CINXE.COM

Search results for: F. oxysporum

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: F. oxysporum</title> <meta name="description" content="Search results for: F. oxysporum"> <meta name="keywords" content="F. oxysporum"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="F. oxysporum" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="F. oxysporum"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 44</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: F. oxysporum</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">44</span> The Inhibitory Effect of Trichoderma sp. on Mycelial Growth of Fusarium oxysporum f. sp. radicis-lycopersici and Alternaria solani</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Y.%20Benabdellah">A. Y. Benabdellah</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Lakhdari"> W. Lakhdari</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Dahliz"> A. Dahliz</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Bouchikh"> Y. Bouchikh</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Soud"> A. Soud</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20M%27lik"> R. M&#039;lik</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Hammi"> H. Hammi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The direct comparison tests on the culture medium, between Trichoderma sp. and Fusarium oxysporum f. sp. radicis-lycopersici revealed that the latest one could inhibit the growth of F. oxysporum mycelial over than 40% compared to the control and that after four days of incubation at 26° C. Moreover, beyond this period and at the end of six days, Trichoderma sp. invading the colonies of F. oxysporum on what it sporule, thus revealing its power is highly myco-parasitic. Almost similar results were obtained against Alternaria solani is also a pathogen which is not causing a lot of damage, but we found it more sensitive to Trichoderma sp. with a percentage of inhibition more than 50%. So due to the in vitro test of Trichoderma sp. against these aggressive pathogens by direct contact has been found that can inhibit their mycelial growth with high speed and a high inhibition rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Trichoderma%20sp." title="Trichoderma sp.">Trichoderma sp.</a>, <a href="https://publications.waset.org/abstracts/search?q=Fusarium%20oxysporum%20f.%20sp.%20radicis-lycopersici" title=" Fusarium oxysporum f. sp. radicis-lycopersici"> Fusarium oxysporum f. sp. radicis-lycopersici</a>, <a href="https://publications.waset.org/abstracts/search?q=Alternaria%20solani" title=" Alternaria solani"> Alternaria solani</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20control" title=" biological control"> biological control</a>, <a href="https://publications.waset.org/abstracts/search?q=antagonist" title=" antagonist"> antagonist</a> </p> <a href="https://publications.waset.org/abstracts/14560/the-inhibitory-effect-of-trichoderma-sp-on-mycelial-growth-of-fusarium-oxysporum-f-sp-radicis-lycopersici-and-alternaria-solani" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14560.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">43</span> Mechanisms Involved in Biological Control of Fusarium Wilt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bensaid%20Fatiha">Bensaid Fatiha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of our present work is the description of the antagonistic capacities of one strain of Pseudomonas fluorescens and the nonpathogenic fungic isolate Fusarium oxysporum against phytopathogenic agent Fusarium oxysporum F. Sp. lycopersici. This work has been achieved in two main parts: the first is interested on the in vitro antagonistic activities; the second was interested to study the soil receptiveness of fusarium wilt tomato. The use of strain of fluorescent Pseudomonas and a non-pathogenic strain of F. oxysporum in the different antagonism tests, has allowed assuring a certain bio-protection from the plants of tomatoes opposite to F. oxysporum F. Sp. lycopersici, agent of a wilt of tomato. These antagonistic have shown a substantial in vitro antagonistic activity on the three mediums (KB, PDA, KB+PDA) against F. oxysporum F. Sp. lycopersici, by inhibiting its growth mycelium with rate of inhibition going until 80 % with non-pathogen of Fusarium oxysporum and 60 % with strain of fluorescens Pseudomonas. Soil microbial balance, between the antagonistic population and that of pathogenic, can be modulated through microbiological variations or abiotic additives influencing directly or indirectly the metabolic behavior microbial. In this experiment, addition of glucose or EDTA, could increase or decrease the resistance of soil by activation of pathogenic or antagonists, as a result of modification and modulation in their metabolic activities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluorescents" title="fluorescents">fluorescents</a>, <a href="https://publications.waset.org/abstracts/search?q=nonpathogenic" title=" nonpathogenic"> nonpathogenic</a>, <a href="https://publications.waset.org/abstracts/search?q=fusarium%20oxysporum" title=" fusarium oxysporum"> fusarium oxysporum</a>, <a href="https://publications.waset.org/abstracts/search?q=fusarium%20wilt" title=" fusarium wilt"> fusarium wilt</a>, <a href="https://publications.waset.org/abstracts/search?q=antagonism" title=" antagonism"> antagonism</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20control" title=" biological control"> biological control</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20receptivity" title=" soil receptivity"> soil receptivity</a> </p> <a href="https://publications.waset.org/abstracts/23547/mechanisms-involved-in-biological-control-of-fusarium-wilt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23547.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">461</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42</span> Potential for Biological Control of Postharvest Fungal Rot of White Yam (Dioscorea rotundata Poir) Tubers in Storage with Trichoderma harzianum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Victor%20Iorungwa%20Gwa">Victor Iorungwa Gwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Ebenezer%20Jonathan%20Ekefan"> Ebenezer Jonathan Ekefan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Potential of Trichoderma harzianum for biological control of postharvest fungal rot of white yam (Dioscorea rotundata Poir) tubers in storage was studied. Pathogenicity test revealed the susceptibility of healthy looking yam tubers to Aspergillus niger, Botryodiplodia theobromae, and Fusarium oxysporum f. sp. melonganae after fourteen days of inoculation. Treatments comprising A. niger, B. theobromae, and F. oxysporum each paired with T. harzianum and were arranged in completely randomized design and stored for five months. Experiments were conducted between December 2015 and April 2016 and December 2016 and April 2017. Results showed that tubers treated with the pathogenic fungi alone caused mean percentage rot of between 6.67 % (F. oxysporum) and 22.22 % (A. niger) while the paired treatments produced only between 2.22 % (T. harzianum by F. oxysporum) and 6.67 % (T. harzianum by A. niger). In the second year of storage, mean percentage rot was found to be between 13.33 % (F. oxysporum) and 28.89 % (A. niger) while in the paired treatment rot was only between 6.67 % (F. oxysporum) and 8.89% (A. niger). Tubers treated with antagonist alone produced 0.00 % and 2.22 % in the first and second year, respectively. Result revealed that there was a significant difference (P ≤ 0.05) in mean percentage rot between the first year and the second year except where B. theobromae was inoculated alone, A. niger and T. harzianum paired and B. theobromae and T. harzianum paired. The most antagonised fungus in paired treatment for both years was F. oxysporum f. sp. melonganae, while the least antagonised, was A. niger and B. theobromae. It is, therefore, concluded that T. harzianum has potentials to control rot causing pathogens of yam tubers in storage. This can compliment or provide better alternative ways of reducing rot in yam tubers than by the use of chemical fungicides which are not environmentally friendly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biological%20control" title="biological control">biological control</a>, <a href="https://publications.waset.org/abstracts/search?q=fungal%20rot" title=" fungal rot"> fungal rot</a>, <a href="https://publications.waset.org/abstracts/search?q=postharvest" title=" postharvest"> postharvest</a>, <a href="https://publications.waset.org/abstracts/search?q=Trichoderma%20harzianum" title=" Trichoderma harzianum"> Trichoderma harzianum</a>, <a href="https://publications.waset.org/abstracts/search?q=white%20yam" title=" white yam"> white yam</a> </p> <a href="https://publications.waset.org/abstracts/122946/potential-for-biological-control-of-postharvest-fungal-rot-of-white-yam-dioscorea-rotundata-poir-tubers-in-storage-with-trichoderma-harzianum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122946.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">41</span> Biocontrol Effectiveness of Indigenous Trichoderma Species against Meloidogyne javanica and Fusarium oxysporum f. sp. radicis lycopersici on Tomato </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hajji%20Lobna">Hajji Lobna</a>, <a href="https://publications.waset.org/abstracts/search?q=Chattaoui%20Mayssa"> Chattaoui Mayssa</a>, <a href="https://publications.waset.org/abstracts/search?q=Regaieg%20Hajer"> Regaieg Hajer</a>, <a href="https://publications.waset.org/abstracts/search?q=M%27Hamdi-Boughalleb%20Naima"> M&#039;Hamdi-Boughalleb Naima</a>, <a href="https://publications.waset.org/abstracts/search?q=Rhouma%20Ali"> Rhouma Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Horrigue-Raouani%20Najet"> Horrigue-Raouani Najet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, three local isolates of <em>Trichoderma</em> (Tr1: <em>T. viride</em>, Tr2: <em>T. harzianum</em> and Tr3: <em>T. asperellum</em>) were isolated and evaluated for their biocontrol effectiveness under <em>in vitro</em> conditions and in greenhouse. <em>In vitro</em> bioassay revealed a biopotential control against <em>Fusarium oxysporum</em> f. sp. <em>radicis lycopersici</em> and <em>Meloidogyne javanica </em>(RKN) separately. All species of <em>Trichoderma</em> exhibited biocontrol performance and (Tr1) <em>Trichoderma viride</em> was the most efficient. In fact, growth rate inhibition of <em>Fusarium oxysporum</em> f. sp. <em>radicis lycopersici</em> (FORL) was reached 75.5% with Tr1. Parasitism rate of root-knot nematode was 60% for juveniles and 75% for eggs with the same one. Pots experiment results showed that Tr1 and Tr2, compared to chemical treatment, enhanced the plant growth and exhibited better antagonism against root-knot nematode and root-rot fungi separated or combined. All <em>Trichoderma</em> isolates revealed a bioprotection potential against <em>Fusarium oxysporum</em> f. sp. <em>radicis lycopersici</em>. When pathogen fungi inoculated alone, Fusarium wilt index and browning vascular rate were reduced significantly with Tr1 (0.91, 2.38%) and Tr2 (1.5, 5.5%), respectively. In the case of combined infection with Fusarium and nematode, the same isolate of <em>Trichoderma</em> Tr1 and Tr2 decreased Fusarium wilt index at 1.1 and 0.83 and reduced the browning vascular rate at 6.5% and 6%, respectively. Similarly, the isolate Tr1 and Tr2 caused maximum inhibition of nematode multiplication. Multiplication rate was declined at 4% with both isolates either tomato infected by nematode separately or concomitantly with Fusarium. The chemical treatment was moderate in activity against <em>Meloidogyne javanica</em> and <em>Fusarium oxysporum f. sp. </em><em>radicis lycopersici</em> alone and combined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=trichoderma%20spp." title="trichoderma spp.">trichoderma spp.</a>, <a href="https://publications.waset.org/abstracts/search?q=meloidogyne%20javanica" title=" meloidogyne javanica"> meloidogyne javanica</a>, <a href="https://publications.waset.org/abstracts/search?q=Fusarium%20oxysporum%20f.sp.radicis%20lycopersici" title=" Fusarium oxysporum f.sp.radicis lycopersici"> Fusarium oxysporum f.sp.radicis lycopersici</a>, <a href="https://publications.waset.org/abstracts/search?q=biocontrol" title=" biocontrol"> biocontrol</a> </p> <a href="https://publications.waset.org/abstracts/50717/biocontrol-effectiveness-of-indigenous-trichoderma-species-against-meloidogyne-javanica-and-fusarium-oxysporum-f-sp-radicis-lycopersici-on-tomato" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50717.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> Screening of Indigenous Rhizobacteria for Growth Promoting and Antagonistic Activity against Fusarium Oxysporoum in Tomato</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20H.%20Abu-Dieyeh">Mohammed H. Abu-Dieyeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20M.%20Zalloum"> Mohammad M. Zalloum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plant growth-promoting rhizobacteria (PGPR) are known to enhance plant growth and/or reduce plant damage due to soil-borne pathogens. Tomato is the highest consumable vegetable world-wide including Jordan. Fusarium oxysporum is a pathogen that causes well-known damages and losses to many vegetable crops including tomato. In this study, purification of 112 isolates of PGPR strains from rhizosphere environment of different regions in Jordan was accomplished. All bacterial isolates were In-vitro screened for antagonistic effects against F. oxysporum. The eleven most effective isolates that caused 30%-50% in-vitro growth reduction of F. oxysporum were selected. 8 out of 11 of these isolates were collected from Al-Halabat (arid-land). 7 isolates of Al-Halabat exerted 40-54% In-vitro growth reduction of F. oxysporum. Four-week-old seedlings of tomato cultivar (Anjara, the most susceptible indigenous cultivar to F. oxysporum) treated with PGPR5 (Bacillus amyloliquefaciens), and exposed to F. oxysporum, showed no disease symptoms and no significant changes in biomasses or chlorophyll contents indicating a non-direct mechanism of action of PGPR on tomato plants. However PGPR3 (Bacillus sp.), PGPR4 (Bacillus cereus), and PGPR38 (Paenibacillus sp.) treated plants or PGPR treated and exposed to F. oxysporum showed a significant increasing growth of shoot and root biomasses as well as chlorophyll contents of leaves compared to control untreated plants or plants exposed to the fungus without PGPR treatment. A significant increase in number of flowers per plant was also recorded in all PGPR treated plants. The characterization of rhizobacterial strains were accomplished using 16S rRNA gene sequence analysis in addition to microscopic characterization. Further research is necessary to explore the potentiality of other collected PGPR isolates on tomato plants in addition to investigate the efficacy of the identified isolates on other plant pathogens and then finding a proper and effective methods of formulation and application of the successful isolates on selected crops. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antagonism" title="antagonism">antagonism</a>, <a href="https://publications.waset.org/abstracts/search?q=arid%20land" title=" arid land"> arid land</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20promoting" title=" growth promoting"> growth promoting</a>, <a href="https://publications.waset.org/abstracts/search?q=rhizobacteria" title=" rhizobacteria"> rhizobacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=tomato" title=" tomato"> tomato</a> </p> <a href="https://publications.waset.org/abstracts/30095/screening-of-indigenous-rhizobacteria-for-growth-promoting-and-antagonistic-activity-against-fusarium-oxysporoum-in-tomato" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30095.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">39</span> The Transcriptome of Carnation (Dianthus Caryophyllus) of Elicited Cells with Fusarium Oxysporum f.sp. Dianthi </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juan%20Jose%20Filgueira">Juan Jose Filgueira</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniela%20%20Londono-Serna"> Daniela Londono-Serna</a>, <a href="https://publications.waset.org/abstracts/search?q=Liliana%20Maria%20%20Hoyos"> Liliana Maria Hoyos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carnation (Dianthus caryophyllus) is one of the most important products of exportation in the floriculture industry worldwide. Fusariosis is the disease that causes the highest losses on farms, in particular the one produced by Fusarium oxysporum f.sp. dianthi, called vascular wilt. Gene identification and metabolic routes of the genes that participate in the building of the plant response to Fusarium are some of the current targets in the carnation breeding industry. The techniques for the identifying of resistant genes in the plants, is the analysis of the transcriptome obtained during the host-pathogen interaction. In this work, we report the cell transcriptome of different varieties of carnation that present differential response from Fusarium oxysporum f.sp. dianthi attack. The cells of the different hybrids produced in the outbreeding program were cultured in vitro and elicited with the parasite in a dual culture. The isolation and purification of mRNA was achieved by using affinity chromatography Oligo dT columns and the transcriptomes were obtained by using Illumina NGS techniques. A total of 85,669 unigenes were detected in all the transcriptomes analyzed and 31,000 annotations were found in databases, which correspond to 36.2%. The library construction of genic expression techniques used, allowed to recognize the variation in the expression of genes such as Germin-like protein, Glycosyl hydrolase family and Cinnamate 4-hydroxylase. These have been reported in this study for the first time as part of the response mechanism to the presence of Fusarium oxysporum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carnation" title="Carnation">Carnation</a>, <a href="https://publications.waset.org/abstracts/search?q=Fusarium" title=" Fusarium"> Fusarium</a>, <a href="https://publications.waset.org/abstracts/search?q=vascular%20wilt" title=" vascular wilt"> vascular wilt</a>, <a href="https://publications.waset.org/abstracts/search?q=transcriptome" title=" transcriptome"> transcriptome</a> </p> <a href="https://publications.waset.org/abstracts/134862/the-transcriptome-of-carnation-dianthus-caryophyllus-of-elicited-cells-with-fusarium-oxysporum-fsp-dianthi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134862.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> Varietal Behavior of Some Chickpea Genotypes to Wilt Disease Induced by Fusarium oxysporum f.sp. ciceris</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rouag%20N.">Rouag N.</a>, <a href="https://publications.waset.org/abstracts/search?q=Khalifa%20M.%20W."> Khalifa M. W.</a>, <a href="https://publications.waset.org/abstracts/search?q=Bencheikh%20A."> Bencheikh A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Abed%20H."> Abed H.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The behavior study of forty-two varieties and genotypes of chickpeas regarding root wilt disease induced by Fusarium oxysporum under the natural conditions of infection was conducted at the ITGC experimental station in Sétif. The infected plants of the different chickpea genotypes have shown multiple symptoms in the field caused by the local strain of Fusarium oxysporum f.sp.cecris belonging to race II of the pathogen. These symptoms ranged from lateral or partial wilting of some ramifications to total desiccation of the plant, sometimes combined with the very slow growth of symptomatic plants. The results of the search for sources of resistance to Fusarium wilt of chickpeas in the 42 genotypes tested revealed that in terms of infection rate, the presence of 7 groups and no genotype showed absolute resistance. While in terms of severity, the results revealed the presence of three homogeneous groups. The first group formed by the most resistant genotypes, in this case, Flip10-368C; Flip11-77C; Flip11-186C; Flip11-124C; Flip11-142C, Flip11-152C; Flip11-69C; Ghab 05; Flip11-159C; Flip11-90C; Flip10-357C and Flip11-37C while the second group is the FLIP genotype 10-382C which was found to be the most sensitive for the natural infection test. Thus, the genotypes of Cicer arietinum L., which have shown significant levels of resistance to Fusarium wilt, can be integrated into breeding and improvement programs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chickpea" title="chickpea">chickpea</a>, <a href="https://publications.waset.org/abstracts/search?q=Cicer%20arietinum" title=" Cicer arietinum"> Cicer arietinum</a>, <a href="https://publications.waset.org/abstracts/search?q=Fusarium%20oxysporum" title=" Fusarium oxysporum"> Fusarium oxysporum</a>, <a href="https://publications.waset.org/abstracts/search?q=genotype%20resistance" title=" genotype resistance"> genotype resistance</a> </p> <a href="https://publications.waset.org/abstracts/158328/varietal-behavior-of-some-chickpea-genotypes-to-wilt-disease-induced-by-fusarium-oxysporum-fsp-ciceris" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158328.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> Enhancing Inhibition on Phytopathogens by Complex Using Biogas Slurry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fang-Bo%20Yu">Fang-Bo Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Li-Bo%20Guan"> Li-Bo Guan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheng-Dao%20Shan"> Sheng-Dao Shan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biogas slurry was mixed with six commercial fungicides and screening against 11 phytopathogens was carried out. Results showed that inhibition of biogas slurry was different for the test strains and no significant difference between treatments of Didymella bryoniae, Fusarium oxysporum f. sp. vasinfectum, Aspergillus niger, Rhizoctonia cerealis, F. graminearum and Septoria tritici was observed. However, significant differences were found among Penicillium sp., Botrytis cinerea, Alternaria sonali, F. oxysporum F. sp. melonis and Sclerotinia sclerotiorum. The approach described here presents a promising alternative to current manipulation although some issues still need further examination. This study could contribute to the development of sustainable agriculture and better utilization of biogas slurry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20digestion" title="anaerobic digestion">anaerobic digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=biogas%20slurry" title=" biogas slurry"> biogas slurry</a>, <a href="https://publications.waset.org/abstracts/search?q=phytopathogen" title=" phytopathogen"> phytopathogen</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20agriculture" title=" sustainable agriculture"> sustainable agriculture</a> </p> <a href="https://publications.waset.org/abstracts/7150/enhancing-inhibition-on-phytopathogens-by-complex-using-biogas-slurry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7150.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> Chemical Control Management Strategies for Corm Rot in Gladiolus communis L. under Field Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahbaz%20Ahmad">Shahbaz Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Ali"> Muhammad Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Sahar%20Naz"> Sahar Naz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Corm rot is caused by the fungus Fusarium oxysporum f.sp. gladioli and it causes remarkable losses to the growers. Experiment was conducted in order to find some viable recommendations for this agronomically as well as economically important problem. Four fungicides, namely Carbendazim, Mancozeb, Thiophanate methyl and Chlorothalonil were used to control corm rot in gladiolus field. Fungicides were applied singly as foliar, in irrigation as well as with sulphuric acid in variable doses. The results revealed that application of all fungicides was variably effective to control corm rot in acid mixed irrigation followed by fungicide in irrigation. The application of all fungicides in various combinations was observed to be ineffective at all three doses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gladiolus" title="gladiolus">gladiolus</a>, <a href="https://publications.waset.org/abstracts/search?q=corm%20rot" title=" corm rot"> corm rot</a>, <a href="https://publications.waset.org/abstracts/search?q=Fusarium%20oxysporum" title=" Fusarium oxysporum"> Fusarium oxysporum</a>, <a href="https://publications.waset.org/abstracts/search?q=fungicides" title=" fungicides"> fungicides</a> </p> <a href="https://publications.waset.org/abstracts/7496/chemical-control-management-strategies-for-corm-rot-in-gladiolus-communis-l-under-field-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> Effect of Garlic Powder Extract on Fungi Isolated from Diseased Irish Potato in Bokkos, Plateau State Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Musa%20Filibus%20Gugu">Musa Filibus Gugu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An investigation was carried out on the effect of garlic powder extract on fungi associated with Irish potato rot in Bokkos, Plateau State, Nigeria. Diseased Irish potatoes were randomly collected from three markets in the study location and fungal species isolated. Isolated fungal species were Fusarium culmorum, Fusarium oxysporum, and Pytophthora infestans. Frequency of occurrence for Fusarium culmorum, Fusarium oxysporum, and Pytophthora infestans was 10%, 34%, and 56%, respectively, using sabauraud dextrose agar, after incubation for 4-7 days. Treatment of Pytophthora infestans with garlic powder extract at concentrations of 0.5g/ml, 0.4g/ml, 0.3gml, 0.2g/ml and 0.1g/ml showed 100%, 92%, 68%, 32% and 10% inhibition zones, respectively. Fusarium culmorum showed 100%, 90%, 40%, 9% and 0% inhibition zones when treated with garlic powder extract at concentrations of 0.5g/ml, 0.4g/ml, 0.3gml, 0.2g/ml and 0.1g/ml, respectively. Garlic powder extract concentrations of 0.5g/ml, 0.4g/ml, 0.3gml, 0.2g/ml and 0.1g/ml showed 100%, 98%, 55%, 30%, 0% inhibition zones, respectively on Fusarium oxysporum. Hence, Restriction of the radial growth of the fungal colonies suggests a good antifungal effect of garlic extract. This can be integrated into the treatment of fungal diseases of Irish potato in Bokkos, Nigeria, as this will help to reduce the indiscriminate use of fungicides, especially in an environment with a struggling economy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fungal%20rot" title="fungal rot">fungal rot</a>, <a href="https://publications.waset.org/abstracts/search?q=garlic%20extract" title=" garlic extract"> garlic extract</a>, <a href="https://publications.waset.org/abstracts/search?q=inhibition%20zone" title=" inhibition zone"> inhibition zone</a>, <a href="https://publications.waset.org/abstracts/search?q=Irish%20potato" title=" Irish potato "> Irish potato </a> </p> <a href="https://publications.waset.org/abstracts/124570/effect-of-garlic-powder-extract-on-fungi-isolated-from-diseased-irish-potato-in-bokkos-plateau-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124570.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> Use of Different Plant Extracts in Fungal Disease Management of Onion (Allium cepa. L)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shobha%20U.%20Jadhav">Shobha U. Jadhav</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Onion is most important vegetable crop grown throughout the world. Onion suffers from pest and fungal diseases but these fungicides cause pollution and disturb microbial balance of soil. Under integrated fungal disease management programme cost effective and eco- friendly component like plant extract are used to control plant pathogens. Alternaria porri, Fusarium oxysporium, Stemphylium vesicarium are soil-borne pathogens of onion. Effect of three different plant extracts (Ocimum sanctum L., Xanthium strumarium B. and H. Withania somnifera Dunal)at five different concentration Viz, 10, 25, 50, 75, and 100 percentage on these pathogens was studied by food poisoning technique. Ocimum sanctum gave 84.21% growth of Alternaria porri at 10% extract concentration and 10.52% growth in 100% extract concentration. As compared to Fusarium oxysporium and Stemphylium vesicarium, Alternaria porri give good inhibitory response. In Xanthium strumarium B. and H. at 10% extract concentration 46.42% growth and at 100% extract concentration 28.57% growth of Fusarium oxysporum was observed. Fusarium oxysporum give good inhibitory response as compared to Alternaria porri and Stemphylium vesicarium. In Withania somnifera Dunal in 10% extract concentration 84.21% growth and in 100% extract concentration 21.05% growth of Stemphylium vesicarium was recorded. Stemphylium vesicarium give good inhibitory response as compared to Alternaria porri and Fusarium oxysporum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pathogen" title="pathogen">pathogen</a>, <a href="https://publications.waset.org/abstracts/search?q=onion" title=" onion"> onion</a>, <a href="https://publications.waset.org/abstracts/search?q=plant" title=" plant"> plant</a>, <a href="https://publications.waset.org/abstracts/search?q=extract" title=" extract"> extract</a> </p> <a href="https://publications.waset.org/abstracts/15776/use-of-different-plant-extracts-in-fungal-disease-management-of-onion-allium-cepa-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15776.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> Systematic Discovery of Bacterial Toxins Against Plants Pathogens Fungi</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yaara%20Oppenheimer-Shaanan">Yaara Oppenheimer-Shaanan</a>, <a href="https://publications.waset.org/abstracts/search?q=Nimrod%20Nachmias"> Nimrod Nachmias</a>, <a href="https://publications.waset.org/abstracts/search?q=Marina%20Campos%20Rocha"> Marina Campos Rocha</a>, <a href="https://publications.waset.org/abstracts/search?q=Neta%20Schlezinger"> Neta Schlezinger</a>, <a href="https://publications.waset.org/abstracts/search?q=Noam%20Dotan"> Noam Dotan</a>, <a href="https://publications.waset.org/abstracts/search?q=Asaf%20Levy"> Asaf Levy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fusarium oxysporum, a fungus that attacks a broad range of plants and can cause infections in humans, operates across different kingdoms. This pathogen encounters varied conditions, such as temperature, pH, and nutrient availability, in plant and human hosts. The Fusarium oxysporum species complex, pervasive in soils globally, can affect numerous plants, including key crops like tomatoes and bananas. Controlling Fusarium infections can involve biocontrol agents that hinder the growth of harmful strains. Our research developed a computational method to identify toxin domains within a vast number of microbial genomes, leading to the discovery of nine distinct toxins capable of killing bacteria and fungi, including Fusarium. These toxins appear to function as enzymes, causing significant damage to cellular structures, membranes and DNA. We explored biological control using bacteria that produce polymorphic toxins, finding that certain bacteria, non-pathogenic to plants, offer a safe biological alternative for Fusarium management, as they did not harm macrophage cells or C. elegans. Additionally, we elucidated the 3D structures of two toxins with their protective immunity proteins, revealing their function as unique DNases. These potent toxins are likely instrumental in microbial competition within plant ecosystems and could serve as biocontrol agents to mitigate Fusarium wilt and related diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microbial%20toxins" title="microbial toxins">microbial toxins</a>, <a href="https://publications.waset.org/abstracts/search?q=antifungal" title=" antifungal"> antifungal</a>, <a href="https://publications.waset.org/abstracts/search?q=Fusarium%20oxysporum" title=" Fusarium oxysporum"> Fusarium oxysporum</a>, <a href="https://publications.waset.org/abstracts/search?q=bacterial-fungal%20intreactions" title=" bacterial-fungal intreactions"> bacterial-fungal intreactions</a> </p> <a href="https://publications.waset.org/abstracts/183577/systematic-discovery-of-bacterial-toxins-against-plants-pathogens-fungi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183577.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">55</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Efficacy of Mixed Actinomycetes against Fusarium Wilt Caused by Fusarium oxysporum f.sp. cubense</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jesryl%20B.%20Paulite">Jesryl B. Paulite</a>, <a href="https://publications.waset.org/abstracts/search?q=Irene%20Alcantara-Papa"> Irene Alcantara-Papa</a>, <a href="https://publications.waset.org/abstracts/search?q=Teofila%20O.%20Zulaybar"> Teofila O. Zulaybar</a>, <a href="https://publications.waset.org/abstracts/search?q=Jocelyn%20T.%20Zarate"> Jocelyn T. Zarate</a>, <a href="https://publications.waset.org/abstracts/search?q=Virgie%20Ugay"> Virgie Ugay </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Banana is one of the major fruits in the Philippines in terms of volume of production and export earnings. The Philippines export of fresh Cavendish banana ranked No.1 with 22% share. One major threat to the industry is Fusarium wilt caused by Fusarium oxysporum f. sp. cubense. It tops as a major concern today affecting the Philippine banana industry since 2002 up to the present in Mindanao. Because of environmental and health issues concerning the use of chemical pesticides in the control of diseases, utilization of microorganisms has been significant in recent years as a promising alternative. This study aims to evaluate the potential of actinomycetes to control Fusarium wilt in Cavendish banana. The in-vitro experiments was carried out in Complete Randomized Design (CRD) while field experiment was laid out in a Randomized Complete Block Design (RCBD) with three treatments and three replications. Actinomycetes were isolated from mangrove soils in areas in Quezon and Bataan, Philippines. A total of 199 actinomycetes were isolated and 82 actinomycetes showed activity against the local Fusarium oxysporum (Foc) by agar plug assay. The test for antagonisms (AQ6, AQ30, and AQ121) of three best isolates Foc to were selected inhibiting Foc by 21.0mm, 22.0mm and 20.5mm, respectively. The same actinomycetes inhibited well Foc Tropical Race 4 showing 24.6 mm, 20.2mm and 19.0 mm zones of inhibition by agar plug assay, respectively. Combinations of the three isolates yielded an inhibition of 13.5 mm by cup cylinder assay. These findings led to the formulation of the mixed actinomycetes as biocontrol agents against Foc. A field experiment to evaluate the formulated mixed actinomycetes against Foc in a Foc infested field in Kinamayan, Sto Tomas, Davao Del Norte, Philippines. was conducted. Results showed that preventive method of application of the mixed actinomycetes against Foc showed promising results. A 56.66% mortality was observed in control set-up (no biocontrol agent added) compared to 33.33% mortality in preventive method. Further validation of the effectiveness of the mixed actinomycetes as biocontrol agent is presently being conducted in Asuncion, Davao Del Norte, Philippines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=actinomycetes" title="actinomycetes">actinomycetes</a>, <a href="https://publications.waset.org/abstracts/search?q=biocontrol%20agents" title=" biocontrol agents"> biocontrol agents</a>, <a href="https://publications.waset.org/abstracts/search?q=cavendish%20banana" title=" cavendish banana"> cavendish banana</a>, <a href="https://publications.waset.org/abstracts/search?q=Fusarium%20oxysporum%20f.%20sp.%20cubense" title=" Fusarium oxysporum f. sp. cubense"> Fusarium oxysporum f. sp. cubense</a> </p> <a href="https://publications.waset.org/abstracts/22421/efficacy-of-mixed-actinomycetes-against-fusarium-wilt-caused-by-fusarium-oxysporum-fsp-cubense" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22421.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">579</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Screening Maize for Compatibility with F. Oxysporum to Enhance Striga asiatica (L.) Kuntze Resistance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Admire%20Isaac%20Tichafa%20Shayanowako">Admire Isaac Tichafa Shayanowako</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20Laing"> Mark Laing</a>, <a href="https://publications.waset.org/abstracts/search?q=Hussein%20Shimelis"> Hussein Shimelis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Striga asiatica is among the leading abiotic constraints to maize production under small-holder farming communities in southern African. However, confirmed sources of resistance to the parasitic weed are still limited. Conventional breeding programmes have been progressing slowly due to the complex nature of the inheritance of Striga resistance, hence there is a need for more innovative approaches. This study aimed to achieve partial resistance as well as to breed for compatibility with Fusarium oxysporum fsp strigae, a soil fungus that is highly specific in its pathogenicity. The agar gel and paper roll assays in conjunction with a glass house pot trial were done to select genotypes based on their potential to stimulate germination of Striga and to test the efficacy of Fusarium oxysporum as a biocontrol agent. Results from agar gel assays showed a moderate to high potential in the release of Strigalactones among the 33 OPVs. Maximum Striga germination distances from the host root of 1.38 cm and up to 46% germination were observed in most of the populations. Considerable resistance was observed in a landrace ‘8lines’ which had the least Striga germination percentage (19%) with a maximum distance of 0.93 cm compared to the resistant check Z-DPLO-DTC1 that had 23% germination at a distance of 1.4cm. The number of fusarium colony forming units significantly deferred (P < 0.05) amongst the genotypes growing between germination papers. The number of crown roots, length of primary root and fresh weight of shoot and roots were highly correlated with concentration of fusarium macrospore counts. Pot trials showed significant differences between the fusarium coated and the uncoated treatments in terms of plant height, leaf counts, anthesis-silks intervals, Striga counts, Striga damage rating and Striga vigour. Striga emergence counts and Striga flowers were low in fusarium treated pots. Plants in fusarium treated pots had non-significant differences in height with the control treatment. This suggests that foxy 2 reduces the impact of Striga damage severity. Variability within fusarium treated genotypes with respect to traits under evaluation indicates the varying degree of compatibility with the biocontrol. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=maize" title="maize">maize</a>, <a href="https://publications.waset.org/abstracts/search?q=Striga%20asiaitca" title=" Striga asiaitca"> Striga asiaitca</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance" title=" resistance"> resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=compatibility" title=" compatibility"> compatibility</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20oxysporum" title=" F. oxysporum"> F. oxysporum</a> </p> <a href="https://publications.waset.org/abstracts/70679/screening-maize-for-compatibility-with-f-oxysporum-to-enhance-striga-asiatica-l-kuntze-resistance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70679.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Induced Systemic Resistance in Tomato Plants against Fusarium Wilt Disease Using Biotic Inducers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20A.%20Amer">Mostafa A. Amer</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20A.%20El-Samra"> I. A. El-Samra</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20I.%20Abou-ElSeoud"> I. I. Abou-ElSeoud</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20El-Abd"> S. M. El-Abd</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20K.%20Shawertamimi"> N. K. Shawertamimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tomato Fusarium wilt disease caused by Fusarium oxysporum f. sp. Lycopercisi (FOL) is considered one of the most destructive diseases in Egypt. Effect of some biotic inducers such as Bacillus megaterium var. phosphaticum, Glomus intraradices and Glomus macrocarpum at seven different mixed treatments, was tested for their ability to induce resistance in tomato plants against the disease. According to pathogenicity tests, all the tested isolates of FOL showed wilt symptoms on both of the tested cultivars; however, they considerably varied in percentages of disease incidence (DI) and disease severity (DS). Castle Rock was more susceptible than Peto 86, which was relatively resistant. Pretreatment of both cultivars, under greenhouse conditions, with the tested biotic inducers alone or in combination with each other's, significantly increased the induction of chitinase, β-1,3-glucanase, peroxidase, and polyphenoloxidase and reduced disease incidence and severity, compared with untreated noninoculated (C1) and untreated inoculated (C2) controls. Application of a combination of BMP, with GI and GM was the most effective in increasing the induction rated of the tested enzymes, compared with the other treatments. Induction of enzymes in most of the tested bioinducers treatments gradually increased, attaining maximum values after 48 or/and 72 hrs after challenging with FOL, then gradually declined. GI was the least effective bioinducer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20oxysporum%20f.%20sp.%20lycopersici" title="F. oxysporum f. sp. lycopersici">F. oxysporum f. sp. lycopersici</a>, <a href="https://publications.waset.org/abstracts/search?q=defense%20enzymes" title=" defense enzymes"> defense enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=induced%20systemic%20resistance" title=" induced systemic resistance"> induced systemic resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=ISR" title=" ISR"> ISR</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20megaterium%20var.%20phosphaticum" title=" B. megaterium var. phosphaticum"> B. megaterium var. phosphaticum</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20macrocarpum" title=" G. macrocarpum"> G. macrocarpum</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20intraradices" title=" G. intraradices"> G. intraradices</a> </p> <a href="https://publications.waset.org/abstracts/28854/induced-systemic-resistance-in-tomato-plants-against-fusarium-wilt-disease-using-biotic-inducers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28854.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Combined Aplication of Indigenous Pseudomonas fluorescens and the AM Fungi as the Potential Biocontrol Agents of Banana Fusarium wilt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eri%20Sulyanti">Eri Sulyanti</a>, <a href="https://publications.waset.org/abstracts/search?q=Trimurti%20Habazar"> Trimurti Habazar</a>, <a href="https://publications.waset.org/abstracts/search?q=Eti%20Farda%20Husen"> Eti Farda Husen</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdi%20Dharma"> Abdi Dharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasril%20Nasir"> Nasril Nasir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, combination of some biocontrol agents with different mechanisms was an alternative to improve the effectiveness of the biological control agents. Single and combined applications of indigenous Pseudomonas fluorescens and Arbuscular Mychorrhizae Fungi (AM Fungi) isolates were tested to induce the resistance on susceptible Cavendish banana against F.oxysporum f. sp. cubense race 4 under greenhouse conditions. These isolates originally isolated from healthy banana rhizosphere at endemic Fusarium wilt areas in the centre of production banana in West Sumatra. These researches were conducted with Randomized Block Design with 16 treatments and 10 replications. The treatments were three indigenous isolates of Pseudomonas fluorescens (Par1-Cv, Par4-Rj1, Par2-Jt1) and 3 isolates of AM Fungi (Gl1BuA4, Gl2BuA6, and Gl1KeP3. The biocontrol agents were applied as single agents and combination two of them. This study demonstrated that the application of combination biocontrol organisms Pseudomonas fluorescens and AM Fungi provided were more effective than single application. The combination of Par1-Cv and Gl1BuA4 isolates was the most effective to control Fusarium wilt and followed by the combination of Par1-Cv and Gl2BuA6 and Par2-Jt1 and Gl1P3. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pseudomonad%20fluorescens%20%28Pf%29" title="pseudomonad fluorescens (Pf)">pseudomonad fluorescens (Pf)</a>, <a href="https://publications.waset.org/abstracts/search?q=arbuscular%20mychorrhizae%20fungi%20%28AM%20Fungi%29%20indigenous%20isolates" title=" arbuscular mychorrhizae fungi (AM Fungi) indigenous isolates"> arbuscular mychorrhizae fungi (AM Fungi) indigenous isolates</a>, <a href="https://publications.waset.org/abstracts/search?q=fusarium%20oxysporum%20f.%20sp.%20cubense" title=" fusarium oxysporum f. sp. cubense"> fusarium oxysporum f. sp. cubense</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20rhizosphere" title=" soil rhizosphere"> soil rhizosphere</a> </p> <a href="https://publications.waset.org/abstracts/37182/combined-aplication-of-indigenous-pseudomonas-fluorescens-and-the-am-fungi-as-the-potential-biocontrol-agents-of-banana-fusarium-wilt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37182.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Physiological Insight into an Age Old Biocontrol Practice in Banana Cultivation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Susmita%20%20Goswami">Susmita Goswami</a>, <a href="https://publications.waset.org/abstracts/search?q=Joyeeta%20Mitra"> Joyeeta Mitra</a>, <a href="https://publications.waset.org/abstracts/search?q=Indu%20Gaur"> Indu Gaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Neha%20Bhadauria"> Neha Bhadauria</a>, <a href="https://publications.waset.org/abstracts/search?q=Shilpi%20Shilpi"> Shilpi Shilpi</a>, <a href="https://publications.waset.org/abstracts/search?q=Prabir%20K.%20Paul"> Prabir K. Paul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 'Malbhog’, an indigenous banana variety, much prized for its flavour and delicacy suffers production losses due to Fusarium oxysporum f.sp. cubense. The pathogen enters young plants through feeder roots causing wilting of plants ultimately leading to death of plants. The pathogen spreads rapidly to other plants in the field. In eastern part of India, this variety escapes the onslaught of the pathogen when either co-cultivated or rotated with Amorphophallus campanulatus (yam). The present study provides an insight into the physiological aspect of the biocontrol by yam. In vitro application of sterile aqueous extract of yam tuber (100gm/100ml distilled water and its 1:10 and 1:100 dilutions) were mixed with PDA media which was substantially inoculated with spores of Fusarium oxysporum f.sp. cubense. The extract could significantly reduce germination of pathogen spores. Banana variety susceptible to Fusarium sp was raised in soil rite under aseptic conditions. Spores of the pathogen (106 spores/ml) were inoculated into the soil rite. The plants were spread with aqueous extract of yam. The control plants were treated with sterilized distilled water. The activity of phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO) and peroxidase (POX) were estimated in leaves and roots at interval of 24 hours for 5 days after treatment. The incidence of wilt disease was recorded after two weeks. The results demonstrated that yam extract could induce significant activity of PAL, PPO and POX along with accumulation of phenols in both roots and leaves of banana plants. However, significantly high activity of enzymes and phenol accumulation was observed in roots. The disease incidence was significantly low in yam treated plants. The results clearly demonstrated the control of the pathogen due to induction of defense mechanism in the host by the extract. The observed control of the pathogen in the field could possibly be due to induction of such defense responses in host by exudates leached into the soil from yam tubers. Yam extract could be a potential source of environment-friendly biocide against Panama wilt of banana. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amorphophallus%20campanulatus" title="Amorphophallus campanulatus">Amorphophallus campanulatus</a>, <a href="https://publications.waset.org/abstracts/search?q=banana" title=" banana"> banana</a>, <a href="https://publications.waset.org/abstracts/search?q=Fusarium%20oxysporum%20f.sp.%20cubense" title=" Fusarium oxysporum f.sp. cubense"> Fusarium oxysporum f.sp. cubense</a>, <a href="https://publications.waset.org/abstracts/search?q=phenylalanine%20ammonia%20lyase%20%28PAL%29" title=" phenylalanine ammonia lyase (PAL)"> phenylalanine ammonia lyase (PAL)</a>, <a href="https://publications.waset.org/abstracts/search?q=polyphenol%20oxidase%20%28PPO%29" title=" polyphenol oxidase (PPO)"> polyphenol oxidase (PPO)</a>, <a href="https://publications.waset.org/abstracts/search?q=peroxidase%20%28POX%29" title=" peroxidase (POX)"> peroxidase (POX)</a> </p> <a href="https://publications.waset.org/abstracts/60906/physiological-insight-into-an-age-old-biocontrol-practice-in-banana-cultivation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60906.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> The Biofumigation Activity of Volatile Compounds Produced from Trichoderma afroharzianum MFLUCC19-0090 and Trichoderma afroharzianum MFLUCC19-0091 against Fusarium Infections in Fresh Chilies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarunpron%20Khruengsai">Sarunpron Khruengsai</a>, <a href="https://publications.waset.org/abstracts/search?q=Patcharee%20Pripdeevech"> Patcharee Pripdeevech</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed to investigate the fumigation activities of the volatile compounds produced by Trichoderma spp. against Fusarium oxysporum and F. proliferatum fungi that cause significant rot in fresh chilies. Two Trichoderma spp. were isolated from the leaves of Schefflera leucantha grown in Thailand and later identified as T. afroharzianum MFLUCC19-0090 and T. afroharzianum MFLUCC19-0091. Both in vitro and in vivo dual culture volatile assays were used to study the effects of the produced volatile compounds on mycelial growth. In vitro results showed that the volatile compounds produced by T. afroharzianum MFLUCC19-0090 significantly inhibited the growth of F. oxysporum, while the volatile compounds produced by T. afroharzianum MFLUCC19-0091 significantly inhibited the growth of F. proliferatum. The effectiveness of Trichoderma-derived volatile compounds in inhibiting the mycelial growth of the selected pathogens in the inoculated, fresh chili samples was further demonstrated in vivo. The volatile profiles of both Trichoderma spp. were characterized using gas chromatography-mass spectrometry. Seventy-three volatile compounds were detected from both strains. Among the major volatile compounds detected, phenyl ethyl alcohol was found to possess the strongest antifungal activity against both pathogens. The results support the possibility of using volatile compounds produced by T. afroharzianum MFLUCC19-0090 and T. afroharzianum MFLUCC19-0091 as alternative fumigants for preventing Fusarium rot of fresh chilies during the post-harvest period. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antifungal%20activity" title="antifungal activity">antifungal activity</a>, <a href="https://publications.waset.org/abstracts/search?q=biocontrol" title=" biocontrol"> biocontrol</a>, <a href="https://publications.waset.org/abstracts/search?q=endophytic%20fungi" title=" endophytic fungi"> endophytic fungi</a>, <a href="https://publications.waset.org/abstracts/search?q=post-harvest" title=" post-harvest"> post-harvest</a> </p> <a href="https://publications.waset.org/abstracts/149845/the-biofumigation-activity-of-volatile-compounds-produced-from-trichoderma-afroharzianum-mflucc19-0090-and-trichoderma-afroharzianum-mflucc19-0091-against-fusarium-infections-in-fresh-chilies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149845.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Antifungal Potential of the Plant Growth-Promoting Rhizobacteria Infecting Kidney Beans</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhazira%20Shemsheyeva">Zhazira Shemsheyeva</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhanara%20Suleimenova"> Zhanara Suleimenova</a>, <a href="https://publications.waset.org/abstracts/search?q=Olga%20Shemshura"> Olga Shemshura</a>, <a href="https://publications.waset.org/abstracts/search?q=Gulnaz%20Mombekova"> Gulnaz Mombekova</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhanar%20Rakhmetova"> Zhanar Rakhmetova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bacteria that colonize plant roots and promote plant growth are referred to as plant growth-promoting rhizobacteria (PGPR). They not only provide nutrients to the plants (direct plant growth promotion) and protect plants against the phytopathogens (indirect plant growth promotion) but also increase the soil fertility. Indirectly PGPRs improve the plant growth by becoming a biocontrol agent for a fungal pathogen. The antifungal activities of the PGPrhizobacteria were assayed against different species of phytopathogenic fungi such as Fusarium tricinctum, Fusarium oxysporum, Sclerotiniasclerotiorum, and Botrytis cinerea. Pseudomonas putidaSM-1, Azotobacter sp., and Bacillus thuringiensis AKS/16 strains have been used in experimental tests on growth inhibition of phytopathogenic fungi infecting Kidney beans. Agar well diffusion method was used in this study. Diameters of the zones of inhibition were measured in millimeters. It was found that Bacillus thuringiensis AKS/16 strain showed the lowest antifungal activity against all fungal pathogens tested. Zones of inhibition were 15-18 mm. In contrast, Pseudomonas putida SM-1 exhibited good antifungal activity against Fusarium oxysporum and Fusarium tricinctum by producing 29-30 mm clear zones of inhibition. The moderate inhibitory effect was shown by Azotobacter sp. against all fungal pathogens tested with zones of inhibition from24 to 26 mm. In summary, Pseudomonas putida SM-1 strain demonstrated the potential of controlling root rot diseases in kidney beans. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PGPR" title="PGPR">PGPR</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudomonas%20putida" title=" pseudomonas putida"> pseudomonas putida</a>, <a href="https://publications.waset.org/abstracts/search?q=kindey%20beans" title=" kindey beans"> kindey beans</a>, <a href="https://publications.waset.org/abstracts/search?q=antifungal%20activity" title=" antifungal activity "> antifungal activity </a> </p> <a href="https://publications.waset.org/abstracts/120943/antifungal-potential-of-the-plant-growth-promoting-rhizobacteria-infecting-kidney-beans" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120943.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Endophytic Fungi Recovered from Lycium arabicum as an Eco-Friendly Alternative for Fusarium Crown and Root Rot Disease Control and Tomato Growth Enhancement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahlem%20Nefzi">Ahlem Nefzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rania%20Aydi%20Ben%20Abdallah"> Rania Aydi Ben Abdallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Hayfa%20Jabnoun-Khiareddine"> Hayfa Jabnoun-Khiareddine</a>, <a href="https://publications.waset.org/abstracts/search?q=Ammar%20Nawaim"> Ammar Nawaim</a>, <a href="https://publications.waset.org/abstracts/search?q=Rabiaa%20Haouala"> Rabiaa Haouala</a>, <a href="https://publications.waset.org/abstracts/search?q=Mejda%20Daami-Remadi"> Mejda Daami-Remadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seven endophytic fungi were isolated from the wild Solanaceous species Lycium arabicum growing in the Tunisian Centre-East and were assessed for their ability to suppress Fusarium Crown and Root Rot disease caused by Fusarium oxysporum f. sp. radicis lycopersici (FORL) and to enhance plant growth. Fungal isolates were shown able to colonize tomato cv. Rio Grande roots, crowns, and stems. A significant promotion in all studied growth parameters (root length, shoot height, and roots and shoots fresh weight) was recorded in tomato plants treated with fungal conidial suspensions or their cell-free culture filtrates compared to FORL-inoculated or pathogen-free controls. I15 and I18 isolates were shown to be the most effective leading to 85.7-87.5 and 93.6-98.4% decrease in leaf and root damage index and the vascular discoloration extent, respectively, over FORL-inoculated and untreated control. These two bioactive and growth-promoting isolates (I15 and I18) were morphologically characterized and identified using rDNA sequencing gene as being Alternaria alternata (MF693801) and Fusarium fujikuroi (MF693802). These fungi significantly suppressed FORL mycelial growth and showed chitinolytic, proteolytic and amylase activities whereas only F. fujikuroi displayed a lipolytic activity. This study clearly demonstrated the potential use of fungi naturally associated with L. arabicum as biocontrol and bio-fertilizing agents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biocontrol" title="biocontrol">biocontrol</a>, <a href="https://publications.waset.org/abstracts/search?q=endophytic%20fungi" title=" endophytic fungi"> endophytic fungi</a>, <a href="https://publications.waset.org/abstracts/search?q=Fusarium%20oxysporum%20f.%20sp.%20radicis-lycopersici" title=" Fusarium oxysporum f. sp. radicis-lycopersici"> Fusarium oxysporum f. sp. radicis-lycopersici</a>, <a href="https://publications.waset.org/abstracts/search?q=tomato%20promotion" title=" tomato promotion"> tomato promotion</a>, <a href="https://publications.waset.org/abstracts/search?q=Lycium%20arabicum" title=" Lycium arabicum"> Lycium arabicum</a> </p> <a href="https://publications.waset.org/abstracts/90549/endophytic-fungi-recovered-from-lycium-arabicum-as-an-eco-friendly-alternative-for-fusarium-crown-and-root-rot-disease-control-and-tomato-growth-enhancement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90549.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Tomato Endophytes Trichoderma asperellum AAUTLF and Stenotrophomonas maltophilia D1B Exhibits Plant Growth-Promotion and Fusarium Wilt Suppression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bandana%20Saikia">Bandana Saikia</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashok%20Bhattacharyya"> Ashok Bhattacharyya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Endophytic microbes and their metabolites positively impact overall plant health, which may have a potential implication in agriculture. In the present study, 177 bacterial endophytes and 57 fungal endophytes were isolated, with the highest recovery rate from tomato roots. A maximum of 112 endophytes were isolated during monsoon, followed by 64 isolates and 58 isolates isolated during pre-monsoon and post-monsoon periods, respectively, indicating the rich diversity in bacterial and fungal endophytes of tomato crops from different locations of Assam, India. Further, the endophytes were evaluated for their antagonistic potential against Fusarium oxysporum f. sp. lycopersici. Fungal endophytic isolate AAUTLF (Endophytic Fungi of Tomato Leaf from Assam Agricultural University, Assam, India area) and bacterial endophyte D1B (Endophytic bacteria of tomato from Dhemiji, India district) showed the highest antifungal activity against the pathogen both in vitro and in vivo. Based on 5.8 rDNA sequence analysis of fungal and 16S rDNA sequence of bacteria endophytes, the most effective fungal and bacterial isolates against FOL were identified as Trichoderma asperellum AAUTLF and Stenotrophomonas maltophilia D1B, respectively. The isolates showed an antagonistic effect against Fusarium oxysporum f.sp. lycopersici in-vitro and reduced the disease index of Fusarium wilt in tomatoes by 64.4% under pot conditions. Trichoderma asperellum AAUTLF produced an antifungal compound viz., 6-pentyl-2H-pyran-2-one, which also possesses growth-promoting characteristics. The bacteria Stenotrophomonas maltophilia D1B produced antifungal compounds, including benzothiazole, oleic acid, phenylacetic acid, and 3-(Hydroxy-phenyl-methyl)-2,3-dimethyl-octan-4-one. This would be of high importance for the source of antagonistic strains and biocontrol of tomato Fusarium wilt, as well as other plant fungal diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=root%20endophytes" title="root endophytes">root endophytes</a>, <a href="https://publications.waset.org/abstracts/search?q=Stemotrophomonas" title=" Stemotrophomonas"> Stemotrophomonas</a>, <a href="https://publications.waset.org/abstracts/search?q=Trichoderma" title=" Trichoderma"> Trichoderma</a>, <a href="https://publications.waset.org/abstracts/search?q=benzothiazole" title=" benzothiazole"> benzothiazole</a>, <a href="https://publications.waset.org/abstracts/search?q=6-pentyl-2H-pyran-2-one" title=" 6-pentyl-2H-pyran-2-one"> 6-pentyl-2H-pyran-2-one</a> </p> <a href="https://publications.waset.org/abstracts/165567/tomato-endophytes-trichoderma-asperellum-aautlf-and-stenotrophomonas-maltophilia-d1b-exhibits-plant-growth-promotion-and-fusarium-wilt-suppression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165567.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Biological Control of Fusarium Crown and Root and Tomato (Solanum lycopersicum L.) Growth Promotion Using Endophytic Fungi from Withania somnifera L.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nefzi%20Ahlem">Nefzi Ahlem</a>, <a href="https://publications.waset.org/abstracts/search?q=Aydi%20Ben%20Abdallah%20Rania"> Aydi Ben Abdallah Rania</a>, <a href="https://publications.waset.org/abstracts/search?q=Jabnoun-Khiareddine%20Hayfa"> Jabnoun-Khiareddine Hayfa</a>, <a href="https://publications.waset.org/abstracts/search?q=Ammar%20Nawaim"> Ammar Nawaim</a>, <a href="https://publications.waset.org/abstracts/search?q=Mejda%20Daami-Remadi"> Mejda Daami-Remadi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fusarium Crown and Root Rot (FCRR) caused by Fusarium oxysporum f. sp. radicis-lycopersici (FORL) is a serious tomato (Solanum lycopersicum L.) disease in Tunisia. Its management is very difficult due to the long survival of its resting structures and to the luck of genetic resistance. In this work, we explored the wild Solanaceae species Withania somnifera, growing in the Tunisian Centre-East, as a potential source of biocontrol agents effective in FCRR suppression and tomato growth promotion. Seven fungal isolates were shown able to colonize tomato roots, crowns, and stems. Used as conidial suspensions or cell-free culture filtrates, all tested fungal treatments significantly enhanced tomato growth parameters by 21.5-90.3% over FORL-free control and by 27.6-93.5% over pathogen-inoculated control. All treatments significantly decreased the leaf and root damage index by 28.5-92.8 and the vascular browning extent 9.7-86.4% over FORL-inoculated and untreated control. The highest disease suppression ability (decrease by 86.4-92.8% in FCRR severity) over pathogen-inoculated control and by 81.3-88.8 over hymexazol-treated control) was expressed by I6 based treatments. This endophytic fungus was morphologically characterized and identified using rDNA sequencing gene as Fusarium sp. I6 (MG835371). This fungus was shown able to reduce FORL radial growth by 58.5–83.2% using its conidial suspension or cell-free culture filtrate. Fusarium sp. I6 showed chitinolytic, proteolytic and amylase activities. The current study clearly demonstrated that Fusarium sp. (I6) is a promising biocontrol candidate for suppressing FCRR severity and promoting tomato growth. Further investigations are required for elucidating its mechanism of action involved in disease suppression and plant growth promotion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antifungal%20activity" title="antifungal activity">antifungal activity</a>, <a href="https://publications.waset.org/abstracts/search?q=associated%20fungi" title=" associated fungi"> associated fungi</a>, <a href="https://publications.waset.org/abstracts/search?q=Fusarium%20oxysporum%20f.%20sp.%20radicis-lycopersici" title=" Fusarium oxysporum f. sp. radicis-lycopersici"> Fusarium oxysporum f. sp. radicis-lycopersici</a>, <a href="https://publications.waset.org/abstracts/search?q=Withania%20somnifera" title=" Withania somnifera"> Withania somnifera</a>, <a href="https://publications.waset.org/abstracts/search?q=tomato%20growth" title=" tomato growth"> tomato growth</a> </p> <a href="https://publications.waset.org/abstracts/90540/biological-control-of-fusarium-crown-and-root-and-tomato-solanum-lycopersicum-l-growth-promotion-using-endophytic-fungi-from-withania-somnifera-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Improving the Digestibility of Agro-Industrial Co-Products by Treatment with Isolated Fungi in the Meknes-Morocco Region</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Benaddou">Mohamed Benaddou</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Diouri"> Mohammed Diouri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> country, such as Morocco, generates a high quantity of agricultural and food industry residues. A large portion of these residues is disposed of by burning or landfilling. The valorization of this waste biomass as feed is an interesting alternative because it is therefore considered among the best sources of cheap carbohydrates. However, its nutritional yield without any pre-treatment is very low because lignin protects cellulose, the carbohydrate used as a source of energy by ruminants. Fungal treatment is an environmentally friendly, easy and inexpensive method. This study investigated the treatment of wheat straw (WS), cedar sawdust (CS) and olive pomace (OP) with fungi selected according to the source of Carbon for improving its digestibility. Two were selected in a culture medium in which cellulose was the only source of Carbon: Cosmospora Viridescens (C.vir) and Penicillium crustosum (P.crus), two were selected in a culture medium in which lignin is the only source of Carbon: Fusarium oxysporum (F.oxy) and Fusarium sp. (F. Sp), and two in a culture medium where cellulose and lignin are the two sources of Carbon at the same time: Fusarium solani (F. solani) and Penicillium chrysogenum (P.chryso). P.chryso degraded more CS cellulose. It is very important to notice that the delignification by F. Solani reached 70% after 12 weeks of treatment of wheat straw. Ligninase enzymatic was detected in F.solani, F.sp, F.oxysporum, which made it possible to delignify the treated substrates. Delignification by C.vir is negligible in all three substrates after 12 weeks of treatment. P.crus and P.chryso degraded the lignin very slightly in WC (it did not exceed 12% after 12 weeks of treatment) but in OP this delignification is slight reaching 25% and 13% for P.chryso and P.crus successively. P.chryso allowed 30% degradation of lignin from 4 weeks of treatment. The degradation of the lignin was able to reach the maximum within 8 weeks of treatment for most of the fungi except F. solani who continued the treatment after this period. Digestibility variation (IVTD.variation) is highly very significant from fungus to fungi, duration to time, substrate to substrate and its interactions (P <0.001). indeed, all the fungi increased digestibility after 12 weeks of treatment with a difference in the degree of this increase. F.solani and F.oxy increased digestibility more than the others. this digestibility exceeded 50% in CS and O.P but did not exceed 20% for WS after treatment with F.oxy. IVTD.Var was not exceeded 20% in W.S.cedar treated with P.chryso but reached 45% after 8 weeks of treatment in W.straw. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lignin" title="lignin">lignin</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulose" title=" cellulose"> cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=digestibility" title=" digestibility"> digestibility</a>, <a href="https://publications.waset.org/abstracts/search?q=fungi" title=" fungi"> fungi</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment" title=" treatment"> treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=lignocellulosic%20biomass" title=" lignocellulosic biomass"> lignocellulosic biomass</a> </p> <a href="https://publications.waset.org/abstracts/145578/improving-the-digestibility-of-agro-industrial-co-products-by-treatment-with-isolated-fungi-in-the-meknes-morocco-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145578.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Synthesis of Antifungal by the Use of Green Catalyst</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elmeliani%20M%E2%80%99Hammed">Elmeliani M’Hammed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The work is carried out for the synthesis of antifungal effective against the fungus Fusarium oxysporum, Albedinis (Foa), the causative agent of bayoud, dates palm disease, through the use of raw clay as a green catalyst. The Aza-Michael reaction of amine addition to α, β-unsaturated alkene was carried out using the crude clay as a green catalyst to synthesize the antifungal agent bayoud. The reaction was carried out under favorable conditions, ambient temperature, without solvent, and a green catalyst "loves the environment" that the product that was synthesized gave us a high yield and excellent chemo selectivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=raw%20clay" title="raw clay">raw clay</a>, <a href="https://publications.waset.org/abstracts/search?q=amines" title=" amines"> amines</a>, <a href="https://publications.waset.org/abstracts/search?q=alkenes" title=" alkenes"> alkenes</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=antifungal" title=" antifungal"> antifungal</a>, <a href="https://publications.waset.org/abstracts/search?q=bayoud" title=" bayoud"> bayoud</a>, <a href="https://publications.waset.org/abstracts/search?q=date%20palms" title=" date palms"> date palms</a> </p> <a href="https://publications.waset.org/abstracts/171504/synthesis-of-antifungal-by-the-use-of-green-catalyst" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171504.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Single Cell Oil of Oleaginous Fungi from Lebanese Habitats as a Potential Feed Stock for Biodiesel </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20El-haj">M. El-haj</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Olama"> Z. Olama</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Holail"> H. Holail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Single cell oils (SCOs) accumulated by oleaginous fungi have emerged as a potential alternative feedstock for biodiesel production. Five fungal strains were isolated from the Lebanese environment namely Fusarium oxysporum, Mucor hiemalis, Penicillium citrinum, Aspergillus tamari, and Aspergillus niger that have been selected among 39 oleaginous strains for their potential ability to accumulate lipids (lipid content was more than 40% on dry weight basis). Wide variations were recorded in the environmental factors that lead to maximum lipid production by fungi under test and were cultivated under submerged fermentation on medium containing glucose as a carbon source. The maximum lipid production was attained within 6-8 days, at pH range 6-7, 24 to 48 hours age of seed culture, 4 to 6.107 spores/ml inoculum level and 100 ml culture volume. Eleven culture conditions were examined for their significance on lipid production using Plackett-Burman factorial design. Reducing sugars and nitrogen source were the most significant factors affecting lipid production process. Maximum lipid yield was noticed with 15.62, 14.48, 12.75, 13.68 and 20.41g/l for Fusarium oxysporum, Mucor hiemalis, Penicillium citrinum, Aspergillus tamari, and Aspergillus niger respectively. A verification experiment was carried out to examine model validation and revealed more than 94% validity. The profile of extracted lipids from each fungal isolate was studied using thin layer chromatography (TLC) indicating the presence of monoacylglycerols, diaacylglycerols, free fatty acids, triacylglycerols and sterol esters. The fatty acids profiles were also determined by gas-chromatography coupled with flame ionization detector (GC-FID). Data revealed the presence of significant amount of oleic acid (29-36%), palmitic acid (18-24%), linoleic acid (26.8-35%), and low amount of other fatty acids in the extracted fungal oils which indicate that the fatty acid profiles were quite similar to that of conventional vegetable oil. The cost of lipid production could be further reduced with acid-pretreated lignocellulotic corncob waste, whey and date molasses to be utilized as the raw material for the oleaginous fungi. The results showed that the microbial lipid from the studied fungi was a potential alternative resource for biodiesel production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agro-industrial%20waste%20products" title="agro-industrial waste products">agro-industrial waste products</a>, <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title=" biodiesel"> biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acid" title=" fatty acid"> fatty acid</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20cell%20oil" title=" single cell oil"> single cell oil</a>, <a href="https://publications.waset.org/abstracts/search?q=Lebanese%20environment" title=" Lebanese environment"> Lebanese environment</a>, <a href="https://publications.waset.org/abstracts/search?q=oleaginous%20fungi" title=" oleaginous fungi"> oleaginous fungi</a> </p> <a href="https://publications.waset.org/abstracts/36122/single-cell-oil-of-oleaginous-fungi-from-lebanese-habitats-as-a-potential-feed-stock-for-biodiesel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36122.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Study of Pathogenicity and Characterization of Fusarium oxysporum f.sp. albedinis by Isozymes Systemes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abouamama%20Sidaoui">Abouamama Sidaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Noureddine%20Karkachi"> Noureddine Karkachi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mebrouk%20Kihal"> Mebrouk Kihal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The characteristics of Fusarium oxysporium f.sp. albedinis (Foa) isolates were investigated using electrophoretic studies of isozymes systems (esterase and phosphatase). All the (F.o.a) isolates were pathogenic to the date palm seedlings cultivar Deglet Nour, but they did not induce any disease symptoms on control plants. Fusarium sp. isolated from soil did not show aggression against these seedlings. The isoenzymes profiles revealed polymorphic bands. The data were subjected to analysis with the JMP method. The isolates were delineated into two main groups A and B which were divided into sub-groups. 19 isolates create the group A, and four isolates (E1, E2, E3 and M15A) formed the group B. Analysis of isozyme banding patterns was found to be a reliable marker technology, efficient, and effective tools to find the genetic variability among isolates isolated in different geographical areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetic%20diversity" title="genetic diversity">genetic diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=Fusarium%20oxysporium%20f.%20sp.%20albedinis" title=" Fusarium oxysporium f. sp. albedinis"> Fusarium oxysporium f. sp. albedinis</a>, <a href="https://publications.waset.org/abstracts/search?q=isozyme%20analysis" title=" isozyme analysis"> isozyme analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=pathogenicity" title=" pathogenicity"> pathogenicity</a> </p> <a href="https://publications.waset.org/abstracts/60808/study-of-pathogenicity-and-characterization-of-fusarium-oxysporum-fsp-albedinis-by-isozymes-systemes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Chemical-Induced Mutation for Development of Resistance in Banana cv. Nanjangud rasabale</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Kishor">H. Kishor</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Prabhuling"> G. Prabhuling</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20S.%20Ambika"> D. S. Ambika</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20P.%20Prakash"> D. P. Prakash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The chemical mutagens have become important tool to enhance agronomic traits of banana crop. It is being used to develop fusarium resistance lines in various susceptible banana cultivars. There are several mutagens like EMS and NaN3 available for banana crop improvement and each mutagen has its own important role as positive or negative effects on growth and development of banana plants. Explants from shoot tip culture were treated with various EMS (0.30, 0.60, 0.90 and 0.12%) and NaN3 (0.01, 0.02 and 0.03%) concentrations. The putative mutants obtained after in vitro rooting were subjected for artificial inoculation of Fusarium oxysporum f.sp. cubense. Screening putative mutants resistance to Panama disease was carried out by using syringe method of inoculation. It was observed that, EMS treated mutants were more susceptible compared to NaN3 treatment. Among the NaN3 doses 0.01% found to produce 3 resistant lines during preliminary screening under greenhouse conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nanjangud%20rasabale" title="Nanjangud rasabale">Nanjangud rasabale</a>, <a href="https://publications.waset.org/abstracts/search?q=EMS" title=" EMS"> EMS</a>, <a href="https://publications.waset.org/abstracts/search?q=NaN3" title=" NaN3"> NaN3</a>, <a href="https://publications.waset.org/abstracts/search?q=putative%20mutants" title=" putative mutants"> putative mutants</a> </p> <a href="https://publications.waset.org/abstracts/59196/chemical-induced-mutation-for-development-of-resistance-in-banana-cv-nanjangud-rasabale" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59196.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> C-Coordinated Chitosan Metal Complexes: Design, Synthesis and Antifungal Properties </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Weixiang%20Liu">Weixiang Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yukun%20Qin"> Yukun Qin</a>, <a href="https://publications.waset.org/abstracts/search?q=Song%20Liu"> Song Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Pengcheng%20Li"> Pengcheng Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plant diseases can cause the death of crops with great economic losses. Particularly, those diseases are usually caused by pathogenic fungi. Metal fungicides are a type of pesticide that has advantages of a low-cost, broad antimicrobial spectrum and strong sterilization effect. However, the frequent and wide application of traditional metal fungicides has caused serious problems such as environmental pollution, the outbreak of mites and phytotoxicity. Therefore, it is critically necessary to discover new organic metal fungicides alternatives that have a low metal content, low toxicity, and little influence on mites. Chitosan, the second most abundant natural polysaccharide next to cellulose, was proved to have broad-spectrum antifungal activity against a variety of fungi. However, the use of chitosan was limited due to its poor solubility and weaker antifungal activity compared with commercial fungicide. Therefore, in order to improve the water solubility and antifungal activity, many researchers grafted the active groups onto chitosan. The present work was to combine free metal ions with chitosan, to prepare more potent antifungal chitosan derivatives, thus, based on condensation reaction, chitosan derivative bearing amino pyridine group was prepared and subsequently followed by coordination with cupric ions, zinc ions and nickel ions to synthesize chitosan metal complexes. The calculations by density functional theory (DFT) show that the copper ions and nickel ions underwent dsp2 hybridization, the zinc ions underwent sp3 hybridization, and all of them are coordinated by the carbon atom in the p-π conjugate group and the oxygen atoms in the acetate ion. The antifungal properties of chitosan metal complexes against Phytophthora capsici (P. capsici), Gibberella zeae (G. zeae), Fusarium oxysporum (F. oxysporum) and Botrytis cinerea (B. cinerea) were also assayed. In addition, a plant toxicity experiment was carried out. The experiments indicated that the derivatives have significantly enhanced antifungal activity after metal ions complexation compared with the original chitosan. It was shown that 0.20 mg/mL of O-CSPX-Cu can 100% inhibit the growth of P. capsici and 0.20 mg/mL of O-CSPX-Ni can 87.5% inhibit the growth of B. cinerea. In general, their activities are better than the positive control oligosaccharides. The combination of the pyridine formyl groups seems to favor biological activity. Additionally, the ligand fashion was precisely analyzed, and the results revealed that the copper ions and nickel ions underwent dsp2 hybridization, the zinc ions underwent sp3 hybridization, and the carbon atoms of the p-π conjugate group and the oxygen atoms of acetate ion are involved in the coordination of metal ions. The phytotoxicity assay of O-CSPX-M was also conducted, unlike the traditional metal fungicides, the metal complexes were not significantly toxic to the leaves of wheat. O-CSPX-Zn can even increase chlorophyll content in wheat leaves at 0.40 mg/mL. This is mainly because chitosan itself promotes plant growth and counteracts the phytotoxicity of metal ions. The chitosan derivative described here may lend themselves to future applicative studies in crop protection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coordination" title="coordination">coordination</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20complex" title=" metal complex"> metal complex</a>, <a href="https://publications.waset.org/abstracts/search?q=antifungal%20properties" title=" antifungal properties"> antifungal properties</a> </p> <a href="https://publications.waset.org/abstracts/80291/c-coordinated-chitosan-metal-complexes-design-synthesis-and-antifungal-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80291.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Morphological and Biological Identification of Fusarium Species Associated with Ear Rot Disease of Maize in Indonesia and Malaysia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Darnetty%20Baharuddin%20Salleh">Darnetty Baharuddin Salleh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fusarium ear rot disease is one of the most important diseases of maize and not only causes significant losses but also produced harmful mycotoxins to animals and humans. A total of 141 strains of Fusarium species were isolated from maize plants showing typical ear rot symptoms in Indonesia, and Malaysia by using the semi-selective medium (peptone pentachloronitrobenzene agar, PPA). These strains were identified morphologically. For strains in Gibberella fujikuroi species complex (Gfsc), the identification was continued by using biological identification. Three species of Fusarium were morphologically identified as Fusarium in Gibberella species complex (105 strains, 74.5%), F. verticillioides (78 strains), F. proliferatum (24 strains) and F. subglutinans (3 strains) and five species from other section (36 strains, 25.5%), F. graminearum (14 strains), F. oxysporum (8 strains), F. solani ( 1 strain), and F. semitectum (13 strains). Out of 105 Fusarium species in Gfsc, 63 strains were identified as MAT-1, 25 strains as MAT-2 and 17 strains could not be identified and in crosses with nine standard testers, three mating populations of Fusarium were identified as MP-A, G. moniliformis (68 strains, 64.76%), MP-D, G. intermedia (21 strains, 20%) and MP-E, G. subglutinans (3 strains, 2.9%), and 13 strains (12.38%) could not be identified. All trains biologically identified as MP-A, MP-D, and MP-E, were identified morphologically as F. verticillioides, F. proliferatum, and F. subglutinans, respectively. Thus, the results of this study indicated that identification based on biological identification were consistent with those of morphological identification. This is the first report on the presence of MP-A, MP-D, and MP-E on ear rot-infected maize in Indonesia; MP-A and MP-E in Malaysia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fusarium" title="Fusarium">Fusarium</a>, <a href="https://publications.waset.org/abstracts/search?q=MAT-1" title=" MAT-1"> MAT-1</a>, <a href="https://publications.waset.org/abstracts/search?q=MAT-2" title=" MAT-2"> MAT-2</a>, <a href="https://publications.waset.org/abstracts/search?q=MP-A" title=" MP-A"> MP-A</a>, <a href="https://publications.waset.org/abstracts/search?q=MP-D" title=" MP-D"> MP-D</a>, <a href="https://publications.waset.org/abstracts/search?q=MP-E" title=" MP-E"> MP-E</a> </p> <a href="https://publications.waset.org/abstracts/37088/morphological-and-biological-identification-of-fusarium-species-associated-with-ear-rot-disease-of-maize-in-indonesia-and-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37088.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Study of Some Epidemiological Factors Influencing the Disease Incidence in Chickpea (Cicer Arietinum L.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Asim%20Nazir">Muhammad Asim Nazir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The investigations reported in this manuscript were carried on the screening of one hundred and seventy-eight chickpea germplasm lines/cultivars against wilt disease, caused by Fusarium oxysporum f. sp. ciceris. The screening was conducted in vivo (field) conditions. The field screening was accompanied with the study of some epidemiological factors affecting the occurrence and severity of the disease. Among the epidemiological factors maximum temperature range (28-40°C), minimum temperature range (12-24°C), relative humidity (19-44%), soil temperature (26-41°C) and soil moisture range (19-34°C) was studied for affecting the disease incidence/severity. The results revealed that air temperature was positively correlated with diseases. Soil temperature data revealed that in all cultivars disease incidence was maximum as 39°C. Most of the plants show 40-50% disease incidence. Disease incidence decreased at 33.5°C. The result of correlation of relative humidity of air and wilt incidence revealed that all cultivars/lines were negatively correlated with relative humidity. With increasing relative humidity wilt incidence decreased and vice versa. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chickpea" title="chickpea">chickpea</a>, <a href="https://publications.waset.org/abstracts/search?q=epidemiological" title=" epidemiological"> epidemiological</a>, <a href="https://publications.waset.org/abstracts/search?q=screening" title=" screening"> screening</a>, <a href="https://publications.waset.org/abstracts/search?q=disease" title=" disease"> disease</a> </p> <a href="https://publications.waset.org/abstracts/19669/study-of-some-epidemiological-factors-influencing-the-disease-incidence-in-chickpea-cicer-arietinum-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19669.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">641</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=F.%20oxysporum&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=F.%20oxysporum&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10