span> Comparison of Low Velocity Impact Test on Coir Fiber Reinforced Polyester Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ricardo%20Mendoza">Ricardo Mendoza</a>, <a href="https://publications.waset.org/abstracts/search?q=Jason%20Brice%C3%B1o"> Jason Briceño</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20F.%20Santa"> Juan F. Santa</a>, <a href="https://publications.waset.org/abstracts/search?q=Gabriel%20Peluffo"> Gabriel Peluffo</a>, <a href="https://publications.waset.org/abstracts/search?q=Mauricio%20M%C3%A1rquez"> Mauricio Márquez</a>, <a href="https://publications.waset.org/abstracts/search?q=Beatriz%20Cardozo"> Beatriz Cardozo</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Guti%C3%A9rrez"> Carlos Gutiérrez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The most common controlled method to obtain impact strength of composites materials is performing a Charpy Impact Test which consists of a pendulum with calibrated mass and length released from a known height. In fact, composites components experience impact events in normal operations such as when a tool drops or a foreign object strikes it. These events are categorized into low velocity impact (LVI) which typically occurs at velocities below 10m/s. In this study, the major aim was to calculate the absorbed energy during the impact. Tests were performed on three types of composite panels: fiberglass laminated panels, coir fiber reinforced polyester and coir fiber reinforced polyester subjected to water immersion for 48 hours. Coir fibers were obtained in local plantations of the Caribbean coast of Colombia. They were alkali treated in 5% aqueous NaOH solution for 2h periods. Three type of shape impactors were used on drop-weight impact test including hemispherical, ogive and pointed. Failure mechanisms and failure modes of specimens were examined using an optical microscope. Results demonstrate a reduction in absorbed energy correlated with the increment of water absorption of the panels. For each level of absorbed energy, it was possible to associate a different fracture state. This study compares results of energy absorbed obtained from two impact test methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coir%20fiber" title="coir fiber">coir fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=polyester%20composites" title=" polyester composites"> polyester composites</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20velocity%20impact" title=" low velocity impact"> low velocity impact</a>, <a href="https://publications.waset.org/abstracts/search?q=Charpy%20impact%20test" title=" Charpy impact test"> Charpy impact test</a>, <a href="https://publications.waset.org/abstracts/search?q=drop-weight%20impact%20test" title=" drop-weight impact test"> drop-weight impact test</a> </p> <a href="https://publications.waset.org/abstracts/55674/comparison-of-low-velocity-impact-test-on-coir-fiber-reinforced-polyester-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55674.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pendulum%20test&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pendulum%20test&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pendulum%20test&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pendulum%20test&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pendulum%20test&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pendulum%20test&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pendulum%20test&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pendulum%20test&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pendulum%20test&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pendulum%20test&page=308">308</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pendulum%20test&page=309">309</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pendulum%20test&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>