CINXE.COM

polydisc in nLab

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> polydisc in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> polydisc </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/6015/#Item_6" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="analytic_geometry">Analytic geometry</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/analytic+geometry">analytic geometry</a> (<a class="existingWikiWord" href="/nlab/show/complex+analytic+geometry">complex</a>, <a class="existingWikiWord" href="/nlab/show/rigid+analytic+geometry">rigid</a>, <a class="existingWikiWord" href="/nlab/show/global+analytic+geometry">global</a>)</strong></p> <p><a class="existingWikiWord" href="/nlab/show/geometry">geometry</a>+<a class="existingWikiWord" href="/nlab/show/analysis">analysis</a>/<a class="existingWikiWord" href="/nlab/show/analytic+number+theory">analytic number theory</a></p> <h2 id="basic_concepts">Basic concepts</h2> <p><a class="existingWikiWord" href="/nlab/show/analytic+function">analytic function</a></p> <p><a class="existingWikiWord" href="/nlab/show/analytic+space">analytic space</a>, <a class="existingWikiWord" href="/nlab/show/analytic+variety">analytic variety</a>, <a class="existingWikiWord" href="/nlab/show/Berkovich+space">Berkovich space</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/polydisc">polydisc</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/affinoid+algebra">affinoid algebra</a>, <a class="existingWikiWord" href="/nlab/show/analytic+spectrum">analytic spectrum</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/complex+analytic+%E2%88%9E-groupoid">analytic ∞-groupoid</a></p> </li> </ul> <p><a class="existingWikiWord" href="/nlab/show/analytification">analytification</a></p> <h2 id="theorems">Theorems</h2> <p><a class="existingWikiWord" href="/nlab/show/GAGA">GAGA</a></p> </div></div> <h4 id="complex_geometry">Complex geometry</h4> <div class="hide"><div> <p><a class="existingWikiWord" href="/nlab/show/geometry">geometry</a>, <a class="existingWikiWord" href="/nlab/show/complex+numbers">complex numbers</a>, <a class="existingWikiWord" href="/nlab/show/complex+line">complex line</a></p> <p><strong><a class="existingWikiWord" href="/nlab/show/complex+geometry">complex geometry</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/complex+manifold">complex manifold</a>, <a class="existingWikiWord" href="/nlab/show/complex+structure">complex structure</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/complex+analytic+space">complex analytic space</a></p> </li> </ul> <h3 id="variants">Variants</h3> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/generalized+complex+geometry">generalized complex geometry</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/complex+supermanifold">complex supermanifold</a></p> </li> </ul> <h3 id="structures">Structures</h3> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Dolbeault+complex">Dolbeault complex</a>, <a class="existingWikiWord" href="/nlab/show/holomorphic+de+Rham+complex">holomorphic de Rham complex</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Hodge+structure">Hodge structure</a>, <a class="existingWikiWord" href="/nlab/show/Hodge+filtration">Hodge filtration</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Hodge-filtered+differential+cohomology">Hodge-filtered differential cohomology</a></p> </li> </ul> <h3 id="examples">Examples</h3> <ul> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>dim</mi><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">dim = 1</annotation></semantics></math>: <a class="existingWikiWord" href="/nlab/show/Riemann+surface">Riemann surface</a>, <a class="existingWikiWord" href="/nlab/show/super+Riemann+surface">super Riemann surface</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Calabi-Yau+manifold">Calabi-Yau manifold</a></p> <ul> <li><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>dim</mi><mo>=</mo><mn>2</mn></mrow><annotation encoding="application/x-tex">dim = 2</annotation></semantics></math>: <a class="existingWikiWord" href="/nlab/show/K3+surface">K3 surface</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/generalized+Calabi-Yau+manifold">generalized Calabi-Yau manifold</a></p> </li> </ul> </div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#idea'>Idea</a></li> <ul> <li><a href='#general'>General</a></li> <li><a href='#InComplexAnalyticGeometry'>In complex analytic geometry</a></li> </ul> <li><a href='#related_concepts'>Related concepts</a></li> <li><a href='#references'>References</a></li> <ul> <li><a href='#general_2'>General</a></li> <li><a href='#in_complex_analytic_geometry_2'>In complex analytic geometry</a></li> </ul> </ul> </div> <h2 id="idea">Idea</h2> <h3 id="general">General</h3> <p>In the context of <a class="existingWikiWord" href="/nlab/show/rigid+analytic+geometry">rigid</a> <a class="existingWikiWord" href="/nlab/show/analytic+geometry">analytic geometry</a>, a <strong>polydisc</strong> is a <a class="existingWikiWord" href="/nlab/show/product">product</a> of <a class="existingWikiWord" href="/nlab/show/discs">discs</a>: the <a class="existingWikiWord" href="/nlab/show/analytic+space">analytic space</a> which is <a class="existingWikiWord" href="/nlab/show/Isbell+duality">formally dual</a> to the <a class="existingWikiWord" href="/nlab/show/Tate+algebra">Tate algebra</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding="application/x-tex">T_n</annotation></semantics></math> (for an <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math>-dimensional polydisk).</p> <p>This is a basic <a class="existingWikiWord" href="/nlab/show/analytic+space">analytic space</a>. It is the analog in <a class="existingWikiWord" href="/nlab/show/analytic+geometry">analytic geometry</a> of the <a class="existingWikiWord" href="/nlab/show/affine+space">affine space</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>𝔸</mi> <mi>n</mi></msup></mrow><annotation encoding="application/x-tex">\mathbb{A}^n</annotation></semantics></math> in <a class="existingWikiWord" href="/nlab/show/algebraic+geometry">algebraic geometry</a>.</p> <p>Those <a class="existingWikiWord" href="/nlab/show/analytic+spaces">analytic spaces</a> which are subspaces of polydiscs are called <em><a class="existingWikiWord" href="/nlab/show/affinoids">affinoids</a></em>.</p> <h3 id="InComplexAnalyticGeometry">In complex analytic geometry</h3> <p>Specifically in <a class="existingWikiWord" href="/nlab/show/complex+analytic+geometry">complex analytic geometry</a> a polydisc is a sub-<a class="existingWikiWord" href="/nlab/show/complex+manifold">complex manifold</a> of a <a class="existingWikiWord" href="/nlab/show/product">product</a> of <a class="existingWikiWord" href="/nlab/show/complex+planes">complex planes</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>D</mi><mo>↪</mo><msup><mi>ℂ</mi> <mi>n</mi></msup></mrow><annotation encoding="application/x-tex"> D \hookrightarrow \mathbb{C}^n </annotation></semantics></math></div> <p>of the form</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>D</mi><mo>=</mo><msub><mi>D</mi> <mrow><msub><mi>δ</mi> <mn>1</mn></msub><mo>,</mo><mi>⋯</mi><mo>,</mo><msub><mi>δ</mi> <mi>n</mi></msub></mrow></msub><mo>≔</mo><mrow><mo>{</mo><mo stretchy="false">(</mo><msub><mi>z</mi> <mn>1</mn></msub><mo>,</mo><mi>⋯</mi><mo>,</mo><msub><mi>z</mi> <mi>n</mi></msub><mo stretchy="false">)</mo><mo>∈</mo><msup><mi>ℂ</mi> <mi>n</mi></msup><mspace width="thickmathspace"></mspace><mo maxsize="1.2em" minsize="1.2em">|</mo><mspace width="thickmathspace"></mspace><mrow><mo stretchy="false">|</mo><msub><mi>z</mi> <mi>i</mi></msub><mo stretchy="false">|</mo><mo>&lt;</mo><msub><mi>δ</mi> <mi>i</mi></msub></mrow><mo>}</mo></mrow></mrow><annotation encoding="application/x-tex"> D = D_{\delta_1, \cdots, \delta_n} \coloneqq \left\{ (z_1, \cdots, z_n) \in \mathbb{C}^n \;\big|\; {\vert z_i\vert \lt \delta_i} \right\} </annotation></semantics></math></div> <p>for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>δ</mi> <mi>i</mi></msub><mo>∈</mo><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><mn>∞</mn><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">\delta_i \in (0,\infty]</annotation></semantics></math>.</p> <p>e.g. (<a href="#Maddock">Maddock, p.6</a>)</p> <p>Every <a class="existingWikiWord" href="/nlab/show/complex+analytic+manifold">complex analytic manifold</a> is <a class="existingWikiWord" href="/nlab/show/covering">locally</a> <a class="existingWikiWord" href="/nlab/show/isomorphism">isomorphic</a> to a complex polydisc, in that it may be covered by <a class="existingWikiWord" href="/nlab/show/open+subsets">open subsets</a> which are <a class="existingWikiWord" href="/nlab/show/biholomorphism">biholomorphic</a> to complex polydiscs. e.g. (<a href="#Maddock">Maddock, p. 7</a>).</p> <p>In fact (<a href="#FornaessStout77a">Fornæss-Stout 77a, lemma II.1</a>) states that every <a class="existingWikiWord" href="/nlab/show/connected+topological+space">connected</a> and <a class="existingWikiWord" href="/nlab/show/second+countable+topological+space">second countable</a> <a class="existingWikiWord" href="/nlab/show/complex+manifold">complex manifold</a> may already be <a class="existingWikiWord" href="/nlab/show/cover">covered</a> by <a class="existingWikiWord" href="/nlab/show/finite+number">finitely</a> many <a class="existingWikiWord" href="/nlab/show/open+subsets">open subsets</a> <a class="existingWikiWord" href="/nlab/show/biholomorphism">biholomorphic</a> to a polydisc.</p> <p>See also at <em><a href="Stein+manifold#GoodCoversBySteinManifolds">good covers by Stein manifolds</a></em>.</p> <h2 id="related_concepts">Related concepts</h2> <ul> <li><a class="existingWikiWord" href="/nlab/show/Stein+manifold">Stein manifold</a></li> </ul> <h2 id="references">References</h2> <h3 id="general_2">General</h3> <ul> <li>Leonard Lipshitz, Zachary Robinson, <em>Rings of separated power series</em> (<a class="existingWikiWord" href="/nlab/files/LipshitzRobinson.pdf" title="pdf">pdf</a>)</li> </ul> <h3 id="in_complex_analytic_geometry_2">In complex analytic geometry</h3> <p>Original articles on <a class="existingWikiWord" href="/nlab/show/coverings">coverings</a> of <a class="existingWikiWord" href="/nlab/show/complex+manifolds">complex manifolds</a> by complex polydiscs include</p> <ul> <li id="FornaessStout77a"> <p><a class="existingWikiWord" href="/nlab/show/John+Forn%C3%A6ss">John Fornæss</a>, <a class="existingWikiWord" href="/nlab/show/Edgar+Stout">Edgar Stout</a>, <em>Spreading Polydiscs on Complex Manifolds</em> American Journal of Mathematics Vol. 99, No. 5 (Oct., 1977), pp. 933-960 (<a href="http://www.jstor.org/stable/2373992">JSTOR</a>)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/John+Forn%C3%A6ss">John Fornæss</a>, <a class="existingWikiWord" href="/nlab/show/Edgar+Stout">Edgar Stout</a>, <em>Polydiscs in complex manifolds</em>, Mathematische Annalen 1977, Volume 227, Issue 2, pp 145-153</p> </li> </ul> <p>Introductory lecture notes in the context of the <a class="existingWikiWord" href="/nlab/show/Dolbeault+theorem">Dolbeault theorem</a> include</p> <ul> <li id="Maddock">Zachary Maddock, <em>Dolbeault cohomology</em> (<a href="http://www.math.columbia.edu/~maddockz/notes/dolbeault.pdf">pdf</a>)</li> </ul> </body></html> </div> <div class="revisedby"> <p> Last revised on May 21, 2023 at 20:51:52. See the <a href="/nlab/history/polydisc" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/polydisc" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/6015/#Item_6">Discuss</a><span class="backintime"><a href="/nlab/revision/polydisc/8" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/polydisc" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/polydisc" accesskey="S" class="navlink" id="history" rel="nofollow">History (8 revisions)</a> <a href="/nlab/show/polydisc/cite" style="color: black">Cite</a> <a href="/nlab/print/polydisc" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/polydisc" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10