CINXE.COM

Search results for: cytokine

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: cytokine</title> <meta name="description" content="Search results for: cytokine"> <meta name="keywords" content="cytokine"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="cytokine" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="cytokine"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 166</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: cytokine</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">166</span> The in vitro Effects of Various Immunomodulatory Nutritional Compounds on Antigen-Stimulated Whole-Blood Culture Cytokine Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayu%20S.%20Muhamad">Ayu S. Muhamad</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Gleeson"> Michael Gleeson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Immunomodulators are substances that alter immune system via dynamic regulation of messenger molecules. It can be divided into immunostimulant and immunosuppressant. It can help to increase immunity of people with a low immune system, and also can help to normalize an overactive immune system. Aim of this study is to investigate the effects of in vitro exposure to low and high doses of several immunomodulators which include caffeine, kaloba and quercetin on antigen-stimulated whole blood culture cytokine production. Whole blood samples were taken from 5 healthy males (age: 32 ± 12 years; weight: 75.7 ± 6.1 kg; BMI: 24.3 ± 1.5 kg/m2) following an overnight fast with no vigorous activity during the preceding 24 h. The whole blood was then stimulated with 50 µl of 100 x diluted Pediacel vaccine and low or high dose of immunomodulators in the culture plate. After 20 h incubation (5% CO2, 37°C), it was analysed using the Evidence Investigator to determine the production of cytokines including IL-2, IL-4, IL-10, IFN-γ, and IL-1α. Caffeine and quercetin showed a tendency towards decrease cytokine production as the doses were increased. On the other hand, an upward trend was evident with kaloba, where a high dose of kaloba seemed to increase the cytokine production. In conclusion, we found that caffeine and quercetin have potential as immunosuppressant and kaloba as immunostimulant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=caffeine" title="caffeine">caffeine</a>, <a href="https://publications.waset.org/abstracts/search?q=cytokine" title=" cytokine"> cytokine</a>, <a href="https://publications.waset.org/abstracts/search?q=immunomodulators" title=" immunomodulators"> immunomodulators</a>, <a href="https://publications.waset.org/abstracts/search?q=kaloba" title=" kaloba"> kaloba</a>, <a href="https://publications.waset.org/abstracts/search?q=quercetin" title=" quercetin"> quercetin</a> </p> <a href="https://publications.waset.org/abstracts/11601/the-in-vitro-effects-of-various-immunomodulatory-nutritional-compounds-on-antigen-stimulated-whole-blood-culture-cytokine-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11601.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">466</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">165</span> Redirection of Cytokine Production Patterns by Dydrogesterone, an Orally-Administered Progestogen</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raj%20Raghupathy">Raj Raghupathy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recurrent Spontaneous Miscarriage (RSM) is a common form of pregnancy loss, 50% of which are due to ‘unexplained’ causes. Evidence exists to suggest that RSM may be caused by immunologic factors such as cytokines which are critical molecules of the immune system, with an impressive array of capabilities. An association appears to exist between Th2-type reactivity (mediated by Th2 or anti-inflammatory cytokines) and normal, successful pregnancy, and between unexplained RSM and Th1 cytokine dominance. If pro-inflammatory cytokines are indeed associated with pregnancy loss, the suppression of these cytokines, and thus the ‘redirection’ of maternal reactivity, may help prevent cytokine-mediated pregnancy loss. The objective of this study was to explore the possibility of modulating cytokine production using Dydrogesterone (Duphaston®), an orally-administered progestogen. Peripheral blood mononuclear cells from 34 women with a history of at least 3 unexplained recurrent miscarriages were stimulated in vitro with a mitogen (to elicit cytokine production) in the presence and absence of dydrogesterone. Levels of selected pro- and anti-inflammatory cytokines produced by peripheral blood mononuclear cells were measured after exposure to these progestogens. Dydrogesterone down-regulates the production of pro-inflammatory cytokines and up-regulates the production of anti-inflammatory cytokines. The ratios of Th2 to Th1 cytokines are markedly elevated in the presence of dydrogesterone, indicating a shift from potentially harmful maternal Th1 reactivity to a more pregnancy-conducive Th2 profile. We used a progesterone receptor antagonist to show that this cytokine-modulating effect of dydrogesterone is mediated via the progesterone receptor. Dydrogesterone also induces the production of the Progesterone-Induced Blocking Factor (PIBF); lymphocytes exposed to PIBF produce higher levels of Th2 cytokines, affecting a Th1 → Th2 cytokine shift which could be favourable to the success of pregnancy. We conclude that modulation of maternal cytokine production profiles is possible with dydrogesterone which has the merits that it can be administered orally and that it is safe. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cytokines" title="cytokines">cytokines</a>, <a href="https://publications.waset.org/abstracts/search?q=dydrogesterone" title=" dydrogesterone"> dydrogesterone</a>, <a href="https://publications.waset.org/abstracts/search?q=progesterone" title=" progesterone"> progesterone</a>, <a href="https://publications.waset.org/abstracts/search?q=recurrent%20spontaneous%20miscarriage" title=" recurrent spontaneous miscarriage"> recurrent spontaneous miscarriage</a> </p> <a href="https://publications.waset.org/abstracts/34106/redirection-of-cytokine-production-patterns-by-dydrogesterone-an-orally-administered-progestogen" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34106.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">164</span> Cloning and Expression of Human Interleukin 15: A Promising Candidate for Cytokine Immunotherapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sadaf%20Ilyas">Sadaf Ilyas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recombinant cytokines have been employed successfully as potential therapeutic agent. Some cytokine therapies are already used as a part of clinical practice, ranging from early exploratory trials to well established therapies that have already received approval. Interleukin 15 is a pleiotropic cytokine having multiple roles in peripheral innate and adaptive immune cell function. It regulates the activation, proliferation and maturation of NK cells, T-cells, monocytes/macrophages and granulocytes, and the interactions between them thus acting as a bridge between innate and adaptive immune responses. Unraveling the biology of IL-15 has revealed some interesting surprises that may point toward some of the first therapeutic applications for this cytokine. In this study, the human interleukin 15 gene was isolated, amplified and ligated to a TA vector which was then transfected to a bacterial host, E. coli Top10F’. The sequence of cloned gene was confirmed and it showed 100% homology with the reported sequence. The confirmed gene was then subcloned in pET Expression system to study the IPTG induced expression of IL-15 gene. Positive expression was obtained for number of clones that showed 15 kd band of IL-15 in SDS-PAGE analysis, indicating the successful strain development that can be studied further to assess the potential therapeutic intervention of this cytokine in relevance to human diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Interleukin%2015" title="Interleukin 15">Interleukin 15</a>, <a href="https://publications.waset.org/abstracts/search?q=pET%20expression%20system" title=" pET expression system"> pET expression system</a>, <a href="https://publications.waset.org/abstracts/search?q=immune%20therapy" title=" immune therapy"> immune therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20purification" title=" protein purification"> protein purification</a> </p> <a href="https://publications.waset.org/abstracts/43003/cloning-and-expression-of-human-interleukin-15-a-promising-candidate-for-cytokine-immunotherapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43003.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">163</span> The Influence of α-Defensin and Cytokine IL-1β, Molecular Factors of Innate Immune System, on Regulation of Inflammatory Periodontal Diseases in Orthodontic Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20R.%20Khaliullina">G. R. Khaliullina</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20L.%20Blashkova"> S. L. Blashkova</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20G.%20Mustafin"> I. G. Mustafin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The article presents the results of a study involving 97 patients with different types of orthodontic pathology. Immunological examination of patients included determination of the level of α-defensin and cytokine IL-1β in mixed saliva. The study showed that the level of α-defensin serves as a diagnostic marker for determining the therapeutic measures in the treatment of inflammatory processes in periodontal tissues. Α-defensins exhibit immunomodulating and antimicrobial activity during inflammatory processes and play an important role in the regulation of the pathology of periodontal disease. The obtained data allowed the development of an algorithm for diagnosis and the implementation of immunomodulating therapy in the treatment of periodontal diseases in orthodontic patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%CE%B1-difensin" title="α-difensin">α-difensin</a>, <a href="https://publications.waset.org/abstracts/search?q=cytokine" title=" cytokine"> cytokine</a>, <a href="https://publications.waset.org/abstracts/search?q=orthodontic%20treatment" title=" orthodontic treatment"> orthodontic treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=periodontal%20disease" title=" periodontal disease"> periodontal disease</a>, <a href="https://publications.waset.org/abstracts/search?q=periodontal%20pathogens" title=" periodontal pathogens"> periodontal pathogens</a> </p> <a href="https://publications.waset.org/abstracts/111295/the-influence-of-a-defensin-and-cytokine-il-1v-molecular-factors-of-innate-immune-system-on-regulation-of-inflammatory-periodontal-diseases-in-orthodontic-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111295.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">162</span> Humoral and Cytokine Responses to Major Human Cytomegalovirus Antigens in Mouse Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sahar%20Essa">Sahar Essa</a>, <a href="https://publications.waset.org/abstracts/search?q=Hussain%20A.%20Safar"> Hussain A. Safar</a>, <a href="https://publications.waset.org/abstracts/search?q=Raj%20Raghupathy"> Raj Raghupathy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human cytomegalovirus (CMV) continues to be a source of severe complications in immunologically immature and immunocompromised hosts. Effective CMV vaccines that help diminish CMV disease in transplant patients and avoid congenital infection are of great importance. Though the exact roles of defense mechanisms are unidentified, viral-specific antibodies and cytokine responses are known to be involved in controlling CMV infections. CMV envelope glycoprotein B (UL55/gB), matrix proteins (UL83/pp65, UL99/pp28, UL32/pp150), and assembly protein UL80a/pp38 are known to be targets of antiviral immune responses. We immunized mice intraperitoneally with these five CMV-related proteins (commercial) for their ability to induce specific antibody responses (in-house immunoassay) and cytokine production (commercial assay) in a mouse model. We observed a significant CMV-antigen-specific antibody response to pp38 and pp65 (E/C ˃2.0, p˂0.001). Mice immunized with pp38 had significantly higher concentrations of GM-CSF, IFN-α, IL-2 IL-4, IL-5, and IL-17A (p˂0.05). Mice immunized with pp65 showed significantly higher concentrations of GM-CSF, IFN-γ, IL-2 IL-4, IL-10, IL-12, IL-17A, and TNF-α. Th1 to Th2 cytokines ratios revealed a Th1 cytokine bias in mice immunized with pp38, pp65, pp150, and gB. We suggest that stimulation with multiple CMV-related proteins, which include pp38, pp65, and gB antigens, will allow both humoral and cellular immune responses to be efficiently activated, thus serving as appropriate CMV antigens for future vaccines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cytomegalovirus" title="cytomegalovirus">cytomegalovirus</a>, <a href="https://publications.waset.org/abstracts/search?q=UL99%2Fpp28" title=" UL99/pp28"> UL99/pp28</a>, <a href="https://publications.waset.org/abstracts/search?q=UL80a%2Fpp38" title=" UL80a/pp38"> UL80a/pp38</a>, <a href="https://publications.waset.org/abstracts/search?q=UL83%2Fpp65" title=" UL83/pp65"> UL83/pp65</a>, <a href="https://publications.waset.org/abstracts/search?q=UL32%2Fpp150" title=" UL32/pp150"> UL32/pp150</a>, <a href="https://publications.waset.org/abstracts/search?q=UL55%2FgB" title=" UL55/gB"> UL55/gB</a>, <a href="https://publications.waset.org/abstracts/search?q=CMV-antigen-specific%20antibody" title=" CMV-antigen-specific antibody"> CMV-antigen-specific antibody</a>, <a href="https://publications.waset.org/abstracts/search?q=CMV%20antigen-specific%20cytokine%20responses" title=" CMV antigen-specific cytokine responses"> CMV antigen-specific cytokine responses</a> </p> <a href="https://publications.waset.org/abstracts/159929/humoral-and-cytokine-responses-to-major-human-cytomegalovirus-antigens-in-mouse-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159929.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">161</span> In Vitro Effect of Cobalt(II) Chloride (CoCl₂)-Induced Hypoxia on Cytokine Production by Human Breast Cancer Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Radoslav%20Stojchevski">Radoslav Stojchevski</a>, <a href="https://publications.waset.org/abstracts/search?q=Leonid%20Poretsky"> Leonid Poretsky</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimiter%20Avtanski"> Dimiter Avtanski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Proinflammatory cytokines play an important role in cancer initiation and progression by mediating the intracellular communication between the cancer cells and tumor microenvironment. Increased tumor growth causing reduced oxygen concentration and oxygen pressure commonly result in hypoxia. Mechanistically, hypoxia is characterized by stabilization and nuclear translocation of hypoxia-inducible factor 1 alpha (HIF-1α) followed by propagation of molecular pathway cascade involving multiple downstream targets. Cobalt(II) chloride (CoCl₂) is commonly used to mimic hypoxia in experimental conditions since it directly induces the expression of HIF-1α. The aim of the present study was to investigate the in vitro effects and the molecular mechanisms by which hypoxia regulates the cytokine secretory profile of breast cancer cells. As a model for this study, we used several breast cancer cell lines bearing various molecular characteristics and metastatic potential (MDA-MB-231 (clauding low, ER-/PR-/HER²⁻), MCF-7 (luminal A, ER⁺/PR⁺/HER²⁻), and BT-474 (liminal B, ER⁺/PR⁺/HER²⁺)). We demonstrated that breast cancer cells secrete numerous cytokines and cytokine ligands, including interleukins, chemokines, and growth factors. Treatment with CoCl₂significantly modulated the breast cancer cells' cytokine expression in a concentration- and time-dependent manner. These effects were mediated via activation of several signaling pathways (JNK/SAPK1, NF-κB, STAT5A/B, and Erk/MAPK1/2). Taken together, the present data define some of the molecular mechanisms by which hypoxia affects the breast cancer cells' cytokine secretory profile, thus contributing to the development of novel therapies for metastatic breast cancer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title="breast cancer">breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=cytokines" title=" cytokines"> cytokines</a>, <a href="https://publications.waset.org/abstracts/search?q=cobalt%28II%29%20chloride%20%28CoCl%E2%82%82%29" title=" cobalt(II) chloride (CoCl₂)"> cobalt(II) chloride (CoCl₂)</a>, <a href="https://publications.waset.org/abstracts/search?q=hypoxia" title=" hypoxia"> hypoxia</a> </p> <a href="https://publications.waset.org/abstracts/137919/in-vitro-effect-of-cobaltii-chloride-cocl2-induced-hypoxia-on-cytokine-production-by-human-breast-cancer-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137919.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">160</span> Impact of Tuberculosis Co-infection on Cytokine Expression in HIV-Infected Individuals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Nosik">M. Nosik</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Rymanova"> I. Rymanova</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Adamovich"> N. Adamovich</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Sevostyanihin"> S. Sevostyanihin</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Ryzhov"> K. Ryzhov</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Kuimova"> Y. Kuimova</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kravtchenko"> A. Kravtchenko</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Sergeeva"> N. Sergeeva</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sobkin"> A. Sobkin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> HIV and Tuberculosis (TB) infections each speed the other&#39;s progress. HIV-infection increases the risk of TB disease. At the same time, TB infection is associated with clinical progression of HIV-infection. HIV+TB co-infected patients are also at higher risk of acquiring new opportunistic infections. An important feature of disease progression and clinical outcome is the innate and acquired immune responses. HIV and TB, however, have a spectrum of dysfunctions of the immune response. As cytokines play a crucial role in the immunopathology of both infections, it is important to study immune interactions in patients with dual infection HIV+TB. Plasma levels of proinflammatory cytokines IL-2, IFN-&gamma; and immunoregulating cytokines IL-4, IL-10 were evaluated in 75 patients with dual infection HIV+TB, 58 patients with HIV monoinfection and 50 patients with TB monoinfection who were previously na&iuml;ve for HAART. The decreased levels of IL-2, IFN-&gamma;, IL-4 and IL-10 were observed in patients with dual infection HIV+TB in comparison with patients who had only HIV or TB which means the profound suppression of Th1 and Th2 cytokine secretion. Thus, those cytokines could possibly serve as immunological markers of progression of HIV-infection in patients with TB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HIV" title="HIV">HIV</a>, <a href="https://publications.waset.org/abstracts/search?q=tuberculosis%20%28TB%29" title=" tuberculosis (TB)"> tuberculosis (TB)</a>, <a href="https://publications.waset.org/abstracts/search?q=HIV%20associated%20with%20TB" title=" HIV associated with TB"> HIV associated with TB</a>, <a href="https://publications.waset.org/abstracts/search?q=Th1%2F%20Th2%20cytokine%20expression" title=" Th1/ Th2 cytokine expression"> Th1/ Th2 cytokine expression</a> </p> <a href="https://publications.waset.org/abstracts/42133/impact-of-tuberculosis-co-infection-on-cytokine-expression-in-hiv-infected-individuals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42133.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">159</span> The Prediction Mechanism of M. cajuputi Extract from Lampung-Indonesia, as an Anti-Inflammatory Agent for COVID-19 by NFκβ Pathway</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Agustyas%20Tjiptaningrum">Agustyas Tjiptaningrum</a>, <a href="https://publications.waset.org/abstracts/search?q=Intanri%20Kurniati"> Intanri Kurniati</a>, <a href="https://publications.waset.org/abstracts/search?q=Fadilah%20Fadilah"> Fadilah Fadilah</a>, <a href="https://publications.waset.org/abstracts/search?q=Linda%20Erlina"> Linda Erlina</a>, <a href="https://publications.waset.org/abstracts/search?q=Tiwuk%20Susantiningsih"> Tiwuk Susantiningsih</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Coronavirus disease-19 (COVID-19) is still one of the health problems. It can be a severe condition that is caused by a cytokine storm. In a cytokine storm, several proinflammatory cytokines are released massively. It destroys epithelial cells, and subsequently, it can cause death. The anti-inflammatory agent can be used to decrease the number of severe Covid-19 conditions. Melaleuca cajuputi is a plant that has antiviral, antibiotic, antioxidant, and anti-inflammatory activities. This study was carried out to analyze the prediction mechanism of the M. cajuputi extract from Lampung, Indonesia, as an anti-inflammatory agent for COVID-19. This study constructed a database of protein host target that was involved in the inflammation process of COVID-19 using data retrieval from GeneCards with the keyword “SARS-CoV2”, “inflammation,” “cytokine storm,” and “acute respiratory distress syndrome.” Subsequent protein-protein interaction was generated by using Cytoscape version 3.9.1. It can predict the significant target protein. Then the analysis of the Gene Ontology (GO) and KEGG pathways was conducted to generate the genes and components that play a role in COVID-19. The result of this study was 30 nodes representing significant proteins, namely NF-κβ, IL-6, IL-6R, IL-2RA, IL-2, IFN2, C3, TRAF6, IFNAR1, and DOX58. From the KEGG pathway, we obtained the result that NF-κβ has a role in the production of proinflammatory cytokines, which play a role in the COVID-19 cytokine storm. It is an important factor for macrophage transcription; therefore, it will induce inflammatory gene expression that encodes proinflammatory cytokines such as IL-6, TNF-α, and IL-1β. In conclusion, the blocking of NF-κβ is the prediction mechanism of the M. cajuputi extract as an anti-inflammation agent for COVID-19. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antiinflammation" title="antiinflammation">antiinflammation</a>, <a href="https://publications.waset.org/abstracts/search?q=COVID-19" title=" COVID-19"> COVID-19</a>, <a href="https://publications.waset.org/abstracts/search?q=cytokine%20storm" title=" cytokine storm"> cytokine storm</a>, <a href="https://publications.waset.org/abstracts/search?q=NF-%CE%BA%CE%B2" title=" NF-κβ"> NF-κβ</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20cajuputi" title=" M. cajuputi"> M. cajuputi</a> </p> <a href="https://publications.waset.org/abstracts/165831/the-prediction-mechanism-of-m-cajuputi-extract-from-lampung-indonesia-as-an-anti-inflammatory-agent-for-covid-19-by-nfkv-pathway" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165831.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">158</span> The Effect of Aerobic Training Program on Some Pro-Inflammatory Cytokine in Smokers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laleh%20Behboudi%20Tabrizi">Laleh Behboudi Tabrizi</a>, <a href="https://publications.waset.org/abstracts/search?q=Melika%20Naserzare"> Melika Naserzare</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Accumulating experimental and epidemiologic data smoker individuals are more prone to systemic inflammation than non-smokers. In this study we aimed to determine serum TNF-α and C-reactive protein (CRP) as pro-inflammatory cytokines in response to 3 months aerobic training in smoker men. A total 30 middle-aged healthy smokers selected for participate in this study and were divided into either control or exercise groups. The subjects in exercise group were completed a 3 months aerobic training program for 3 sessions per week at 60 – 80 % of maximal heart rate. Those in control group did nit participated in exercise training. Pre and post-training of CRP and TNF-α were measured in two groups. Student’s t-tests for paired samples were performed to determine whether there were signigcant within-group changes in the outcomes. P value of <0.05 was accepted as significant. No significant differences were found in anthropometrical and biochemical markers between two groups at baseline. Aerobic training program resulted in a significant decrease in anthropometrical markers and serum TNF-α but not in serum CRP in exercise group. All variables remained without changes in control groups. Based on these finding, it is concluded that aerobic training can be improve inflammatory cytokine with emphasis on TNF-α in smokers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cigarette" title="cigarette">cigarette</a>, <a href="https://publications.waset.org/abstracts/search?q=cytokine" title=" cytokine"> cytokine</a>, <a href="https://publications.waset.org/abstracts/search?q=chronic%20training" title=" chronic training"> chronic training</a>, <a href="https://publications.waset.org/abstracts/search?q=inflammation" title=" inflammation"> inflammation</a> </p> <a href="https://publications.waset.org/abstracts/38136/the-effect-of-aerobic-training-program-on-some-pro-inflammatory-cytokine-in-smokers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38136.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">157</span> A Derivative of L-allo Threonine Alleviates Asthmatic Symptoms in vitro and in vivo</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kun%20Chun">Kun Chun</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-Chun%20Heo"> Jin-Chun Heo</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang-Han%20Lee"> Sang-Han Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Asthma is a chronic airway inflammatory disease characterized by the infiltration of inflammatory cells and tissue remodeling. In this study, we examined the anti-asthmatic activity of a derivative of L-allo threonine by in vitro and in vivo anti-asthmatic assays. Ovalbumin (OVA)-induced C57BL/6 mice were used to analyze lung inflammation and cytokine expressions for exhibiting anti-atopic activity of the derivative. LX519290, a derivative of L-allo threonine, induced an increased IFN-γ and a decreased IL-10 mRNA level. This compound exhibited potent anti-asthmatic activity by decreasing immune cell infiltration in the lung, and IL-4 and IL-13 cytokine levels in the serum of OVA-induced mice. These results indicated that chronic airway injury was decreased by LX519290. We also assessed that LX519290 inhibits infiltration of immune cell, mucus release and cytokine expression in an in vivo model. Our results collectively suggest that the L-allo threonine is effective in alleviating asthmatic symptoms by treating inflammatory factors in the lung. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asthma" title="asthma">asthma</a>, <a href="https://publications.waset.org/abstracts/search?q=L%20-allo%20threonine" title=" L -allo threonine"> L -allo threonine</a>, <a href="https://publications.waset.org/abstracts/search?q=LX519290" title=" LX519290"> LX519290</a>, <a href="https://publications.waset.org/abstracts/search?q=mice" title=" mice"> mice</a> </p> <a href="https://publications.waset.org/abstracts/3306/a-derivative-of-l-allo-threonine-alleviates-asthmatic-symptoms-in-vitro-and-in-vivo" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3306.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">156</span> Protective Effect of Essential Oil from Chamaecyparis obtusa on Anxiety-Related Behaviors and Cytokine Abnormalities Induced by Early Life Stress</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hae%20Jeong%20Park">Hae Jeong Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Joo-Ho%20Chung"> Joo-Ho Chung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the effect of essential oil from Chamaecyparis obtuse (EOCO) on early life stress using maternal separation (MS) rats was investigated. Anxiety-related behaviors were examined in MS rats using the elevated plus-maze (EPM) test. The changes of gene expressions by EOCO in the hippocampus of MS rats were analyzed using a microarray method. Rats in the MS groups were separated from their respective mothers from postnatal day (pnd) 14 to 28. Rats in the EOCO-treated groups were exposed to EOCO for 1 h or 2 h by inhalation from pnd 21 to 28. The EOCO-treated MS rats showed decreased anxiety-related behaviors compared to the MS rats in the EPM test. In the microarray analysis, EOCO downregulated the expressions of cytokine genes such as Ccl2, Il6, Cxcl10, Ccl19, and Il1rl in the hippocampus of MS rats, and it was also confirmed through RT-PCR. In particular, the expressions of Ccl2 and Il6 were predominantly decreased by EOCO in the hippocampus of MS rats. Interestingly, their protein expressions were also reduced by EOCO in MS rats. These results indicate that EOCO decreases MS-induced anxiety-related behaviors, and modulate cytokines, particularly Ccl2 and Il6, in the hippocampus of MS rats. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anxiety-related%20behavior" title="anxiety-related behavior">anxiety-related behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=Chamaecyparis%20obtuse" title=" Chamaecyparis obtuse"> Chamaecyparis obtuse</a>, <a href="https://publications.waset.org/abstracts/search?q=cytokine%20gene" title=" cytokine gene"> cytokine gene</a>, <a href="https://publications.waset.org/abstracts/search?q=early-life%20stress" title=" early-life stress"> early-life stress</a>, <a href="https://publications.waset.org/abstracts/search?q=maternal%20separation" title=" maternal separation"> maternal separation</a> </p> <a href="https://publications.waset.org/abstracts/52686/protective-effect-of-essential-oil-from-chamaecyparis-obtusa-on-anxiety-related-behaviors-and-cytokine-abnormalities-induced-by-early-life-stress" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52686.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">155</span> Evaluation of the Ability of COVID-19 Infected Sera to Induce Netosis Using an Ex-Vivo NETosis Monitoring Tool</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Constant%20Gillot">Constant Gillot</a>, <a href="https://publications.waset.org/abstracts/search?q=Pauline%20Michaux"> Pauline Michaux</a>, <a href="https://publications.waset.org/abstracts/search?q=Julien%20Favresse"> Julien Favresse</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Michel%20Dogn%C3%A9"> Jean-Michel Dogné</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonathan%20Douxfils"> Jonathan Douxfils</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: NETosis has emerged as a crucial yet paradoxical factor in severe COVID-19 cases. While neutrophil extracellular traps (NETs) help contain and eliminate viral particles, excessive NET formation can lead to hyperinflammation, exacerbating tissue damage and acute respiratory distress syndrome (ARDS). Aims: This study evaluates the relationship between COVID-19-infected sera and NETosis using an ex-vivo model. Methods: Sera from 8 post-admission COVID-19 patients, after receiving corticoid therapy, were used to induce NETosis in neutrophils from a healthy donor. NET formation was tracked using fluorescent markers for DNA and neutrophil elastase (NE) every 2 minutes for 8 hours. The results were expressed as a percentage of DNA/NE released over time. Key metrics, including T50 (time to 50% release) and AUC (area under the curve), representing total NETosis potential), were calculated. A 27-cytokine screening kit was used to assess the cytokine composition of the sera. Results: COVID-19 sera induced NETosis based on their cytokine profile. The AUC of NE and DNA release decreased with time following corticoid therapy, showing a significant reduction in 6 of the 8 patients (p<0.05). T50 also decreased in parallel with AUC for both markers. Cytokines concentration decrease with time after therapy administration. There is correlation between 14 cytokines concentration and NE release. Conclusion: This ex-vivo model successfully demonstrated the induction of NETosis by COVID-19 sera using two markers. A clear decrease in NETosis potential was observed over time with glucocorticoid therapy. This model can be a valuable tool for monitoring NETosis and investigating potential NETosis inducers and inhibitors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NETosis" title="NETosis">NETosis</a>, <a href="https://publications.waset.org/abstracts/search?q=COVID-19" title=" COVID-19"> COVID-19</a>, <a href="https://publications.waset.org/abstracts/search?q=cytokine%20storm" title=" cytokine storm"> cytokine storm</a>, <a href="https://publications.waset.org/abstracts/search?q=biomarkers" title=" biomarkers"> biomarkers</a> </p> <a href="https://publications.waset.org/abstracts/191033/evaluation-of-the-ability-of-covid-19-infected-sera-to-induce-netosis-using-an-ex-vivo-netosis-monitoring-tool" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191033.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">19</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">154</span> Neuroprotective Effects of Gly-Pro-Glu-Thr-Ala-Phe-Leu-Arg, a Peptide Isolated from Lupinus angustifolius L. Protein Hydrolysate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maria%20Del%20Carmen%20Millan-Linares">Maria Del Carmen Millan-Linares</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20Lemus%20Conejo"> Ana Lemus Conejo</a>, <a href="https://publications.waset.org/abstracts/search?q=Rocio%20Toscano"> Rocio Toscano</a>, <a href="https://publications.waset.org/abstracts/search?q=Alvaro%20Villanueva"> Alvaro Villanueva</a>, <a href="https://publications.waset.org/abstracts/search?q=Francisco%20Millan"> Francisco Millan</a>, <a href="https://publications.waset.org/abstracts/search?q=Justo%20Pedroche"> Justo Pedroche</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergio%20Montserrat-De%20La%20Paz"> Sergio Montserrat-De La Paz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> GPETAFLR (Glycine-Proline-Glutamine-Threonine-Alanine-Phenylalanine-Leucine-Arginine) is a peptide isolated from Lupinus angustifolius L. protein hydrolysate (LPH). Herein, the effect of this peptide was investigated in two different models of neuroinflammation: in the immortalized murine microglia cell line BV-2 and in a high-fat-diet-induced obesity mouse model. Methods and Results: Effects of GPETAFLR on neuroinflammation were evaluated by RT-qPCR, flow cytometry, and ELISA techniques. In BV-2 microglial cells, Lipopolysaccharides (LPS) enhanced the release of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) whereas GPETAFLR decreased pro-inflammatory cytokine levels and increased the release of the anti-inflammatory cytokine IL-10 in BV2 microglial cells. M1 (CCR7 and iNOS) and M2 (Arg-1 and Ym-1) polarization markers results showed how the GPETAFLR octapeptide was able to decrease M1 polarization marker expression and increase the M2 polarization marker expression compared to LPS. Animal model results indicate that GPETAFLR has an immunomodulatory capacity, both decreasing pro-inflammatory cytokine IL-6 and increasing the anti-inflammatory cytokine IL-10 in brain tissue. Polarization markers in the brain tissue were also modulated by GPETAFLR that decreased the pro-inflammatory expression (M1) and increased the anti-inflammatory expression (M2). Conclusion: Our results suggest that GPETAFLR isolated from LPH has significant potential for management of neuroinflammatory conditions and offer benefits derived from the consumption of Lupinus angustifolius L. in the prevention of neuroinflammatory-related diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GPETAFLR%20peptide" title="GPETAFLR peptide">GPETAFLR peptide</a>, <a href="https://publications.waset.org/abstracts/search?q=BV-2%20cell%20line" title=" BV-2 cell line"> BV-2 cell line</a>, <a href="https://publications.waset.org/abstracts/search?q=neuroinflammation" title=" neuroinflammation"> neuroinflammation</a>, <a href="https://publications.waset.org/abstracts/search?q=cytokines" title=" cytokines"> cytokines</a>, <a href="https://publications.waset.org/abstracts/search?q=high-fat-diet" title=" high-fat-diet"> high-fat-diet</a> </p> <a href="https://publications.waset.org/abstracts/107665/neuroprotective-effects-of-gly-pro-glu-thr-ala-phe-leu-arg-a-peptide-isolated-from-lupinus-angustifolius-l-protein-hydrolysate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107665.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">153</span> Clinical Utility of Salivary Cytokines for Children with Attention Deficit Hyperactivity Disorder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masaki%20Yamaguchi">Masaki Yamaguchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Daimei%20Sasayama"> Daimei Sasayama</a>, <a href="https://publications.waset.org/abstracts/search?q=Shinsuke%20Washizuka"> Shinsuke Washizuka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goal of this study was to examine the possibility of salivary cytokines for the screening of attention deficit hyperactivity disorder (ADHD) in children. We carried out a case-control study, including 19 children with ADHD and 17 healthy children (controls). A multiplex bead array immunoassay was used to conduct a multi-analysis of 27 different salivary cytokines. Six salivary cytokines (interleukin (IL)-1&beta;, IL-8, IL12p70, granulocyte colony-stimulating factor (G-CSF), interferon gamma (IFN-&gamma;), and vascular endothelial growth factor (VEGF)) were significantly associated with the presence of ADHD (p &lt; 0.05). An informative salivary cytokine panel was developed using VEGF by logistic regression analysis (odds ratio: 0.251). Receiver operating characteristic analysis revealed that assessment of a panel using VEGF showed &ldquo;good&rdquo; capability for discriminating between ADHD patients and controls (area under the curve: 0.778). ADHD has been hypothesized to be associated with reduced cerebral blood flow in the frontal cortex, due to reduced VEGF levels. Our study highlights the possibility of utilizing differential salivary cytokine levels for point-of-care testing (POCT) of biomarkers in children with ADHD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cytokine" title="cytokine">cytokine</a>, <a href="https://publications.waset.org/abstracts/search?q=saliva" title=" saliva"> saliva</a>, <a href="https://publications.waset.org/abstracts/search?q=attention%20deficit%20hyperactivity%20disorder" title=" attention deficit hyperactivity disorder"> attention deficit hyperactivity disorder</a>, <a href="https://publications.waset.org/abstracts/search?q=child" title=" child"> child</a> </p> <a href="https://publications.waset.org/abstracts/101966/clinical-utility-of-salivary-cytokines-for-children-with-attention-deficit-hyperactivity-disorder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101966.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">152</span> In vitro Modulation of Cytokine Expression by an Aqueous Licorice Extract in Canine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Watson">A. Watson</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Telford"> G. Telford</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20I.%20Pritchard"> D. I. Pritchard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: We investigated the immunomodulatory ability of licorice (Glycyrrhiza glabra). Such activities could have value for the management of common immunological diseases in dogs, such as environmental allergy. This study investigated the potential of a Licorice root extract (LRE) to influence the relative expression of Th-1, Th-2, and Th-17 cytokines in canine peripheral blood mononuclear cells (PBMC). Methods: A LRE was prepared using an alcoholic-aqueous-based solvent method. The extract was tested in three in vitro assays using canine leukocytes to determine its toxicity and immunoregulatory profile. Extract toxicity was assessed using the human T-lymphocyte cell line, Jurkat E6.1. The impact of the extract on the proliferation of concanavalin-activated canine PBMC was also determined. Finally, the extract was assessed for its ability to influence cytokine release in activated PBMC, measuring culture medium concentrations of interleukin-17, interferon gamma, and interleukin-4. One-way ANOVA followed by Dunnett’s post-test was used for statistics using concanavalin positive control as reference (p ≤ 0.05). Results: There was evidence that the LRE had specific immunomodulatory properties, causing significant inhibition of IL4 expression over a non-toxic/non-cytostatic concentration range (p < 0.001). In the same cell incubations, there was no significant impact on IL17 nor IFNg over the same non-toxic/non-cytostatic concentration range. Conclusion: The study provides in vitro evidence that LRE preferentially reduces the expression of a Th-2-type cytokine, IL4. The dog population, as with humans, is prone to conditions associated with a Th-2 bias of the immune system, such as environmental allergy. Based on these results, licorice merits further evaluation as a useful immune modulator for such allergic diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cytokine" title="cytokine">cytokine</a>, <a href="https://publications.waset.org/abstracts/search?q=Glycyrrhiza%20glabra" title=" Glycyrrhiza glabra"> Glycyrrhiza glabra</a>, <a href="https://publications.waset.org/abstracts/search?q=peripheral%20blood%20mononuclear%20cells" title=" peripheral blood mononuclear cells"> peripheral blood mononuclear cells</a>, <a href="https://publications.waset.org/abstracts/search?q=T-cell%20activation" title=" T-cell activation"> T-cell activation</a> </p> <a href="https://publications.waset.org/abstracts/137155/in-vitro-modulation-of-cytokine-expression-by-an-aqueous-licorice-extract-in-canine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137155.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">151</span> The Regulation of the Pro-inflammatory Cytokine Interleukin 6 (IL6) by Epstein-Barr Virus (EBV)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liu%20Xiaohan">Liu Xiaohan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Epstein–Barr virus (EBV) is a human herpesvirus and is closely related to many malignancies of lymphocyte and epithelial origins, such as gastric cancer, Burkitt’s lymphoma, and nasopharyngeal carcinoma (NPC). NPC is a malignant epithelial tumor which is 100% associated with EBV latent infection. Most of the NPC cases are densely populated in southern China, especially in Guangdong and Hong Kong. To our knowledge, overexpression of pro-inflammatory cytokines may result in a loss of balance of the immune system and cause damage to human bodies. Interleukin-6 (IL6) is a pro-inflammatory cytokine which plays an important role in tumor progression. In addition, gene expression is regulated by both transcriptional and post-transcriptional pathways, while post-transcriptional regulation is an important mechanism to modulate the mature mRNA level in mammalian cells. AU-rich element binding factor 1 (AUF1)/heterogeneous nuclear RNP D (hnRNP D) is known for its function in destabilizing mRNAs, including cytokines and cell cycle regulators. Previous studies have found that overexpression of hnRNP D would lead to tumorigenesis. In this project, our aim is to determine the role played by hnRNP D in EBV-infected cells and how our anti-EBV agents can affect the function of hnRNP D. The results of this study will provide a new insight into how the pro-inflammatory cytokine expression can be regulated by EBV. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interleukin%206%20%28IL6%29" title="interleukin 6 (IL6)">interleukin 6 (IL6)</a>, <a href="https://publications.waset.org/abstracts/search?q=epstein-barr%20virus%20%28EBV%29" title=" epstein-barr virus (EBV)"> epstein-barr virus (EBV)</a>, <a href="https://publications.waset.org/abstracts/search?q=nasopharyngeal%20carcinoma%20%28NPC" title=" nasopharyngeal carcinoma (NPC"> nasopharyngeal carcinoma (NPC</a>, <a href="https://publications.waset.org/abstracts/search?q=epstein-barr%20nuclear%20antigen-1%20%28EBNA1%29" title=" epstein-barr nuclear antigen-1 (EBNA1)"> epstein-barr nuclear antigen-1 (EBNA1)</a> </p> <a href="https://publications.waset.org/abstracts/173829/the-regulation-of-the-pro-inflammatory-cytokine-interleukin-6-il6-by-epstein-barr-virus-ebv" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173829.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">62</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">150</span> Mutagenesis, Oxidative Stress Induction and Blood Cytokine Profile in First Generation Male Rats Whose Parents Were Exposed to Radiation and Hexavalent Chromium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yerbolat%20Iztleuov">Yerbolat Iztleuov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stochastic effects, which are currently largely associated with exposure to ionizing radiation or a combination of ionizing radiation with other chemical, physical, and biological agents, are expressed in the form of various mutations. In the first stage of the study, rats of both sexes were divided into 3 groups. 1st - control group, animals of the 2nd group were exposed to gamma radiation at a dose of 0.2 Gy. The third group received hexavalent chromium in a dose of 180 mg/ l with drinking water for a month before irradiation and a day after the end of chromium consumption and was subjected to total gamma irradiation at a dose of 0.2 Gy. The second stage of the experiment. After 3 days, the males were mated with the females. The obtained offspring were studied for peroxidation, cytokine profile and micronucleus in the nuclei. This study shows that 5-month-old offspring whose parents were exposed to combined exposure to chromium and γ-irradiation exhibit hereditary instability of the genome, decreased activity of antioxidant enzymes and sulfhydryl blood groups, and increased levels of lipid peroxidation. There is also an increase in the level of inflammatory markers (IL-6 and TNF) in the blood plasma against the background of a decrease in anti-inflammatory cytokine (IL-10). Thus, the combined effect of hexavalent chromium and ionizing radiation can lead to the development of an oncological process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hexavalent%20chromium" title="hexavalent chromium">hexavalent chromium</a>, <a href="https://publications.waset.org/abstracts/search?q=ionizing%20radiation" title=" ionizing radiation"> ionizing radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=first%20generation" title=" first generation"> first generation</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a>, <a href="https://publications.waset.org/abstracts/search?q=cytokines" title=" cytokines"> cytokines</a>, <a href="https://publications.waset.org/abstracts/search?q=mutagenesis" title=" mutagenesis"> mutagenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer" title=" cancer"> cancer</a> </p> <a href="https://publications.waset.org/abstracts/190168/mutagenesis-oxidative-stress-induction-and-blood-cytokine-profile-in-first-generation-male-rats-whose-parents-were-exposed-to-radiation-and-hexavalent-chromium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190168.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">25</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">149</span> Cytokine Changes of Auricular Point Acupressure to Manage Aromatase Inhibitor-Induced Arthralgia in Postmenopausal Breast Cancer Survivors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chao%20Hsing%20Yeh">Chao Hsing Yeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Chun%20Lin"> Wei Chun Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Current management of aromatase inhibitor-induced arthralgia (AIA) in postmenopausal breast cancer survivors (PBCS) has limited effect. Method: In this prospective randomized clinical trial (RCT), a 4-week APA treatment was used to manage AIA. Twenty PBCS participated. After baseline data was collected, participants were waited for a month before they receive APA at a convenient time once a week for 4 weeks. Blood samples from participants in both groups were collected at baseline and after 4 weeks of treatment. The primary outcomes included: pain intensity, pain interference, stiffness, and physical function. Results: After the 4-week APA treatment, the pro-inflammatory cytokines and chemokines display a trend of mean percentage reduction (i.e., -22% in IL-1α, -4% in IL-1β, -1% in IL-2, -3% in IL-6, -19% in IL-12, -9% in Eotaxin, and -2% in MCP-1). The anti-inflammatory cytokine IL-10 and IL-13 (i.e., 5% in IL-10 and 29% in IL-13) increased from pre- to post-APA treatment. Significant positive correlation of percentage mean change was observed between symptom severity and eotaxin (ρ = 0.56; p < 0.01) & MCP-1 (ρ = 0.65; p < 0.01). Interference and chemokines (eotaxin & MIP-1) also shows positive correlation (ρ = 0.48; p < 0.01 & ρ = 0.39; p < 0.05). Another positive correlation was found between worst pain and chemokines (eotaxin, ρ = 0.48; p < 0.01 & MIP-1, ρ = 0.39; p < 0.05). Additionally, interference also shows positive correlation among IL-1α (ρ = 0.36; p < 0.05) and IL-β (ρ = 0.33; p < 0.05). Conclusion: These findings suggest that APA intervention may inhibit inflammation of AIA patients and chemokine could be one of the key factors of AIA symptom improvement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acupressure" title="acupressure">acupressure</a>, <a href="https://publications.waset.org/abstracts/search?q=cytokine" title=" cytokine"> cytokine</a>, <a href="https://publications.waset.org/abstracts/search?q=pain%20management" title=" pain management"> pain management</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer%20survivors" title=" breast cancer survivors"> breast cancer survivors</a> </p> <a href="https://publications.waset.org/abstracts/67779/cytokine-changes-of-auricular-point-acupressure-to-manage-aromatase-inhibitor-induced-arthralgia-in-postmenopausal-breast-cancer-survivors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67779.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">148</span> Role of Interleukin-36 in Response to Pseudomonas aeruginosa Infection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muslim%20Idan%20Mohsin">Muslim Idan Mohsin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Jasim%20Al-Shamarti"> Mohammed Jasim Al-Shamarti</a>, <a href="https://publications.waset.org/abstracts/search?q=Rusul%20Idan%20Mohsin"> Rusul Idan Mohsin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20A.%20Majeed"> Ali A. Majeed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the causative agents of the lower respiratory tract (LRT) is Pseudomonas aeruginosa, which can lead to severe infection associated with a lung infection. There are many cytokines that are secreted in response to bacterial infection, in particular interleukin IL-36 cytokine in response to P. aeruginosa infection. The involvement of IL-36 in the P. aeruginosa infection could be a clue to find a specific way for treatments of different inflammatory and degenerative lung diseases. IL36 promotes primary immune response via binding to the IL-36 receptor (IL-36R). Indeed, an overactivity of IL-36 might be an initiating factor for many immunopathologic sceneries in pneumonia. Here we demonstrate if the IL-36 cytokine increases in response P. aeruginosa infection that is isolated from lower respiratory tract infection (LRT). We demonstrated that IL-36 expression significantly unregulated in human lung epithelial (A549) cells after infected by P. aeruginosa at mRNA level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IL36" title="IL36">IL36</a>, <a href="https://publications.waset.org/abstracts/search?q=Pseudomonas%20aeruginosa" title=" Pseudomonas aeruginosa"> Pseudomonas aeruginosa</a>, <a href="https://publications.waset.org/abstracts/search?q=LRT%20infection" title=" LRT infection"> LRT infection</a>, <a href="https://publications.waset.org/abstracts/search?q=A549%20cells" title=" A549 cells"> A549 cells</a> </p> <a href="https://publications.waset.org/abstracts/119670/role-of-interleukin-36-in-response-to-pseudomonas-aeruginosa-infection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119670.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">147</span> Antiasthmatic Effect of Kankasava in OVA-Induced Asthma Mouse Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bharti%20Ahirwar">Bharti Ahirwar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main object of this study was to evaluate the effect of kankasava on OVA-induced asthma in mouse model. Present study has demonstrated that kankasava exhibited an antiasthmatic effect by attenuated AHR and reducing level of IgE, IL-5, and IL-13, in both serum and BALF in OVA induced asthmatic mice. Effect of kankasav on airway responsiveness was obtained by monitoring the enhanced pen value . Kankasava significantly reduced AHR can be explained, in part, by reduction in both IgE overexoression and cytokine levels. Kankasava significantly decreased IL-4, IL-5, and IL-13 in BALF indicate that it may suppress the excess activity of T-cells and Th2 cytokines, which are implicated in the pathogenesis of allergic asthma, and consequently restore the Th1/Th2 imbalance of the immune system. In summary, we hypothesize that kankasava effectively suppressed elevations in IgE and cytokines levels, AHR, and mucus overproduction in mice with OVA-induced asthma suggested kankasava could be effective in immunological and pharmacological modulation of allergic asthma. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asthma" title="asthma">asthma</a>, <a href="https://publications.waset.org/abstracts/search?q=ayurveda" title=" ayurveda"> ayurveda</a>, <a href="https://publications.waset.org/abstracts/search?q=kankasava" title=" kankasava"> kankasava</a>, <a href="https://publications.waset.org/abstracts/search?q=cytokine" title=" cytokine"> cytokine</a> </p> <a href="https://publications.waset.org/abstracts/44415/antiasthmatic-effect-of-kankasava-in-ova-induced-asthma-mouse-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44415.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">146</span> IL-23, an Inflammatory Cytokine, Decreased by Shark Cartilage and Vitamin A Oral Treatment in Patient with Gastric Cancer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Razieh%20Zarei">Razieh Zarei</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20zm"> Hassan zm</a>, <a href="https://publications.waset.org/abstracts/search?q=Abolghasem%20Ajami"> Abolghasem Ajami</a>, <a href="https://publications.waset.org/abstracts/search?q=Darush%20Moslemi"> Darush Moslemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Narges%20Afsary"> Narges Afsary</a>, <a href="https://publications.waset.org/abstracts/search?q=Amrollah%20Mostafa-zade"> Amrollah Mostafa-zade </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: IL-23 is responsible for the differentiation and expansion of Th17/ThIL-17 cells from naive CD4+ T cells. Therefore, may be IL-23/IL17 axis involve in a variety of allergic and autoimmune diseases, such as RA, MS, inflammatory bowel disease (IBD), and asthma. TGF-β is also share for the differentiation Th17 producing IL-17 and CD4+CD25+Foxp3hiT regulatory cells from naïve CD4+ T cells which are involved in the regulation of immune response, maintaining immunological self-tolerance and immune homeostasis ,and the control of autoimmunity and cancer surveillance. Therefore, T regulatory cells play a key role in autoimmunity, allergy, cancer, infectious disease, and the induction of transplantation tolerance. Vitamin A and it's derivatives (retinoids) inhibit or reverse the carcinogenic process in some types of cancers in oral cavity,head and neck, breast, skin, liver, and blood cells. Shark is a murine organism and its cartilage has antitumor peptides to prevent angiogenesis, in vitro. Our purpose is whether simultaneous oral treatment vitamin A and shark cartilage can modulate IL-23/IL-17 and CD4CD25Foxp3 T regulatory cell/TGF-β pathways and Th1/Th2 immunity in patients with gastric cancer. Materials and Methods: First investigated an imbalanced supernatant of cytokines exist in patients with gastric cancer by ELISA. Associated with cytokines measuring such as IL-23,IL-17,TGF-β,IL-4 and γ-IFN, then flow cytometry was employed to determine whether the peripheral blood mononuclear cells such as CD4+CD25+Foxp3highT regulatory cells in patients with gastric cancer were changed correspondingly. Results: An imbalance between IL-17 secretion and TGF-β/Foxp3 t regulatory cell pathway and so, Th1 immunity (γ-IFN production) and TH2 immunity (IL-4 secretion) was not seen in patients with gastric cancer treated by vitamin A and shark cartilage. But, the simultaneously presented down-regulation of IL-23 indicated, at least cytokine level. Conclusion: Il-23, as a pro-angiogenesis cytokine, probably, help to tumor growth. Hence, suggested that down-regulation of IL-23, at least cytokine level, is useful for anti-tumor immune responses in patients with gastric cancer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IL-23%2FIL17%20axis" title="IL-23/IL17 axis">IL-23/IL17 axis</a>, <a href="https://publications.waset.org/abstracts/search?q=TGF-%CE%B2%2FCD4CD25Foxp3%20T%20regulatory%20pathway" title=" TGF-β/CD4CD25Foxp3 T regulatory pathway"> TGF-β/CD4CD25Foxp3 T regulatory pathway</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B3-IFN" title=" γ-IFN"> γ-IFN</a>, <a href="https://publications.waset.org/abstracts/search?q=IL-4" title=" IL-4"> IL-4</a>, <a href="https://publications.waset.org/abstracts/search?q=shark%20cartilage%20and%20gastric%20cancer" title=" shark cartilage and gastric cancer"> shark cartilage and gastric cancer</a> </p> <a href="https://publications.waset.org/abstracts/11180/il-23-an-inflammatory-cytokine-decreased-by-shark-cartilage-and-vitamin-a-oral-treatment-in-patient-with-gastric-cancer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11180.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">145</span> Low Term Aerobic Training Is Not Associated with Anti-Inflammatory in Obese Women</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zohreh%20Afsharmand">Zohreh Afsharmand</a>, <a href="https://publications.waset.org/abstracts/search?q=Sokhanguei%20Yahya"> Sokhanguei Yahya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A growing body of literature suggests that that low-grade systemic inflammation associated to obesity plays a key role in the pathogenic mechanism of several disorders. In this study, the effect of 6 weeks aerobic training on IL-6 and IL-1B as inflammatory cytokine were investigated in adult obese women. For this purpose, 26 sedentary adult obese women were divided into exercise and control groups (n=12). Pre and post training of mentioned cytokines were measured in two groups. Student’s t-tests for paired samples were performed to determine whether there were significant within-group changes in the outcomes. A p value less than 0.05 was considered statistically significant. There were no statistically significant differences between the exercise and control groups with regard to anthropometrical markers or inflammatory cytokines. Despite the significant decrease in all anthropometrical markers, no significant differences were found in serum IL-6 and IL-1B by aerobic training with compared to baseline. Our findings indicate that aerobic training intervention for a short time is not associated with the anti-inflammatory property in obese women. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerobic%20training" title="aerobic training">aerobic training</a>, <a href="https://publications.waset.org/abstracts/search?q=cytokine" title=" cytokine"> cytokine</a>, <a href="https://publications.waset.org/abstracts/search?q=inflammation" title=" inflammation"> inflammation</a>, <a href="https://publications.waset.org/abstracts/search?q=obesity" title=" obesity"> obesity</a> </p> <a href="https://publications.waset.org/abstracts/38134/low-term-aerobic-training-is-not-associated-with-anti-inflammatory-in-obese-women" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38134.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">144</span> Cytokine Profiling in Cultured Endometrial Cells after Hormonal Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mark%20Gavriel">Mark Gavriel</a>, <a href="https://publications.waset.org/abstracts/search?q=Ariel%20J.%20Jaffa"> Ariel J. Jaffa</a>, <a href="https://publications.waset.org/abstracts/search?q=Dan%20Grisaru"> Dan Grisaru</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Elad"> David Elad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The human endometrium-myometrium interface (EMI) is the uterine inner barrier without a separatig layer. It is composed of endometrial epithelial cells (EEC) and endometrial stromal cells (ESC) in the endometrium and myometrial smooth muscle cells (MSMC) in the myometrium. The EMI undergoes structural remodeling during the menstruation cycle which are essential for human reproduction. Recently, we co-cultured a layer-by-layer in vitro model of EEC, ESC and MSMC on a synthetic membrane for mechanobiology experiments. We also treated the model with progesterone and β-estradiol in order to mimic the in vivo receptive uterus In the present study we analyzed the cytokines profile in a single layer of EEC the hormonal treated in vitro model of the EMI. The methodologies of this research include simple tissue-engineering . First, we cultured commercial EEC (RL95-2, ATCC® CRL-1671™) in 24-wellplate. Then, we applied an hormonal stimuli protocol with 17-β-estradiol and progesterone in time dependent concentration according to the human physiology that mimics the menstrual cycle. We collected cell supernatant samples of control, pre-ovulation, ovulation and post-ovulaton periods for analysis of the secreted proteins and cytokines. The cytokine profiling was performed using the Proteome Profiler Human XL Cytokine Array Kit (R&D Systems, Inc., USA) that can detect105 human soluble cytokines. The relative quantification of all the cytokines will be analyzed using xMAP – LUMINEX. We conducted a fishing expedition with the 4 membranes Proteome Profiler. We processed the images, quantified the spots intensity and normalized these values by the negative control and reference spots at the membrane. Analyses of the relative quantities that reflected change higher than 5% of the control points of the kit revealed the The results clearly showed that there are significant changes in the cytokine level for inflammation and angiogenesis pathways. Analysis of tissue-engineered models of the uterine wall will enable deeper investigation of molecular and biomechanical aspects of early reproductive stages (e.g. the window of implantation) or developments of pathologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tissue-engineering" title="tissue-engineering">tissue-engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=hormonal%20stimuli" title=" hormonal stimuli"> hormonal stimuli</a>, <a href="https://publications.waset.org/abstracts/search?q=reproduction" title=" reproduction"> reproduction</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-layer%20uterine%20model" title=" multi-layer uterine model"> multi-layer uterine model</a>, <a href="https://publications.waset.org/abstracts/search?q=progesterone" title=" progesterone"> progesterone</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B2-estradiol" title=" β-estradiol"> β-estradiol</a>, <a href="https://publications.waset.org/abstracts/search?q=receptive%20uterine%20model" title=" receptive uterine model"> receptive uterine model</a>, <a href="https://publications.waset.org/abstracts/search?q=fertility" title=" fertility"> fertility</a> </p> <a href="https://publications.waset.org/abstracts/149276/cytokine-profiling-in-cultured-endometrial-cells-after-hormonal-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149276.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">143</span> Humoral and Cellular Immune Responses to Major Human Cytomegalovirus Antigens in Mice Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Essa">S. Essa</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Safar"> H. Safar</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Raghupathy"> R. Raghupathy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human cytomegalovirus (CMV) continues to be a source of severe complications to immunologically immature and immune-compromised hosts. Effective CMV vaccine that diminishes CMV disease in transplant patients and avoids congenital infection remains of high importance as no approved vaccines exist. Though the exact links of defense mechanisms are unidentified, viral-specific antibodies and Th1/Th2 cytokine responses have been involved in controlling viral infections. CMV envelope glycoprotein B (UL55/gB), the matrix proteins (UL83/pp65, UL99/pp28, UL32/pp150), and the assembly protein UL80a/pp38 are known to be targets of antiviral immune responses. In this study, mice were immunized with five HCMV antigens (UL32/pp150, UL80a/pp38, UL99/pp28, and UL83/pp65), and serum samples were collected and evaluated for eliciting viral-specific antibody responses. Moreover, Splenocytes were collected, stimulated, and assessed for cytokine responses. The results demonstrated a CMV-antigen-specific antibody response to pp38 and pp65 (E/C >2.0). The highest titers were detected with pp38 (average E/C 16.275) followed by pp65 (average E/C 7.72). Compared to control cells, splenocytes from PP38 antigen immunized mice gave a significantly higher concentration of GM-CSF, IFN-γ, IL-2 IL-4, IL-5, and IL-17A (P<0.05). Also, splenocytes from pp65 antigen immunized mice resulted in a significantly higher concentration of GM-CSF, IFN-γ, IL-2 IL-4, IL-10, IL-12, IL-17A, and TNF- α. The designation of target CMV peptides by identifying viral-specific antibodies and cytokine responses is vital for understanding the protective immune mechanisms during CMV infection and identifying appropriate viral antigens to develop novel vaccines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hepatitis%20C%20virus" title="hepatitis C virus">hepatitis C virus</a>, <a href="https://publications.waset.org/abstracts/search?q=peripheral%20blood%20mononuclear%20cells" title=" peripheral blood mononuclear cells"> peripheral blood mononuclear cells</a>, <a href="https://publications.waset.org/abstracts/search?q=neutrophils" title=" neutrophils"> neutrophils</a>, <a href="https://publications.waset.org/abstracts/search?q=cytokines" title=" cytokines"> cytokines</a> </p> <a href="https://publications.waset.org/abstracts/144387/humoral-and-cellular-immune-responses-to-major-human-cytomegalovirus-antigens-in-mice-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144387.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">142</span> Evaluation of the Diagnostic Potential of IL-2 as Biomarker for the Discrimination of Active and Latent Tuberculosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shima%20Mahmoudi">Shima Mahmoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Setareh%20Mamishi"> Setareh Mamishi</a>, <a href="https://publications.waset.org/abstracts/search?q=Babak%20Pourakbari"> Babak Pourakbari</a>, <a href="https://publications.waset.org/abstracts/search?q=Majid%20Marjani"> Majid Marjani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the last years, the potential role of distinct T-cell subsets as biomarkers of active tuberculosis TB and/or latent tuberculosis infection (LTBI) has been studied. The aim of this study was to investigate the potential role of interleukin-2 (IL-2) in whole blood stimulated with M. tuberculosis-specific antigens in the QuantiFERON-TB Gold In Tube (QFT-G-IT) for the discrimination of active and latent tuberculosis. After 72-h of stimulation by antigens from the QFT-G-IT assay, IL-2 secretion was quantitated in supernatants by using ELISA (Mabtech AB, Sweden). Observing the level of IL-2 released after 72-h of incubation, we found that the level of IL-2 were significantly higher in LTBI group than in patients with active TB infection or control group (P value=0.019, Kruskal–Wallis test). The discrimination performance (assessed by the area under ROC curve) between LTBI and patients with active TB was 0.816 (95%CI: 0.72-0.97). Maximum discrimination was reached at a cut-off of 13.9 pg/mL for IL-2 following stimulation with 82% sensitivity and 86% specificity. In conclusion, although cytokine analysis has greatly contributed to the understanding of TB pathogenesis, data on cytokine profiles that might distinguish progression from latency of TB infection are scarce and even controversial. Our data indicate that the concomitant evaluation of IFN- γ and IL-2 could be instrumental in discriminating of active and latent TB infection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interleukin-2" title="interleukin-2">interleukin-2</a>, <a href="https://publications.waset.org/abstracts/search?q=discrimination" title=" discrimination"> discrimination</a>, <a href="https://publications.waset.org/abstracts/search?q=active%20TB" title=" active TB"> active TB</a>, <a href="https://publications.waset.org/abstracts/search?q=latent%20TB" title=" latent TB"> latent TB</a> </p> <a href="https://publications.waset.org/abstracts/21198/evaluation-of-the-diagnostic-potential-of-il-2-as-biomarker-for-the-discrimination-of-active-and-latent-tuberculosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21198.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">141</span> Suppression of DMBA/TPA-Induced Skin Tumorigenesis by Menthol through Inhibition of Inflammation, NF-kappaB, Ras-Raf-ERK Pathway</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhaoguo%20Liu">Zhaoguo Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Cunsi%20Shen"> Cunsi Shen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yin%20Lu"> Yin Lu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Growing evidence has shown that menthol has potent anticancer activity in various human cancers. However, its effect on skin cancer remains largely unknown. In the present study, we investigated the chemopreventive potential of menthol against 7, 12-dimethylbenz[a] anthracene(DMBA)/12-O-tetradecanoylphorbol 13-acetate (TPA)-induced skin tumorigenesis in ICR mice. Our results showed that menthol significantly inhibited TPA-induced inflammatory responses and pro-inflammatory cytokine release. We also found that menthol treatment significantly inhibited TPA-induced lipid peroxidation (LPO), mouse UDP-glucumno-syltransferase (UGT), mouse NADH Dehydrogenase, Quinone 1 (NQO1) release. Furthermore, we found menthol treatment significantly inhibited the tumor incidence and number of tumors (P < 0.001). Interestingly, we observed that menthol treatment significantly inhibited TPA-induced altered activity of NF-κB in skin tumor. Consistently, menthol-treated tumors also showed significantly suppressed the Ras-Raf-ERK signaling pathway. Thus, our results suggest that menthol inhibits DMBA/TPA-induced skin tumorigenesis by attenuating the Ras and inhibiting NF-κB activity via inhibition of inflammation responses and pro-inflammatory cytokine release. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DMBA%2FTPA" title="DMBA/TPA">DMBA/TPA</a>, <a href="https://publications.waset.org/abstracts/search?q=NF-%CE%BAB" title=" NF-κB"> NF-κB</a>, <a href="https://publications.waset.org/abstracts/search?q=Ras-Raf-ERK" title=" Ras-Raf-ERK"> Ras-Raf-ERK</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20tumorigenesis" title=" skin tumorigenesis "> skin tumorigenesis </a> </p> <a href="https://publications.waset.org/abstracts/2813/suppression-of-dmbatpa-induced-skin-tumorigenesis-by-menthol-through-inhibition-of-inflammation-nf-kappab-ras-raf-erk-pathway" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2813.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">140</span> Inflammatory Cytokine (Interleukin-8): A Diagnostic Marker in Leukemia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sandeep%20Pandey">Sandeep Pandey</a>, <a href="https://publications.waset.org/abstracts/search?q=Nimra%20Habib"> Nimra Habib</a>, <a href="https://publications.waset.org/abstracts/search?q=Ranjana%20Singh"> Ranjana Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Abbas%20Ali%20Mahdi"> Abbas Ali Mahdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Leukemia is a malignancy of blood that mainly affects children and young adults; while advancement in the early diagnosis will have the potential to improve the outcome of diseases. A wide range of disease including leukemia shows inflammatory signals in their pathogenesis. In a pilot study conducted in our laboratory, 52 people were screened, of which 26 had leukemia and 26 were free from any kind of malignancy. We performed the estimation of the inflammatory cytokine Interleukin-8 and it was found significantly raised in all the leukemia patients concerning healthy volunteers who participated in the study. Flow cytometry had been performed for the confirmation of leukemia and further genomic, and proteomic, analyses of the sample revealed that IL-8 levels showed a positive correlation in patients with leukemia. The results had shown constitutive secretion of interleukin-8 by leukemia cells. So, our finding demonstrated that IL-8 is considered to have a role in the pathogenesis of leukemia, and quantification of IL-8 levels in leukemia conditions might be more useful and feasible in the clinical setting for the prediction of drug responses where it may represent a putative target for innovative diagnostic toward effective therapeutic approaches. However, further research explorations in this area are needed that include a greater number of patients with all different forms of leukemia, and estimating their IL-8 levels may hold the key for the additional predictive values on the recurrence of leukemia and its prognosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=T-ALL" title="T-ALL">T-ALL</a>, <a href="https://publications.waset.org/abstracts/search?q=IL-8" title=" IL-8"> IL-8</a>, <a href="https://publications.waset.org/abstracts/search?q=leukemia%20pathogenesis" title=" leukemia pathogenesis"> leukemia pathogenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer%20therapeutics" title=" cancer therapeutics"> cancer therapeutics</a> </p> <a href="https://publications.waset.org/abstracts/172772/inflammatory-cytokine-interleukin-8-a-diagnostic-marker-in-leukemia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">139</span> Cryptosporidium Parvum oocytic Antigen Induced a Pro-Inflammatory DC Phenotype</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Connick%20K">Connick K</a>, <a href="https://publications.waset.org/abstracts/search?q=Lalor%20R"> Lalor R</a>, <a href="https://publications.waset.org/abstracts/search?q=Murphy%20A"> Murphy A</a>, <a href="https://publications.waset.org/abstracts/search?q=O%E2%80%99Neill%20S.%20M."> O’Neill S. M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Rabab%20S.%20Zalat"> Rabab S. Zalat</a>, <a href="https://publications.waset.org/abstracts/search?q=Eman%20E.%20El%20Shanawany"> Eman E. El Shanawany</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cryptosporidium parvum is an opportunistic intracellular parasite that causes mild to severe diarrhea in human and animal populations and is an important zoonotic disease globally. In immunocompromised hosts, infection Canbe life-threatening as no effective treatments are currently available to control infection. To increase our understanding of the mechanisms that play a role in host-parasite interactions at the level of the immune response, we investigated the effects of Cryptosporidium parvum antigen (CPA) on bone marrow-derived (DCS). Herein we examined cytokine secretion and cell surface marker expression on DCs exposed to CPA. We also measured cytokine production in CD4+ cells co-cultured with CPA primed DCs in the presence of anti-CD3. CPA induced a significant increase in the production of interleukin(IL)-12p40, IL-10, IL-6, and TNF-α by DCs and enhanced the expression of the cell surface markers TLR4, CD80, CD86, and MHC11. CPA primed DC co-cultured in the presence of anti-CD3 with CD4+ T-cells inhibited the secretion of Th2 associated cytokines, notably IL-5 and IL-13, with no effects on the secretions of interferon (IFN)-γ, IL-2, IL-17, and IL-10. These findings support studies in the literature that CPA can induce the full maturation of DCs that subsequently initiate Th1 immune responses critical to the resolution of C. parvum infection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cryptosporidium%20parvum" title="cryptosporidium parvum">cryptosporidium parvum</a>, <a href="https://publications.waset.org/abstracts/search?q=dendritic%20cells" title=" dendritic cells"> dendritic cells</a>, <a href="https://publications.waset.org/abstracts/search?q=IL-12%20p70" title=" IL-12 p70"> IL-12 p70</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20surface%20marker" title=" cell surface marker"> cell surface marker</a> </p> <a href="https://publications.waset.org/abstracts/143746/cryptosporidium-parvum-oocytic-antigen-induced-a-pro-inflammatory-dc-phenotype" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">138</span> Biocompatibility assessment of different origin Barrier Membranes for Guided Bone Regeneration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Munar-Frau">Antonio Munar-Frau</a>, <a href="https://publications.waset.org/abstracts/search?q=Sascha%20Klismoch"> Sascha Klismoch</a>, <a href="https://publications.waset.org/abstracts/search?q=Manfred%20Schmolz"> Manfred Schmolz</a>, <a href="https://publications.waset.org/abstracts/search?q=Federico%20Hernandez-Alfaro"> Federico Hernandez-Alfaro</a>, <a href="https://publications.waset.org/abstracts/search?q=Jordi%20Caballe-Serrano"> Jordi Caballe-Serrano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Biocompatibility of biomaterials has been proposed as one of the main criteria for treatment success. For guided bone regeneration (GBR), barrier membranes present a conflict given the number of origins and modifications of these materials. The biologic response to biomaterials is orchestrated by a series of events leading to the integration or rejection of the biomaterial, posing questions such as if a longer occlusive property may trigger an inflammatory reaction. Whole blood cultures are a solution to study the immune response to drugs or biomaterials during the first 24-48 hours. The aim of this study is to determine the early immune response of different origins and chemical modifications of barrier membranes. Materials & Methods: 5 different widely used barrier membranes were included in this study: Acellular dermal matrix (AlloDerm, LifeCell®), Porcine Peritoneum (BioGide, Geistlich Pharma®), Porcine Pericardium (Jason, Botiss Biomaterials GmbH®), Porcine Cross-linked collagen (Ossix Plus, Datum Dental®) and d-PTFE (Cytoplast TXT, Osteogenics Biomedical®). Blood samples were extracted from 3 different healthy donors and incubated with the different samples of barrier membranes for 24 hours. After the incubation time, serum samples were obtained and analyzed by means of biocompatibility assays taking into account 42 markers. Results: In an early stage of the inflammatory response, the Acellular dermal matrix, porcine peritoneum and porcine cross-linked collagen expressed similar patterns of cytokine expression with a great manifestation of ENA 78. Porcine pericardium and d-PTFE presented similar cytokine activation, especially for MMP-3 and MMP-9, although other cytokines were highlighted with lower expression. For the later immune response, Porcine peritoneum and acellular dermal matrix MCP-1 and IL-15 were evident. Porcine pericardium, porcine cross-linked collagen and d-PTFE presented a high expression of IL-16 and lower manifestation of other cytokines. Different behaviors depending on an earlier or later stage of the inflammation process were observed. Barrier membrane inflammatory expression does not only differ depending on the origin, variables such as treatment of the collagen and polymers may also have a great impact on the cytokine expression of the studied barrier membranes during inflammation. Conclusions: Surface treatment and modifications might affect the biocompatibility of the membranes, as different cytokine expressions were evidently depending on the origin of the biomaterial. This study is only a brushstroke regarding the biocompatibility of materials, as it is one of the pioneer studies for ex vivo barrier membranes assays. Studies regarding surface modification are needed in order to clarify mystifications of barrier membrane science. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomaterials" title="biomaterials">biomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20regeneration" title=" bone regeneration"> bone regeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=biocompatibility" title=" biocompatibility"> biocompatibility</a>, <a href="https://publications.waset.org/abstracts/search?q=inflammation" title=" inflammation"> inflammation</a> </p> <a href="https://publications.waset.org/abstracts/140163/biocompatibility-assessment-of-different-origin-barrier-membranes-for-guided-bone-regeneration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140163.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">137</span> Effect of Probiotics and Vitamin B on Plasma Interferon-Gamma and Interleukin-6 Levels in Active Pulmonary Tuberculosis </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yulistiani%20Yulistiani">Yulistiani Yulistiani</a>, <a href="https://publications.waset.org/abstracts/search?q=Zamrotul%20Izzah"> Zamrotul Izzah</a>, <a href="https://publications.waset.org/abstracts/search?q=Lintang%20Bismantara"> Lintang Bismantara</a>, <a href="https://publications.waset.org/abstracts/search?q=Wenny%20Putri%20Nilamsari"> Wenny Putri Nilamsari</a>, <a href="https://publications.waset.org/abstracts/search?q=Arif%20Bachtiar"> Arif Bachtiar</a>, <a href="https://publications.waset.org/abstracts/search?q=Budi%20Suprapti"> Budi Suprapti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Interferon-gamma (IFN-γ) and interleukin-6 (IL-6) are pro-inflammatory cytokines, which have the protective immune response against Tuberculosis (TB). Indeed, pro-inflammatory cytokines Mycobacterium tuberculosis antigen-specific CD4+ and CD8+ T cells and NK cells increase the level of production of IFN-γ, a cytokine critical for augmenting the microbicidal activity of phagocytes. On the other hand, M. tuberculosis reduces the effects of IFN-γ by inhibiting the transcription of IFN-γ- responsive genes and by inducing the secretion of IL-6, which inhibits IFN-γ signaling. Probiotics Lactobacillus sp. and Bifidobacterium sp. were known to increase IFN-γ production in vivo, while vitamin B1, B6, and B12 worked on macrophages and releasing cytokines. Therefore, the present study was to evaluate the effect of probiotics and vitamin B supplement on changes of plasma cytokine levels in active pulmonary TB. From October to November 2016, twelve M. tuberculosis-infected patients starting anti-TB drugs were recruited, then divided into two groups. Seven patients were given a combination of probiotics and vitamin B, while five patients were in the control group. Plasma IFN-γ and IL-6 levels were measured by the ELISA kit before and a month after treatment. IFN-γ levels raised in four patients receiving the supplement (P = 0.743), while IL-6 increased in three patients in this group until day 30 of treatment (P = 0.298). Taken together, these results show the promising effect of probiotics and vitamin B on stimulation of IFN-γ and IL-6 production during intensive therapy of TB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interferon-gamma" title="interferon-gamma">interferon-gamma</a>, <a href="https://publications.waset.org/abstracts/search?q=interleukin-6" title=" interleukin-6"> interleukin-6</a>, <a href="https://publications.waset.org/abstracts/search?q=probiotic" title=" probiotic"> probiotic</a>, <a href="https://publications.waset.org/abstracts/search?q=tuberculosis" title=" tuberculosis"> tuberculosis</a> </p> <a href="https://publications.waset.org/abstracts/62781/effect-of-probiotics-and-vitamin-b-on-plasma-interferon-gamma-and-interleukin-6-levels-in-active-pulmonary-tuberculosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62781.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cytokine&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cytokine&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cytokine&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cytokine&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cytokine&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cytokine&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10