CINXE.COM

Search results for: single laboratory validation approach

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: single laboratory validation approach</title> <meta name="description" content="Search results for: single laboratory validation approach"> <meta name="keywords" content="single laboratory validation approach"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="single laboratory validation approach" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="single laboratory validation approach"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 20519</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: single laboratory validation approach</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20519</span> Estimation of Uncertainty of Thermal Conductivity Measurement with Single Laboratory Validation Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saowaluck%20Ukrisdawithid">Saowaluck Ukrisdawithid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The thermal conductivity of thermal insulation materials are measured by Heat Flow Meter (HFM) apparatus. The components of uncertainty are complex and difficult on routine measurement by modelling approach. In this study, uncertainty of thermal conductivity measurement was estimated by single laboratory validation approach. The within-laboratory reproducibility was 1.1%. The standard uncertainty of method and laboratory bias by using SRM1453 expanded polystyrene board was dominant at 1.4%. However, it was assessed that there was no significant bias. For sample measurement, the sources of uncertainty were repeatability, density of sample and thermal conductivity resolution of HFM. From this approach to sample measurements, the combined uncertainty was calculated. In summary, the thermal conductivity of sample, polystyrene foam, was reported as 0.03367 W/m&middot;K &plusmn; 3.5% (k = 2) at mean temperature 23.5 &deg;C. The single laboratory validation approach is simple key of routine testing laboratory for estimation uncertainty of thermal conductivity measurement by using HFM, according to ISO/IEC 17025-2017 requirements. These are meaningful for laboratory competent improvement, quality control on products, and conformity assessment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=single%20laboratory%20validation%20approach" title="single laboratory validation approach">single laboratory validation approach</a>, <a href="https://publications.waset.org/abstracts/search?q=within-laboratory%20reproducibility" title=" within-laboratory reproducibility"> within-laboratory reproducibility</a>, <a href="https://publications.waset.org/abstracts/search?q=method%20and%20laboratory%20bias" title=" method and laboratory bias"> method and laboratory bias</a>, <a href="https://publications.waset.org/abstracts/search?q=certified%20reference%20material" title=" certified reference material"> certified reference material</a> </p> <a href="https://publications.waset.org/abstracts/115436/estimation-of-uncertainty-of-thermal-conductivity-measurement-with-single-laboratory-validation-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115436.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20518</span> Single Valued Neutrosophic Hesitant Fuzzy Rough Set and Its Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20M.%20Alsager">K. M. Alsager</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20O.%20Alshehri"> N. O. Alshehri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we proposed the notion of single valued neutrosophic hesitant fuzzy rough set, by combining single valued neutrosophic hesitant fuzzy set and rough set. The combination of single valued neutrosophic hesitant fuzzy set and rough set is a powerful tool for dealing with uncertainty, granularity and incompleteness of knowledge in information systems. We presented both definition and some basic properties of the proposed model. Finally, we gave a general approach which is applied to a decision making problem in disease diagnoses, and demonstrated the effectiveness of the approach by a numerical example. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=single%20valued%20neutrosophic%20fuzzy%20set" title="single valued neutrosophic fuzzy set">single valued neutrosophic fuzzy set</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20valued%20neutrosophic%20fuzzy%20hesitant%20set" title=" single valued neutrosophic fuzzy hesitant set"> single valued neutrosophic fuzzy hesitant set</a>, <a href="https://publications.waset.org/abstracts/search?q=rough%20set" title=" rough set"> rough set</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20valued%20neutrosophic%20hesitant%20fuzzy%20rough%20set" title=" single valued neutrosophic hesitant fuzzy rough set"> single valued neutrosophic hesitant fuzzy rough set</a> </p> <a href="https://publications.waset.org/abstracts/104161/single-valued-neutrosophic-hesitant-fuzzy-rough-set-and-its-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104161.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20517</span> Efficient Tuning Parameter Selection by Cross-Validated Score in High Dimensional Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yoonsuh%20Jung">Yoonsuh Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As DNA microarray data contain relatively small sample size compared to the number of genes, high dimensional models are often employed. In high dimensional models, the selection of tuning parameter (or, penalty parameter) is often one of the crucial parts of the modeling. Cross-validation is one of the most common methods for the tuning parameter selection, which selects a parameter value with the smallest cross-validated score. However, selecting a single value as an "optimal" value for the parameter can be very unstable due to the sampling variation since the sample sizes of microarray data are often small. Our approach is to choose multiple candidates of tuning parameter first, then average the candidates with different weights depending on their performance. The additional step of estimating the weights and averaging the candidates rarely increase the computational cost, while it can considerably improve the traditional cross-validation. We show that the selected value from the suggested methods often lead to stable parameter selection as well as improved detection of significant genetic variables compared to the tradition cross-validation via real data and simulated data sets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cross%20validation" title="cross validation">cross validation</a>, <a href="https://publications.waset.org/abstracts/search?q=parameter%20averaging" title=" parameter averaging"> parameter averaging</a>, <a href="https://publications.waset.org/abstracts/search?q=parameter%20selection" title=" parameter selection"> parameter selection</a>, <a href="https://publications.waset.org/abstracts/search?q=regularization%20parameter%20search" title=" regularization parameter search"> regularization parameter search</a> </p> <a href="https://publications.waset.org/abstracts/36409/efficient-tuning-parameter-selection-by-cross-validated-score-in-high-dimensional-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36409.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20516</span> An Enhanced Approach in Validating Analytical Methods Using Tolerance-Based Design of Experiments (DoE)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gule%20Teri">Gule Teri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effective validation of analytical methods forms a crucial component of pharmaceutical manufacturing. However, traditional validation techniques can occasionally fail to fully account for inherent variations within datasets, which may result in inconsistent outcomes. This deficiency in validation accuracy is particularly noticeable when quantifying low concentrations of active pharmaceutical ingredients (APIs), excipients, or impurities, introducing a risk to the reliability of the results and, subsequently, the safety and effectiveness of the pharmaceutical products. In response to this challenge, we introduce an enhanced, tolerance-based Design of Experiments (DoE) approach for the validation of analytical methods. This approach distinctly measures variability with reference to tolerance or design margins, enhancing the precision and trustworthiness of the results. This method provides a systematic, statistically grounded validation technique that improves the truthfulness of results. It offers an essential tool for industry professionals aiming to guarantee the accuracy of their measurements, particularly for low-concentration components. By incorporating this innovative method, pharmaceutical manufacturers can substantially advance their validation processes, subsequently improving the overall quality and safety of their products. This paper delves deeper into the development, application, and advantages of this tolerance-based DoE approach and demonstrates its effectiveness using High-Performance Liquid Chromatography (HPLC) data for verification. This paper also discusses the potential implications and future applications of this method in enhancing pharmaceutical manufacturing practices and outcomes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tolerance-based%20design" title="tolerance-based design">tolerance-based design</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20of%20experiments" title=" design of experiments"> design of experiments</a>, <a href="https://publications.waset.org/abstracts/search?q=analytical%20method%20validation" title=" analytical method validation"> analytical method validation</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20control" title=" quality control"> quality control</a>, <a href="https://publications.waset.org/abstracts/search?q=biopharmaceutical%20manufacturing" title=" biopharmaceutical manufacturing"> biopharmaceutical manufacturing</a> </p> <a href="https://publications.waset.org/abstracts/171669/an-enhanced-approach-in-validating-analytical-methods-using-tolerance-based-design-of-experiments-doe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171669.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20515</span> A Validation Technique for Integrated Ontologies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neli%20P.%20Zlatareva">Neli P. Zlatareva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ontology validation is an important part of web applications’ development, where knowledge integration and ontological reasoning play a fundamental role. It aims to ensure the consistency and correctness of ontological knowledge and to guarantee that ontological reasoning is carried out in a meaningful way. Existing approaches to ontology validation address more or less specific validation issues, but the overall process of validating web ontologies has not been formally established yet. As the size and the number of web ontologies continue to grow, the necessity to validate and ensure their consistency and interoperability is becoming increasingly important. This paper presents a validation technique intended to test the consistency of independent ontologies utilized by a common application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=knowledge%20engineering" title="knowledge engineering">knowledge engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=ontological%20reasoning" title=" ontological reasoning"> ontological reasoning</a>, <a href="https://publications.waset.org/abstracts/search?q=ontology%20validation" title=" ontology validation"> ontology validation</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20web" title=" semantic web"> semantic web</a> </p> <a href="https://publications.waset.org/abstracts/26959/a-validation-technique-for-integrated-ontologies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26959.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20514</span> Invention of Novel Technique of Process Scale Up by Using Solid Dosage Form </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shashank%20Tiwari">Shashank Tiwari</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20P.%20Mahapatra"> S. P. Mahapatra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this technique is to reduce the steps of process scales up, save time & cost of the industries. This technique will minimise the steps of process scale up. The new steps are, Novel Lab Scale, Novel Lab Scale Trials, Novel Trial Batches, Novel Exhibit Batches, Novel Validation Batches. In these steps, it is not divided to validation batches in three parts but the data of trials batches, Exhibit Batches and Validation batches are use and compile for production and used for validation. It also increases the batch size of the trial, exhibit batches. The new size of trials batches is not less than fifty Thousand, the exhibit batches increase up to two lack and the validation batches up to five lack. After preparing the batches all their data & drugs use for stability & maintain the validation record and compile data for the technology transfer in production department for preparing the marketed size batches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=batches" title="batches">batches</a>, <a href="https://publications.waset.org/abstracts/search?q=technique" title=" technique"> technique</a>, <a href="https://publications.waset.org/abstracts/search?q=preparation" title=" preparation"> preparation</a>, <a href="https://publications.waset.org/abstracts/search?q=scale%20up" title=" scale up"> scale up</a>, <a href="https://publications.waset.org/abstracts/search?q=validation" title=" validation"> validation</a> </p> <a href="https://publications.waset.org/abstracts/47071/invention-of-novel-technique-of-process-scale-up-by-using-solid-dosage-form" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47071.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20513</span> A Performance Study of Fixed, Single-Axis and Dual-Axis Photovoltaic Systems in Kuwait </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Al-Rashidi">A. Al-Rashidi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20El-Hamalawi"> A. El-Hamalawi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a performance study was conducted to investigate single and dual-axis PV systems to generate electricity in five different sites in Kuwait. Relevant data were obtained by using two sources for validation purposes. A commercial software, PVsyst, was used to analyse the data, such as metrological data and other input parameters, and compute the performance parameters such as capacity factor (CF) and final yield (YF). The results indicated that single and dual-axis PV systems would be very beneficial to electricity generation in Kuwait as an alternative source to conventional power plants, especially with the increased demand over time. The ranges were also found to be competitive in comparison to leading countries using similar systems. A significant increase in CF and YF values around 24% and 28.8% was achieved related to the use of single and dual systems, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=single-axis%20and%20dual-axis%20photovoltaic%20systems" title="single-axis and dual-axis photovoltaic systems">single-axis and dual-axis photovoltaic systems</a>, <a href="https://publications.waset.org/abstracts/search?q=capacity%20factor" title=" capacity factor"> capacity factor</a>, <a href="https://publications.waset.org/abstracts/search?q=final%20yield" title=" final yield"> final yield</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuwait" title=" Kuwait"> Kuwait</a> </p> <a href="https://publications.waset.org/abstracts/48794/a-performance-study-of-fixed-single-axis-and-dual-axis-photovoltaic-systems-in-kuwait" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48794.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20512</span> Structural Testing and the Finite Element Modelling of Anchors Loaded Against Partially Confined Surfaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Karrech">Ali Karrech</a>, <a href="https://publications.waset.org/abstracts/search?q=Alberto%20Puccini"> Alberto Puccini</a>, <a href="https://publications.waset.org/abstracts/search?q=Ben%20Galvin"> Ben Galvin</a>, <a href="https://publications.waset.org/abstracts/search?q=Davide%20Galli"> Davide Galli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper summarises the laboratory tests, numerical models and statistical approach developed to investigate the behaviour of concrete blocks loaded in shear through metallic anchors. This research is proposed to bridge a gap in the state of the art and practice related to anchors loaded against partially confined concrete surfaces. Eight concrete blocks (420 mm x 500 mm x 1000 mm) with 150 and/or 250 deep anchors were tested. The stainless-steel anchors of diameter 16 mm were bonded with HIT-RE 500 V4 injection epoxy resin and were subjected to shear loading against partially supported edges. In addition, finite element models were constructed to validate the laboratory tests and explore the influence of key parameters such as anchor depth, anchor distance from the edge, and compressive strength on the stability of the block. Upon their validation experimentally, the numerical results were used to populate, develop and interpret a systematic parametric study based on the Design of Experiment approach through the Box-Behnken design and Response Surface Methodology. An empirical model has been derived based on this approach, which predicts the load capacity with the desirable intervals of confidence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20modelling" title="finite element modelling">finite element modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20of%20experiment" title=" design of experiment"> design of experiment</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=Box-Behnken%20design" title=" Box-Behnken design"> Box-Behnken design</a>, <a href="https://publications.waset.org/abstracts/search?q=empirical%20model" title=" empirical model"> empirical model</a>, <a href="https://publications.waset.org/abstracts/search?q=interval%20of%20confidence" title=" interval of confidence"> interval of confidence</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20capacity" title=" load capacity"> load capacity</a> </p> <a href="https://publications.waset.org/abstracts/191505/structural-testing-and-the-finite-element-modelling-of-anchors-loaded-against-partially-confined-surfaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191505.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">24</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20511</span> A Laboratory–Designed Activity in Ecology to Demonstrate the Allelopathic Property of the Philippine Chromolaena odorata L. (King and Robinson) Leaf Extracts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lina%20T.%20Codilla">Lina T. Codilla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study primarily designed a laboratory activity in ecology to demonstrate the allelopathic property of the Philippine Chromolaena odorata L. (hagonoy) leaf extracts to Lycopersicum esculentum (M), commonly known as tomatoes. Ethanol extracts of C. odorata leaves were tested on seed germination and seedling growth of L. esculentum in 7-day and 14-day observation periods. Analysis of variance and Tukey’s HSD post hoc test was utilized to determine differences among treatments while Pre–test – Post–test experimental design was utilized in the determination of the effectiveness of the designed laboratory activity. Results showed that the 0.5% concentration level of ethanol leaf extracts significantly inhibited germination and seedling growth of L. esculentum in both observation periods. These results were used as the basis in the development of instructional material in ecology. The laboratory activity underwent face validation by five (5) experts in various fields of specialization, namely, Biological Sciences, Chemistry and Science Education. The readability of the designed laboratory activity was determined using a Cloze Test. Pilot testing was conducted and showed that the laboratory activity developed is found to be a very effective tool in supplementing learning about allelopathy in ecology class. Thus, it is recommended for use among ecology classes but modification will be made in a small – scale basis to minimize time consumption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=allelopathy" title="allelopathy">allelopathy</a>, <a href="https://publications.waset.org/abstracts/search?q=chromolaena%20odorata%20l.%20%28hagonoy%29" title=" chromolaena odorata l. (hagonoy)"> chromolaena odorata l. (hagonoy)</a>, <a href="https://publications.waset.org/abstracts/search?q=designed-laboratory%20activity" title=" designed-laboratory activity"> designed-laboratory activity</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20herbicide%20students%E2%80%99%20performance" title=" organic herbicide students’ performance"> organic herbicide students’ performance</a> </p> <a href="https://publications.waset.org/abstracts/49370/a-laboratory-designed-activity-in-ecology-to-demonstrate-the-allelopathic-property-of-the-philippine-chromolaena-odorata-l-king-and-robinson-leaf-extracts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49370.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20510</span> The Detection of Implanted Radioactive Seeds on Ultrasound Images Using Convolution Neural Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Edward%20Holupka">Edward Holupka</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Rossman"> John Rossman</a>, <a href="https://publications.waset.org/abstracts/search?q=Tye%20Morancy"> Tye Morancy</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20Aronovitz"> Joseph Aronovitz</a>, <a href="https://publications.waset.org/abstracts/search?q=Irving%20Kaplan"> Irving Kaplan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A common modality for the treatment of early stage prostate cancer is the implantation of radioactive seeds directly into the prostate. The radioactive seeds are positioned inside the prostate to achieve optimal radiation dose coverage to the prostate. These radioactive seeds are positioned inside the prostate using Transrectal ultrasound imaging. Once all of the planned seeds have been implanted, two dimensional transaxial transrectal ultrasound images separated by 2 mm are obtained through out the prostate, beginning at the base of the prostate up to and including the apex. A common deep neural network, called DetectNet was trained to automatically determine the position of the implanted radioactive seeds within the prostate under ultrasound imaging. The results of the training using 950 training ultrasound images and 90 validation ultrasound images. The commonly used metrics for successful training were used to evaluate the efficacy and accuracy of the trained deep neural network and resulted in an loss_bbox (train) = 0.00, loss_coverage (train) = 1.89e-8, loss_bbox (validation) = 11.84, loss_coverage (validation) = 9.70, mAP (validation) = 66.87%, precision (validation) = 81.07%, and a recall (validation) = 82.29%, where train and validation refers to the training image set and validation refers to the validation training set. On the hardware platform used, the training expended 12.8 seconds per epoch. The network was trained for over 10,000 epochs. In addition, the seed locations as determined by the Deep Neural Network were compared to the seed locations as determined by a commercial software based on a one to three months after implant CT. The Deep Learning approach was within \strikeout off\uuline off\uwave off2.29\uuline default\uwave default mm of the seed locations determined by the commercial software. The Deep Learning approach to the determination of radioactive seed locations is robust, accurate, and fast and well within spatial agreement with the gold standard of CT determined seed coordinates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=prostate" title="prostate">prostate</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20neural%20network" title=" deep neural network"> deep neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=seed%20implant" title=" seed implant"> seed implant</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a> </p> <a href="https://publications.waset.org/abstracts/93735/the-detection-of-implanted-radioactive-seeds-on-ultrasound-images-using-convolution-neural-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93735.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20509</span> Student&#039;s Difficulties with Classes That Involve Laboratory Education Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kayondoamunmose%20Kamafrika">Kayondoamunmose Kamafrika</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Experimental based Engineering education approach plays a vital role in the development of student’s deep understanding of both social and physical sciences. Experimental based education approach through laboratory class activities prepare students to meet national demand for high-tech skilled individuals in the government and private sector. However, students across the country are faced with difficulties in classes that involve laboratory activities: poor experimental based exposure in their early development of student’s education-life-cycle, lack of student engagement in scientific method practical thinking approach, lack of communication between students and the instructor during class, a large number of students in one classroom, lack of instruments and improper equipment calibration. The purpose of this paper is to help students develop their own scientific knowledge and understanding, develop their methodologies in the design of experiments, collect and analyze data, write laboratory reports, present and explain their findings. Experimental based laboratory activities allow students to learn with high-level understanding as well as engage in the design processes of constructing knowledge through practical means of doing science. Experimental based education systems approach will act as a catalyst in the development of practical-based-educational methodologies in social and physical science and engineering domain of learning; thereby, converting laboratory classes into pilot industries and students into professional experts in finding a solution for complex problems, research, and development of super high- tech systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=experimental" title="experimental">experimental</a>, <a href="https://publications.waset.org/abstracts/search?q=engineering" title=" engineering"> engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=innovation" title=" innovation"> innovation</a>, <a href="https://publications.waset.org/abstracts/search?q=practicability" title=" practicability"> practicability</a> </p> <a href="https://publications.waset.org/abstracts/131284/students-difficulties-with-classes-that-involve-laboratory-education-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131284.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20508</span> On Definition of Modulus of Deformation of Ground by Laboratory Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olgha%20Giorgishvili">Olgha Giorgishvili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The work is mainly concerned with the determination of modulus of deformation by laboratory method. It is known that a modulus of deformation is defining by laboratory and field methods. By laboratory method the modulus of deformation is defined in the compressive devices. Our goal is to conduct experiments by both methods and finally make to interpret the obtained results. In this article is considered the definition by new offered laboratory method of deformation modulus that is closer to the real deformation modulus. Finally, the obtained results gives the possibility to us to raise the issue of change the state norms for determining ground by laboratory method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building" title="building">building</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20mechanic" title=" soil mechanic"> soil mechanic</a>, <a href="https://publications.waset.org/abstracts/search?q=deformation%20moulus" title=" deformation moulus"> deformation moulus</a>, <a href="https://publications.waset.org/abstracts/search?q=compression%20methods" title=" compression methods"> compression methods</a> </p> <a href="https://publications.waset.org/abstracts/18737/on-definition-of-modulus-of-deformation-of-ground-by-laboratory-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18737.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">414</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20507</span> Efficient Model Selection in Linear and Non-Linear Quantile Regression by Cross-Validation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yoonsuh%20Jung">Yoonsuh Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Steven%20N.%20MacEachern"> Steven N. MacEachern</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Check loss function is used to define quantile regression. In the prospect of cross validation, it is also employed as a validation function when underlying truth is unknown. However, our empirical study indicates that the validation with check loss often leads to choosing an over estimated fits. In this work, we suggest a modified or L2-adjusted check loss which rounds the sharp corner in the middle of check loss. It has a large effect of guarding against over fitted model in some extent. Through various simulation settings of linear and non-linear regressions, the improvement of check loss by L2 adjustment is empirically examined. This adjustment is devised to shrink to zero as sample size grows. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cross-validation" title="cross-validation">cross-validation</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20selection" title=" model selection"> model selection</a>, <a href="https://publications.waset.org/abstracts/search?q=quantile%20regression" title=" quantile regression"> quantile regression</a>, <a href="https://publications.waset.org/abstracts/search?q=tuning%20parameter%20selection" title=" tuning parameter selection"> tuning parameter selection</a> </p> <a href="https://publications.waset.org/abstracts/44203/efficient-model-selection-in-linear-and-non-linear-quantile-regression-by-cross-validation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44203.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">438</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20506</span> Design of Torque Actuator in Hybrid Multi-DOF System with Taking into Account Magnetic Saturation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyun-Seok%20Hong">Hyun-Seok Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae-Chul%20Jeong"> Tae-Chul Jeong</a>, <a href="https://publications.waset.org/abstracts/search?q=Huai-Cong%20Liu"> Huai-Cong Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ju%20Lee"> Ju Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, proposes to replace the three-phase SPM for tilting by a single-phase torque actuator of the hybrid multi-DOF system. If a three-phase motor for tilting SPM as acting as instantaneous, low electricity use efficiency, controllability is bad disadvantages. It uses a single-phase torque actuator has a high electrical efficiency compared, good controllability. Thus this will have a great influence on the development and practical use of the system. This study designed a single phase torque actuator in consideration of the magnetic saturation. And compared the SPM and FEM analysis and validation through testing of the production model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20multi-DOF%20system" title="hybrid multi-DOF system">hybrid multi-DOF system</a>, <a href="https://publications.waset.org/abstracts/search?q=SPM" title=" SPM"> SPM</a>, <a href="https://publications.waset.org/abstracts/search?q=torque%20actuator" title=" torque actuator"> torque actuator</a>, <a href="https://publications.waset.org/abstracts/search?q=UAV" title=" UAV"> UAV</a>, <a href="https://publications.waset.org/abstracts/search?q=drone" title=" drone"> drone</a> </p> <a href="https://publications.waset.org/abstracts/25403/design-of-torque-actuator-in-hybrid-multi-dof-system-with-taking-into-account-magnetic-saturation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25403.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">611</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20505</span> Challenges for Implementing Standards Compliant with Iso/Iec 17025, for Narcotics and DNA Laboratory’s</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Blerim%20Olluri">Blerim Olluri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A forensic science laboratory in Kosovo has never been organized at the level of most modern forensic science laboratories. This was made possible after the war of 1999 with the help and support from the United States. The United States Government/ICITAP provided 9.5 million dollars to support this project, this support have greatly benefitted law enforcement in Kosovo. With the establishment of Operative Procedures of Work and the law for Kosovo Agency of Forensic, the accreditation with ISO/IEC 17025 of the KAF labs it becomes mandatory. Since 2012 Laboratory’s DNA/Serology and Narcotics has begun reviewing and harmonizing their procedures according to ISO/IEC 17025. The focus of this work was to create quality manuals, procedures, work instructions, quality documentation and quality records. Furthermore, during this time is done the validation of work methods from scientific qualified personnel of KAF, without any help from other foreign agencies or accreditation body.In October 2014 we had the first evaluation based on ISO 17025 standards. According to the initial report of this assessment we have non conformity in test and Calibration methods method’s, and accommodation and environmental conditions. We identified several issues that are of extreme importance to KAF. One the most important issue is to create a professional group with experts of KAF, which will work in all the obligations, requested from ISO/IEC 17025. As conclusions that we earn in this path of accreditation, are that laboratory’s need to take corrective action, and all nonconformance’s must be addressed and corrective action taken before accreditation can be granted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accreditation" title="accreditation">accreditation</a>, <a href="https://publications.waset.org/abstracts/search?q=assessment" title=" assessment"> assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=narcotics" title=" narcotics"> narcotics</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA" title=" DNA"> DNA</a> </p> <a href="https://publications.waset.org/abstracts/23584/challenges-for-implementing-standards-compliant-with-isoiec-17025-for-narcotics-and-dna-laboratorys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23584.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20504</span> Strategies of Drug Discovery in Insects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alaaeddeen%20M.%20Seufi">Alaaeddeen M. Seufi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many have been published on therapeutic derivatives from living organisms including insects. In addition to traditional maggot therapy, more than 900 therapeutic products were isolated from insects. Most people look at insects as enemies and others believe that insects are friends. Many beneficial insects rather than Honey Bees, Silk Worms and Shellac insect could insure human-insect friendship. In addition, insects could be MicroFactories, Biosensors or Bioreactors. InsectFarm is an amazing example of the applied research that transfers insects from laboratory to market by Prof Mircea Ciuhrii and co-workers. They worked for 18 years to derive therapeutics from insects. Their research resulted in production of more than 30 commercial medications derived from insects (e.g. Imunomax, Noblesse, etc.). Two general approaches were followed to discover drugs from living organisms. Some laboratories preferred biochemical approach to purify components of the innate immune system of insects and insect metabolites as well. Then the purified components could be tested for many therapeutic trials. Other researchers preferred molecular approach based on proteomic studies. Components of the innate immune system of insects were then tested for their medical activities. Our Laboratory team preferred to induce insect immune system (using oral, topical and injection routes of administration), then a transcriptomic study was done to discover the induced genes and to identify specific biomarkers that can help in drug discovery. Biomarkers play an important role in medicine and in drug discovery and development as well. Optimum biomarker development and application will require a team approach because of the multifaceted nature of biomarker selection, validation, and application. This team uses several techniques such as pharmacoepidemiology, pharmacogenomics, and functional proteomics; bioanalytical development and validation; modeling and simulation to improve and refine drug development. Our Achievements included the discovery of four components of the innate immune system of Spodoptera littoralis and Musca domestica. These components were designated as SpliDef (defesin), SpliLec (lectin), SpliCec (cecropin) and MdAtt (attacin). SpliDef, SpliLec and MdAtt were confirmed as antimicrobial peptides, while SpliCec was additionally confirmed as anticancer peptide. Our current research is going on to achieve something in antioxidants and anticoagulants from insects. Our perspective is to achieve something in the mass production of prototypes of our products and to reach it to the commercial level. These achievements are the integrated contributions of everybody in our team staff. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AMPs" title="AMPs">AMPs</a>, <a href="https://publications.waset.org/abstracts/search?q=insect" title=" insect"> insect</a>, <a href="https://publications.waset.org/abstracts/search?q=innate%20immunitty" title=" innate immunitty"> innate immunitty</a>, <a href="https://publications.waset.org/abstracts/search?q=therappeutics" title=" therappeutics"> therappeutics</a> </p> <a href="https://publications.waset.org/abstracts/38537/strategies-of-drug-discovery-in-insects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38537.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20503</span> Remote Wireless Communications Lab in Real Time</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=El%20Miloudi%20Djelloul">El Miloudi Djelloul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Technology nowadays enables the remote access to laboratory equipment and instruments via Internet. This is especially useful in engineering education, where students can conduct laboratory experiment remotely. Such remote laboratory access can enable student to use expensive laboratory equipment, which is not usually available to students. In this paper, we present a method of creating a Web-based Remote Laboratory Experimentation in the master degree course “Wireless Communications Systems” which is part of “ICS (Information and Communication Systems)” and “Investment Management in Telecommunications” curriculums. This is done within the RIPLECS Project and the NI2011 FF005 Research Project “Implementation of Project-Based Learning in an Interdisciplinary Master Program”. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=remote%20access" title="remote access">remote access</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20laboratory" title=" remote laboratory"> remote laboratory</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20telecommunications" title=" wireless telecommunications"> wireless telecommunications</a>, <a href="https://publications.waset.org/abstracts/search?q=external%20antenna-switching%20controller%20board%20%28EASCB%29" title=" external antenna-switching controller board (EASCB)"> external antenna-switching controller board (EASCB)</a> </p> <a href="https://publications.waset.org/abstracts/20947/remote-wireless-communications-lab-in-real-time" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20947.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">515</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20502</span> The Failure and Energy Mechanism of Rock-Like Material with Single Flaw</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu%20Chen">Yu Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the influence of flaw on failure process of rock-like material under uniaxial compression. In laboratory, the uniaxial compression tests of intact specimens and a series of specimens within single flaw were conducted. The inclination angle of flaws includes 0°, 15°, 30°, 45°, 60°, 75° and 90°. Based on the laboratory tests, the corresponding models of numerical simulation were built and loaded in PFC2D. After analysing the crack initiation and failure modes, deformation field, and energy mechanism for both laboratory tests and numerical simulation, it can be concluded that the influence of flaws on the failure process is determined by its inclination. The characteristic stresses increase as flaw angle rising basically. The tensile cracks develop from gentle flaws (α ≤ 30°) and the shear cracks develop from other flaws. The propagation of cracks changes during failure process and the failure mode of a specimen corresponds to the orientation of the flaw. A flaw has significant influence on the transverse deformation field at the middle of the specimen, except the 75° and 90° flaw sample. The input energy, strain energy and dissipation energy of specimens show approximate increase trends with flaw angle rising and it presents large difference on the energy distribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=failure%20pattern" title="failure pattern">failure pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20deformation%20field" title=" particle deformation field"> particle deformation field</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20mechanism" title=" energy mechanism"> energy mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=PFC" title=" PFC"> PFC</a> </p> <a href="https://publications.waset.org/abstracts/74402/the-failure-and-energy-mechanism-of-rock-like-material-with-single-flaw" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74402.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20501</span> Pre-Service Science Teachers&#039; Perceptions Related to the Concept of Laboratory: A Metaphorical Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salih%20Uzun">Salih Uzun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The laboratory activities are seen an indispensable part of science, teaching, and learning. In this study, the aim was to identify pre-service science teachers’ perceptions related to the concept of laboratory through metaphors. It is expressed that metaphors can be used as a powerful research tool in order to understand personal perceptions. Therefore, metaphors were used with the aim of revealing a picture regarding how pre-service science teachers perceive laboratory. Within the scope of this aim, phenomenographic research design was adopted for this study and an answer was sought to the question; ‘What are pre-service science teachers’ perceptions about the concept of laboratory?’. The sample of this study was a total of 80 pre-service science teachers at various grade levels in Turkey. Participants were asked to complete the sentence; ‘Laboratory is like…; because…’. Documents including pre-service science teachers’ answers to the open-ended questions were used as data sources and the data were analysed with content analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laboratory" title="laboratory">laboratory</a>, <a href="https://publications.waset.org/abstracts/search?q=metaphor" title=" metaphor"> metaphor</a>, <a href="https://publications.waset.org/abstracts/search?q=phenomenology" title=" phenomenology"> phenomenology</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-service%20science%20teachers" title=" pre-service science teachers"> pre-service science teachers</a> </p> <a href="https://publications.waset.org/abstracts/18484/pre-service-science-teachers-perceptions-related-to-the-concept-of-laboratory-a-metaphorical-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18484.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20500</span> V0 Physics at LHCb. RIVET Analysis Module for Z Boson Decay to Di-Electron</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20E.%20Dumitriu">A. E. Dumitriu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The LHCb experiment is situated at one of the four points around CERN’s Large Hadron Collider, being a single-arm forward spectrometer covering 10 mrad to 300 (250) mrad in the bending (non-bending) plane, designed primarily to study particles containing b and c quarks. Each one of LHCb’s sub-detectors specializes in measuring a different characteristic of the particles produced by colliding protons, its significant detection characteristics including a high precision tracking system and 2 ring-imaging Cherenkov detectors for particle identification. The major two topics that I am currently concerned in are: the RIVET project (Robust Independent Validation of Experiment and Theory) which is an efficient and portable tool kit of C++ class library useful for validation and tuning of Monte Carlo (MC) event generator models by providing a large collection of standard experimental analyses useful for High Energy Physics MC generator development, validation, tuning and regression testing and V0 analysis for 2013 LHCb NoBias type data (trigger on bunch + bunch crossing) at √s=2.76 TeV. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LHCb%20physics" title="LHCb physics">LHCb physics</a>, <a href="https://publications.waset.org/abstracts/search?q=RIVET%20plug-in" title=" RIVET plug-in"> RIVET plug-in</a>, <a href="https://publications.waset.org/abstracts/search?q=RIVET" title=" RIVET"> RIVET</a>, <a href="https://publications.waset.org/abstracts/search?q=CERN" title=" CERN"> CERN</a> </p> <a href="https://publications.waset.org/abstracts/27948/v0-physics-at-lhcb-rivet-analysis-module-for-z-boson-decay-to-di-electron" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27948.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20499</span> Development of Soil Test Kits to Determine Organic Matter Available Phosphorus and Exchangeable Potassium in Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Charirat%20Kusonwiriyawong">Charirat Kusonwiriyawong</a>, <a href="https://publications.waset.org/abstracts/search?q=Supha%20Photichan"> Supha Photichan</a>, <a href="https://publications.waset.org/abstracts/search?q=Wannarut%20Chutibutr"> Wannarut Chutibutr</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil test kits for rapid analysis of the organic matter, available phosphorus and exchangeable potassium were developed to drive a low-cost field testing kit to farmers. The objective was to provide a decision tool for improving soil fertility. One aspect of soil test kit development was ease of use which is a time requirement for completing organic matter, available phosphorus and exchangeable potassium test in one soil sample. This testing kit required only two extractions and utilized no filtration consuming approximately 15 minutes per sample. Organic matter was principally created by oxidizing carbon KMnO₄ using the standard color chart. In addition, modified single extractant (Mehlich I) was applied to extract available phosphorus and exchangeable potassium. Molybdenum blue method and turbidimetric method using standard color chart were adapted to analyze available phosphorus and exchangeable potassium, respectively. Modified single extractant using in soil test kits were highly significant matching with analytical laboratory results (r=0.959** and 0.945** for available phosphorus and exchangeable potassium, respectively). Linear regressions were statistically calculated between modified single extractant and standard laboratory analysis (y=0.9581x-12.973 for available phosphorus and y=0.5372x+15.283 for exchangeable potassium, respectively). These equations were calibrated to formulate a fertilizer rate recommendation for specific corps. To validate quality, soil test kits were distributed to farmers and extension workers. We found that the accuracy of soil test kits were 71.0%, 63.9% and 65.5% for organic matter, available phosphorus, and exchangeable potassium, respectively. The quantitative survey was also conducted in order to assess their satisfaction with soil test kits. The survey showed that more than 85% of respondents said these testing kits were more convenient, economical and reliable than the other commercial soil test kits. Based upon the finding of this study, soil test kits can be another alternative for providing soil analysis and fertility recommendations when a soil testing laboratory is not available. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=available%20phosphorus" title="available phosphorus">available phosphorus</a>, <a href="https://publications.waset.org/abstracts/search?q=exchangeable%20potassium" title=" exchangeable potassium"> exchangeable potassium</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20single%20extractant" title=" modified single extractant"> modified single extractant</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20matter" title=" organic matter"> organic matter</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20test%20kits" title=" soil test kits"> soil test kits</a> </p> <a href="https://publications.waset.org/abstracts/98706/development-of-soil-test-kits-to-determine-organic-matter-available-phosphorus-and-exchangeable-potassium-in-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98706.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20498</span> Number of Parametrization of Discrete-Time Systems without Unit-Delay Element: Single-Input Single-Output Case</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kazuyoshi%20Mori">Kazuyoshi Mori</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we consider the parametrization of the discrete-time systems without the unit-delay element within the framework of the factorization approach. In the parametrization, we investigate the number of required parameters. We consider single-input single-output systems in this paper. By the investigation, we find, on the discrete-time systems without the unit-delay element, three cases that are (1) there exist plants which require only one parameter and (2) two parameters, and (3) the number of parameters is at most three. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=factorization%20approach" title="factorization approach">factorization approach</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete-time%20system" title=" discrete-time system"> discrete-time system</a>, <a href="https://publications.waset.org/abstracts/search?q=parameterization%20of%20stabilizing%20controllers" title=" parameterization of stabilizing controllers"> parameterization of stabilizing controllers</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20without%20unit-delay" title=" system without unit-delay"> system without unit-delay</a> </p> <a href="https://publications.waset.org/abstracts/74319/number-of-parametrization-of-discrete-time-systems-without-unit-delay-element-single-input-single-output-case" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74319.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20497</span> Ontology-Driven Knowledge Discovery and Validation from Admission Databases: A Structural Causal Model Approach for Polytechnic Education in Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bernard%20Igoche%20Igoche">Bernard Igoche Igoche</a>, <a href="https://publications.waset.org/abstracts/search?q=Olumuyiwa%20Matthew"> Olumuyiwa Matthew</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Bednar"> Peter Bednar</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Gegov"> Alexander Gegov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents an ontology-driven approach for knowledge discovery and validation from admission databases in Nigerian polytechnic institutions. The research aims to address the challenges of extracting meaningful insights from vast amounts of admission data and utilizing them for decision-making and process improvement. The proposed methodology combines the knowledge discovery in databases (KDD) process with a structural causal model (SCM) ontological framework. The admission database of Benue State Polytechnic Ugbokolo (Benpoly) is used as a case study. The KDD process is employed to mine and distill knowledge from the database, while the SCM ontology is designed to identify and validate the important features of the admission process. The SCM validation is performed using the conditional independence test (CIT) criteria, and an algorithm is developed to implement the validation process. The identified features are then used for machine learning (ML) modeling and prediction of admission status. The results demonstrate the adequacy of the SCM ontological framework in representing the admission process and the high predictive accuracies achieved by the ML models, with k-nearest neighbors (KNN) and support vector machine (SVM) achieving 92% accuracy. The study concludes that the proposed ontology-driven approach contributes to the advancement of educational data mining and provides a foundation for future research in this domain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=admission%20databases" title="admission databases">admission databases</a>, <a href="https://publications.waset.org/abstracts/search?q=educational%20data%20mining" title=" educational data mining"> educational data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=ontology-driven%20knowledge%20discovery" title=" ontology-driven knowledge discovery"> ontology-driven knowledge discovery</a>, <a href="https://publications.waset.org/abstracts/search?q=polytechnic%20education" title=" polytechnic education"> polytechnic education</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20causal%20model" title=" structural causal model"> structural causal model</a> </p> <a href="https://publications.waset.org/abstracts/184064/ontology-driven-knowledge-discovery-and-validation-from-admission-databases-a-structural-causal-model-approach-for-polytechnic-education-in-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184064.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20496</span> Settlement Performance of Soft Clay Reinforced with Granular Columns </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muneerah%20Jeludin">Muneerah Jeludin</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Sivakumar"> V. Sivakumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerous laboratory-based research studies on the behavior of ground improved with granular columns with respect to bearing capacity have been well-documented. However, information on its settlement performance is still scarce. Laboratory model study on the settlement behavior of soft clay reinforced with granular columns was conducted and results are presented. The investigation uses a soft kaolin clay sample of 300 mm in diameter and 400 mm in length. The clay samples were reinforced with single and multiple granular columns of various lengths using the displacement and replacement installation method. The results indicated that that no settlement reduction was achieved for a short single floating column. The settlement reduction factors reported for L/d ratios of 5.0, 7.5 and 10.0 are in the range of 1 to 2. The findings obtained in this research showed that the reduction factors are considerably less and that load-sharing mechanism between columns and surrounding clay is complex, particularly for column groups and is affected by other factors such as negative skin friction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ground%20improvement" title="ground improvement">ground improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20test" title=" model test"> model test</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20soil" title=" reinforced soil"> reinforced soil</a>, <a href="https://publications.waset.org/abstracts/search?q=settlement" title=" settlement"> settlement</a> </p> <a href="https://publications.waset.org/abstracts/36746/settlement-performance-of-soft-clay-reinforced-with-granular-columns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">466</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20495</span> Automatic Moment-Based Texture Segmentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tudor%20Barbu">Tudor Barbu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An automatic moment-based texture segmentation approach is proposed in this paper. First, we describe the related work in this computer vision domain. Our texture feature extraction, the first part of the texture recognition process, produces a set of moment-based feature vectors. For each image pixel, a texture feature vector is computed as a sequence of area moments. Second, an automatic pixel classification approach is proposed. The feature vectors are clustered using some unsupervised classification algorithm, the optimal number of clusters being determined using a measure based on validation indexes. From the resulted pixel classes one determines easily the desired texture regions of the image. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20segmentation" title="image segmentation">image segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=moment-based" title=" moment-based"> moment-based</a>, <a href="https://publications.waset.org/abstracts/search?q=texture%20analysis" title=" texture analysis"> texture analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=automatic%20classification" title=" automatic classification"> automatic classification</a>, <a href="https://publications.waset.org/abstracts/search?q=validation%20indexes" title=" validation indexes"> validation indexes</a> </p> <a href="https://publications.waset.org/abstracts/3065/automatic-moment-based-texture-segmentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3065.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20494</span> Development of a Single Drive for the Accessories Components in IC Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Rishi%20Jain">R. Rishi Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20V.%20Viswanath"> S. V. Viswanath</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Naveen%20Vasanthan"> R. Naveen Vasanthan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Generally all the IC engines, alternators, air conditioner compressors, oil pumps and coolant pumps are driven by a crankshaft utilizing V-belt drivers. An increase in the number of idle pulleys results in the increase of frictional power. Further, components like idler and belt tensioner are also needed to run the belt drive which adds to the frictional power. The aspiration of this paper is to minimize the friction power by introducing a new system that could combine all the accessories in one shaft within a single casing. This is conceptualized to minimize the friction power, service and maintenance cost, space and also time. The validation of this work can be executed through a simpler drive transmitting power from the crank shaft. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=single%20drive" title="single drive">single drive</a>, <a href="https://publications.waset.org/abstracts/search?q=idler%20pulley" title=" idler pulley"> idler pulley</a>, <a href="https://publications.waset.org/abstracts/search?q=belt%20tensioner" title=" belt tensioner"> belt tensioner</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20power" title=" friction power"> friction power</a>, <a href="https://publications.waset.org/abstracts/search?q=casing" title=" casing"> casing</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20and%20cost" title=" space and cost"> space and cost</a> </p> <a href="https://publications.waset.org/abstracts/9477/development-of-a-single-drive-for-the-accessories-components-in-ic-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9477.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20493</span> Number of Parameters of Anantharam&#039;s Model with Single-Input Single-Output Case</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kazuyoshi%20Mori">Kazuyoshi Mori</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we consider the parametrization of Anantharam’s model within the framework of the factorization approach. In the parametrization, we investigate the number of required parameters of Anantharam’s model. We consider single-input single-output systems in this paper. By the investigation, we find three cases that are (1) there exist plants which require only one parameter and (2) two parameters, and (3) the number of parameters is at most three. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=linear%20systems" title="linear systems">linear systems</a>, <a href="https://publications.waset.org/abstracts/search?q=parametrization" title=" parametrization"> parametrization</a>, <a href="https://publications.waset.org/abstracts/search?q=coprime%20factorization" title=" coprime factorization"> coprime factorization</a>, <a href="https://publications.waset.org/abstracts/search?q=number%20of%20parameters" title=" number of parameters"> number of parameters</a> </p> <a href="https://publications.waset.org/abstracts/59401/number-of-parameters-of-anantharams-model-with-single-input-single-output-case" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59401.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20492</span> Simulation-Based Unmanned Surface Vehicle Design Using PX4 and Robot Operating System With Kubernetes and Cloud-Native Tooling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Norbert%20Szulc">Norbert Szulc</a>, <a href="https://publications.waset.org/abstracts/search?q=Jakub%20Wilk"> Jakub Wilk</a>, <a href="https://publications.waset.org/abstracts/search?q=Franciszek%20G%C3%B3rski"> Franciszek Górski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an approach for simulating and testing robotic systems based on PX4, using a local Kubernetes cluster. The approach leverages modern cloud-native tools and runs on single-board computers. Additionally, this solution enables the creation of datasets for computer vision and the evaluation of control system algorithms in an end-to-end manner. This paper compares this approach to method commonly used Docker based approach. This approach was used to develop simulation environment for an unmanned surface vehicle (USV) for RoboBoat 2023 by running a containerized configuration of the PX4 Open-source Autopilot connected to ROS and the Gazebo simulation environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cloud%20computing" title="cloud computing">cloud computing</a>, <a href="https://publications.waset.org/abstracts/search?q=Kubernetes" title=" Kubernetes"> Kubernetes</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20board%20computers" title=" single board computers"> single board computers</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=ROS" title=" ROS"> ROS</a> </p> <a href="https://publications.waset.org/abstracts/163529/simulation-based-unmanned-surface-vehicle-design-using-px4-and-robot-operating-system-with-kubernetes-and-cloud-native-tooling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163529.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20491</span> River Habitat Modeling for the Entire Macroinvertebrate Community</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pinna%20Beatrice.">Pinna Beatrice.</a>, <a href="https://publications.waset.org/abstracts/search?q=Laini%20Alex"> Laini Alex</a>, <a href="https://publications.waset.org/abstracts/search?q=Negro%20Giovanni"> Negro Giovanni</a>, <a href="https://publications.waset.org/abstracts/search?q=Burgazzi%20Gemma"> Burgazzi Gemma</a>, <a href="https://publications.waset.org/abstracts/search?q=Viaroli%20Pierluigi"> Viaroli Pierluigi</a>, <a href="https://publications.waset.org/abstracts/search?q=Vezza%20Paolo"> Vezza Paolo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Habitat models rarely consider macroinvertebrates as ecological targets in rivers. Available approaches mainly focus on single macroinvertebrate species, not addressing the ecological needs and functionality of the entire community. This research aimed to provide an approach to model the habitat of the macroinvertebrate community. The approach is based on the recently developed Flow-T index, together with a Random Forest (RF) regression, which is employed to apply the Flow-T index at the meso-habitat scale. Using different datasets gathered from both field data collection and 2D hydrodynamic simulations, the model has been calibrated in the Trebbia river (2019 campaign), and then validated in the Trebbia, Taro, and Enza rivers (2020 campaign). The three rivers are characterized by a braiding morphology, gravel riverbeds, and summer low flows. The RF model selected 12 mesohabitat descriptors as important for the macroinvertebrate community. These descriptors belong to different frequency classes of water depth, flow velocity, substrate grain size, and connectivity to the main river channel. The cross-validation R² coefficient (R²𝒸ᵥ) of the training dataset is 0.71 for the Trebbia River (2019), whereas the R² coefficient for the validation datasets (Trebbia, Taro, and Enza Rivers 2020) is 0.63. The agreement between the simulated results and the experimental data shows sufficient accuracy and reliability. The outcomes of the study reveal that the model can identify the ecological response of the macroinvertebrate community to possible flow regime alterations and to possible river morphological modifications. Lastly, the proposed approach allows extending the MesoHABSIM methodology, widely used for the fish habitat assessment, to a different ecological target community. Further applications of the approach can be related to flow design in both perennial and non-perennial rivers, including river reaches in which fish fauna is absent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ecological%20flows" title="ecological flows">ecological flows</a>, <a href="https://publications.waset.org/abstracts/search?q=macroinvertebrate%20community" title=" macroinvertebrate community"> macroinvertebrate community</a>, <a href="https://publications.waset.org/abstracts/search?q=mesohabitat" title=" mesohabitat"> mesohabitat</a>, <a href="https://publications.waset.org/abstracts/search?q=river%20habitat%20modeling" title=" river habitat modeling"> river habitat modeling</a> </p> <a href="https://publications.waset.org/abstracts/164056/river-habitat-modeling-for-the-entire-macroinvertebrate-community" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164056.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20490</span> The Benefits of Security Culture for Improving Physical Protection Systems at Detection and Radiation Measurement Laboratory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ari%20S.%20Prabowo">Ari S. Prabowo</a>, <a href="https://publications.waset.org/abstracts/search?q=Nia%20Febriyanti"> Nia Febriyanti</a>, <a href="https://publications.waset.org/abstracts/search?q=Haryono%20B.%20Santosa"> Haryono B. Santosa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Security function that is called as Physical Protection Systems (PPS) has functions to detect, delay and response. Physical Protection Systems (PPS) in Detection and Radiation Measurement Laboratory needs to be improved continually by using internal resources. The nuclear security culture provides some potentials to support this research. The study starts by identifying the security function’s weaknesses and its strengths of security culture as a purpose. Secondly, the strengths of security culture are implemented in the laboratory management. Finally, a simulation was done to measure its effectiveness. Some changes were happened in laboratory personnel behaviors and procedures. All became more prudent. The results showed a good influence of nuclear security culture in laboratory security functions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laboratory" title="laboratory">laboratory</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20protection%20system" title=" physical protection system"> physical protection system</a>, <a href="https://publications.waset.org/abstracts/search?q=security%20culture" title=" security culture"> security culture</a>, <a href="https://publications.waset.org/abstracts/search?q=security%20function" title=" security function"> security function</a> </p> <a href="https://publications.waset.org/abstracts/102746/the-benefits-of-security-culture-for-improving-physical-protection-systems-at-detection-and-radiation-measurement-laboratory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=single%20laboratory%20validation%20approach&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=single%20laboratory%20validation%20approach&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=single%20laboratory%20validation%20approach&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=single%20laboratory%20validation%20approach&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=single%20laboratory%20validation%20approach&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=single%20laboratory%20validation%20approach&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=single%20laboratory%20validation%20approach&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=single%20laboratory%20validation%20approach&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=single%20laboratory%20validation%20approach&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=single%20laboratory%20validation%20approach&amp;page=683">683</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=single%20laboratory%20validation%20approach&amp;page=684">684</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=single%20laboratory%20validation%20approach&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10