CINXE.COM

Trace (linear algebra) - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Trace (linear algebra) - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"57d0b698-ab12-49c5-926e-4745e02ad486","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Trace_(linear_algebra)","wgTitle":"Trace (linear algebra)","wgCurRevisionId":1256943232,"wgRevisionId":1256943232,"wgArticleId":43270,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description is different from Wikidata","Articles needing additional references from November 2023","All articles needing additional references","All articles with unsourced statements","Articles with unsourced statements from June 2022","Linear algebra","Matrix theory","Trace theory"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Trace_(linear_algebra)", "wgRelevantArticleId":43270,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":40000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q321102","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform", "platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap", "ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Trace (linear algebra) - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Trace_(linear_algebra)"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Trace_(linear_algebra)&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Trace_(linear_algebra)"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Trace_linear_algebra rootpage-Trace_linear_algebra skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Trace+%28linear+algebra%29" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Trace+%28linear+algebra%29" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Trace+%28linear+algebra%29" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Trace+%28linear+algebra%29" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Definition" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Definition"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Definition</span> </div> </a> <ul id="toc-Definition-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Example" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Example"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Example</span> </div> </a> <ul id="toc-Example-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Properties" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Properties</span> </div> </a> <button aria-controls="toc-Properties-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Properties subsection</span> </button> <ul id="toc-Properties-sublist" class="vector-toc-list"> <li id="toc-Basic_properties" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Basic_properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Basic properties</span> </div> </a> <ul id="toc-Basic_properties-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Trace_of_a_product" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Trace_of_a_product"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Trace of a product</span> </div> </a> <ul id="toc-Trace_of_a_product-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Cyclic_property" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Cyclic_property"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Cyclic property</span> </div> </a> <ul id="toc-Cyclic_property-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Trace_of_a_Kronecker_product" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Trace_of_a_Kronecker_product"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4</span> <span>Trace of a Kronecker product</span> </div> </a> <ul id="toc-Trace_of_a_Kronecker_product-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Characterization_of_the_trace" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Characterization_of_the_trace"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.5</span> <span>Characterization of the trace</span> </div> </a> <ul id="toc-Characterization_of_the_trace-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Trace_as_the_sum_of_eigenvalues" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Trace_as_the_sum_of_eigenvalues"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.6</span> <span>Trace as the sum of eigenvalues</span> </div> </a> <ul id="toc-Trace_as_the_sum_of_eigenvalues-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Trace_of_commutator" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Trace_of_commutator"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.7</span> <span>Trace of commutator</span> </div> </a> <ul id="toc-Trace_of_commutator-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Traces_of_special_kinds_of_matrices" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Traces_of_special_kinds_of_matrices"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.8</span> <span>Traces of special kinds of matrices</span> </div> </a> <ul id="toc-Traces_of_special_kinds_of_matrices-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Relationship_to_the_characteristic_polynomial" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Relationship_to_the_characteristic_polynomial"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.9</span> <span>Relationship to the characteristic polynomial</span> </div> </a> <ul id="toc-Relationship_to_the_characteristic_polynomial-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Relationship_to_eigenvalues" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Relationship_to_eigenvalues"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Relationship to eigenvalues</span> </div> </a> <button aria-controls="toc-Relationship_to_eigenvalues-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Relationship to eigenvalues subsection</span> </button> <ul id="toc-Relationship_to_eigenvalues-sublist" class="vector-toc-list"> <li id="toc-Derivative_relationships" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Derivative_relationships"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Derivative relationships</span> </div> </a> <ul id="toc-Derivative_relationships-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Trace_of_a_linear_operator" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Trace_of_a_linear_operator"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Trace of a linear operator</span> </div> </a> <ul id="toc-Trace_of_a_linear_operator-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Numerical_algorithms" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Numerical_algorithms"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Numerical algorithms</span> </div> </a> <button aria-controls="toc-Numerical_algorithms-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Numerical algorithms subsection</span> </button> <ul id="toc-Numerical_algorithms-sublist" class="vector-toc-list"> <li id="toc-Stochastic_estimator" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Stochastic_estimator"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Stochastic estimator</span> </div> </a> <ul id="toc-Stochastic_estimator-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Applications" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Applications"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Applications</span> </div> </a> <ul id="toc-Applications-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Lie_algebra" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Lie_algebra"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Lie algebra</span> </div> </a> <button aria-controls="toc-Lie_algebra-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Lie algebra subsection</span> </button> <ul id="toc-Lie_algebra-sublist" class="vector-toc-list"> <li id="toc-Bilinear_forms" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Bilinear_forms"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.1</span> <span>Bilinear forms</span> </div> </a> <ul id="toc-Bilinear_forms-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Generalizations" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Generalizations"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Generalizations</span> </div> </a> <ul id="toc-Generalizations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Traces_in_the_language_of_tensor_products" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Traces_in_the_language_of_tensor_products"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Traces in the language of tensor products</span> </div> </a> <ul id="toc-Traces_in_the_language_of_tensor_products-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">13</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">14</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Trace (linear algebra)</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 40 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-40" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">40 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%A3%D8%AB%D8%B1_(%D8%AC%D8%A8%D8%B1_%D8%AE%D8%B7%D9%8A)" title="أثر (جبر خطي) – Arabic" lang="ar" hreflang="ar" data-title="أثر (جبر خطي)" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-zh-min-nan mw-list-item"><a href="https://zh-min-nan.wikipedia.org/wiki/Jiah_(S%C3%B2a%E2%81%BF-s%C3%A8ng_t%C4%81i-s%C3%B2%CD%98)" title="Jiah (Sòaⁿ-sèng tāi-sò͘) – Minnan" lang="nan" hreflang="nan" data-title="Jiah (Sòaⁿ-sèng tāi-sò͘)" data-language-autonym="閩南語 / Bân-lâm-gú" data-language-local-name="Minnan" class="interlanguage-link-target"><span>閩南語 / Bân-lâm-gú</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Tra%C3%A7a_(%C3%A0lgebra_lineal)" title="Traça (àlgebra lineal) – Catalan" lang="ca" hreflang="ca" data-title="Traça (àlgebra lineal)" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D1%80%D0%B8%D1%86%D0%B0_%D0%B9%C4%95%D1%80%C4%95" title="Матрица йĕрĕ – Chuvash" lang="cv" hreflang="cv" data-title="Матрица йĕрĕ" data-language-autonym="Чӑвашла" data-language-local-name="Chuvash" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Stopa_matice" title="Stopa matice – Czech" lang="cs" hreflang="cs" data-title="Stopa matice" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Spor_(algebra)" title="Spor (algebra) – Danish" lang="da" hreflang="da" data-title="Spor (algebra)" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Spur_(Mathematik)" title="Spur (Mathematik) – German" lang="de" hreflang="de" data-title="Spur (Mathematik)" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/J%C3%A4lg_(lineaaralgebra)" title="Jälg (lineaaralgebra) – Estonian" lang="et" hreflang="et" data-title="Jälg (lineaaralgebra)" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%8A%CF%87%CE%BD%CE%BF%CF%82_%CF%80%CE%AF%CE%BD%CE%B1%CE%BA%CE%B1" title="Ίχνος πίνακα – Greek" lang="el" hreflang="el" data-title="Ίχνος πίνακα" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Traza_(%C3%A1lgebra_lineal)" title="Traza (álgebra lineal) – Spanish" lang="es" hreflang="es" data-title="Traza (álgebra lineal)" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Spuro_(lineara_algebro)" title="Spuro (lineara algebro) – Esperanto" lang="eo" hreflang="eo" data-title="Spuro (lineara algebro)" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Aztarna_(aljebra)" title="Aztarna (aljebra) – Basque" lang="eu" hreflang="eu" data-title="Aztarna (aljebra)" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%A7%D8%AB%D8%B1_(%D8%AC%D8%A8%D8%B1_%D8%AE%D8%B7%DB%8C)" title="اثر (جبر خطی) – Persian" lang="fa" hreflang="fa" data-title="اثر (جبر خطی)" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Trace_(alg%C3%A8bre)" title="Trace (algèbre) – French" lang="fr" hreflang="fr" data-title="Trace (algèbre)" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Traza_(%C3%A1lxebra_linear)" title="Traza (álxebra linear) – Galician" lang="gl" hreflang="gl" data-title="Traza (álxebra linear)" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EB%8C%80%EA%B0%81%ED%95%A9" title="대각합 – Korean" lang="ko" hreflang="ko" data-title="대각합" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Teras_(aljabar_linear)" title="Teras (aljabar linear) – Indonesian" lang="id" hreflang="id" data-title="Teras (aljabar linear)" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Traccia_(matrice)" title="Traccia (matrice) – Italian" lang="it" hreflang="it" data-title="Traccia (matrice)" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%A2%D7%A7%D7%91%D7%94_(%D7%90%D7%9C%D7%92%D7%91%D7%A8%D7%94)" title="עקבה (אלגברה) – Hebrew" lang="he" hreflang="he" data-title="עקבה (אלגברה)" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Nyom_(line%C3%A1ris_algebra)" title="Nyom (lineáris algebra) – Hungarian" lang="hu" hreflang="hu" data-title="Nyom (lineáris algebra)" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Spoor_(lineaire_algebra)" title="Spoor (lineaire algebra) – Dutch" lang="nl" hreflang="nl" data-title="Spoor (lineaire algebra)" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E8%B7%A1_(%E7%B7%9A%E5%9E%8B%E4%BB%A3%E6%95%B0%E5%AD%A6)" title="跡 (線型代数学) – Japanese" lang="ja" hreflang="ja" data-title="跡 (線型代数学)" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Spor_i_matematikk" title="Spor i matematikk – Norwegian Nynorsk" lang="nn" hreflang="nn" data-title="Spor i matematikk" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegian Nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/%C5%9Alad_(algebra_liniowa)" title="Ślad (algebra liniowa) – Polish" lang="pl" hreflang="pl" data-title="Ślad (algebra liniowa)" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Tra%C3%A7o_(%C3%A1lgebra_linear)" title="Traço (álgebra linear) – Portuguese" lang="pt" hreflang="pt" data-title="Traço (álgebra linear)" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Urm%C4%83_(algebr%C4%83)" title="Urmă (algebră) – Romanian" lang="ro" hreflang="ro" data-title="Urmă (algebră)" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A1%D0%BB%D0%B5%D0%B4_%D0%BC%D0%B0%D1%82%D1%80%D0%B8%D1%86%D1%8B" title="След матрицы – Russian" lang="ru" hreflang="ru" data-title="След матрицы" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Gjurma_(algjeb%C3%ABr_lineare)" title="Gjurma (algjebër lineare) – Albanian" lang="sq" hreflang="sq" data-title="Gjurma (algjebër lineare)" data-language-autonym="Shqip" data-language-local-name="Albanian" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Stopa_matice" title="Stopa matice – Slovak" lang="sk" hreflang="sk" data-title="Stopa matice" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Sled_matrike" title="Sled matrike – Slovenian" lang="sl" hreflang="sl" data-title="Sled matrike" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%A2%D1%80%D0%B0%D0%B3_(%D0%BB%D0%B8%D0%BD%D0%B5%D0%B0%D1%80%D0%BD%D0%B0_%D0%B0%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0)" title="Траг (линеарна алгебра) – Serbian" lang="sr" hreflang="sr" data-title="Траг (линеарна алгебра)" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/J%C3%A4lki" title="Jälki – Finnish" lang="fi" hreflang="fi" data-title="Jälki" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Sp%C3%A5r_(matematik)" title="Spår (matematik) – Swedish" lang="sv" hreflang="sv" data-title="Spår (matematik)" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%9A%E0%AF%81%E0%AE%B5%E0%AE%9F%E0%AF%81_(%E0%AE%A8%E0%AF%87%E0%AE%B0%E0%AE%BF%E0%AE%AF%E0%AE%B2%E0%AF%8D_%E0%AE%87%E0%AE%AF%E0%AE%B1%E0%AF%8D%E0%AE%95%E0%AE%A3%E0%AE%BF%E0%AE%A4%E0%AE%AE%E0%AF%8D)" title="சுவடு (நேரியல் இயற்கணிதம்) – Tamil" lang="ta" hreflang="ta" data-title="சுவடு (நேரியல் இயற்கணிதம்)" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%A3%E0%B8%AD%E0%B8%A2%E0%B9%80%E0%B8%A1%E0%B8%97%E0%B8%A3%E0%B8%B4%E0%B8%81%E0%B8%8B%E0%B9%8C" title="รอยเมทริกซ์ – Thai" lang="th" hreflang="th" data-title="รอยเมทริกซ์" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tg mw-list-item"><a href="https://tg.wikipedia.org/wiki/%D0%98%D0%B7%D0%B8_%D0%BC%D0%B0%D1%82%D1%80%D0%B8%D1%82%D1%81%D0%B0" title="Изи матритса – Tajik" lang="tg" hreflang="tg" data-title="Изи матритса" data-language-autonym="Тоҷикӣ" data-language-local-name="Tajik" class="interlanguage-link-target"><span>Тоҷикӣ</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/%C4%B0lkk%C3%B6%C5%9Fegen_toplam%C4%B1" title="İlkköşegen toplamı – Turkish" lang="tr" hreflang="tr" data-title="İlkköşegen toplamı" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A1%D0%BB%D1%96%D0%B4_%D0%BC%D0%B0%D1%82%D1%80%D0%B8%D1%86%D1%96" title="Слід матриці – Ukrainian" lang="uk" hreflang="uk" data-title="Слід матриці" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/V%E1%BA%BFt_(%C4%91%E1%BA%A1i_s%E1%BB%91_tuy%E1%BA%BFn_t%C3%ADnh)" title="Vết (đại số tuyến tính) – Vietnamese" lang="vi" hreflang="vi" data-title="Vết (đại số tuyến tính)" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E8%B7%A1" title="跡 – Chinese" lang="zh" hreflang="zh" data-title="跡" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q321102#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Trace_(linear_algebra)" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Trace_(linear_algebra)" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Trace_(linear_algebra)"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Trace_(linear_algebra)&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Trace_(linear_algebra)&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Trace_(linear_algebra)"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Trace_(linear_algebra)&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Trace_(linear_algebra)&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Trace_(linear_algebra)" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Trace_(linear_algebra)" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Trace_(linear_algebra)&amp;oldid=1256943232" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Trace_(linear_algebra)&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Trace_%28linear_algebra%29&amp;id=1256943232&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FTrace_%28linear_algebra%29"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FTrace_%28linear_algebra%29"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Trace_%28linear_algebra%29&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Trace_(linear_algebra)&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q321102" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Sum of elements on the main diagonal</div> <style data-mw-deduplicate="TemplateStyles:r1251242444">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media print{body.ns-0 .mw-parser-output .ambox{display:none!important}}</style><table class="box-More_citations_needed plainlinks metadata ambox ambox-content ambox-Refimprove" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/File:Question_book-new.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/50px-Question_book-new.svg.png" decoding="async" width="50" height="39" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/75px-Question_book-new.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/100px-Question_book-new.svg.png 2x" data-file-width="512" data-file-height="399" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">This article <b>needs additional citations for <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">verification</a></b>.<span class="hide-when-compact"> Please help <a href="/wiki/Special:EditPage/Trace_(linear_algebra)" title="Special:EditPage/Trace (linear algebra)">improve this article</a> by <a href="/wiki/Help:Referencing_for_beginners" title="Help:Referencing for beginners">adding citations to reliable sources</a>. Unsourced material may be challenged and removed.<br /><small><span class="plainlinks"><i>Find sources:</i>&#160;<a rel="nofollow" class="external text" href="https://www.google.com/search?as_eq=wikipedia&amp;q=%22Trace%22+linear+algebra">"Trace"&#160;linear algebra</a>&#160;–&#160;<a rel="nofollow" class="external text" href="https://www.google.com/search?tbm=nws&amp;q=%22Trace%22+linear+algebra+-wikipedia&amp;tbs=ar:1">news</a>&#160;<b>·</b> <a rel="nofollow" class="external text" href="https://www.google.com/search?&amp;q=%22Trace%22+linear+algebra&amp;tbs=bkt:s&amp;tbm=bks">newspapers</a>&#160;<b>·</b> <a rel="nofollow" class="external text" href="https://www.google.com/search?tbs=bks:1&amp;q=%22Trace%22+linear+algebra+-wikipedia">books</a>&#160;<b>·</b> <a rel="nofollow" class="external text" href="https://scholar.google.com/scholar?q=%22Trace%22+linear+algebra">scholar</a>&#160;<b>·</b> <a rel="nofollow" class="external text" href="https://www.jstor.org/action/doBasicSearch?Query=%22Trace%22+linear+algebra&amp;acc=on&amp;wc=on">JSTOR</a></span></small></span> <span class="date-container"><i>(<span class="date">November 2023</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <p>In <a href="/wiki/Linear_algebra" title="Linear algebra">linear algebra</a>, the <b>trace</b> of a <a href="/wiki/Square_matrix" title="Square matrix">square matrix</a> <span class="texhtml"><b>A</b></span>, denoted <span class="texhtml">tr(<b>A</b>)</span>,<sup id="cite_ref-:1_1-0" class="reference"><a href="#cite_note-:1-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> is the sum of the elements on its <a href="/wiki/Main_diagonal" title="Main diagonal">main diagonal</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{11}+a_{22}+\dots +a_{nn}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>22</mn> </mrow> </msub> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{11}+a_{22}+\dots +a_{nn}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d10262aa5642e6b61e0ab87bc323be450db82424" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:20.891ex; height:2.343ex;" alt="{\displaystyle a_{11}+a_{22}+\dots +a_{nn}}"></span>. It is only defined for a square matrix (<span class="texhtml"><i>n</i> × <i>n</i></span>). </p><p>In mathematical physics, if <span class="texhtml">tr(<b>A</b>)</span> = 0, the matrix is said to be <i>traceless</i>. This misnomer is widely used, as in the definition of <a href="/wiki/Pauli_matrices" title="Pauli matrices">Pauli matrices</a>. </p><p>The trace of a matrix is the sum of its <a href="/wiki/Eigenvalue" class="mw-redirect" title="Eigenvalue">eigenvalues</a> (counted with multiplicities). Also, <span class="texhtml">tr(<b>AB</b>) = tr(<b>BA</b>)</span> for any matrices <span class="texhtml"><b>A</b></span> and <span class="texhtml"><b>B</b></span> of the same size. Thus, <a href="/wiki/Matrix_similarity" title="Matrix similarity">similar matrices</a> have the same trace. As a consequence, one can define the trace of a <a href="/wiki/Linear_operator" class="mw-redirect" title="Linear operator">linear operator</a> mapping a finite-dimensional <a href="/wiki/Vector_space" title="Vector space">vector space</a> into itself, since all matrices describing such an operator with respect to a basis are similar. </p><p>The trace is related to the derivative of the <a href="/wiki/Determinant" title="Determinant">determinant</a> (see <a href="/wiki/Jacobi%27s_formula" title="Jacobi&#39;s formula">Jacobi's formula</a>). </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Definition">Definition</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trace_(linear_algebra)&amp;action=edit&amp;section=1" title="Edit section: Definition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <b>trace</b> of an <span class="texhtml"><i>n</i> × <i>n</i></span> <a href="/wiki/Square_matrix" title="Square matrix">square matrix</a> <span class="texhtml"><b>A</b></span> is defined as<sup id="cite_ref-:1_1-1" class="reference"><a href="#cite_note-:1-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:2_2-0" class="reference"><a href="#cite_note-:2-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-LipschutzLipson_3-0" class="reference"><a href="#cite_note-LipschutzLipson-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page / location: 34">&#58;&#8202;34&#8202;</span></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {tr} (\mathbf {A} )=\sum _{i=1}^{n}a_{ii}=a_{11}+a_{22}+\dots +a_{nn}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>22</mn> </mrow> </msub> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {tr} (\mathbf {A} )=\sum _{i=1}^{n}a_{ii}=a_{11}+a_{22}+\dots +a_{nn}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/627945b163d7d9a1c68d59c905de5088f2e71f31" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:39.072ex; height:6.843ex;" alt="{\displaystyle \operatorname {tr} (\mathbf {A} )=\sum _{i=1}^{n}a_{ii}=a_{11}+a_{22}+\dots +a_{nn}}"></span> where <span class="texhtml"><i>a<sub>ii</sub></i></span> denotes the entry on the <span class="nowrap"><span class="texhtml mvar" style="font-style:italic;">i</span>&#8201;th</span> row and <span class="nowrap"><span class="texhtml mvar" style="font-style:italic;">i</span>&#8201;th</span> column of <span class="texhtml"><b>A</b></span>. The entries of <span class="texhtml"><b>A</b></span> can be <a href="/wiki/Real_number" title="Real number">real numbers</a>, <a href="/wiki/Complex_numbers" class="mw-redirect" title="Complex numbers">complex numbers</a>, or more generally elements of a <a href="/wiki/Field_(mathematics)" title="Field (mathematics)">field</a> <span class="texhtml mvar" style="font-style:italic;">F</span>. The trace is not defined for non-square matrices. </p> <div class="mw-heading mw-heading2"><h2 id="Example">Example</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trace_(linear_algebra)&amp;action=edit&amp;section=2" title="Edit section: Example"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <span class="texhtml"><b>A</b></span> be a matrix, with <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {A} ={\begin{pmatrix}a_{11}&amp;a_{12}&amp;a_{13}\\a_{21}&amp;a_{22}&amp;a_{23}\\a_{31}&amp;a_{32}&amp;a_{33}\end{pmatrix}}={\begin{pmatrix}1&amp;0&amp;3\\11&amp;5&amp;2\\6&amp;12&amp;-5\end{pmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>13</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>21</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>22</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>23</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>31</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>32</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>33</mn> </mrow> </msub> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mn>11</mn> </mtd> <mtd> <mn>5</mn> </mtd> <mtd> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mn>6</mn> </mtd> <mtd> <mn>12</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>5</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {A} ={\begin{pmatrix}a_{11}&amp;a_{12}&amp;a_{13}\\a_{21}&amp;a_{22}&amp;a_{23}\\a_{31}&amp;a_{32}&amp;a_{33}\end{pmatrix}}={\begin{pmatrix}1&amp;0&amp;3\\11&amp;5&amp;2\\6&amp;12&amp;-5\end{pmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b6988ef404cd2ffb46934efd60fdd9466612c904" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:44.082ex; height:9.176ex;" alt="{\displaystyle \mathbf {A} ={\begin{pmatrix}a_{11}&amp;a_{12}&amp;a_{13}\\a_{21}&amp;a_{22}&amp;a_{23}\\a_{31}&amp;a_{32}&amp;a_{33}\end{pmatrix}}={\begin{pmatrix}1&amp;0&amp;3\\11&amp;5&amp;2\\6&amp;12&amp;-5\end{pmatrix}}}"></span> </p><p>Then <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {tr} (\mathbf {A} )=\sum _{i=1}^{3}a_{ii}=a_{11}+a_{22}+a_{33}=1+5+(-5)=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </munderover> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>22</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>33</mn> </mrow> </msub> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mn>5</mn> <mo>+</mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>5</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {tr} (\mathbf {A} )=\sum _{i=1}^{3}a_{ii}=a_{11}+a_{22}+a_{33}=1+5+(-5)=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/076c877850a7b9ca25f1fa7f567aaaab342b8074" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:53.325ex; height:7.176ex;" alt="{\displaystyle \operatorname {tr} (\mathbf {A} )=\sum _{i=1}^{3}a_{ii}=a_{11}+a_{22}+a_{33}=1+5+(-5)=1}"></span> </p> <div class="mw-heading mw-heading2"><h2 id="Properties">Properties</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trace_(linear_algebra)&amp;action=edit&amp;section=3" title="Edit section: Properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Basic_properties">Basic properties</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trace_(linear_algebra)&amp;action=edit&amp;section=4" title="Edit section: Basic properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The trace is a <a href="/wiki/Linear_operator" class="mw-redirect" title="Linear operator">linear mapping</a>. That is,<sup id="cite_ref-:1_1-2" class="reference"><a href="#cite_note-:1-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:2_2-1" class="reference"><a href="#cite_note-:2-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\operatorname {tr} (\mathbf {A} +\mathbf {B} )&amp;=\operatorname {tr} (\mathbf {A} )+\operatorname {tr} (\mathbf {B} )\\\operatorname {tr} (c\mathbf {A} )&amp;=c\operatorname {tr} (\mathbf {A} )\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo stretchy="false">)</mo> <mo>+</mo> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>c</mi> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\operatorname {tr} (\mathbf {A} +\mathbf {B} )&amp;=\operatorname {tr} (\mathbf {A} )+\operatorname {tr} (\mathbf {B} )\\\operatorname {tr} (c\mathbf {A} )&amp;=c\operatorname {tr} (\mathbf {A} )\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/872b65c362c45674fb790530e8f17a324544cfda" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:28.248ex; height:6.176ex;" alt="{\displaystyle {\begin{aligned}\operatorname {tr} (\mathbf {A} +\mathbf {B} )&amp;=\operatorname {tr} (\mathbf {A} )+\operatorname {tr} (\mathbf {B} )\\\operatorname {tr} (c\mathbf {A} )&amp;=c\operatorname {tr} (\mathbf {A} )\end{aligned}}}"></span> for all square matrices <span class="texhtml"><b>A</b></span> and <span class="texhtml"><b>B</b></span>, and all <a href="/wiki/Scalar_(mathematics)" title="Scalar (mathematics)">scalars</a> <span class="texhtml mvar" style="font-style:italic;">c</span>.<sup id="cite_ref-LipschutzLipson_3-1" class="reference"><a href="#cite_note-LipschutzLipson-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page / location: 34">&#58;&#8202;34&#8202;</span></sup> </p><p>A matrix and its <a href="/wiki/Transpose" title="Transpose">transpose</a> have the same trace:<sup id="cite_ref-:1_1-3" class="reference"><a href="#cite_note-:1-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:2_2-2" class="reference"><a href="#cite_note-:2-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-LipschutzLipson_3-2" class="reference"><a href="#cite_note-LipschutzLipson-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page / location: 34">&#58;&#8202;34&#8202;</span></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {tr} (\mathbf {A} )=\operatorname {tr} \left(\mathbf {A} ^{\mathsf {T}}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> </msup> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {tr} (\mathbf {A} )=\operatorname {tr} \left(\mathbf {A} ^{\mathsf {T}}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/726b465ce428ac298a9a1205058188417fac28a2" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:16.707ex; height:3.343ex;" alt="{\displaystyle \operatorname {tr} (\mathbf {A} )=\operatorname {tr} \left(\mathbf {A} ^{\mathsf {T}}\right).}"></span> </p><p>This follows immediately from the fact that transposing a square matrix does not affect elements along the main diagonal. </p> <div class="mw-heading mw-heading3"><h3 id="Trace_of_a_product">Trace of a product</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trace_(linear_algebra)&amp;action=edit&amp;section=5" title="Edit section: Trace of a product"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The trace of a square matrix which is the product of two matrices can be rewritten as the sum of entry-wise products of their elements, i.e. as the sum of all elements of their <a href="/wiki/Hadamard_product_(matrices)" title="Hadamard product (matrices)">Hadamard product</a>. Phrased directly, if <span class="texhtml"><b>A</b></span> and <span class="texhtml"><b>B</b></span> are two <span class="texhtml"><i>m</i> × <i>n</i></span> matrices, then: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {tr} \left(\mathbf {A} ^{\mathsf {T}}\mathbf {B} \right)=\operatorname {tr} \left(\mathbf {A} \mathbf {B} ^{\mathsf {T}}\right)=\operatorname {tr} \left(\mathbf {B} ^{\mathsf {T}}\mathbf {A} \right)=\operatorname {tr} \left(\mathbf {B} \mathbf {A} ^{\mathsf {T}}\right)=\sum _{i=1}^{m}\sum _{j=1}^{n}a_{ij}b_{ij}\;.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </munderover> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mspace width="thickmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {tr} \left(\mathbf {A} ^{\mathsf {T}}\mathbf {B} \right)=\operatorname {tr} \left(\mathbf {A} \mathbf {B} ^{\mathsf {T}}\right)=\operatorname {tr} \left(\mathbf {B} ^{\mathsf {T}}\mathbf {A} \right)=\operatorname {tr} \left(\mathbf {B} \mathbf {A} ^{\mathsf {T}}\right)=\sum _{i=1}^{m}\sum _{j=1}^{n}a_{ij}b_{ij}\;.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/042cb077b86b0c9aba11085d7aa27a3cd3018cdc" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:63.224ex; height:7.176ex;" alt="{\displaystyle \operatorname {tr} \left(\mathbf {A} ^{\mathsf {T}}\mathbf {B} \right)=\operatorname {tr} \left(\mathbf {A} \mathbf {B} ^{\mathsf {T}}\right)=\operatorname {tr} \left(\mathbf {B} ^{\mathsf {T}}\mathbf {A} \right)=\operatorname {tr} \left(\mathbf {B} \mathbf {A} ^{\mathsf {T}}\right)=\sum _{i=1}^{m}\sum _{j=1}^{n}a_{ij}b_{ij}\;.}"></span> </p><p>If one views any real <span class="texhtml"><i>m</i> × <i>n</i></span> matrix as a vector of length <span class="texhtml mvar" style="font-style:italic;">mn</span> (an operation called <a href="/wiki/Vectorization_(mathematics)" title="Vectorization (mathematics)">vectorization</a>) then the above operation on <span class="texhtml"><b>A</b></span> and <span class="texhtml"><b>B</b></span> coincides with the standard <a href="/wiki/Dot_product" title="Dot product">dot product</a>. According to the above expression, <span class="texhtml">tr(<b>A</b><sup>⊤</sup><b>A</b>)</span> is a sum of squares and hence is nonnegative, equal to zero if and only if <span class="texhtml"><b>A</b></span> is zero.<sup id="cite_ref-HornJohnson_4-0" class="reference"><a href="#cite_note-HornJohnson-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page / location: 7">&#58;&#8202;7&#8202;</span></sup> Furthermore, as noted in the above formula, <span class="texhtml">tr(<b>A</b><sup>⊤</sup><b>B</b>) = tr(<b>B</b><sup>⊤</sup><b>A</b>)</span>. These demonstrate the positive-definiteness and symmetry required of an <a href="/wiki/Inner_product" class="mw-redirect" title="Inner product">inner product</a>; it is common to call <span class="texhtml">tr(<b>A</b><sup>⊤</sup><b>B</b>)</span> the <a href="/wiki/Frobenius_inner_product" title="Frobenius inner product">Frobenius inner product</a> of <span class="texhtml"><b>A</b></span> and <span class="texhtml"><b>B</b></span>. This is a natural inner product on the <a href="/wiki/Vector_space" title="Vector space">vector space</a> of all real matrices of fixed dimensions. The <a href="/wiki/Norm_(mathematics)" title="Norm (mathematics)">norm</a> derived from this inner product is called the <a href="/wiki/Frobenius_norm" class="mw-redirect" title="Frobenius norm">Frobenius norm</a>, and it satisfies a submultiplicative property, as can be proven with the <a href="/wiki/Cauchy%E2%80%93Schwarz_inequality" title="Cauchy–Schwarz inequality">Cauchy–Schwarz inequality</a>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0\leq \left[\operatorname {tr} (\mathbf {A} \mathbf {B} )\right]^{2}\leq \operatorname {tr} \left(\mathbf {A} ^{2}\right)\operatorname {tr} \left(\mathbf {B} ^{2}\right)\leq \left[\operatorname {tr} (\mathbf {A} )\right]^{2}\left[\operatorname {tr} (\mathbf {B} )\right]^{2}\ ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&#x2264;<!-- ≤ --></mo> <msup> <mrow> <mo>[</mo> <mrow> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo stretchy="false">)</mo> </mrow> <mo>]</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2264;<!-- ≤ --></mo> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>)</mo> </mrow> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>)</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <msup> <mrow> <mo>[</mo> <mrow> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo stretchy="false">)</mo> </mrow> <mo>]</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mrow> <mo>[</mo> <mrow> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo stretchy="false">)</mo> </mrow> <mo>]</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mtext>&#xA0;</mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0\leq \left[\operatorname {tr} (\mathbf {A} \mathbf {B} )\right]^{2}\leq \operatorname {tr} \left(\mathbf {A} ^{2}\right)\operatorname {tr} \left(\mathbf {B} ^{2}\right)\leq \left[\operatorname {tr} (\mathbf {A} )\right]^{2}\left[\operatorname {tr} (\mathbf {B} )\right]^{2}\ ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/560e619293d2e2483ce1d28f70a4ccfe5e8a1f50" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:51.755ex; height:3.509ex;" alt="{\displaystyle 0\leq \left[\operatorname {tr} (\mathbf {A} \mathbf {B} )\right]^{2}\leq \operatorname {tr} \left(\mathbf {A} ^{2}\right)\operatorname {tr} \left(\mathbf {B} ^{2}\right)\leq \left[\operatorname {tr} (\mathbf {A} )\right]^{2}\left[\operatorname {tr} (\mathbf {B} )\right]^{2}\ ,}"></span> if <span class="texhtml"><b>A</b></span> and <span class="texhtml"><b>B</b></span> are real <a href="/wiki/Positive_definite_matrix" class="mw-redirect" title="Positive definite matrix">positive semi-definite matrices</a> of the same size. The Frobenius inner product and norm arise frequently in <a href="/wiki/Matrix_calculus" title="Matrix calculus">matrix calculus</a> and <a href="/wiki/Statistics" title="Statistics">statistics</a>. </p><p>The Frobenius inner product may be extended to a <a href="/wiki/Hermitian_inner_product" class="mw-redirect" title="Hermitian inner product">hermitian inner product</a> on the <a href="/wiki/Complex_vector_space" class="mw-redirect" title="Complex vector space">complex vector space</a> of all complex matrices of a fixed size, by replacing <span class="texhtml"><b>B</b></span> by its <a href="/wiki/Complex_conjugate" title="Complex conjugate">complex conjugate</a>. </p><p>The symmetry of the Frobenius inner product may be phrased more directly as follows: the matrices in the trace of a product can be switched without changing the result. If <span class="texhtml"><b>A</b></span> and <span class="texhtml"><b>B</b></span> are <span class="texhtml"><i>m</i> × <i>n</i></span> and <span class="texhtml"><i>n</i> × <i>m</i></span> real or complex matrices, respectively, then<sup id="cite_ref-:1_1-4" class="reference"><a href="#cite_note-:1-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:2_2-3" class="reference"><a href="#cite_note-:2-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-LipschutzLipson_3-3" class="reference"><a href="#cite_note-LipschutzLipson-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page / location: 34">&#58;&#8202;34&#8202;</span></sup><sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>note 1<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="equation-box" style="margin: 0 0 0 1.6em;padding: 6px; border-width:2px; border-style: solid; border-color: #0073CF; color: inherit;text-align: center; display: table"> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {tr} (\mathbf {A} \mathbf {B} )=\operatorname {tr} (\mathbf {B} \mathbf {A} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {tr} (\mathbf {A} \mathbf {B} )=\operatorname {tr} (\mathbf {B} \mathbf {A} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ddc15db0985db7141e60c24fffd5eea8f17eaf9d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.191ex; height:2.843ex;" alt="{\displaystyle \operatorname {tr} (\mathbf {A} \mathbf {B} )=\operatorname {tr} (\mathbf {B} \mathbf {A} )}"></span> </p> </div> <p>This is notable both for the fact that <span class="texhtml"><b>AB</b></span> does not usually equal <span class="texhtml"><b>BA</b></span>, and also since the trace of either does not usually equal <span class="texhtml">tr(<b>A</b>)tr(<b>B</b>)</span>.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>note 2<span class="cite-bracket">&#93;</span></a></sup> The <a href="/wiki/Similarity_invariance" title="Similarity invariance">similarity-invariance</a> of the trace, meaning that <span class="texhtml">tr(<b>A</b>) = tr(<b>P</b><sup>−1</sup><b>AP</b>)</span> for any square matrix <span class="texhtml"><b>A</b></span> and any invertible matrix <span class="texhtml"><b>P</b></span> of the same dimensions, is a fundamental consequence. This is proved by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {tr} \left(\mathbf {P} ^{-1}(\mathbf {A} \mathbf {P} )\right)=\operatorname {tr} \left((\mathbf {A} \mathbf {P} )\mathbf {P} ^{-1}\right)=\operatorname {tr} (\mathbf {A} ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">P</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">P</mi> </mrow> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">P</mi> </mrow> <mo stretchy="false">)</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">P</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {tr} \left(\mathbf {P} ^{-1}(\mathbf {A} \mathbf {P} )\right)=\operatorname {tr} \left((\mathbf {A} \mathbf {P} )\mathbf {P} ^{-1}\right)=\operatorname {tr} (\mathbf {A} ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c98f8ad16e54243381d5f7c09cb3d6f524dddf97" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:40.011ex; height:3.343ex;" alt="{\displaystyle \operatorname {tr} \left(\mathbf {P} ^{-1}(\mathbf {A} \mathbf {P} )\right)=\operatorname {tr} \left((\mathbf {A} \mathbf {P} )\mathbf {P} ^{-1}\right)=\operatorname {tr} (\mathbf {A} ).}"></span> Similarity invariance is the crucial property of the trace in order to discuss traces of <a href="/wiki/Linear_transformation" class="mw-redirect" title="Linear transformation">linear transformations</a> as below. </p><p>Additionally, for real column vectors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} \in \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a} \in \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a31d9e403535f49451e6e98fefa153f4843465af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.037ex; height:2.343ex;" alt="{\displaystyle \mathbf {a} \in \mathbb {R} ^{n}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {b} \in \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {b} \in \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec9028033a55d0f5968de3761f26fdc7bd4a2018" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.222ex; height:2.343ex;" alt="{\displaystyle \mathbf {b} \in \mathbb {R} ^{n}}"></span>, the trace of the outer product is equivalent to the inner product: </p> <div class="equation-box" style="margin: 0 0 0 1.6em;padding: 6px; border-width:2px; border-style: solid; border-color: #0073CF; color: inherit;text-align: center; display: table"> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {tr} \left(\mathbf {b} \mathbf {a} ^{\textsf {T}}\right)=\mathbf {a} ^{\textsf {T}}\mathbf {b} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="sans-serif">T</mtext> </mrow> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="sans-serif">T</mtext> </mrow> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {tr} \left(\mathbf {b} \mathbf {a} ^{\textsf {T}}\right)=\mathbf {a} ^{\textsf {T}}\mathbf {b} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ce64fe8ff53757f059a619c6034febced9b6d2e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:15.317ex; height:3.343ex;" alt="{\displaystyle \operatorname {tr} \left(\mathbf {b} \mathbf {a} ^{\textsf {T}}\right)=\mathbf {a} ^{\textsf {T}}\mathbf {b} }"></span> </p> </div> <div class="mw-heading mw-heading3"><h3 id="Cyclic_property">Cyclic property</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trace_(linear_algebra)&amp;action=edit&amp;section=6" title="Edit section: Cyclic property"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>More generally, the trace is <i>invariant under <a href="/wiki/Circular_shift" title="Circular shift">circular shifts</a></i>, that is, </p> <div class="equation-box" style="margin: 0 0 0 1.6em;padding: 6px; border-width:2px; border-style: solid; border-color: #0073CF; color: inherit;text-align: center; display: table"> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {tr} (\mathbf {A} \mathbf {B} \mathbf {C} \mathbf {D} )=\operatorname {tr} (\mathbf {B} \mathbf {C} \mathbf {D} \mathbf {A} )=\operatorname {tr} (\mathbf {C} \mathbf {D} \mathbf {A} \mathbf {B} )=\operatorname {tr} (\mathbf {D} \mathbf {A} \mathbf {B} \mathbf {C} ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {tr} (\mathbf {A} \mathbf {B} \mathbf {C} \mathbf {D} )=\operatorname {tr} (\mathbf {B} \mathbf {C} \mathbf {D} \mathbf {A} )=\operatorname {tr} (\mathbf {C} \mathbf {D} \mathbf {A} \mathbf {B} )=\operatorname {tr} (\mathbf {D} \mathbf {A} \mathbf {B} \mathbf {C} ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eac613609f5d3e4512815665a631f2c9a8990324" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:56.05ex; height:2.843ex;" alt="{\displaystyle \operatorname {tr} (\mathbf {A} \mathbf {B} \mathbf {C} \mathbf {D} )=\operatorname {tr} (\mathbf {B} \mathbf {C} \mathbf {D} \mathbf {A} )=\operatorname {tr} (\mathbf {C} \mathbf {D} \mathbf {A} \mathbf {B} )=\operatorname {tr} (\mathbf {D} \mathbf {A} \mathbf {B} \mathbf {C} ).}"></span> </p> </div> <p>This is known as the <i>cyclic property</i>. </p><p>Arbitrary permutations are not allowed: in general, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {tr} (\mathbf {A} \mathbf {B} \mathbf {C} )\neq \operatorname {tr} (\mathbf {A} \mathbf {C} \mathbf {B} ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> <mo stretchy="false">)</mo> <mo>&#x2260;<!-- ≠ --></mo> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {tr} (\mathbf {A} \mathbf {B} \mathbf {C} )\neq \operatorname {tr} (\mathbf {A} \mathbf {C} \mathbf {B} ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a96389c6447846eb88ab2697f3d3b3224ab11f21" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.7ex; height:2.843ex;" alt="{\displaystyle \operatorname {tr} (\mathbf {A} \mathbf {B} \mathbf {C} )\neq \operatorname {tr} (\mathbf {A} \mathbf {C} \mathbf {B} ).}"></span> </p><p>However, if products of <i>three</i> <a href="/wiki/Symmetric_matrix" title="Symmetric matrix">symmetric</a> matrices are considered, any permutation is allowed, since: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {tr} (\mathbf {A} \mathbf {B} \mathbf {C} )=\operatorname {tr} \left(\left(\mathbf {A} \mathbf {B} \mathbf {C} \right)^{\mathsf {T}}\right)=\operatorname {tr} (\mathbf {C} \mathbf {B} \mathbf {A} )=\operatorname {tr} (\mathbf {A} \mathbf {C} \mathbf {B} ),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <msup> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> </msup> <mo>)</mo> </mrow> <mo>=</mo> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {tr} (\mathbf {A} \mathbf {B} \mathbf {C} )=\operatorname {tr} \left(\left(\mathbf {A} \mathbf {B} \mathbf {C} \right)^{\mathsf {T}}\right)=\operatorname {tr} (\mathbf {C} \mathbf {B} \mathbf {A} )=\operatorname {tr} (\mathbf {A} \mathbf {C} \mathbf {B} ),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33442c22cc00cebcaed23a2afe4f36c0bc62a752" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:51.979ex; height:4.843ex;" alt="{\displaystyle \operatorname {tr} (\mathbf {A} \mathbf {B} \mathbf {C} )=\operatorname {tr} \left(\left(\mathbf {A} \mathbf {B} \mathbf {C} \right)^{\mathsf {T}}\right)=\operatorname {tr} (\mathbf {C} \mathbf {B} \mathbf {A} )=\operatorname {tr} (\mathbf {A} \mathbf {C} \mathbf {B} ),}"></span> where the first equality is because the traces of a matrix and its transpose are equal. Note that this is not true in general for more than three factors. </p> <div class="mw-heading mw-heading3"><h3 id="Trace_of_a_Kronecker_product">Trace of a Kronecker product</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trace_(linear_algebra)&amp;action=edit&amp;section=7" title="Edit section: Trace of a Kronecker product"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The trace of the <a href="/wiki/Kronecker_product" title="Kronecker product">Kronecker product</a> of two matrices is the product of their traces: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {tr} (\mathbf {A} \otimes \mathbf {B} )=\operatorname {tr} (\mathbf {A} )\operatorname {tr} (\mathbf {B} ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>&#x2297;<!-- ⊗ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo stretchy="false">)</mo> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {tr} (\mathbf {A} \otimes \mathbf {B} )=\operatorname {tr} (\mathbf {A} )\operatorname {tr} (\mathbf {B} ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc86820a3ee20a40a9002c67982ea7f8d16c8172" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.691ex; height:2.843ex;" alt="{\displaystyle \operatorname {tr} (\mathbf {A} \otimes \mathbf {B} )=\operatorname {tr} (\mathbf {A} )\operatorname {tr} (\mathbf {B} ).}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Characterization_of_the_trace">Characterization of the trace</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trace_(linear_algebra)&amp;action=edit&amp;section=8" title="Edit section: Characterization of the trace"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The following three properties: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\operatorname {tr} (\mathbf {A} +\mathbf {B} )&amp;=\operatorname {tr} (\mathbf {A} )+\operatorname {tr} (\mathbf {B} ),\\\operatorname {tr} (c\mathbf {A} )&amp;=c\operatorname {tr} (\mathbf {A} ),\\\operatorname {tr} (\mathbf {A} \mathbf {B} )&amp;=\operatorname {tr} (\mathbf {B} \mathbf {A} ),\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo stretchy="false">)</mo> <mo>+</mo> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo stretchy="false">)</mo> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>c</mi> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo stretchy="false">)</mo> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo stretchy="false">)</mo> <mo>,</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\operatorname {tr} (\mathbf {A} +\mathbf {B} )&amp;=\operatorname {tr} (\mathbf {A} )+\operatorname {tr} (\mathbf {B} ),\\\operatorname {tr} (c\mathbf {A} )&amp;=c\operatorname {tr} (\mathbf {A} ),\\\operatorname {tr} (\mathbf {A} \mathbf {B} )&amp;=\operatorname {tr} (\mathbf {B} \mathbf {A} ),\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e30b932881e99d64bf99e8b16236b7d1c57ab3f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:28.895ex; height:9.176ex;" alt="{\displaystyle {\begin{aligned}\operatorname {tr} (\mathbf {A} +\mathbf {B} )&amp;=\operatorname {tr} (\mathbf {A} )+\operatorname {tr} (\mathbf {B} ),\\\operatorname {tr} (c\mathbf {A} )&amp;=c\operatorname {tr} (\mathbf {A} ),\\\operatorname {tr} (\mathbf {A} \mathbf {B} )&amp;=\operatorname {tr} (\mathbf {B} \mathbf {A} ),\end{aligned}}}"></span> characterize the trace <a href="/wiki/Up_to" title="Up to">up to</a> a scalar multiple in the following sense: If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> is a <a href="/wiki/Linear_functional" class="mw-redirect" title="Linear functional">linear functional</a> on the space of square matrices that satisfies <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(xy)=f(yx),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mi>x</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(xy)=f(yx),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8591f01420fcc5c143d5b562748edf196c32f09d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.891ex; height:2.843ex;" alt="{\displaystyle f(xy)=f(yx),}"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {tr} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tr</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {tr} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e779faa4557258ea25e8101f307317fc771a1ef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.816ex; height:2.009ex;" alt="{\displaystyle \operatorname {tr} }"></span> are proportional.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>note 3<span class="cite-bracket">&#93;</span></a></sup> </p><p>For <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\times n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&#x00D7;<!-- × --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\times n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59d2b4cb72e304526cf5b5887147729ea259da78" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.63ex; height:1.676ex;" alt="{\displaystyle n\times n}"></span> matrices, imposing the normalization <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(\mathbf {I} )=n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">I</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(\mathbf {I} )=n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea0c436b515ec27c9c76c7db2adbe23ae9435d87" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.595ex; height:2.843ex;" alt="{\displaystyle f(\mathbf {I} )=n}"></span> makes <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> equal to the trace. </p> <div class="mw-heading mw-heading3"><h3 id="Trace_as_the_sum_of_eigenvalues">Trace as the sum of eigenvalues</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trace_(linear_algebra)&amp;action=edit&amp;section=9" title="Edit section: Trace as the sum of eigenvalues"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Given any <span class="texhtml"><i>n</i> × <i>n</i></span> matrix <span class="texhtml"><b>A</b></span>, there is </p> <div class="equation-box" style="margin: 0 0 0 1.6em;padding: 6px; border-width:2px; border-style: solid; border-color: #0073CF; color: inherit;text-align: center; display: table"> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {tr} (\mathbf {A} )=\sum _{i=1}^{n}\lambda _{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {tr} (\mathbf {A} )=\sum _{i=1}^{n}\lambda _{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c258dcda985d2993f7edc2c6e8666b44e71587d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:14.641ex; height:6.843ex;" alt="{\displaystyle \operatorname {tr} (\mathbf {A} )=\sum _{i=1}^{n}\lambda _{i}}"></span> </p> </div> <p>where <span class="texhtml">&#955;<sub>1</sub>, ..., &#955;<sub><i>n</i></sub></span> are the <a href="/wiki/Eigenvalue" class="mw-redirect" title="Eigenvalue">eigenvalues</a> of <span class="texhtml"><b>A</b></span> counted with multiplicity. This holds true even if <span class="texhtml"><b>A</b></span> is a real matrix and some (or all) of the eigenvalues are complex numbers. This may be regarded as a consequence of the existence of the <a href="/wiki/Jordan_canonical_form" class="mw-redirect" title="Jordan canonical form">Jordan canonical form</a>, together with the similarity-invariance of the trace discussed above. </p> <div class="mw-heading mw-heading3"><h3 id="Trace_of_commutator">Trace of commutator</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trace_(linear_algebra)&amp;action=edit&amp;section=10" title="Edit section: Trace of commutator"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>When both <span class="texhtml"><b>A</b></span> and <span class="texhtml"><b>B</b></span> are <span class="texhtml"><i>n</i> × <i>n</i></span> matrices, the trace of the (ring-theoretic) <a href="/wiki/Commutator" title="Commutator">commutator</a> of <span class="texhtml"><b>A</b></span> and <span class="texhtml"><b>B</b></span> vanishes: <span class="texhtml">tr([<b>A</b>, <b>B</b>]) = 0</span>, because <span class="texhtml">tr(<b>AB</b>) = tr(<b>BA</b>)</span> and <span class="texhtml">tr</span> is linear. One can state this as "the trace is a map of <a href="/wiki/Lie_algebras" class="mw-redirect" title="Lie algebras">Lie algebras</a> <span class="texhtml">gl<sub><i>n</i></sub> → <i>k</i></span> from operators to scalars", as the commutator of scalars is trivial (it is an <a href="/wiki/Abelian_Lie_algebra" class="mw-redirect" title="Abelian Lie algebra">Abelian Lie algebra</a>). In particular, using similarity invariance, it follows that the identity matrix is never similar to the commutator of any pair of matrices. </p><p>Conversely, any square matrix with zero trace is a linear combination of the commutators of pairs of matrices.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>note 4<span class="cite-bracket">&#93;</span></a></sup> Moreover, any square matrix with zero trace is <a href="/wiki/Bounded_operator" title="Bounded operator">unitarily equivalent</a> to a square matrix with diagonal consisting of all zeros. </p> <div class="mw-heading mw-heading3"><h3 id="Traces_of_special_kinds_of_matrices">Traces of special kinds of matrices</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trace_(linear_algebra)&amp;action=edit&amp;section=11" title="Edit section: Traces of special kinds of matrices"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div><ul><li>The trace of the <span class="texhtml"><i>n</i> × <i>n</i></span> <a href="/wiki/Identity_matrix" title="Identity matrix">identity matrix</a> is the dimension of the space, namely <span class="texhtml mvar" style="font-style:italic;">n</span>. <p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {tr} \left(\mathbf {I} _{n}\right)=n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">I</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {tr} \left(\mathbf {I} _{n}\right)=n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bcdbaee4d9080f4187e965287aca5461a23717a4" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.351ex; height:2.843ex;" alt="{\displaystyle \operatorname {tr} \left(\mathbf {I} _{n}\right)=n}"></span> </p> This leads to <a href="/wiki/Dimension_(vector_space)#Trace" title="Dimension (vector space)">generalizations of dimension using trace</a>.</li><li>The trace of a <a href="/wiki/Hermitian_matrix" title="Hermitian matrix">Hermitian matrix</a> is real, because the elements on the diagonal are real.</li><li>The trace of a <a href="/wiki/Permutation_matrix" title="Permutation matrix">permutation matrix</a> is the number of <a href="/wiki/Fixed_point_(mathematics)" title="Fixed point (mathematics)">fixed points</a> of the corresponding permutation, because the diagonal term <span class="texhtml"><i>a</i><sub><i>ii</i></sub></span> is 1 if the <span class="texhtml"><i>i</i></span>th point is fixed and 0 otherwise.</li><li>The trace of a <a href="/wiki/Projection_(linear_algebra)" title="Projection (linear algebra)">projection matrix</a> is the dimension of the target space. <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\mathbf {P} _{\mathbf {X} }&amp;=\mathbf {X} \left(\mathbf {X} ^{\mathsf {T}}\mathbf {X} \right)^{-1}\mathbf {X} ^{\mathsf {T}}\\[3pt]\Longrightarrow \operatorname {tr} \left(\mathbf {P} _{\mathbf {X} }\right)&amp;=\operatorname {rank} (\mathbf {X} ).\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.6em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">P</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mo stretchy="false">&#x27F9;<!-- ⟹ --></mo> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">P</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> </mrow> </msub> <mo>)</mo> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>rank</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mo stretchy="false">)</mo> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\mathbf {P} _{\mathbf {X} }&amp;=\mathbf {X} \left(\mathbf {X} ^{\mathsf {T}}\mathbf {X} \right)^{-1}\mathbf {X} ^{\mathsf {T}}\\[3pt]\Longrightarrow \operatorname {tr} \left(\mathbf {P} _{\mathbf {X} }\right)&amp;=\operatorname {rank} (\mathbf {X} ).\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a70987d6a6a11aafe6e269c2cd255a9f0675cafc" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:30.657ex; height:7.843ex;" alt="{\displaystyle {\begin{aligned}\mathbf {P} _{\mathbf {X} }&amp;=\mathbf {X} \left(\mathbf {X} ^{\mathsf {T}}\mathbf {X} \right)^{-1}\mathbf {X} ^{\mathsf {T}}\\[3pt]\Longrightarrow \operatorname {tr} \left(\mathbf {P} _{\mathbf {X} }\right)&amp;=\operatorname {rank} (\mathbf {X} ).\end{aligned}}}"></span> The matrix <span class="texhtml"><b>P<sub>X</sub></b></span> is idempotent.</li><li>More generally, the trace of any <a href="/wiki/Idempotent_matrix" title="Idempotent matrix">idempotent matrix</a>, i.e. one with <span class="texhtml"><b>A</b><sup>2</sup> = <b>A</b></span>, equals its own <a href="/wiki/Rank_(linear_algebra)" title="Rank (linear algebra)">rank</a>.</li><li>The trace of a <a href="/wiki/Nilpotent_matrix" title="Nilpotent matrix">nilpotent matrix</a> is zero. <div class="paragraphbreak" style="margin-top:0.5em"></div> <p>When the characteristic of the base field is zero, the converse also holds: if <span class="texhtml">tr(<b>A</b><sup><i>k</i></sup>) = 0</span> for all <span class="texhtml mvar" style="font-style:italic;">k</span>, then <span class="texhtml"><b>A</b></span> is nilpotent. </p> <div class="paragraphbreak" style="margin-top:0.5em"></div> When the characteristic <span class="texhtml"><i>n</i> &gt; 0</span> is positive, the identity in <span class="texhtml mvar" style="font-style:italic;">n</span> dimensions is a counterexample, as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {tr} \left(\mathbf {I} _{n}^{k}\right)=\operatorname {tr} \left(\mathbf {I} _{n}\right)=n\equiv 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">I</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>=</mo> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">I</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mi>n</mi> <mo>&#x2261;<!-- ≡ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {tr} \left(\mathbf {I} _{n}^{k}\right)=\operatorname {tr} \left(\mathbf {I} _{n}\right)=n\equiv 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45fa06dbb314ac1da529e38817112b6d24e13dba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:23.889ex; height:3.343ex;" alt="{\displaystyle \operatorname {tr} \left(\mathbf {I} _{n}^{k}\right)=\operatorname {tr} \left(\mathbf {I} _{n}\right)=n\equiv 0}"></span>, but the identity is not nilpotent.</li></ul></div> <div class="mw-heading mw-heading3"><h3 id="Relationship_to_the_characteristic_polynomial">Relationship to the characteristic polynomial</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trace_(linear_algebra)&amp;action=edit&amp;section=12" title="Edit section: Relationship to the characteristic polynomial"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The trace of an <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\times n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&#x00D7;<!-- × --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\times n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59d2b4cb72e304526cf5b5887147729ea259da78" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.63ex; height:1.676ex;" alt="{\displaystyle n\times n}"></span> matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> is the coefficient of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t^{n-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t^{n-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c251a891b3fb73008b29c6b63034175b87398209" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.159ex; height:2.676ex;" alt="{\displaystyle t^{n-1}}"></span> in the <a href="/wiki/Characteristic_polynomial" title="Characteristic polynomial">characteristic polynomial</a>, possibly changed of sign, according to the convention in the definition of the characteristic polynomial. </p> <div class="mw-heading mw-heading2"><h2 id="Relationship_to_eigenvalues">Relationship to eigenvalues</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trace_(linear_algebra)&amp;action=edit&amp;section=13" title="Edit section: Relationship to eigenvalues"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If <span class="texhtml"><b>A</b></span> is a linear operator represented by a square matrix with <a href="/wiki/Real_number" title="Real number">real</a> or <a href="/wiki/Complex_number" title="Complex number">complex</a> entries and if <span class="texhtml"><i>λ</i><sub>1</sub>, ..., <i>λ<sub>n</sub></i></span> are the <a href="/wiki/Eigenvalue" class="mw-redirect" title="Eigenvalue">eigenvalues</a> of <span class="texhtml"><b>A</b></span> (listed according to their <a href="/wiki/Algebraic_multiplicity" class="mw-redirect" title="Algebraic multiplicity">algebraic multiplicities</a>), then </p> <div class="equation-box" style="margin: 0 0 0 1.6em;padding: 6px; border-width:2px; border-style: solid; border-color: #0073CF; color: inherit;text-align: center; display: table"> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {tr} (\mathbf {A} )=\sum _{i}\lambda _{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {tr} (\mathbf {A} )=\sum _{i}\lambda _{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fbbbcdafce019e87efab7729879e964c2b3750bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:14.641ex; height:5.509ex;" alt="{\displaystyle \operatorname {tr} (\mathbf {A} )=\sum _{i}\lambda _{i}}"></span> </p> </div> <p>This follows from the fact that <span class="texhtml"><b>A</b></span> is always <a href="/wiki/Similar_matrix" class="mw-redirect" title="Similar matrix">similar</a> to its <a href="/wiki/Jordan_form" class="mw-redirect" title="Jordan form">Jordan form</a>, an upper <a href="/wiki/Triangular_matrix" title="Triangular matrix">triangular matrix</a> having <span class="texhtml"><i>λ</i><sub>1</sub>, ..., <i>λ<sub>n</sub></i></span> on the main diagonal. In contrast, the <a href="/wiki/Determinant" title="Determinant">determinant</a> of <span class="texhtml"><b>A</b></span> is the <i>product</i> of its eigenvalues; that is, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \det(\mathbf {A} )=\prod _{i}\lambda _{i}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">det</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \det(\mathbf {A} )=\prod _{i}\lambda _{i}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3794767756daba1020b4681e368bbf324006a18a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:16.315ex; height:5.509ex;" alt="{\displaystyle \det(\mathbf {A} )=\prod _{i}\lambda _{i}.}"></span> </p><p>Everything in the present section applies as well to any square matrix with coefficients in an <a href="/wiki/Algebraically_closed_field" title="Algebraically closed field">algebraically closed field</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Derivative_relationships">Derivative relationships</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trace_(linear_algebra)&amp;action=edit&amp;section=14" title="Edit section: Derivative relationships"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If <span class="texhtml"><b>ΔA</b></span> is a square matrix with small entries and <span class="texhtml"><b>I</b></span> denotes the <a href="/wiki/Identity_matrix" title="Identity matrix">identity matrix</a>, then we have approximately </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \det(\mathbf {I} +\mathbf {\Delta A} )\approx 1+\operatorname {tr} (\mathbf {\Delta A} ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">det</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">I</mi> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">&#x0394;<!-- Δ --></mi> <mi mathvariant="bold">A</mi> </mrow> <mo stretchy="false">)</mo> <mo>&#x2248;<!-- ≈ --></mo> <mn>1</mn> <mo>+</mo> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">&#x0394;<!-- Δ --></mi> <mi mathvariant="bold">A</mi> </mrow> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \det(\mathbf {I} +\mathbf {\Delta A} )\approx 1+\operatorname {tr} (\mathbf {\Delta A} ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/00d9c07ff48ba8d0cfc22cfa4cec514e5cbe1a01" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.758ex; height:2.843ex;" alt="{\displaystyle \det(\mathbf {I} +\mathbf {\Delta A} )\approx 1+\operatorname {tr} (\mathbf {\Delta A} ).}"></span> </p><p>Precisely this means that the trace is the <a href="/wiki/Derivative" title="Derivative">derivative</a> of the <a href="/wiki/Determinant" title="Determinant">determinant</a> function at the identity matrix. <a href="/wiki/Jacobi%27s_formula" title="Jacobi&#39;s formula">Jacobi's formula</a> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d\det(\mathbf {A} )=\operatorname {tr} {\big (}\operatorname {adj} (\mathbf {A} )\cdot d\mathbf {A} {\big )}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo movablelimits="true" form="prefix">det</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mi>adj</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d\det(\mathbf {A} )=\operatorname {tr} {\big (}\operatorname {adj} (\mathbf {A} )\cdot d\mathbf {A} {\big )}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef61ad7a570664556c82a88a1b3d7a6da084b4c8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:28.39ex; height:3.176ex;" alt="{\displaystyle d\det(\mathbf {A} )=\operatorname {tr} {\big (}\operatorname {adj} (\mathbf {A} )\cdot d\mathbf {A} {\big )}}"></span> </p><p>is more general and describes the <a href="/wiki/Differential_(infinitesimal)" class="mw-redirect" title="Differential (infinitesimal)">differential</a> of the determinant at an arbitrary square matrix, in terms of the trace and the <a href="/wiki/Adjugate_matrix" title="Adjugate matrix">adjugate</a> of the matrix. </p><p>From this (or from the connection between the trace and the eigenvalues), one can derive a relation between the trace function, the <a href="/wiki/Matrix_exponential" title="Matrix exponential">matrix exponential</a> function, and the determinant:<span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \det(\exp(\mathbf {A} ))=\exp(\operatorname {tr} (\mathbf {A} )).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">det</mo> <mo stretchy="false">(</mo> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \det(\exp(\mathbf {A} ))=\exp(\operatorname {tr} (\mathbf {A} )).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6fd18d9b3ac8161abfa6d132bc839dac6fd9539d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:27.172ex; height:2.843ex;" alt="{\displaystyle \det(\exp(\mathbf {A} ))=\exp(\operatorname {tr} (\mathbf {A} )).}"></span> </p><p>A related characterization of the trace applies to linear <a href="/wiki/Vector_field" title="Vector field">vector fields</a>. Given a matrix <span class="texhtml"><b>A</b></span>, define a vector field <span class="texhtml"><b>F</b></span> on <span class="texhtml"><b>R</b><sup><i>n</i></sup></span> by <span class="texhtml"><b>F</b>(<b>x</b>) = <b>Ax</b></span>. The components of this vector field are linear functions (given by the rows of <span class="texhtml"><b>A</b></span>). Its <a href="/wiki/Divergence" title="Divergence">divergence</a> <span class="texhtml">div <b>F</b></span> is a constant function, whose value is equal to <span class="texhtml">tr(<b>A</b>)</span>. </p><p>By the <a href="/wiki/Divergence_theorem" title="Divergence theorem">divergence theorem</a>, one can interpret this in terms of flows: if <span class="texhtml"><b>F</b>(<b>x</b>)</span> represents the velocity of a fluid at location <span class="texhtml"><b>x</b></span> and <span class="texhtml mvar" style="font-style:italic;">U</span> is a region in <span class="texhtml"><b>R</b><sup><i>n</i></sup></span>, the <a href="/wiki/Flow_network" title="Flow network">net flow</a> of the fluid out of <span class="texhtml mvar" style="font-style:italic;">U</span> is given by <span class="texhtml">tr(<b>A</b>) · vol(<i>U</i>)</span>, where <span class="texhtml">vol(<i>U</i>)</span> is the <a href="/wiki/Volume" title="Volume">volume</a> of <span class="texhtml mvar" style="font-style:italic;">U</span>. </p><p>The trace is a linear operator, hence it commutes with the derivative: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d\operatorname {tr} (\mathbf {X} )=\operatorname {tr} (d\mathbf {X} ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d\operatorname {tr} (\mathbf {X} )=\operatorname {tr} (d\mathbf {X} ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3aef55b5a2d8b7e8b19b2610adeade48b2426ffb" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.854ex; height:2.843ex;" alt="{\displaystyle d\operatorname {tr} (\mathbf {X} )=\operatorname {tr} (d\mathbf {X} ).}"></span> </p> <div class="mw-heading mw-heading2"><h2 id="Trace_of_a_linear_operator">Trace of a linear operator</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trace_(linear_algebra)&amp;action=edit&amp;section=15" title="Edit section: Trace of a linear operator"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In general, given some linear map <span class="texhtml"><i>f</i>&#160;: <i>V</i> → <i>V</i></span> (where <span class="texhtml mvar" style="font-style:italic;">V</span> is a finite-<a href="/wiki/Dimension_(linear_algebra)" class="mw-redirect" title="Dimension (linear algebra)">dimensional</a> <a href="/wiki/Vector_space" title="Vector space">vector space</a>), we can define the trace of this map by considering the trace of a <a href="/wiki/Representation_theory" title="Representation theory">matrix representation</a> of <span class="texhtml mvar" style="font-style:italic;">f</span>, that is, choosing a <a href="/wiki/Basis_(linear_algebra)" title="Basis (linear algebra)">basis</a> for <span class="texhtml mvar" style="font-style:italic;">V</span> and describing <span class="texhtml mvar" style="font-style:italic;">f</span> as a matrix relative to this basis, and taking the trace of this square matrix. The result will not depend on the basis chosen, since different bases will give rise to <a href="/wiki/Matrix_similarity" title="Matrix similarity">similar matrices</a>, allowing for the possibility of a basis-independent definition for the trace of a linear map. </p><p>Such a definition can be given using the <a href="/wiki/Natural_isomorphism" class="mw-redirect" title="Natural isomorphism">canonical isomorphism</a> between the space <span class="texhtml">End(<i>V</i>)</span> of linear maps on <span class="texhtml mvar" style="font-style:italic;">V</span> and <span class="texhtml"><i>V</i> ⊗ <i>V</i>*</span>, where <span class="texhtml"><i>V</i>*</span> is the <a href="/wiki/Dual_space" title="Dual space">dual space</a> of <span class="texhtml mvar" style="font-style:italic;">V</span>. Let <span class="texhtml mvar" style="font-style:italic;">v</span> be in <span class="texhtml mvar" style="font-style:italic;">V</span> and let <span class="texhtml mvar" style="font-style:italic;">g</span> be in <span class="texhtml mvar" style="font-style:italic;"><i>V</i>*</span>. Then the trace of the indecomposable element <span class="texhtml"><i>v</i> ⊗ <i>g</i></span> is defined to be <span class="texhtml"><i>g</i>(<i>v</i>)</span>; the trace of a general element is defined by linearity. The trace of a linear map <span class="texhtml"><i>f</i>&#160;: <i>V</i> → <i>V</i></span> can then be defined as the trace, in the above sense, of the element of <span class="texhtml"><i>V</i> ⊗ <i>V</i>*</span> corresponding to <i>f</i> under the above mentioned canonical isomorphism. Using an explicit basis for <span class="texhtml mvar" style="font-style:italic;">V</span> and the corresponding dual basis for <span class="texhtml"><i>V</i>*</span>, one can show that this gives the same definition of the trace as given above. </p> <div class="mw-heading mw-heading2"><h2 id="Numerical_algorithms">Numerical algorithms</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trace_(linear_algebra)&amp;action=edit&amp;section=16" title="Edit section: Numerical algorithms"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Stochastic_estimator">Stochastic estimator</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trace_(linear_algebra)&amp;action=edit&amp;section=17" title="Edit section: Stochastic estimator"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div><p> The trace can be estimated unbiasedly by "Hutchinson's trick":<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup></p><blockquote><p>Given any matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W\in \mathbb {R} ^{n\times n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>W</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x00D7;<!-- × --></mo> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W\in \mathbb {R} ^{n\times n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac9ad075e2a73039f5cac4dee0f234a0be0f164a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.437ex; height:2.343ex;" alt="{\displaystyle W\in \mathbb {R} ^{n\times n}}"></span>, and any random <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u\in \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>u</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u\in \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a3e3a8441aef5cdf3a0c60c74c688bbf75d2ba6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.067ex; height:2.343ex;" alt="{\displaystyle u\in \mathbb {R} ^{n}}"></span> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E[uu^{T}]=I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo stretchy="false">[</mo> <mi>u</mi> <msup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> <mo stretchy="false">]</mo> <mo>=</mo> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E[uu^{T}]=I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53a3c98828325626aa932d00cb0d1d312d00904f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.388ex; height:3.176ex;" alt="{\displaystyle E[uu^{T}]=I}"></span>, we have <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E[u^{T}Wu]=tr(W)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo stretchy="false">[</mo> <msup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> <mi>W</mi> <mi>u</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mi>t</mi> <mi>r</mi> <mo stretchy="false">(</mo> <mi>W</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E[u^{T}Wu]=tr(W)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5cc42305c8e1dd65ccb16b79c599e10d8ebdb0d5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.784ex; height:3.176ex;" alt="{\displaystyle E[u^{T}Wu]=tr(W)}"></span>. (Proof: expand the expectation directly.)</p></blockquote><p>Usually, the random vector is sampled from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N(0,I)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mi>I</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N(0,I)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb35ed5536ed6be56d780239548a0541f73376df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.241ex; height:2.843ex;" alt="{\displaystyle N(0,I)}"></span> (normal distribution) or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{\pm n^{-1/2}\}^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mo>&#x00B1;<!-- ± --></mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> <msup> <mo fence="false" stretchy="false">}</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{\pm n^{-1/2}\}^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7286b293ce7dec7b678739e436e940449df2e513" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.723ex; height:3.343ex;" alt="{\displaystyle \{\pm n^{-1/2}\}^{n}}"></span> (<a href="/wiki/Rademacher_distribution" title="Rademacher distribution">Rademacher distribution</a>). </p><p>More sophisticated stochastic estimators of trace have been developed.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Applications">Applications</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trace_(linear_algebra)&amp;action=edit&amp;section=18" title="Edit section: Applications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If a 2 x 2 real matrix has zero trace, its square is a <a href="/wiki/Diagonal_matrix" title="Diagonal matrix">diagonal matrix</a>. </p><p>The trace of a 2&#160;×&#160;2 <a href="/wiki/Complex_matrix" class="mw-redirect" title="Complex matrix">complex matrix</a> is used to classify <a href="/wiki/M%C3%B6bius_transformation" title="Möbius transformation">Möbius transformations</a>. First, the matrix is normalized to make its <a href="/wiki/Determinant" title="Determinant">determinant</a> equal to one. Then, if the square of the trace is 4, the corresponding transformation is <i>parabolic</i>. If the square is in the interval <span class="nowrap">[0,4)</span>, it is <i>elliptic</i>. Finally, if the square is greater than 4, the transformation is <i>loxodromic</i>. See <a href="/wiki/M%C3%B6bius_transformation#Classification" title="Möbius transformation">classification of Möbius transformations</a>. </p><p>The trace is used to define <a href="/wiki/Character_(mathematics)" title="Character (mathematics)">characters</a> of <a href="/wiki/Group_representation" title="Group representation">group representations</a>. Two representations <span class="texhtml"><b>A</b>, <b>B</b>&#160;: <i>G</i> → <i>GL</i>(<i>V</i>)</span> of a group <span class="texhtml mvar" style="font-style:italic;">G</span> are equivalent (up to change of basis on <span class="texhtml mvar" style="font-style:italic;">V</span>) if <span class="texhtml">tr(<b>A</b>(<i>g</i>)) = tr(<b>B</b>(<i>g</i>))</span> for all <span class="texhtml"><i>g</i> ∈ <i>G</i></span>. </p><p>The trace also plays a central role in the distribution of <a href="/wiki/Quadratic_form_(statistics)" title="Quadratic form (statistics)">quadratic forms</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Lie_algebra">Lie algebra</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trace_(linear_algebra)&amp;action=edit&amp;section=19" title="Edit section: Lie algebra"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The trace is a map of Lie algebras <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {tr} :{\mathfrak {gl}}_{n}\to K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tr</mi> <mo>:</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">g</mi> <mi mathvariant="fraktur">l</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {tr} :{\mathfrak {gl}}_{n}\to K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7dbe14dfa3aac01665a117de3f5c80a8c8732c6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.475ex; height:2.676ex;" alt="{\displaystyle \operatorname {tr} :{\mathfrak {gl}}_{n}\to K}"></span> from the Lie algebra <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {gl}}_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">g</mi> <mi mathvariant="fraktur">l</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {gl}}_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7074085f669b257cf21f2f443dd433888e2597b6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.042ex; height:2.676ex;" alt="{\displaystyle {\mathfrak {gl}}_{n}}"></span> of linear operators on an <span class="texhtml mvar" style="font-style:italic;">n</span>-dimensional space (<span class="texhtml"><i>n</i> × <i>n</i></span> matrices with entries in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span>) to the Lie algebra <span class="texhtml mvar" style="font-style:italic;">K</span> of scalars; as <span class="texhtml mvar" style="font-style:italic;">K</span> is Abelian (the Lie bracket vanishes), the fact that this is a map of Lie algebras is exactly the statement that the trace of a bracket vanishes: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {tr} ([\mathbf {A} ,\mathbf {B} ])=0{\text{ for each }}\mathbf {A} ,\mathbf {B} \in {\mathfrak {gl}}_{n}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mo stretchy="false">[</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo stretchy="false">]</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;for each&#xA0;</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo>&#x2208;<!-- ∈ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">g</mi> <mi mathvariant="fraktur">l</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {tr} ([\mathbf {A} ,\mathbf {B} ])=0{\text{ for each }}\mathbf {A} ,\mathbf {B} \in {\mathfrak {gl}}_{n}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/36c43376dc9fb9d15ae49fde0373b2259e6f1f98" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:34.666ex; height:2.843ex;" alt="{\displaystyle \operatorname {tr} ([\mathbf {A} ,\mathbf {B} ])=0{\text{ for each }}\mathbf {A} ,\mathbf {B} \in {\mathfrak {gl}}_{n}.}"></span> </p><p>The kernel of this map, a matrix whose trace is <a href="/wiki/0_(number)" class="mw-redirect" title="0 (number)">zero</a>, is often said to be <b><style data-mw-deduplicate="TemplateStyles:r1238216509">.mw-parser-output .vanchor>:target~.vanchor-text{background-color:#b1d2ff}@media screen{html.skin-theme-clientpref-night .mw-parser-output .vanchor>:target~.vanchor-text{background-color:#0f4dc9}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .vanchor>:target~.vanchor-text{background-color:#0f4dc9}}</style><span class="vanchor"><span id="traceless"></span><span class="vanchor-text">traceless</span></span></b> or <b><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238216509"><span class="vanchor"><span id="trace_free"></span><span class="vanchor-text">trace free</span></span></b>, and these matrices form the <a href="/wiki/Simple_Lie_algebra" title="Simple Lie algebra">simple Lie algebra</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {sl}}_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">s</mi> <mi mathvariant="fraktur">l</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {sl}}_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c75cbc0e014c41c8cd1e7a40afbadf87eb79de9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.041ex; width:2.941ex; height:2.509ex;" alt="{\displaystyle {\mathfrak {sl}}_{n}}"></span>, which is the <a href="/wiki/Lie_algebra" title="Lie algebra">Lie algebra</a> of the <a href="/wiki/Special_linear_group" title="Special linear group">special linear group</a> of matrices with determinant 1. The special linear group consists of the matrices which do not change volume, while the <a href="/wiki/Special_linear_Lie_algebra" title="Special linear Lie algebra">special linear Lie algebra</a> is the matrices which do not alter volume of <i>infinitesimal</i> sets. </p><p>In fact, there is an internal <a href="/wiki/Direct_sum_of_Lie_algebras" class="mw-redirect" title="Direct sum of Lie algebras">direct sum</a> decomposition <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {gl}}_{n}={\mathfrak {sl}}_{n}\oplus K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">g</mi> <mi mathvariant="fraktur">l</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">s</mi> <mi mathvariant="fraktur">l</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2295;<!-- ⊕ --></mo> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {gl}}_{n}={\mathfrak {sl}}_{n}\oplus K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d14307faac39541ec34a86251564f220468d567" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.947ex; height:2.676ex;" alt="{\displaystyle {\mathfrak {gl}}_{n}={\mathfrak {sl}}_{n}\oplus K}"></span> of operators/matrices into traceless operators/matrices and scalars operators/matrices. The projection map onto scalar operators can be expressed in terms of the trace, concretely as: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {A} \mapsto {\frac {1}{n}}\operatorname {tr} (\mathbf {A} )\mathbf {I} .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">I</mi> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {A} \mapsto {\frac {1}{n}}\operatorname {tr} (\mathbf {A} )\mathbf {I} .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8440b8939dac781c4fdd6aadefae5312e7030096" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:15.557ex; height:5.176ex;" alt="{\displaystyle \mathbf {A} \mapsto {\frac {1}{n}}\operatorname {tr} (\mathbf {A} )\mathbf {I} .}"></span> </p><p>Formally, one can compose the trace (the <a href="/wiki/Counit" class="mw-redirect" title="Counit">counit</a> map) with the unit map <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K\to {\mathfrak {gl}}_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">g</mi> <mi mathvariant="fraktur">l</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K\to {\mathfrak {gl}}_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f20c092b3efe5dca3128cc3b344514d4b8da9f82" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.722ex; height:2.676ex;" alt="{\displaystyle K\to {\mathfrak {gl}}_{n}}"></span> of "inclusion of <a href="/wiki/Scalar_transformation" class="mw-redirect" title="Scalar transformation">scalars</a>" to obtain a map <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {gl}}_{n}\to {\mathfrak {gl}}_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">g</mi> <mi mathvariant="fraktur">l</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">&#x2192;<!-- → --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">g</mi> <mi mathvariant="fraktur">l</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {gl}}_{n}\to {\mathfrak {gl}}_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fff6d138e9e8942165241712f5a7ca18f920bf59" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.697ex; height:2.676ex;" alt="{\displaystyle {\mathfrak {gl}}_{n}\to {\mathfrak {gl}}_{n}}"></span> mapping onto scalars, and multiplying by <span class="texhtml mvar" style="font-style:italic;">n</span>. Dividing by <span class="texhtml mvar" style="font-style:italic;">n</span> makes this a projection, yielding the formula above. </p><p>In terms of <a href="/wiki/Short_exact_sequence" class="mw-redirect" title="Short exact sequence">short exact sequences</a>, one has <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0\to {\mathfrak {sl}}_{n}\to {\mathfrak {gl}}_{n}{\overset {\operatorname {tr} }{\to }}K\to 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo stretchy="false">&#x2192;<!-- → --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">s</mi> <mi mathvariant="fraktur">l</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">&#x2192;<!-- → --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">g</mi> <mi mathvariant="fraktur">l</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mover> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>tr</mi> </mover> </mrow> <mi>K</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0\to {\mathfrak {sl}}_{n}\to {\mathfrak {gl}}_{n}{\overset {\operatorname {tr} }{\to }}K\to 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea71da653ae4fd1896e793aea7840b8ec9e0d1d3" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.499ex; height:4.009ex;" alt="{\displaystyle 0\to {\mathfrak {sl}}_{n}\to {\mathfrak {gl}}_{n}{\overset {\operatorname {tr} }{\to }}K\to 0}"></span> which is analogous to <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1\to \operatorname {SL} _{n}\to \operatorname {GL} _{n}{\overset {\det }{\to }}K^{*}\to 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo stretchy="false">&#x2192;<!-- → --></mo> <msub> <mi>SL</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">&#x2192;<!-- → --></mo> <msub> <mi>GL</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mover> <mo stretchy="false">&#x2192;<!-- → --></mo> <mo movablelimits="true" form="prefix">det</mo> </mover> </mrow> <msup> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo stretchy="false">&#x2192;<!-- → --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1\to \operatorname {SL} _{n}\to \operatorname {GL} _{n}{\overset {\det }{\to }}K^{*}\to 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/67ecd34d1d8a7e6ed7e2d68cb850c5187874bb3f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:27.486ex; height:4.009ex;" alt="{\displaystyle 1\to \operatorname {SL} _{n}\to \operatorname {GL} _{n}{\overset {\det }{\to }}K^{*}\to 1}"></span> (where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K^{*}=K\setminus \{0\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>=</mo> <mi>K</mi> <mo class="MJX-variant">&#x2216;<!-- ∖ --></mo> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K^{*}=K\setminus \{0\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4ba4ef0d2b8f4aeae8ea88713be6cffc4391acfa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.995ex; height:2.843ex;" alt="{\displaystyle K^{*}=K\setminus \{0\}}"></span>) for <a href="/wiki/Lie_group" title="Lie group">Lie groups</a>. However, the trace splits naturally (via <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1/n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1/n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0e10667bad240500f5044257143510127e03d69" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.72ex; height:2.843ex;" alt="{\displaystyle 1/n}"></span> times scalars) so <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {gl}}_{n}={\mathfrak {sl}}_{n}\oplus K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">g</mi> <mi mathvariant="fraktur">l</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">s</mi> <mi mathvariant="fraktur">l</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2295;<!-- ⊕ --></mo> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {gl}}_{n}={\mathfrak {sl}}_{n}\oplus K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d14307faac39541ec34a86251564f220468d567" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.947ex; height:2.676ex;" alt="{\displaystyle {\mathfrak {gl}}_{n}={\mathfrak {sl}}_{n}\oplus K}"></span>, but the splitting of the determinant would be as the <span class="texhtml mvar" style="font-style:italic;">n</span>th root times scalars, and this does not in general define a function, so the determinant does not split and the general linear group does not decompose: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {GL} _{n}\neq \operatorname {SL} _{n}\times K^{*}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>GL</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2260;<!-- ≠ --></mo> <msub> <mi>SL</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x00D7;<!-- × --></mo> <msup> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {GL} _{n}\neq \operatorname {SL} _{n}\times K^{*}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8081e03f9ffeff402ddf650ea7935d7f855b8422" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.548ex; height:2.843ex;" alt="{\displaystyle \operatorname {GL} _{n}\neq \operatorname {SL} _{n}\times K^{*}.}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Bilinear_forms">Bilinear forms</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trace_(linear_algebra)&amp;action=edit&amp;section=20" title="Edit section: Bilinear forms"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Bilinear_form" title="Bilinear form">bilinear form</a> (where <span class="texhtml"><b>X</b></span>, <span class="texhtml"><b>Y</b></span> are square matrices) <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B(\mathbf {X} ,\mathbf {Y} )=\operatorname {tr} (\operatorname {ad} (\mathbf {X} )\operatorname {ad} (\mathbf {Y} ))\quad {\text{where }}\operatorname {ad} (\mathbf {X} )\mathbf {Y} =[\mathbf {X} ,\mathbf {Y} ]=\mathbf {X} \mathbf {Y} -\mathbf {Y} \mathbf {X} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Y</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>ad</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mo stretchy="false">)</mo> <mi>ad</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Y</mi> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>where&#xA0;</mtext> </mrow> <mi>ad</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Y</mi> </mrow> <mo>=</mo> <mo stretchy="false">[</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Y</mi> </mrow> <mo stretchy="false">]</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Y</mi> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B(\mathbf {X} ,\mathbf {Y} )=\operatorname {tr} (\operatorname {ad} (\mathbf {X} )\operatorname {ad} (\mathbf {Y} ))\quad {\text{where }}\operatorname {ad} (\mathbf {X} )\mathbf {Y} =[\mathbf {X} ,\mathbf {Y} ]=\mathbf {X} \mathbf {Y} -\mathbf {Y} \mathbf {X} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/22bb409f81757ce372882865f643a6a0bea2f615" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:69.347ex; height:2.843ex;" alt="{\displaystyle B(\mathbf {X} ,\mathbf {Y} )=\operatorname {tr} (\operatorname {ad} (\mathbf {X} )\operatorname {ad} (\mathbf {Y} ))\quad {\text{where }}\operatorname {ad} (\mathbf {X} )\mathbf {Y} =[\mathbf {X} ,\mathbf {Y} ]=\mathbf {X} \mathbf {Y} -\mathbf {Y} \mathbf {X} }"></span> is called the <a href="/wiki/Killing_form" title="Killing form">Killing form</a>, which is used for the classification of Lie algebras. </p><p>The trace defines a bilinear form: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\mathbf {X} ,\mathbf {Y} )\mapsto \operatorname {tr} (\mathbf {X} \mathbf {Y} ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Y</mi> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Y</mi> </mrow> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\mathbf {X} ,\mathbf {Y} )\mapsto \operatorname {tr} (\mathbf {X} \mathbf {Y} ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/505aa84c8b6f50fd7de8beb0af51e5fc9964f602" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.808ex; height:2.843ex;" alt="{\displaystyle (\mathbf {X} ,\mathbf {Y} )\mapsto \operatorname {tr} (\mathbf {X} \mathbf {Y} ).}"></span> </p><p>The form is symmetric, non-degenerate<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>note 5<span class="cite-bracket">&#93;</span></a></sup> and associative in the sense that: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {tr} (\mathbf {X} [\mathbf {Y} ,\mathbf {Z} ])=\operatorname {tr} ([\mathbf {X} ,\mathbf {Y} ]\mathbf {Z} ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mo stretchy="false">[</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Y</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Z</mi> </mrow> <mo stretchy="false">]</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mo stretchy="false">[</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Y</mi> </mrow> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Z</mi> </mrow> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {tr} (\mathbf {X} [\mathbf {Y} ,\mathbf {Z} ])=\operatorname {tr} ([\mathbf {X} ,\mathbf {Y} ]\mathbf {Z} ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43f62f8baf0101168b07e65fc9742f52d64531b3" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.998ex; height:2.843ex;" alt="{\displaystyle \operatorname {tr} (\mathbf {X} [\mathbf {Y} ,\mathbf {Z} ])=\operatorname {tr} ([\mathbf {X} ,\mathbf {Y} ]\mathbf {Z} ).}"></span> </p><p>For a complex simple Lie algebra (such as <span class="texhtml"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {sl}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">s</mi> <mi mathvariant="fraktur">l</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {sl}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5fb4ad7d6d6ad9e9b642bee9982302dbfad673f7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-left: -0.041ex; width:1.722ex; height:2.176ex;" alt="{\displaystyle {\mathfrak {sl}}}"></span><sub><i>n</i></sub></span>), every such bilinear form is proportional to each other; in particular, to the Killing form<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="Either a source or proof is needed (June 2022)">citation needed</span></a></i>&#93;</sup>. </p><p>Two matrices <span class="texhtml"><b>X</b></span> and <span class="texhtml"><b>Y</b></span> are said to be <i>trace orthogonal</i> if <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {tr} (\mathbf {X} \mathbf {Y} )=0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Y</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {tr} (\mathbf {X} \mathbf {Y} )=0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b3aba7072acad8bd35c7cf54063f8ffa5b9b60a8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.572ex; height:2.843ex;" alt="{\displaystyle \operatorname {tr} (\mathbf {X} \mathbf {Y} )=0.}"></span> </p><p>There is a generalization to a general representation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\rho ,{\mathfrak {g}},V)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>&#x03C1;<!-- ρ --></mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">g</mi> </mrow> </mrow> <mo>,</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\rho ,{\mathfrak {g}},V)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6f98391c9ece20bfeb52e7a7a3d7fc1653ba1a15" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.038ex; height:2.843ex;" alt="{\displaystyle (\rho ,{\mathfrak {g}},V)}"></span> of a Lie algebra <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {g}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">g</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {g}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40a913b1503ed9ec94361b99f7fd59ef60705c28" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.172ex; height:2.009ex;" alt="{\displaystyle {\mathfrak {g}}}"></span>, such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C1;<!-- ρ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f7d439671d1289b6a816e6af7a304be40608d64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.202ex; height:2.176ex;" alt="{\displaystyle \rho }"></span> is a homomorphism of Lie algebras <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho :{\mathfrak {g}}\rightarrow {\text{End}}(V).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C1;<!-- ρ --></mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">g</mi> </mrow> </mrow> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>End</mtext> </mrow> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho :{\mathfrak {g}}\rightarrow {\text{End}}(V).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/185ed4c95997afc69eb8aa201ea57439c2cc73bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.336ex; height:2.843ex;" alt="{\displaystyle \rho :{\mathfrak {g}}\rightarrow {\text{End}}(V).}"></span> The trace form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{tr}}_{V}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mtext>tr</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\text{tr}}_{V}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0bbf97618ae07cc7a93b24aaf206529e161f109d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.312ex; height:2.343ex;" alt="{\displaystyle {\text{tr}}_{V}}"></span> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{End}}(V)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtext>End</mtext> </mrow> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\text{End}}(V)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5c11660eaacd443816e20d7b3e142b73dc5a52bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.764ex; height:2.843ex;" alt="{\displaystyle {\text{End}}(V)}"></span> is defined as above. The bilinear form <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi (\mathbf {X} ,\mathbf {Y} )={\text{tr}}_{V}(\rho (\mathbf {X} )\rho (\mathbf {Y} ))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Y</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mtext>tr</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03C1;<!-- ρ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mo stretchy="false">)</mo> <mi>&#x03C1;<!-- ρ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Y</mi> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi (\mathbf {X} ,\mathbf {Y} )={\text{tr}}_{V}(\rho (\mathbf {X} )\rho (\mathbf {Y} ))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/657abf0611b9df9928b23d45e0dcb6a6cc0a08ac" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.549ex; height:2.843ex;" alt="{\displaystyle \phi (\mathbf {X} ,\mathbf {Y} )={\text{tr}}_{V}(\rho (\mathbf {X} )\rho (\mathbf {Y} ))}"></span> is symmetric and invariant due to cyclicity. </p> <div class="mw-heading mw-heading2"><h2 id="Generalizations">Generalizations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trace_(linear_algebra)&amp;action=edit&amp;section=21" title="Edit section: Generalizations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The concept of trace of a matrix is generalized to the <a href="/wiki/Trace_class" title="Trace class">trace class</a> of <a href="/wiki/Compact_operator" title="Compact operator">compact operators</a> on <a href="/wiki/Hilbert_space" title="Hilbert space">Hilbert spaces</a>, and the analog of the <a href="/wiki/Frobenius_norm" class="mw-redirect" title="Frobenius norm">Frobenius norm</a> is called the <a href="/wiki/Hilbert%E2%80%93Schmidt_operator" title="Hilbert–Schmidt operator">Hilbert–Schmidt</a> norm. </p><p>If <span class="texhtml mvar" style="font-style:italic;">K</span> is a trace-class operator, then for any <a href="/wiki/Orthonormal_basis" title="Orthonormal basis">orthonormal basis</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (e_{n})_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (e_{n})_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe71683a1e22e9868c30ee5df485a2cc9c88dc0f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.33ex; height:2.843ex;" alt="{\displaystyle (e_{n})_{n}}"></span>, the trace is given by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {tr} (K)=\sum _{n}\left\langle e_{n},Ke_{n}\right\rangle ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>K</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munder> <mrow> <mo>&#x27E8;</mo> <mrow> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>,</mo> <mi>K</mi> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> <mo>&#x27E9;</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {tr} (K)=\sum _{n}\left\langle e_{n},Ke_{n}\right\rangle ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d02472a093fc8bd8a9b1e1201488822d3c9428d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:23.079ex; height:5.509ex;" alt="{\displaystyle \operatorname {tr} (K)=\sum _{n}\left\langle e_{n},Ke_{n}\right\rangle ,}"></span> and is finite and independent of the orthonormal basis.<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> </p><p>The <a href="/wiki/Partial_trace" title="Partial trace">partial trace</a> is another generalization of the trace that is operator-valued. The trace of a linear operator <span class="texhtml mvar" style="font-style:italic;">Z</span> which lives on a product space <span class="texhtml"><i>A</i> ⊗ <i>B</i></span> is equal to the partial traces over <span class="texhtml mvar" style="font-style:italic;">A</span> and <span class="texhtml mvar" style="font-style:italic;">B</span>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {tr} (Z)=\operatorname {tr} _{A}\left(\operatorname {tr} _{B}(Z)\right)=\operatorname {tr} _{B}\left(\operatorname {tr} _{A}(Z)\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>Z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>tr</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>tr</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>Z</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>tr</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>tr</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>Z</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {tr} (Z)=\operatorname {tr} _{A}\left(\operatorname {tr} _{B}(Z)\right)=\operatorname {tr} _{B}\left(\operatorname {tr} _{A}(Z)\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c271df4b64917fecb83d6011b2ff5af05dbefebf" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:35.902ex; height:2.843ex;" alt="{\displaystyle \operatorname {tr} (Z)=\operatorname {tr} _{A}\left(\operatorname {tr} _{B}(Z)\right)=\operatorname {tr} _{B}\left(\operatorname {tr} _{A}(Z)\right).}"></span> </p><p>For more properties and a generalization of the partial trace, see <a href="/wiki/Traced_monoidal_category" title="Traced monoidal category">traced monoidal categories</a>. </p><p>If <span class="texhtml mvar" style="font-style:italic;">A</span> is a general <a href="/wiki/Associative_algebra" title="Associative algebra">associative algebra</a> over a field <span class="texhtml mvar" style="font-style:italic;">k</span>, then a trace on <span class="texhtml mvar" style="font-style:italic;">A</span> is often defined to be any map <span class="texhtml">tr&#160;: <i>A</i> ↦ <i>k</i></span> which vanishes on commutators; <span class="texhtml">tr([<i>a</i>,<i>b</i>]) = 0</span> for all <span class="texhtml"><i>a</i>, <i>b</i> ∈ <i>A</i></span>. Such a trace is not uniquely defined; it can always at least be modified by multiplication by a nonzero scalar. </p><p>A <a href="/wiki/Supertrace" title="Supertrace">supertrace</a> is the generalization of a trace to the setting of <a href="/wiki/Superalgebra" title="Superalgebra">superalgebras</a>. </p><p>The operation of <a href="/wiki/Tensor_contraction" title="Tensor contraction">tensor contraction</a> generalizes the trace to arbitrary tensors. </p><p>Gomme and Klein (2011) define a matrix trace operator <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {trm} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>trm</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {trm} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9de4ce8f83fcd8f6b68f236d750552ea30c1bf00" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.752ex; height:2.009ex;" alt="{\displaystyle \operatorname {trm} }"></span> that operates on <a href="/wiki/Block_matrix" title="Block matrix">block matrices</a> and use it to compute second-order perturbation solutions to dynamic economic models without the need for <a href="/wiki/Tensor_notation" class="mw-redirect" title="Tensor notation">tensor notation</a>.<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Traces_in_the_language_of_tensor_products">Traces in the language of tensor products</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trace_(linear_algebra)&amp;action=edit&amp;section=22" title="Edit section: Traces in the language of tensor products"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Given a vector space <span class="texhtml mvar" style="font-style:italic;">V</span>, there is a natural bilinear map <span class="texhtml"><i>V</i> × <i>V</i><sup>∗</sup> → <i>F</i></span> given by sending <span class="texhtml">(<i>v</i>, &#966;)</span> to the scalar <span class="texhtml">&#966;(<i>v</i>)</span>. The <a href="/wiki/Tensor_product#Universal_property" title="Tensor product">universal property</a> of the <a href="/wiki/Tensor_product" title="Tensor product">tensor product</a> <span class="texhtml"><i>V</i> ⊗ <i>V</i><sup>∗</sup></span> automatically implies that this bilinear map is induced by a linear functional on <span class="texhtml"><i>V</i> ⊗ <i>V</i><sup>∗</sup></span>.<sup id="cite_ref-kassel_14-0" class="reference"><a href="#cite_note-kassel-14"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> </p><p>Similarly, there is a natural bilinear map <span class="texhtml"><i>V</i> × <i>V</i><sup>∗</sup> → Hom(<i>V</i>, <i>V</i>)</span> given by sending <span class="texhtml">(<i>v</i>, &#966;)</span> to the linear map <span class="texhtml"><i>w</i> ↦ &#966;(<i>w</i>)<i>v</i></span>. The universal property of the tensor product, just as used previously, says that this bilinear map is induced by a linear map <span class="texhtml"><i>V</i> ⊗ <i>V</i><sup>∗</sup> → Hom(<i>V</i>, <i>V</i>)</span>. If <span class="texhtml mvar" style="font-style:italic;">V</span> is finite-dimensional, then this linear map is a <a href="/wiki/Linear_isomorphism" class="mw-redirect" title="Linear isomorphism">linear isomorphism</a>.<sup id="cite_ref-kassel_14-1" class="reference"><a href="#cite_note-kassel-14"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> This fundamental fact is a straightforward consequence of the existence of a (finite) basis of <span class="texhtml mvar" style="font-style:italic;">V</span>, and can also be phrased as saying that any linear map <span class="texhtml"><i>V</i> → <i>V</i></span> can be written as the sum of (finitely many) rank-one linear maps. Composing the inverse of the isomorphism with the linear functional obtained above results in a linear functional on <span class="texhtml">Hom(<i>V</i>, <i>V</i>)</span>. This linear functional is exactly the same as the trace. </p><p>Using the definition of trace as the sum of diagonal elements, the matrix formula <span class="texhtml">tr(<b>AB</b>) = tr(<b>BA</b>)</span> is straightforward to prove, and was given above. In the present perspective, one is considering linear maps <span class="texhtml mvar" style="font-style:italic;">S</span> and <span class="texhtml mvar" style="font-style:italic;">T</span>, and viewing them as sums of rank-one maps, so that there are linear functionals <span class="texhtml"><i>&#966;</i><sub><i>i</i></sub></span> and <span class="texhtml"><i>&#968;</i><sub><i>j</i></sub></span> and nonzero vectors <span class="texhtml"><i>v</i><sub><i>i</i></sub></span> and <span class="texhtml"><i>w</i><sub><i>j</i></sub></span> such that <span class="texhtml"><i>S</i>(<span class="texhtml mvar" style="font-style:italic;">u</span>) = Σ<i>&#966;</i><sub><i>i</i></sub>(<i>u</i>)<i>v</i><sub><i>i</i></sub></span> and <span class="texhtml"><i>T</i>(<span class="texhtml mvar" style="font-style:italic;">u</span>) = Σ<i>&#968;</i><sub><i>j</i></sub>(<i>u</i>)<i>w</i><sub><i>j</i></sub></span> for any <span class="texhtml mvar" style="font-style:italic;">u</span> in <span class="texhtml mvar" style="font-style:italic;">V</span>. Then </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (S\circ T)(u)=\sum _{i}\varphi _{i}\left(\sum _{j}\psi _{j}(u)w_{j}\right)v_{i}=\sum _{i}\sum _{j}\psi _{j}(u)\varphi _{i}(w_{j})v_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>S</mi> <mo>&#x2218;<!-- ∘ --></mo> <mi>T</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>u</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </munder> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>u</mi> <mo stretchy="false">)</mo> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </munder> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>u</mi> <mo stretchy="false">)</mo> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (S\circ T)(u)=\sum _{i}\varphi _{i}\left(\sum _{j}\psi _{j}(u)w_{j}\right)v_{i}=\sum _{i}\sum _{j}\psi _{j}(u)\varphi _{i}(w_{j})v_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/047f0bc3f75041bfacdd02105d0b6eec0aa60dcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:62.474ex; height:7.676ex;" alt="{\displaystyle (S\circ T)(u)=\sum _{i}\varphi _{i}\left(\sum _{j}\psi _{j}(u)w_{j}\right)v_{i}=\sum _{i}\sum _{j}\psi _{j}(u)\varphi _{i}(w_{j})v_{i}}"></span></dd></dl> <p>for any <span class="texhtml mvar" style="font-style:italic;">u</span> in <span class="texhtml mvar" style="font-style:italic;">V</span>. The rank-one linear map <span class="texhtml"><i>u</i> ↦ <i>&#968;</i><sub><i>j</i></sub>(<i>u</i>)<i>&#966;</i><sub><i>i</i></sub>(<i>w</i><sub><i>j</i></sub>)<i>v</i><sub><i>i</i></sub></span> has trace <span class="texhtml"><i>&#968;</i><sub><i>j</i></sub>(<i>v</i><sub><i>i</i></sub>)<i>&#966;</i><sub><i>i</i></sub>(<i>w</i><sub><i>j</i></sub>)</span> and so </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {tr} (S\circ T)=\sum _{i}\sum _{j}\psi _{j}(v_{i})\varphi _{i}(w_{j})=\sum _{j}\sum _{i}\varphi _{i}(w_{j})\psi _{j}(v_{i}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>S</mi> <mo>&#x2218;<!-- ∘ --></mo> <mi>T</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </munder> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </munder> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {tr} (S\circ T)=\sum _{i}\sum _{j}\psi _{j}(v_{i})\varphi _{i}(w_{j})=\sum _{j}\sum _{i}\varphi _{i}(w_{j})\psi _{j}(v_{i}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d493cda33a4dd3e22c44b22c18533c29c471104d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:56.493ex; height:5.843ex;" alt="{\displaystyle \operatorname {tr} (S\circ T)=\sum _{i}\sum _{j}\psi _{j}(v_{i})\varphi _{i}(w_{j})=\sum _{j}\sum _{i}\varphi _{i}(w_{j})\psi _{j}(v_{i}).}"></span></dd></dl> <p>Following the same procedure with <span class="texhtml mvar" style="font-style:italic;">S</span> and <span class="texhtml mvar" style="font-style:italic;">T</span> reversed, one finds exactly the same formula, proving that <span class="texhtml">tr(<i>S</i> ∘ <i>T</i>)</span> equals <span class="texhtml">tr(<i>T</i> ∘ <i>S</i>)</span>. </p><p>The above proof can be regarded as being based upon tensor products, given that the fundamental identity of <span class="texhtml">End(<i>V</i>)</span> with <span class="texhtml"><i>V</i> ⊗ <i>V</i><sup>∗</sup></span> is equivalent to the expressibility of any linear map as the sum of rank-one linear maps. As such, the proof may be written in the notation of tensor products. Then one may consider the multilinear map <span class="texhtml"><i>V</i> × <i>V</i><sup>∗</sup> × <i>V</i> × <i>V</i><sup>∗</sup> → <i>V</i> ⊗ <i>V</i><sup>∗</sup></span> given by sending <span class="texhtml">(<i>v</i>, <i>&#966;</i>, <i>w</i>, <i>&#968;</i>)</span> to <span class="texhtml"><i>&#966;</i>(<i>w</i>)<i>v</i> ⊗ <i>&#968;</i></span>. Further composition with the trace map then results in <span class="texhtml"><i>&#966;</i>(<i>w</i>)<i>&#968;</i>(<i>v</i>)</span>, and this is unchanged if one were to have started with <span class="texhtml">(<i>w</i>, <i>&#968;</i>, <i>v</i>, <i>&#966;</i>)</span> instead. One may also consider the bilinear map <span class="texhtml">End(<i>V</i>) × End(<i>V</i>) → End(<i>V</i>)</span> given by sending <span class="texhtml">(<i>f</i>, <i>g</i>)</span> to the composition <span class="texhtml"><i>f</i> ∘ <i>g</i></span>, which is then induced by a linear map <span class="texhtml">End(<i>V</i>) ⊗ End(<i>V</i>) → End(<i>V</i>)</span>. It can be seen that this coincides with the linear map <span class="texhtml"><i>V</i> ⊗ <i>V</i><sup>∗</sup> ⊗ <i>V</i> ⊗ <i>V</i><sup>∗</sup> → <i>V</i> ⊗ <i>V</i><sup>∗</sup></span>. The established symmetry upon composition with the trace map then establishes the equality of the two traces.<sup id="cite_ref-kassel_14-2" class="reference"><a href="#cite_note-kassel-14"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> </p><p>For any finite dimensional vector space <span class="texhtml mvar" style="font-style:italic;">V</span>, there is a natural linear map <span class="texhtml"><i>F</i> → <i>V</i> ⊗ <i>V</i><span class="nowrap" style="padding-left:0.1em;">&#39;</span></span>; in the language of linear maps, it assigns to a scalar <span class="texhtml mvar" style="font-style:italic;">c</span> the linear map <span class="texhtml"><i>c</i>⋅id<sub><i>V</i></sub></span>. Sometimes this is called <i>coevaluation map</i>, and the trace <span class="texhtml"><i>V</i> ⊗ <i>V</i><span class="nowrap" style="padding-left:0.1em;">&#39;</span> → <i>F</i></span> is called <i>evaluation map</i>.<sup id="cite_ref-kassel_14-3" class="reference"><a href="#cite_note-kassel-14"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> These structures can be axiomatized to define <a href="/wiki/Categorical_trace" title="Categorical trace">categorical traces</a> in the abstract setting of <a href="/wiki/Category_theory" title="Category theory">category theory</a>. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trace_(linear_algebra)&amp;action=edit&amp;section=23" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Scalar_curvature#Definition" title="Scalar curvature">Trace of a tensor with respect to a metric tensor</a></li> <li><a href="/wiki/Characteristic_function_(probability_theory)#Matrix-valued_random_variables" title="Characteristic function (probability theory)">Characteristic function</a></li> <li><a href="/wiki/Field_trace" title="Field trace">Field trace</a></li> <li><a href="/wiki/Golden%E2%80%93Thompson_inequality" title="Golden–Thompson inequality">Golden–Thompson inequality</a></li> <li><a href="/wiki/Singular_trace" title="Singular trace">Singular trace</a></li> <li><a href="/wiki/Specht%27s_theorem" title="Specht&#39;s theorem">Specht's theorem</a></li> <li><a href="/wiki/Trace_class" title="Trace class">Trace class</a></li> <li><a href="/wiki/Trace_identity" title="Trace identity">Trace identity</a></li> <li><a href="/wiki/Trace_inequalities" class="mw-redirect" title="Trace inequalities">Trace inequalities</a></li> <li><a href="/wiki/Von_Neumann%27s_trace_inequality" class="mw-redirect" title="Von Neumann&#39;s trace inequality">von Neumann's trace inequality</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trace_(linear_algebra)&amp;action=edit&amp;section=24" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text">This is immediate from the definition of the <a href="/wiki/Matrix_product" class="mw-redirect" title="Matrix product">matrix product</a>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {tr} (\mathbf {A} \mathbf {B} )=\sum _{i=1}^{m}\left(\mathbf {A} \mathbf {B} \right)_{ii}=\sum _{i=1}^{m}\sum _{j=1}^{n}a_{ij}b_{ji}=\sum _{j=1}^{n}\sum _{i=1}^{m}b_{ji}a_{ij}=\sum _{j=1}^{n}\left(\mathbf {B} \mathbf {A} \right)_{jj}=\operatorname {tr} (\mathbf {B} \mathbf {A} ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </munderover> <msub> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </munderover> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </munderover> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mi>i</mi> </mrow> </msub> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {tr} (\mathbf {A} \mathbf {B} )=\sum _{i=1}^{m}\left(\mathbf {A} \mathbf {B} \right)_{ii}=\sum _{i=1}^{m}\sum _{j=1}^{n}a_{ij}b_{ji}=\sum _{j=1}^{n}\sum _{i=1}^{m}b_{ji}a_{ij}=\sum _{j=1}^{n}\left(\mathbf {B} \mathbf {A} \right)_{jj}=\operatorname {tr} (\mathbf {B} \mathbf {A} ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b9547654fa532867d3cc5cb0efa6ed235eccc54e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:78.461ex; height:7.176ex;" alt="{\displaystyle \operatorname {tr} (\mathbf {A} \mathbf {B} )=\sum _{i=1}^{m}\left(\mathbf {A} \mathbf {B} \right)_{ii}=\sum _{i=1}^{m}\sum _{j=1}^{n}a_{ij}b_{ji}=\sum _{j=1}^{n}\sum _{i=1}^{m}b_{ji}a_{ij}=\sum _{j=1}^{n}\left(\mathbf {B} \mathbf {A} \right)_{jj}=\operatorname {tr} (\mathbf {B} \mathbf {A} ).}"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text">For example, if <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {A} ={\begin{pmatrix}0&amp;1\\0&amp;0\end{pmatrix}},\quad \mathbf {B} ={\begin{pmatrix}0&amp;0\\1&amp;0\end{pmatrix}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>,</mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {A} ={\begin{pmatrix}0&amp;1\\0&amp;0\end{pmatrix}},\quad \mathbf {B} ={\begin{pmatrix}0&amp;0\\1&amp;0\end{pmatrix}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ec594d973a61e9e11068363a6f8809be3dc7658" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:31.761ex; height:6.176ex;" alt="{\displaystyle \mathbf {A} ={\begin{pmatrix}0&amp;1\\0&amp;0\end{pmatrix}},\quad \mathbf {B} ={\begin{pmatrix}0&amp;0\\1&amp;0\end{pmatrix}},}"></span> then the product is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {AB} ={\begin{pmatrix}1&amp;0\\0&amp;0\end{pmatrix}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> <mi mathvariant="bold">B</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {AB} ={\begin{pmatrix}1&amp;0\\0&amp;0\end{pmatrix}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d22f844ff810421b27f93859dd5633c0ca7a579c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:16.486ex; height:6.176ex;" alt="{\displaystyle \mathbf {AB} ={\begin{pmatrix}1&amp;0\\0&amp;0\end{pmatrix}},}"></span> and the traces are <span class="texhtml">tr(<b>AB</b>) = 1 ≠ 0 ⋅ 0 = tr(<b>A</b>)tr(<b>B</b>)</span>.</span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text">Proof: Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e_{ij}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e_{ij}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b6a2274e22dc1d2778c28f3ce5b946d90ba2756" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.561ex; height:2.343ex;" alt="{\displaystyle e_{ij}}"></span> the standard basis and note that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\left(e_{ij}\right)=f\left(e_{i}e_{j}^{\top }\right)=f\left(e_{i}e_{1}^{\top }e_{1}e_{j}^{\top }\right)=f\left(e_{1}e_{j}^{\top }e_{i}e_{1}^{\top }\right)=f\left(0\right)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msubsup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x22A4;<!-- ⊤ --></mi> </mrow> </msubsup> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msubsup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x22A4;<!-- ⊤ --></mi> </mrow> </msubsup> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msubsup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x22A4;<!-- ⊤ --></mi> </mrow> </msubsup> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msubsup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x22A4;<!-- ⊤ --></mi> </mrow> </msubsup> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msubsup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x22A4;<!-- ⊤ --></mi> </mrow> </msubsup> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\left(e_{ij}\right)=f\left(e_{i}e_{j}^{\top }\right)=f\left(e_{i}e_{1}^{\top }e_{1}e_{j}^{\top }\right)=f\left(e_{1}e_{j}^{\top }e_{i}e_{1}^{\top }\right)=f\left(0\right)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/97eed0157fcbe948681bf9f71d302288aff202dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:63.548ex; height:4.843ex;" alt="{\displaystyle f\left(e_{ij}\right)=f\left(e_{i}e_{j}^{\top }\right)=f\left(e_{i}e_{1}^{\top }e_{1}e_{j}^{\top }\right)=f\left(e_{1}e_{j}^{\top }e_{i}e_{1}^{\top }\right)=f\left(0\right)=0}"></span> if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i\neq j}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mo>&#x2260;<!-- ≠ --></mo> <mi>j</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i\neq j}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d95aeb406bb427ac96806bc00c30c91d31b858be" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.859ex; height:2.676ex;" alt="{\displaystyle i\neq j}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\left(e_{jj}\right)=f\left(e_{11}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mi>j</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msub> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\left(e_{jj}\right)=f\left(e_{11}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/950548eaad4e62d7da9be1e34916acffc94d8555" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:15.679ex; height:3.009ex;" alt="{\displaystyle f\left(e_{jj}\right)=f\left(e_{11}\right)}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(\mathbf {A} )=\sum _{i,j}[\mathbf {A} ]_{ij}f\left(e_{ij}\right)=\sum _{i}[\mathbf {A} ]_{ii}f\left(e_{11}\right)=f\left(e_{11}\right)\operatorname {tr} (\mathbf {A} ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </munder> <mo stretchy="false">[</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <msub> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <mo stretchy="false">[</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <msub> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>i</mi> </mrow> </msub> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msub> <mo>)</mo> </mrow> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(\mathbf {A} )=\sum _{i,j}[\mathbf {A} ]_{ij}f\left(e_{ij}\right)=\sum _{i}[\mathbf {A} ]_{ii}f\left(e_{11}\right)=f\left(e_{11}\right)\operatorname {tr} (\mathbf {A} ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39962edcfc3937240db861d2f696600925201688" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:56.167ex; height:5.843ex;" alt="{\displaystyle f(\mathbf {A} )=\sum _{i,j}[\mathbf {A} ]_{ij}f\left(e_{ij}\right)=\sum _{i}[\mathbf {A} ]_{ii}f\left(e_{11}\right)=f\left(e_{11}\right)\operatorname {tr} (\mathbf {A} ).}"></span> More abstractly, this corresponds to the decomposition <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {gl}}_{n}={\mathfrak {sl}}_{n}\oplus k,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">g</mi> <mi mathvariant="fraktur">l</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">s</mi> <mi mathvariant="fraktur">l</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2295;<!-- ⊕ --></mo> <mi>k</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {gl}}_{n}={\mathfrak {sl}}_{n}\oplus k,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c20ebe325f1d1ec9295dab7cd625daad32d1b20" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.739ex; height:2.676ex;" alt="{\displaystyle {\mathfrak {gl}}_{n}={\mathfrak {sl}}_{n}\oplus k,}"></span> as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {tr} (AB)=\operatorname {tr} (BA)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>A</mi> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>B</mi> <mi>A</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {tr} (AB)=\operatorname {tr} (BA)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/95e3cc6cb1fb477706acf1c248d6f66882df7176" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.364ex; height:2.843ex;" alt="{\displaystyle \operatorname {tr} (AB)=\operatorname {tr} (BA)}"></span> (equivalently, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {tr} ([A,B])=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mo stretchy="false">[</mo> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo stretchy="false">]</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {tr} ([A,B])=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aa090c8b1652e285edea85faddd3d357cf34b9d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.721ex; height:2.843ex;" alt="{\displaystyle \operatorname {tr} ([A,B])=0}"></span>) defines the trace on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {sl}}_{n},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">s</mi> <mi mathvariant="fraktur">l</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {sl}}_{n},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc728def492a16ea5866c86cb4a8a1a9e7320997" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.041ex; width:3.588ex; height:2.509ex;" alt="{\displaystyle {\mathfrak {sl}}_{n},}"></span> which has complement the scalar matrices, and leaves one degree of freedom: any such map is determined by its value on scalars, which is one scalar parameter and hence all are multiple of the trace, a nonzero such map.</span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text">Proof: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {sl}}_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">s</mi> <mi mathvariant="fraktur">l</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {sl}}_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c75cbc0e014c41c8cd1e7a40afbadf87eb79de9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.041ex; width:2.941ex; height:2.509ex;" alt="{\displaystyle {\mathfrak {sl}}_{n}}"></span> is a <a href="/wiki/Semisimple_Lie_algebra" title="Semisimple Lie algebra">semisimple Lie algebra</a> and thus every element in it is a linear combination of commutators of some pairs of elements, otherwise the <a href="/wiki/Derived_algebra" class="mw-redirect" title="Derived algebra">derived algebra</a> would be a proper ideal.</span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text">This follows from the fact that <span class="texhtml">tr(<b>A</b>*<b>A</b>) = 0</span> <a href="/wiki/If_and_only_if" title="If and only if">if and only if</a> <span class="texhtml"><b>A</b> = <b>0</b></span>.</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trace_(linear_algebra)&amp;action=edit&amp;section=25" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist reflist-columns references-column-width" style="column-width: 25em;"> <ol class="references"> <li id="cite_note-:1-1"><span class="mw-cite-backlink">^ <a href="#cite_ref-:1_1-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:1_1-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:1_1-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-:1_1-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-:1_1-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://fourier.eng.hmc.edu/e161/lectures/algebra/node2.html">"Rank, trace, determinant, transpose, and inverse of matrices"</a>. <i>fourier.eng.hmc.edu</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2020-09-09</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=fourier.eng.hmc.edu&amp;rft.atitle=Rank%2C+trace%2C+determinant%2C+transpose%2C+and+inverse+of+matrices&amp;rft_id=http%3A%2F%2Ffourier.eng.hmc.edu%2Fe161%2Flectures%2Falgebra%2Fnode2.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATrace+%28linear+algebra%29" class="Z3988"></span></span> </li> <li id="cite_note-:2-2"><span class="mw-cite-backlink">^ <a href="#cite_ref-:2_2-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:2_2-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:2_2-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-:2_2-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeisstein2003" class="citation encyclopaedia cs1"><a href="/wiki/Eric_W._Weisstein" title="Eric W. Weisstein">Weisstein, Eric W.</a> (2003) [1999]. <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/MatrixTrace.html">"Trace (matrix)"</a>. In Weisstein, Eric W. (ed.). <i><a href="/wiki/CRC_Concise_Encyclopedia_of_Mathematics" title="CRC Concise Encyclopedia of Mathematics">CRC Concise Encyclopedia of Mathematics</a></i> (2nd&#160;ed.). Boca Raton, FL: <a href="/wiki/Chapman_%26_Hall" title="Chapman &amp; Hall">Chapman &amp; Hall</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1201%2F9781420035223">10.1201/9781420035223</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/1-58488-347-2" title="Special:BookSources/1-58488-347-2"><bdi>1-58488-347-2</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1944431">1944431</a>. <a href="/wiki/Zbl_(identifier)" class="mw-redirect" title="Zbl (identifier)">Zbl</a>&#160;<a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&amp;q=an:1079.00009">1079.00009</a><span class="reference-accessdate">. Retrieved <span class="nowrap">2020-09-09</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Trace+%28matrix%29&amp;rft.btitle=CRC+Concise+Encyclopedia+of+Mathematics&amp;rft.place=Boca+Raton%2C+FL&amp;rft.edition=2nd&amp;rft.pub=Chapman+%26+Hall&amp;rft.date=2003&amp;rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A1079.00009%23id-name%3DZbl&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1944431%23id-name%3DMR&amp;rft_id=info%3Adoi%2F10.1201%2F9781420035223&amp;rft.isbn=1-58488-347-2&amp;rft.aulast=Weisstein&amp;rft.aufirst=Eric+W.&amp;rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FMatrixTrace.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATrace+%28linear+algebra%29" class="Z3988"></span></span> </li> <li id="cite_note-LipschutzLipson-3"><span class="mw-cite-backlink">^ <a href="#cite_ref-LipschutzLipson_3-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-LipschutzLipson_3-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-LipschutzLipson_3-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-LipschutzLipson_3-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLipschutzLipson2005" class="citation book cs1">Lipschutz, Seymour; Lipson, Marc (September 2005). <i>Theory and Problems of Linear Algebra</i>. Schaum's Outline. McGraw-Hill. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780070605022" title="Special:BookSources/9780070605022"><bdi>9780070605022</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Theory+and+Problems+of+Linear+Algebra&amp;rft.series=Schaum%27s+Outline&amp;rft.pub=McGraw-Hill&amp;rft.date=2005-09&amp;rft.isbn=9780070605022&amp;rft.aulast=Lipschutz&amp;rft.aufirst=Seymour&amp;rft.au=Lipson%2C+Marc&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATrace+%28linear+algebra%29" class="Z3988"></span></span> </li> <li id="cite_note-HornJohnson-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-HornJohnson_4-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHornJohnson2013" class="citation book cs1">Horn, Roger A.; Johnson, Charles R. (2013). <i>Matrix Analysis</i> (2nd&#160;ed.). Cambridge University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780521839402" title="Special:BookSources/9780521839402"><bdi>9780521839402</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Matrix+Analysis&amp;rft.edition=2nd&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2013&amp;rft.isbn=9780521839402&amp;rft.aulast=Horn&amp;rft.aufirst=Roger+A.&amp;rft.au=Johnson%2C+Charles+R.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATrace+%28linear+algebra%29" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHutchinson1989" class="citation journal cs1">Hutchinson, M.F. (January 1989). <a rel="nofollow" class="external text" href="http://www.tandfonline.com/doi/abs/10.1080/03610918908812806">"A Stochastic Estimator of the Trace of the Influence Matrix for Laplacian Smoothing Splines"</a>. <i>Communications in Statistics - Simulation and Computation</i>. <b>18</b> (3): 1059–1076. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F03610918908812806">10.1080/03610918908812806</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0361-0918">0361-0918</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Communications+in+Statistics+-+Simulation+and+Computation&amp;rft.atitle=A+Stochastic+Estimator+of+the+Trace+of+the+Influence+Matrix+for+Laplacian+Smoothing+Splines&amp;rft.volume=18&amp;rft.issue=3&amp;rft.pages=1059-1076&amp;rft.date=1989-01&amp;rft_id=info%3Adoi%2F10.1080%2F03610918908812806&amp;rft.issn=0361-0918&amp;rft.aulast=Hutchinson&amp;rft.aufirst=M.F.&amp;rft_id=http%3A%2F%2Fwww.tandfonline.com%2Fdoi%2Fabs%2F10.1080%2F03610918908812806&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATrace+%28linear+algebra%29" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAvronToledo2011" class="citation journal cs1">Avron, Haim; Toledo, Sivan (2011-04-11). <a rel="nofollow" class="external text" href="https://doi.org/10.1145/1944345.1944349">"Randomized algorithms for estimating the trace of an implicit symmetric positive semi-definite matrix"</a>. <i>Journal of the ACM</i>. <b>58</b> (2): 8:1–8:34. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1145%2F1944345.1944349">10.1145/1944345.1944349</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0004-5411">0004-5411</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:5827717">5827717</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+the+ACM&amp;rft.atitle=Randomized+algorithms+for+estimating+the+trace+of+an+implicit+symmetric+positive+semi-definite+matrix&amp;rft.volume=58&amp;rft.issue=2&amp;rft.pages=8%3A1-8%3A34&amp;rft.date=2011-04-11&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A5827717%23id-name%3DS2CID&amp;rft.issn=0004-5411&amp;rft_id=info%3Adoi%2F10.1145%2F1944345.1944349&amp;rft.aulast=Avron&amp;rft.aufirst=Haim&amp;rft.au=Toledo%2C+Sivan&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1145%2F1944345.1944349&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATrace+%28linear+algebra%29" class="Z3988"></span></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTeschl2014" class="citation book cs1">Teschl, G. (30 October 2014). <i>Mathematical Methods in Quantum Mechanics</i>. Graduate Studies in Mathematics. Vol.&#160;157 (2nd&#160;ed.). American Mathematical Society. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1470417048" title="Special:BookSources/978-1470417048"><bdi>978-1470417048</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Mathematical+Methods+in+Quantum+Mechanics&amp;rft.series=Graduate+Studies+in+Mathematics&amp;rft.edition=2nd&amp;rft.pub=American+Mathematical+Society&amp;rft.date=2014-10-30&amp;rft.isbn=978-1470417048&amp;rft.aulast=Teschl&amp;rft.aufirst=G.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATrace+%28linear+algebra%29" class="Z3988"></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFP._Gomme,_P._Klein2011" class="citation journal cs1">P. Gomme, P. Klein (2011). "Second-order approximation of dynamic models without the use of tensors". <i>Journal of Economic Dynamics &amp; Control</i>. <b>35</b> (4): 604–615. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jedc.2010.10.006">10.1016/j.jedc.2010.10.006</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Economic+Dynamics+%26+Control&amp;rft.atitle=Second-order+approximation+of+dynamic+models+without+the+use+of+tensors&amp;rft.volume=35&amp;rft.issue=4&amp;rft.pages=604-615&amp;rft.date=2011&amp;rft_id=info%3Adoi%2F10.1016%2Fj.jedc.2010.10.006&amp;rft.au=P.+Gomme%2C+P.+Klein&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATrace+%28linear+algebra%29" class="Z3988"></span></span> </li> <li id="cite_note-kassel-14"><span class="mw-cite-backlink">^ <a href="#cite_ref-kassel_14-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-kassel_14-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-kassel_14-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-kassel_14-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKassel1995" class="citation book cs1">Kassel, Christian (1995). <i>Quantum groups</i>. <a href="/wiki/Graduate_Texts_in_Mathematics" title="Graduate Texts in Mathematics">Graduate Texts in Mathematics</a>. Vol.&#160;155. New York: <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer-Verlag</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-1-4612-0783-2">10.1007/978-1-4612-0783-2</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-387-94370-6" title="Special:BookSources/0-387-94370-6"><bdi>0-387-94370-6</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1321145">1321145</a>. <a href="/wiki/Zbl_(identifier)" class="mw-redirect" title="Zbl (identifier)">Zbl</a>&#160;<a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&amp;q=an:0808.17003">0808.17003</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Quantum+groups&amp;rft.place=New+York&amp;rft.series=Graduate+Texts+in+Mathematics&amp;rft.pub=Springer-Verlag&amp;rft.date=1995&amp;rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A0808.17003%23id-name%3DZbl&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1321145%23id-name%3DMR&amp;rft_id=info%3Adoi%2F10.1007%2F978-1-4612-0783-2&amp;rft.isbn=0-387-94370-6&amp;rft.aulast=Kassel&amp;rft.aufirst=Christian&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATrace+%28linear+algebra%29" class="Z3988"></span></span> </li> </ol></div> <style data-mw-deduplicate="TemplateStyles:r1239549316">.mw-parser-output .refbegin{margin-bottom:0.5em}.mw-parser-output .refbegin-hanging-indents>ul{margin-left:0}.mw-parser-output .refbegin-hanging-indents>ul>li{margin-left:0;padding-left:3.2em;text-indent:-3.2em}.mw-parser-output .refbegin-hanging-indents ul,.mw-parser-output .refbegin-hanging-indents ul li{list-style:none}@media(max-width:720px){.mw-parser-output .refbegin-hanging-indents>ul>li{padding-left:1.6em;text-indent:-1.6em}}.mw-parser-output .refbegin-columns{margin-top:0.3em}.mw-parser-output .refbegin-columns ul{margin-top:0}.mw-parser-output .refbegin-columns li{page-break-inside:avoid;break-inside:avoid-column}@media screen{.mw-parser-output .refbegin{font-size:90%}}</style><div class="refbegin refbegin-columns references-column-width" style="column-width: 25em"> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGantmacher1959" class="citation book cs1"><a href="/wiki/Felix_Gantmacher" title="Felix Gantmacher">Gantmacher, F.R.</a> (1959). <i>The Theory of Matrices</i>. Translated by <a href="/wiki/Kurt_Hirsch" title="Kurt Hirsch">Hirsch, K.A.</a> New York, NY: <a href="/wiki/Chelsea_Publishing_Company" title="Chelsea Publishing Company">Chelsea Publishing Company</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0107649">0107649</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Theory+of+Matrices&amp;rft.place=New+York%2C+NY&amp;rft.pub=Chelsea+Publishing+Company&amp;rft.date=1959&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0107649%23id-name%3DMR&amp;rft.aulast=Gantmacher&amp;rft.aufirst=F.R.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATrace+%28linear+algebra%29" class="Z3988"></span></li></ul> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHornJohnson2013" class="citation book cs1"><a href="/wiki/Roger_Horn" title="Roger Horn">Horn, R.A.</a>; <a href="/wiki/Charles_Royal_Johnson" title="Charles Royal Johnson">Johnson, C.R.</a> (2013) [1985]. <i>Matrix Analysis</i> (2nd&#160;ed.). Cambridge, UK: <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-521-54823-6" title="Special:BookSources/978-0-521-54823-6"><bdi>978-0-521-54823-6</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2978290">2978290</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Matrix+Analysis&amp;rft.place=Cambridge%2C+UK&amp;rft.edition=2nd&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2013&amp;rft.isbn=978-0-521-54823-6&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2978290%23id-name%3DMR&amp;rft.aulast=Horn&amp;rft.aufirst=R.A.&amp;rft.au=Johnson%2C+C.R.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATrace+%28linear+algebra%29" class="Z3988"></span></li></ul> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStrang2004" class="citation book cs1"><a href="/wiki/Gilbert_Strang" title="Gilbert Strang">Strang, G.</a> (2004) [1976]. <i>Linear Algebra and its Applications</i> (4th&#160;ed.). <a href="/wiki/Cengage_Learning" class="mw-redirect" title="Cengage Learning">Cengage Learning</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-003010567-8" title="Special:BookSources/978-003010567-8"><bdi>978-003010567-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Linear+Algebra+and+its+Applications&amp;rft.edition=4th&amp;rft.pub=Cengage+Learning&amp;rft.date=2004&amp;rft.isbn=978-003010567-8&amp;rft.aulast=Strang&amp;rft.aufirst=G.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATrace+%28linear+algebra%29" class="Z3988"></span></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trace_(linear_algebra)&amp;action=edit&amp;section=26" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=Trace_of_a_square_matrix">"Trace of a square matrix"</a>, <i><a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>, <a href="/wiki/European_Mathematical_Society" title="European Mathematical Society">EMS Press</a>, 2001 [1994]</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Trace+of+a+square+matrix&amp;rft.btitle=Encyclopedia+of+Mathematics&amp;rft.pub=EMS+Press&amp;rft.date=2001&amp;rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DTrace_of_a_square_matrix&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATrace+%28linear+algebra%29" class="Z3988"></span></li></ul> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐nhjg5 Cached time: 20241122141604 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.771 seconds Real time usage: 1.037 seconds Preprocessor visited node count: 10443/1000000 Post‐expand include size: 77577/2097152 bytes Template argument size: 14156/2097152 bytes Highest expansion depth: 16/100 Expensive parser function count: 3/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 56193/5000000 bytes Lua time usage: 0.322/10.000 seconds Lua memory usage: 7221919/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 716.573 1 -total 24.04% 172.256 2 Template:Reflist 22.42% 160.634 144 Template:Math 16.20% 116.068 1 Template:Short_description 12.72% 91.166 1 Template:Cite_web 9.95% 71.309 1 Template:More_citations_needed 9.93% 71.172 2 Template:Pagetype 9.05% 64.872 1 Template:Ambox 7.16% 51.284 5 Template:Rp 6.58% 47.177 150 Template:Main_other --> <!-- Saved in parser cache with key enwiki:pcache:idhash:43270-0!canonical and timestamp 20241122141604 and revision id 1256943232. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Trace_(linear_algebra)&amp;oldid=1256943232">https://en.wikipedia.org/w/index.php?title=Trace_(linear_algebra)&amp;oldid=1256943232</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Linear_algebra" title="Category:Linear algebra">Linear algebra</a></li><li><a href="/wiki/Category:Matrix_theory" title="Category:Matrix theory">Matrix theory</a></li><li><a href="/wiki/Category:Trace_theory" title="Category:Trace theory">Trace theory</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Articles_needing_additional_references_from_November_2023" title="Category:Articles needing additional references from November 2023">Articles needing additional references from November 2023</a></li><li><a href="/wiki/Category:All_articles_needing_additional_references" title="Category:All articles needing additional references">All articles needing additional references</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_June_2022" title="Category:Articles with unsourced statements from June 2022">Articles with unsourced statements from June 2022</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 12 November 2024, at 10:06<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Trace_(linear_algebra)&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-c2jr9","wgBackendResponseTime":148,"wgPageParseReport":{"limitreport":{"cputime":"0.771","walltime":"1.037","ppvisitednodes":{"value":10443,"limit":1000000},"postexpandincludesize":{"value":77577,"limit":2097152},"templateargumentsize":{"value":14156,"limit":2097152},"expansiondepth":{"value":16,"limit":100},"expensivefunctioncount":{"value":3,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":56193,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 716.573 1 -total"," 24.04% 172.256 2 Template:Reflist"," 22.42% 160.634 144 Template:Math"," 16.20% 116.068 1 Template:Short_description"," 12.72% 91.166 1 Template:Cite_web"," 9.95% 71.309 1 Template:More_citations_needed"," 9.93% 71.172 2 Template:Pagetype"," 9.05% 64.872 1 Template:Ambox"," 7.16% 51.284 5 Template:Rp"," 6.58% 47.177 150 Template:Main_other"]},"scribunto":{"limitreport-timeusage":{"value":"0.322","limit":"10.000"},"limitreport-memusage":{"value":7221919,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-nhjg5","timestamp":"20241122141604","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Trace (linear algebra)","url":"https:\/\/en.wikipedia.org\/wiki\/Trace_(linear_algebra)","sameAs":"http:\/\/www.wikidata.org\/entity\/Q321102","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q321102","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2002-03-07T13:25:30Z","dateModified":"2024-11-12T10:06:02Z","headline":"sum of the elements of the main diagonal of a square matrix"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10