CINXE.COM
Fibonaccijev broj – Wikipedija
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available" lang="hr" dir="ltr"> <head> <meta charset="UTF-8"> <title>Fibonaccijev broj – Wikipedija</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )hrwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t.",".\t,"],"wgDigitTransformTable":["",""], "wgDefaultDateFormat":"dmy hr","wgMonthNames":["","siječanj","veljača","ožujak","travanj","svibanj","lipanj","srpanj","kolovoz","rujan","listopad","studeni","prosinac"],"wgRequestId":"83694141-0144-4290-9932-8a3e775afa98","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Fibonaccijev_broj","wgTitle":"Fibonaccijev broj","wgCurRevisionId":6798499,"wgRevisionId":6798499,"wgArticleId":104634,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["U izradi, Matematika","Matematika"],"wgPageViewLanguage":"hr","wgPageContentLanguage":"hr","wgPageContentModel":"wikitext","wgRelevantPageName":"Fibonaccijev_broj","wgRelevantArticleId":104634,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":true,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true, "wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"hr","pageLanguageDir":"ltr","pageVariantFallbacks":"hr"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":10000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q47577","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false,"wgSiteNoticeId":"2.5"};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user": "ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready","ext.dismissableSiteNotice.styles":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.Web2Cit","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions", "wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking","ext.dismissableSiteNotice"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=hr&modules=ext.cite.styles%7Cext.dismissableSiteNotice.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=hr&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=hr&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/9/95/FibonacciBlocks.svg/1200px-FibonacciBlocks.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="756"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/9/95/FibonacciBlocks.svg/800px-FibonacciBlocks.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="504"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/9/95/FibonacciBlocks.svg/640px-FibonacciBlocks.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="403"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Fibonaccijev broj – Wikipedija"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//hr.m.wikipedia.org/wiki/Fibonaccijev_broj"> <link rel="alternate" type="application/x-wiki" title="Uredi" href="/w/index.php?title=Fibonaccijev_broj&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedija (hr)"> <link rel="EditURI" type="application/rsd+xml" href="//hr.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://hr.wikipedia.org/wiki/Fibonaccijev_broj"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.hr"> <link rel="alternate" type="application/atom+xml" title="Wikipedija Atom izvor" href="/w/index.php?title=Posebno:Nedavne_promjene&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Fibonaccijev_broj rootpage-Fibonaccijev_broj skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Prijeđi na sadržaj</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Mrežno mjesto"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Glavni izbornik" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Glavni izbornik</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Glavni izbornik</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">premjesti</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">sakrij</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Orijentacija </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Glavna_stranica" title="Posjeti glavnu stranicu [z]" accesskey="z"><span>Glavna stranica</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedija:Sadr%C5%BEaj"><span>Sadržaj</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Posebno:Slu%C4%8Dajna_stranica" title="Učitavanje slučajne stranice [x]" accesskey="x"><span>Slučajna stranica</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Posebno:Nedavne_promjene" title="Popis nedavnih promjena u wikiju [r]" accesskey="r"><span>Nedavne promjene</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedija:Kafi%C4%87" title="O projektu, što možete učiniti, gdje se što nalazi"><span>Kafić</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/Pomo%C4%87:Sadr%C5%BEaj" title="Mjesto gdje se može dobiti pomoć"><span>Pomoć</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Glavna_stranica" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedija" src="/static/images/mobile/copyright/wikipedia-wordmark-hr.svg" style="width: 7.5em; height: 1.375em;"> <img class="mw-logo-tagline" alt="Slobodna enciklopedija" src="/static/images/mobile/copyright/wikipedia-tagline-hr.svg" width="120" height="13" style="width: 7.5em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Posebno:Tra%C5%BEi" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Pretraži Wikipediju [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Traži</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Pretraži projekt Wikipedija" aria-label="Pretraži projekt Wikipedija" autocapitalize="sentences" title="Pretraži Wikipediju [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Posebno:Traži"> </div> <button class="cdx-button cdx-search-input__end-button">Traži</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Osobni alati"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Izgled"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Izgled" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Izgled</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_hr.wikipedia.org&uselang=hr" class=""><span>Donacije</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Posebno:Stvori_ra%C4%8Dun&returnto=Fibonaccijev+broj" title="Predlažemo Vam da stvorite račun i prijavite se, iako to nije obavezno" class=""><span>Stvori račun</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Posebno:Prijava&returnto=Fibonaccijev+broj" title="Predlažemo Vam da se prijavite, iako to nije obavezno [o]" accesskey="o" class=""><span>Prijavi se</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Više mogućnosti" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Osobni alati" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Osobni alati</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="Suradnički izbornik" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_hr.wikipedia.org&uselang=hr"><span>Donacije</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Posebno:Stvori_ra%C4%8Dun&returnto=Fibonaccijev+broj" title="Predlažemo Vam da stvorite račun i prijavite se, iako to nije obavezno"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Stvori račun</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Posebno:Prijava&returnto=Fibonaccijev+broj" title="Predlažemo Vam da se prijavite, iako to nije obavezno [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Prijavi se</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Stranice za neprijavljene suradnike <a href="/wiki/Pomo%C4%87:Uvod" aria-label="Vidi više o uređivanju"><span>saznajte više</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Posebno:Moji_doprinosi" title="Popis uređivanja učinjenih s ove IP adrese [y]" accesskey="y"><span>Doprinosi</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Posebno:Moj_razgovor" title="Rasprava o uređivanjima s ove IP adrese [n]" accesskey="n"><span>Razgovor</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><div id="mw-dismissablenotice-anonplace"></div><script>(function(){var node=document.getElementById("mw-dismissablenotice-anonplace");if(node){node.outerHTML="\u003Cdiv class=\"mw-dismissable-notice\"\u003E\u003Cdiv class=\"mw-dismissable-notice-close\"\u003E[\u003Ca tabindex=\"0\" role=\"button\"\u003Esakrij\u003C/a\u003E]\u003C/div\u003E\u003Cdiv class=\"mw-dismissable-notice-body\"\u003E\u003C!-- CentralNotice --\u003E\u003Cdiv id=\"localNotice\" data-nosnippet=\"\"\u003E\u003Cdiv class=\"sitenotice\" lang=\"hr\" dir=\"ltr\"\u003E\u003Ctable class=\"plainlinks fmbox fmbox-system\" style=\"clear: both; margin: 0.2em 0; border: 1px solid #aaa; background: #f9f9f9; width: 100%; background: #f9f9f9; border:1px solid #E3B100;\"\u003E\n\u003Ctbody\u003E\u003Ctr\u003E\t\n\u003Ctd class=\"mbox-image\"\u003E\n \u003Cspan typeof=\"mw:File\"\u003E\u003Ca href=\"/wiki/Marko_Maruli%C4%87\" title=\"Marko Marulić\"\u003E\u003Cimg src=\"//upload.wikimedia.org/wikipedia/commons/thumb/7/75/Wikipedia_Puzzleball_Maruli%C4%87_500.png/40px-Wikipedia_Puzzleball_Maruli%C4%87_500.png\" decoding=\"async\" width=\"40\" height=\"40\" class=\"mw-file-element\" srcset=\"//upload.wikimedia.org/wikipedia/commons/thumb/7/75/Wikipedia_Puzzleball_Maruli%C4%87_500.png/60px-Wikipedia_Puzzleball_Maruli%C4%87_500.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/75/Wikipedia_Puzzleball_Maruli%C4%87_500.png/80px-Wikipedia_Puzzleball_Maruli%C4%87_500.png 2x\" data-file-width=\"640\" data-file-height=\"640\" /\u003E\u003C/a\u003E\u003C/span\u003E\u003C/td\u003E\n\u003Ctd class=\"mbox-text\" style=\"\"\u003E \u003Cb\u003EGodina \u003Ca href=\"/wiki/Marko_Maruli%C4%87\" title=\"Marko Marulić\"\u003EMarka Marulića\u003C/a\u003E\u003C/b\u003E – 500 godina od smrti oca hrvatske književnosti. \u003C/td\u003E\n\u003C/tr\u003E\n\u003C/tbody\u003E\u003C/table\u003E\n\u003Ctable class=\"plainlinks fmbox fmbox-system\" style=\"clear: both; margin: 0.2em 0; border: 1px solid #aaa; background: #f9f9f9; width: 100%; background: #f9f9f9; border:1px solid #eaa;\"\u003E\n\u003Ctbody\u003E\u003Ctr\u003E\t\n\u003Ctd class=\"mbox-image\"\u003E\n \u003Cspan typeof=\"mw:File\"\u003E\u003Ca href=\"/wiki/Wikipedija:Kriteriji_zna%C4%8Dajnosti_po_temama\" title=\"Wikipedija:Kriteriji značajnosti po temama\"\u003E\u003Cimg src=\"//upload.wikimedia.org/wikipedia/commons/thumb/3/36/Help-content.svg/22px-Help-content.svg.png\" decoding=\"async\" width=\"22\" height=\"22\" class=\"mw-file-element\" srcset=\"//upload.wikimedia.org/wikipedia/commons/thumb/3/36/Help-content.svg/33px-Help-content.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/36/Help-content.svg/44px-Help-content.svg.png 2x\" data-file-width=\"48\" data-file-height=\"48\" /\u003E\u003C/a\u003E\u003C/span\u003E\u003C/td\u003E\n\u003Ctd class=\"mbox-text\" style=\"\"\u003E \u003Ca href=\"/wiki/Wikipedija:Kriteriji_zna%C4%8Dajnosti_po_temama\" title=\"Wikipedija:Kriteriji značajnosti po temama\"\u003ERaspravite \u003Cb\u003Erazradu po temama kriterija\u003C/b\u003E o značajnosti!\u003C/a\u003E \u003C/td\u003E\n\u003C/tr\u003E\n\u003C/tbody\u003E\u003C/table\u003E\u003C/div\u003E\u003C/div\u003E\u003C/div\u003E\u003C/div\u003E";}}());</script></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Mrežno mjesto"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Sadržaj" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Sadržaj</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">premjesti</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">sakrij</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">Početak</div> </a> </li> <li id="toc-Osnovna_svojstva" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Osnovna_svojstva"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Osnovna svojstva</span> </div> </a> <button aria-controls="toc-Osnovna_svojstva-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Sadržaj cjeline Osnovna svojstva</span> </button> <ul id="toc-Osnovna_svojstva-sublist" class="vector-toc-list"> <li id="toc-Svojstva_vezana_uz_djeljivost" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Svojstva_vezana_uz_djeljivost"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Svojstva vezana uz djeljivost</span> </div> </a> <ul id="toc-Svojstva_vezana_uz_djeljivost-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Druga_važna_svojstva" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Druga_važna_svojstva"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>Druga važna svojstva</span> </div> </a> <ul id="toc-Druga_važna_svojstva-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Povezanost_sa_zlatnim_rezom" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Povezanost_sa_zlatnim_rezom"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Povezanost sa zlatnim rezom</span> </div> </a> <ul id="toc-Povezanost_sa_zlatnim_rezom-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Veza_s_Morseovim_kodom" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Veza_s_Morseovim_kodom"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Veza s Morseovim kodom</span> </div> </a> <button aria-controls="toc-Veza_s_Morseovim_kodom-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Sadržaj cjeline Veza s Morseovim kodom</span> </button> <ul id="toc-Veza_s_Morseovim_kodom-sublist" class="vector-toc-list"> <li id="toc-Važni_identiteti" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Važni_identiteti"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Važni identiteti</span> </div> </a> <ul id="toc-Važni_identiteti-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Varijacije_Fibonaccijevog_niza" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Varijacije_Fibonaccijevog_niza"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Varijacije Fibonaccijevog niza</span> </div> </a> <button aria-controls="toc-Varijacije_Fibonaccijevog_niza-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Sadržaj cjeline Varijacije Fibonaccijevog niza</span> </button> <ul id="toc-Varijacije_Fibonaccijevog_niza-sublist" class="vector-toc-list"> <li id="toc-Primjeri" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Primjeri"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Primjeri</span> </div> </a> <ul id="toc-Primjeri-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Lucasovi_brojevi" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Lucasovi_brojevi"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Lucasovi brojevi</span> </div> </a> <ul id="toc-Lucasovi_brojevi-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Trojke_generaliziranog_Fibonaccijevog_niza" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Trojke_generaliziranog_Fibonaccijevog_niza"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Trojke generaliziranog Fibonaccijevog niza</span> </div> </a> <button aria-controls="toc-Trojke_generaliziranog_Fibonaccijevog_niza-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Sadržaj cjeline Trojke generaliziranog Fibonaccijevog niza</span> </button> <ul id="toc-Trojke_generaliziranog_Fibonaccijevog_niza-sublist" class="vector-toc-list"> <li id="toc-Slučaj_1.,_'"`UNIQ--postMath-00000069-QINU`"'" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Slučaj_1.,_'"`UNIQ--postMath-00000069-QINU`"'"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Slučaj 1., '"`UNIQ--postMath-00000069-QINU`"'</span> </div> </a> <ul id="toc-Slučaj_1.,_'"`UNIQ--postMath-00000069-QINU`"'-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Slučaj_2.,_'"`UNIQ--postMath-00000077-QINU`"'" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Slučaj_2.,_'"`UNIQ--postMath-00000077-QINU`"'"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Slučaj 2., '"`UNIQ--postMath-00000077-QINU`"'</span> </div> </a> <ul id="toc-Slučaj_2.,_'"`UNIQ--postMath-00000077-QINU`"'-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Fibonnacijev_niz_u_prirodi" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Fibonnacijev_niz_u_prirodi"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Fibonnacijev niz u prirodi</span> </div> </a> <ul id="toc-Fibonnacijev_niz_u_prirodi-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Izvori" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Izvori"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Izvori</span> </div> </a> <ul id="toc-Izvori-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Sadržaj" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Prikaz sadržaja stranice" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Prikaz sadržaja stranice</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Fibonaccijev broj</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Idi na druge jezične varijante članka. Dostupan je na 63 jezika" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-63" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">63 jezika</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar badge-Q70894304 mw-list-item" title=""><a href="https://ar.wikipedia.org/wiki/%D8%B9%D8%AF%D8%AF_%D9%81%D9%8A%D8%A8%D9%88%D9%86%D8%A7%D8%AA%D8%B4%D9%8A" title="عدد فيبوناتشي – arapski" lang="ar" hreflang="ar" data-title="عدد فيبوناتشي" data-language-autonym="العربية" data-language-local-name="arapski" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Fibona%C3%A7%C3%A7i_%C9%99d%C9%99dl%C9%99ri" title="Fibonaççi ədədləri – azerbajdžanski" lang="az" hreflang="az" data-title="Fibonaççi ədədləri" data-language-autonym="Azərbaycanca" data-language-local-name="azerbajdžanski" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-ba mw-list-item"><a href="https://ba.wikipedia.org/wiki/%D0%A4%D0%B8%D0%B1%D0%BE%D0%BD%D0%B0%D1%87%D1%87%D0%B8_%D2%BB%D0%B0%D0%BD%D0%B4%D0%B0%D1%80%D1%8B" title="Фибоначчи һандары – baškirski" lang="ba" hreflang="ba" data-title="Фибоначчи һандары" data-language-autonym="Башҡортса" data-language-local-name="baškirski" class="interlanguage-link-target"><span>Башҡортса</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%9B%D1%96%D0%BA%D1%96_%D0%A4%D1%96%D0%B1%D0%B0%D0%BD%D0%B0%D1%87%D1%8B" title="Лікі Фібаначы – bjeloruski" lang="be" hreflang="be" data-title="Лікі Фібаначы" data-language-autonym="Беларуская" data-language-local-name="bjeloruski" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%A7%D0%B8%D1%81%D0%BB%D0%B0_%D0%BD%D0%B0_%D0%A4%D0%B8%D0%B1%D0%BE%D0%BD%D0%B0%D1%87%D0%B8" title="Числа на Фибоначи – bugarski" lang="bg" hreflang="bg" data-title="Числа на Фибоначи" data-language-autonym="Български" data-language-local-name="bugarski" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Fibonaccijev_broj" title="Fibonaccijev broj – bosanski" lang="bs" hreflang="bs" data-title="Fibonaccijev broj" data-language-autonym="Bosanski" data-language-local-name="bosanski" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Nombre_de_Fibonacci" title="Nombre de Fibonacci – katalonski" lang="ca" hreflang="ca" data-title="Nombre de Fibonacci" data-language-autonym="Català" data-language-local-name="katalonski" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%DA%98%D9%85%D8%A7%D8%B1%DB%95%DB%8C_%D9%81%DB%8C%D8%A8%DB%86%D9%86%D8%A7%DA%86%DB%8C" title="ژمارەی فیبۆناچی – soranski kurdski" lang="ckb" hreflang="ckb" data-title="ژمارەی فیبۆناچی" data-language-autonym="کوردی" data-language-local-name="soranski kurdski" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-cu mw-list-item"><a href="https://cu.wikipedia.org/wiki/%D0%A4%D1%97%D0%B2%D0%BE%D0%BD%D0%B0%D0%BA%D1%97%D0%B8%D0%BD%D0%BE%D0%B2%D0%B8_%D1%87%D0%B8%D1%81%D0%BC%D1%94%D0%BD%D0%B0" title="Фївонакїинови чисмєна – crkvenoslavenski" lang="cu" hreflang="cu" data-title="Фївонакїинови чисмєна" data-language-autonym="Словѣньскъ / ⰔⰎⰑⰂⰡⰐⰠⰔⰍⰟ" data-language-local-name="crkvenoslavenski" class="interlanguage-link-target"><span>Словѣньскъ / ⰔⰎⰑⰂⰡⰐⰠⰔⰍⰟ</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%A4%D0%B8%D0%B1%D0%BE%D0%BD%D0%B0%D1%87%D1%87%D0%B8_%D1%85%D0%B8%D1%81%D0%B5%D0%BF%C4%95" title="Фибоначчи хисепĕ – čuvaški" lang="cv" hreflang="cv" data-title="Фибоначчи хисепĕ" data-language-autonym="Чӑвашла" data-language-local-name="čuvaški" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Rhif_Fibonacci" title="Rhif Fibonacci – velški" lang="cy" hreflang="cy" data-title="Rhif Fibonacci" data-language-autonym="Cymraeg" data-language-local-name="velški" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Fibonacci-tal" title="Fibonacci-tal – danski" lang="da" hreflang="da" data-title="Fibonacci-tal" data-language-autonym="Dansk" data-language-local-name="danski" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de badge-Q70894304 mw-list-item" title=""><a href="https://de.wikipedia.org/wiki/Fibonaccizahl" title="Fibonaccizahl – njemački" lang="de" hreflang="de" data-title="Fibonaccizahl" data-language-autonym="Deutsch" data-language-local-name="njemački" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-en badge-Q70893996 mw-list-item" title=""><a href="https://en.wikipedia.org/wiki/Fibonacci_number" title="Fibonacci number – engleski" lang="en" hreflang="en" data-title="Fibonacci number" data-language-autonym="English" data-language-local-name="engleski" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Fibona%C4%89i-nombro" title="Fibonaĉi-nombro – esperanto" lang="eo" hreflang="eo" data-title="Fibonaĉi-nombro" data-language-autonym="Esperanto" data-language-local-name="esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-es badge-Q70894304 mw-list-item" title=""><a href="https://es.wikipedia.org/wiki/N%C3%BAmero_de_Fibonacci" title="Número de Fibonacci – španjolski" lang="es" hreflang="es" data-title="Número de Fibonacci" data-language-autonym="Español" data-language-local-name="španjolski" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Fibonacci_jada" title="Fibonacci jada – estonski" lang="et" hreflang="et" data-title="Fibonacci jada" data-language-autonym="Eesti" data-language-local-name="estonski" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Fibonacciren_zenbakiak" title="Fibonacciren zenbakiak – baskijski" lang="eu" hreflang="eu" data-title="Fibonacciren zenbakiak" data-language-autonym="Euskara" data-language-local-name="baskijski" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%A7%D8%B9%D8%AF%D8%A7%D8%AF_%D9%81%DB%8C%D8%A8%D9%88%D9%86%D8%A7%DA%86%DB%8C" title="اعداد فیبوناچی – perzijski" lang="fa" hreflang="fa" data-title="اعداد فیبوناچی" data-language-autonym="فارسی" data-language-local-name="perzijski" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fiu-vro mw-list-item"><a href="https://fiu-vro.wikipedia.org/wiki/Fibonacci_arv" title="Fibonacci arv – Võro" lang="vro" hreflang="vro" data-title="Fibonacci arv" data-language-autonym="Võro" data-language-local-name="Võro" class="interlanguage-link-target"><span>Võro</span></a></li><li class="interlanguage-link interwiki-fr badge-Q70894304 mw-list-item" title=""><a href="https://fr.wikipedia.org/wiki/Nombre_de_Fibonacci" title="Nombre de Fibonacci – francuski" lang="fr" hreflang="fr" data-title="Nombre de Fibonacci" data-language-autonym="Français" data-language-local-name="francuski" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-gu mw-list-item"><a href="https://gu.wikipedia.org/wiki/%E0%AA%AB%E0%AA%BF%E0%AA%AC%E0%AB%8B%E0%AA%A8%E0%AA%BE%E0%AA%95%E0%AA%BF" title="ફિબોનાકિ – gudžaratski" lang="gu" hreflang="gu" data-title="ફિબોનાકિ" data-language-autonym="ગુજરાતી" data-language-local-name="gudžaratski" class="interlanguage-link-target"><span>ગુજરાતી</span></a></li><li class="interlanguage-link interwiki-he badge-Q70893996 mw-list-item" title=""><a href="https://he.wikipedia.org/wiki/%D7%9E%D7%A1%D7%A4%D7%A8_%D7%A4%D7%99%D7%91%D7%95%D7%A0%D7%90%D7%A6%27%D7%99" title="מספר פיבונאצ'י – hebrejski" lang="he" hreflang="he" data-title="מספר פיבונאצ'י" data-language-autonym="עברית" data-language-local-name="hebrejski" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%B9%E0%A5%87%E0%A4%AE%E0%A4%9A%E0%A4%A8%E0%A5%8D%E0%A4%A6%E0%A5%8D%E0%A4%B0_%E0%A4%B6%E0%A5%8D%E0%A4%B0%E0%A5%87%E0%A4%A3%E0%A5%80" title="हेमचन्द्र श्रेणी – hindski" lang="hi" hreflang="hi" data-title="हेमचन्द्र श्रेणी" data-language-autonym="हिन्दी" data-language-local-name="hindski" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Fibonacci-sz%C3%A1mok" title="Fibonacci-számok – mađarski" lang="hu" hreflang="hu" data-title="Fibonacci-számok" data-language-autonym="Magyar" data-language-local-name="mađarski" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-hy badge-Q70893996 mw-list-item" title=""><a href="https://hy.wikipedia.org/wiki/%D5%96%D5%AB%D5%A2%D5%B8%D5%B6%D5%A1%D5%B9%D5%AB%D5%AB_%D5%A9%D5%BE%D5%A5%D6%80" title="Ֆիբոնաչիի թվեր – armenski" lang="hy" hreflang="hy" data-title="Ֆիբոնաչիի թվեր" data-language-autonym="Հայերեն" data-language-local-name="armenski" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-hyw mw-list-item"><a href="https://hyw.wikipedia.org/wiki/%D5%96%D5%AB%D5%BA%D5%B8%D5%B6%D5%A1%D5%B9%D5%B9%D5%AB%D5%AB_%D5%A9%D5%AB%D6%82" title="Ֆիպոնաչչիի թիւ – Western Armenian" lang="hyw" hreflang="hyw" data-title="Ֆիպոնաչչիի թիւ" data-language-autonym="Արեւմտահայերէն" data-language-local-name="Western Armenian" class="interlanguage-link-target"><span>Արեւմտահայերէն</span></a></li><li class="interlanguage-link interwiki-id badge-Q70893996 mw-list-item" title=""><a href="https://id.wikipedia.org/wiki/Bilangan_Fibonacci" title="Bilangan Fibonacci – indonezijski" lang="id" hreflang="id" data-title="Bilangan Fibonacci" data-language-autonym="Bahasa Indonesia" data-language-local-name="indonezijski" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Fibonacci-runan" title="Fibonacci-runan – islandski" lang="is" hreflang="is" data-title="Fibonacci-runan" data-language-autonym="Íslenska" data-language-local-name="islandski" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it badge-Q70894304 mw-list-item" title=""><a href="https://it.wikipedia.org/wiki/Numero_di_Fibonacci" title="Numero di Fibonacci – talijanski" lang="it" hreflang="it" data-title="Numero di Fibonacci" data-language-autonym="Italiano" data-language-local-name="talijanski" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%83%95%E3%82%A3%E3%83%9C%E3%83%8A%E3%83%83%E3%83%81%E6%95%B0" title="フィボナッチ数 – japanski" lang="ja" hreflang="ja" data-title="フィボナッチ数" data-language-autonym="日本語" data-language-local-name="japanski" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-kaa mw-list-item"><a href="https://kaa.wikipedia.org/wiki/Fibonachchi_sanlar%C4%B1" title="Fibonachchi sanları – kara-kalpak" lang="kaa" hreflang="kaa" data-title="Fibonachchi sanları" data-language-autonym="Qaraqalpaqsha" data-language-local-name="kara-kalpak" class="interlanguage-link-target"><span>Qaraqalpaqsha</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%A4%D0%B8%D0%B1%D0%BE%D0%BD%D0%B0%D1%87%D1%87%D0%B8_%D1%81%D0%B0%D0%BD%D0%B4%D0%B0%D1%80%D1%8B" title="Фибоначчи сандары – kazaški" lang="kk" hreflang="kk" data-title="Фибоначчи сандары" data-language-autonym="Қазақша" data-language-local-name="kazaški" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%ED%94%BC%EB%B3%B4%EB%82%98%EC%B9%98_%EC%88%98" title="피보나치 수 – korejski" lang="ko" hreflang="ko" data-title="피보나치 수" data-language-autonym="한국어" data-language-local-name="korejski" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Numeri_Fibonacciani" title="Numeri Fibonacciani – latinski" lang="la" hreflang="la" data-title="Numeri Fibonacciani" data-language-autonym="Latina" data-language-local-name="latinski" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Fibona%C4%8Di_skait%C4%BCi" title="Fibonači skaitļi – latvijski" lang="lv" hreflang="lv" data-title="Fibonači skaitļi" data-language-autonym="Latviešu" data-language-local-name="latvijski" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%A4%D0%B8%D0%B1%D0%BE%D0%BD%D0%B0%D1%87%D0%B8%D0%B5%D0%B2%D0%B0_%D0%BD%D0%B8%D0%B7%D0%B0" title="Фибоначиева низа – makedonski" lang="mk" hreflang="mk" data-title="Фибоначиева низа" data-language-autonym="Македонски" data-language-local-name="makedonski" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%AB%E0%B4%BF%E0%B4%AC%E0%B4%A8%E0%B4%BE%E0%B4%9A%E0%B5%8D%E0%B4%9A%E0%B4%BF_%E0%B4%B6%E0%B5%8D%E0%B4%B0%E0%B5%87%E0%B4%A3%E0%B4%BF" title="ഫിബനാച്ചി ശ്രേണി – malajalamski" lang="ml" hreflang="ml" data-title="ഫിബനാച്ചി ശ്രേണി" data-language-autonym="മലയാളം" data-language-local-name="malajalamski" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-mn mw-list-item"><a href="https://mn.wikipedia.org/wiki/%D0%A4%D0%B8%D0%B1%D0%BE%D0%BD%D0%B0%D1%87%D1%87%D0%B8%D0%B9%D0%BD_%D1%82%D0%BE%D0%BE" title="Фибоначчийн тоо – mongolski" lang="mn" hreflang="mn" data-title="Фибоначчийн тоо" data-language-autonym="Монгол" data-language-local-name="mongolski" class="interlanguage-link-target"><span>Монгол</span></a></li><li class="interlanguage-link interwiki-mr mw-list-item"><a href="https://mr.wikipedia.org/wiki/%E0%A4%AB%E0%A4%BF%E0%A4%AC%E0%A5%8B%E0%A4%A8%E0%A4%BE%E0%A4%9A%E0%A5%80_%E0%A4%B6%E0%A5%8D%E0%A4%B0%E0%A5%87%E0%A4%A3%E0%A5%80" title="फिबोनाची श्रेणी – marathski" lang="mr" hreflang="mr" data-title="फिबोनाची श्रेणी" data-language-autonym="मराठी" data-language-local-name="marathski" class="interlanguage-link-target"><span>मराठी</span></a></li><li class="interlanguage-link interwiki-nl badge-Q70894304 mw-list-item" title=""><a href="https://nl.wikipedia.org/wiki/Fibonaccigetal" title="Fibonaccigetal – nizozemski" lang="nl" hreflang="nl" data-title="Fibonaccigetal" data-language-autonym="Nederlands" data-language-local-name="nizozemski" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Fibonaccitall" title="Fibonaccitall – norveški bokmål" lang="nb" hreflang="nb" data-title="Fibonaccitall" data-language-autonym="Norsk bokmål" data-language-local-name="norveški bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%AB%E0%A8%BC%E0%A9%80%E0%A8%AC%E0%A9%8B%E0%A8%A8%E0%A8%BE%E0%A8%9A%E0%A9%80_%E0%A8%A4%E0%A8%B0%E0%A8%A4%E0%A9%80%E0%A8%AC" title="ਫ਼ੀਬੋਨਾਚੀ ਤਰਤੀਬ – pandžapski" lang="pa" hreflang="pa" data-title="ਫ਼ੀਬੋਨਾਚੀ ਤਰਤੀਬ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="pandžapski" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-ps mw-list-item"><a href="https://ps.wikipedia.org/wiki/%D9%81%DB%8C%D8%A8%D9%88%D9%86%D8%A7%DA%86%DB%90_%D8%A7%D8%B9%D8%AF%D8%A7%D8%AF" title="فیبوناچې اعداد – paštunski" lang="ps" hreflang="ps" data-title="فیبوناچې اعداد" data-language-autonym="پښتو" data-language-local-name="paštunski" class="interlanguage-link-target"><span>پښتو</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Num%C4%83r_Fibonacci" title="Număr Fibonacci – rumunjski" lang="ro" hreflang="ro" data-title="Număr Fibonacci" data-language-autonym="Română" data-language-local-name="rumunjski" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A7%D0%B8%D1%81%D0%BB%D0%B0_%D0%A4%D0%B8%D0%B1%D0%BE%D0%BD%D0%B0%D1%87%D1%87%D0%B8" title="Числа Фибоначчи – ruski" lang="ru" hreflang="ru" data-title="Числа Фибоначчи" data-language-autonym="Русский" data-language-local-name="ruski" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Fibonaccijev_niz" title="Fibonaccijev niz – srpsko-hrvatski" lang="sh" hreflang="sh" data-title="Fibonaccijev niz" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="srpsko-hrvatski" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-si mw-list-item"><a href="https://si.wikipedia.org/wiki/%E0%B7%86%E0%B7%92%E0%B6%B6%E0%B7%9C%E0%B6%B1%E0%B7%8F%E0%B6%A0%E0%B7%8A%E0%B6%A0%E0%B7%92_%E0%B7%83%E0%B6%82%E0%B6%9B%E0%B7%8A%E2%80%8D%E0%B6%BA%E0%B7%8F" title="ෆිබොනාච්චි සංඛ්යා – sinhaleški" lang="si" hreflang="si" data-title="ෆිබොනාච්චි සංඛ්යා" data-language-autonym="සිංහල" data-language-local-name="sinhaleški" class="interlanguage-link-target"><span>සිංහල</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Fibonacci_number" title="Fibonacci number – Simple English" lang="en-simple" hreflang="en-simple" data-title="Fibonacci number" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Fibonaccijevo_%C5%A1tevilo" title="Fibonaccijevo število – slovenski" lang="sl" hreflang="sl" data-title="Fibonaccijevo število" data-language-autonym="Slovenščina" data-language-local-name="slovenski" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Numrat_e_Fibonaccit" title="Numrat e Fibonaccit – albanski" lang="sq" hreflang="sq" data-title="Numrat e Fibonaccit" data-language-autonym="Shqip" data-language-local-name="albanski" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%A4%D0%B8%D0%B1%D0%BE%D0%BD%D0%B0%D1%87%D0%B8%D1%98%D0%B5%D0%B2_%D0%BD%D0%B8%D0%B7" title="Фибоначијев низ – srpski" lang="sr" hreflang="sr" data-title="Фибоначијев низ" data-language-autonym="Српски / srpski" data-language-local-name="srpski" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Fibonaccital" title="Fibonaccital – švedski" lang="sv" hreflang="sv" data-title="Fibonaccital" data-language-autonym="Svenska" data-language-local-name="švedski" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%AA%E0%AE%BF%E0%AE%AA%E0%AE%A9%E0%AE%BE%E0%AE%9A%E0%AF%8D%E0%AE%9A%E0%AE%BF_%E0%AE%8E%E0%AE%A3%E0%AF%8D%E0%AE%95%E0%AE%B3%E0%AF%8D" title="பிபனாச்சி எண்கள் – tamilski" lang="ta" hreflang="ta" data-title="பிபனாச்சி எண்கள்" data-language-autonym="தமிழ்" data-language-local-name="tamilski" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-te mw-list-item"><a href="https://te.wikipedia.org/wiki/%E0%B0%AB%E0%B0%BF%E0%B0%AC%E0%B1%8B%E0%B0%A8%E0%B0%BE%E0%B0%9A%E0%B1%80_%E0%B0%B8%E0%B0%82%E0%B0%96%E0%B1%8D%E0%B0%AF%E0%B0%B2%E0%B1%81" title="ఫిబోనాచీ సంఖ్యలు – teluški" lang="te" hreflang="te" data-title="ఫిబోనాచీ సంఖ్యలు" data-language-autonym="తెలుగు" data-language-local-name="teluški" class="interlanguage-link-target"><span>తెలుగు</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%88%E0%B8%B3%E0%B8%99%E0%B8%A7%E0%B8%99%E0%B8%9F%E0%B8%B5%E0%B9%82%E0%B8%9A%E0%B8%99%E0%B8%B1%E0%B8%8A%E0%B8%8A%E0%B8%B5" title="จำนวนฟีโบนัชชี – tajlandski" lang="th" hreflang="th" data-title="จำนวนฟีโบนัชชี" data-language-autonym="ไทย" data-language-local-name="tajlandski" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Bilang_na_Fibonacci" title="Bilang na Fibonacci – tagalog" lang="tl" hreflang="tl" data-title="Bilang na Fibonacci" data-language-autonym="Tagalog" data-language-local-name="tagalog" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-uk badge-Q70894304 mw-list-item" title=""><a href="https://uk.wikipedia.org/wiki/%D0%A7%D0%B8%D1%81%D0%BB%D0%B0_%D0%A4%D1%96%D0%B1%D0%BE%D0%BD%D0%B0%D1%87%D1%87%D1%96" title="Числа Фібоначчі – ukrajinski" lang="uk" hreflang="uk" data-title="Числа Фібоначчі" data-language-autonym="Українська" data-language-local-name="ukrajinski" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Fibonacci_sonlari" title="Fibonacci sonlari – uzbečki" lang="uz" hreflang="uz" data-title="Fibonacci sonlari" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="uzbečki" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/D%C3%A3y_Fibonacci" title="Dãy Fibonacci – vijetnamski" lang="vi" hreflang="vi" data-title="Dãy Fibonacci" data-language-autonym="Tiếng Việt" data-language-local-name="vijetnamski" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-war mw-list-item"><a href="https://war.wikipedia.org/wiki/Ihap_Fibonacci" title="Ihap Fibonacci – waray" lang="war" hreflang="war" data-title="Ihap Fibonacci" data-language-autonym="Winaray" data-language-local-name="waray" class="interlanguage-link-target"><span>Winaray</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E6%96%90%E6%B3%A2%E9%82%A3%E5%A5%91%E6%95%B0" title="斐波那契数 – kineski" lang="zh" hreflang="zh" data-title="斐波那契数" data-language-autonym="中文" data-language-local-name="kineski" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E8%B2%BB%E6%B0%8F%E6%95%B8" title="費氏數 – kantonski" lang="yue" hreflang="yue" data-title="費氏數" data-language-autonym="粵語" data-language-local-name="kantonski" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q47577#sitelinks-wikipedia" title="Poveznice na druge jezike" class="wbc-editpage">Uredi poveznice</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Imenski prostori"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Fibonaccijev_broj" title="Pogledaj sadržaj [c]" accesskey="c"><span>Stranica</span></a></li><li id="ca-talk" class="new vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Razgovor:Fibonaccijev_broj&action=edit&redlink=1" rel="discussion" class="new" title="Razgovorna stranica (stranica ne postoji) [t]" accesskey="t"><span>Razgovor</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Promijeni jezičnu varijantu" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">hrvatski</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Pogledi"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Fibonaccijev_broj"><span>Čitaj</span></a></li><li id="ca-ve-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Fibonaccijev_broj&veaction=edit" title="Uredite ovu stranicu [v]" accesskey="v"><span>Uredi</span></a></li><li id="ca-edit" class="collapsible vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Fibonaccijev_broj&action=edit" title="Uredite izvorni kôd ove stranice [e]" accesskey="e"><span>Uredi kôd</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Fibonaccijev_broj&action=history" title="Ranije izmjene na ovoj stranici [h]" accesskey="h"><span>Vidi povijest</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Pomagala"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Pomagala" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Pomagala</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Pomagala</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">premjesti</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">sakrij</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="Više mogućnosti" > <div class="vector-menu-heading"> Radnje </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Fibonaccijev_broj"><span>Čitaj</span></a></li><li id="ca-more-ve-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Fibonaccijev_broj&veaction=edit" title="Uredite ovu stranicu [v]" accesskey="v"><span>Uredi</span></a></li><li id="ca-more-edit" class="collapsible vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Fibonaccijev_broj&action=edit" title="Uredite izvorni kôd ove stranice [e]" accesskey="e"><span>Uredi kôd</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Fibonaccijev_broj&action=history"><span>Vidi povijest</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> Razno </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Posebno:%C5%A0to_vodi_ovamo/Fibonaccijev_broj" title="Popis svih stranica koje sadrže poveznice na ovu stranicu [j]" accesskey="j"><span>Što vodi ovamo</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Posebno:Povezane_promjene/Fibonaccijev_broj" rel="nofollow" title="Nedavne promjene na stranicama koje su povezane s navedenom stranicom [k]" accesskey="k"><span>Povezane promjene</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedija:Upload" title="Postavi datoteke [u]" accesskey="u"><span>Postavi datoteku</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Posebno:Posebne_stranice" title="Popis svih posebnih stranica [q]" accesskey="q"><span>Posebne stranice</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Fibonaccijev_broj&oldid=6798499" title="Trajna poveznica na ovu verziju stranice"><span>Trajna poveznica</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Fibonaccijev_broj&action=info" title="Više informacija o ovoj stranici"><span>Podatci o stranici</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Posebno:Citiraj&page=Fibonaccijev_broj&id=6798499&wpFormIdentifier=titleform" title="Informacije o tome kako citirati ovu stranicu"><span>Citiraj ovu stranicu</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Posebno:Skra%C4%87iva%C4%8D_adresa&url=https%3A%2F%2Fhr.wikipedia.org%2Fwiki%2FFibonaccijev_broj"><span>Skraćeni URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Posebno:QrCode&url=https%3A%2F%2Fhr.wikipedia.org%2Fwiki%2FFibonaccijev_broj"><span>Preuzmi QR kôd</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Ispis/izvoz </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=Posebno:Zbirka&bookcmd=book_creator&referer=Fibonaccijev+broj"><span>Stvori knjigu</span></a></li><li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Posebno:DownloadAsPdf&page=Fibonaccijev_broj&action=show-download-screen"><span>Preuzmi kao PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Fibonaccijev_broj&printable=yes" title="Inačica za ispis ove stranice [p]" accesskey="p"><span>Inačica za ispis</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> Wikimedijini projekti </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Fibonacci_numbers" hreflang="en"><span>Zajednički poslužitelj</span></a></li><li class="wb-otherproject-link wb-otherproject-wikifunctions mw-list-item"><a href="https://www.wikifunctions.org/wiki/Z13835" hreflang="en"><span>Wikifunctions</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q47577" title="Poveznica na stavku na projektu Wikipodatci [g]" accesskey="g"><span>Stavka na Wikipodatcima</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Pomagala"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Izgled"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Izgled</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">premjesti</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">sakrij</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">Izvor: Wikipedija</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="hr" dir="ltr"><p><b>Fibonaccijevi brojevi</b> oblikuju <a href="/wiki/Niz" title="Niz">niz</a> definiran sljedećom rekurzivnom relacijom: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(n):={\begin{cases}0&{\mbox{ako je }}n=0;\\1&{\mbox{ako je }}n=1;\\F_{n-1}+F_{n-2}\!\,&{\mbox{ako je }}n>1.\\\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>:=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>ako je </mtext> </mstyle> </mrow> <mi>n</mi> <mo>=</mo> <mn>0</mn> <mo>;</mo> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>ako je </mtext> </mstyle> </mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> <mo>;</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>2</mn> </mrow> </msub> <mspace width="negativethinmathspace" /> <mspace width="thinmathspace" /> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>ako je </mtext> </mstyle> </mrow> <mi>n</mi> <mo>></mo> <mn>1.</mn> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(n):={\begin{cases}0&{\mbox{ako je }}n=0;\\1&{\mbox{ako je }}n=1;\\F_{n-1}+F_{n-2}\!\,&{\mbox{ako je }}n>1.\\\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/083bdd21beeb496a748f2387b7ef28d218140750" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.671ex; width:39.058ex; height:8.509ex;" alt="{\displaystyle F(n):={\begin{cases}0&{\mbox{ako je }}n=0;\\1&{\mbox{ako je }}n=1;\\F_{n-1}+F_{n-2}\!\,&{\mbox{ako je }}n>1.\\\end{cases}}}"></span></dd></dl> <p>Dakle, nakon dvije početne vrijedosti, svaki sljedeći broj je zbroj dvaju prethodnika. Primjerice, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2+3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mo>+</mo> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2+3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb8973b4cf1b236b492853ebf820d95bf691ba7e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.165ex; height:2.343ex;" alt="{\displaystyle 2+3}"></span> dat će <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 5}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>5</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 5}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29483407999b8763f0ea335cf715a6a5e809f44b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 5}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3+5}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> <mo>+</mo> <mn>5</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3+5}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/206b2a0381dfaa567166f2aa8409ba02a5fe44e1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.165ex; height:2.343ex;" alt="{\displaystyle 3+5}"></span> dat će <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 8}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>8</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 8}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1aaa997e6ad67716cfaa9a02c4df860bf60a95b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 8}"></span>, itd. </p><p>Prvi Fibonaccijevi brojevi, također označeni kao <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76cdf519c21deec43f984815e57e15d2dd3575d7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.713ex; height:2.509ex;" alt="{\displaystyle F_{n}}"></span>, za <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=0,1,2,...}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=0,1,2,...}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e5542c3ea3aa7e47549d06352d635cf1f7221e9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.797ex; height:2.509ex;" alt="{\displaystyle n=0,1,2,...}"></span> su redom <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1,1,2,3,5,8,13,21,...}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>5</mn> <mo>,</mo> <mn>8</mn> <mo>,</mo> <mn>13</mn> <mo>,</mo> <mn>21</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1,1,2,3,5,8,13,21,...}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c8907f7fe378287f2e72591427eb6689448813a9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:22.611ex; height:2.509ex;" alt="{\displaystyle 1,1,2,3,5,8,13,21,...}"></span> </p><p>Treba napomenuti da Fibonaccijev niz ipak može početi i s <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{1}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{1}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c374ba08c140de90c6cbb4c9b9fcd26e3f99ef56" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.81ex; height:2.509ex;" alt="{\displaystyle F_{1}=1}"></span> umjesto s <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{0}=0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{0}=0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/50f0540e5bf18821f31581e56a08d6bb276f1041" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.457ex; height:2.509ex;" alt="{\displaystyle F_{0}=0,}"></span> no to često nije bitno u konkretnim razmatranjima svojstava tog niza. </p> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/Datoteka:FibonacciBlocks.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/95/FibonacciBlocks.svg/250px-FibonacciBlocks.svg.png" decoding="async" width="250" height="157" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/95/FibonacciBlocks.svg/375px-FibonacciBlocks.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/95/FibonacciBlocks.svg/500px-FibonacciBlocks.svg.png 2x" data-file-width="270" data-file-height="170" /></a><figcaption>Popločanje s kvadratima čije su stranice po duljini sukcesivni Fibonaccijevi brojevi</figcaption></figure> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/Datoteka:Fibonacci_spiral_34.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/93/Fibonacci_spiral_34.svg/250px-Fibonacci_spiral_34.svg.png" decoding="async" width="250" height="158" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/93/Fibonacci_spiral_34.svg/375px-Fibonacci_spiral_34.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/93/Fibonacci_spiral_34.svg/500px-Fibonacci_spiral_34.svg.png 2x" data-file-width="915" data-file-height="579" /></a><figcaption>Fibonaccijeva spirala, stvorena iscrtavanjem lukova koji spajaju suprotne kutove kvadrata u Fibonaccijevom popločanju prikazanom gore – vidjeti <a href="/wiki/Zlato" title="Zlato">zlatna</a> <a href="/wiki/Spirala" title="Spirala">spirala</a>.</figcaption></figure> <p>Fibonaccijevi brojevi su imenovani po <a href="/wiki/Fibonacci" title="Fibonacci">Leonardu od Pise</a>, poznatom kao Fibonacci, iako su ranije opisani u <a href="/wiki/Indijska_matematika" title="Indijska matematika">Indiji</a>.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Osnovna_svojstva">Osnovna svojstva</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fibonaccijev_broj&veaction=edit&section=1" title="Uredi odlomak: Osnovna svojstva" class="mw-editsection-visualeditor"><span>uredi</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Fibonaccijev_broj&action=edit&section=1" title="Uredi kôd odjeljka Osnovna svojstva"><span>uredi kôd</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Svojstva_vezana_uz_djeljivost">Svojstva vezana uz djeljivost</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fibonaccijev_broj&veaction=edit&section=2" title="Uredi odlomak: Svojstva vezana uz djeljivost" class="mw-editsection-visualeditor"><span>uredi</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Fibonaccijev_broj&action=edit&section=2" title="Uredi kôd odjeljka Svojstva vezana uz djeljivost"><span>uredi kôd</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Svaka dva uzastopna Fibonaccijeva broja su relativno prosta. Dokažimo to. Pretpostavimo da je <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M(F_{n-1},F_{n})=d.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo stretchy="false">(</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mi>d</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M(F_{n-1},F_{n})=d.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1613cece2a03f6664159b7f585d80f6e9861d1f8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.773ex; height:2.843ex;" alt="{\displaystyle M(F_{n-1},F_{n})=d.}"></span> No, onda je <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d|F_{n}-F_{n-1}=F_{n-2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>2</mn> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d|F_{n}-F_{n-1}=F_{n-2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e5663b59ec5006c4fcbf125baf45698b6448ca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.789ex; height:2.843ex;" alt="{\displaystyle d|F_{n}-F_{n-1}=F_{n-2}.}"></span> Analogno, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d|F_{n-3},F_{n-4},...,F_{1}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>3</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>4</mn> </mrow> </msub> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d|F_{n-3},F_{n-4},...,F_{1}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b42ba19f470a758838e8ac6ae857715d133c8258" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.503ex; height:2.843ex;" alt="{\displaystyle d|F_{n-3},F_{n-4},...,F_{1}=1}"></span> što povlači <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d=1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo>=</mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d=1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1933ed0cf0b2851446a35908b51989ebc7b9cf62" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.124ex; height:2.176ex;" alt="{\displaystyle d=1.}"></span></li></ul> <ul><li>Vrijedi</li></ul> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{n}|F_{kn},\forall k\in \mathbb {N} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mi>n</mi> </mrow> </msub> <mo>,</mo> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mi>k</mi> <mo>∈<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{n}|F_{kn},\forall k\in \mathbb {N} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0f8bff031f0cd4854c1a68b7be25b2281e16c0b3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.986ex; height:2.843ex;" alt="{\displaystyle F_{n}|F_{kn},\forall k\in \mathbb {N} }"></span>.</dd></dl> <p>Ovo se svojstvo lako pokaže indukcijom. Za <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c035ffa69b5bca8bf2d16c3da3aaad79a8bcbfa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.472ex; height:2.176ex;" alt="{\displaystyle k=1}"></span>, tvrdnja je očita. Pretpostavimo da tvrdnja vrijedi za neki <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span>. Uočimo sada da je <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{k+1}n=F_{kn+n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mi>n</mi> <mo>=</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mi>n</mi> <mo>+</mo> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{k+1}n=F_{kn+n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/acb3ed3defe851d3854a70a9898a59b7ba2b71df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:15.011ex; height:2.509ex;" alt="{\displaystyle F_{k+1}n=F_{kn+n}}"></span>, tj. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{(k+1)n}=F_{kn-1}F_{n}+F_{kn}F_{n+1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>n</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mi>n</mi> </mrow> </msub> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{(k+1)n}=F_{kn-1}F_{n}+F_{kn}F_{n+1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1370d29a210b0fb92a54633d19a9c1cb469d6aef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:29.654ex; height:3.009ex;" alt="{\displaystyle F_{(k+1)n}=F_{kn-1}F_{n}+F_{kn}F_{n+1}}"></span> (vidjeti vezu s Morseovim kodom). Kako <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{n}|F_{kn}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{n}|F_{kn}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eb54451933195fa7532722a97cb5e698f8d89bd0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.929ex; height:2.843ex;" alt="{\displaystyle F_{n}|F_{kn}}"></span> iz gornje jednakosti slijedi <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{n}|F_{(k+1)n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{n}|F_{(k+1)n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e38d305c8e0cfc28ecce26b38ecb2f802a162b4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:10.309ex; height:3.176ex;" alt="{\displaystyle F_{n}|F_{(k+1)n}}"></span>, čime je tvrdnja dokazana. </p> <ul><li>Vrijedi:</li></ul> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M(F_{m},F_{n})=F_{M(m,n)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo stretchy="false">(</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M(F_{m},F_{n})=F_{M(m,n)}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e1adc46a365d5b2e960863b304c42e1c0a15b188" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:21.886ex; height:3.176ex;" alt="{\displaystyle M(F_{m},F_{n})=F_{M(m,n)}}"></span>.</dd></dl> <p>Neka je <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M(m,n)=d}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>d</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M(m,n)=d}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a46f64ecbd4fe1b6488313090b0138622d2dc813" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.035ex; height:2.843ex;" alt="{\displaystyle M(m,n)=d}"></span>. Kako, prema gornjoj jednakosti <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{d}|F_{m},F_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{d}|F_{m},F_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6802d4f478681167563b098bb1fa3378b806a9cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.15ex; height:2.843ex;" alt="{\displaystyle F_{d}|F_{m},F_{n}}"></span>. (Jer su <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m,n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m,n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6568e95b6bf8f39b7fd2c9b52b7b00ee124c6250" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.469ex; height:2.009ex;" alt="{\displaystyle m,n}"></span> višekratnici od <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e85ff03cbe0c7341af6b982e47e9f90d235c66ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.216ex; height:2.176ex;" alt="{\displaystyle d}"></span>.) Iz ovoga očito slijedi <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{d}|M(F_{m},F_{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>M</mi> <mo stretchy="false">(</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{d}|M(F_{m},F_{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/944e1222a12a50c49bb61b8e73c278a944f3c476" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.402ex; height:2.843ex;" alt="{\displaystyle F_{d}|M(F_{m},F_{n})}"></span>. (1) </p><p>Prema <a href="/wiki/B%C3%A9zoutova_lema" title="Bézoutova lema">Bézoutovoj lemi</a> se <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e85ff03cbe0c7341af6b982e47e9f90d235c66ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.216ex; height:2.176ex;" alt="{\displaystyle d}"></span> može prikazati kao <a href="/wiki/Linearna_algebra" title="Linearna algebra">linearna kombinacija</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle am+bn}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mi>m</mi> <mo>+</mo> <mi>b</mi> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle am+bn}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b2d9711c2e8640bb8c22a983012acef8598dc2d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:8.503ex; height:2.343ex;" alt="{\displaystyle am+bn}"></span> za cijele brojeve <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a,b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>,</mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a,b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/181523deba732fda302fd176275a0739121d3bc8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.261ex; height:2.509ex;" alt="{\displaystyle a,b}"></span>. </p><p>Zato je <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{d}=F_{am+bn}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>m</mi> <mo>+</mo> <mi>b</mi> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{d}=F_{am+bn}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7199a2544d2ea198b6a0b97efd740410109424b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.694ex; height:2.509ex;" alt="{\displaystyle F_{d}=F_{am+bn}}"></span> pa slijedi da se <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{d}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{d}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5984c180b42afaefecd3a8568953401af8c8889" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.587ex; height:2.509ex;" alt="{\displaystyle F_{d}}"></span> može zapisati kao linearna kombinacija <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{m},F_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{m},F_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eef2b84414c7e97bacf919a87b97de7108309498" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.917ex; height:2.509ex;" alt="{\displaystyle F_{m},F_{n}}"></span> jer je <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{d}=F_{am-1}F_{bn}+F_{am}F_{bn+1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>m</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> <mi>n</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>m</mi> </mrow> </msub> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{d}=F_{am-1}F_{bn}+F_{am}F_{bn+1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3370b1d54638662be1ab7de24687c55aa9bff58b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:27.642ex; height:2.509ex;" alt="{\displaystyle F_{d}=F_{am-1}F_{bn}+F_{am}F_{bn+1}}"></span>. Dakle, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M(F_{m},F_{n})|F_{d}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo stretchy="false">(</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M(F_{m},F_{n})|F_{d}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1835e56d0fcc849051f76123d7c98776afee1852" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.402ex; height:2.843ex;" alt="{\displaystyle M(F_{m},F_{n})|F_{d}}"></span>. (2) </p><p>Iz (1) i (2) slijedi <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{d}=M(F_{m},F_{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msub> <mo>=</mo> <mi>M</mi> <mo stretchy="false">(</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{d}=M(F_{m},F_{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/070a2b3a2731a2166d770706f2277a2aa017b7d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.853ex; height:2.843ex;" alt="{\displaystyle F_{d}=M(F_{m},F_{n})}"></span>, što je i trebalo pokazati.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Druga_važna_svojstva"><span id="Druga_va.C5.BEna_svojstva"></span>Druga važna svojstva</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fibonaccijev_broj&veaction=edit&section=3" title="Uredi odlomak: Druga važna svojstva" class="mw-editsection-visualeditor"><span>uredi</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Fibonaccijev_broj&action=edit&section=3" title="Uredi kôd odjeljka Druga važna svojstva"><span>uredi kôd</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Vrijedi <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{n}={\frac {1}{\sqrt {5}}}[{({\frac {1+{\sqrt {5}}}{2}})}^{n}-{({\frac {1-{\sqrt {5}}}{2}})}^{n}].}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>5</mn> </msqrt> </mfrac> </mrow> <mo stretchy="false">[</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>5</mn> </msqrt> </mrow> </mrow> <mn>2</mn> </mfrac> </mrow> <mo stretchy="false">)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>5</mn> </msqrt> </mrow> </mrow> <mn>2</mn> </mfrac> </mrow> <mo stretchy="false">)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">]</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{n}={\frac {1}{\sqrt {5}}}[{({\frac {1+{\sqrt {5}}}{2}})}^{n}-{({\frac {1-{\sqrt {5}}}{2}})}^{n}].}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/afc06807639967cbc059664cbfba3557920e36f7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:36.457ex; height:6.843ex;" alt="{\displaystyle F_{n}={\frac {1}{\sqrt {5}}}[{({\frac {1+{\sqrt {5}}}{2}})}^{n}-{({\frac {1-{\sqrt {5}}}{2}})}^{n}].}"></span> Ovo se važno svojstvo Fibonaccijevih brojeva naziva <a href="/wiki/Binetova_formula" title="Binetova formula">Binetova formula</a>.</li></ul> <ul><li>Vrijedi <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{n-1}F_{n+1}=F_{n}^{2}+(-1)^{n},n\geq 2.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msubsup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>,</mo> <mi>n</mi> <mo>≥<!-- ≥ --></mo> <mn>2.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{n-1}F_{n+1}=F_{n}^{2}+(-1)^{n},n\geq 2.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e276b4ea4ea7a18f997e2f71f21ca13575975ad5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:31.77ex; height:3.009ex;" alt="{\displaystyle F_{n-1}F_{n+1}=F_{n}^{2}+(-1)^{n},n\geq 2.}"></span> Ovo se pravilo naziva <a href="/wiki/Cassinijev_identitet" title="Cassinijev identitet">Cassinijev identitet</a>.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading2"><h2 id="Povezanost_sa_zlatnim_rezom">Povezanost sa zlatnim rezom</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fibonaccijev_broj&veaction=edit&section=4" title="Uredi odlomak: Povezanost sa zlatnim rezom" class="mw-editsection-visualeditor"><span>uredi</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Fibonaccijev_broj&action=edit&section=4" title="Uredi kôd odjeljka Povezanost sa zlatnim rezom"><span>uredi kôd</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Ako imamo dvije <a href="/wiki/Du%C5%BEina" title="Dužina">dužine</a>, jednu dužu i jednu kraću te ako je <a href="/wiki/Omjer" title="Omjer">omjer</a> duljina duže na prema kraćoj dužini jednak <a href="/wiki/Zlatni_rez" title="Zlatni rez">zlatnom rezu</a> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \approx 1.618}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>≈<!-- ≈ --></mo> <mn>1.618</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \approx 1.618}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e50f1bae36e48d39e967ba165d0bd2620e7b05d5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.75ex; height:2.176ex;" alt="{\displaystyle \approx 1.618}"></span>), tada je zlatnom rezu jednak i omjer zbroja duljina duže i kraće dužine na prema duljini duže. </p><p>Vidjet ćemo da se slična relacija može naći u omjerima triju uzastopnih Fibonaccijevih broja, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{n-1},F_{n},F_{n+1}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{n-1},F_{n},F_{n+1}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4905bcce42aa2a6414d84fc40ac326efe28d987a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:15.055ex; height:2.509ex;" alt="{\displaystyle F_{n-1},F_{n},F_{n+1}.}"></span> Naime, iz <a href="/wiki/Cassinijev_identitet" title="Cassinijev identitet">Cassinijevog identiteta</a> <a href="/wiki/Dijeljenje" title="Dijeljenje">dijeljenjem</a> obje strane s <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{n-1}F_{n},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{n-1}F_{n},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/63b277d74b897016b3887bd1ba024876b01bafa6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.173ex; height:2.509ex;" alt="{\displaystyle F_{n-1}F_{n},}"></span> slijedi <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {F_{n}}{F_{n-1}}}={\frac {F_{n+1}}{F_{n}}}+{\frac {(-1)^{n}}{F_{n-1}F_{n}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mrow> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {F_{n}}{F_{n-1}}}={\frac {F_{n+1}}{F_{n}}}+{\frac {(-1)^{n}}{F_{n-1}F_{n}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5022e871bea7ebe8a7d84c2f01e3cf8dc23b8353" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:26.248ex; height:6.176ex;" alt="{\displaystyle {\frac {F_{n}}{F_{n-1}}}={\frac {F_{n+1}}{F_{n}}}+{\frac {(-1)^{n}}{F_{n-1}F_{n}}}.}"></span> </p><p>Kada <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\rightarrow \infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo stretchy="false">→<!-- → --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\rightarrow \infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9702f04f2d0e5b887b99faeeffb0c4cfd8263eee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.333ex; height:1.843ex;" alt="{\displaystyle n\rightarrow \infty }"></span> možemo zanemariti drugi pribrojnik pa dobivamo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {F_{n}}{F_{n-1}}}={\frac {F_{n+1}}{F_{n}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {F_{n}}{F_{n-1}}}={\frac {F_{n+1}}{F_{n}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/139e97799ccff0c702ffc7a78964a85ae729742e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:14.398ex; height:5.843ex;" alt="{\displaystyle {\frac {F_{n}}{F_{n-1}}}={\frac {F_{n+1}}{F_{n}}}}"></span> što zadovoljava povijesnu (geometrijsku) definiciju zlatnog reza navedenu gore. </p> <div class="mw-heading mw-heading2"><h2 id="Veza_s_Morseovim_kodom">Veza s Morseovim kodom</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fibonaccijev_broj&veaction=edit&section=5" title="Uredi odlomak: Veza s Morseovim kodom" class="mw-editsection-visualeditor"><span>uredi</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Fibonaccijev_broj&action=edit&section=5" title="Uredi kôd odjeljka Veza s Morseovim kodom"><span>uredi kôd</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Morseov_kod" title="Morseov kod">Morseov kod</a> je niz točaka i crtica. Duljinu Morseovog koda definiramo tako da svaka točka pridonosi duljinu 1, a svaka crtica duljinu 2. </p><p>Prema tome, ako imamo Morseov kod duljine <i>n</i>, onda možemo zamisliti da imamo <i>n</i> pozicija od kojih su neke spojene crticama, a na ostalima se nalaze točke. </p><p>Zato možemo zamisliti da je crtica zapravo spojnica dviju točaka, ali dvije crtice ne mogu stajati jedna pored druge (razmak mora biti najmanje jedna ili više točaka). </p><p>Označimo sada s <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8656f32ad5c50e679b491b361a423727491496a0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.473ex; height:2.509ex;" alt="{\displaystyle M_{n}}"></span> broj svih Morseovih kodova duljine <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>. Dokazat ćemo relaciju <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{n}=M_{n-1}+M_{n-2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{n}=M_{n-1}+M_{n-2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f1229ce9ff3c7f60e504c1cfa0fa2cf672bcfe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:20.558ex; height:2.509ex;" alt="{\displaystyle M_{n}=M_{n-1}+M_{n-2}}"></span> koja je posve ekvivalentna rekurzivnoj formuli Fibonaccijeva niza. </p><p>Naime, Morseov kod duljine <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> može započeti točkom (takvih ima <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{n-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{n-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75cc44f3264ad919178bca799eee84c3b477023d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.573ex; height:2.509ex;" alt="{\displaystyle M_{n-1}}"></span>) ili crticom (takvih ima <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{n-2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{n-2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9589bccfb0451755d0ab5f7877f37d90e1bd3f12" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.573ex; height:2.509ex;" alt="{\displaystyle M_{n-2}}"></span>). Dakle, očito je <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{n}=M_{n-1}+M_{n-2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{n}=M_{n-1}+M_{n-2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f1229ce9ff3c7f60e504c1cfa0fa2cf672bcfe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:20.558ex; height:2.509ex;" alt="{\displaystyle M_{n}=M_{n-1}+M_{n-2}}"></span> te vrijedi <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{1}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{1}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d2921d2315ff20078a0c075f6614bea6b2debcda" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.569ex; height:2.509ex;" alt="{\displaystyle M_{1}=1}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{2}=2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{2}=2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/71aeb436fa2b8e36b8d99ec679edb1fcbb13a2c6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.569ex; height:2.509ex;" alt="{\displaystyle M_{2}=2}"></span> iz čega slijedi direktna veza s Fibonaccijevim nizom: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{n}=F_{n+1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{n}=F_{n+1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/19908ea444eecaa752cca5550e0c43ab95ae54b6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.385ex; height:2.509ex;" alt="{\displaystyle M_{n}=F_{n+1}}"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Važni_identiteti"><span id="Va.C5.BEni_identiteti"></span>Važni identiteti</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fibonaccijev_broj&veaction=edit&section=6" title="Uredi odlomak: Važni identiteti" class="mw-editsection-visualeditor"><span>uredi</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Fibonaccijev_broj&action=edit&section=6" title="Uredi kôd odjeljka Važni identiteti"><span>uredi kôd</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Vrijedi: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{m+n}=F_{m-1}F_{n}+F_{m}F_{n+1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mi>n</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{m+n}=F_{m-1}F_{n}+F_{m}F_{n+1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a022ee02fc8e2070788abd302c526bea815a606" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:27.34ex; height:2.509ex;" alt="{\displaystyle F_{m+n}=F_{m-1}F_{n}+F_{m}F_{n+1}}"></span></dd></dl> <p>Dokaz. Gore smo pokazali da je <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{m+n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{m+n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e90d5dfd9f26a61d35ed287ea75c07c49de3063f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.434ex; height:2.509ex;" alt="{\displaystyle F_{m+n}}"></span> jednak broju <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{m+n-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{m+n-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f723f35395f5e53057ea593171a2e1ed982204e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.294ex; height:2.509ex;" alt="{\displaystyle M_{m+n-1}}"></span> svih Morseovih kodova duljine <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m+n-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m+n-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f17b5cf5aed1536dc7e10a8e50400b9dd8ef001d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.278ex; height:2.343ex;" alt="{\displaystyle m+n-1}"></span>. </p><p>Uočimo sada u svakom takvom kodu <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (m-1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>m</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (m-1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c2e14817f366ab2ddb924a20e70af7f3f63ec4f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.853ex; height:2.843ex;" alt="{\displaystyle (m-1)}"></span>-vu i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"></span>-tu poziciju. Morseove kodove ćemo podijeliti na one koji imaju crticu između te dvije pozicije i na one koji ju nemaju. </p><p>Jasno je da kod koji ima crticu između <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (m-1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>m</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (m-1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c2e14817f366ab2ddb924a20e70af7f3f63ec4f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.853ex; height:2.843ex;" alt="{\displaystyle (m-1)}"></span>-ve i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"></span>-te pozicije može na prve <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m-2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>−<!-- − --></mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m-2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8af4a0e77fd467755d34b9dc34bec97accfa5874" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.043ex; height:2.343ex;" alt="{\displaystyle m-2}"></span> pozicije imati bilo kakav Morseov kod, a potom mora imati crticu, a zatim na zadnjih <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (m+n-1)-m=n-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>m</mi> <mo>=</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (m+n-1)-m=n-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7280282c7ca6b4827ed24813165707c97a0e72b6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.464ex; height:2.843ex;" alt="{\displaystyle (m+n-1)-m=n-1}"></span> pozicija može ponovno imati bilo kakav Morseov kod pa takvih kodova očigledno ima <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{n-2}M_{n-1}=F_{m-1}F_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>2</mn> </mrow> </msub> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{n-2}M_{n-1}=F_{m-1}F_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d043edc22dbcb1b1ff53fd4b352aec4ca31c3b9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:22.228ex; height:2.509ex;" alt="{\displaystyle M_{n-2}M_{n-1}=F_{m-1}F_{n}}"></span>. S druge strane, kod koji nema crticu između <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (m-1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>m</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (m-1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c2e14817f366ab2ddb924a20e70af7f3f63ec4f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.853ex; height:2.843ex;" alt="{\displaystyle (m-1)}"></span>-ve i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"></span>-te pozicije može na prvih <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ecbbd201e0d8f1ccc91cb46362c4b72fa1bbe6c2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.043ex; height:2.343ex;" alt="{\displaystyle m-1}"></span> pozicija imati bilo kakav Morseov kod, kao i na zadnjih <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (m+n-1)-(m-1)=n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (m+n-1)-(m-1)=n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/00ead373a2fc0d717369079e1839fd8a8292394f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:27.274ex; height:2.843ex;" alt="{\displaystyle (m+n-1)-(m-1)=n}"></span> pozicija. Zato takvih kodova ima <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{m-1}M_{n}=F_{m}F_{n+1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{m-1}M_{n}=F_{m}F_{n+1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6720a10660142bccb289faa683b33f50b6bd294b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:20.584ex; height:2.509ex;" alt="{\displaystyle M_{m-1}M_{n}=F_{m}F_{n+1}}"></span>, čime je identitet dokazan. </p><p>Od ostalih identiteta s Fibonaccijevim brojevima koji su vezani uz Morseov kod, po važnosti se ističu sljedeći: </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{2n}=F_{n+1}^{2}-F_{n-1}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>−<!-- − --></mo> <msubsup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{2n}=F_{n+1}^{2}-F_{n-1}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11f2d4adb3fe25e2219a1d345f512c80e6afabfe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:19.101ex; height:3.343ex;" alt="{\displaystyle F_{2n}=F_{n+1}^{2}-F_{n-1}^{2}}"></span>,</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{2n+1}=F_{n}^{2}+F_{n+1}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msubsup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{2n+1}=F_{n}^{2}+F_{n+1}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c668ad631cfed08e9072f5a729cc6a77c572a52" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:19.257ex; height:3.343ex;" alt="{\displaystyle F_{2n+1}=F_{n}^{2}+F_{n+1}^{2}}"></span>,</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{1}+F_{2}+...+F_{n}=F_{n+2}-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>+</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{1}+F_{2}+...+F_{n}=F_{n+2}-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b65af035723d6970e07f60ca14e808a39fa5c5ad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:29.284ex; height:2.509ex;" alt="{\displaystyle F_{1}+F_{2}+...+F_{n}=F_{n+2}-1}"></span>.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading2"><h2 id="Varijacije_Fibonaccijevog_niza">Varijacije Fibonaccijevog niza</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fibonaccijev_broj&veaction=edit&section=7" title="Uredi odlomak: Varijacije Fibonaccijevog niza" class="mw-editsection-visualeditor"><span>uredi</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Fibonaccijev_broj&action=edit&section=7" title="Uredi kôd odjeljka Varijacije Fibonaccijevog niza"><span>uredi kôd</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Možemo konstruirati nove nizove za koje neće nužno vrijediti <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{1}=F_{2}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{1}=F_{2}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da58e6f2110984c6b6f3179d983877eb1d519ddb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.457ex; height:2.509ex;" alt="{\displaystyle F_{1}=F_{2}=1}"></span> kao što to vrijedi za Fibonaccijev niz. No, željet ćemo da osnovno pravilo, odnosno identitet, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{n}=F_{n-2}+F_{n-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{n}=F_{n-2}+F_{n-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/722b73790875f97c8b6e21aea7367249cc0a7ac0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:18.279ex; height:2.509ex;" alt="{\displaystyle F_{n}=F_{n-2}+F_{n-1}}"></span> vrijedi za sve te nizove. Takve nizove jednim imenom nazivamo generalizirani Fibonaccijevi nizovi. </p><p>Uočimo da je neki takav niz <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{(F_{1},F_{2})}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{(F_{1},F_{2})}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/058a42e4d2cf7a65b0b1903a8d946bd119b1cd2b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:6.976ex; height:2.509ex;" alt="{\displaystyle a_{(F_{1},F_{2})}}"></span> zadan ako su zadani <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{1},F_{2}\in \mathbb {N} .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>∈<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{1},F_{2}\in \mathbb {N} .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d68c81f350618f653af87ee11a11247d0c4934f2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.297ex; height:2.509ex;" alt="{\displaystyle F_{1},F_{2}\in \mathbb {N} .}"></span> </p><p>No, dakako da <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{1},F_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{1},F_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ddbaefad7d000285a069031a623cdc454e4b79e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.132ex; height:2.509ex;" alt="{\displaystyle F_{1},F_{2}}"></span> mogu biti negativni. Uočimo da će <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{n}\rightarrow -\infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{n}\rightarrow -\infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb618290e2d42674d6fdad0916b243964de7a217" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.459ex; height:2.509ex;" alt="{\displaystyle F_{n}\rightarrow -\infty }"></span> kada <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\rightarrow \infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo stretchy="false">→<!-- → --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\rightarrow \infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9702f04f2d0e5b887b99faeeffb0c4cfd8263eee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.333ex; height:1.843ex;" alt="{\displaystyle n\rightarrow \infty }"></span> samo ako je <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{1},F_{2}<0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo><</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{1},F_{2}<0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d0ba057b5c1c69441c05dca618e7b9cabad0bf42" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.393ex; height:2.509ex;" alt="{\displaystyle F_{1},F_{2}<0}"></span> ili <i>bez smanjenja općenitosti</i> (možemo <a href="/wiki/Permutacija" title="Permutacija">permutirati</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{1},F_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{1},F_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ddbaefad7d000285a069031a623cdc454e4b79e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.132ex; height:2.509ex;" alt="{\displaystyle F_{1},F_{2}}"></span>) kada je <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |F_{1}|>|F_{2}|,F_{1}<0,F_{2}>0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>,</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo><</mo> <mn>0</mn> <mo>,</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>></mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |F_{1}|>|F_{2}|,F_{1}<0,F_{2}>0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2eb52598c85de2df314d1fae61e32a07edac1091" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:27.118ex; height:2.843ex;" alt="{\displaystyle |F_{1}|>|F_{2}|,F_{1}<0,F_{2}>0.}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Primjeri">Primjeri</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fibonaccijev_broj&veaction=edit&section=8" title="Uredi odlomak: Primjeri" class="mw-editsection-visualeditor"><span>uredi</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Fibonaccijev_broj&action=edit&section=8" title="Uredi kôd odjeljka Primjeri"><span>uredi kôd</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Ovdje su primjeri takvih nizova: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{(5,5)}=5,5,10,15,25,...}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>5</mn> <mo>,</mo> <mn>5</mn> <mo stretchy="false">)</mo> </mrow> </msub> <mo>=</mo> <mn>5</mn> <mo>,</mo> <mn>5</mn> <mo>,</mo> <mn>10</mn> <mo>,</mo> <mn>15</mn> <mo>,</mo> <mn>25</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{(5,5)}=5,5,10,15,25,...}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a9c7261ca10b51c28c681efeaa3193592eb7567f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:25.125ex; height:3.009ex;" alt="{\displaystyle a_{(5,5)}=5,5,10,15,25,...}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{(3,8)}=3,8,11,19,...}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>3</mn> <mo>,</mo> <mn>8</mn> <mo stretchy="false">)</mo> </mrow> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mn>8</mn> <mo>,</mo> <mn>11</mn> <mo>,</mo> <mn>19</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{(3,8)}=3,8,11,19,...}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0f25226675cff6c671491d8b9bb647438e8cb42b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:21.766ex; height:3.009ex;" alt="{\displaystyle a_{(3,8)}=3,8,11,19,...}"></span>, no možemo formirati niz za koji vrijedi <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{1}>F_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>></mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{1}>F_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38d79640a38d3cfa7068cc2040e7a1075236ecba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.196ex; height:2.509ex;" alt="{\displaystyle F_{1}>F_{2}}"></span> kao npr. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{(4,2)}=4,2,6,8,...}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>4</mn> <mo>,</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </msub> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>6</mn> <mo>,</mo> <mn>8</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{(4,2)}=4,2,6,8,...}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e11535f9fa6e3d41189958e7b13dbf34d86977c9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:19.442ex; height:3.009ex;" alt="{\displaystyle a_{(4,2)}=4,2,6,8,...}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Lucasovi_brojevi">Lucasovi brojevi</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fibonaccijev_broj&veaction=edit&section=9" title="Uredi odlomak: Lucasovi brojevi" class="mw-editsection-visualeditor"><span>uredi</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Fibonaccijev_broj&action=edit&section=9" title="Uredi kôd odjeljka Lucasovi brojevi"><span>uredi kôd</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Za <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{1}=2,F_{2}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{1}=2,F_{2}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/31e1455ac7bbcbd52eeb3285db13b483d203771e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.653ex; height:2.509ex;" alt="{\displaystyle F_{1}=2,F_{2}=1}"></span> dobivamo niz tzv. <i>Lucasovih brojeva</i> nazvanih po <a href="/wiki/Francuska" title="Francuska">francuskom</a> <a href="/wiki/Matemati%C4%8Dar" title="Matematičar">matematičaru</a> Françoisu Édouardu Anatoleu Lucasu (1842. – 1891.). </p><p>Evo prvih nekoliko članova tog niza: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2,1,3,4,7,11,...}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>4</mn> <mo>,</mo> <mn>7</mn> <mo>,</mo> <mn>11</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2,1,3,4,7,11,...}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fdecb830c00ed3a9b951fcff1c4a1221b52e81ff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:17.056ex; height:2.509ex;" alt="{\displaystyle 2,1,3,4,7,11,...}"></span> </p> <div class="mw-heading mw-heading2"><h2 id="Trojke_generaliziranog_Fibonaccijevog_niza">Trojke generaliziranog Fibonaccijevog niza</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fibonaccijev_broj&veaction=edit&section=10" title="Uredi odlomak: Trojke generaliziranog Fibonaccijevog niza" class="mw-editsection-visualeditor"><span>uredi</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Fibonaccijev_broj&action=edit&section=10" title="Uredi kôd odjeljka Trojke generaliziranog Fibonaccijevog niza"><span>uredi kôd</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Tri utastopna člana <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{n},F_{n+1},F_{n+2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{n},F_{n+1},F_{n+2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/060d66fb29deca27e4af3154f464d683a8e444ec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.408ex; height:2.509ex;" alt="{\displaystyle F_{n},F_{n+1},F_{n+2}}"></span> Fibonaccijevog niza zajednički zovemo trojka generaliziranog Fibobaccijevog niza. Uočimo da za <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\in \{2,3,...\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>∈<!-- ∈ --></mo> <mo fence="false" stretchy="false">{</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\in \{2,3,...\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d515073a32f2f28d34ba559cb5c74f3a602fa4a3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.055ex; height:2.843ex;" alt="{\displaystyle n\in \{2,3,...\}}"></span> vrijedi <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{n}<F_{n+1}<F_{n+2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo><</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo><</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>2</mn> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{n}<F_{n+1}<F_{n+2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bde3e645fbc881768456ed450cfcf616485563e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:19.184ex; height:2.509ex;" alt="{\displaystyle F_{n}<F_{n+1}<F_{n+2}.}"></span> (Za <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d9ec7e1edc2e6d98f5aec2a39ae5f1c99d1e1425" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\displaystyle n=1}"></span> sustav nejednakosti <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{n}<F_{n+1}<F_{n+2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo><</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo><</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{n}<F_{n+1}<F_{n+2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/17800ec01d46129d1c39e45285aef4e7800b9f21" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:18.537ex; height:2.509ex;" alt="{\displaystyle F_{n}<F_{n+1}<F_{n+2}}"></span> ipak ne vrijedi ako niz počinje s <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{2}\leq F_{1}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>≤<!-- ≤ --></mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{2}\leq F_{1}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a87e4c203007a88900d5f0a3e745d1184c645762" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.843ex; height:2.509ex;" alt="{\displaystyle F_{2}\leq F_{1}.}"></span>) </p><p>Dakle, intuitivno je da vrijedi <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{n}F_{n+2}\approx F_{n+1}F_{n+1}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>2</mn> </mrow> </msub> <mo>≈<!-- ≈ --></mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{n}F_{n+2}\approx F_{n+1}F_{n+1}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c023560270756d3562aab4ed0f32caf3fa6b1f8d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:20.899ex; height:2.509ex;" alt="{\displaystyle F_{n}F_{n+2}\approx F_{n+1}F_{n+1}.}"></span> Zapravo, ispravno je <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{n}F_{n+2}=F_{n+1}F_{n+1}+(-1)^{n+1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{n}F_{n+2}=F_{n+1}F_{n+1}+(-1)^{n+1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae5da2c801014c6de2d6cdbf378337c8085caadf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:31.192ex; height:3.176ex;" alt="{\displaystyle F_{n}F_{n+2}=F_{n+1}F_{n+1}+(-1)^{n+1}}"></span> prema <a href="/wiki/Cassinijev_identitet" title="Cassinijev identitet">Cassinijevom identitetu</a>. Označimo sada s <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D=F_{n}F_{n+2}-F_{n+1}F_{n+1}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> <mo>=</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D=F_{n}F_{n+2}-F_{n+1}F_{n+1}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e57838340043d864a176338b8a031ceaf840937f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:25.664ex; height:2.509ex;" alt="{\displaystyle D=F_{n}F_{n+2}-F_{n+1}F_{n+1}.}"></span> </p><p>Pretpostavimo sada da su <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{1}\leq F_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>≤<!-- ≤ --></mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{1}\leq F_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e29077bcac887355b43f36ddd3e5a18bc39fa4d7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.196ex; height:2.509ex;" alt="{\displaystyle F_{1}\leq F_{2}}"></span> dva početna broja niza za kojeg vrijedi osnovna relacija iz Fibonaccijevog niza. </p><p>Hoće li umnožak prvog i trećeg člana, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{n}\cdot F_{n+2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{n}\cdot F_{n+2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c27a0bdd01486013be56fac2e2ca9a3b251b5ec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.206ex; height:2.509ex;" alt="{\displaystyle F_{n}\cdot F_{n+2}}"></span>, neke trojke biti veći za 1 odnosno manji za 1 od kvadrata srednjeg člana, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{n+1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{n+1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7bfbe34f204a6b7b01dd49571e6b287c2bdf7735" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.814ex; height:2.509ex;" alt="{\displaystyle F_{n+1}}"></span>, te trojke isključivo ovisi o <i>razlici</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e85ff03cbe0c7341af6b982e47e9f90d235c66ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.216ex; height:2.176ex;" alt="{\displaystyle d}"></span> prvog i drugog člana tog niza, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d=F_{2}-F_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo>=</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d=F_{2}-F_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f329924396a375bc5d4768eed88474b1a7d5f223" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.252ex; height:2.509ex;" alt="{\displaystyle d=F_{2}-F_{1}}"></span>. </p><p>Ispišimo prvih nekoliko članova tog niza: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{1}=x,F_{2}=x+d,F_{3}=2x+d,F_{4}=3x+2d,...}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mi>x</mi> <mo>,</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mi>x</mi> <mo>+</mo> <mi>d</mi> <mo>,</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>=</mo> <mn>2</mn> <mi>x</mi> <mo>+</mo> <mi>d</mi> <mo>,</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo>=</mo> <mn>3</mn> <mi>x</mi> <mo>+</mo> <mn>2</mn> <mi>d</mi> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{1}=x,F_{2}=x+d,F_{3}=2x+d,F_{4}=3x+2d,...}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/67669aa1f305e98697bf1ae430eb3546467a0346" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:50.415ex; height:2.509ex;" alt="{\displaystyle F_{1}=x,F_{2}=x+d,F_{3}=2x+d,F_{4}=3x+2d,...}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Slučaj_1.,_'"`UNIQ--postMath-00000069-QINU`"'"><span id="Slu.C4.8Daj_1..2C_.7F.27.22.60UNIQ--postMath-00000069-QINU.60.22.27.7F"></span>Slučaj 1., <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{1}=F_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{1}=F_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4a1387d67417e45de53b554e8b775be7ad3cb236" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.196ex; height:2.509ex;" alt="{\displaystyle F_{1}=F_{2}}"></span></h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fibonaccijev_broj&veaction=edit&section=11" title="Uredi odlomak: Slučaj 1., '"`UNIQ--postMath-00000069-QINU`"'" class="mw-editsection-visualeditor"><span>uredi</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Fibonaccijev_broj&action=edit&section=11" title="Uredi kôd odjeljka Slučaj 1., '"`UNIQ--postMath-00000069-QINU`"'"><span>uredi kôd</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Ovdje će vrijediti <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{n}F_{n+2}=F_{n+1}F_{n+1}+(-1)^{n}F^{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{n}F_{n+2}=F_{n+1}F_{n+1}+(-1)^{n}F^{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c9dd6b30f382ca7ad3fe2c4170465b6f087f1a4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:32.607ex; height:3.176ex;" alt="{\displaystyle F_{n}F_{n+2}=F_{n+1}F_{n+1}+(-1)^{n}F^{2},}"></span> tj. vrijedit će <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D=F^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> <mo>=</mo> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D=F^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35b1b2c5bf55306c2e651515417b0c7cd0f53f16" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.892ex; height:2.676ex;" alt="{\displaystyle D=F^{2}}"></span> ako je <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> paran, odnosno <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D=-d^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> <mo>=</mo> <mo>−<!-- − --></mo> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D=-d^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73ba3eccc61b909523c8f8535c48670e28f133e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:9.103ex; height:2.843ex;" alt="{\displaystyle D=-d^{2}}"></span> ako je neparan. (1) </p><p><i>Dokaz.</i> Uočimo da je <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d=0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo>=</mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d=0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5224661c1acd2cdf1a3dcfc1797550e8959982d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.124ex; height:2.176ex;" alt="{\displaystyle d=0.}"></span> Ispišimo nekoliko članova ovog niza: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x,x,x+x,(x+x)+x,...=x,x,2x,3x,...}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>,</mo> <mi>x</mi> <mo>,</mo> <mi>x</mi> <mo>+</mo> <mi>x</mi> <mo>,</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>x</mi> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>=</mo> <mi>x</mi> <mo>,</mo> <mi>x</mi> <mo>,</mo> <mn>2</mn> <mi>x</mi> <mo>,</mo> <mn>3</mn> <mi>x</mi> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x,x,x+x,(x+x)+x,...=x,x,2x,3x,...}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/19e5f9abf2b1cbf9d4a7c8cb9b9e74e604e0bb07" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:43.823ex; height:2.843ex;" alt="{\displaystyle x,x,x+x,(x+x)+x,...=x,x,2x,3x,...}"></span> Za prvu trojku <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{1}=(x,x,x+x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>x</mi> <mo>,</mo> <mi>x</mi> <mo>+</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{1}=(x,x,x+x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/91edc75e35d35dd6d4e925b99c62c0a92587e836" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.547ex; height:2.843ex;" alt="{\displaystyle T_{1}=(x,x,x+x)}"></span> vrijedi (1) jer je <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D=(x+x)x-xx=xx=x^{2}=F^{2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>x</mi> <mi>x</mi> <mo>=</mo> <mi>x</mi> <mi>x</mi> <mo>=</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D=(x+x)x-xx=xx=x^{2}=F^{2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f90559e06b99e99c08de780ca76206efad8ea89" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:37.016ex; height:3.176ex;" alt="{\displaystyle D=(x+x)x-xx=xx=x^{2}=F^{2}.}"></span> Za sljedeću trojku <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{2}=(x,2x,3x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mn>2</mn> <mi>x</mi> <mo>,</mo> <mn>3</mn> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{2}=(x,2x,3x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/271788e4ae5ef29734d89bc7ce676881c7029b2b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.701ex; height:2.843ex;" alt="{\displaystyle T_{2}=(x,2x,3x)}"></span> računamo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D=((x+x)+x)x-(x+x)(x+x),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D=((x+x)+x)x-(x+x)(x+x),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4216edff10cbdde7366aca590fbe6e20e7a1da86" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:37.746ex; height:2.843ex;" alt="{\displaystyle D=((x+x)+x)x-(x+x)(x+x),}"></span> odakle je <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D=-xx=-F^{2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mi>x</mi> <mi>x</mi> <mo>=</mo> <mo>−<!-- − --></mo> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D=-xx=-F^{2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23d09e9174f18bd78901493bf5b2c8fb4d55e0c5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:17.913ex; height:2.843ex;" alt="{\displaystyle D=-xx=-F^{2}.}"></span> Slično se provjeri za <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{3}=(2x,3x,5x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>x</mi> <mo>,</mo> <mn>3</mn> <mi>x</mi> <mo>,</mo> <mn>5</mn> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{3}=(2x,3x,5x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bff1550b960c1f92c6ca3d774c8048fc9c29a2ef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.864ex; height:2.843ex;" alt="{\displaystyle T_{3}=(2x,3x,5x)}"></span> pa se (1) lako dokaže matematičkom indukcijom. </p><p>Dakle, vrijedit će <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D(T_{1})=F^{2},D(T_{2})=-F^{2},D(T_{3})=F^{2},...}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> <mo stretchy="false">(</mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> <mi>D</mi> <mo stretchy="false">(</mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mo>−<!-- − --></mo> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> <mi>D</mi> <mo stretchy="false">(</mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D(T_{1})=F^{2},D(T_{2})=-F^{2},D(T_{3})=F^{2},...}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/141c6397f869db2d2669351b58bc9b6ebfe33834" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:43.963ex; height:3.176ex;" alt="{\displaystyle D(T_{1})=F^{2},D(T_{2})=-F^{2},D(T_{3})=F^{2},...}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Slučaj_2.,_'"`UNIQ--postMath-00000077-QINU`"'"><span id="Slu.C4.8Daj_2..2C_.7F.27.22.60UNIQ--postMath-00000077-QINU.60.22.27.7F"></span>Slučaj 2., <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{1}<F_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo><</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{1}<F_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/098210cd1c20aaf418067fbd1dcb04d135023a27" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.196ex; height:2.509ex;" alt="{\displaystyle F_{1}<F_{2}}"></span></h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fibonaccijev_broj&veaction=edit&section=12" title="Uredi odlomak: Slučaj 2., '"`UNIQ--postMath-00000077-QINU`"'" class="mw-editsection-visualeditor"><span>uredi</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Fibonaccijev_broj&action=edit&section=12" title="Uredi kôd odjeljka Slučaj 2., '"`UNIQ--postMath-00000077-QINU`"'"><span>uredi kôd</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Slično se dokazuje da u ovom slučaju vrijedi <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D=F_{1}^{2}-(F_{1}+d)d.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> <mo>=</mo> <msubsup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mi>d</mi> <mo stretchy="false">)</mo> <mi>d</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D=F_{1}^{2}-(F_{1}+d)d.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/be9f3574bd236f3274c2b9429de5393d453bceb2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:21.009ex; height:3.176ex;" alt="{\displaystyle D=F_{1}^{2}-(F_{1}+d)d.}"></span> Odavde vidimo da ako je <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d<F_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo><</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d<F_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a51c28f6eff20fcae65eadca3559c3aa84333e0f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.863ex; height:2.509ex;" alt="{\displaystyle d<F_{1}}"></span> će biti <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D(T_{2k-1})>0,D(T_{2k})<0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> <mo stretchy="false">(</mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>></mo> <mn>0</mn> <mo>,</mo> <mi>D</mi> <mo stretchy="false">(</mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo><</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D(T_{2k-1})>0,D(T_{2k})<0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39fd0ec607c929ed3814c59ce12eab1bf2e9f725" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.66ex; height:2.843ex;" alt="{\displaystyle D(T_{2k-1})>0,D(T_{2k})<0}"></span> za <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k\in \mathbb {N} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>∈<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k\in \mathbb {N} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a5bc4b7383031ba693b7433198ead7170954c1d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.73ex; height:2.176ex;" alt="{\displaystyle k\in \mathbb {N} }"></span>, a ako je <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d>F_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo>></mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d>F_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92786b22c61240160b721f8b5505be2d67f40181" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.863ex; height:2.509ex;" alt="{\displaystyle d>F_{1}}"></span> vrijedit će obratno. </p> <div class="mw-heading mw-heading2"><h2 id="Fibonnacijev_niz_u_prirodi">Fibonnacijev niz u prirodi</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fibonaccijev_broj&veaction=edit&section=13" title="Uredi odlomak: Fibonnacijev niz u prirodi" class="mw-editsection-visualeditor"><span>uredi</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Fibonaccijev_broj&action=edit&section=13" title="Uredi kôd odjeljka Fibonnacijev niz u prirodi"><span>uredi kôd</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Fibonaccijev niz se često povezuje i s brojem <a href="/wiki/Zlatni_rez" title="Zlatni rez">zlatnog reza</a> <a href="/wiki/Fi" title="Fi">fi</a> (phi, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>φ<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span>), ili brojem kojeg mnogi zovu i "Božanskim omjerom". Uzmemo li jedan dio Fibonaccijevog niza, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2,3,5,8,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>5</mn> <mo>,</mo> <mn>8</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2,3,5,8,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/20bf8c626da1de45b3a2fa07be001d84bea57ff2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.398ex; height:2.509ex;" alt="{\displaystyle 2,3,5,8,}"></span> te podijelimo li svaki sljedeći broj s njemu prethodnim, dobiveni broj težit će broju fi: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {3}{2}}=1,{\frac {5}{3}}=1.67,{\frac {8}{5}}=1.6,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mrow> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>5</mn> <mn>3</mn> </mfrac> </mrow> <mo>=</mo> <mn>1.67</mn> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>8</mn> <mn>5</mn> </mfrac> </mrow> <mo>=</mo> <mn>1.6</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {3}{2}}=1,{\frac {5}{3}}=1.67,{\frac {8}{5}}=1.6,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6231ef456c1284ad836d311b2759dfa5343e8b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:26.274ex; height:5.176ex;" alt="{\displaystyle {\frac {3}{2}}=1,{\frac {5}{3}}=1.67,{\frac {8}{5}}=1.6,}"></span> itd. Broj <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1,618}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>,</mo> <mn>618</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1,618}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40be6c57bd2bda92a538522a01b8d16a634313e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.684ex; height:2.509ex;" alt="{\displaystyle 1,618}"></span> je fi zaokružen na tri decimale (fi je iracionalan). Odnosi mjera kod <a href="/wiki/Biljka" class="mw-redirect" title="Biljka">biljaka</a>, <a href="/wiki/%C5%BDivotinja" class="mw-redirect" title="Životinja">životinja</a> i <a href="/wiki/Ljudi" class="mw-redirect" title="Ljudi">ljudi</a>, sa zapanjujućom preciznošću se približava broju fi. </p><p>Slijedi nekoliko primjera broja fi i njegove povezanosti s Fibonaccijem i prirodom: </p> <ol><li>U <a href="/wiki/P%C4%8Dele" class="mw-redirect" title="Pčele">pčelinjoj</a> zajednici, <a href="/wiki/Ko%C5%A1nica" title="Košnica">košnici</a>, uvijek je manji broj mužjaka pčela nego ženki pčela. Kada bi podijelili broj ženki s brojem mužjaka pčela, uvijek bi dobili broj fi.</li> <li><a href="/wiki/Indijska_la%C4%91ica" title="Indijska lađica">Nautilus</a> (glavonožac), u svojoj konstrukciji ima <a href="/wiki/Spirala" title="Spirala">spirale</a>. Kada bi izračunali odnos svakog spiralnog promjera prema sljedećem dobili bi broj fi.</li> <li>Sjeme <a href="/wiki/Suncokret" title="Suncokret">suncokreta</a> raste u suprotnim spiralama. Međusobni odnosi promjera rotacije je broj fi.</li> <li>Izmjerimo li <a href="/wiki/%C4%8Covjek" title="Čovjek">čovječju</a> dužinu od vrha glave do poda, zatim to podijelimo s dužinom od <a href="/wiki/Pupak" title="Pupak">pupka</a> do poda, dobivamo broj fi.</li></ol> <div class="mw-heading mw-heading2"><h2 id="Izvori">Izvori</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Fibonaccijev_broj&veaction=edit&section=14" title="Uredi odlomak: Izvori" class="mw-editsection-visualeditor"><span>uredi</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Fibonaccijev_broj&action=edit&section=14" title="Uredi kôd odjeljka Izvori"><span>uredi kôd</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r6541845">.mw-parser-output .reflist{font-size:90%;margin-bottom:0.5em;list-style-type:decimal}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><a href="#cite_ref-1">↑</a></span> <span class="reference-text">Parmanand Singh. Acharya Hemachandra and the (so called) Fibonacci Numbers. Math . Ed. Siwan , 20(1):28-30,1986.<a href="/wiki/ISSN" class="mw-redirect" title="ISSN">ISSN</a> <a href="https://www.worldcat.org/issn/0047-6269" class="extiw" title="issn:0047-6269">0047-6269</a>]</span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><a href="#cite_ref-2">↑</a></span> <span class="reference-text">Parmanand Singh,"The So-called Fibonacci numbers in ancient and medieval India. Historia Mathematica v12 n3, 229–244,1985</span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><a href="#cite_ref-3">↑</a></span> <span class="reference-text"><a rel="nofollow" class="external free" href="http://services.artofproblemsolving.com">http://services.artofproblemsolving.com</a> › ...PDF Divisibility in the Fibonacci Numbers - Art of Problem Solving</span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><a href="#cite_ref-4">↑</a></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://e.math.hr/category/klju-ne-rije-i/fibonaccievi-brojevi">Fibonaccievi brojevi</a></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><a href="#cite_ref-5">↑</a></span> <span class="reference-text">Za dokaze, pogledati knjigu od akademika Andreja Dujelle, <i>Teorija brojeva</i>, Školska knjiga, 2019.</span> </li> </ol></div></div> <div style="clear:left;"></div><div style="display:table"><div style="display:table-row"><div style="display:table-cell"><span typeof="mw:File"><a href="/wiki/Datoteka:P_math.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b7/P_math.png/40px-P_math.png" decoding="async" width="40" height="35" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b7/P_math.png/60px-P_math.png 1.5x, //upload.wikimedia.org/wikipedia/commons/b/b7/P_math.png 2x" data-file-width="77" data-file-height="68" /></a></span></div><div style="display:table-cell;vertical-align:middle;padding-left:0.3em"><i>Nedovršeni članak</i> <b>Fibonaccijev broj</b> <i>koji govori o matematici treba dopuniti. <span class="plainlinks"><b><a class="external text" href="https://hr.wikipedia.org/w/index.php?title=Fibonaccijev_broj&action=edit">Dopunite ga</a></b></span> prema <a href="/wiki/Wikipedija:Stil" title="Wikipedija:Stil">pravilima Wikipedije</a>.</i></div></div></div> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐7c479b968‐gb8xx Cached time: 20241117142848 Cache expiry: 2592000 Reduced expiry: false Complications: [show‐toc] CPU time usage: 0.188 seconds Real time usage: 0.580 seconds Preprocessor visited node count: 849/1000000 Post‐expand include size: 1373/2097152 bytes Template argument size: 66/2097152 bytes Highest expansion depth: 7/100 Expensive parser function count: 0/500 Unstrip recursion depth: 0/20 Unstrip post‐expand size: 7792/5000000 bytes Lua time usage: 0.003/10.000 seconds Lua memory usage: 582546/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 50.911 1 -total 74.77% 38.066 1 Predložak:Izvori 39.36% 20.040 1 Predložak:ISSN 24.94% 12.699 1 Predložak:Mrva-mat 20.34% 10.354 1 Predložak:Mrva- 16.70% 8.500 1 Predložak:Clear 6.72% 3.423 1 Predložak:Void --> <!-- Saved in parser cache with key hrwiki:pcache:idhash:104634-0!canonical and timestamp 20241117142848 and revision id 6798499. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Dobavljeno iz "<a dir="ltr" href="https://hr.wikipedia.org/w/index.php?title=Fibonaccijev_broj&oldid=6798499">https://hr.wikipedia.org/w/index.php?title=Fibonaccijev_broj&oldid=6798499</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Posebno:Kategorije" title="Posebno:Kategorije">Kategorije</a>: <ul><li><a href="/wiki/Kategorija:U_izradi,_Matematika" title="Kategorija:U izradi, Matematika">U izradi, Matematika</a></li><li><a href="/wiki/Kategorija:Matematika" title="Kategorija:Matematika">Matematika</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> Ova stranica posljednji je put uređivana 14. prosinca 2023. u 17:17.</li> <li id="footer-info-copyright">Tekst je dostupan pod licencijom <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by-sa/4.0/deed.hr">Creative Commons: Imenuj autora/Dijeli pod istim uvjetima</a>; mogu se primjenjivati i dodatni uvjeti. Pogledajte <a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use">Uvjete upotrebe</a> za detalje.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Zaštita privatnosti</a></li> <li id="footer-places-about"><a href="/wiki/Impresum">Impresum</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedija:Op%C4%87e_odricanje_od_odgovornosti">Odricanje od odgovornosti</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Kodeks ponašanja</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Razvojni programeri</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/hr.wikipedia.org">Statistika</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Izjava o kolačićima</a></li> <li id="footer-places-mobileview"><a href="//hr.m.wikipedia.org/w/index.php?title=Fibonaccijev_broj&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Prikaz za mobilne uređaje</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-688fc9465-krn5d","wgBackendResponseTime":151,"wgPageParseReport":{"limitreport":{"cputime":"0.188","walltime":"0.580","ppvisitednodes":{"value":849,"limit":1000000},"postexpandincludesize":{"value":1373,"limit":2097152},"templateargumentsize":{"value":66,"limit":2097152},"expansiondepth":{"value":7,"limit":100},"expensivefunctioncount":{"value":0,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":7792,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 50.911 1 -total"," 74.77% 38.066 1 Predložak:Izvori"," 39.36% 20.040 1 Predložak:ISSN"," 24.94% 12.699 1 Predložak:Mrva-mat"," 20.34% 10.354 1 Predložak:Mrva-"," 16.70% 8.500 1 Predložak:Clear"," 6.72% 3.423 1 Predložak:Void"]},"scribunto":{"limitreport-timeusage":{"value":"0.003","limit":"10.000"},"limitreport-memusage":{"value":582546,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-7c479b968-gb8xx","timestamp":"20241117142848","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Fibonaccijev broj","url":"https:\/\/hr.wikipedia.org\/wiki\/Fibonaccijev_broj","sameAs":"http:\/\/www.wikidata.org\/entity\/Q47577","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q47577","author":{"@type":"Organization","name":"Doprinositelji projektima Wikimedije"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2007-07-19T22:04:05Z","dateModified":"2023-12-14T16:17:56Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/9\/95\/FibonacciBlocks.svg","headline":"\u010dlanovi Fibonaccijeva niza"}</script> </body> </html>