CINXE.COM

Search results for: laser source

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: laser source</title> <meta name="description" content="Search results for: laser source"> <meta name="keywords" content="laser source"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="laser source" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="laser source"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 5424</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: laser source</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5424</span> Development of a Laboratory Laser-Produced Plasma “Water Window” X-Ray Source for Radiobiology Experiments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Adjei">Daniel Adjei</a>, <a href="https://publications.waset.org/abstracts/search?q=Mesfin%20Getachew%20Ayele"> Mesfin Getachew Ayele</a>, <a href="https://publications.waset.org/abstracts/search?q=Przemyslaw%20Wachulak"> Przemyslaw Wachulak</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrzej%20Bartnik"> Andrzej Bartnik</a>, <a href="https://publications.waset.org/abstracts/search?q=Lud%C4%9Bk%20Vy%C5%A1%C3%ADn"> Luděk Vyšín</a>, <a href="https://publications.waset.org/abstracts/search?q=Henryk%20Fiedorowicz"> Henryk Fiedorowicz</a>, <a href="https://publications.waset.org/abstracts/search?q=Inam%20Ul%20Ahad"> Inam Ul Ahad</a>, <a href="https://publications.waset.org/abstracts/search?q=Lukasz%20Wegrzynski"> Lukasz Wegrzynski</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20Wiechecka"> Anna Wiechecka</a>, <a href="https://publications.waset.org/abstracts/search?q=Janusz%20Lekki"> Janusz Lekki</a>, <a href="https://publications.waset.org/abstracts/search?q=Wojciech%20M.%20Kwiatek"> Wojciech M. Kwiatek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Laser produced plasma light sources, emitting high intensity pulses of X-rays, delivering high doses are useful to understand the mechanisms of high dose effects on biological samples. In this study, a desk-top laser plasma soft X-ray source, developed for radio biology research, is presented. The source is based on a double-stream gas puff target, irradiated with a commercial Nd:YAG laser (EKSPLA), which generates laser pulses of 4 ns time duration and energy up to 800 mJ at 10 Hz repetition rate. The source has been optimized for maximum emission in the “water window” wavelength range from 2.3 nm to 4.4 nm by using pure gas (argon, nitrogen and krypton) and spectral filtering. Results of the source characterization measurements and dosimetry of the produced soft X-ray radiation are shown and discussed. The high brightness of the laser produced plasma soft X-ray source and the low penetration depth of the produced X-ray radiation in biological specimen allows a high dose rate to be delivered to the specimen of over 28 Gy/shot; and 280 Gy/s at the maximum repetition rate of the laser system. The source has a unique capability for irradiation of cells with high pulse dose both in vacuum and He-environment. Demonstration of the source to induce DNA double- and single strand breaks will be discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser%20produced%20plasma" title="laser produced plasma">laser produced plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20X-rays" title=" soft X-rays"> soft X-rays</a>, <a href="https://publications.waset.org/abstracts/search?q=radio%20biology%20experiments" title=" radio biology experiments"> radio biology experiments</a>, <a href="https://publications.waset.org/abstracts/search?q=dosimetry" title=" dosimetry"> dosimetry</a> </p> <a href="https://publications.waset.org/abstracts/13094/development-of-a-laboratory-laser-produced-plasma-water-window-x-ray-source-for-radiobiology-experiments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13094.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">587</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5423</span> The Crack Propagation on Glass in Laser Thermal Cleavage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jehnming%20Lin">Jehnming Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the laser cleavage of glass, the laser is mostly adopted as a heat source to generate a thermal stress state on the substrates. The crack propagation of the soda-lime glass in the laser thermal cleavage with the straight-turning paths was investigated in this study experimentally and numerically. The crack propagation was visualized by a high speed camera with the off-line examination on the micro-crack propagation. The temperature and stress distributions induced by the laser heat source were calculated by ANSYS software based on the finite element method (FEM). With the cutting paths in various turning directions, the experimental and numerical results were in comparison and verified. The fracture modes due to the normal and shear stresses were verified at the turning point of the laser cleavage path. It shows a significant variation of the stress profiles along the straight-turning paths and causes a change on the fracture modes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser%20cleavage" title="laser cleavage">laser cleavage</a>, <a href="https://publications.waset.org/abstracts/search?q=glass" title=" glass"> glass</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture" title=" fracture"> fracture</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20analysis" title=" stress analysis"> stress analysis</a> </p> <a href="https://publications.waset.org/abstracts/49005/the-crack-propagation-on-glass-in-laser-thermal-cleavage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5422</span> Wobbled Laser Beam Welding for Macro-to Micro-Fabrication Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farzad%20Vakili-Farahani">Farzad Vakili-Farahani</a>, <a href="https://publications.waset.org/abstracts/search?q=Joern%20Lungershausen"> Joern Lungershausen</a>, <a href="https://publications.waset.org/abstracts/search?q=Kilian%20Wasmer"> Kilian Wasmer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wobbled laser beam welding, fast oscillations of a tiny laser beam within a designed path (weld geometry) during the laser pulse illumination, opens new possibilities to improve the marco-to micro-manufacturing process. The present work introduces the wobbled laser beam welding as a robust welding strategy for improving macro-to micro-fabrication process, e.g., the laser processing for gap-bridging and packaging industry. The typical requisites and relevant equipment for the development of a wobbled laser processing unit are addressed, including a suitable laser source, light delivery system, optics, proper beam deflection system and the design geometry. In addition, experiments have been carried out on titanium plate to compare the results of wobbled laser welding with conventional pulsed laser welding. As compared to the pulsed laser welding, the wobbled laser welding offers a much greater fusion area (i.e. additional molten material) while minimizing the HAZ and provides a better confinement of the material microstructural changes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wobbled%20laser%20beam%20welding" title="wobbled laser beam welding">wobbled laser beam welding</a>, <a href="https://publications.waset.org/abstracts/search?q=wobbling%20function" title=" wobbling function"> wobbling function</a>, <a href="https://publications.waset.org/abstracts/search?q=beam%20oscillation" title=" beam oscillation"> beam oscillation</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20welding" title=" micro welding"> micro welding</a> </p> <a href="https://publications.waset.org/abstracts/56603/wobbled-laser-beam-welding-for-macro-to-micro-fabrication-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56603.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5421</span> To Study the Effect of Optic Fibre Laser Cladding of Cast Iron with Silicon Carbide on Wear Rate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kshitij%20Sawke">Kshitij Sawke</a>, <a href="https://publications.waset.org/abstracts/search?q=Pradnyavant%20Kamble"> Pradnyavant Kamble</a>, <a href="https://publications.waset.org/abstracts/search?q=Shrikant%20Patil"> Shrikant Patil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study investigates the effect on wear rate of laser clad of cast iron with silicon carbide. Metal components fail their desired use because they wear, which causes them to lose their functionality. The laser has been used as a heating source to create a melt pool over the surface of cast iron, and then a layer of hard silicon carbide is deposited. Various combinations of power and feed rate of laser have experimented. A suitable range of laser processing parameters was identified. Wear resistance and wear rate properties were evaluated and the result showed that the wear resistance of the laser treated samples was exceptional to that of the untreated samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser%20clad" title="laser clad">laser clad</a>, <a href="https://publications.waset.org/abstracts/search?q=processing%20parameters" title=" processing parameters"> processing parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=wear%20rate" title=" wear rate"> wear rate</a>, <a href="https://publications.waset.org/abstracts/search?q=wear%20resistance" title=" wear resistance"> wear resistance</a> </p> <a href="https://publications.waset.org/abstracts/76458/to-study-the-effect-of-optic-fibre-laser-cladding-of-cast-iron-with-silicon-carbide-on-wear-rate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76458.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5420</span> Simulation of Laser Structuring by Three Dimensional Heat Transfer Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bassim%20Shaheen%20Bachy">Bassim Shaheen Bachy</a>, <a href="https://publications.waset.org/abstracts/search?q=J%C3%B6rg%20Franke"> Jörg Franke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a three dimensional numerical heat transfer model has been used to simulate the laser structuring of polymer substrate material in the Three-Dimensional Molded Interconnect Device (3D MID) which is used in the advanced multi-functional applications. A finite element method (FEM) transient thermal analysis is performed using APDL (ANSYS Parametric Design Language) provided by ANSYS. In this model, the effect of surface heat source was modeled with Gaussian distribution, also the effect of the mixed boundary conditions which consist of convection and radiation heat transfers have been considered in this analysis. The model provides a full description of the temperature distribution, as well as calculates the depth and the width of the groove upon material removal at different set of laser parameters such as laser power and laser speed. This study also includes the experimental procedure to study the effect of laser parameters on the depth and width of the removal groove metal as verification to the modeled results. Good agreement between the experimental and the model results is achieved for a wide range of laser powers. It is found that the quality of the laser structure process is affected by the laser scan speed and laser power. For a high laser structured quality, it is suggested to use laser with high speed and moderate to high laser power. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser%20structuring" title="laser structuring">laser structuring</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20modeling" title=" thermal modeling"> thermal modeling</a> </p> <a href="https://publications.waset.org/abstracts/12614/simulation-of-laser-structuring-by-three-dimensional-heat-transfer-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12614.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5419</span> Characterization of InP Semiconductor Quantum Dot Laser Diode after Am-Be Neutron Irradiation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulmalek%20Marwan%20Rajkhan">Abdulmalek Marwan Rajkhan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Al%20Ghamdi"> M. S. Al Ghamdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Damoum"> Mohammed Damoum</a>, <a href="https://publications.waset.org/abstracts/search?q=Essam%20Banoqitah"> Essam Banoqitah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is about the Am-Be neutron source irradiation of the InP Quantum Dot Laser diode. A QD LD was irradiated for 24 hours and 48 hours. The laser underwent IV characterization experiments before and after the first and second irradiations. A computer simulation using GAMOS helped in analyzing the given results from IV curves. The results showed an improvement in the QD LD series resistance, current density, and overall ideality factor at all measured temperatures. This is explained by the activation of the QD LD Indium composition to Strontium, ionization of the compound QD LD materials, and the energy deposited to the QD LD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20dot%20laser%20diode%20irradiation" title="quantum dot laser diode irradiation">quantum dot laser diode irradiation</a>, <a href="https://publications.waset.org/abstracts/search?q=effect%20of%20radiation%20on%20QD%20LD" title=" effect of radiation on QD LD"> effect of radiation on QD LD</a>, <a href="https://publications.waset.org/abstracts/search?q=Am-Be%20irradiation%20effect%20on%20SC%20QD%20LD" title=" Am-Be irradiation effect on SC QD LD"> Am-Be irradiation effect on SC QD LD</a> </p> <a href="https://publications.waset.org/abstracts/178642/characterization-of-inp-semiconductor-quantum-dot-laser-diode-after-am-be-neutron-irradiation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178642.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5418</span> The Effect of the Thermal Temperature and Injected Current on Laser Diode 808 nm Output Power</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hassan%20H.%20Abuelhassan">Hassan H. Abuelhassan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ali%20Badawi"> M. Ali Badawi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelrahman%20A.%20Elbadawi"> Abdelrahman A. Elbadawi</a>, <a href="https://publications.waset.org/abstracts/search?q=Adam%20A.%20Elbashir"> Adam A. Elbashir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the effect of the injected current and temperature into the output power of the laser diode module operating at 808nm were applied, studied and discussed. Low power diode laser was employed as a source. The experimental results were demonstrated and then the output power of laser diode module operating at 808nm was clearly changed by the thermal temperature and injected current. The output power increases by the increasing the injected current and temperature. We also showed that the increasing of the injected current results rising in heat, which also, results into decreasing of the laser diode output power during the highest temperature as well. The best ranges of characteristics made by diode module operating at 808nm were carefully handled and determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser%20diode" title="laser diode">laser diode</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20amplification" title=" light amplification"> light amplification</a>, <a href="https://publications.waset.org/abstracts/search?q=injected%20current" title=" injected current"> injected current</a>, <a href="https://publications.waset.org/abstracts/search?q=output%20power" title=" output power"> output power</a> </p> <a href="https://publications.waset.org/abstracts/49324/the-effect-of-the-thermal-temperature-and-injected-current-on-laser-diode-808-nm-output-power" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49324.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5417</span> All-Optical Gamma-Rays and Positrons Source by Ultra-Intense Laser Irradiating an Al Cone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20P.%20Yu">T. P. Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20J.%20Liu"> J. J. Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=X.%20L.%20Zhu"> X. L. Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Yin"> Y. Yin</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Q.%20Wang"> W. Q. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Ouyang"> J. M. Ouyang</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Q.%20Shao"> F. Q. Shao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A strong electromagnetic field with E>1015V/m can be supplied by an intense laser such as ELI and HiPER in the near future. Exposing in such a strong laser field, laser-matter interaction enters into the near quantum electrodynamics (QED) regime and highly non-linear physics may occur during the laser-matter interaction. Recently, the multi-photon Breit-Wheeler (BW) process attracts increasing attention because it is capable to produce abundant positrons and it enhances the positron generation efficiency significantly. Here, we propose an all-optical scheme for bright gamma rays and dense positrons generation by irradiating a 1022 W/cm2 laser pulse onto an Al cone filled with near-critical-density plasmas. Two-dimensional (2D) QED particle-in-cell (PIC) simulations show that, the radiation damping force becomes large enough to compensate for the Lorentz force in the cone, causing radiation-reaction trapping of a dense electron bunch in the laser field. The trapped electrons oscillate in the laser electric field and emits high-energy gamma photons in two ways: (1) nonlinear Compton scattering due to the oscillation of electrons in the laser fields, and (2) Compton backwardscattering resulting from the bunch colliding with the reflected laser by the cone tip. The multi-photon Breit-Wheeler process is thus initiated and abundant electron-positron pairs are generated with a positron density ~1027m-3. The scheme is finally demonstrated by full 3D PIC simulations, which indicate the positron flux is up to 109. This compact gamma ray and positron source may have promising applications in future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BW%20process" title="BW process">BW process</a>, <a href="https://publications.waset.org/abstracts/search?q=electron-positron%20pairs" title=" electron-positron pairs"> electron-positron pairs</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma%20rays%20emission" title=" gamma rays emission"> gamma rays emission</a>, <a href="https://publications.waset.org/abstracts/search?q=ultra-intense%20laser" title=" ultra-intense laser"> ultra-intense laser</a> </p> <a href="https://publications.waset.org/abstracts/46218/all-optical-gamma-rays-and-positrons-source-by-ultra-intense-laser-irradiating-an-al-cone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46218.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5416</span> Theoretical Analysis and Numerical Evaluation of the Flow inside the Supersonic Nozzle for Chemical Lasers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammedi%20Ferhate">Mohammedi Ferhate</a>, <a href="https://publications.waset.org/abstracts/search?q=Hakim%20Chadli"> Hakim Chadli</a>, <a href="https://publications.waset.org/abstracts/search?q=Laggoun%20Chaouki"> Laggoun Chaouki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objectives of work in this area are, first, obtaining the high laser energies in short time durations needed for the feasibility studies of laser induced thermodynamically exothermic chemical reactions , second, investigating the physical principles that can be used to make laser sources capable of delivering high average powers. We note that, in order to reach both objectives, one has to convert electrical or chemical energy into laser energy, using dense gaseous media.. We present results from the early development of an F atom source appropriate for HF and DF chemical laser research. We next explain the very important difficulties encountered in working with dense gases for that purpose, and we shall describe how, especially at Evaluation of downstream-mixing scheme –levels transitions (001) → (100) and (001) → (020) gas dynamic laser The physical phenomena that control the operation of presently existing laser devices are now sufficiently well understood, so that it is possible to predict that new generations of lasers could be designed in the future. The proposed model of excitation and relaxation levels was finally proved by the computational numerical code of Matlab toolboxes of different parameters of nozzle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title="hydrogen">hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=combust" title=" combust"> combust</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20laser" title=" chemical laser"> chemical laser</a>, <a href="https://publications.waset.org/abstracts/search?q=halogen%20atom" title=" halogen atom"> halogen atom</a> </p> <a href="https://publications.waset.org/abstracts/161569/theoretical-analysis-and-numerical-evaluation-of-the-flow-inside-the-supersonic-nozzle-for-chemical-lasers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161569.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5415</span> Preparation and Sealing of Polymer Microchannels Using EB Lithography and Laser Welding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ian%20Jones">Ian Jones</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonathan%20Griffiths"> Jonathan Griffiths</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Laser welding offers the potential for making very precise joints in plastics products, both in terms of the joint location and the amount of heating applied. These methods have allowed the production of complex products such as microfluidic devices where channels and structure resolution below 100 µm is regularly used. However, to date, the dimension of welds made using lasers has been limited by the focus spot size that is achievable from the laser source. Theoretically, the minimum spot size possible from a laser is comparable to the wavelength of the radiation emitted. Practically, with reasonable focal length optics the spot size achievable is a few factors larger than this, and the melt zone in a plastics weld is larger again than this. The narrowest welds feasible to date have therefore been 10-20 µm wide using a near-infrared laser source. The aim of this work was to prepare laser absorber tracks and channels less than 10 µm wide in PMMA thermoplastic using EB lithography followed by sealing of channels using laser welding to carry out welds with widths of the order of 1 µm, below the resolution limit of the near-infrared laser used. Welded joints with a width of 1 µm have been achieved as well as channels with a width of 5 µm. The procedure was based on the principle of transmission laser welding using a thin coating of infrared absorbent material at the joint interface. The coating was patterned using electron-beam lithography to obtain the required resolution in a reproducible manner and that resolution was retained after the transmission laser welding process. The joint strength was ratified using larger scale samples. The results demonstrate that plastics products could be made with a high density of structure with resolution below 1 um, and that welding can be applied without excessively heating regions beyond the weld lines. This may be applied to smaller scale sensor and analysis chips, micro-bio and chemical reactors and to microelectronic packaging. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microchannels" title="microchannels">microchannels</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer" title=" polymer"> polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=EB%20lithography" title=" EB lithography"> EB lithography</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20welding" title=" laser welding"> laser welding</a> </p> <a href="https://publications.waset.org/abstracts/7851/preparation-and-sealing-of-polymer-microchannels-using-eb-lithography-and-laser-welding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7851.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5414</span> Laser Beam Bending via Lenses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Remzi%20Yildirim">Remzi Yildirim</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatih.%20V.%20%C3%87elebi"> Fatih. V. Çelebi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Haldun%20G%C3%B6kta%C5%9F"> H. Haldun Göktaş</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Behzat%20%C5%9Eahin"> A. Behzat Şahin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is about a single component cylindrical structured lens with gradient curve which we used for bending laser beams. It operates under atmospheric conditions and bends the laser beam independent of temperature, pressure, polarity, polarization, magnetic field, electric field, radioactivity, and gravity. A single piece cylindrical lens that can bend laser beams is invented. Lenses are made of transparent, tinted or colored glasses and used for undermining or absorbing the energy of the laser beams. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser" title="laser">laser</a>, <a href="https://publications.waset.org/abstracts/search?q=bending" title=" bending"> bending</a>, <a href="https://publications.waset.org/abstracts/search?q=lens" title=" lens"> lens</a>, <a href="https://publications.waset.org/abstracts/search?q=light" title=" light"> light</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20optics" title=" nonlinear optics"> nonlinear optics</a> </p> <a href="https://publications.waset.org/abstracts/22254/laser-beam-bending-via-lenses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22254.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5413</span> Laser Light Bending via Lenses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Remzi%20Yildirim">Remzi Yildirim</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatih%20V.%20%C3%87elebi"> Fatih V. Çelebi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Haldun%20G%C3%B6kta%C5%9F"> H. Haldun Göktaş</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Behzat%20%C5%9Eahin"> A. Behzat Şahin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is about a single component cylindrical structured lens with gradient curve which we used for bending laser beams. It operates under atmospheric conditions and bends the laser beam independent of temperature, pressure, polarity, polarization, magnetic field, electric field, radioactivity, and gravity. A single piece cylindrical lens that can bend laser beams is invented. Lenses are made of transparent, tinted or colored glasses and used for undermining or absorbing the energy of the laser beams. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser" title="laser">laser</a>, <a href="https://publications.waset.org/abstracts/search?q=bending" title=" bending"> bending</a>, <a href="https://publications.waset.org/abstracts/search?q=lens" title=" lens"> lens</a>, <a href="https://publications.waset.org/abstracts/search?q=light" title=" light"> light</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20optics" title=" nonlinear optics"> nonlinear optics</a> </p> <a href="https://publications.waset.org/abstracts/22251/laser-light-bending-via-lenses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22251.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">702</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5412</span> Hole Characteristics of Percussion and Single Pulse Laser-Incised Radiata Pine and the Effects of Wood Anatomy on Laser-Incision</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Subhasisa%20Nath">Subhasisa Nath</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Waugh"> David Waugh</a>, <a href="https://publications.waset.org/abstracts/search?q=Graham%20Ormondroyd"> Graham Ormondroyd</a>, <a href="https://publications.waset.org/abstracts/search?q=Morwenna%20Spear"> Morwenna Spear</a>, <a href="https://publications.waset.org/abstracts/search?q=Andy%20Pitman"> Andy Pitman</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Mason"> Paul Mason</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wood is one of the most sustainable and environmentally favourable materials and is chemically treated in timber industries to maximise durability. To increase the chemical preservative uptake and retention by the wood, current limiting incision technologies are commonly used. This work reports the effects of single pulse CO2 laser-incision and frequency tripled Nd:YAG percussion laser-incision on the characteristics of laser-incised holes in the Radiata Pine. The laser-incision studies were based on changing laser wavelengths, energies and focal planes to conclude on an optimised combination for the laser-incision of Radiata Pine. The laser pulse duration had a dominant effect over laser power in controlling hole aspect ratio in CO2 laser-incision. A maximum depth of ~ 30 mm was measured with a laser power output of 170 W and a pulse duration of 80 ms. However, increased laser power led to increased carbonisation of holes. The carbonisation effect was reduced during laser-incision in the ultra-violet (UV) regime. Deposition of a foamy phase on the laser-incised hole wall was evident irrespective of laser radiation wavelength and energy. A maximum hole depth of ~20 mm was measured in the percussion laser-incision in the UV regime (355 nm) with a pulse energy of 320 mJ. The radial and tangential faces had a significant effect on laser-incision efficiency for all laser wavelengths. The laser-incised hole shapes and circularities were affected by the wood anatomy (earlywoods and latewoods in the structure). Subsequently, the mechanism of laser-incision is proposed by analysing the internal structure of laser-incised holes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CO2%20Laser" title="CO2 Laser">CO2 Laser</a>, <a href="https://publications.waset.org/abstracts/search?q=Nd%3A%20YAG%20laser" title=" Nd: YAG laser"> Nd: YAG laser</a>, <a href="https://publications.waset.org/abstracts/search?q=incision" title=" incision"> incision</a>, <a href="https://publications.waset.org/abstracts/search?q=drilling" title=" drilling"> drilling</a>, <a href="https://publications.waset.org/abstracts/search?q=wood" title=" wood"> wood</a>, <a href="https://publications.waset.org/abstracts/search?q=hole%20characteristics" title=" hole characteristics"> hole characteristics</a> </p> <a href="https://publications.waset.org/abstracts/138450/hole-characteristics-of-percussion-and-single-pulse-laser-incised-radiata-pine-and-the-effects-of-wood-anatomy-on-laser-incision" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138450.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5411</span> Enhancing of Laser Imaging by Using Ultrasound Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hayder%20Raad%20Hafuze">Hayder Raad Hafuze</a>, <a href="https://publications.waset.org/abstracts/search?q=Munqith%20Saleem%20Dawood"> Munqith Saleem Dawood</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamal%20Abdul%20Jabbar"> Jamal Abdul Jabbar </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of using both ultrasounds with laser in medical imaging of the biological tissue has been studied in this paper. Different wave lengths of incident laser light (405 nm, 532 nm, 650 nm, 808 nm and 1064 nm) were used with different ultrasound frequencies (1MHz and 3.3MHz). The results showed that, the change of acoustic intensity enhance the laser penetration of the tissue for different thickness. The existence of the ideal Raman-Nath diffraction pattern were investigated in terms of phase delay and incident angle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tissue" title="tissue">tissue</a>, <a href="https://publications.waset.org/abstracts/search?q=laser" title=" laser"> laser</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a>, <a href="https://publications.waset.org/abstracts/search?q=effect" title=" effect"> effect</a>, <a href="https://publications.waset.org/abstracts/search?q=imaging" title=" imaging "> imaging </a> </p> <a href="https://publications.waset.org/abstracts/45517/enhancing-of-laser-imaging-by-using-ultrasound-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45517.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5410</span> The Temperature Effects on the Microstructure and Profile in Laser Cladding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20C.%20Chiu">P. C. Chiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jehnming%20Lin"> Jehnming Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a 50-W CO<sub>2 </sub>laser was used for the clad of 304L powders on the stainless steel substrate with a temperature sensor and image monitoring system. The laser power and cladding speed and focal position were modified to achieve the requirement of the workpiece flatness and mechanical properties. The numerical calculation is based on ANSYS to analyze the temperature change of the moving heat source at different surface positions when coating the workpiece, and the effect of the process parameters on the bath size was discussed. The temperature of stainless steel powder in the nozzle outlet reacting with the laser was simulated as a process parameter. In the experiment, the difference of the thermal conductivity in three-dimensional space is compared with single-layer cladding and multi-layer cladding. The heat dissipation pattern of the single-layer cladding is the steel plate and the multi-layer coating is the workpiece itself. The relationship between the multi-clad temperature and the profile was analyzed by the temperature signal from an IR pyrometer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser%20cladding" title="laser cladding">laser cladding</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=profile" title=" profile"> profile</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/78506/the-temperature-effects-on-the-microstructure-and-profile-in-laser-cladding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78506.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5409</span> Production of Neutrons by High Intensity Picosecond Laser Interacting with Thick Solid Target at XingGuangIII</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xi%20Yuan">Xi Yuan</a>, <a href="https://publications.waset.org/abstracts/search?q=Xuebin%20Zhu"> Xuebin Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Bojun%20Li"> Bojun Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work describes the experiment to produce high-intensity pulsed neutron beams on XingGuangIII laser facility. The high-intensity laser is utilized to drive protons and deuterons, which hit a thick solid target to produce neutrons. The pulse duration of the laser used in the experiment is about 0.8 ps, and the laser energy is around 100 J. Protons and deuterons are accelerated from a 10-μm-thick deuterated polyethylene (CD₂) foil and diagnosed by a Thomson parabola ion-spectrometer. The energy spectrum of neutrons generated via ⁷Li(d,n) and ⁷Li(p,n) reaction when proton and deuteron beams hit a 5-mm-thick LiF target is measured by a scintillator-based time-of-flight spectrometer. Results from the neuron measurements show that the maximum neutron energy is about 12.5 MeV and the neutron yield is up to 2×10⁹/pulse. The high-intensity pulsed neutron beams demonstrated in this work can provide a valuable neutron source for material research, fast neutron induced fission research, and so on. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=picosecond%20laser%20driven" title="picosecond laser driven">picosecond laser driven</a>, <a href="https://publications.waset.org/abstracts/search?q=fast%20neutron" title=" fast neutron"> fast neutron</a>, <a href="https://publications.waset.org/abstracts/search?q=time-of-flight%20spectrometry" title=" time-of-flight spectrometry"> time-of-flight spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=XinggungIII" title=" XinggungIII"> XinggungIII</a> </p> <a href="https://publications.waset.org/abstracts/92159/production-of-neutrons-by-high-intensity-picosecond-laser-interacting-with-thick-solid-target-at-xingguangiii" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92159.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5408</span> Comparative Study of Bending Angle in Laser Forming Process Using Artificial Neural Network and Fuzzy Logic System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Hassani">M. Hassani</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Hassani"> Y. Hassani</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Ajudanioskooei"> N. Ajudanioskooei</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20N.%20Benvid"> N. N. Benvid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Laser Forming process as a non-contact thermal forming process is widely used to forming and bending of metallic and non-metallic sheets. In this process, according to laser irradiation along a specific path, sheet is bent. One of the most important output parameters in laser forming is bending angle that depends on process parameters such as physical and mechanical properties of materials, laser power, laser travel speed and the number of scan passes. In this paper, Artificial Neural Network and Fuzzy Logic System were used to predict of bending angle in laser forming process. Inputs to these models were laser travel speed and laser power. The comparison between artificial neural network and fuzzy logic models with experimental results has been shown both of these models have high ability to prediction of bending angles with minimum errors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title="artificial neural network">artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=bending%20angle" title=" bending angle"> bending angle</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic" title=" fuzzy logic"> fuzzy logic</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20forming" title=" laser forming"> laser forming</a> </p> <a href="https://publications.waset.org/abstracts/34045/comparative-study-of-bending-angle-in-laser-forming-process-using-artificial-neural-network-and-fuzzy-logic-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34045.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">597</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5407</span> Laser-TIG Welding-Brazing for Dissimilar Metals between Aluminum Alloy and Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiangfang%20Xu">Xiangfang Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Bintao%20Wu"> Bintao Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yugang%20Miao"> Yugang Miao</a>, <a href="https://publications.waset.org/abstracts/search?q=Duanfeng%20Han"> Duanfeng Han</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Experiments were conducted on 5A06 aluminum alloy and Q235 steel using the laser-TIG hybrid heat source welding-brazing method to realize the reliable connection of Al/Fe dissimilar metals and the welding characteristics were analyzed. It was found that the joints with uniform seam and high tensile strength could be obtained using such a method, while the welding process demanded special welding parameters. Spectrum measurements showed that the Al and Fe atoms diffused more thoroughly at the brazing interface and formed a 3μm-thick intermetallic compound layer at the Al/Fe joints brazed connection interface. Shearing tests indicated that the shearing strength of the Al/Fe welding-brazed joint was 165MPa. The fracture occurred near the melting zone of aluminum alloy, which belonged to the mixed mode with the ductile fracture as the base and the brittle fracture as the supplement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al%2FFe%20dissimilar%20metals" title="Al/Fe dissimilar metals">Al/Fe dissimilar metals</a>, <a href="https://publications.waset.org/abstracts/search?q=laser-TIG%20hybrid%20heat%20source" title=" laser-TIG hybrid heat source"> laser-TIG hybrid heat source</a>, <a href="https://publications.waset.org/abstracts/search?q=shearing%20strength" title=" shearing strength"> shearing strength</a>, <a href="https://publications.waset.org/abstracts/search?q=welding-brazing%20method" title=" welding-brazing method"> welding-brazing method</a> </p> <a href="https://publications.waset.org/abstracts/17285/laser-tig-welding-brazing-for-dissimilar-metals-between-aluminum-alloy-and-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17285.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5406</span> Optimum Er: YAG Laser Parameters for Orthodontic Composite Debonding: An in vitro Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Zamzam">Mohammad Zamzam</a>, <a href="https://publications.waset.org/abstracts/search?q=Wesam%20Bachir"> Wesam Bachir</a>, <a href="https://publications.waset.org/abstracts/search?q=Imad%20Asaad"> Imad Asaad </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Several studies have produced estimates of Er:YAG laser parameters and specifications but there is still insufficient data for reliable selection of laser parameters. As a consequence, there is a heightened need for ideal specifications of Er:YAG laser to reduce the amount of enamel ablation. The objective of this paper is to investigate the influence of Er:YAG laser parameters, energy level and pulse duration, on orthodontic composite removal after bracket debonding. The sample consisted of 45 cuboids of orthodontic composite made by plastic moulds. The samples were divided into three groups, each was irradiated with Er:YAG laser set at different energy levels and three values for pulse durations (50 µs, 100 µs, and 300 µs). Geometrical parameters (depth and area) of cavities formed by laser irradiation were determined. ANCOVA test showed statistically significant difference (p < 0.0.5) between the groups indicating a potential effect of laser pulse duration on the geometrical parameters after controlling laser energy level. A post-hoc Bonferroni test ranked the 50µ Er:YAG laser pulse as the most influential factor for all geometrical parameters in removing remnant composite from enamel surface. Also, 300 mJ laser pulses caused the largest removal of the composite. The results of the present study demonstrated the efficacy of 50 µs and 300 mJ Er:YAG laser pulse for removal of remnant orthodontic composite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=enamel" title="enamel">enamel</a>, <a href="https://publications.waset.org/abstracts/search?q=Er%3AYAG" title=" Er:YAG"> Er:YAG</a>, <a href="https://publications.waset.org/abstracts/search?q=geometrical%20parameters" title=" geometrical parameters"> geometrical parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=orthodontic%20composite" title=" orthodontic composite"> orthodontic composite</a>, <a href="https://publications.waset.org/abstracts/search?q=remnant%20composite" title=" remnant composite"> remnant composite</a> </p> <a href="https://publications.waset.org/abstracts/6666/optimum-er-yag-laser-parameters-for-orthodontic-composite-debonding-an-in-vitro-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6666.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">553</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5405</span> Effect of Laser Input Energy on the Laser Joining of Polyethylene Terephthalate to Titanium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20J.%20Chen">Y. J. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20M.%20Yue"> T. M. Yue</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20N.%20Guo"> Z. N. Guo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reports the effects of laser energy on the characteristics of bubbles generated in the weld zone and the formation of new chemical bonds at the Polyethylene Terephthalate (PET)/Ti joint interface in laser joining of PET to Ti. The samples were produced by using different laser energies ranging from 1.5 J &ndash; 6 J in steps of 1.5 J, while all other joining parameters remained unchanged. The types of chemical bonding at the joint interface were analysed by the x-ray photoelectron spectroscopy (XPS) depth-profiling method. The results show that the characteristics of the bubbles and the thickness of the chemically bonded interface, which contains the laser generated bonds of Ti&ndash;C and Ti&ndash;O, increase markedly with increasing laser energy input. The tensile failure load of the joint depends on the combined effect of the amount and distribution of the bubbles formed and the chemical bonding intensity of the joint interface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser%20direct%20joining" title="laser direct joining">laser direct joining</a>, <a href="https://publications.waset.org/abstracts/search?q=Ti%2FPET%20interface" title=" Ti/PET interface"> Ti/PET interface</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20energy" title=" laser energy"> laser energy</a>, <a href="https://publications.waset.org/abstracts/search?q=XPS%20depth%20profiling" title=" XPS depth profiling"> XPS depth profiling</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20bond" title=" chemical bond"> chemical bond</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20failure%20load" title=" tensile failure load"> tensile failure load</a> </p> <a href="https://publications.waset.org/abstracts/52818/effect-of-laser-input-energy-on-the-laser-joining-of-polyethylene-terephthalate-to-titanium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52818.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5404</span> Laser Irradiated GeSn Photodetector for Improved Infrared Photodetection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Patrik%20Scajev">Patrik Scajev</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavels%20Onufrijevs"> Pavels Onufrijevs</a>, <a href="https://publications.waset.org/abstracts/search?q=Algirdas%20Mekys"> Algirdas Mekys</a>, <a href="https://publications.waset.org/abstracts/search?q=Tadas%20Malinauskas"> Tadas Malinauskas</a>, <a href="https://publications.waset.org/abstracts/search?q=Dominykas%20Augulis"> Dominykas Augulis</a>, <a href="https://publications.waset.org/abstracts/search?q=Liudvikas%20Subacius"> Liudvikas Subacius</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuo-Chih%20Lee"> Kuo-Chih Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jevgenijs%20Kaupuzs"> Jevgenijs Kaupuzs</a>, <a href="https://publications.waset.org/abstracts/search?q=Arturs%20Medvids"> Arturs Medvids</a>, <a href="https://publications.waset.org/abstracts/search?q=Hung%20Hsiang%20Cheng"> Hung Hsiang Cheng </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we focused on the optoelectronic properties of the photodiodes prepared by using 200 nm thick Ge₀.₉₅Sn₀.₀₅ epitaxial layers on Ge/n-Si substrate with aluminum contacts. Photodiodes were formed on non-irradiated and Nd: YAG laser irradiated Ge₀.₉₅Sn₀.₀₅ layers. The samples were irradiated by pulsed Nd: YAG laser with 136.7-462.6 MW/cm² intensity. The photodiodes were characterized by using short laser pulses with the wavelength in the 2.0-2.6 μm range. The laser-irradiated diode was found more sensitive in the long-wavelength range due to laser-induced Sn atoms redistribution providing formation of graded bandgap structure. Sub-millisecond photocurrent relaxation in the diodes revealed their suitability for image sensors. Our findings open the perspective for improving the photo-sensitivity of GeSn alloys in the mid-infrared by pulsed laser processing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GeSn" title="GeSn">GeSn</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20processing" title=" laser processing"> laser processing</a>, <a href="https://publications.waset.org/abstracts/search?q=photodetector" title=" photodetector"> photodetector</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared" title=" infrared"> infrared</a> </p> <a href="https://publications.waset.org/abstracts/131848/laser-irradiated-gesn-photodetector-for-improved-infrared-photodetection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131848.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5403</span> Self-Action Effects of a Non-Gaussian Laser Beam Through Plasma </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sandeep%20Kumar">Sandeep Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Naveen%20Gupta"> Naveen Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The propagation of the Non-Gaussian laser beam results in strong self-focusing as compare to the Gaussian laser beam, which helps to achieve a prerequisite of the plasma-based electron, Terahertz generation, and higher harmonic generations. The theoretical investigation on the evolution of non-Gaussian laser beam through the collisional plasma with ramped density has been presented. The non-uniform irradiance over the cross-section of the laser beam results in redistribution of the carriers that modifies the optical response of the plasma in such a way that the plasma behaves like a converging lens to the laser beam. The formulation is based on finding a semi-analytical solution of the nonlinear Schrodinger wave equation (NLSE) with the help of variational theory. It has been observed that the decentred parameter ‘q’ of laser and wavenumber of ripples of medium contribute to providing the required conditions for the improvement of self-focusing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-Gaussian%20beam" title="non-Gaussian beam">non-Gaussian beam</a>, <a href="https://publications.waset.org/abstracts/search?q=collisional%20plasma" title=" collisional plasma"> collisional plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=variational%20theory" title=" variational theory"> variational theory</a>, <a href="https://publications.waset.org/abstracts/search?q=self-focusing" title=" self-focusing"> self-focusing</a> </p> <a href="https://publications.waset.org/abstracts/124754/self-action-effects-of-a-non-gaussian-laser-beam-through-plasma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124754.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5402</span> Arduino-Based Laser Communication</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Simon%20Bambey">Simon Bambey</a>, <a href="https://publications.waset.org/abstracts/search?q=Edward%20Lim"> Edward Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=Kai%20Corley-Jory"> Kai Corley-Jory</a>, <a href="https://publications.waset.org/abstracts/search?q=Pooya%20Taheri"> Pooya Taheri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main goal of this paper is to propose a simple and low-cost microcontroller-based laser communication link. To demonstrate that laser communication is a viable and efficient means for transmitting data, a transceiver capable of transfer rates of approximately 0.7 kB/s is prototyped. The hardware used for the transceiver consists of Commercial Off-The-Shelf (COTS) lasers, photodiodes, and the Arduino Mega 2560 which is an open-source and easy-to-use microcontroller-based platform intended for making interactive projects. A graphic user interface utilizing the Meteor framework is developed to facilitate the communication between the user and transceiver. The developed transceiver prototype is capable of receiving and transmitting data at significant ranges with no loss of information. Furthermore, stable and secure communication is achieved through several mechanisms developed to manage simultaneous sending and receiving, in addition to detecting physical interruptions during transmission. The design setup is scalable and with further development can be transformed into a fiber-optic transmission system. Due to its nature, laser communication is very secure and can provide a safe and private communication link. Overall, this paper demonstrates how laser communication can be an economical, durable, and effective means of information transfer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arduino%20microcontrollers" title="Arduino microcontrollers">Arduino microcontrollers</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20applications" title=" laser applications"> laser applications</a>, <a href="https://publications.waset.org/abstracts/search?q=user%20interfaces" title=" user interfaces"> user interfaces</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20communication" title=" wireless communication"> wireless communication</a> </p> <a href="https://publications.waset.org/abstracts/53299/arduino-based-laser-communication" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53299.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5401</span> Development of 3D Laser Scanner for Robot Navigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Emre%20%C3%96zt%C3%BCrk">Ali Emre Öztürk</a>, <a href="https://publications.waset.org/abstracts/search?q=Ergun%20Ercelebi"> Ergun Ercelebi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Autonomous robotic systems needs an equipment like a human eye for their movement. Robotic camera systems, distance sensors and 3D laser scanners have been used in the literature. In this study a 3D laser scanner has been produced for those autonomous robotic systems. In general 3D laser scanners are using 2 dimension laser range finders that are moving on one-axis (1D) to generate the model. In this study, the model has been obtained by a one-dimensional laser range finder that is moving in two –axis (2D) and because of this the laser scanner has been produced cheaper. Furthermore for the laser scanner a motor driver, an embedded system control board has been used and at the same time a user interface card has been used to make the communication between those cards and computer. Due to this laser scanner, the density of the objects, the distance between the objects and the necessary path ways for the robot can be calculated. The data collected by the laser scanner system is converted in to cartesian coordinates to be modeled in AutoCAD program. This study shows also the synchronization between the computer user interface, AutoCAD and the embedded systems. As a result it makes the solution cheaper for such systems. The scanning results are enough for an autonomous robot but the scan cycle time should be developed. This study makes also contribution for further studies between the hardware and software needs since it has a powerful performance and a low cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20laser%20scanner" title="3D laser scanner">3D laser scanner</a>, <a href="https://publications.waset.org/abstracts/search?q=embedded%20system" title=" embedded system"> embedded system</a>, <a href="https://publications.waset.org/abstracts/search?q=1D%20laser%20range%20finder" title=" 1D laser range finder"> 1D laser range finder</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20model" title=" 3D model"> 3D model</a> </p> <a href="https://publications.waset.org/abstracts/3355/development-of-3d-laser-scanner-for-robot-navigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3355.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5400</span> Interaction of Tungsten Tips with Laguerre-Gaussian Beams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhisek%20Sinha">Abhisek Sinha</a>, <a href="https://publications.waset.org/abstracts/search?q=Debobrata%20Rajak"> Debobrata Rajak</a>, <a href="https://publications.waset.org/abstracts/search?q=Shilpa%20Rani"> Shilpa Rani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ram%20Gopal"> Ram Gopal</a>, <a href="https://publications.waset.org/abstracts/search?q=Vandana%20Sharma"> Vandana Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The interaction of femtosecond laser pulses with metallic tips has been studied extensively, and they have proved to be a very good source of ultrashort electron pulses. A study of the interaction of femtosecond Laguerre-Gaussian (LG) laser modes with Tungsten tips is presented here. Laser pulses of 35 fs pulse durations were incident on Tungsten tips, and their electron emission rates were studied for LG (l=1, p=0) and Gaussian modes. A change in the order of the interaction for LG beams is reported, and the difference in the order of interaction is attributed to ponderomotive shifts in the energy levels corresponding to the enhanced near-field intensity supported by numerical simulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=femtosecond" title="femtosecond">femtosecond</a>, <a href="https://publications.waset.org/abstracts/search?q=Laguerre-Gaussian" title=" Laguerre-Gaussian"> Laguerre-Gaussian</a>, <a href="https://publications.waset.org/abstracts/search?q=OAM" title=" OAM"> OAM</a>, <a href="https://publications.waset.org/abstracts/search?q=tip" title=" tip"> tip</a> </p> <a href="https://publications.waset.org/abstracts/139164/interaction-of-tungsten-tips-with-laguerre-gaussian-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139164.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5399</span> Optical Diagnostics of Corona Discharge by Laser Interferometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Bendimerad">N. Bendimerad</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Lemerini"> M. Lemerini</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Guen"> A. Guen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we propose to determine the density of neutral particles of an electric discharge peak - Plan types performed in air at atmospheric pressure by applying a technique based on laser interferometry. The experimental methods used so far as the shadowgraph or stereoscopy, give rather qualitative results with regard to the determination of the neutral density. The neutral rotational temperature has been subject of several studies but direct measurements of kinetic temperature are rare. The aim of our work is to determine quantitatively and experimentally depopulation with a Mach-Zehnder type interferometer. This purely optical appearance of the discharge is important when looking to know the refractive index of any gas for any physicochemical applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser%20source" title="laser source">laser source</a>, <a href="https://publications.waset.org/abstracts/search?q=Mach-Zehnder%20interferometer" title=" Mach-Zehnder interferometer"> Mach-Zehnder interferometer</a>, <a href="https://publications.waset.org/abstracts/search?q=refractive%20index" title=" refractive index"> refractive index</a>, <a href="https://publications.waset.org/abstracts/search?q=corona%20discharge" title=" corona discharge"> corona discharge</a> </p> <a href="https://publications.waset.org/abstracts/30938/optical-diagnostics-of-corona-discharge-by-laser-interferometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5398</span> Probabilistic Modeling Laser Transmitter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20S.%20Kang">H. S. Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Coupled electrical and optical model for conversion of electrical energy into coherent optical energy for transmitter-receiver link by solid state device is presented. Probability distribution for travelling laser beam switching time intervals and the number of switchings in the time interval is obtained. Selector function mapping is employed to regulate optical data transmission speed. It is established that regulated laser transmission from PhotoActive Laser transmitter follows principal of invariance. This considerably simplifies design of PhotoActive Laser Transmission networks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20mathematics" title="computational mathematics">computational mathematics</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20difference%20Markov%20chain%20methods" title=" finite difference Markov chain methods"> finite difference Markov chain methods</a>, <a href="https://publications.waset.org/abstracts/search?q=sequence%20spaces" title=" sequence spaces"> sequence spaces</a>, <a href="https://publications.waset.org/abstracts/search?q=singularly%20perturbed%20differential%20equations" title=" singularly perturbed differential equations"> singularly perturbed differential equations</a> </p> <a href="https://publications.waset.org/abstracts/8445/probabilistic-modeling-laser-transmitter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8445.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5397</span> High-Production Laser and Plasma Welding Technologies for High-Speed Vessels Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20M.%20Levshakov">V. M. Levshakov</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20A.%20Steshenkova"> N. A. Steshenkova</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20A.%20Nosyrev"> N. A. Nosyrev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Application of hulls processing technologies, based on high-concentrated energy sources (laser and plasma technologies), allow improve shipbuilding production. It is typical for high-speed vessels construction using steel and aluminum alloys with high precision hulls required. Report describes high-performance technologies for plasma welding (using direct current of reversed polarity), laser, and hybrid laser-arc welding of hulls structures developed by JSC “SSTC”. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flat%20sections" title="flat sections">flat sections</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20laser-arc%20welding" title=" hybrid laser-arc welding"> hybrid laser-arc welding</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20welding" title=" plasma welding"> plasma welding</a>, <a href="https://publications.waset.org/abstracts/search?q=plasmatron" title=" plasmatron"> plasmatron</a> </p> <a href="https://publications.waset.org/abstracts/8894/high-production-laser-and-plasma-welding-technologies-for-high-speed-vessels-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8894.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5396</span> Novel Ferroelectric Properties as Studied by Boson Mean Field Laser Radiation Induced from a Beer Bottle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tadeus%20Atraskevic">Tadeus Atraskevic</a>, <a href="https://publications.waset.org/abstracts/search?q=Asch%20Dalbajobas"> Asch Dalbajobas</a>, <a href="https://publications.waset.org/abstracts/search?q=Mazahistas%20Pukuotukas"> Mazahistas Pukuotukas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The novel ferroelectric properties appeared in the recent ten years. Many scientists consider them as non-statement science. Nevertheless, many papers are published. The Mean field theory takes an important place in the theory of ferroelectric materials which can be applied for Boson induced laser systems for ‘Star Track’ soldiers. The novel Laser, which was produced in The Vilnius Bambalio University is a ‘now-how’ among other laser systems. The laser can produce power of 30 kW during 15 seconds. Its size and compatibility distinguishes it among other devices and safety gadgets. Scientists of Bambalio University have already patented the device. The most interesting in this innovations is the process of operation. Merely it may be operated through a bottle a beer what makes the measurement so convenient, that an ordinary scientist can process all stuff without significant effort just by taking pleasure by drinking a bottle of beer. Here we would like to report on the laser system and present our unique developments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser" title="laser">laser</a>, <a href="https://publications.waset.org/abstracts/search?q=boson" title=" boson"> boson</a>, <a href="https://publications.waset.org/abstracts/search?q=ferroelectrics" title=" ferroelectrics"> ferroelectrics</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20field%20theory" title=" mean field theory"> mean field theory</a> </p> <a href="https://publications.waset.org/abstracts/75540/novel-ferroelectric-properties-as-studied-by-boson-mean-field-laser-radiation-induced-from-a-beer-bottle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5395</span> Air-Coupled Ultrasonic Testing for Non-Destructive Evaluation of Various Aerospace Composite Materials by Laser Vibrometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Vyas">J. Vyas</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Kazys"> R. Kazys</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Sestoke"> J. Sestoke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Air-coupled ultrasonic is the contactless ultrasonic measurement approach which has become widespread for material characterization in Aerospace industry. It is always essential for the requirement of lightest weight, without compromising the durability. To archive the requirements, composite materials are widely used. This paper yields analysis of the air-coupled ultrasonics for composite materials such as CFRP (Carbon Fibre Reinforced Polymer) and GLARE (Glass Fiber Metal Laminate) and honeycombs for the design of modern aircrafts. Laser vibrometry could be the key source of characterization for the aerospace components. The air-coupled ultrasonics fundamentals, including principles, working modes and transducer arrangements used for this purpose is also recounted in brief. The emphasis of this paper is to approach the developed NDT techniques based on the ultrasonic guided waves applications and the possibilities of use of laser vibrometry in different materials with non-contact measurement of guided waves. 3D assessment technique which employs the single point laser head using, automatic scanning relocation of the material to assess the mechanical displacement including pros and cons of the composite materials for aerospace applications with defects and delaminations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air-coupled%20ultrasonics" title="air-coupled ultrasonics">air-coupled ultrasonics</a>, <a href="https://publications.waset.org/abstracts/search?q=contactless%20measurement" title=" contactless measurement"> contactless measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20interferometry" title=" laser interferometry"> laser interferometry</a>, <a href="https://publications.waset.org/abstracts/search?q=NDT" title=" NDT"> NDT</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20guided%20waves" title=" ultrasonic guided waves"> ultrasonic guided waves</a> </p> <a href="https://publications.waset.org/abstracts/87212/air-coupled-ultrasonic-testing-for-non-destructive-evaluation-of-various-aerospace-composite-materials-by-laser-vibrometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87212.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=laser%20source&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=laser%20source&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=laser%20source&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=laser%20source&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=laser%20source&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=laser%20source&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=laser%20source&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=laser%20source&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=laser%20source&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=laser%20source&amp;page=180">180</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=laser%20source&amp;page=181">181</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=laser%20source&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10