CINXE.COM
Answered: (e) Show that v(x, t) = u(x, t) — uɛ(x,… | bartleby
<!DOCTYPE html><html lang="en"><head><meta charSet="utf-8"/><meta name="viewport" content="width=device-width"/><meta name="description" content="Solution for (e) Show that v(x, t) = u(x, t) — uɛ(x, t) is solution of a homogeneous problem (with a different initial condition) and solve it using the method…"/><link rel="canonical" href="https://www.bartleby.com/questions-and-answers/e-show-that-vx-t-ux-t-ux-t-is-solution-of-a-homogeneous-problem-with-a-different-initial-condition-a/0d7ed346-3e61-48a0-8236-b42a96af6267"/><title>Answered: (e) Show that v(x, t) = u(x, t) — uɛ(x,… | bartleby</title><script type="application/ld+json">{ "@context": "https://schema.org", "@type": [ "QAPage", "WebPage" ], "mainEntityOfPage": { "@type": "WebPage", "@id": "https://www.bartleby.com/questions-and-answers/e-show-that-vx-t-ux-t-ux-t-is-solution-of-a-homogeneous-problem-with-a-different-initial-condition-a/0d7ed346-3e61-48a0-8236-b42a96af6267" }, "name": "I wrote out the question as requested and tried to re-upload the 2 questions I'm interested in. I need the solution to e and f after we find the value of Cn for that question based on your solution before. I hope this clears things up.Consider the following heat equation on a rod (which includes heat loss through the lateral side and fixed heat flow on the boundary): ∂u/∂t = ∂2u/∂x2 − 9u, 0 < x < 1, t > 0,subject to the boundary conditionsux(0, t) = 3, ux(1, t) = 18, t > 0,and the initial conditionu(x, 0) = 0, 0 < x < 1.(a) Find the equilibrium solution uE(x) for this problem by solving a certain boundary value problem on (0, 1).(b) Use integration by parts and the given boundary conditions that uE(x) satisfies to computeA0 = 1∫0 u′′E (x) dxEnter A0. (Do not use the explicit formula for uE(x) obtained in part (a).)(c) Use integration by parts and the given boundary conditions that uE(x) satisfies to show that1∫0 u′′E (x) cos(nπx) dx = An + B*n^2 1∫0 uE(x) cos(nπx) dx, n ≥ 1, (1)for some constants B and An. (Do not use the explicit formula for uE(x) obtained in part (a).) Enter the values of B and An (in that order) into the answer box below, separated with a comma.(d) Use the differential equation that uE(x) satisfies together with the results obtained in (b) and (c) to deduce the Fourier cosine series representation for uE(x) on (0, 1) which is of the form a0/2 + ∞Σn =1 an cos(nπx).Enter the values of a0 and an (in that order) into the answer box below, separated with a comma.(e) Show that v(x, t) = u(x, t) − uE(x, t) is solution of a homogeneous problem (with a different initial condition) and solve it using the method of separation of variables and the superposition principle. The solution has the formv(x, t) = G0(t) + ∞Σn =1 Gn(t) cos(nπx)Enter the functions G0(t) and Gn(t) (in that order) into the answer box below, separated with a comma.(f) The solution u(x, t) of the original problem, written as a cosine Fourier series with coefficients that are functions of t, has the formu(x, t) = H0(t) + ∞Σn =1 Hn(t) cos(nπx)Enter the functions H0(t) and Hn(t) (in that order) into the answer box below, separated with a comma. (e) Show that v(x, t)=u(x, t) — uɛ(x, t) is solution of a homogeneous problem (with a different initial condition)and solve it using the method of separation of variables and the superposition principle. The solution has theformv(x,t) = Go(t) + Σ Gn(t) cos(nлx)n=1Enter the functions Go (t) and Gn(t) (in that order) into the answer box below, separated with a comma.(f) The solution u(x, t) of the original problem, written as a cosine Fourier series with coefficients that arefunctions of t, has the form8u(x,t) = H₁(t) + Σ H₂(t) cos(nлx)n=1Enter the functions Ho(t) and H₂(t) (in that order) into the answer box below, separated with a comma.", "description": "I wrote out the question as requested and tried to re-upload the 2 questions I'm interested in. I need the solution to e and f after we find the value of Cn for that question based on your solution before. I hope this clears things up.Consider the following heat equation on a rod (which includes heat loss through the lateral side and fixed heat flow on the boundary): ∂u/∂t = ∂2u/∂x2 − 9u, 0 < x < 1, t > 0,subject to the boundary conditionsux(0, t) = 3, ux(1, t) = 18, t > 0,and the initial conditionu(x, 0) = 0, 0 < x < 1.(a) Find the equilibrium solution uE(x) for this problem by solving a certain boundary value problem on (0, 1).(b) Use integration by parts and the given boundary conditions that uE(x) satisfies to computeA0 = 1∫0 u′′E (x) dxEnter A0. (Do not use the explicit formula for uE(x) obtained in part (a).)(c) Use integration by parts and the given boundary conditions that uE(x) satisfies to show that1∫0 u′′E (x) cos(nπx) dx = An + B*n^2 1∫0 uE(x) cos(nπx) dx, n ≥ 1, (1)for some constants B and An. (Do not use the explicit formula for uE(x) obtained in part (a).) Enter the values of B and An (in that order) into the answer box below, separated with a comma.(d) Use the differential equation that uE(x) satisfies together with the results obtained in (b) and (c) to deduce the Fourier cosine series representation for uE(x) on (0, 1) which is of the form a0/2 + ∞Σn =1 an cos(nπx).Enter the values of a0 and an (in that order) into the answer box below, separated with a comma.(e) Show that v(x, t) = u(x, t) − uE(x, t) is solution of a homogeneous problem (with a different initial condition) and solve it using the method of separation of variables and the superposition principle. The solution has the formv(x, t) = G0(t) + ∞Σn =1 Gn(t) cos(nπx)Enter the functions G0(t) and Gn(t) (in that order) into the answer box below, separated with a comma.(f) The solution u(x, t) of the original problem, written as a cosine Fourier series with coefficients that are functions of t, has the formu(x, t) = H0(t) + ∞Σn =1 Hn(t) cos(nπx)Enter the functions H0(t) and Hn(t) (in that order) into the answer box below, separated with a comma. (e) Show that v(x, t)=u(x, t) — uɛ(x, t) is solution of a homogeneous problem (with a different initial condition)and solve it using the method of separation of variables and the superposition principle. The solution has theformv(x,t) = Go(t) + Σ Gn(t) cos(nлx)n=1Enter the functions Go (t) and Gn(t) (in that order) into the answer box below, separated with a comma.(f) The solution u(x, t) of the original problem, written as a cosine Fourier series with coefficients that arefunctions of t, has the form8u(x,t) = H₁(t) + Σ H₂(t) cos(nлx)n=1Enter the functions Ho(t) and H₂(t) (in that order) into the answer box below, separated with a comma.", "inLanguage": "en", "headline": "I wrote out the question as requested and tried to re-upload the 2 questions I'm interested in. I need the solution to e and f after we find the value of Cn for that question based on your solution before. I hope this clears things up.Consider the following heat equation on a rod (which includes heat loss through the lateral side and fixed heat flow on the boundary): ∂u/∂t = ∂2u/∂x2 − 9u, 0 < x < 1, t > 0,subject to the boundary conditionsux(0, t) = 3, ux(1, t) = 18, t > 0,and the initial conditionu(x, 0) = 0, 0 < x < 1.(a) Find the equilibrium solution uE(x) for this problem by solving a certain boundary value problem on (0, 1).(b) Use integration by parts and the given boundary conditions that uE(x) satisfies to computeA0 = 1∫0 u′′E (x) dxEnter A0. (Do not use the explicit formula for uE(x) obtained in part (a).)(c) Use integration by parts and the given boundary conditions that uE(x) satisfies to show that1∫0 u′′E (x) cos(nπx) dx = An + B*n^2 1∫0 uE(x) cos(nπx) dx, n ≥ 1, (1)for some constants B and An. (Do not use the explicit formula for uE(x) obtained in part (a).) Enter the values of B and An (in that order) into the answer box below, separated with a comma.(d) Use the differential equation that uE(x) satisfies together with the results obtained in (b) and (c) to deduce the Fourier cosine series representation for uE(x) on (0, 1) which is of the form a0/2 + ∞Σn =1 an cos(nπx).Enter the values of a0 and an (in that order) into the answer box below, separated with a comma.(e) Show that v(x, t) = u(x, t) − uE(x, t) is solution of a homogeneous problem (with a different initial condition) and solve it using the method of separation of variables and the superposition principle. The solution has the formv(x, t) = G0(t) + ∞Σn =1 Gn(t) cos(nπx)Enter the functions G0(t) and Gn(t) (in that order) into the answer box below, separated with a comma.(f) The solution u(x, t) of the original problem, written as a cosine Fourier series with coefficients that are functions of t, has the formu(x, t) = H0(t) + ∞Σn =1 Hn(t) cos(nπx)Enter the functions H0(t) and Hn(t) (in that order) into the answer box below, separated with a comma. (e) Show that v(x, t)=u(x, t) — uɛ(x, t) is solution of a homogeneous problem (with a different initial condition)and solve it using the method of separation of variables and the superposition principle. The solution has theformv(x,t) = Go(t) + Σ Gn(t) cos(nлx)n=1Enter the functions Go (t) and Gn(t) (in that order) into the answer box below, separated with a comma.(f) The solution u(x, t) of the original problem, written as a cosine Fourier series with coefficients that arefunctions of t, has the form8u(x,t) = H₁(t) + Σ H₂(t) cos(nлx)n=1Enter the functions Ho(t) and H₂(t) (in that order) into the answer box below, separated with a comma.", "datePublished": "2024-11-16", "dateModified": "2024-11-16", "isAccessibleForFree": "False", "hasPart": { "@type": "WebPageElement", "isAccessibleForFree": "False", "cssSelector": ".paywall" }, "mainEntity": { "@type": "Question", "name": "I wrote out the question as requested and tried to re-upload the 2 questions I'm interested in. I need the solution to e and f after we find the value of Cn for that question based on your solution before. I hope this clears things up.Consider the following heat equation on a rod (which includes heat loss through the lateral side and fixed heat flow on the boundary): ∂u/∂t = ∂2u/∂x2 − 9u, 0 < x < 1, t > 0,subject to the boundary conditionsux(0, t) = 3, ux(1, t) = 18, t > 0,and the initial conditionu(x, 0) = 0, 0 < x < 1.(a) Find the equilibrium solution uE(x) for this problem by solving a certain boundary value problem on (0, 1).(b) Use integration by parts and the given boundary conditions that uE(x) satisfies to computeA0 = 1∫0 u′′E (x) dxEnter A0. (Do not use the explicit formula for uE(x) obtained in part (a).)(c) Use integration by parts and the given boundary conditions that uE(x) satisfies to show that1∫0 u′′E (x) cos(nπx) dx = An + B*n^2 1∫0 uE(x) cos(nπx) dx, n ≥ 1, (1)for some constants B and An. (Do not use the explicit formula for uE(x) obtained in part (a).) Enter the values of B and An (in that order) into the answer box below, separated with a comma.(d) Use the differential equation that uE(x) satisfies together with the results obtained in (b) and (c) to deduce the Fourier cosine series representation for uE(x) on (0, 1) which is of the form a0/2 + ∞Σn =1 an cos(nπx).Enter the values of a0 and an (in that order) into the answer box below, separated with a comma.(e) Show that v(x, t) = u(x, t) − uE(x, t) is solution of a homogeneous problem (with a different initial condition) and solve it using the method of separation of variables and the superposition principle. The solution has the formv(x, t) = G0(t) + ∞Σn =1 Gn(t) cos(nπx)Enter the functions G0(t) and Gn(t) (in that order) into the answer box below, separated with a comma.(f) The solution u(x, t) of the original problem, written as a cosine Fourier series with coefficients that are functions of t, has the formu(x, t) = H0(t) + ∞Σn =1 Hn(t) cos(nπx)Enter the functions H0(t) and Hn(t) (in that order) into the answer box below, separated with a comma. (e) Show that v(x, t)=u(x, t) — uɛ(x, t) is solution of a homogeneous problem (with a different initial condition)and solve it using the method of separation of variables and the superposition principle. The solution has theformv(x,t) = Go(t) + Σ Gn(t) cos(nлx)n=1Enter the functions Go (t) and Gn(t) (in that order) into the answer box below, separated with a comma.(f) The solution u(x, t) of the original problem, written as a cosine Fourier series with coefficients that arefunctions of t, has the form8u(x,t) = H₁(t) + Σ H₂(t) cos(nлx)n=1Enter the functions Ho(t) and H₂(t) (in that order) into the answer box below, separated with a comma.", "text": "I wrote out the question as requested and tried to re-upload the 2 questions I'm interested in. I need the solution to e and f after we find the value of Cn for that question based on your solution before. I hope this clears things up.Consider the following heat equation on a rod (which includes heat loss through the lateral side and fixed heat flow on the boundary): ∂u/∂t = ∂2u/∂x2 − 9u, 0 < x < 1, t > 0,subject to the boundary conditionsux(0, t) = 3, ux(1, t) = 18, t > 0,and the initial conditionu(x, 0) = 0, 0 < x < 1.(a) Find the equilibrium solution uE(x) for this problem by solving a certain boundary value problem on (0, 1).(b) Use integration by parts and the given boundary conditions that uE(x) satisfies to computeA0 = 1∫0 u′′E (x) dxEnter A0. (Do not use the explicit formula for uE(x) obtained in part (a).)(c) Use integration by parts and the given boundary conditions that uE(x) satisfies to show that1∫0 u′′E (x) cos(nπx) dx = An + B*n^2 1∫0 uE(x) cos(nπx) dx, n ≥ 1, (1)for some constants B and An. (Do not use the explicit formula for uE(x) obtained in part (a).) Enter the values of B and An (in that order) into the answer box below, separated with a comma.(d) Use the differential equation that uE(x) satisfies together with the results obtained in (b) and (c) to deduce the Fourier cosine series representation for uE(x) on (0, 1) which is of the form a0/2 + ∞Σn =1 an cos(nπx).Enter the values of a0 and an (in that order) into the answer box below, separated with a comma.(e) Show that v(x, t) = u(x, t) − uE(x, t) is solution of a homogeneous problem (with a different initial condition) and solve it using the method of separation of variables and the superposition principle. The solution has the formv(x, t) = G0(t) + ∞Σn =1 Gn(t) cos(nπx)Enter the functions G0(t) and Gn(t) (in that order) into the answer box below, separated with a comma.(f) The solution u(x, t) of the original problem, written as a cosine Fourier series with coefficients that are functions of t, has the formu(x, t) = H0(t) + ∞Σn =1 Hn(t) cos(nπx)Enter the functions H0(t) and Hn(t) (in that order) into the answer box below, separated with a comma. (e) Show that v(x, t)=u(x, t) — uɛ(x, t) is solution of a homogeneous problem (with a different initial condition)and solve it using the method of separation of variables and the superposition principle. The solution has theformv(x,t) = Go(t) + Σ Gn(t) cos(nлx)n=1Enter the functions Go (t) and Gn(t) (in that order) into the answer box below, separated with a comma.(f) The solution u(x, t) of the original problem, written as a cosine Fourier series with coefficients that arefunctions of t, has the form8u(x,t) = H₁(t) + Σ H₂(t) cos(nлx)n=1Enter the functions Ho(t) and H₂(t) (in that order) into the answer box below, separated with a comma.", "answerCount": 1, "dateCreated": "2024-11-16", "acceptedAnswer": { "@type": "Answer", "text": "Answered: Image /qna-images/answer/0d7ed346-3e61-48a0-8236-b42a96af6267.jpg" }, "url": "https://www.bartleby.com/questions-and-answers/e-show-that-vx-t-ux-t-ux-t-is-solution-of-a-homogeneous-problem-with-a-different-initial-condition-a/0d7ed346-3e61-48a0-8236-b42a96af6267" } }</script><script type="application/ld+json">{ "@context": "http://schema.org", "@type": "BreadcrumbList", "itemListElement": [ { "@type": "ListItem", "position": 1, "item": { "@id": "https://www.bartleby.com/", "name": "Bartleby Textbook Solutions" } }, { "@type": "ListItem", "position": 2, "item": { "@id": "https://www.bartleby.com/subject/math", "name": "Math Q&A and Textbook Solutions" } }, { "@type": "ListItem", "position": 3, "item": { "@id": "https://www.bartleby.com/subject/math/calculus", "name": "Calculus Q&A, Textbooks, and Solutions" } }, { "@type": "ListItem", "position": 4, "item": { "@id": "https://www.bartleby.com/subject/math/calculus/questions-and-answers", "name": "Calculus Q&A Library" } }, { "@type": "ListItem", "position": 5, "item": { "@id": "https://www.bartleby.com/questions-and-answers/e-show-that-vx-t-ux-t-ux-t-is-solution-of-a-homogeneous-problem-with-a-different-initial-condition-a/0d7ed346-3e61-48a0-8236-b42a96af6267", "name": "(e) Show that v(x, t) = u(x, t) — uɛ(x, t) is solution of a homogeneous problem (with a different initial condition) and solve it using the method of separation of variables and the superposition principle. The solution has the form v(x,t) = Go(t) + Σ Gn(t) cos(nлx) n=1 Enter the functions Go (t) and Gn(t) (in that order) into the answer box below, separated with a comma. (f) The solution u(x, t) of the original problem, written as a cosine Fourier series with coefficients that are functions of t, has the form 8 u(x,t) = H₁(t) + Σ H₂(t) cos(nлx) n=1 Enter the functions Ho(t) and H₂(t) (in that order) into the answer box below, separated with a comma." } } ] }</script><link rel="preload" as="image" href="/static/compass_v2/learnbar/search-icon.svg"/><link rel="preload" as="image" href="/static/compass_v2/learnbar/search-icon-white.svg"/><link rel="preload" as="image" href="/static/compass_v2/learnbar/ask.svg"/><link rel="preload" as="image" href="/static/compass_v2/shared-icons/expand-img.svg" media="(min-width: 768px)"/><link rel="preload" as="image" imageSrcSet="/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9ae7b3bf-1b32-4ccc-a45c-3ac065d5afbc%2F0d7ed346-3e61-48a0-8236-b42a96af6267%2Fl9qlog_processed.png&w=16&q=75 16w, /v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9ae7b3bf-1b32-4ccc-a45c-3ac065d5afbc%2F0d7ed346-3e61-48a0-8236-b42a96af6267%2Fl9qlog_processed.png&w=32&q=75 32w, /v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9ae7b3bf-1b32-4ccc-a45c-3ac065d5afbc%2F0d7ed346-3e61-48a0-8236-b42a96af6267%2Fl9qlog_processed.png&w=48&q=75 48w, /v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9ae7b3bf-1b32-4ccc-a45c-3ac065d5afbc%2F0d7ed346-3e61-48a0-8236-b42a96af6267%2Fl9qlog_processed.png&w=64&q=75 64w, /v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9ae7b3bf-1b32-4ccc-a45c-3ac065d5afbc%2F0d7ed346-3e61-48a0-8236-b42a96af6267%2Fl9qlog_processed.png&w=96&q=75 96w, /v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9ae7b3bf-1b32-4ccc-a45c-3ac065d5afbc%2F0d7ed346-3e61-48a0-8236-b42a96af6267%2Fl9qlog_processed.png&w=128&q=75 128w, /v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9ae7b3bf-1b32-4ccc-a45c-3ac065d5afbc%2F0d7ed346-3e61-48a0-8236-b42a96af6267%2Fl9qlog_processed.png&w=256&q=75 256w, /v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9ae7b3bf-1b32-4ccc-a45c-3ac065d5afbc%2F0d7ed346-3e61-48a0-8236-b42a96af6267%2Fl9qlog_processed.png&w=384&q=75 384w, /v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9ae7b3bf-1b32-4ccc-a45c-3ac065d5afbc%2F0d7ed346-3e61-48a0-8236-b42a96af6267%2Fl9qlog_processed.png&w=640&q=75 640w, /v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9ae7b3bf-1b32-4ccc-a45c-3ac065d5afbc%2F0d7ed346-3e61-48a0-8236-b42a96af6267%2Fl9qlog_processed.png&w=750&q=75 750w, /v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9ae7b3bf-1b32-4ccc-a45c-3ac065d5afbc%2F0d7ed346-3e61-48a0-8236-b42a96af6267%2Fl9qlog_processed.png&w=828&q=75 828w, /v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9ae7b3bf-1b32-4ccc-a45c-3ac065d5afbc%2F0d7ed346-3e61-48a0-8236-b42a96af6267%2Fl9qlog_processed.png&w=1080&q=75 1080w, /v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9ae7b3bf-1b32-4ccc-a45c-3ac065d5afbc%2F0d7ed346-3e61-48a0-8236-b42a96af6267%2Fl9qlog_processed.png&w=1200&q=75 1200w, /v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9ae7b3bf-1b32-4ccc-a45c-3ac065d5afbc%2F0d7ed346-3e61-48a0-8236-b42a96af6267%2Fl9qlog_processed.png&w=1920&q=75 1920w, /v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9ae7b3bf-1b32-4ccc-a45c-3ac065d5afbc%2F0d7ed346-3e61-48a0-8236-b42a96af6267%2Fl9qlog_processed.png&w=2048&q=75 2048w, /v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9ae7b3bf-1b32-4ccc-a45c-3ac065d5afbc%2F0d7ed346-3e61-48a0-8236-b42a96af6267%2Fl9qlog_processed.png&w=3840&q=75 3840w" imageSizes="(min-width: 1320px) 788px, (min-width: 1040px) calc(88.08vw - 357px), (min-width: 860px) calc(100vw - 131px), calc(97.04vw - 74px)" fetchpriority="high"/><meta name="next-head-count" content="12"/><meta charSet="UTF-8"/><link rel="dns-prefetch" href="https://www.google-analytics.com"/><link rel="preconnect" href="https://nk6xemh85d.execute-api.us-east-1.amazonaws.com/prod"/><link rel="preconnect" href="https://www.bartleby.com/"/><link rel="preconnect" href="https://fonts.gstatic.com"/><link rel="icon" type="image/png" sizes="16x16" href="/static/compass_v2/favicon-16x16.png"/><link rel="icon" type="image/png" sizes="32x32" href="/static/compass_v2/favicon-32x32.png"/><link rel="icon" type="image/png" sizes="192x192" href="/static/compass_v2/android-chrome-192x192.png"/><link rel="icon" type="image/png" sizes="512x512" href="/static/compass_v2/android-chrome-512x512.png"/><link rel="apple-touch-icon" sizes="180x180" href="/static/compass_v2/apple-touch-icon.png"/><link rel="mask-icon" color="#000" href="/static/compass_v2/safari-pinned-tab.svg"/><meta name="twitter:card" content="summary_large_image"/><meta property="og:image:width" content="1200"/><meta property="og:image:height" content="630"/><link rel="preload" href="/v2/_next/static/media/552baf00d41f0467-s.p.woff2" as="font" type="font/woff2" crossorigin="anonymous" data-next-font="size-adjust"/><link rel="preload" href="/v2/_next/static/media/9a27f7098c0f5221-s.p.woff2" as="font" type="font/woff2" crossorigin="anonymous" data-next-font="size-adjust"/><link rel="preload" href="/v2/_next/static/media/66805252d3fded24-s.p.woff2" as="font" type="font/woff2" crossorigin="anonymous" data-next-font="size-adjust"/><link rel="preload" href="/v2/_next/static/media/0ac14a3c407fb3c4-s.p.woff2" as="font" type="font/woff2" crossorigin="anonymous" data-next-font="size-adjust"/><link rel="preload" href="/v2/_next/static/media/fc6fba7ce0876fef-s.p.woff2" as="font" type="font/woff2" crossorigin="anonymous" data-next-font="size-adjust"/><link rel="preload" href="/v2/_next/static/media/3cc61a2a1d48cb85-s.p.woff2" as="font" type="font/woff2" crossorigin="anonymous" data-next-font="size-adjust"/><link rel="preload" href="/v2/_next/static/css/ca642c23cfc63bd9.css" as="style"/><link rel="stylesheet" href="/v2/_next/static/css/ca642c23cfc63bd9.css" data-n-g=""/><noscript data-n-css=""></noscript><script defer="" nomodule="" src="/v2/_next/static/chunks/polyfills-c67a75d1b6f99dc8.js"></script><script src="/v2/_next/static/chunks/webpack-c50e6e67cb0a4b13.js" defer=""></script><script src="/v2/_next/static/chunks/framework-2c79e2a64abdb08b.js" defer=""></script><script src="/v2/_next/static/chunks/main-9fde7799aef02f56.js" defer=""></script><script src="/v2/_next/static/chunks/pages/_app-ec9115ce2afaa1b6.js" defer=""></script><script src="/v2/_next/static/chunks/252f366e-07ea007981e5aca4.js" defer=""></script><script src="/v2/_next/static/chunks/840-c386b505bbb80b2e.js" defer=""></script><script src="/v2/_next/static/chunks/598-b572f72af75cafc8.js" defer=""></script><script src="/v2/_next/static/chunks/269-6727cc7ff5c2d4d2.js" defer=""></script><script src="/v2/_next/static/chunks/pages/questions-and-answers/%5B...id%5D-ad9693035d471556.js" defer=""></script><script src="/v2/_next/static/f63bc52d7815b708337400d031020df4256805dc/_buildManifest.js" defer=""></script><script src="/v2/_next/static/f63bc52d7815b708337400d031020df4256805dc/_ssgManifest.js" defer=""></script></head><body><noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-NJZXM9J" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript><div id="__next"><div class="max-h-screen flex flex-col overflow-hidden font-sans" id="AppLayout-Top-Level-Root-Container-ID"><section class="relative flexCol" id="AppLayout-Top-Section-Container-ID"><section class="flexCol" id="AppLayout-Top-Banners-Section-Container-ID"><div class="flexRow min-h-[3.5rem] w-full mx-auto align-middle justify-center text-banner-promo bg-banner-promo"><div class="items-center justify-center mx-auto flexRow max-w-1152px"><button class="flex-auto flex-grow-0 flex-shrink-0 ml-8px text-jumbo sm:ml-1 text-24px sm:mr-2 xl:ml-0px mr-8px" aria-label="close banner"><svg stroke="currentColor" fill="currentColor" stroke-width="0" viewBox="0 0 24 24" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path fill="none" d="M0 0h24v24H0V0z"></path><path d="M19 6.41L17.59 5 12 10.59 6.41 5 5 6.41 10.59 12 5 17.59 6.41 19 12 13.41 17.59 19 19 17.59 13.41 12 19 6.41z"></path></svg></button><a href="/account/registration" class="flex flex-row items-center justify-center flex-1 text-center text-base-blue" tabindex="0"><div class="font-sans font-semibold leading-24px text-base sm:text-17px">Homework Help is Here – Start Your Trial Now!</div><div class="pl-8px text-24px"><svg stroke="currentColor" fill="currentColor" stroke-width="0" viewBox="0 0 24 24" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path fill="none" d="M0 0h24v24H0z"></path><path d="M12 4l-1.41 1.41L16.17 11H4v2h12.17l-5.58 5.59L12 20l8-8z"></path></svg></div></a></div></div></section><header class="flexCol" id="AppLayout-Top-Headers-Section-Container-ID"><nav id="GlobalNav-ID" class="flexCol z-[1000] bg-white border-b-[1px] border-solid border-grey50 relative"><div class="items-center justify-center flexRow"><div id="GlobalNav-Top-Container-ID" class="items-center overflow-y-visible flexRow max-w-1440px px-16px h-80px navbar-transition "><div id="GlobalNav-Logo-ID" class="flex flex-row items-center flex-initial justify-self-start h-64px mdl:h-79px"><a href="/" aria-label="bartleby logo" class="flex-1" tabindex="0"><img src="/static/compass_v2/bartleby-logos/bartleby-logo-tm.svg" alt="bartleby" width="134.97" height="38.56" loading="lazy" decoding="async" style="width:134.97px;min-width:134.97px;height:38.56px;min-height:38.56px"/></a></div><div id="GlobalNav-Links-ID" class="flex-row items-center justify-center flex-1 hidden mdl:flex"><div class="relative flex items-center justify-center flex-initial px-9px"><a href="/learn" class="flex-initial font-bold text-16px leading-16px text-darkBlue-900 p-16px" tabindex="0">learn</a><div class="absolute bottom-[-16px] left-0 w-full h-[4px] navbar-selected-item"></div></div><div class="flex flex-col items-center justify-center flex-initial relative"><button aria-label="write menu" aria-haspopup="true" aria-expanded="false" class="flex flex-row items-center flex-initial font-bold text-16px leading-16px text-darkBlue-900 p-16px" tabindex="0">write<svg stroke="currentColor" fill="currentColor" stroke-width="0" viewBox="0 0 24 24" aria-hidden="true" class="button-right-icon ml-8px" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path fill="none" d="M0 0h24v24H0z"></path><path d="M16.59 8.59L12 13.17 7.41 8.59 6 10l6 6 6-6z"></path></svg></button><div id="Write-Dropdown" class="h-0px transition-height navbar-overlay w-[240px] top-[69px] left-[-60px] "><ul id="Write-Dropdown-menu" class="pt-24px pb-24px flex flex-col justify-center"><li id="Write-Dropdown-menu-item" class="navbar-overlay-item flex items-center h-48px pl-16px text-darkBlue-900"><a href="/essay" role="link" class="text-darkBlue-900">Essays</a></li><li id="Write-Dropdown-menu-item" class="navbar-overlay-item flex items-center h-48px pl-16px text-darkBlue-900"><a href="/topics" role="link" class="text-darkBlue-900">Topics</a></li><li id="Write-Dropdown-menu-item" class="navbar-overlay-item flex items-center h-48px pl-16px text-darkBlue-900"><a href="/write" role="link" class="text-darkBlue-900">Writing Tool</a></li></ul></div></div><div class="relative flex items-center justify-center flex-initial px-9px"><a href="/plus" class="flex-initial font-bold text-16px leading-16px text-darkBlue-900 p-16px" tabindex="0">plus</a></div><div class="flex items-center justify-center flex-initial relative"><button aria-label="Study resources menu" aria-haspopup="true" aria-expanded="false" class="flex flex-row items-center flex-initial font-bold text-16px leading-16px text-darkBlue-900 p-16px" tabindex="0">study resources<svg stroke="currentColor" fill="currentColor" stroke-width="0" viewBox="0 0 24 24" aria-hidden="true" class="button-right-icon ml-8px" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path fill="none" d="M0 0h24v24H0z"></path><path d="M16.59 8.59L12 13.17 7.41 8.59 6 10l6 6 6-6z"></path></svg></button><div class="z-[2000] h-0px absolute top-1px flexRow w-[240px] left-[-24px] top-[69px] justify-center navbar-overlay closedContainer" id="StudyResourcesOverlay-ID"><div id="Study-Resources-ID" class="flexCol py-24px basis-[360px] border-r-[1px] border-solid border-grey50"><a href="/subjects" class="navbar-overlay-item" tabindex="-1">Subjects</a><a href="/lit" class="navbar-overlay-item" tabindex="-1">Literature guides</a><a href="/concepts" class="navbar-overlay-item" tabindex="-1">Concept explainers</a><a href="/writing-guide" class="navbar-overlay-item" tabindex="-1">Writing guides</a><a href="/textbooks" class="navbar-overlay-item" tabindex="-1">Popular textbooks</a><a href="/high-school-textbooks" class="navbar-overlay-item" tabindex="-1">Popular high school textbooks</a><a href="/questions-and-answers" class="navbar-overlay-item" tabindex="-1">Popular Q&A</a><a href="/sitemap/docs" class="navbar-overlay-item" tabindex="-1">Documents</a></div></div></div></div><div class="flex flex-row ml-auto flex-0"><div id="GlobalNav-Injected-Actions-ID" class="flex-row hidden ml-auto flex-0 mdl:flex"><div class="relative flex items-center justify-center flex-initial px-9px"><a href="/login?referrer=%2Fquestions-and-answers%2Fe-show-that-vx-t-ux-t-ux-t-is-solution-of-a-homogeneous-problem-with-a-different-initial-condition-a%2F0d7ed346-3e61-48a0-8236-b42a96af6267" class="ghost-button mr-24px" tabindex="0">LOG IN</a><div class="relative flex items-center h-80px "><button aria-label="Sign up menu" aria-haspopup="true" aria-expanded="false" class="primary-button" tabindex="0">SIGN UP<svg stroke="currentColor" fill="currentColor" stroke-width="0" viewBox="0 0 24 24" aria-hidden="true" class="button-right-icon ml-8px" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path fill="none" d="M0 0h24v24H0z"></path><path d="M16.59 8.59L12 13.17 7.41 8.59 6 10l6 6 6-6z"></path></svg></button><div class="flexCol absolute z-[2000] top-81px -right-10px bg-white w-[230px] h-144px overflow-hidden dropDown-shadow basic-transition closedContainer"><a href="/account/registration" class="menu-item" tabindex="0">Sign up for <span class="font-bold">learn</span></a><a href="/account/registration/write" class="menu-item" tabindex="0">Sign up for <span class="font-bold">write</span></a><a href="/account/registration/plus" class="menu-item" tabindex="0">Sign up for <span class="font-bold">plus</span></a></div></div></div></div><button aria-label="menu" class="unstyled-button mdl:hidden" tabindex="0"><svg stroke="currentColor" fill="currentColor" stroke-width="0" viewBox="0 0 24 24" class="button-icon" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path fill="none" d="M0 0h24v24H0z"></path><path d="M3 18h18v-2H3v2zm0-5h18v-2H3v2zm0-7v2h18V6H3z"></path></svg></button></div></div></div></nav><div class="flexRow z-[999] items-center justify-start bg-darkBlue900 text-white overflow-x-auto snap-x px-16px mdl:overflow-x-hidden mdl:px-0"><div class="flexRow max-w-1440px min-h-[64px] mx-auto mdl:min-h-[80px]"><div class="hidden flex-1 flex-shrink flex-grow-[0%] pl-120px items-center justify-center mr-60px mdl:flexRow"><button class="flex-1 h-36px py-0 pl-10px pr-38px max-w-[660px] text-16px leading-16px text-left text-grey-400 bg-athensGray rounded bg-[url("/static/compass_v2/learnbar/search-icon.svg")] bg-no-repeat search-bar-icon" aria-label="Homework help starts here! Click here to start typing your search terms">Homework help starts here!</button></div><div class="flexRow justify-center items-center ml-auto mdl:justify-start"><button class="navBar-button flex-initial mdl:hidden" tabindex="0"><img src="/static/compass_v2/learnbar/search-icon-white.svg" alt="" class="button-left-icon mr-8px"/>Search</button><button class="navBar-button flex-initial" tabindex="0"><img src="/static/compass_v2/learnbar/ask.svg" alt="" class="button-left-icon mr-8px"/>ASK AN EXPERT</button></div></div></div><div class="hidden flex-1 z-[800] bg-white h-0px navbar-transition overflow-hidden p-0px lg:flex"><div class="flex-1 flexRow justify-center items-center max-w-[1168px] w-full m-auto h-0px "><div class="flex-initial text-20px leading-24px font-semibold text-darkBlue-900 max-w-[40%] overflow-hidden text-ellipsis flex-nowrap whitespace-nowrap h-0px ">(e) Show that v(x, t) = u(x, t) — uɛ(x, t) is solution of a homogeneous problem (with a different initial condition) and solve it using the method of separation of variables and the superposition principle. The solution has the form v(x,t) = Go(t) + Σ Gn(t) cos(nлx) n=1 Enter the functions Go (t) and Gn(t) (in that order) into the answer box below, separated with a comma. (f) The solution u(x, t) of the original problem, written as a cosine Fourier series with coefficients that are functions of t, has the form 8 u(x,t) = H₁(t) + Σ H₂(t) cos(nлx) n=1 Enter the functions Ho(t) and H₂(t) (in that order) into the answer box below, separated with a comma.</div></div></div></header></section><main id="AppLayout-Scrollable-Main-Container-ID" class="flex-1 overflow-x-hidden overflow-y-auto relative"><div><div id="QNA-PAGE-CONTENT" class="flex-col items-center bg-page px-8px md:px-16px mdl:px-32px mdl:pb-32px"><div id="QNA-PAGE-TOP-CONTENT" class="flex flex-1 w-full pt-12px bg-page mdl:pt-24px"><div id="QNA-PAGE-BREADCRUMB" class="flex flex-col flex-1 w-full max-w-1188px m-auto"><div id="QNA-PAGE-BREADCRUMB" class="flex flex-col flex-1 w-full m-auto font-sans"><div id="BREADCRUMB-ID" class="flex flex-row flex-initial items-center w-full m-auto font-sans text-blue-600 text-14px"><div class="flex flex-row flex-initial items-center shrink-0"><a href="/subject/math" class="flex-1 cursor-pointer underline" tabindex="0">Math</a><svg stroke="currentColor" fill="currentColor" stroke-width="0" viewBox="0 0 24 24" class="flex-initial text-grey-200 w-24px" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path fill="none" d="M0 0h24v24H0z"></path><path d="M6.41 6L5 7.41 9.58 12 5 16.59 6.41 18l6-6z"></path><path d="M13 6l-1.41 1.41L16.17 12l-4.58 4.59L13 18l6-6z"></path></svg></div><div class="flex flex-row flex-initial items-center shrink-0"><a href="/subject/math/calculus" class="flex-1 cursor-pointer underline" tabindex="0">Calculus</a><svg stroke="currentColor" fill="currentColor" stroke-width="0" viewBox="0 0 24 24" class="flex-initial text-grey-200 w-24px" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path fill="none" d="M0 0h24v24H0z"></path><path d="M6.41 6L5 7.41 9.58 12 5 16.59 6.41 18l6-6z"></path><path d="M13 6l-1.41 1.41L16.17 12l-4.58 4.59L13 18l6-6z"></path></svg></div><span class="flex-initial text-grey-500 whitespace-nowrap text-ellipsis overflow-hidden">(e) Show that v(x, t) = u(x, t) — uɛ(x, t) is solution of a homogeneous problem (with a different initial condition) and solve it using the method of separation of variables and the superposition principle. The solution has the form v(x,t) = Go(t) + Σ Gn(t) cos(nлx) n=1 Enter the functions Go (t) and Gn(t) (in that order) into the answer box below, separated with a comma. (f) The solution u(x, t) of the original problem, written as a cosine Fourier series with coefficients that are functions of t, has the form 8 u(x,t) = H₁(t) + Σ H₂(t) cos(nлx) n=1 Enter the functions Ho(t) and H₂(t) (in that order) into the answer box below, separated with a comma.</span></div><h1 id="QNA-PAGE-H1" class="mt-16px text-24px leading-32px whitespace-nowrap overflow-hidden text-darkBlue-900 bg-page font-semibold text-ellipsis pb-16px">(e) Show that v(x, t) = u(x, t) — uɛ(x, t) is solution of a homogeneous problem (with a different initial condition) and solve it using the method of separation of variables and the superposition principle. The solution has the form v(x,t) = Go(t) + Σ Gn(t) cos(nлx) n=1 Enter the functions Go (t) and Gn(t) (in that order) into the answer box below, separated with a comma. (f) The solution u(x, t) of the original problem, written as a cosine Fourier series with coefficients that are functions of t, has the form 8 u(x,t) = H₁(t) + Σ H₂(t) cos(nлx) n=1 Enter the functions Ho(t) and H₂(t) (in that order) into the answer box below, separated with a comma.</h1></div></div></div><div id="qa_ad_top" class="sm:h-[90px] sm:min-h-[90px] sm:min-w-[728px] sm:max-w-[970px] m-auto h-[50px] min-h-[50px] min-w-[300px] max-w-[320px]"></div><div id="QNA-PAGE-MAIN-CONTENT" class="flexColReverse w-full max-w-1188px py-24px flex-grow-0 mx-auto bg-page lg:flex-row md:py-32px"><div id="QNA-PAGE-MIDDLE-LEFT-RAIL" class="flexCol flex-initial mt-24px overflow-visible lg:w-[318px] lg:mr-32px lg:mt-0px"><div id="TEXTBOOK-MODULE-ID" class="flex-initial flex-col items-center justify-center w-full p-24px rounded-lg border-[1px] border-grey100 bg-white lg:w-[318px] overflow-hidden"><div class="flexRow overflow-hidden w-full "><div class="flexCol flex-initial justify-start items-center p-2px"><a href="https://amzn.to/3ubPPQT" target="_blank" rel="noopener noreferrer" class="flex-initial" tabindex="0"><img width="100%" height="68px" class="object-cover rounded-lg h-68px w-auto m-auto" src="https://www.bartleby.com/isbn_cover_images/9781285463247/9781285463247_smallCoverImage.gif" alt="Linear Algebra: A Modern Introduction" decoding="async" loading="lazy"/><button class="secondaryGhost-button flex-initial h-34px mt-8px">BUY</button></a></div><div class="flex-col w-full flex-wrap text-ellipsis overflow-hidden p-2px ml-5px"><a href="/textbooks/linear-algebra-a-modern-introduction-4th-edition/9781285463247/solutions" target="_blank" rel="noopener noreferrer" class="flex-initial w-full text-darkBlue-900 font-semibold text-16px leading-16px text-ellipsis overflow-hidden whitespace-nowrap" tabindex="0">Linear Algebra: A Modern Introduction</a><div class="flex-initial w-full text-14px text-grey-500 text-ellipsis overflow-hidden pt-0x">4th Edition</div><div class="flex-initial w-full text-ellipsis overflow-hidden"><span class="text-14px leading-5 text-grey-900 font-semibold">ISBN:</span><span class="text-14px leading-5 text-grey-900 font-normal ml-4px">9781285463247</span></div><div class="flex-initial w-full text-ellipsis overflow-hidden"><span class="text-14px leading-5 text-grey-900 font-semibold">Author:</span><span class="text-14px leading-5 text-grey-900 font-semibold ml-4px">David Poole</span></div><div class="flex-initial w-full text-ellipsis overflow-hidden"><span class="text-14px leading-5 text-grey-900 font-semibold">Publisher:</span><span class="text-14px leading-5 text-grey-900 font-normal ml-4px">David Poole</span></div></div></div><div class="flexCol w-full mt-24px"><div class="flex-initial flexRow w-full"><div class="flex-1"><div class="relative w-full overflow-hidden"><select class="relative text-grey-900 text-14px leading-20px font-semibold w-full h-48px pr-100px pl-16px text-ellipsis appearance-none bg-white rounded border-[1px] border-grey300" aria-label="problem list"><option value="0">1 Vectors</option><option value="1">2 Systems Of Linear Equations</option><option value="2">3 Matrices</option><option value="3" selected="">4 Eigenvalues And Eigenvectors</option><option value="4">5 Orthogonality</option><option value="5">6 Vector Spaces</option><option value="6">7 Distance And Approximation</option></select><div style="width:-56px" class="absolute left-16px top-12px pr-8px pointer-events-none bg-white text-ellipsis overflow-hidden whitespace-nowrap"><span class="text-grey-900 text-14px leading-20px font-semibold">Chapter4: </span><span class="text-grey-900 text-14px leading-20px">Eigenvalues And Eigenvectors</span></div><div class="absolute text-blue-600 top-12px right-12px pointer-events-none "><svg stroke="currentColor" fill="currentColor" stroke-width="0" viewBox="0 0 24 24" style="width:24px;height:24px" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path fill="none" d="M0 0h24v24H0z"></path><path d="M16.59 8.59L12 13.17 7.41 8.59 6 10l6 6 6-6z"></path></svg></div></div></div><div class="flex-initial w-16px"></div><div class="flex-1"><div class="relative w-full overflow-hidden"><select class="relative text-grey-900 text-14px leading-20px font-semibold w-full h-48px pr-100px pl-16px text-ellipsis appearance-none bg-white rounded border-[1px] border-grey300" aria-label="problem list"><option value="3-0">4.1 Introduction To Eigenvalues And Eigenvectors</option><option value="3-1">4.2 Determinants</option><option value="3-2">4.3 Eigenvalues And Eigenvectors Of N X N Matrices</option><option value="3-3">4.4 Similarity And Diagonalization</option><option value="3-4">4.5 Iterative Methods For Computing Eigenvalues</option><option value="3-5" selected="">4.6 Applications And The Perron-frobenius Theorem</option><option value="3-6">Chapter Questions</option></select><div style="width:-56px" class="absolute left-16px top-12px pr-8px pointer-events-none bg-white text-ellipsis overflow-hidden whitespace-nowrap"><span class="text-grey-900 text-14px leading-20px font-semibold">Section4.6: </span><span class="text-grey-900 text-14px leading-20px">Applications And The Perron-frobenius Theorem</span></div><div class="absolute text-blue-600 top-12px right-12px pointer-events-none "><svg stroke="currentColor" fill="currentColor" stroke-width="0" viewBox="0 0 24 24" style="width:24px;height:24px" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path fill="none" d="M0 0h24v24H0z"></path><path d="M16.59 8.59L12 13.17 7.41 8.59 6 10l6 6 6-6z"></path></svg></div></div></div></div><div class="flex-initial flexRow w-full mt-16px"><div class="relative w-full overflow-hidden"><select class="relative text-grey-900 text-14px leading-20px font-semibold w-full h-48px pr-100px pl-16px text-ellipsis appearance-none bg-white rounded border-[1px] border-grey300" aria-label="problem list"><option value="0">Problem 1EQ </option><option value="1">Problem 2EQ </option><option value="2">Problem 3EQ </option><option value="3">Problem 4EQ </option><option value="4">Problem 5EQ </option><option value="5">Problem 6EQ </option><option value="6">Problem 7EQ </option><option value="7">Problem 8EQ </option><option value="8">Problem 9EQ </option><option value="9">Problem 10EQ </option><option value="10">Problem 11EQ </option><option value="11">Problem 12EQ </option><option value="12">Problem 13EQ </option><option value="13">Problem 14EQ </option><option value="14">Problem 15EQ </option><option value="15">Problem 16EQ </option><option value="16">Problem 17EQ </option><option value="17">Problem 18EQ </option><option value="18">Problem 19EQ </option><option value="19">Problem 20EQ </option><option value="20">Problem 21EQ </option><option value="21">Problem 22EQ </option><option value="22">Problem 23EQ </option><option value="23">Problem 24EQ </option><option value="24">Problem 25EQ </option><option value="25">Problem 26EQ </option><option value="26">Problem 27EQ </option><option value="27">Problem 28EQ </option><option value="28">Problem 29EQ </option><option value="29">Problem 30EQ </option><option value="30">Problem 31EQ </option><option value="31">Problem 32EQ </option><option value="32">Problem 33EQ </option><option value="33">Problem 34EQ </option><option value="34">Problem 35EQ </option><option value="35">Problem 36EQ </option><option value="36">Problem 37EQ </option><option value="37">Problem 38EQ </option><option value="38">Problem 39EQ </option><option value="39">Problem 40EQ </option><option value="40">Problem 41EQ </option><option value="41">Problem 42EQ </option><option value="42">Problem 43EQ </option><option value="43">Problem 44EQ </option><option value="44">Problem 45EQ </option><option value="45">Problem 46EQ </option><option value="46">Problem 47EQ </option><option value="47">Problem 48EQ </option><option value="48">Problem 49EQ </option><option value="49">Problem 50EQ </option><option value="50">Problem 51EQ </option><option value="51">Problem 52EQ </option><option value="52">Problem 53EQ </option><option value="53">Problem 54EQ </option><option value="54">Problem 55EQ </option><option value="55">Problem 56EQ </option><option value="56">Problem 57EQ </option><option value="57">Problem 58EQ </option><option value="58">Problem 59EQ </option><option value="59">Problem 60EQ </option><option value="60">Problem 61EQ </option><option value="61">Problem 62EQ </option><option value="62">Problem 63EQ </option><option value="63">Problem 64EQ </option><option value="64">Problem 65EQ </option><option value="65">Problem 66EQ </option><option value="66">Problem 67EQ </option><option value="67">Problem 68EQ </option><option value="68" selected="">Problem 69EQ: Let x=x(t) be a twice-differentiable function and consider the second order differential equation...</option><option value="69">Problem 70EQ </option><option value="70">Problem 71EQ </option><option value="71">Problem 72EQ </option><option value="72">Problem 73EQ </option><option value="73">Problem 74EQ </option><option value="74">Problem 75EQ </option><option value="75">Problem 76EQ </option><option value="76">Problem 77EQ </option><option value="77">Problem 78EQ </option><option value="78">Problem 79EQ </option><option value="79">Problem 80EQ </option><option value="80">Problem 81EQ </option><option value="81">Problem 82EQ </option><option value="82">Problem 83EQ </option><option value="83">Problem 84EQ </option><option value="84">Problem 85EQ </option><option value="85">Problem 86EQ </option><option value="86">Problem 87EQ </option><option value="87">Problem 88EQ </option><option value="88">Problem 89EQ </option><option value="89">Problem 90EQ </option><option value="90">Problem 91EQ </option><option value="91">Problem 92EQ </option></select><div style="width:-56px" class="absolute left-16px top-12px pr-8px pointer-events-none bg-white text-ellipsis overflow-hidden whitespace-nowrap"><span class="text-grey-900 text-14px leading-20px font-semibold">Problem 69EQ: </span><span class="text-grey-900 text-14px leading-20px">Let x=x(t) be a twice-differentiable function and consider the second order differential equation...</span></div><div class="absolute text-blue-600 top-12px right-12px pointer-events-none "><svg stroke="currentColor" fill="currentColor" stroke-width="0" viewBox="0 0 24 24" style="width:24px;height:24px" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path fill="none" d="M0 0h24v24H0V0z"></path><path d="M4 10.5c-.83 0-1.5.67-1.5 1.5s.67 1.5 1.5 1.5 1.5-.67 1.5-1.5-.67-1.5-1.5-1.5zm0-6c-.83 0-1.5.67-1.5 1.5S3.17 7.5 4 7.5 5.5 6.83 5.5 6 4.83 4.5 4 4.5zm0 12c-.83 0-1.5.68-1.5 1.5s.68 1.5 1.5 1.5 1.5-.68 1.5-1.5-.67-1.5-1.5-1.5zM7 19h14v-2H7v2zm0-6h14v-2H7v2zm0-8v2h14V5H7z"></path></svg></div></div></div></div><div class="flex-initial flex-row text-end w-full mt-16px"><a href="/subject/math/algebra/textbook-answers" class="standalone-link flex-initial" tabindex="0">See similar textbooks</a></div><div><div class="flexRow flex-initial items-center w-full pt-24px mt-24px border-t-[1px] border-athensGray2 "><div class="flex-initial flex w-24px h-24px rounded-full mr-16px " style="background-color:#D8199E"><img width="12px" height="14px" class="flex-initial justify-center items-center m-auto" src="/static/compass_v2/leftrail/relatedQuestions.svg" alt="icon" loading="lazy" decoding="async"/></div><div class="text-16px leading-24px text-darkBlue-900 font-semibold">Related questions</div><button aria-label="open related questions" aria-controls="related-question-panel" id="related-question-left-rail" aria-expanded="false" class="flext flex-initial ml-auto w-24px h-24px" tabindex="0"><img width="10px" height="5px" class="flex-initial justify-center items-center m-auto" src="/static/compass_v2/leftrail/expand.svg" alt="button" loading="lazy" decoding="async"/></button></div><div class="hidden w-full max-h-[250px] overflow-y-scroll" id="related-question-panel" aria-labelledby="#related-question-left-rail"><div class="flex flexCol flex-wrap overflow-x-hidden "></div><div class="flex flex-wrap overflow-hidden h-0px"><a href="/questions-and-answers/for-each-surface-below-give-a-parameterization-ru-v-be-sure-to-use-rectangular-bounds-u-v-euro-a-b-x/006d8bc0-4c32-4524-8342-d66ab1ecce20" class="flex-1 w-full no-underline mx-2px mt-2px mb-24px" tabindex="0"><div class="w-full lg:max-w-[255px]"><p class="text-grey-500 flex-1 m-0 text-16px font-semibold leading-24px -tracking-0.1px pb-6px w-[100%] break-words line-clamp-2">Q: For each surface below, give a parameterization r(u, v); be sure to use rectangular bounds (u, v) ∈…</p><p class="flex-1 m-0 text-shark text-14px leading-20px -tracking-0.1px w-[100%] break-words line-clamp-2">A: 1. Upside-Down ConeFor the cone with height 3, tip at the origin, and circular base of radius…</p></div></a><a href="/questions-and-answers/situation-no.-02-p14-p1s-given-the-following-field-notes-for-a-differential-leveling-all-units-are-i/8f1b5988-8093-44c2-867d-41e7ece794b4" class="flex-1 w-full no-underline mx-2px mt-2px mb-24px" tabindex="0"><div class="w-full lg:max-w-[255px]"><p class="text-grey-500 flex-1 m-0 text-16px font-semibold leading-24px -tracking-0.1px pb-6px w-[100%] break-words line-clamp-2">Q: SITUATION NO. 02 P14-P1S Given the following field notes for a differential leveling All units are…</p><p class="flex-1 m-0 text-shark text-14px leading-20px -tracking-0.1px w-[100%] break-words line-clamp-2">A: </p></div></a><a href="/questions-and-answers/in-this-question-well-gather-information-for-sketching-the-function-1.-for-which-values-of-a-is-fx-c/482e679a-44b9-4595-b81e-54f3275a456d" class="flex-1 w-full no-underline mx-2px mt-2px mb-24px" tabindex="0"><div class="w-full lg:max-w-[255px]"><p class="text-grey-500 flex-1 m-0 text-16px font-semibold leading-24px -tracking-0.1px pb-6px w-[100%] break-words line-clamp-2">Q: solve it</p><p class="flex-1 m-0 text-shark text-14px leading-20px -tracking-0.1px w-[100%] break-words line-clamp-2">A: 1. For which values of x is f(x) continuous? f(x) is continuous for x in the interval (-1, ∞) 2.…</p></div></a><a href="/questions-and-answers/2.-consider-the-function-f-r2-r-defined-by-fx-ororxoror-where-ororxoror-x-x.-i-compute-the-gradient-/b6b6b732-a600-48e2-a284-b2e1074af05d" class="flex-1 w-full no-underline mx-2px mt-2px mb-24px" tabindex="0"><div class="w-full lg:max-w-[255px]"><p class="text-grey-500 flex-1 m-0 text-16px font-semibold leading-24px -tracking-0.1px pb-6px w-[100%] break-words line-clamp-2">Q: 2. Consider the function f : R2 R defined by f(x) = ||x||³, where ||x|| = √√x² + x². (i) Compute the…</p><p class="flex-1 m-0 text-shark text-14px leading-20px -tracking-0.1px w-[100%] break-words line-clamp-2">A: </p></div></a><a href="/questions-and-answers/consider-the-circle-c-of-unit-radius.-as-an-equation-c-is-given-by-x-y-1.-find-all-tangent-lines-to-/ef40dfb8-d484-4398-858c-d74e1799346c" class="flex-1 w-full no-underline mx-2px mt-2px mb-24px" tabindex="0"><div class="w-full lg:max-w-[255px]"><p class="text-grey-500 flex-1 m-0 text-16px font-semibold leading-24px -tracking-0.1px pb-6px w-[100%] break-words line-clamp-2">Q: please help thank you a lot. also please don't use chat gpt because that answer is wrong</p><p class="flex-1 m-0 text-shark text-14px leading-20px -tracking-0.1px w-[100%] break-words line-clamp-2">A: Step 1:Method 1 Step 2:Method 2 Step 3: Step 4:</p></div></a><a href="/questions-and-answers/pt-1-1-152-pt-t-.-t-12-.-2t-2tt-152-.-5t-1-12-211-152-tt-12-51-21-1-11-1-71-2-y-6e2x-dy-dx-62e2x-12e/98e17122-dd9d-48d5-8eb6-0a6d9b0ffaa1" class="flex-1 w-full no-underline mx-2px mt-2px mb-24px" tabindex="0"><div class="w-full lg:max-w-[255px]"><p class="text-grey-500 flex-1 m-0 text-16px font-semibold leading-24px -tracking-0.1px pb-6px w-[100%] break-words line-clamp-2">Q: Explain step by step of how they got to the answer for both problems</p><p class="flex-1 m-0 text-shark text-14px leading-20px -tracking-0.1px w-[100%] break-words line-clamp-2">A: </p></div></a><a href="/questions-and-answers/with-explanation-q-prove-that-l-5n1-and-steps-of-solution/760f3d21-3443-4ba0-8b54-98a13b5453dd" class="flex-1 w-full no-underline mx-2px mt-2px mb-24px" tabindex="0"><div class="w-full lg:max-w-[255px]"><p class="text-grey-500 flex-1 m-0 text-16px font-semibold leading-24px -tracking-0.1px pb-6px w-[100%] break-words line-clamp-2">Q: मा With explanation Q / Prove that L{ {"} = "! 5n+1 and steps of solution?</p><p class="flex-1 m-0 text-shark text-14px leading-20px -tracking-0.1px w-[100%] break-words line-clamp-2">A: </p></div></a><a href="/questions-and-answers/q1-9-points-let-zx-y-and-wx-y-be-smooth-functions-that-satisfy-the-equations-ww-xyz-4-0-zwxyw10-and-/98117767-6e6c-4fbe-a9dc-b2ddc0dbf0c4" class="flex-1 w-full no-underline mx-2px mt-2px mb-24px" tabindex="0"><div class="w-full lg:max-w-[255px]"><p class="text-grey-500 flex-1 m-0 text-16px font-semibold leading-24px -tracking-0.1px pb-6px w-[100%] break-words line-clamp-2">Q: Q1 (9 points) Let z(x, y) and w(x, y) be smooth functions that satisfy the equations w+w³ + x²yz + 4…</p><p class="flex-1 m-0 text-shark text-14px leading-20px -tracking-0.1px w-[100%] break-words line-clamp-2">A: Step 1: Set up The question:Analyze the question and observe what is given to you and what you need…</p></div></a><a href="/questions-and-answers/18.-find-the-intercepts-of-the-plane-x-y-z-5-4-3-s-1-0-1-t-1-4-2./f26995ff-bd62-4447-b22d-1af81ce50d25" class="flex-1 w-full no-underline mx-2px mt-2px mb-24px" tabindex="0"><div class="w-full lg:max-w-[255px]"><p class="text-grey-500 flex-1 m-0 text-16px font-semibold leading-24px -tracking-0.1px pb-6px w-[100%] break-words line-clamp-2">Q: Pls help ASAP. Pls show all work and steps. Pls circle the final answer.</p><p class="flex-1 m-0 text-shark text-14px leading-20px -tracking-0.1px w-[100%] break-words line-clamp-2">A: Here is the step-by-step explanation:The equation of the plane is given…</p></div></a><a href="/questions-and-answers/graded-exercise-5-1-3.-a-6-ft-man-walks-away-from-a-9-ft-lamppost-at-a-rate-of-ftsec.-if-the-light-a/eb5f6d51-f758-4236-80e3-a57906e04775" class="flex-1 w-full no-underline mx-2px mt-2px mb-24px" tabindex="0"><div class="w-full lg:max-w-[255px]"><p class="text-grey-500 flex-1 m-0 text-16px font-semibold leading-24px -tracking-0.1px pb-6px w-[100%] break-words line-clamp-2">Q: GRADED EXERCISE 5: 1 3. A 6-ft man walks away from a 9-ft lamppost at a rate of ft/sec. If the light…</p><p class="flex-1 m-0 text-shark text-14px leading-20px -tracking-0.1px w-[100%] break-words line-clamp-2">A: Problem 3: Related Rates ProblemWe are given:A 6 ft tall man walks away from a 9 ft tall lamppost at…</p></div></a><a href="/questions-and-answers/17.-the-line-42-2-s-5-3-1-se-r-crosses-the-xz-plane-and-the-yz-plane-at-points-a-as-b-respectively.-/b12fe077-2a06-4ede-a8d7-2aface8021c2" class="flex-1 w-full no-underline mx-2px mt-2px mb-24px" tabindex="0"><div class="w-full lg:max-w-[255px]"><p class="text-grey-500 flex-1 m-0 text-16px font-semibold leading-24px -tracking-0.1px pb-6px w-[100%] break-words line-clamp-2">Q: Pls help ASAP. Pls show all work and steps. Pls circle the final answer.</p><p class="flex-1 m-0 text-shark text-14px leading-20px -tracking-0.1px w-[100%] break-words line-clamp-2">A: Steps and explanations are as follows:In case of any doubt, please let me know. Thank you.</p></div></a><a href="/questions-and-answers/1.-a-graphing-calculator-is-required-for-this-question.-you-are-permitted-to-use-your-calculator-to-/45c63827-ba91-4c25-9eaf-d171442444e0" class="flex-1 w-full no-underline mx-2px mt-2px mb-24px" tabindex="0"><div class="w-full lg:max-w-[255px]"><p class="text-grey-500 flex-1 m-0 text-16px font-semibold leading-24px -tracking-0.1px pb-6px w-[100%] break-words line-clamp-2">Q: 1. A GRAPHING CALCULATOR IS REQUIRED FOR THIS QUESTION. You are permitted to use your calculator to…</p><p class="flex-1 m-0 text-shark text-14px leading-20px -tracking-0.1px w-[100%] break-words line-clamp-2">A: Here is the calculation for the answer in Part (d) using Desmos graphing calculator. To find x,…</p></div></a><a href="/questions-and-answers/7.-determine-the-value-of-m-will-make-the-planes-new-shequel-2x-my-3z-1-0-and-p2-2mx-3y-2z-4-0-6-a.-/a6d0780e-9876-44a1-bae9-fe8845836b12" class="flex-1 w-full no-underline mx-2px mt-2px mb-24px" tabindex="0"><div class="w-full lg:max-w-[255px]"><p class="text-grey-500 flex-1 m-0 text-16px font-semibold leading-24px -tracking-0.1px pb-6px w-[100%] break-words line-clamp-2">Q: Pls help ASAP. Pls show all work and steps. Pls circle the final answer.</p><p class="flex-1 m-0 text-shark text-14px leading-20px -tracking-0.1px w-[100%] break-words line-clamp-2">A: 1. Assuming they are asking for the value of m for which both planes will be perpendicular:To make…</p></div></a><a href="/questions-and-answers/5t-7t-rt-31-1-rt-31-1-10t-7-5t-7t33t-13-31-132-31-1-101-7-95t-7t3t-1-31-16-31-110t-7-95t-71-31-14-30/f40d27b8-1680-4449-ad72-f2d189a7fa73" class="flex-1 w-full no-underline mx-2px mt-2px mb-24px" tabindex="0"><div class="w-full lg:max-w-[255px]"><p class="text-grey-500 flex-1 m-0 text-16px font-semibold leading-24px -tracking-0.1px pb-6px w-[100%] break-words line-clamp-2">Q: Help solve step by step</p><p class="flex-1 m-0 text-shark text-14px leading-20px -tracking-0.1px w-[100%] break-words line-clamp-2">A: Step 1: Identify the derivative rules that applyConstant Rule: (where c = constant, ex: 10)d/dx (c)…</p></div></a><a href="/questions-and-answers/consider-the-following-heat-equation-on-a-rod-which-includes-heat-loss-through-the-lateral-side-and-/457d5f8b-f55e-4c47-839b-420898ae2a2f" class="flex-1 w-full no-underline mx-2px mt-2px mb-24px" tabindex="0"><div class="w-full lg:max-w-[255px]"><p class="text-grey-500 flex-1 m-0 text-16px font-semibold leading-24px -tracking-0.1px pb-6px w-[100%] break-words line-clamp-2">Q: Consider the following heat equation on a rod (which includes heat loss through the lateral side and…</p><p class="flex-1 m-0 text-shark text-14px leading-20px -tracking-0.1px w-[100%] break-words line-clamp-2">A: If doubt then aks. Please like.</p></div></a><a href="/questions-and-answers/24-1.3.-241/a03313e0-7b8a-491d-a04c-172aa15b86be" class="flex-1 w-full no-underline mx-2px mt-2px mb-24px" tabindex="0"><div class="w-full lg:max-w-[255px]"><p class="text-grey-500 flex-1 m-0 text-16px font-semibold leading-24px -tracking-0.1px pb-6px w-[100%] break-words line-clamp-2">Q: Look at the figure:The radius r measures 10cm and the radius R measures 20cm. The height h1 measures…</p><p class="flex-1 m-0 text-shark text-14px leading-20px -tracking-0.1px w-[100%] break-words line-clamp-2">A: (c) If the height of the cylinder were to change from 25cm to 25.2cm and all other measurements…</p></div></a><a href="/questions-and-answers/13.-find-the-equation-of-the-tangent-to-the-following-functions-at-the-indicated-point.-a-fx-x-3x6-a/a9d6b522-ef33-4ef0-af1e-dd115908c7a9" class="flex-1 w-full no-underline mx-2px mt-2px mb-24px" tabindex="0"><div class="w-full lg:max-w-[255px]"><p class="text-grey-500 flex-1 m-0 text-16px font-semibold leading-24px -tracking-0.1px pb-6px w-[100%] break-words line-clamp-2">Q: Please help on all asked questions, Pls show all work and steps, and circle the final answer.</p><p class="flex-1 m-0 text-shark text-14px leading-20px -tracking-0.1px w-[100%] break-words line-clamp-2">A: Step 1:13. a) The provided function is:f(x)=x2−3x+6 ..........(1)It is needed to obtain the…</p></div></a><a href="/questions-and-answers/classify-each-of-the-following-first-order-differential-equations-x-1-y-x-y-x-u-xy-32-14-dz-2y-dy-0-/367b7e47-1875-4039-ac10-736269e4bc0d" class="flex-1 w-full no-underline mx-2px mt-2px mb-24px" tabindex="0"><div class="w-full lg:max-w-[255px]"><p class="text-grey-500 flex-1 m-0 text-16px font-semibold leading-24px -tracking-0.1px pb-6px w-[100%] break-words line-clamp-2">Q: Classify each of the following first order differential equations (x + 1) y' + (x + y)² = x² У xy…</p><p class="flex-1 m-0 text-shark text-14px leading-20px -tracking-0.1px w-[100%] break-words line-clamp-2">A: Explanation:</p></div></a><a href="/questions-and-answers/in-this-question-we-will-consider-the-function-a-use-asymptotics-as-in-the-first-week-of-class-to-ma/7620e6bf-bc29-4e06-85a0-6d0755c7ca1b" class="flex-1 w-full no-underline mx-2px mt-2px mb-24px" tabindex="0"><div class="w-full lg:max-w-[255px]"><p class="text-grey-500 flex-1 m-0 text-16px font-semibold leading-24px -tracking-0.1px pb-6px w-[100%] break-words line-clamp-2">Q: solve part e</p><p class="flex-1 m-0 text-shark text-14px leading-20px -tracking-0.1px w-[100%] break-words line-clamp-2">A: Step 1:</p></div></a><a href="/questions-and-answers/in-exercises-33-38-find-the-value-of-fog-at-the-given-value-of-x.-x-x-1-u-1-u-gx-x-33.-fu-u-1-3-34.-/84831e5e-41d3-4150-9c6c-303936265658" class="flex-1 w-full no-underline mx-2px mt-2px mb-24px" tabindex="0"><div class="w-full lg:max-w-[255px]"><p class="text-grey-500 flex-1 m-0 text-16px font-semibold leading-24px -tracking-0.1px pb-6px w-[100%] break-words line-clamp-2">Q: In Exercises 33-38, find the value of (fog)' at the given value of x. √√√x, x = 1 u³ + 1, u = g(x) =…</p><p class="flex-1 m-0 text-shark text-14px leading-20px -tracking-0.1px w-[100%] break-words line-clamp-2">A: We are given two functions, f(u) and g(x), and we are asked to find the derivative of the composite…</p></div></a><a href="/questions-and-answers/4.-find-if-any-the-horizontal-asymptotes-of-the-following-functions-and-use-that-information-to-matc/abbb095b-fdb3-4664-99fb-b534d12eead9" class="flex-1 w-full no-underline mx-2px mt-2px mb-24px" tabindex="0"><div class="w-full lg:max-w-[255px]"><p class="text-grey-500 flex-1 m-0 text-16px font-semibold leading-24px -tracking-0.1px pb-6px w-[100%] break-words line-clamp-2">Q: 4. Find, if any, the horizontal asymptotes of the following functions and use that information to…</p><p class="flex-1 m-0 text-shark text-14px leading-20px -tracking-0.1px w-[100%] break-words line-clamp-2">A: (a)f(x)=x4+3x2+7x+10(x+1)4 Degree of the numerator: 4 (after expansion)Degree of the denominator:…</p></div></a><a href="/questions-and-answers/consider-the-following-heat-equation-on-a-rod-which-includes-heat-loss-through-the-lateral-side-and-/00faa39d-77d1-4183-84c5-f0f27d083011" class="flex-1 w-full no-underline mx-2px mt-2px mb-24px" tabindex="0"><div class="w-full lg:max-w-[255px]"><p class="text-grey-500 flex-1 m-0 text-16px font-semibold leading-24px -tracking-0.1px pb-6px w-[100%] break-words line-clamp-2">Q: Could section E and F be solved explicitly please?</p><p class="flex-1 m-0 text-shark text-14px leading-20px -tracking-0.1px w-[100%] break-words line-clamp-2">A: </p></div></a><a href="/questions-and-answers/a-12percent-interest-compounded-annually-b-11percent-interest-compounded-monthly-c-10percent-interes/0acd2c38-bb43-40f2-aed9-261804e22bc0" class="flex-1 w-full no-underline mx-2px mt-2px mb-24px" tabindex="0"><div class="w-full lg:max-w-[255px]"><p class="text-grey-500 flex-1 m-0 text-16px font-semibold leading-24px -tracking-0.1px pb-6px w-[100%] break-words line-clamp-2">Q: question says to rank in order the following options</p><p class="flex-1 m-0 text-shark text-14px leading-20px -tracking-0.1px w-[100%] break-words line-clamp-2">A: The effective annual rate (EAR) represents how much interest you earn in a year after compounding.…</p></div></a><a href="/questions-and-answers/find-the-general-and-particular-solution.-y6y-10y2220x-y0-2-y0-2/0183b442-b78f-40a3-983a-b28fde102362" class="flex-1 w-full no-underline mx-2px mt-2px mb-24px" tabindex="0"><div class="w-full lg:max-w-[255px]"><p class="text-grey-500 flex-1 m-0 text-16px font-semibold leading-24px -tracking-0.1px pb-6px w-[100%] break-words line-clamp-2">Q: Find the general and particular solution. y"+6y' + 10y=22+20x, y(0) = 2, y'(0) = -2</p><p class="flex-1 m-0 text-shark text-14px leading-20px -tracking-0.1px w-[100%] break-words line-clamp-2">A: Approach to solving the question: Solution for Differential EquationConsider the differential…</p></div></a><a href="/questions-and-answers/let-c-be-the-curve-consisting-of-the-three-line-segments-from-00-to-1-1-from-1-1-to-1-1-and-from-1-1/6200e566-8cac-4a4c-a501-344166e0625a" class="flex-1 w-full no-underline mx-2px mt-2px mb-24px" tabindex="0"><div class="w-full lg:max-w-[255px]"><p class="text-grey-500 flex-1 m-0 text-16px font-semibold leading-24px -tracking-0.1px pb-6px w-[100%] break-words line-clamp-2">Q: Let C be the curve consisting of the three line segments from (0, 0) to (1, 1), from (1, 1) to (1,…</p><p class="flex-1 m-0 text-shark text-14px leading-20px -tracking-0.1px w-[100%] break-words line-clamp-2">A: Step 1:</p></div></a><a href="/questions-and-answers/the-solution-of-the-initial-value-problem.-s-t-y-4-y-ty-4y-4-y1-4-t4-is-s-u-t4-7-2t4-5t4-1-y-t8-1-ln/a901f485-c2ec-438e-a239-a8ade9fd4597" class="flex-1 w-full no-underline mx-2px mt-2px mb-24px" tabindex="0"><div class="w-full lg:max-w-[255px]"><p class="text-grey-500 flex-1 m-0 text-16px font-semibold leading-24px -tracking-0.1px pb-6px w-[100%] break-words line-clamp-2">Q: The solution of the initial value problem. = S t y + 4 y √ty 4y = 4 โy(1) = 4 t4 is S У t4 +7 2t4…</p><p class="flex-1 m-0 text-shark text-14px leading-20px -tracking-0.1px w-[100%] break-words line-clamp-2">A: Step 1: Step 2:Step 3: Step 4:</p></div></a><a href="/questions-and-answers/1-1-0-19-13-c-lim-x-3-x-3-x-3-a-113-b-1-d-lim-2h-1-h-1-h-1-a-009-b-infinity-c-1-19-d-113-d-0/f2672bb3-d5a6-4249-b33d-35c48e24460b" class="flex-1 w-full no-underline mx-2px mt-2px mb-24px" tabindex="0"><div class="w-full lg:max-w-[255px]"><p class="text-grey-500 flex-1 m-0 text-16px font-semibold leading-24px -tracking-0.1px pb-6px w-[100%] break-words line-clamp-2">Q: Please help on all asked questions, Pls show all work and steps, and circle the final answer.</p><p class="flex-1 m-0 text-shark text-14px leading-20px -tracking-0.1px w-[100%] break-words line-clamp-2">A: Step 1: Step 2: Step 3: Step 4:</p></div></a><a href="/questions-and-answers/use-rref-method-to-solve-the-linear-system-x1-3x2-9-2x1-x2-8.-we-must-show-the-elementary-row-operat/bb19fb93-0de3-49c0-afe2-2e8fcf3a4b51" class="flex-1 w-full no-underline mx-2px mt-2px mb-24px" tabindex="0"><div class="w-full lg:max-w-[255px]"><p class="text-grey-500 flex-1 m-0 text-16px font-semibold leading-24px -tracking-0.1px pb-6px w-[100%] break-words line-clamp-2">Q: Use RREF method to solve the linear system x1 + 3x2 = 9, 2x1 + x2 8. We must show the elementary row…</p><p class="flex-1 m-0 text-shark text-14px leading-20px -tracking-0.1px w-[100%] break-words line-clamp-2">A: </p></div></a><a href="/questions-and-answers/find-x-for-x2-2/c8e43830-d8ae-4c56-afbf-ddb3fb02a7ad" class="flex-1 w-full no-underline mx-2px mt-2px mb-24px" tabindex="0"><div class="w-full lg:max-w-[255px]"><p class="text-grey-500 flex-1 m-0 text-16px font-semibold leading-24px -tracking-0.1px pb-6px w-[100%] break-words line-clamp-2">Q: find x for √x+2=-2</p><p class="flex-1 m-0 text-shark text-14px leading-20px -tracking-0.1px w-[100%] break-words line-clamp-2">A: There is no solution to the equation x+2=−2,because the square root of a number is always…</p></div></a><a href="/questions-and-answers/differentiate-the-function.-v-x-v-enhanced-feedback-1-2-3/d2d77d63-51bf-4399-862f-c931cb670145" class="flex-1 w-full no-underline mx-2px mt-2px mb-24px" tabindex="0"><div class="w-full lg:max-w-[255px]"><p class="text-grey-500 flex-1 m-0 text-16px font-semibold leading-24px -tracking-0.1px pb-6px w-[100%] break-words line-clamp-2">Q: Differentiate the function. v = (√x+· v' = Enhanced Feedback 1 2 3</p><p class="flex-1 m-0 text-shark text-14px leading-20px -tracking-0.1px w-[100%] break-words line-clamp-2">A: Step 1: Given function v=(x+3x1)2. We have to find v'. (differentiation of the function v) Step…</p></div></a><a href="/questions-and-answers/find-the-limit.-hint-use-polar-coordinates.-x2y2-lim-xy00-xy2-find-all-first-and-second-order-partia/3fdf73f5-70c3-488d-98ae-966cd890bce4" class="flex-1 w-full no-underline mx-2px mt-2px mb-24px" tabindex="0"><div class="w-full lg:max-w-[255px]"><p class="text-grey-500 flex-1 m-0 text-16px font-semibold leading-24px -tracking-0.1px pb-6px w-[100%] break-words line-clamp-2">Q: Find the limit. Hint use Polar Coordinates. x2y2 lim (x,y)+(0,0) x²+y2</p><p class="flex-1 m-0 text-shark text-14px leading-20px -tracking-0.1px w-[100%] break-words line-clamp-2">A: First, we need to find the first order partial derivatives of the function f(x,y) = x*y^(-2) +…</p></div></a><a href="/questions-and-answers/a-ladder-23-feet-long-leans-against-a-wall-and-the-foot-of-the-ladder-is-sliding-away-at-a-constant-/f55543c1-01b6-4022-ac3a-ac6600631e3c" class="flex-1 w-full no-underline mx-2px mt-2px mb-24px" tabindex="0"><div class="w-full lg:max-w-[255px]"><p class="text-grey-500 flex-1 m-0 text-16px font-semibold leading-24px -tracking-0.1px pb-6px w-[100%] break-words line-clamp-2">Q: A ladder 23 feet long leans against a wall and the foot of the ladder is sliding away at a constant…</p><p class="flex-1 m-0 text-shark text-14px leading-20px -tracking-0.1px w-[100%] break-words line-clamp-2">A: if doubt arises please mention in the comments.</p></div></a><a href="/questions-and-answers/b-ving-after-july.-2-c-what-kind-of-time-will-lation-5-5-a-bank-advertises-that-it-compounds-continu/a78e1e4e-f61e-4e52-9b7b-39a900d4cddb" class="flex-1 w-full no-underline mx-2px mt-2px mb-24px" tabindex="0"><div class="w-full lg:max-w-[255px]"><p class="text-grey-500 flex-1 m-0 text-16px font-semibold leading-24px -tracking-0.1px pb-6px w-[100%] break-words line-clamp-2">Q: b) Ving after July). (2) c) what kind of time will: lation (5) 5) A bank advertises that it…</p><p class="flex-1 m-0 text-shark text-14px leading-20px -tracking-0.1px w-[100%] break-words line-clamp-2">A: Because the bank employs continuous compounding, your money will increase steadily over time. We…</p></div></a><a href="/questions-and-answers/6-for-the-graph-provided-answer-the-following-a-for-which-x-is-the-function-discontinuous-what-is-th/02f06d40-56e4-4dca-a988-9d9c30bb05bc" class="flex-1 w-full no-underline mx-2px mt-2px mb-24px" tabindex="0"><div class="w-full lg:max-w-[255px]"><p class="text-grey-500 flex-1 m-0 text-16px font-semibold leading-24px -tracking-0.1px pb-6px w-[100%] break-words line-clamp-2">Q: 6) For the graph provided answer the following: a) For which x is the function discontinuous? What…</p><p class="flex-1 m-0 text-shark text-14px leading-20px -tracking-0.1px w-[100%] break-words line-clamp-2">A: (a)The function is discontinuous at x=Reason-5The limx→−5f(x) does not exist since its left-hand…</p></div></a><a href="/questions-and-answers/diego-deposited-a-certain-sum-of-money-in-a-bank-4-years-ago.-the-bank-had-been-paying-interest-at-t/ecad4ecc-71e7-480d-abfc-078188f3f996" class="flex-1 w-full no-underline mx-2px mt-2px mb-24px" tabindex="0"><div class="w-full lg:max-w-[255px]"><p class="text-grey-500 flex-1 m-0 text-16px font-semibold leading-24px -tracking-0.1px pb-6px w-[100%] break-words line-clamp-2">Q: Diego deposited a certain sum of money in a bank 4 years ago. The bank had been paying interest at…</p><p class="flex-1 m-0 text-shark text-14px leading-20px -tracking-0.1px w-[100%] break-words line-clamp-2">A: Step 1:For the compounded continuously, the formula for the amount at time t is given by…</p></div></a><a href="/questions-and-answers/course-name-calculus-with-analytical-geometry-1-course-code-math-132-do-not-use-artificial-intellige/528c6715-d869-4cf2-9064-17c76ad16160" class="flex-1 w-full no-underline mx-2px mt-2px mb-24px" tabindex="0"><div class="w-full lg:max-w-[255px]"><p class="text-grey-500 flex-1 m-0 text-16px font-semibold leading-24px -tracking-0.1px pb-6px w-[100%] break-words line-clamp-2">Q: Do not use AI apps for solving these maths . To solve by handwriting</p><p class="flex-1 m-0 text-shark text-14px leading-20px -tracking-0.1px w-[100%] break-words line-clamp-2">A: We are asked to find the limit of the function (x-2)^-16 as x approaches 2 using L'Hopital's Rule.…</p></div></a><a href="/questions-and-answers/problem-1.-discrete-stochastic-integrals-for-general-martingales.-n0-let-mn-be-a-martingale-with-res/9eb11759-f171-4a0b-a65d-81744bca2af7" class="flex-1 w-full no-underline mx-2px mt-2px mb-24px" tabindex="0"><div class="w-full lg:max-w-[255px]"><p class="text-grey-500 flex-1 m-0 text-16px font-semibold leading-24px -tracking-0.1px pb-6px w-[100%] break-words line-clamp-2">Q: Problem 1. Discrete stochastic integrals for general martingales. n=0 Let (Mn) be a martingale with…</p><p class="flex-1 m-0 text-shark text-14px leading-20px -tracking-0.1px w-[100%] break-words line-clamp-2">A: Part (a): Prove that E[In]=0The process (In) is defined as:In=∑k=1nZk(Mk−Mk−1)Since (Mn) is…</p></div></a><a href="/questions-and-answers/8.-consider-the-function-x-x-8x-18x-27-and-in-factored-form-fx-x-1x-3-a-determine-the-x-and-y-interc/7396f302-08b7-4a73-b792-50312cfc678f" class="flex-1 w-full no-underline mx-2px mt-2px mb-24px" tabindex="0"><div class="w-full lg:max-w-[255px]"><p class="text-grey-500 flex-1 m-0 text-16px font-semibold leading-24px -tracking-0.1px pb-6px w-[100%] break-words line-clamp-2">Q: pls draw the graph by showing and incorporating everything.</p><p class="flex-1 m-0 text-shark text-14px leading-20px -tracking-0.1px w-[100%] break-words line-clamp-2">A: f)</p></div></a><a href="/questions-and-answers/2-find-the-value-of-b-in-the-definite-integral-below.-l-tanx-dr-2/6f8d8a07-431a-41b5-83f4-79557b7e36b6" class="flex-1 w-full no-underline mx-2px mt-2px mb-24px" tabindex="0"><div class="w-full lg:max-w-[255px]"><p class="text-grey-500 flex-1 m-0 text-16px font-semibold leading-24px -tracking-0.1px pb-6px w-[100%] break-words line-clamp-2">Q: 2) Find the value of b in the definite integral below. L tan(x) dr = 2</p><p class="flex-1 m-0 text-shark text-14px leading-20px -tracking-0.1px w-[100%] break-words line-clamp-2">A: </p></div></a><a href="/questions-and-answers/instruction-course-name-calculus-with-analytical-geometry-1-course-code-math-132-1.-solution-must-ha/ac2efcb0-bf9a-4e8a-9933-7be6fd20bdce" class="flex-1 w-full no-underline mx-2px mt-2px mb-24px" tabindex="0"><div class="w-full lg:max-w-[255px]"><p class="text-grey-500 flex-1 m-0 text-16px font-semibold leading-24px -tracking-0.1px pb-6px w-[100%] break-words line-clamp-2">Q: Instruction: Course Name: Calculus with Analytical Geometry-1 Course Code: MATH 132 1. Solution must…</p><p class="flex-1 m-0 text-shark text-14px leading-20px -tracking-0.1px w-[100%] break-words line-clamp-2">A: </p></div></a><a href="/questions-and-answers/43.-in-parts-a-c-find-the-limit-by-making-the-indicated-substitution.-1-1-a-lim-x-sin-t-8x-x-x-b-lim/13504673-d604-4429-bf7d-994fee343a88" class="flex-1 w-full no-underline mx-2px mt-2px mb-24px" tabindex="0"><div class="w-full lg:max-w-[255px]"><p class="text-grey-500 flex-1 m-0 text-16px font-semibold leading-24px -tracking-0.1px pb-6px w-[100%] break-words line-clamp-2">Q: #5, 43 a and b Hello! Please , can you help me with the attached Calculus problem seen in the…</p><p class="flex-1 m-0 text-shark text-14px leading-20px -tracking-0.1px w-[100%] break-words line-clamp-2">A: Let's solve these limits using the indicated substitution (t=x1). a)(limx→∞xsin(x1)) Substitute…</p></div></a><a href="/questions-and-answers/which-of-the-following-is-a-solution-of-the-initial-value-problem-s-1-sy-lny-dx-x-dy-0-ye-e-hint-int/12e1a97c-bd92-4513-968c-8bc492c18bd6" class="flex-1 w-full no-underline mx-2px mt-2px mb-24px" tabindex="0"><div class="w-full lg:max-w-[255px]"><p class="text-grey-500 flex-1 m-0 text-16px font-semibold leading-24px -tracking-0.1px pb-6px w-[100%] break-words line-clamp-2">Q: Which of the following is a solution of the initial value problem S 1 Sy ln(y) dx + x dy = 0 \y(e) =…</p><p class="flex-1 m-0 text-shark text-14px leading-20px -tracking-0.1px w-[100%] break-words line-clamp-2">A: Step 1: Step 2: Step 3: Step 4:</p></div></a><a href="/questions-and-answers/6.-if-f4-3-and-f4-5-find-g4-where-gx-xfx./b8ce1ea8-10ec-488d-9075-b13e2d3f62a7" class="flex-1 w-full no-underline mx-2px mt-2px mb-24px" tabindex="0"><div class="w-full lg:max-w-[255px]"><p class="text-grey-500 flex-1 m-0 text-16px font-semibold leading-24px -tracking-0.1px pb-6px w-[100%] break-words line-clamp-2">Q: Please help on all asked questions. Please show all work and steps. Pls circle the final answer.</p><p class="flex-1 m-0 text-shark text-14px leading-20px -tracking-0.1px w-[100%] break-words line-clamp-2">A: </p></div></a><a href="/questions-and-answers/find-the-radius-of-convergence-r-of-the-series.-x5-5-inn-n-2-r-5-find-the-interval-i-of-convergence-/e211fe8d-36c4-4d32-bf4a-dfc163e81632" class="flex-1 w-full no-underline mx-2px mt-2px mb-24px" tabindex="0"><div class="w-full lg:max-w-[255px]"><p class="text-grey-500 flex-1 m-0 text-16px font-semibold leading-24px -tracking-0.1px pb-6px w-[100%] break-words line-clamp-2">Q: Please help me with these questions. I am having trouble understanding what to do. I keep getting…</p><p class="flex-1 m-0 text-shark text-14px leading-20px -tracking-0.1px w-[100%] break-words line-clamp-2">A: Part (a):</p></div></a><a href="/questions-and-answers/0-5.-x-x-sin-dx-s-x3-3x-sin-x-x2-2-cos-6x-4-sin-x-8-cos-x-16-sin-nix/93117b08-0722-4d84-9d68-900f611dcc2d" class="flex-1 w-full no-underline mx-2px mt-2px mb-24px" tabindex="0"><div class="w-full lg:max-w-[255px]"><p class="text-grey-500 flex-1 m-0 text-16px font-semibold leading-24px -tracking-0.1px pb-6px w-[100%] break-words line-clamp-2">Q: 0 5. χ √√ x³ sin dx = S: x3 3x² sin x X2 -2 cos 6x -4 sin X 8 cos x 16 sin NIX</p><p class="flex-1 m-0 text-shark text-14px leading-20px -tracking-0.1px w-[100%] break-words line-clamp-2">A: If you have any problem let me know in comment section thank you.</p></div></a><a href="/questions-and-answers/15.-lim-x0-2-x-_-3-sinx-3-x-x/73fbb3e8-e068-48c3-9aff-0d099815b641" class="flex-1 w-full no-underline mx-2px mt-2px mb-24px" tabindex="0"><div class="w-full lg:max-w-[255px]"><p class="text-grey-500 flex-1 m-0 text-16px font-semibold leading-24px -tracking-0.1px pb-6px w-[100%] break-words line-clamp-2">Q: #5, 15 Please help me solve this problem in the attached image. Thank you. The instruction for the…</p><p class="flex-1 m-0 text-shark text-14px leading-20px -tracking-0.1px w-[100%] break-words line-clamp-2">A: </p></div></a><a href="/questions-and-answers/1.-s-x1-x-5-dx/a37fb278-ae7e-44a1-b275-cb93375ae90d" class="flex-1 w-full no-underline mx-2px mt-2px mb-24px" tabindex="0"><div class="w-full lg:max-w-[255px]"><p class="text-grey-500 flex-1 m-0 text-16px font-semibold leading-24px -tracking-0.1px pb-6px w-[100%] break-words line-clamp-2">Q: 1. S x+1 √x-5 dx</p><p class="flex-1 m-0 text-shark text-14px leading-20px -tracking-0.1px w-[100%] break-words line-clamp-2">A: Step 1: Step 2: Step 3: Step 4:</p></div></a><a href="/questions-and-answers/use-integration-by-parts-to-find-the-indefinite-integral.-1.-x-cos-x-dx-fx-2.-xe-dx-xex-dx-math-iz-a/cd033a0e-e20e-4cbb-9b23-9c3910d6587c" class="flex-1 w-full no-underline mx-2px mt-2px mb-24px" tabindex="0"><div class="w-full lg:max-w-[255px]"><p class="text-grey-500 flex-1 m-0 text-16px font-semibold leading-24px -tracking-0.1px pb-6px w-[100%] break-words line-clamp-2">Q: Answer all parts and show work pls</p><p class="flex-1 m-0 text-shark text-14px leading-20px -tracking-0.1px w-[100%] break-words line-clamp-2">A: If you have any problem let me know in the comment section thank you.</p></div></a><a href="/questions-and-answers/4.-i-let-f-r2-r-be-defined-by-fx1-x2-2x-8x1x24x1.-find-all-local-minima-of-f-on-r.-20-marks-ii-does-/670ba45a-5246-49f8-8827-0ee152ae211d" class="flex-1 w-full no-underline mx-2px mt-2px mb-24px" tabindex="0"><div class="w-full lg:max-w-[255px]"><p class="text-grey-500 flex-1 m-0 text-16px font-semibold leading-24px -tracking-0.1px pb-6px w-[100%] break-words line-clamp-2">Q: 4. (i) Let f R2 → R be defined by f(x1, x2) = 2x 8x1x2+4x+1. Find all local minima of ƒ on R². [20…</p><p class="flex-1 m-0 text-shark text-14px leading-20px -tracking-0.1px w-[100%] break-words line-clamp-2">A: Step 1: Step 2: Step 3: Step 4:</p></div></a><a href="/questions-and-answers/x-c.instructure.comcourses1512external_toolsretrievedisplayfull_widthandurlhttpspercent3apercent2fpe/809df3a4-fef7-4981-af50-2d6389a16afd" class="flex-1 w-full no-underline mx-2px mt-2px mb-24px" tabindex="0"><div class="w-full lg:max-w-[255px]"><p class="text-grey-500 flex-1 m-0 text-16px font-semibold leading-24px -tracking-0.1px pb-6px w-[100%] break-words line-clamp-2">Q: X +…</p><p class="flex-1 m-0 text-shark text-14px leading-20px -tracking-0.1px w-[100%] break-words line-clamp-2">A: a.It is given that there are 200 students in the class and 35% are science majors. Hence number of…</p></div></a></div></div></div></div><div id="qa_ad_sidebar" class="mt-[1rem] mx-auto mb-0 min-h-[250px] max-h-[600px] w-[300px] max-md:hidden"></div></div><div id="QNA-PAGE-MIDDLE-MAIN" class="flexCol"><div class="flex flex-col-reverse sm:flex-row sm:justify-between sm:items-center"><div class="flex flex-initial border-l-[2px] border-solid border-yellow700"><div aria-level="2" role="heading" data-section-name="Question" class="flex-initial text-20px font-semibold font-sans text-darkBlue-900 ml-8px md:text-24px">Question</div></div></div><div class="flexCol flex-initial border-[1px] mt-24px p-24px rounded-lg border-solid border-ghost bg-white"><div class="font-sans text-16px text-black leading-24px mb-24px"><p>I wrote out the question as requested and tried to re-upload the 2 questions I'm interested in. I need the solution to e and f after we find the value of Cn for that question based on your solution before. I hope this clears things up.</p> <p>Consider the following heat equation on a rod (which includes heat loss through the lateral side and fixed heat flow on the boundary):</p> <p> ∂u/∂t = ∂2u/∂x2 − 9u, 0 < x < 1, t > 0,</p> <p>subject to the boundary conditions</p> <p>ux(0, t) = 3, ux(1, t) = 18, t > 0,</p> <p>and the initial condition</p> <p>u(x, 0) = 0, 0 < x < 1.</p> <p>(a) Find the equilibrium solution uE(x) for this problem by solving a certain boundary value problem on (0, 1).<br />(b) Use integration by parts and the given boundary conditions that uE(x) satisfies to compute</p> <p>A0 = 1∫0 u′′E (x) dx</p> <p>Enter A0. (Do not use the explicit formula for uE(x) obtained in part (a).)</p> <p><br />(c) Use integration by parts and the given boundary conditions that uE(x) satisfies to show that<br />1∫0 u′′E (x) cos(nπx) dx = An + B*n^2 1∫0 uE(x) cos(nπx) dx, n ≥ 1, (1)</p> <p>for some constants B and An. (Do not use the explicit formula for uE(x) obtained in part (a).) Enter the values of B and An (in that order) into the answer box below, separated with a comma.</p> <p><br />(d) Use the differential equation that uE(x) satisfies together with the results obtained in (b) and (c) to deduce the Fourier cosine series representation for uE(x) on (0, 1) which is of the form</p> <p> a0/2 + ∞Σn =1 an cos(nπx).</p> <p>Enter the values of a0 and an (in that order) into the answer box below, separated with a comma.</p> <p><br />(e) Show that v(x, t) = u(x, t) − uE(x, t) is solution of a homogeneous problem (with a different initial condition) and solve it using the method of separation of variables and the superposition principle. The solution has the form</p> <p>v(x, t) = G0(t) + ∞Σn =1 Gn(t) cos(nπx)</p> <p>Enter the functions G0(t) and Gn(t) (in that order) into the answer box below, separated with a comma.</p> <p><br />(f) The solution u(x, t) of the original problem, written as a cosine Fourier series with coefficients that are functions of t, has the form</p> <p>u(x, t) = H0(t) + ∞Σn =1 Hn(t) cos(nπx)</p> <p>Enter the functions H0(t) and Hn(t) (in that order) into the answer box below, separated with a comma. </p></div><figure class=""><div class="relative"><img alt="(e) Show that v(x, t) = u(x, t) — uɛ(x, t) is solution of a homogeneous problem (with a different initial condition) and solve it using the method of separation of variables and the superposition principle. The solution has the form v(x,t) = Go(t) + Σ Gn(t) cos(nлx) n=1 Enter the functions Go (t) and Gn(t) (in that order) into the answer box below, separated with a comma. (f) The solution u(x, t) of the original problem, written as a cosine Fourier series with coefficients that are functions of t, has the form 8 u(x,t) = H₁(t) + Σ H₂(t) cos(nлx) n=1 Enter the functions Ho(t) and H₂(t) (in that order) into the answer box below, separated with a comma." fetchpriority="high" width="1200" height="351" decoding="async" data-nimg="1" style="color:transparent;max-width:100%;height:auto;max-height:540px;aspect-ratio:1200 / 351" sizes="(min-width: 1320px) 788px, (min-width: 1040px) calc(88.08vw - 357px), (min-width: 860px) calc(100vw - 131px), calc(97.04vw - 74px)" srcSet="/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9ae7b3bf-1b32-4ccc-a45c-3ac065d5afbc%2F0d7ed346-3e61-48a0-8236-b42a96af6267%2Fl9qlog_processed.png&w=16&q=75 16w, /v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9ae7b3bf-1b32-4ccc-a45c-3ac065d5afbc%2F0d7ed346-3e61-48a0-8236-b42a96af6267%2Fl9qlog_processed.png&w=32&q=75 32w, /v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9ae7b3bf-1b32-4ccc-a45c-3ac065d5afbc%2F0d7ed346-3e61-48a0-8236-b42a96af6267%2Fl9qlog_processed.png&w=48&q=75 48w, /v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9ae7b3bf-1b32-4ccc-a45c-3ac065d5afbc%2F0d7ed346-3e61-48a0-8236-b42a96af6267%2Fl9qlog_processed.png&w=64&q=75 64w, /v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9ae7b3bf-1b32-4ccc-a45c-3ac065d5afbc%2F0d7ed346-3e61-48a0-8236-b42a96af6267%2Fl9qlog_processed.png&w=96&q=75 96w, /v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9ae7b3bf-1b32-4ccc-a45c-3ac065d5afbc%2F0d7ed346-3e61-48a0-8236-b42a96af6267%2Fl9qlog_processed.png&w=128&q=75 128w, /v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9ae7b3bf-1b32-4ccc-a45c-3ac065d5afbc%2F0d7ed346-3e61-48a0-8236-b42a96af6267%2Fl9qlog_processed.png&w=256&q=75 256w, /v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9ae7b3bf-1b32-4ccc-a45c-3ac065d5afbc%2F0d7ed346-3e61-48a0-8236-b42a96af6267%2Fl9qlog_processed.png&w=384&q=75 384w, /v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9ae7b3bf-1b32-4ccc-a45c-3ac065d5afbc%2F0d7ed346-3e61-48a0-8236-b42a96af6267%2Fl9qlog_processed.png&w=640&q=75 640w, /v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9ae7b3bf-1b32-4ccc-a45c-3ac065d5afbc%2F0d7ed346-3e61-48a0-8236-b42a96af6267%2Fl9qlog_processed.png&w=750&q=75 750w, /v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9ae7b3bf-1b32-4ccc-a45c-3ac065d5afbc%2F0d7ed346-3e61-48a0-8236-b42a96af6267%2Fl9qlog_processed.png&w=828&q=75 828w, /v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9ae7b3bf-1b32-4ccc-a45c-3ac065d5afbc%2F0d7ed346-3e61-48a0-8236-b42a96af6267%2Fl9qlog_processed.png&w=1080&q=75 1080w, /v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9ae7b3bf-1b32-4ccc-a45c-3ac065d5afbc%2F0d7ed346-3e61-48a0-8236-b42a96af6267%2Fl9qlog_processed.png&w=1200&q=75 1200w, /v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9ae7b3bf-1b32-4ccc-a45c-3ac065d5afbc%2F0d7ed346-3e61-48a0-8236-b42a96af6267%2Fl9qlog_processed.png&w=1920&q=75 1920w, /v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9ae7b3bf-1b32-4ccc-a45c-3ac065d5afbc%2F0d7ed346-3e61-48a0-8236-b42a96af6267%2Fl9qlog_processed.png&w=2048&q=75 2048w, /v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9ae7b3bf-1b32-4ccc-a45c-3ac065d5afbc%2F0d7ed346-3e61-48a0-8236-b42a96af6267%2Fl9qlog_processed.png&w=3840&q=75 3840w" src="/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9ae7b3bf-1b32-4ccc-a45c-3ac065d5afbc%2F0d7ed346-3e61-48a0-8236-b42a96af6267%2Fl9qlog_processed.png&w=3840&q=75"/></div><div class="w-full mt-16px bg-cometB/30 p-8px"><span class="font-semibold text-darkBlue-900 text-12px leading-24px mr-8px">Transcribed Image Text:</span><span class=" text-darkBlue-900 text-12px leading-16px my-16px mx-0px">(e) Show that v(x, t) = u(x, t) — uɛ(x, t) is solution of a homogeneous problem (with a different initial condition) and solve it using the method of separation of variables and the superposition principle. The solution has the form v(x,t) = Go(t) + Σ Gn(t) cos(nлx) n=1 Enter the functions Go (t) and Gn(t) (in that order) into the answer box below, separated with a comma. (f) The solution u(x, t) of the original problem, written as a cosine Fourier series with coefficients that are functions of t, has the form 8 u(x,t) = H₁(t) + Σ H₂(t) cos(nлx) n=1 Enter the functions Ho(t) and H₂(t) (in that order) into the answer box below, separated with a comma.</span></div></figure></div><div class="flex flex-initial items-center mt-24px border-l-[2px] border-solid border-yellow700"><div aria-level="2" role="heading" data-section-name="Expert Solution" class="flex-initial text-20px font-semibold font-sans text-darkBlue-900 ml-8px md:text-24px">Expert Solution</div><img class="w-24px h-24px ml-16px" src="/static/compass_v2/shared-icons/check-mark.png" alt="" decoding="async" width="24" height="24"/></div><div id="Expert-Solution" class="paywall"></div><div id="solution-summary-v2-wrapper" class="hidden relative flexCol flex-initial border-[1px] mt-24px p-24px rounded-lg border-solid border-ghost bg-white"><div class="relative"><div style="height:350px" class="relative"><div class="sticky top-[50px] bg-darkBlue600 flex flex-col p-[16px] md:p-[24px] gap-[24px] max-w-[300px] md:max-w-[450px] m-auto items-center text-center rounded-[8px] z-[800]"><div class="flex flex-col gap-[10px] items-center"><div class="text-[24px] leading-[32px] p-[10px] text-white font-sans font-semibold">This question has been solved!</div><div class="text-[16px] leading-[24px] font-sans text-white">Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.</div></div><div class="mt-24px flex flex-col items-center text-center sm:m-0"><a href="/account/registration" class="flex-initial w-[100%] secondary-button sm:w-[264px] justify-center mb-16px" tabindex="0">SEE SOLUTION</a><a href="/questions-and-answers/1-determine-the-area-of-the-region-bounded-by-the-graph-of-the-function-and-the-tangent-line-to-the-/0001183d-8c9b-44b2-a8b7-072b245cc489" target="_blank" class="flex-initial text-16px underline text-white cursor-pointer text-left leading-24px" tabindex="0">Check out a sample Q&A here</a></div></div><div class="flex flex-col gap-[24px] w-[100%] absolute top-0"><div class="flex h-[330px] bg-[url('/static/compass_v2/solutionSummary/blurred-answer-V2.jpg')]"></div></div></div></div><div class="flex-1"></div></div><div id="solution-summary-v1-wrapper" class="block flexCol flex-initial border-[1px] mt-24px p-24px rounded-lg border-solid border-ghost bg-white"><div class="flex flex-col p-24px sm:p-48px bg-darkBlue600 rounded-[10px] sm:flex-row justify-between sm:items-center"><div><div class="flex flex-row justify-start mt-18px"><div class="mr-10px"><img width="24px" height="24px" src="/static/compass_v2/solutionSummary/steps.svg" alt="steps" loading="lazy" decoding="async"/></div><div><p class="p-0 m-0 text-20px leading-24px text-white font-sans font-semibold">Step by step</p><p class="p-0 m-0 mt-8px text-20px leading-24px text-white font-sans">Solved in 2 steps<!-- --> with 8 images</p></div></div></div><div class="mt-24px flex flex-col items-center text-center sm:m-0"><a href="/account/registration" class="flex-initial w-[100%] secondary-button sm:w-[264px] justify-center mb-16px" tabindex="0">SEE SOLUTION</a><a href="/questions-and-answers/1-determine-the-area-of-the-region-bounded-by-the-graph-of-the-function-and-the-tangent-line-to-the-/0001183d-8c9b-44b2-a8b7-072b245cc489" target="_blank" class="flex-initial text-16px underline text-white cursor-pointer text-left leading-24px" tabindex="0">Check out a sample Q&A here</a></div></div><div class="flex-1"><img width="628" height="112" src="/static/compass_v2/solution-images/blurred-answer.jpg" alt="Blurred answer" decoding="async" loading="lazy" style="aspect-ratio:5.607142857142857;width:100%"/></div></div></div></div><div id="QNA-PAGE-BOTTOM-CONTENT" class="flexCol w-full max-w-1188px mx-auto px-16px bg-page relative"><div class="pt-80px pb-[160px]" id="knowledge_booster_container"><div class="mt-32px mb-80px md:mb-0" id="similar-questions"><div class="flex items-center justify-between"><div class="block text-24px leading-20px text-darkBlue-900 font-semibold font-sans" data-section-name="Similar questions">Similar questions</div></div><div class="relative"><ul class="flex overflow-hidden w-[100%]"><li class="m-w-[100%] list-none text-left block [&+li]:block }"><div class="flex flex-col mt-40px w-[100%] sm:flex-row"><a href="/solution-answer/chapter-46-problem-69eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/let-xxt-be-a-twice-differentiable-function-and-consider-the-second-order-differential-equation/bea81a49-561f-4f50-a38c-2e5d5215c5db" class="mr-24px" tabindex="0"><div class="mb-20px m-w-[100%] w-[250px] no-underline border-[1px] border-solid border-grey100 p-[16px] md:mb-0px md:w-[318px] m-h-[134px] leading-24px hover:bg-banner-info"><div class="odd:mr-0px flex items-end justify-between w-[100%]"><div class="flex overflow-hidden h-[100px] "><div style="display:-webkit-box;-webkit-box-orient:vertical;-webkit-line-clamp:4" class="m-w-[350px] text-16px overflow-hidden text-grey-500">Let x=x(t) be a twice-differentiable function and consider the second order differential equation x+ax+bx=0(11) Show that the change of variables y = x' and z = x allows Equation (11) to be written as a system of two linear differential equations in y and z. Show that the characteristic equation of the system in part (a) is 2+a+b=0.</div></div><div class="flex ml-24px text-darkBlue900 text-24px"><svg stroke="currentColor" fill="currentColor" stroke-width="0" viewBox="0 0 24 24" style="color:#5B63FE" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path fill="none" d="M0 0h24v24H0z"></path><path d="M12 4l-1.41 1.41L16.17 11H4v2h12.17l-5.58 5.59L12 20l8-8z"></path></svg></div></div></div></a></div></li></ul></div></div><div class="mt-45px md:mt-48px"><div class="flex items-center justify-between"><div class="block text-20px leading-20px text-darkBlue-900 font-semibold font-sans" role="heading" aria-level="2">Recommended textbooks for you</div></div><div class="hidden mt-40px overflow-hidden justify-between md:flex"><li class="m-auto w-[100%] max-w-[100%] list-none text-left block"><div class="flex w-[100%] flex-col justify-start md:flex-row"><div class="min-w-[80%] mr-[40px] sm:min-w-[45%] md:min-w-[50%] mdl:min-w-[30%] md:m-0"><div class="flex"><img class="m-5px h-[146px] w-[113px] md:m-0 md:mr-16px" src="https://www.bartleby.com/isbn_cover_images/9781285463247/9781285463247_smallCoverImage.gif" alt="Linear Algebra: A Modern Introduction" loading="lazy" decoding="async"/><div class="w-[70%] mdl:w-[56%]"><a href="/textbooks/linear-algebra-a-modern-introduction-4th-edition/9781285463247/solutions" class="text-16px font-semibold leading-24px cursor-pointer no-underline text-grey-900 hover:no-underline" tabindex="0">Linear Algebra: A Modern Introduction</a><div class="flex items-center mt-8px text-grey-500 text-14px"><div class="w-12px h-12px bg-green50 rounded-[50%] flex items-center justify-center mr-8px"><div class="w-4px h-4px bg-green300 rounded-[50%]"></div></div>Algebra</div><div class="flex items-center mt-8px"><div class="font-semibold mr-8px text-14px">ISBN:</div><div class="text-grey-500 text-14px overflow-hidden text-ellipsis whitespace-nowrap">9781285463247</div></div><div class="flex items-center mt-8px"><div class="font-semibold mr-8px text-14px">Author:</div><div class="text-grey-500 text-14px overflow-hidden text-ellipsis whitespace-nowrap">David Poole</div></div><div class="flex items-center mt-8px"><div class="font-semibold mr-8px text-14px">Publisher:</div><div class="text-grey-500 text-14px overflow-hidden text-ellipsis whitespace-nowrap">Cengage Learning</div></div></div></div></div></div></li></div><div class="flex overflow-scroll mt-40px md:hidden"><div class="min-w-[80%] mr-[40px] sm:min-w-[45%] md:min-w-[50%] mdl:min-w-[30%] md:m-0"><div class="flex"><img class="m-5px h-[146px] w-[113px] md:m-0 md:mr-16px" src="https://www.bartleby.com/isbn_cover_images/9781285463247/9781285463247_smallCoverImage.gif" alt="Linear Algebra: A Modern Introduction" loading="lazy" decoding="async"/><div class="w-[70%] mdl:w-[56%]"><a href="/textbooks/linear-algebra-a-modern-introduction-4th-edition/9781285463247/solutions" class="text-16px font-semibold leading-24px cursor-pointer no-underline text-grey-900 hover:no-underline" tabindex="0">Linear Algebra: A Modern Introduction</a><div class="flex items-center mt-8px text-grey-500 text-14px"><div class="w-12px h-12px bg-green50 rounded-[50%] flex items-center justify-center mr-8px"><div class="w-4px h-4px bg-green300 rounded-[50%]"></div></div>Algebra</div><div class="flex items-center mt-8px"><div class="font-semibold mr-8px text-14px">ISBN:</div><div class="text-grey-500 text-14px overflow-hidden text-ellipsis whitespace-nowrap">9781285463247</div></div><div class="flex items-center mt-8px"><div class="font-semibold mr-8px text-14px">Author:</div><div class="text-grey-500 text-14px overflow-hidden text-ellipsis whitespace-nowrap">David Poole</div></div><div class="flex items-center mt-8px"><div class="font-semibold mr-8px text-14px">Publisher:</div><div class="text-grey-500 text-14px overflow-hidden text-ellipsis whitespace-nowrap">Cengage Learning</div></div></div></div></div></div><div class="flex justify-center relative md:justify-end mt-[40px]"><a href="/search?scope=Textbooks&q=Calculus&subject=Calculus&page=1" tabindex="0"><div class="text-14px text-blue-400 font-semibold -tracking-[0.2px] hover:underline md:text-16px">SEE MORE TEXTBOOKS</div></a></div></div></div></div></div></div><section id="AppLayout-Footers-ID" class="flexCol"><footer id="Main-Footer-ID" class="flex flex-col bg-darkBlue900 text-white pb-[100px] max-sm:pb-[60px]"><div id="Footer-Top-Container-ID" class="flex flex-col flex-1 py-40px px-35px border-b-[1px] border-minsk border-solid sm:py-50px sm:px-80px md:flex-row"><div id="Footer-Col2-ID" class="flex flex-col flex-0 mr-64px sm:mr-96px"><a href="/" aria-label="bartleby logo" class="flex flex-col mb-32px" tabindex="0"><img src="/static/compass_v2/bartleby-logos/bartleby-logo-tm-tag-inverted.svg" alt="bartleby" width="120" height="37.71" loading="lazy" decoding="async" style="width:120px;min-width:120px;height:37.71px;min-height:37.71px"/></a><div class="flex flex-col flex-1 lg:hidden"><div class="flex flex-col max-w-[134px]"><div class="flex flex-row items-center flex-auto "><a href="https://www.facebook.com/bartlebysolve" target="_blank" aria-label="bartleby Facebook page (link opens in new tab)" class="mr-24px" tabindex="0"><img src="/static/compass_v2/third-party/footer-facebook-icon-white.svg" alt="Facebook" width="9" height="17" loading="lazy" decoding="async" style="width:9px;min-width:9px;height:17px;min-height:17px"/></a><a href="https://twitter.com/bartlebysolve" target="_blank" aria-label="bartleby Twitter page (link opens in new tab)" class="mr-24px" tabindex="0"><img src="/static/compass_v2/third-party/footer-twitter-icon-white.svg" alt="Twitter" width="12" height="15" loading="lazy" decoding="async" style="width:12px;min-width:12px;height:15px;min-height:15px"/></a><a href="https://www.instagram.com/bartlebysolve" target="_blank" aria-label="bartleby Instagram page (link opens in new tab)" class="mr-24px" tabindex="0"><img src="/static/compass_v2/third-party/footer-instagram-icon-white.svg" alt="Instagram" width="12" height="12" loading="lazy" decoding="async" style="width:12px;min-width:12px;height:12px;min-height:12px"/></a><a href="https://www.youtube.com/channel/UCixjpE0Hapap4x0hKg7Fmfw" target="_blank" aria-label="bartleby YouTube page (link opens in new tab)" class="mr-24px" tabindex="0"><img src="/static/compass_v2/third-party/footer-youtube-icon-white.svg" alt="YouTube" width="12" height="17" loading="lazy" decoding="async" style="width:12px;min-width:12px;height:17px;min-height:17px"/></a></div><div class="text-alto text-center text-14px tracking-1px mt-32px mb-24px">GET THE APP</div><a href="https://apps.apple.com/us/app/bartleby-homework-help/id1522219588" target="_blank" aria-label="bartleby IOS App" class="mb-24px" tabindex="0"><img src="/static/compass_v2/third-party/apple-store-badge.svg" alt="Download from App store" width="134" height="44" loading="lazy" decoding="async" style="width:134px;min-width:134px;height:44px;min-height:44px;aspect-ratio:3.0454545454545454"/></a><a href="https://play.google.com/store/apps/details?id=com.bartleby.learn" target="_blank" aria-label="bartleby Android App" class="mb-24px" tabindex="0"><img src="/static/compass_v2/third-party/google-play-badge-new.png" alt="Download from Google play store" width="134" height="40" loading="lazy" decoding="async" style="width:134px;min-width:134px;height:40px;min-height:40px;aspect-ratio:3.35"/></a></div></div></div><div id="Footer-Col3-ID" class="flex flex-col flex-0 mr-64px md:flex-0"><a href="/about" class="text-white text-14px tracking-0.58px leading-33px flex-grow-0 flex-shrink-0 flex-auto " tabindex="0">About</a><a href="https://bartlebysupport.zendesk.com/hc/en-us" target="_blank" class="text-white text-14px tracking-0.58px leading-33px flex-grow-0 flex-shrink-0 flex-auto " tabindex="0">FAQ</a><a href="/academic-integrity" target="_blank" class="text-white text-14px tracking-0.58px leading-33px flex-grow-0 flex-shrink-0 flex-auto " tabindex="0">Academic Integrity</a><a href="/sitemap" class="text-white text-14px tracking-0.58px leading-33px flex-grow-0 flex-shrink-0 flex-auto " tabindex="0">Sitemap</a><a href="/sitemap/docs" class="text-white text-14px tracking-0.58px leading-33px flex-grow-0 flex-shrink-0 flex-auto " tabindex="0">Document Sitemap</a></div><div id="Footer-Col4-ID" class="flex flex-col flex-0 mr-0 sm:mr-64px md:flex-0"><a href="/about/contact" target="_blank" class="text-white text-14px tracking-0.58px leading-33px flex-grow-0 flex-shrink-0 flex-auto " tabindex="0">Contact Bartleby</a><a href="/writing/about-us/contact" target="_blank" class="text-white text-14px tracking-0.58px leading-33px flex-grow-0 flex-shrink-0 flex-auto " tabindex="0">Contact Research (Essays)</a><a href="/high-school-textbooks" class="text-white text-14px tracking-0.58px leading-33px flex-grow-0 flex-shrink-0 flex-auto " tabindex="0">High School Textbooks</a><a href="/lit" class="text-white text-14px tracking-0.58px leading-33px flex-grow-0 flex-shrink-0 flex-auto " tabindex="0">Literature Guides</a><a href="/concepts" class="text-white text-14px tracking-0.58px leading-33px flex-grow-0 flex-shrink-0 flex-auto " tabindex="0">Concept Explainers by Subject</a><a href="/writing" class="text-white text-14px tracking-0.58px leading-33px flex-grow-0 flex-shrink-0 flex-auto " tabindex="0">Essay Help</a><a href="/mobile" class="text-white text-14px tracking-0.58px leading-33px flex-grow-0 flex-shrink-0 flex-auto " tabindex="0">Mobile App</a></div><div id="Footer-Col3-Apps-ID" class="flex-col flex-1 max-w-[134px] hidden lg:flex lg:ml-auto"><div class="flex flex-col max-w-[134px]"><div class="flex flex-row items-center flex-auto "><a href="https://www.facebook.com/bartlebysolve" target="_blank" aria-label="bartleby Facebook page (link opens in new tab)" class="mr-24px" tabindex="0"><img src="/static/compass_v2/third-party/footer-facebook-icon-white.svg" alt="Facebook" width="9" height="17" loading="lazy" decoding="async" style="width:9px;min-width:9px;height:17px;min-height:17px"/></a><a href="https://twitter.com/bartlebysolve" target="_blank" aria-label="bartleby Twitter page (link opens in new tab)" class="mr-24px" tabindex="0"><img src="/static/compass_v2/third-party/footer-twitter-icon-white.svg" alt="Twitter" width="12" height="15" loading="lazy" decoding="async" style="width:12px;min-width:12px;height:15px;min-height:15px"/></a><a href="https://www.instagram.com/bartlebysolve" target="_blank" aria-label="bartleby Instagram page (link opens in new tab)" class="mr-24px" tabindex="0"><img src="/static/compass_v2/third-party/footer-instagram-icon-white.svg" alt="Instagram" width="12" height="12" loading="lazy" decoding="async" style="width:12px;min-width:12px;height:12px;min-height:12px"/></a><a href="https://www.youtube.com/channel/UCixjpE0Hapap4x0hKg7Fmfw" target="_blank" aria-label="bartleby YouTube page (link opens in new tab)" class="mr-24px" tabindex="0"><img src="/static/compass_v2/third-party/footer-youtube-icon-white.svg" alt="YouTube" width="12" height="17" loading="lazy" decoding="async" style="width:12px;min-width:12px;height:17px;min-height:17px"/></a></div><div class="text-alto text-center text-14px tracking-1px mt-32px mb-24px">GET THE APP</div><a href="https://apps.apple.com/us/app/bartleby-homework-help/id1522219588" target="_blank" aria-label="bartleby IOS App" class="mb-24px" tabindex="0"><img src="/static/compass_v2/third-party/apple-store-badge.svg" alt="Download from App store" width="134" height="44" loading="lazy" decoding="async" style="width:134px;min-width:134px;height:44px;min-height:44px;aspect-ratio:3.0454545454545454"/></a><a href="https://play.google.com/store/apps/details?id=com.bartleby.learn" target="_blank" aria-label="bartleby Android App" class="mb-24px" tabindex="0"><img src="/static/compass_v2/third-party/google-play-badge-new.png" alt="Download from Google play store" width="134" height="40" loading="lazy" decoding="async" style="width:134px;min-width:134px;height:40px;min-height:40px;aspect-ratio:3.35"/></a></div></div></div><div id="Footer-Bottom-Container-ID" class="pt-40px pb-20px px-35px sm:pt-50px sm:px-80px"><div id="Footer-Middle-Container-ID" class="flex flex-1 grow flex-col xl:flex-row xl:items-center flex-wrap"><a href="/terms" class="text-white text-14px tracking-0.58px leading-33px flex-grow-0 flex-shrink-0 flex-auto" tabindex="0">Terms of Use</a><div class="text-14px text-white mx-8px hidden xl:block">|</div><a href="/privacy" class="text-white text-14px tracking-0.58px leading-33px flex-grow-0 flex-shrink-0 flex-auto" tabindex="0">Privacy</a><div class="text-14px text-white mx-8px hidden xl:block">|</div><a href="/privacy#caprivacy" class="text-white text-14px tracking-0.58px leading-33px flex-grow-0 flex-shrink-0 flex-auto" tabindex="0">Your CA Privacy Rights</a><div class="text-14px text-white mx-8px hidden xl:block">|</div><a href="/privacy#naprivacy" class="text-white text-14px tracking-0.58px leading-33px flex-grow-0 flex-shrink-0 flex-auto" tabindex="0">Your NV Privacy Rights</a><div class="text-14px text-white mx-8px hidden xl:block">|</div><a href="/cookie-policy" class="text-white text-14px tracking-0.58px leading-33px flex-grow-0 flex-shrink-0 flex-auto" tabindex="0">Cookie Policy</a><div class="text-14px text-white mx-8px hidden xl:block">|</div><a href="/privacy#adchoices" class="text-white text-14px tracking-0.58px leading-33px flex-grow-0 flex-shrink-0 flex-auto" tabindex="0">About Ads</a><div class="text-14px text-white mx-8px hidden xl:block">|</div><button id="ot-sdk-btn" class="ot-sdk-show-settings">Do Not Sell or Share My Personal Information</button><div class="text-14px text-white mx-8px hidden xl:block">|</div><a href="https://coursehero-privacy.my.onetrust.com/webform/265c1602-2645-42a0-9388-484739b10fd3/b77bbeb7-7a3b-4b6c-b2ed-21594afd4fdf" target="_blank" class="text-white text-14px tracking-0.58px leading-33px flex-grow-0 flex-shrink-0 flex-auto" tabindex="0">Manage My Data</a></div><div class="block min-[1440px]:flex min-[1440px]:justify-between min-[1440px]:items-center"><div class="text-lavenderGrey text-14px tracking-0.58px leading-33px flex-grow-0 flex-shrink-0 flex-auto mt-0px xl:mt-20px">Copyright, Community Guidelines, DSA & other Legal Resources: <a href="https://www.learneo.com/legal" target="_blank" class="text-white" tabindex="0">Learneo Legal Center</a></div><div id="Footer-Middle-Container-CopyRight" class="text-lavenderGrey flex items-center text-center text-10px tracking-1px leading-17px pt-30px">bartleby, a Learneo, Inc. business</div></div></div></footer></section></main></div></div><script id="__NEXT_DATA__" type="application/json">{"props":{"pageProps":{"storeSlicesData":{"uiState":{"scrollPosition":0},"pageState":{"renderTime":1732536383070},"commonPageData":{"appSettings":{"qna":{"questionLimitForEmailVerification":0},"isExitIntentModalEnabled":false,"showBenefitsForVisitorOnRegistation":true,"isReferAFriendEnabled":true,"useTutoringStandAloneNavigation":false,"showMaintenanceModal":false,"numberOfTbsPageViewsBeforeRegisterModal":3,"numberOfLitPageViewsBeforeRegisterModal":100,"tutorRegistrationSkuCookieTTLMinutes":43200,"tutorRegistrationSku":"bb_tut_60_min","showKnowledgeBoosterBlock":true,"shouldEnableLiveChat":true,"shouldEnableQnaIntercept":true,"shouldShowLiveChatFabForAllSubjects":true,"shouldAlwaysShowLiveChatButtonInQnaForm":true,"shouldShowPopularTextbooksOnHomepage":false,"shouldShowQnaArchiveOnHomepage":false,"shouldRedirectToHomeDashboardAfterPayment":true,"shouldShowNotesCTAonTBSAndQNA":false,"addPlaceholderConfiguration":{"shouldRenderHighschoolTextbookAdsPlaceholder":true,"shouldRenderHighschoolSolutionAdsPlaceholder":true,"shouldRenderTextbookSolutionPlaceholder":true,"shouldRenderTextbookAdsPlaceholder":true,"shouldRenderQnAPlaceholder":true},"numberOfTbsPageViewsAfterRegisteration":3,"shouldShowPaymentSliderOnHighSchoolTextbook":true,"shouldShowRegistrationSliderOnHighSchoolTextbook":true,"shouldAskForAiQnaResponse":true,"shouldShowMyStudyRoom":true,"millionsOfSolutionsAvailable":10,"pageBottomBanner":{"enabled":false,"copy":"\u003cp\u003e\u003cb\u003eNotice: Updates to our Service Terms and Privacy Policy\u003c/b\u003e\u003cbr/\u003eOn August 29, 2024, we'll update our \u003ca href='/terms'\u003eService Terms\u003c/a\u003e and \u003ca href='/privacy'\u003ePrivacy Policy\u003c/a\u003e. Learn more \u003ca href='https://www.bartleby.com/archive/tos-summary.pdf'\u003ehere\u003c/a\u003e.\u003c/p\u003e","id":"1"},"privacyPolicyAndTermsOfServicesBanner":{"enabled":true,"heading":"Update: We've updated our Terms and Privacy Policy","text":"To continue using the Services, you need to confirm that you agree to our \u003ca href='/terms' target='_blank'\u003eService Terms\u003c/a\u003e and have read our \u003ca href='/privacy' target='_blank'\u003ePrivacy Policy\u003c/a\u003e.","footerText":"If you have any questions, contact our \u003ca href='mailto:customercare@bartleby.com'\u003eCustomer Support Team\u003c/a\u003e."},"shouldShowPrivacyNotificationBox":false,"homepageFaq":[{"id":0,"question":"How do I pay for my subscription?","url":"https://bartlebysupport.zendesk.com/hc/en-us/articles/17969897988887-How-do-I-pay-for-my-subscription","description":"We currently accept Visa, MasterCard, American Express, Paypal, Discover and Diners Club."},{"id":1,"question":"Can I pause my subscription?","url":"https://bartlebysupport.zendesk.com/hc/en-us/articles/17970005304983-Can-I-pause-my-subscription","description":"Everyone needs a break. We get it! But pausing your subscription is better than cancelling it and here’s why: Kick back and relax. You..."},{"id":2,"question":"Can I have a refund?","url":"https://bartlebysupport.zendesk.com/hc/en-us/articles/17970026312471-Can-I-have-a-refund","description":"We do not offer refunds. However, if you cancel your subscription, you will not be billed again."},{"id":3,"question":"How do I change my plan?","url":"https://bartlebysupport.zendesk.com/hc/en-us/articles/17969959718295-How-do-I-change-my-plan","description":"If you want to update your plan, please get in touch with our support team at customercare@bartleby.com or use the ‘contact us’ form on..."},{"id":4,"question":"What is Expert Bartleby Q\u0026A?","url":"https://bartlebysupport.zendesk.com/hc/en-us/articles/17967460444823-What-is-Expert-Bartleby-Q-A","description":"Expert Q\u0026A helps enhance your understanding of concepts in over 30 STEM and Business subjects. Submit your toughest homework and..."},{"id":5,"question":"How can I ensure my questions get answered as quickly as possible?","url":"https://bartlebysupport.zendesk.com/hc/en-us/articles/17969103318167-How-can-I-ensure-my-questions-get-answered-as-quickly-as-possible","description":"To help ensure your questions get answered without delay or issues, follow the below tips: Submit only one question at a time under the..."},{"id":6,"question":"How do I search textbook solutions?","url":"https://bartlebysupport.zendesk.com/hc/en-us/articles/17968561720087-How-do-I-search-textbook-solutions","description":"It’s easy and you don’t even have to be logged in! Use the search box at the top of the page."},{"id":7,"question":"How can I access my shortlisted solutions?","url":"https://bartlebysupport.zendesk.com/hc/en-us/articles/17968510903575-How-can-I-access-my-shortlisted-solutions","description":"Once you log in, your dashboard page will show a list of solutions you shortlisted."}],"alaCartePurchaseQuestionModal":5,"percentageOfSampleQnAStepsToShow":50,"shouldShowNewBundleLearnRegistration":false,"aiFeedbackModalTimer":15,"shouldShowDocumentFooterLink":true,"documentsPerPage":25,"showDocumentUploadBanner":true,"uploadsLiteSignupModalSettings":{"triggerTimerInSec":30}},"userAccessFromServer":{"logoImageUrl":"/static/logo.svg","products":[{"id":"learn","name":"bartleby learn","scope":"bartleby.learn","loggedInUrl":"/dashboard","loggedOutUrl":"/","logoImageUrl":"/static/bartleby-learn-logo.svg","planId":"047b8ffc-82f2-11ea-8bb2-02de5cfdf1e9","planCode":"qna_trial","category":"Learn","subProducts":[{"id":"learnQaas","name":"My Questions","defaultUrl":"/dashboard/my-questions","displayInNavigation":false,"access":"fullAccess"},{"id":"learnQnaLib","name":"","defaultUrl":"","displayInNavigation":false,"access":"gatedAccess"},{"id":"learnTbsLib","name":"My Solutions","defaultUrl":"/dashboard/my-favorites","displayInNavigation":false,"access":"gatedAccess"},{"id":"learnMathSolver","name":"My Math","defaultUrl":"/dashboard/my-math-solver","displayInNavigation":false,"access":"noAccess"},{"id":"liveChat","name":"My Chats","defaultUrl":"/dashboard/my-chats","displayInNavigation":false,"access":"noAccess"},{"id":"documents","name":"My Documents","defaultUrl":"/sitemap/docs","displayInNavigation":false,"access":"gatedAccess"},{"id":"uploads","name":"My Uploads","defaultUrl":"/dashboard/docs/uploads","displayInNavigation":false,"access":"noAccess"}]},{"id":"write","name":"bartleby write","scope":"bartleby.write","loggedInUrl":"/write/dashboard","loggedOutUrl":"/write/","logoImageUrl":"/static/bartleby-write-logo.svg","planId":"047b8ffc-82f2-11ea-8bb2-02de5cfdf1e9","planCode":"qna_trial","category":"Learn","subProducts":[]},{"id":"tutor","name":"bartleby tutor","scope":"bartleby.tutor","loggedInUrl":"/dashboard/my-tutoring","loggedOutUrl":"/tutor","logoImageUrl":"/static/bartleby-tutor-logo.svg","planId":"047b8ffc-82f2-11ea-8bb2-02de5cfdf1e9","planCode":"qna_trial","category":"Learn","subProducts":[{"id":"learnTutoring","name":"My Tutoring","defaultUrl":"/dashboard/my-tutoring","displayInNavigation":false,"access":"gatedAccess"}]}]},"subjects":[{"name":"Business","shortName":"business","href":"/subject/business","smallImage":"https://bartleby.com/static/subject_images/business/business.svg","parentShortName":null,"hasTbs":true,"hasQna":true,"children":[{"name":"Accounting","shortName":"accounting","href":"/subject/business/accounting","smallImage":"https://bartleby.com/static/subject_images/business/accounting.svg","parentShortName":"business","hasTbs":true,"hasQna":true,"children":[]},{"name":"Business Law","shortName":"business-law","href":"/subject/business/business-law","smallImage":"https://bartleby.com/static/subject_images/business/business-law.svg","parentShortName":"business","hasTbs":true,"hasQna":true,"children":[]},{"name":"Economics","shortName":"economics","href":"/subject/business/economics","smallImage":"https://bartleby.com/static/subject_images/business/economics.svg","parentShortName":"business","hasTbs":true,"hasQna":true,"children":[]},{"name":"Finance","shortName":"finance","href":"/subject/business/finance","smallImage":"https://bartleby.com/static/subject_images/business/finance.svg","parentShortName":"business","hasTbs":true,"hasQna":true,"children":[]},{"name":"Leadership","shortName":"leadership","href":"/subject/business/leadership","smallImage":"https://bartleby.com/static/subject_images/business/leaderhsip.svg","parentShortName":"business","hasTbs":true,"hasQna":false,"children":[]},{"name":"Management","shortName":"management","href":"/subject/business/management","smallImage":"https://bartleby.com/static/subject_images/business/management.svg","parentShortName":"business","hasTbs":true,"hasQna":true,"children":[]},{"name":"Marketing","shortName":"marketing","href":"/subject/business/marketing","smallImage":"https://bartleby.com/static/subject_images/business/marketing.svg","parentShortName":"business","hasTbs":true,"hasQna":true,"children":[]},{"name":"Operations Management","shortName":"operations-management","href":"/subject/business/operations-management","smallImage":"https://bartleby.com/static/subject_images/business/operations-management.svg","parentShortName":"business","hasTbs":true,"hasQna":true,"children":[]}]},{"name":"Engineering","shortName":"engineering","href":"/subject/engineering","smallImage":"https://bartleby.com/static/subject_images/engineering/computer-science.svg","parentShortName":null,"hasTbs":true,"hasQna":true,"children":[{"name":"AI and Machine Learning","shortName":"ai-and-machine-learning","href":"/subject/engineering/ai-and-machine-learning","smallImage":"https://bartleby.com/static/subject_images/engineering/ai-and-machine-learning.svg","parentShortName":"engineering","hasTbs":true,"hasQna":true,"children":[]},{"name":"Bioengineering","shortName":"bioengineering","href":"/subject/engineering/bioengineering","smallImage":"https://bartleby.com/static/subject_images/engineering/bioengineering.png","parentShortName":"engineering","hasTbs":true,"hasQna":false,"children":[]},{"name":"Chemical Engineering","shortName":"chemical-engineering","href":"/subject/engineering/chemical-engineering","smallImage":"https://bartleby.com/static/subject_images/engineering/chemical-engineering.png","parentShortName":"engineering","hasTbs":true,"hasQna":true,"children":[]},{"name":"Civil Engineering","shortName":"civil-engineering","href":"/subject/engineering/civil-engineering","smallImage":"https://bartleby.com/static/subject_images/engineering/civil-engineering.png","parentShortName":"engineering","hasTbs":true,"hasQna":true,"children":[]},{"name":"Computer Engineering","shortName":"computer-engineering","href":"/subject/engineering/computer-engineering","smallImage":"https://bartleby.com/static/subject_images/engineering/computer-engineering.svg","parentShortName":"engineering","hasTbs":true,"hasQna":true,"children":[]},{"name":"Computer Science","shortName":"computer-science","href":"/subject/engineering/computer-science","smallImage":"https://bartleby.com/static/subject_images/engineering/computer-science.svg","parentShortName":"engineering","hasTbs":true,"hasQna":true,"children":[]},{"name":"Cybersecurity","shortName":"cybersecurity","href":"/subject/engineering/cybersecurity","smallImage":"https://bartleby.com/static/subject_images/engineering/cybersecurity.svg","parentShortName":"engineering","hasTbs":true,"hasQna":true,"children":[]},{"name":"Data Structures and Algorithms","shortName":"data-structures-and-algorithms","href":"/subject/engineering/data-structures-and-algorithms","smallImage":"https://bartleby.com/static/subject_images/engineering/data-structures-and-algorithms.svg","parentShortName":"engineering","hasTbs":true,"hasQna":true,"children":[]},{"name":"Electrical Engineering","shortName":"electrical-engineering","href":"/subject/engineering/electrical-engineering","smallImage":"https://bartleby.com/static/subject_images/engineering/electrical-engineering.svg","parentShortName":"engineering","hasTbs":true,"hasQna":true,"children":[]},{"name":"Mechanical Engineering","shortName":"mechanical-engineering","href":"/subject/engineering/mechanical-engineering","smallImage":"https://bartleby.com/static/subject_images/engineering/mechanical-engineering.png","parentShortName":"engineering","hasTbs":true,"hasQna":true,"children":[]}]},{"name":"Language","shortName":"language","href":"/subject/language","smallImage":"https://bartleby.com/static/subject_images/language/language.svg","parentShortName":null,"hasTbs":true,"hasQna":true,"children":[{"name":"Spanish","shortName":"spanish","href":"/subject/language/spanish","smallImage":"https://bartleby.com/static/subject_images/language/spanish.svg","parentShortName":"language","hasTbs":true,"hasQna":false,"children":[]}]},{"name":"Math","shortName":"math","href":"/subject/math","smallImage":"https://bartleby.com/static/subject_images/math/math.svg","parentShortName":null,"hasTbs":true,"hasQna":true,"children":[{"name":"Advanced Math","shortName":"advanced-math","href":"/subject/math/advanced-math","smallImage":"https://bartleby.com/static/subject_images/math/advanced-math.svg","parentShortName":"math","hasTbs":true,"hasQna":true,"children":[]},{"name":"Algebra","shortName":"algebra","href":"/subject/math/algebra","smallImage":"https://bartleby.com/static/subject_images/math/algebra.svg","parentShortName":"math","hasTbs":true,"hasQna":true,"children":[]},{"name":"Calculus","shortName":"calculus","href":"/subject/math/calculus","smallImage":"https://bartleby.com/static/subject_images/math/calculus.svg","parentShortName":"math","hasTbs":true,"hasQna":true,"children":[]},{"name":"Geometry","shortName":"geometry","href":"/subject/math/geometry","smallImage":"https://bartleby.com/static/subject_images/math/geometry.svg","parentShortName":"math","hasTbs":true,"hasQna":true,"children":[]},{"name":"Probability","shortName":"probability","href":"/subject/math/probability","smallImage":"https://bartleby.com/static/subject_images/math/probability.svg","parentShortName":"math","hasTbs":true,"hasQna":true,"children":[]},{"name":"Statistics","shortName":"statistics","href":"/subject/math/statistics","smallImage":"https://bartleby.com/static/subject_images/math/statistics.svg","parentShortName":"math","hasTbs":true,"hasQna":true,"children":[]},{"name":"Trigonometry","shortName":"trigonometry","href":"/subject/math/trigonometry","smallImage":"https://bartleby.com/static/subject_images/math/trigonometry.svg","parentShortName":"math","hasTbs":true,"hasQna":true,"children":[]}]},{"name":"Science","shortName":"science","href":"/subject/science","smallImage":"https://bartleby.com/static/subject_images/science/science.svg","parentShortName":null,"hasTbs":true,"hasQna":true,"children":[{"name":"Advanced Physics","shortName":"advanced-physics","href":"/subject/science/advanced-physics","smallImage":"https://bartleby.com/static/subject_images/science/advanced-physics.svg","parentShortName":"science","hasTbs":true,"hasQna":true,"children":[]},{"name":"Anatomy and Physiology","shortName":"anatomy-and-physiology","href":"/subject/science/anatomy-and-physiology","smallImage":"https://bartleby.com/static/subject_images/science/anatomy-and-physiology.svg","parentShortName":"science","hasTbs":true,"hasQna":true,"children":[]},{"name":"Biochemistry","shortName":"biochemistry","href":"/subject/science/biochemistry","smallImage":"https://bartleby.com/static/subject_images/science/bio-chemistry.svg","parentShortName":"science","hasTbs":true,"hasQna":true,"children":[]},{"name":"Biology","shortName":"biology","href":"/subject/science/biology","smallImage":"https://bartleby.com/static/subject_images/science/biology.svg","parentShortName":"science","hasTbs":true,"hasQna":true,"children":[]},{"name":"Chemistry","shortName":"chemistry","href":"/subject/science/chemistry","smallImage":"https://bartleby.com/static/subject_images/science/chemistry.svg","parentShortName":"science","hasTbs":true,"hasQna":true,"children":[]},{"name":"Earth Science","shortName":"earth-science","href":"/subject/science/earth-science","smallImage":"https://bartleby.com/static/subject_images/science/earth-science.svg","parentShortName":"science","hasTbs":true,"hasQna":true,"children":[]},{"name":"Health \u0026 Nutrition","shortName":"health-nutrition","href":"/subject/science/health-nutrition","smallImage":"https://bartleby.com/static/subject_images/science/health-nutrition.svg","parentShortName":"science","hasTbs":true,"hasQna":false,"children":[]},{"name":"Health Science","shortName":"health-science","href":"/subject/science/health-science","smallImage":"https://bartleby.com/static/subject_images/science/health-science.svg","parentShortName":"science","hasTbs":true,"hasQna":true,"children":[]},{"name":"Nursing","shortName":"nursing","href":"/subject/science/nursing","smallImage":"https://bartleby.com/static/subject_images/science/nursing.svg","parentShortName":"science","hasTbs":true,"hasQna":true,"children":[]},{"name":"Physics","shortName":"physics","href":"/subject/science/physics","smallImage":"https://bartleby.com/static/subject_images/science/physics.svg","parentShortName":"science","hasTbs":true,"hasQna":true,"children":[]}]},{"name":"Social Science","shortName":"social-science","href":"/subject/social-science","smallImage":"https://bartleby.com/static/subject_images/social-science/social-science.svg","parentShortName":null,"hasTbs":true,"hasQna":true,"children":[{"name":"Anthropology","shortName":"anthropology","href":"/subject/social-science/anthropology","smallImage":"https://bartleby.com/static/subject_images/social-science/anthropology.svg","parentShortName":"social-science","hasTbs":true,"hasQna":false,"children":[]},{"name":"Geography","shortName":"geography","href":"/subject/social-science/geography","smallImage":"https://bartleby.com/static/subject_images/social-science/geography.svg","parentShortName":"social-science","hasTbs":false,"hasQna":false,"children":[]},{"name":"History","shortName":"history","href":"/subject/social-science/history","smallImage":"https://bartleby.com/static/subject_images/social-science/history.svg","parentShortName":"social-science","hasTbs":true,"hasQna":true,"children":[]},{"name":"Political Science","shortName":"political-science","href":"/subject/social-science/political-science","smallImage":"https://bartleby.com/static/subject_images/social-science/political-science.svg","parentShortName":"social-science","hasTbs":false,"hasQna":false,"children":[]},{"name":"Psychology","shortName":"psychology","href":"/subject/social-science/psychology","smallImage":"https://bartleby.com/static/subject_images/social-science/psychology.svg","parentShortName":"social-science","hasTbs":true,"hasQna":true,"children":[]},{"name":"Sociology","shortName":"sociology","href":"/subject/social-science/sociology","smallImage":"https://bartleby.com/static/subject_images/social-science/sociology.svg","parentShortName":"social-science","hasTbs":true,"hasQna":true,"children":[]}]}],"qnaSubjects":[{"title":"Business","smallImage":"https://isbn-assets.bnedcompass.com/subject_images/business/business.svg","newSubject":false,"shortName":"business","advertiseAsNew":false,"children":[{"title":"Accounting","smallImage":"https://isbn-assets.bnedcompass.com/subject_images/business/accounting.svg","newSubject":false,"shortName":"accounting","advertiseAsNew":false,"freemiumAccessAllowed":true},{"title":"Business Law","smallImage":"https://isbn-assets.bnedcompass.com/subject_images/business/business-law.svg","newSubject":false,"shortName":"business-law","advertiseAsNew":false,"freemiumAccessAllowed":true},{"title":"Economics","smallImage":"https://isbn-assets.bnedcompass.com/subject_images/business/economics.svg","newSubject":false,"shortName":"economics","advertiseAsNew":false,"freemiumAccessAllowed":true},{"title":"Finance","smallImage":"https://isbn-assets.bnedcompass.com/subject_images/business/finance.svg","newSubject":false,"shortName":"finance","advertiseAsNew":false,"freemiumAccessAllowed":true},{"title":"Management","smallImage":"https://isbn-assets.bnedcompass.com/subject_images/business/management.svg","newSubject":false,"shortName":"management","advertiseAsNew":false,"freemiumAccessAllowed":true},{"title":"Marketing","smallImage":"https://isbn-assets.bnedcompass.com/subject_images/business/marketing.svg","newSubject":false,"shortName":"marketing","advertiseAsNew":false,"freemiumAccessAllowed":true},{"title":"Operations Management","smallImage":"https://isbn-assets.bnedcompass.com/subject_images/business/operations-management.svg","newSubject":false,"shortName":"operations-management","advertiseAsNew":false,"freemiumAccessAllowed":true}]},{"title":"Engineering","smallImage":"https://isbn-assets.bnedcompass.com/subject_images/engineering/computer-science.svg","newSubject":false,"shortName":"engineering","advertiseAsNew":false,"children":[{"title":"AI and Machine Learning","smallImage":"https://isbn-assets.bnedcompass.com/subject_images/engineering/ai-and-machine-learning.svg","newSubject":false,"shortName":"ai-and-machine-learning","advertiseAsNew":false,"freemiumAccessAllowed":true},{"title":"Chemical Engineering","smallImage":"https://isbn-assets.bnedcompass.com/subject_images/engineering/chemical-engineering.png","newSubject":false,"shortName":"chemical-engineering","advertiseAsNew":false,"freemiumAccessAllowed":true},{"title":"Civil Engineering","smallImage":"https://isbn-assets.bnedcompass.com/subject_images/engineering/civil-engineering.png","newSubject":false,"shortName":"civil-engineering","advertiseAsNew":false,"freemiumAccessAllowed":true},{"title":"Computer Engineering","smallImage":"https://isbn-assets.bnedcompass.com/subject_images/engineering/computer-engineering.svg","newSubject":false,"shortName":"computer-engineering","advertiseAsNew":false,"freemiumAccessAllowed":true},{"title":"Computer Science","smallImage":"https://isbn-assets.bnedcompass.com/subject_images/engineering/computer-science.svg","newSubject":false,"shortName":"computer-science","advertiseAsNew":false,"freemiumAccessAllowed":true},{"title":"Cybersecurity","smallImage":"https://isbn-assets.bnedcompass.com/subject_images/engineering/cybersecurity.svg","newSubject":false,"shortName":"cybersecurity","advertiseAsNew":false,"freemiumAccessAllowed":true},{"title":"Data Structures and Algorithms","smallImage":"https://isbn-assets.bnedcompass.com/subject_images/engineering/data-structures-and-algorithms.svg","newSubject":false,"shortName":"data-structures-and-algorithms","advertiseAsNew":false,"freemiumAccessAllowed":true},{"title":"Electrical Engineering","smallImage":"https://isbn-assets.bnedcompass.com/subject_images/engineering/electrical-engineering.svg","newSubject":false,"shortName":"electrical-engineering","advertiseAsNew":false,"freemiumAccessAllowed":true},{"title":"Mechanical Engineering","smallImage":"https://isbn-assets.bnedcompass.com/subject_images/engineering/mechanical-engineering.png","newSubject":false,"shortName":"mechanical-engineering","advertiseAsNew":false,"freemiumAccessAllowed":true}]},{"title":"Math","smallImage":"https://isbn-assets.bnedcompass.com/subject_images/math/math.svg","newSubject":false,"shortName":"math","advertiseAsNew":false,"children":[{"title":"Algebra","smallImage":"https://isbn-assets.bnedcompass.com/subject_images/math/algebra.svg","newSubject":false,"shortName":"algebra","advertiseAsNew":false,"freemiumAccessAllowed":true},{"title":"Calculus","smallImage":"https://isbn-assets.bnedcompass.com/subject_images/math/calculus.svg","newSubject":false,"shortName":"calculus","advertiseAsNew":false,"freemiumAccessAllowed":true},{"title":"Geometry","smallImage":"https://isbn-assets.bnedcompass.com/subject_images/math/geometry.svg","newSubject":false,"shortName":"geometry","advertiseAsNew":false,"freemiumAccessAllowed":true},{"title":"Probability","smallImage":"https://isbn-assets.bnedcompass.com/subject_images/math/probability.svg","newSubject":false,"shortName":"probability","advertiseAsNew":false,"freemiumAccessAllowed":true},{"title":"Statistics","smallImage":"https://isbn-assets.bnedcompass.com/subject_images/math/statistics.svg","newSubject":false,"shortName":"statistics","advertiseAsNew":false,"freemiumAccessAllowed":true},{"title":"Trigonometry","smallImage":"https://isbn-assets.bnedcompass.com/subject_images/math/trigonometry.svg","newSubject":false,"shortName":"trigonometry","advertiseAsNew":false,"freemiumAccessAllowed":true},{"title":"Advanced Math","smallImage":"https://isbn-assets.bnedcompass.com/subject_images/math/advanced-math.svg","newSubject":false,"shortName":"advanced-math","advertiseAsNew":false,"freemiumAccessAllowed":true}]},{"title":"Science","smallImage":"https://isbn-assets.bnedcompass.com/subject_images/science/science.svg","newSubject":false,"shortName":"science","advertiseAsNew":false,"children":[{"title":"Anatomy and Physiology","smallImage":"https://isbn-assets.bnedcompass.com/subject_images/science/anatomy-and-physiology.svg","newSubject":false,"shortName":"anatomy-and-physiology","advertiseAsNew":false,"freemiumAccessAllowed":true},{"title":"Earth Science","smallImage":"https://isbn-assets.bnedcompass.com/subject_images/science/earth-science.svg","newSubject":false,"shortName":"earth-science","advertiseAsNew":false,"freemiumAccessAllowed":true},{"title":"Health Science","smallImage":"https://isbn-assets.bnedcompass.com/subject_images/science/health-science.svg","newSubject":false,"shortName":"health-science","advertiseAsNew":false,"freemiumAccessAllowed":true},{"title":"Nursing","smallImage":"https://isbn-assets.bnedcompass.com/subject_images/science/nursing.svg","newSubject":false,"shortName":"nursing","advertiseAsNew":false,"freemiumAccessAllowed":true},{"title":"Biology","smallImage":"https://isbn-assets.bnedcompass.com/subject_images/science/biology.svg","newSubject":false,"shortName":"biology","advertiseAsNew":false,"freemiumAccessAllowed":true},{"title":"Chemistry","smallImage":"https://isbn-assets.bnedcompass.com/subject_images/science/chemistry.svg","newSubject":false,"shortName":"chemistry","advertiseAsNew":false,"freemiumAccessAllowed":true},{"title":"Physics","smallImage":"https://isbn-assets.bnedcompass.com/subject_images/science/physics.svg","newSubject":false,"shortName":"physics","advertiseAsNew":false,"freemiumAccessAllowed":true},{"title":"Biochemistry","smallImage":"https://isbn-assets.bnedcompass.com/subject_images/science/bio-chemistry.svg","newSubject":false,"shortName":"biochemistry","advertiseAsNew":false,"freemiumAccessAllowed":true},{"title":"Advanced Physics","smallImage":"https://isbn-assets.bnedcompass.com/subject_images/science/advanced-physics.svg","newSubject":false,"shortName":"advanced-physics","advertiseAsNew":false,"freemiumAccessAllowed":true}]},{"title":"Social Science","smallImage":"https://isbn-assets.bnedcompass.com/subject_images/social-science/social-science.svg","newSubject":false,"shortName":"social-science","advertiseAsNew":false,"children":[{"title":"History","smallImage":"https://isbn-assets.bnedcompass.com/subject_images/social-science/history.svg","newSubject":false,"shortName":"history","advertiseAsNew":false,"freemiumAccessAllowed":true},{"title":"Psychology","smallImage":"https://isbn-assets.bnedcompass.com/subject_images/social-science/psychology.svg","newSubject":false,"shortName":"psychology","advertiseAsNew":false,"freemiumAccessAllowed":true},{"title":"Sociology","smallImage":"https://isbn-assets.bnedcompass.com/subject_images/social-science/sociology.svg","newSubject":false,"shortName":"sociology","advertiseAsNew":false,"freemiumAccessAllowed":true}]}],"banners":[{"id":"8ff62751-50db-11eb-8bb2-02de5cfdf1e9","name":"4.99 1st wk trial","copy":"Homework Help is Here – Start Your Trial Now!","type":"promo","persistence":"dismissibleForTheEntireSession","anchorUrl":"/account/registration","anchorArrow":true,"computed":{"anchorHref":"/account/registration"}}]},"commonPageProps":{"ltiSettings":{"ltiConsumerKeyInUrl":"","urlPrefix":""},"cookieNames":{"ltiConsumerKey":"ltiConsumerKey","accessToken":"accessToken","refreshToken":"refreshToken","bartlebyRefreshToken":"bartlebyRefreshToken","bartlebyRefreshTokenExpiresAt":"bartlebyRefreshTokenExpiresAt","bartlebyIdentityToken":"bartlebyIdentityToken","userId":"userId","userStatus":"userStatus","promotionId":"promotionId","sku":"sku","isNoQuestionAskedModalClosed":"isNoQuestionAskedModalClosed","isAskedQuestionModalOpen":"isAskedQuestionModalOpen","DismissedBanners":"DismissedBanners","qnaAwarenessModalForI3UsersWasClosed":"qnaAwarenessModalForI3UsersWasClosed","endCycleWhenQuestionsRemainingWasClosed":"endCycleWhenQuestionsRemainingWasClosed","btbLiveChatFabTriggerDate":"btbLiveChatFabTriggerDate","btbHomeDashboardAnimationTriggerDate":"btbHomeDashboardAnimationTriggerDate","btbHomeDashboardTooltipAnimationCount":"btbHomeDashboardTooltipAnimationCount","btbHomeDashboardBonusChallengeModalCount":"btbHomeDashboardBonusChallengeModalCount","btbHomeDashboardBonusChallengeTaskCompletionCount":"btbHomeDashboardBonusChallengeTaskCompletionCount","majors":"majors","btbOpenRegistrationModal":"btbOpenRegistrationModal","viewedPagesCount":"viewedPagesCount","QuesionCountOnAIResponsePage":"QuesionCountOnAIResponsePage","UiAction":"UiAction"},"pageContextParsed":{"protocol":"http,http","origin":"https://www.bartleby.com","hostname":"www.bartleby.com","href":"https://www.bartleby.com/questions-and-answers/e-show-that-vx-t-ux-t-ux-t-is-solution-of-a-homogeneous-problem-with-a-different-initial-condition-a/0d7ed346-3e61-48a0-8236-b42a96af6267","pathname":"/questions-and-answers/e-show-that-vx-t-ux-t-ux-t-is-solution-of-a-homogeneous-problem-with-a-different-initial-condition-a/0d7ed346-3e61-48a0-8236-b42a96af6267","pathnameWithSearch":"/questions-and-answers/e-show-that-vx-t-ux-t-ux-t-is-solution-of-a-homogeneous-problem-with-a-different-initial-condition-a/0d7ed346-3e61-48a0-8236-b42a96af6267","search":"","query":{"id":["e-show-that-vx-t-ux-t-ux-t-is-solution-of-a-homogeneous-problem-with-a-different-initial-condition-a","0d7ed346-3e61-48a0-8236-b42a96af6267"]}},"pageTitle":"Answered: (e) Show that v(x, t) = u(x, t) — uɛ(x,…","pageDescription":"Solution for (e) Show that v(x, t) = u(x, t) — uɛ(x, t) is solution of a homogeneous problem (with a different initial condition) and solve it using the method…","isPageSeoIndexable":true,"shouldSetCacheHeaderToPublic":true,"canonicalUrl":"https://www.bartleby.com/questions-and-answers/e-show-that-vx-t-ux-t-ux-t-is-solution-of-a-homogeneous-problem-with-a-different-initial-condition-a/0d7ed346-3e61-48a0-8236-b42a96af6267","appProps":{},"appLayoutProps":{}},"user":null},"globalNavBarProps":{"bartlebyLogoLink":{"id":"Header-Bartleby-Logo-ID","linkProps":{"href":"/","isExternal":true},"imageProps":{"src":"/static/compass_v2/bartleby-logos/bartleby-logo-tm.svg","alt":"bartleby","width":134.97,"height":38.56,"loading":"lazy","decoding":"async"},"ariaAttributes":{"aria-label":"bartleby logo"}},"learnLinkProps":{"id":"GlobalNav-Learn-Link-ID","linkProps":{"href":"/learn","isExternal":true},"text":"learn"},"writeLinkProps":{"links":[{"text":"Essays","linkProps":{"href":"/essay","isExternal":true,"linkAttributes":{}}},{"text":"Topics","linkProps":{"href":"/topics","isExternal":true,"linkAttributes":{}}},{"text":"Writing Tool","linkProps":{"href":"/write","isExternal":true,"linkAttributes":{}}}]},"plusLinkProps":{"id":"GlobalNav-Plus-Link-ID","linkProps":{"href":"/plus","isExternal":true},"text":"plus"},"studyResources":{"links":[{"text":"Subjects","linkProps":{"href":"/subjects","isExternal":true,"linkAttributes":{}}},{"text":"Literature guides","linkProps":{"href":"/lit","isExternal":true,"linkAttributes":{}}},{"text":"Concept explainers","linkProps":{"href":"/concepts","isExternal":true,"linkAttributes":{}}},{"text":"Writing guides","linkProps":{"href":"/writing-guide","isExternal":true,"linkAttributes":{}}},{"text":"Popular textbooks","linkProps":{"href":"/textbooks","isExternal":true,"linkAttributes":{}}},{"text":"Popular high school textbooks","linkProps":{"href":"/high-school-textbooks","isExternal":true,"linkAttributes":{}}},{"text":"Popular Q\u0026A","linkProps":{"href":"/questions-and-answers","isExternal":true,"linkAttributes":{}}},{"text":"Documents","linkProps":{"href":"/sitemap/docs","isExternal":true,"linkAttributes":{}}}],"isOpen":false}},"learnNavBarProps":{"shouldShowSearch":true,"shouldShowAskQuestion":true,"shouldShowChat":false,"shouldShowMathSolver":false},"mainFooterProps":{"id":"Main-Footer-ID","topContainer":{"bartlebyLogoLink":{"id":"Footer-Bartleby-Logo-ID","linkProps":{"href":"/","isExternal":true},"imageProps":{"src":"/static/compass_v2/bartleby-logos/bartleby-logo-tm-tag-inverted.svg","alt":"bartleby","width":120,"height":37.71,"loading":"lazy","decoding":"async"},"ariaAttributes":{"aria-label":"bartleby logo"}},"topLinksFirstColumn":[{"id":"Footer-About-Link-ID","linkProps":{"href":"/about","isExternal":true},"text":"About"},{"id":"Footer-Zendesk-Link-ID","linkProps":{"href":"https://bartlebysupport.zendesk.com/hc/en-us","isExternal":true,"target":"_blank"},"text":"FAQ"},{"id":"Footer-Academic-Integrity-Link-ID","linkProps":{"href":"/academic-integrity","isExternal":true,"target":"_blank"},"text":"Academic Integrity"},{"id":"Footer-Sitemap-Link-ID","linkProps":{"href":"/sitemap","isExternal":true},"text":"Sitemap"},{"id":"Footer-DocumentSiteMap-Link-ID","linkProps":{"href":"/sitemap/docs","isExternal":true},"text":"Document Sitemap"}],"topLinksSecondColumn":[{"id":"Footer-Contact-Bartleby-Link-ID","linkProps":{"href":"/about/contact","isExternal":true,"target":"_blank"},"text":"Contact Bartleby"},{"id":"Footer-Contact-Research-Essays-Link-ID","linkProps":{"href":"/writing/about-us/contact","isExternal":true,"target":"_blank"},"text":"Contact Research (Essays)"},{"id":"Footer-High-School-Textbooks-Link-ID","linkProps":{"href":"/high-school-textbooks","isExternal":true},"text":"High School Textbooks"},{"id":"Footer-Literature-Guides-Link-ID","linkProps":{"href":"/lit","isExternal":true},"text":"Literature Guides"},{"id":"Footer-Concept-Explainers-Link-ID","linkProps":{"href":"/concepts","isExternal":true},"text":"Concept Explainers by Subject"},{"id":"Footer-Essay Help-Link-ID","linkProps":{"href":"/writing","isExternal":true},"text":"Essay Help"},{"id":"Footer-Mobile App-Link-ID","linkProps":{"href":"/mobile","isExternal":true},"text":"Mobile App"}],"topLinksSocialAndMobileApp":{"getTheAppText":"GET THE APP","socialLinks":[{"id":"Footer-Facebook-Logo-ID","linkProps":{"href":"https://www.facebook.com/bartlebysolve","isExternal":true,"target":"_blank"},"imageProps":{"src":"/static/compass_v2/third-party/footer-facebook-icon-white.svg","alt":"Facebook","width":9,"height":17,"loading":"lazy","decoding":"async"},"ariaAttributes":{"aria-label":"bartleby Facebook page (link opens in new tab)"}},{"id":"Footer-Twitter-Logo-ID","linkProps":{"href":"https://twitter.com/bartlebysolve","isExternal":true,"target":"_blank"},"imageProps":{"src":"/static/compass_v2/third-party/footer-twitter-icon-white.svg","alt":"Twitter","width":12,"height":15,"loading":"lazy","decoding":"async"},"ariaAttributes":{"aria-label":"bartleby Twitter page (link opens in new tab)"}},{"id":"Footer-Instagram-Logo-ID","linkProps":{"href":"https://www.instagram.com/bartlebysolve","isExternal":true,"target":"_blank"},"imageProps":{"src":"/static/compass_v2/third-party/footer-instagram-icon-white.svg","alt":"Instagram","width":12,"height":12,"loading":"lazy","decoding":"async"},"ariaAttributes":{"aria-label":"bartleby Instagram page (link opens in new tab)"}},{"id":"Footer-YouTube-Logo-ID","linkProps":{"href":"https://www.youtube.com/channel/UCixjpE0Hapap4x0hKg7Fmfw","isExternal":true,"target":"_blank"},"imageProps":{"src":"/static/compass_v2/third-party/footer-youtube-icon-white.svg","alt":"YouTube","width":12,"height":17,"loading":"lazy","decoding":"async"},"ariaAttributes":{"aria-label":"bartleby YouTube page (link opens in new tab)"}}],"appStoreLinks":[{"id":"Footer-Bartleby-IOS-App-Logo-ID","linkProps":{"href":"https://apps.apple.com/us/app/bartleby-homework-help/id1522219588","isExternal":true,"target":"_blank"},"imageProps":{"src":"/static/compass_v2/third-party/apple-store-badge.svg","alt":"Download from App store","width":134,"height":44,"loading":"lazy","decoding":"async"},"ariaAttributes":{"aria-label":"bartleby IOS App"}},{"id":"Footer-Bartleby-Android-App-Logo-ID","linkProps":{"href":"https://play.google.com/store/apps/details?id=com.bartleby.learn","isExternal":true,"target":"_blank"},"imageProps":{"src":"/static/compass_v2/third-party/google-play-badge-new.png","alt":"Download from Google play store","width":134,"height":40,"loading":"lazy","decoding":"async"},"ariaAttributes":{"aria-label":"bartleby Android App"}}]}},"bottomContainer":{"bottomContainerLinks":[{"id":"Footer-Terms-of-Use-Link-ID","linkProps":{"href":"/terms","isExternal":true},"text":"Terms of Use"},{"id":"Footer-Privacy-Link-ID","linkProps":{"href":"/privacy","isExternal":true},"text":"Privacy"},{"id":"Footer-Your-CA-Privacy-Rights-Link-ID","linkProps":{"href":"/privacy#caprivacy","isExternal":true},"text":"Your CA Privacy Rights"},{"id":"Footer-Your-NV-Privacy-Rights-Link-ID","linkProps":{"href":"/privacy#naprivacy","isExternal":true},"text":"Your NV Privacy Rights"},{"id":"Footer-Cookie-Policy-Link-ID","linkProps":{"href":"/cookie-policy","isExternal":true},"text":"Cookie Policy"},{"id":"Footer-About-Ads-Link-ID","linkProps":{"href":"/privacy#adchoices","isExternal":true},"text":"About Ads"},{"id":"Footer-Manage-My-Data-Link-ID","linkProps":{"href":"https://coursehero-privacy.my.onetrust.com/webform/265c1602-2645-42a0-9388-484739b10fd3/b77bbeb7-7a3b-4b6c-b2ed-21594afd4fdf","isExternal":true,"target":"_blank"},"text":"Manage My Data"}],"learneoLegalContainerLinks":[{"id":"Learneo-Legal-Container-ID","linkProps":{"href":"https://www.learneo.com/legal","isExternal":true,"target":"_blank"},"text":"Learneo Legal Center"}],"copyRightText":"bartleby, a Learneo, Inc. business","learneoCopy":"Copyright, Community Guidelines, DSA \u0026 other Legal Resources: "}},"qna":{"question":{"url":"/questions-and-answers/e-show-that-vx-t-ux-t-ux-t-is-solution-of-a-homogeneous-problem-with-a-different-initial-condition-a/0d7ed346-3e61-48a0-8236-b42a96af6267","id":"0d7ed346-3e61-48a0-8236-b42a96af6267","text":"\u003cp\u003eI wrote out the question as requested and tried to re-upload the 2 questions I'm interested in. I need the solution to e and f after we find the value of Cn for that question based on your solution before. I hope this clears things up.\u003c/p\u003e\n\u003cp\u003eConsider the following heat equation on a rod (which includes heat loss through the lateral side and fixed heat flow on the boundary):\u003c/p\u003e\n\u003cp\u003e ∂u/∂t = ∂2u/∂x2 − 9u, 0 \u0026lt; x \u0026lt; 1, t \u0026gt; 0,\u003c/p\u003e\n\u003cp\u003esubject to the boundary conditions\u003c/p\u003e\n\u003cp\u003eux(0, t) = 3, ux(1, t) = 18, t \u0026gt; 0,\u003c/p\u003e\n\u003cp\u003eand the initial condition\u003c/p\u003e\n\u003cp\u003eu(x, 0) = 0, 0 \u0026lt; x \u0026lt; 1.\u003c/p\u003e\n\u003cp\u003e(a) Find the equilibrium solution uE(x) for this problem by solving a certain boundary value problem on (0, 1).\u003cbr /\u003e(b) Use integration by parts and the given boundary conditions that uE(x) satisfies to compute\u003c/p\u003e\n\u003cp\u003eA0 = 1∫0 u′′E (x) dx\u003c/p\u003e\n\u003cp\u003eEnter A0. (Do not use the explicit formula for uE(x) obtained in part (a).)\u003c/p\u003e\n\u003cp\u003e\u003cbr /\u003e(c) Use integration by parts and the given boundary conditions that uE(x) satisfies to show that\u003cbr /\u003e1∫0 u′′E (x) cos(nπx) dx = An + B*n^2 1∫0 uE(x) cos(nπx) dx, n ≥ 1, (1)\u003c/p\u003e\n\u003cp\u003efor some constants B and An. (Do not use the explicit formula for uE(x) obtained in part (a).) Enter the values of B and An (in that order) into the answer box below, separated with a comma.\u003c/p\u003e\n\u003cp\u003e\u003cbr /\u003e(d) Use the differential equation that uE(x) satisfies together with the results obtained in (b) and (c) to deduce the Fourier cosine series representation for uE(x) on (0, 1) which is of the form\u003c/p\u003e\n\u003cp\u003e a0/2 + ∞Σn =1 an cos(nπx).\u003c/p\u003e\n\u003cp\u003eEnter the values of a0 and an (in that order) into the answer box below, separated with a comma.\u003c/p\u003e\n\u003cp\u003e\u003cbr /\u003e(e) Show that v(x, t) = u(x, t) − uE(x, t) is solution of a homogeneous problem (with a different initial condition) and solve it using the method of separation of variables and the superposition principle. The solution has the form\u003c/p\u003e\n\u003cp\u003ev(x, t) = G0(t) + ∞Σn =1 Gn(t) cos(nπx)\u003c/p\u003e\n\u003cp\u003eEnter the functions G0(t) and Gn(t) (in that order) into the answer box below, separated with a comma.\u003c/p\u003e\n\u003cp\u003e\u003cbr /\u003e(f) The solution u(x, t) of the original problem, written as a cosine Fourier series with coefficients that are functions of t, has the form\u003c/p\u003e\n\u003cp\u003eu(x, t) = H0(t) + ∞Σn =1 Hn(t) cos(nπx)\u003c/p\u003e\n\u003cp\u003eEnter the functions H0(t) and Hn(t) (in that order) into the answer box below, separated with a comma. \u003c/p\u003e","status":"Answered","images":[{"id":"5234b4e0-97d9-4228-8eef-0b5fe20169cc","ocr":"(e) Show that v(x, t)\n=\nu(x, t) — uɛ(x, t) is solution of a homogeneous problem (with a different initial condition)\nand solve it using the method of separation of variables and the superposition principle. The solution has the\nform\nv(x,t) = Go(t) + Σ Gn(t) cos(nлx)\nn=1\nEnter the functions Go (t) and Gn(t) (in that order) into the answer box below, separated with a comma.\n(f) The solution u(x, t) of the original problem, written as a cosine Fourier series with coefficients that are\nfunctions of t, has the form\n8\nu(x,t) = H₁(t) + Σ H₂(t) cos(nлx)\nn=1\nEnter the functions Ho(t) and H₂(t) (in that order) into the answer box below, separated with a comma.","smallImageUrl":"https://content.bartleby.com/qna-images/question/9ae7b3bf-1b32-4ccc-a45c-3ac065d5afbc/0d7ed346-3e61-48a0-8236-b42a96af6267/l9qlog_thumbnail.png","imageUrl":"https://content.bartleby.com/qna-images/question/9ae7b3bf-1b32-4ccc-a45c-3ac065d5afbc/0d7ed346-3e61-48a0-8236-b42a96af6267/l9qlog_processed.png","width":1200,"height":351}],"subjects":[{"id":"d0016c54-4459-11e8-a2ac-0eefbb92016e","title":"Math","shortName":"math","smallImage":"https://isbn-assets.bnedcompass.com/subject_images/math/math.svg","subSubject":{"id":"d0240865-4459-11e8-a2ac-0eefbb92016e","title":"Calculus","shortName":"calculus","smallImage":"https://isbn-assets.bnedcompass.com/subject_images/math/calculus.svg"}},{"id":"d0240865-4459-11e8-a2ac-0eefbb92016e","title":"Calculus","shortName":"calculus","smallImage":"https://isbn-assets.bnedcompass.com/subject_images/math/calculus.svg"}],"sampleQuestion":false,"createdDate":"2024-11-16T06:28:59.000Z","questionSource":"User","topics":[],"selectedText":null,"topicTaxonomy":[],"answeredDate":"2024-11-16T07:20:35.000Z","hasMicroExplainers":false,"microExplainersData":[],"computed":{"subject":{"id":"d0240865-4459-11e8-a2ac-0eefbb92016e","title":"Calculus","shortName":"calculus","smallImage":"https://isbn-assets.bnedcompass.com/subject_images/math/calculus.svg"},"childSubjectTitle":"Calculus"}},"answer":{"id":"4a48edb2-b194-4294-b043-f0b19c6c6a8e","status":"Accepted","questionId":"0d7ed346-3e61-48a0-8236-b42a96af6267","createdDate":"2024-11-16T07:20:35.000Z","steps":[],"rejectionMessage":null,"imagesProcessed":1,"primaryRejectionReason":null,"secondaryRejectionReason":null,"numberOfAnswerSteps":0,"schemaAnswerSteps":"Answered: Image /qna-images/answer/0d7ed346-3e61-48a0-8236-b42a96af6267.jpg","previewAnswer":true,"hasMicroExplainers":false,"certified":false,"hasVideo":false},"isOwned":false,"isRestricted":false,"exactMatch":null,"parentQuestion":null,"isBlocked":false,"followUpQuestions":[],"defaultTopicAdded":false,"inReview":false,"isUnlocked":false,"practicePacks":[],"solutionSummaryDetails":{"imagesCount":8,"stepsCount":2,"hasVideo":false,"isPopular":false,"aiSummary":null},"isAiResponse":false,"isAiResponseAccepted":null,"answerSource":"COURSE_HERO","fullAnswerDisplayed":false,"isGoogleBot":false},"qnaStats":{"numberOfUpVotes":0,"numberOfDownVotes":0,"numberOfStars":null,"shouldShowRating":false,"pageViews":null},"followUpQuestions":[],"liveChatSupport":{"isLiveChatEnabled":true,"id":"d0240865-4459-11e8-a2ac-0eefbb92016e","title":"Calculus","shortName":"calculus","waitQueueTooLong":false},"shouldHideFollowUpForCurrentSubject":false,"questionHeaderText":"(e) Show that v(x, t) = u(x, t) — uɛ(x, t) is solution of a homogeneous problem (with a different initial condition) and solve it using the method of separation of variables and the superposition principle. The solution has the form v(x,t) = Go(t) + Σ Gn(t) cos(nлx) n=1 Enter the functions Go (t) and Gn(t) (in that order) into the answer box below, separated with a comma. (f) The solution u(x, t) of the original problem, written as a cosine Fourier series with coefficients that are functions of t, has the form 8 u(x,t) = H₁(t) + Σ H₂(t) cos(nлx) n=1 Enter the functions Ho(t) and H₂(t) (in that order) into the answer box below, separated with a comma.","acceptedAnswerText":"","isBookshelved":false,"bookmarks":[],"questionText":"(e) Show that v(x, t) = u(x, t) — uɛ(x, t) is solution of a homogeneous problem (with a different initial condition) and solve it using the method of separation of variables and the superposition principle. The solution has the form v(x,t) = Go(t) + Σ Gn(t) cos(nлx) n=1 Enter the functions Go (t) and Gn(t) (in that order) into the answer box below, separated with a comma. (f) The solution u(x, t) of the original problem, written as a cosine Fourier series with coefficients that are functions of t, has the form 8 u(x,t) = H₁(t) + Σ H₂(t) cos(nлx) n=1 Enter the functions Ho(t) and H₂(t) (in that order) into the answer box below, separated with a comma.","qnaQuestionXmlSchemaData":{"@context":"https://schema.org","@type":["QAPage","WebPage"],"mainEntityOfPage":{"@type":"WebPage","@id":"https://www.bartleby.com/questions-and-answers/e-show-that-vx-t-ux-t-ux-t-is-solution-of-a-homogeneous-problem-with-a-different-initial-condition-a/0d7ed346-3e61-48a0-8236-b42a96af6267"},"name":"I wrote out the question as requested and tried to re-upload the 2 questions I'm interested in. I need the solution to e and f after we find the value of Cn for that question based on your solution before. I hope this clears things up.Consider the following heat equation on a rod (which includes heat loss through the lateral side and fixed heat flow on the boundary): ∂u/∂t = ∂2u/∂x2 − 9u, 0 \u0026lt; x \u0026lt; 1, t \u0026gt; 0,subject to the boundary conditionsux(0, t) = 3, ux(1, t) = 18, t \u0026gt; 0,and the initial conditionu(x, 0) = 0, 0 \u0026lt; x \u0026lt; 1.(a) Find the equilibrium solution uE(x) for this problem by solving a certain boundary value problem on (0, 1).(b) Use integration by parts and the given boundary conditions that uE(x) satisfies to computeA0 = 1∫0 u′′E (x) dxEnter A0. (Do not use the explicit formula for uE(x) obtained in part (a).)(c) Use integration by parts and the given boundary conditions that uE(x) satisfies to show that1∫0 u′′E (x) cos(nπx) dx = An + B*n^2 1∫0 uE(x) cos(nπx) dx, n ≥ 1, (1)for some constants B and An. (Do not use the explicit formula for uE(x) obtained in part (a).) Enter the values of B and An (in that order) into the answer box below, separated with a comma.(d) Use the differential equation that uE(x) satisfies together with the results obtained in (b) and (c) to deduce the Fourier cosine series representation for uE(x) on (0, 1) which is of the form a0/2 + ∞Σn =1 an cos(nπx).Enter the values of a0 and an (in that order) into the answer box below, separated with a comma.(e) Show that v(x, t) = u(x, t) − uE(x, t) is solution of a homogeneous problem (with a different initial condition) and solve it using the method of separation of variables and the superposition principle. The solution has the formv(x, t) = G0(t) + ∞Σn =1 Gn(t) cos(nπx)Enter the functions G0(t) and Gn(t) (in that order) into the answer box below, separated with a comma.(f) The solution u(x, t) of the original problem, written as a cosine Fourier series with coefficients that are functions of t, has the formu(x, t) = H0(t) + ∞Σn =1 Hn(t) cos(nπx)Enter the functions H0(t) and Hn(t) (in that order) into the answer box below, separated with a comma. (e) Show that v(x, t)=u(x, t) — uɛ(x, t) is solution of a homogeneous problem (with a different initial condition)and solve it using the method of separation of variables and the superposition principle. The solution has theformv(x,t) = Go(t) + Σ Gn(t) cos(nлx)n=1Enter the functions Go (t) and Gn(t) (in that order) into the answer box below, separated with a comma.(f) The solution u(x, t) of the original problem, written as a cosine Fourier series with coefficients that arefunctions of t, has the form8u(x,t) = H₁(t) + Σ H₂(t) cos(nлx)n=1Enter the functions Ho(t) and H₂(t) (in that order) into the answer box below, separated with a comma.","description":"I wrote out the question as requested and tried to re-upload the 2 questions I'm interested in. I need the solution to e and f after we find the value of Cn for that question based on your solution before. I hope this clears things up.Consider the following heat equation on a rod (which includes heat loss through the lateral side and fixed heat flow on the boundary): ∂u/∂t = ∂2u/∂x2 − 9u, 0 \u0026lt; x \u0026lt; 1, t \u0026gt; 0,subject to the boundary conditionsux(0, t) = 3, ux(1, t) = 18, t \u0026gt; 0,and the initial conditionu(x, 0) = 0, 0 \u0026lt; x \u0026lt; 1.(a) Find the equilibrium solution uE(x) for this problem by solving a certain boundary value problem on (0, 1).(b) Use integration by parts and the given boundary conditions that uE(x) satisfies to computeA0 = 1∫0 u′′E (x) dxEnter A0. (Do not use the explicit formula for uE(x) obtained in part (a).)(c) Use integration by parts and the given boundary conditions that uE(x) satisfies to show that1∫0 u′′E (x) cos(nπx) dx = An + B*n^2 1∫0 uE(x) cos(nπx) dx, n ≥ 1, (1)for some constants B and An. (Do not use the explicit formula for uE(x) obtained in part (a).) Enter the values of B and An (in that order) into the answer box below, separated with a comma.(d) Use the differential equation that uE(x) satisfies together with the results obtained in (b) and (c) to deduce the Fourier cosine series representation for uE(x) on (0, 1) which is of the form a0/2 + ∞Σn =1 an cos(nπx).Enter the values of a0 and an (in that order) into the answer box below, separated with a comma.(e) Show that v(x, t) = u(x, t) − uE(x, t) is solution of a homogeneous problem (with a different initial condition) and solve it using the method of separation of variables and the superposition principle. The solution has the formv(x, t) = G0(t) + ∞Σn =1 Gn(t) cos(nπx)Enter the functions G0(t) and Gn(t) (in that order) into the answer box below, separated with a comma.(f) The solution u(x, t) of the original problem, written as a cosine Fourier series with coefficients that are functions of t, has the formu(x, t) = H0(t) + ∞Σn =1 Hn(t) cos(nπx)Enter the functions H0(t) and Hn(t) (in that order) into the answer box below, separated with a comma. (e) Show that v(x, t)=u(x, t) — uɛ(x, t) is solution of a homogeneous problem (with a different initial condition)and solve it using the method of separation of variables and the superposition principle. The solution has theformv(x,t) = Go(t) + Σ Gn(t) cos(nлx)n=1Enter the functions Go (t) and Gn(t) (in that order) into the answer box below, separated with a comma.(f) The solution u(x, t) of the original problem, written as a cosine Fourier series with coefficients that arefunctions of t, has the form8u(x,t) = H₁(t) + Σ H₂(t) cos(nлx)n=1Enter the functions Ho(t) and H₂(t) (in that order) into the answer box below, separated with a comma.","inLanguage":"en","headline":"I wrote out the question as requested and tried to re-upload the 2 questions I'm interested in. I need the solution to e and f after we find the value of Cn for that question based on your solution before. I hope this clears things up.Consider the following heat equation on a rod (which includes heat loss through the lateral side and fixed heat flow on the boundary): ∂u/∂t = ∂2u/∂x2 − 9u, 0 \u0026lt; x \u0026lt; 1, t \u0026gt; 0,subject to the boundary conditionsux(0, t) = 3, ux(1, t) = 18, t \u0026gt; 0,and the initial conditionu(x, 0) = 0, 0 \u0026lt; x \u0026lt; 1.(a) Find the equilibrium solution uE(x) for this problem by solving a certain boundary value problem on (0, 1).(b) Use integration by parts and the given boundary conditions that uE(x) satisfies to computeA0 = 1∫0 u′′E (x) dxEnter A0. (Do not use the explicit formula for uE(x) obtained in part (a).)(c) Use integration by parts and the given boundary conditions that uE(x) satisfies to show that1∫0 u′′E (x) cos(nπx) dx = An + B*n^2 1∫0 uE(x) cos(nπx) dx, n ≥ 1, (1)for some constants B and An. (Do not use the explicit formula for uE(x) obtained in part (a).) Enter the values of B and An (in that order) into the answer box below, separated with a comma.(d) Use the differential equation that uE(x) satisfies together with the results obtained in (b) and (c) to deduce the Fourier cosine series representation for uE(x) on (0, 1) which is of the form a0/2 + ∞Σn =1 an cos(nπx).Enter the values of a0 and an (in that order) into the answer box below, separated with a comma.(e) Show that v(x, t) = u(x, t) − uE(x, t) is solution of a homogeneous problem (with a different initial condition) and solve it using the method of separation of variables and the superposition principle. The solution has the formv(x, t) = G0(t) + ∞Σn =1 Gn(t) cos(nπx)Enter the functions G0(t) and Gn(t) (in that order) into the answer box below, separated with a comma.(f) The solution u(x, t) of the original problem, written as a cosine Fourier series with coefficients that are functions of t, has the formu(x, t) = H0(t) + ∞Σn =1 Hn(t) cos(nπx)Enter the functions H0(t) and Hn(t) (in that order) into the answer box below, separated with a comma. (e) Show that v(x, t)=u(x, t) — uɛ(x, t) is solution of a homogeneous problem (with a different initial condition)and solve it using the method of separation of variables and the superposition principle. The solution has theformv(x,t) = Go(t) + Σ Gn(t) cos(nлx)n=1Enter the functions Go (t) and Gn(t) (in that order) into the answer box below, separated with a comma.(f) The solution u(x, t) of the original problem, written as a cosine Fourier series with coefficients that arefunctions of t, has the form8u(x,t) = H₁(t) + Σ H₂(t) cos(nлx)n=1Enter the functions Ho(t) and H₂(t) (in that order) into the answer box below, separated with a comma.","datePublished":"2024-11-16","dateModified":"2024-11-16","isAccessibleForFree":"False","hasPart":{"@type":"WebPageElement","isAccessibleForFree":"False","cssSelector":".paywall"},"mainEntity":{"@type":"Question","name":"I wrote out the question as requested and tried to re-upload the 2 questions I'm interested in. I need the solution to e and f after we find the value of Cn for that question based on your solution before. I hope this clears things up.Consider the following heat equation on a rod (which includes heat loss through the lateral side and fixed heat flow on the boundary): ∂u/∂t = ∂2u/∂x2 − 9u, 0 \u0026lt; x \u0026lt; 1, t \u0026gt; 0,subject to the boundary conditionsux(0, t) = 3, ux(1, t) = 18, t \u0026gt; 0,and the initial conditionu(x, 0) = 0, 0 \u0026lt; x \u0026lt; 1.(a) Find the equilibrium solution uE(x) for this problem by solving a certain boundary value problem on (0, 1).(b) Use integration by parts and the given boundary conditions that uE(x) satisfies to computeA0 = 1∫0 u′′E (x) dxEnter A0. (Do not use the explicit formula for uE(x) obtained in part (a).)(c) Use integration by parts and the given boundary conditions that uE(x) satisfies to show that1∫0 u′′E (x) cos(nπx) dx = An + B*n^2 1∫0 uE(x) cos(nπx) dx, n ≥ 1, (1)for some constants B and An. (Do not use the explicit formula for uE(x) obtained in part (a).) Enter the values of B and An (in that order) into the answer box below, separated with a comma.(d) Use the differential equation that uE(x) satisfies together with the results obtained in (b) and (c) to deduce the Fourier cosine series representation for uE(x) on (0, 1) which is of the form a0/2 + ∞Σn =1 an cos(nπx).Enter the values of a0 and an (in that order) into the answer box below, separated with a comma.(e) Show that v(x, t) = u(x, t) − uE(x, t) is solution of a homogeneous problem (with a different initial condition) and solve it using the method of separation of variables and the superposition principle. The solution has the formv(x, t) = G0(t) + ∞Σn =1 Gn(t) cos(nπx)Enter the functions G0(t) and Gn(t) (in that order) into the answer box below, separated with a comma.(f) The solution u(x, t) of the original problem, written as a cosine Fourier series with coefficients that are functions of t, has the formu(x, t) = H0(t) + ∞Σn =1 Hn(t) cos(nπx)Enter the functions H0(t) and Hn(t) (in that order) into the answer box below, separated with a comma. (e) Show that v(x, t)=u(x, t) — uɛ(x, t) is solution of a homogeneous problem (with a different initial condition)and solve it using the method of separation of variables and the superposition principle. The solution has theformv(x,t) = Go(t) + Σ Gn(t) cos(nлx)n=1Enter the functions Go (t) and Gn(t) (in that order) into the answer box below, separated with a comma.(f) The solution u(x, t) of the original problem, written as a cosine Fourier series with coefficients that arefunctions of t, has the form8u(x,t) = H₁(t) + Σ H₂(t) cos(nлx)n=1Enter the functions Ho(t) and H₂(t) (in that order) into the answer box below, separated with a comma.","text":"I wrote out the question as requested and tried to re-upload the 2 questions I'm interested in. I need the solution to e and f after we find the value of Cn for that question based on your solution before. I hope this clears things up.Consider the following heat equation on a rod (which includes heat loss through the lateral side and fixed heat flow on the boundary): ∂u/∂t = ∂2u/∂x2 − 9u, 0 \u0026lt; x \u0026lt; 1, t \u0026gt; 0,subject to the boundary conditionsux(0, t) = 3, ux(1, t) = 18, t \u0026gt; 0,and the initial conditionu(x, 0) = 0, 0 \u0026lt; x \u0026lt; 1.(a) Find the equilibrium solution uE(x) for this problem by solving a certain boundary value problem on (0, 1).(b) Use integration by parts and the given boundary conditions that uE(x) satisfies to computeA0 = 1∫0 u′′E (x) dxEnter A0. (Do not use the explicit formula for uE(x) obtained in part (a).)(c) Use integration by parts and the given boundary conditions that uE(x) satisfies to show that1∫0 u′′E (x) cos(nπx) dx = An + B*n^2 1∫0 uE(x) cos(nπx) dx, n ≥ 1, (1)for some constants B and An. (Do not use the explicit formula for uE(x) obtained in part (a).) Enter the values of B and An (in that order) into the answer box below, separated with a comma.(d) Use the differential equation that uE(x) satisfies together with the results obtained in (b) and (c) to deduce the Fourier cosine series representation for uE(x) on (0, 1) which is of the form a0/2 + ∞Σn =1 an cos(nπx).Enter the values of a0 and an (in that order) into the answer box below, separated with a comma.(e) Show that v(x, t) = u(x, t) − uE(x, t) is solution of a homogeneous problem (with a different initial condition) and solve it using the method of separation of variables and the superposition principle. The solution has the formv(x, t) = G0(t) + ∞Σn =1 Gn(t) cos(nπx)Enter the functions G0(t) and Gn(t) (in that order) into the answer box below, separated with a comma.(f) The solution u(x, t) of the original problem, written as a cosine Fourier series with coefficients that are functions of t, has the formu(x, t) = H0(t) + ∞Σn =1 Hn(t) cos(nπx)Enter the functions H0(t) and Hn(t) (in that order) into the answer box below, separated with a comma. (e) Show that v(x, t)=u(x, t) — uɛ(x, t) is solution of a homogeneous problem (with a different initial condition)and solve it using the method of separation of variables and the superposition principle. The solution has theformv(x,t) = Go(t) + Σ Gn(t) cos(nлx)n=1Enter the functions Go (t) and Gn(t) (in that order) into the answer box below, separated with a comma.(f) The solution u(x, t) of the original problem, written as a cosine Fourier series with coefficients that arefunctions of t, has the form8u(x,t) = H₁(t) + Σ H₂(t) cos(nлx)n=1Enter the functions Ho(t) and H₂(t) (in that order) into the answer box below, separated with a comma.","answerCount":1,"dateCreated":"2024-11-16","acceptedAnswer":{"@type":"Answer","text":"Answered: Image /qna-images/answer/0d7ed346-3e61-48a0-8236-b42a96af6267.jpg"},"url":"https://www.bartleby.com/questions-and-answers/e-show-that-vx-t-ux-t-ux-t-is-solution-of-a-homogeneous-problem-with-a-different-initial-condition-a/0d7ed346-3e61-48a0-8236-b42a96af6267"}},"breadcrumbXmlSchemaData":{"@context":"http://schema.org","@type":"BreadcrumbList","itemListElement":[{"@type":"ListItem","position":1,"item":{"@id":"https://www.bartleby.com/","name":"Bartleby Textbook Solutions"}},{"@type":"ListItem","position":2,"item":{"@id":"https://www.bartleby.com/subject/math","name":"Math Q\u0026A and Textbook Solutions"}},{"@type":"ListItem","position":3,"item":{"@id":"https://www.bartleby.com/subject/math/calculus","name":"Calculus Q\u0026A, Textbooks, and Solutions"}},{"@type":"ListItem","position":4,"item":{"@id":"https://www.bartleby.com/subject/math/calculus/questions-and-answers","name":"Calculus Q\u0026A Library"}},{"@type":"ListItem","position":5,"item":{"@id":"https://www.bartleby.com/questions-and-answers/e-show-that-vx-t-ux-t-ux-t-is-solution-of-a-homogeneous-problem-with-a-different-initial-condition-a/0d7ed346-3e61-48a0-8236-b42a96af6267","name":"(e) Show that v(x, t) = u(x, t) — uɛ(x, t) is solution of a homogeneous problem (with a different initial condition) and solve it using the method of separation of variables and the superposition principle. The solution has the form v(x,t) = Go(t) + Σ Gn(t) cos(nлx) n=1 Enter the functions Go (t) and Gn(t) (in that order) into the answer box below, separated with a comma. (f) The solution u(x, t) of the original problem, written as a cosine Fourier series with coefficients that are functions of t, has the form 8 u(x,t) = H₁(t) + Σ H₂(t) cos(nлx) n=1 Enter the functions Ho(t) and H₂(t) (in that order) into the answer box below, separated with a comma."}}]},"solutionVideoXmlSchemaData":null,"topicVideoXmlSchemaData":null,"qnaBreadcrumbProps":{"breadcrumbWithH1Props":{"h1Text":"(e) Show that v(x, t) = u(x, t) — uɛ(x, t) is solution of a homogeneous problem (with a different initial condition) and solve it using the method of separation of variables and the superposition principle. The solution has the form v(x,t) = Go(t) + Σ Gn(t) cos(nлx) n=1 Enter the functions Go (t) and Gn(t) (in that order) into the answer box below, separated with a comma. (f) The solution u(x, t) of the original problem, written as a cosine Fourier series with coefficients that are functions of t, has the form 8 u(x,t) = H₁(t) + Σ H₂(t) cos(nлx) n=1 Enter the functions Ho(t) and H₂(t) (in that order) into the answer box below, separated with a comma.","breadcrumbProps":{"parts":[{"name":"Math","linkProps":{"href":"/subject/math","isExternal":true},"shouldShrinkSlowly":true,"onClickGtmEvent":{"event":"Clicked on Q\u0026A Solution Breadcrumb","location":{"name":"Q\u0026A Solution Page"}}},{"name":"Calculus","linkProps":{"href":"/subject/math/calculus","isExternal":true},"shouldShrinkSlowly":true,"onClickGtmEvent":{"event":"Clicked on Q\u0026A Solution Breadcrumb","location":{"name":"Q\u0026A Solution Page"}}},{"name":"(e) Show that v(x, t) = u(x, t) — uɛ(x, t) is solution of a homogeneous problem (with a different initial condition) and solve it using the method of separation of variables and the superposition principle. The solution has the form v(x,t) = Go(t) + Σ Gn(t) cos(nлx) n=1 Enter the functions Go (t) and Gn(t) (in that order) into the answer box below, separated with a comma. (f) The solution u(x, t) of the original problem, written as a cosine Fourier series with coefficients that are functions of t, has the form 8 u(x,t) = H₁(t) + Σ H₂(t) cos(nлx) n=1 Enter the functions Ho(t) and H₂(t) (in that order) into the answer box below, separated with a comma.","shouldShrinkSlowly":false}]}}},"qnaSample":{"id":"0001183d-8c9b-44b2-a8b7-072b245cc489","url":"/questions-and-answers/1-determine-the-area-of-the-region-bounded-by-the-graph-of-the-function-and-the-tangent-line-to-the-/0001183d-8c9b-44b2-a8b7-072b245cc489","slug":"1-determine-the-area-of-the-region-bounded-by-the-graph-of-the-function-and-the-tangent-line-to-the-"},"sampleQnaIHrefAndAs":"/questions-and-answers/1-determine-the-area-of-the-region-bounded-by-the-graph-of-the-function-and-the-tangent-line-to-the-/0001183d-8c9b-44b2-a8b7-072b245cc489#undefined","knowledgeBoosterProps":{"knowledgeBoosterIntroData":{"iconSrc":"/static/compass_v2/subjects/math/calculus.svg","subjectCopy":"calculus"},"ceLinks":[],"recommendedTextbooksData":{"popularTextBooks":[{"subject":"Algebra","isbn13":"9781285463247","author":"David Poole","publisher":"Cengage Learning","bookTitle":"Linear Algebra: A Modern Introduction","smallImage":"https://www.bartleby.com/isbn_cover_images/9781285463247/9781285463247_smallCoverImage.gif","textbookLinkProps":{"href":"/textbooks/linear-algebra-a-modern-introduction-4th-edition/9781285463247/solutions"}}],"seeMoreTextBooksHref":"/search?scope=Textbooks\u0026q=Calculus\u0026subject=Calculus\u0026page=1"},"hasSimilarQuestions":true,"hasConceptExplainers":false,"hasPopularTextbooks":true,"dcsRecommendations":[{"questionUrl":{"href":"/solution-answer/chapter-46-problem-69eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/let-xxt-be-a-twice-differentiable-function-and-consider-the-second-order-differential-equation/bea81a49-561f-4f50-a38c-2e5d5215c5db"},"questioText":"Let x=x(t) be a twice-differentiable function and consider the second order differential equation x+ax+bx=0(11) Show that the change of variables y = x' and z = x allows Equation (11) to be written as a system of two linear differential equations in y and z. Show that the characteristic equation of the system in part (a) is 2+a+b=0."}],"gtmPageLocation":{"name":"Knowledge Booster"},"newlyPublishedQnaZippies":[]},"stickyHeaderProps":{"text":"(e) Show that v(x, t) = u(x, t) — uɛ(x, t) is solution of a homogeneous problem (with a different initial condition) and solve it using the method of separation of variables and the superposition principle. The solution has the form v(x,t) = Go(t) + Σ Gn(t) cos(nлx) n=1 Enter the functions Go (t) and Gn(t) (in that order) into the answer box below, separated with a comma. (f) The solution u(x, t) of the original problem, written as a cosine Fourier series with coefficients that are functions of t, has the form 8 u(x,t) = H₁(t) + Σ H₂(t) cos(nлx) n=1 Enter the functions Ho(t) and H₂(t) (in that order) into the answer box below, separated with a comma."},"followUpQuestionProps":[],"qnaVideoProps":{"video":null,"topicVideo":null,"questionId":"0d7ed346-3e61-48a0-8236-b42a96af6267","qnaHref":{"href":"/account/registration"}},"textbookModuleProps":{"bookInfoProps":{"shouldShowAbbreviatedView":true,"isbn13":"9781285463247","title":"Linear Algebra: A Modern Introduction","authors":"David Poole","publisher":"David Poole","edition":"4th Edition","bookCoverImageUrl":"https://www.bartleby.com/isbn_cover_images/9781285463247/9781285463247_smallCoverImage.gif","bookUrl":"/textbooks/linear-algebra-a-modern-introduction-4th-edition/9781285463247/solutions","bookExternalUrl":"https://amzn.to/3ubPPQT"},"tocSelectorProps":{"isbn13":"9781285463247","isHighSchool":false,"tbsSlug":"linear-algebra-a-modern-introduction-4th-edition","selectedChapterIndex":3,"chaptersAndSections":{"defaultValue":"3","defaultChildValue":"3-5","options":[{"text":"Vectors","textPrefix":"1","chapterSequenceText":"1","sectionSequenceText":"1.1","value":"0","children":[{"text":"The Geometry And Algebra Of Vectors","textPrefix":"1.1","sectionId":"e7f70230-0d12-11ea-af18-0e05d2bf2dc8","chapterSequenceText":"1","sectionSequenceText":"1.1","value":"0-0"},{"text":"Length And Angle: The Dot Product","textPrefix":"1.2","sectionId":"e8f60415-0d12-11ea-af18-0e05d2bf2dc8","chapterSequenceText":"1","sectionSequenceText":"1.2","value":"0-1"},{"text":"Lines And Planes","textPrefix":"1.3","sectionId":"ea560e2c-0d12-11ea-af18-0e05d2bf2dc8","chapterSequenceText":"1","sectionSequenceText":"1.3","value":"0-2"},{"text":"Applications","textPrefix":"1.4","sectionId":"eb44a72b-0d12-11ea-af18-0e05d2bf2dc8","chapterSequenceText":"1","sectionSequenceText":"1.4","value":"0-3"},{"text":"Chapter Questions","textPrefix":"","sectionId":"e79dc5cf-0d12-11ea-af18-0e05d2bf2dc8","chapterSequenceText":"1","sectionSequenceText":"1","value":"0-4"}],"sectionId":"e7f70230-0d12-11ea-af18-0e05d2bf2dc8"},{"text":"Systems Of Linear Equations","textPrefix":"2","chapterSequenceText":"2","sectionSequenceText":"2.1","value":"1","children":[{"text":"Introduction To Systems Of Linear Equations","textPrefix":"2.1","sectionId":"ebd4ed27-0d12-11ea-af18-0e05d2bf2dc8","chapterSequenceText":"2","sectionSequenceText":"2.1","value":"1-0"},{"text":"Direct Methods For Solving Linear Systems","textPrefix":"2.2","sectionId":"eca760d6-0d12-11ea-af18-0e05d2bf2dc8","chapterSequenceText":"2","sectionSequenceText":"2.2","value":"1-1"},{"text":"Spanning Sets And Linear Independence","textPrefix":"2.3","sectionId":"edf090af-0d12-11ea-af18-0e05d2bf2dc8","chapterSequenceText":"2","sectionSequenceText":"2.3","value":"1-2"},{"text":"Applications","textPrefix":"2.4","sectionId":"eed00d53-0d12-11ea-af18-0e05d2bf2dc8","chapterSequenceText":"2","sectionSequenceText":"2.4","value":"1-3"},{"text":"Iterative Methods For Solving Linear Systems","textPrefix":"2.5","sectionId":"efe27cb4-0d12-11ea-af18-0e05d2bf2dc8","chapterSequenceText":"2","sectionSequenceText":"2.5","value":"1-4"},{"text":"Chapter Questions","textPrefix":"","sectionId":"eb80bbf4-0d12-11ea-af18-0e05d2bf2dc8","chapterSequenceText":"2","sectionSequenceText":"2","value":"1-5"}],"sectionId":"ebd4ed27-0d12-11ea-af18-0e05d2bf2dc8"},{"text":"Matrices","textPrefix":"3","chapterSequenceText":"3","sectionSequenceText":"3.1","value":"2","children":[{"text":"Matrix Operations","textPrefix":"3.1","sectionId":"f0d0d54d-0d12-11ea-af18-0e05d2bf2dc8","chapterSequenceText":"3","sectionSequenceText":"3.1","value":"2-0"},{"text":"Matrix Algebra","textPrefix":"3.2","sectionId":"f19ed044-0d12-11ea-af18-0e05d2bf2dc8","chapterSequenceText":"3","sectionSequenceText":"3.2","value":"2-1"},{"text":"The Inverse Of A Matrix","textPrefix":"3.3","sectionId":"f28cf6de-0d12-11ea-af18-0e05d2bf2dc8","chapterSequenceText":"3","sectionSequenceText":"3.3","value":"2-2"},{"text":"The Lu Factorization","textPrefix":"3.4","sectionId":"f402a3f9-0d12-11ea-af18-0e05d2bf2dc8","chapterSequenceText":"3","sectionSequenceText":"3.4","value":"2-3"},{"text":"Subspaces, Basis, Dimension, And Rank","textPrefix":"3.5","sectionId":"f4d2a56a-0d12-11ea-af18-0e05d2bf2dc8","chapterSequenceText":"3","sectionSequenceText":"3.5","value":"2-4"},{"text":"Introduction To Linear Transformations","textPrefix":"3.6","sectionId":"f643d2a1-0d12-11ea-af18-0e05d2bf2dc8","chapterSequenceText":"3","sectionSequenceText":"3.6","value":"2-5"},{"text":"Applications","textPrefix":"3.7","sectionId":"f779ada1-0d12-11ea-af18-0e05d2bf2dc8","chapterSequenceText":"3","sectionSequenceText":"3.7","value":"2-6"},{"text":"Chapter Questions","textPrefix":"","sectionId":"f06d7e3b-0d12-11ea-af18-0e05d2bf2dc8","chapterSequenceText":"3","sectionSequenceText":"3","value":"2-7"}],"sectionId":"f0d0d54d-0d12-11ea-af18-0e05d2bf2dc8"},{"text":"Eigenvalues And Eigenvectors","textPrefix":"4","chapterSequenceText":"4","sectionSequenceText":"4.1","value":"3","children":[{"text":"Introduction To Eigenvalues And Eigenvectors","textPrefix":"4.1","sectionId":"fa205929-0d12-11ea-af18-0e05d2bf2dc8","chapterSequenceText":"4","sectionSequenceText":"4.1","value":"3-0"},{"text":"Determinants","textPrefix":"4.2","sectionId":"fb03341a-0d12-11ea-af18-0e05d2bf2dc8","chapterSequenceText":"4","sectionSequenceText":"4.2","value":"3-1"},{"text":"Eigenvalues And Eigenvectors Of N X N Matrices","textPrefix":"4.3","sectionId":"fd280370-0d12-11ea-af18-0e05d2bf2dc8","chapterSequenceText":"4","sectionSequenceText":"4.3","value":"3-2"},{"text":"Similarity And Diagonalization","textPrefix":"4.4","sectionId":"fe4472b6-0d12-11ea-af18-0e05d2bf2dc8","chapterSequenceText":"4","sectionSequenceText":"4.4","value":"3-3"},{"text":"Iterative Methods For Computing Eigenvalues","textPrefix":"4.5","sectionId":"ff953cd4-0d12-11ea-af18-0e05d2bf2dc8","chapterSequenceText":"4","sectionSequenceText":"4.5","value":"3-4"},{"text":"Applications And The Perron-frobenius Theorem","textPrefix":"4.6","sectionId":"00f7f489-0d13-11ea-af18-0e05d2bf2dc8","chapterSequenceText":"4","sectionSequenceText":"4.6","value":"3-5"},{"text":"Chapter Questions","textPrefix":"","sectionId":"f9ac2e67-0d12-11ea-af18-0e05d2bf2dc8","chapterSequenceText":"4","sectionSequenceText":"4","value":"3-6"}],"sectionId":"fa205929-0d12-11ea-af18-0e05d2bf2dc8"},{"text":"Orthogonality","textPrefix":"5","chapterSequenceText":"5","sectionSequenceText":"5.1","value":"4","children":[{"text":"Orthogonality In Rn","textPrefix":"5.1","sectionId":"03ce1984-0d13-11ea-af18-0e05d2bf2dc8","chapterSequenceText":"5","sectionSequenceText":"5.1","value":"4-0"},{"text":"Orthogonal Complements And Orthogonal Projections","textPrefix":"5.2","sectionId":"04c3d59c-0d13-11ea-af18-0e05d2bf2dc8","chapterSequenceText":"5","sectionSequenceText":"5.2","value":"4-1"},{"text":"The Gram-schmidt Process And The Qr Factorization","textPrefix":"5.3","sectionId":"058d094c-0d13-11ea-af18-0e05d2bf2dc8","chapterSequenceText":"5","sectionSequenceText":"5.3","value":"4-2"},{"text":"Orthogonal Diagonalization Of Symmetric Matrices","textPrefix":"5.4","sectionId":"06c194b5-0d13-11ea-af18-0e05d2bf2dc8","chapterSequenceText":"5","sectionSequenceText":"5.4","value":"4-3"},{"text":"Applications","textPrefix":"5.5","sectionId":"0783dee1-0d13-11ea-af18-0e05d2bf2dc8","chapterSequenceText":"5","sectionSequenceText":"5.5","value":"4-4"},{"text":"Chapter Questions","textPrefix":"","sectionId":"034ad0ae-0d13-11ea-af18-0e05d2bf2dc8","chapterSequenceText":"5","sectionSequenceText":"5","value":"4-5"}],"sectionId":"03ce1984-0d13-11ea-af18-0e05d2bf2dc8"},{"text":"Vector Spaces","textPrefix":"6","chapterSequenceText":"6","sectionSequenceText":"6.1","value":"5","children":[{"text":"Vector Spaces And Subspaces","textPrefix":"6.1","sectionId":"0a1b231a-0d13-11ea-af18-0e05d2bf2dc8","chapterSequenceText":"6","sectionSequenceText":"6.1","value":"5-0"},{"text":"Linear Independence, Basis, And Dimension","textPrefix":"6.2","sectionId":"0bf53318-0d13-11ea-af18-0e05d2bf2dc8","chapterSequenceText":"6","sectionSequenceText":"6.2","value":"5-1"},{"text":"Change Of Basis","textPrefix":"6.3","sectionId":"0e1de399-0d13-11ea-af18-0e05d2bf2dc8","chapterSequenceText":"6","sectionSequenceText":"6.3","value":"5-2"},{"text":"Linear Transformations","textPrefix":"6.4","sectionId":"0ec89840-0d13-11ea-af18-0e05d2bf2dc8","chapterSequenceText":"6","sectionSequenceText":"6.4","value":"5-3"},{"text":"The Kernel And Range Of A Linear Transformation","textPrefix":"6.5","sectionId":"0fdccb8a-0d13-11ea-af18-0e05d2bf2dc8","chapterSequenceText":"6","sectionSequenceText":"6.5","value":"5-4"},{"text":"The Matrix Of A Linear Transformation","textPrefix":"6.6","sectionId":"11054e8a-0d13-11ea-af18-0e05d2bf2dc8","chapterSequenceText":"6","sectionSequenceText":"6.6","value":"5-5"},{"text":"Applications","textPrefix":"6.7","sectionId":"12b9303f-0d13-11ea-af18-0e05d2bf2dc8","chapterSequenceText":"6","sectionSequenceText":"6.7","value":"5-6"},{"text":"Chapter Questions","textPrefix":"","sectionId":"098b00d9-0d13-11ea-af18-0e05d2bf2dc8","chapterSequenceText":"6","sectionSequenceText":"6","value":"5-7"}],"sectionId":"0a1b231a-0d13-11ea-af18-0e05d2bf2dc8"},{"text":"Distance And Approximation","textPrefix":"7","chapterSequenceText":"7","sectionSequenceText":"7.1","value":"6","children":[{"text":"Inner Product Spaces","textPrefix":"7.1","sectionId":"1408a89b-0d13-11ea-af18-0e05d2bf2dc8","chapterSequenceText":"7","sectionSequenceText":"7.1","value":"6-0"},{"text":"Norms And Distance Functions","textPrefix":"7.2","sectionId":"166a6b5f-0d13-11ea-af18-0e05d2bf2dc8","chapterSequenceText":"7","sectionSequenceText":"7.2","value":"6-1"},{"text":"Least Squares Approximation","textPrefix":"7.3","sectionId":"18175ab8-0d13-11ea-af18-0e05d2bf2dc8","chapterSequenceText":"7","sectionSequenceText":"7.3","value":"6-2"},{"text":"The Singular Value Decomposition","textPrefix":"7.4","sectionId":"19f7671e-0d13-11ea-af18-0e05d2bf2dc8","chapterSequenceText":"7","sectionSequenceText":"7.4","value":"6-3"},{"text":"Applications","textPrefix":"7.5","sectionId":"1c0f07ec-0d13-11ea-af18-0e05d2bf2dc8","chapterSequenceText":"7","sectionSequenceText":"7.5","value":"6-4"},{"text":"Chapter Questions","textPrefix":"","sectionId":"1367b0dc-0d13-11ea-af18-0e05d2bf2dc8","chapterSequenceText":"7","sectionSequenceText":"7","value":"6-5"}],"sectionId":"166a6b5f-0d13-11ea-af18-0e05d2bf2dc8"}],"textPrefix":""},"problems":{"defaultValue":"68","options":[{"text":"","textPrefix":" 1EQ","href":"/solution-answer/chapter-46-problem-1eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/21508fbf-e48e-4cc1-a67c-df62f61a26ef","value":"0","children":[]},{"text":"","textPrefix":" 2EQ","href":"/solution-answer/chapter-46-problem-2eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/e46875d3-0060-4080-b1af-73b33fc02b38","value":"1","children":[]},{"text":"","textPrefix":" 3EQ","href":"/solution-answer/chapter-46-problem-3eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/02be003a-d9a6-4e59-81c5-8e267c82fdba","value":"2","children":[]},{"text":"","textPrefix":" 4EQ","href":"/solution-answer/chapter-46-problem-4eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/ff2241d9-4e50-4693-bb8a-b6af89b8f820","value":"3","children":[]},{"text":"","textPrefix":" 5EQ","href":"/solution-answer/chapter-46-problem-5eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/bd25ef82-6bc2-479b-86b7-c22463100cb2","value":"4","children":[]},{"text":"","textPrefix":" 6EQ","href":"/solution-answer/chapter-46-problem-6eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/7d535956-ef48-4bf1-b2a8-05e2ac3112fd","value":"5","children":[]},{"text":"","textPrefix":" 7EQ","href":"/solution-answer/chapter-46-problem-7eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/c1e109f5-b3a4-4613-8f13-fcf8c2d6ed0c","value":"6","children":[]},{"text":"","textPrefix":" 8EQ","href":"/solution-answer/chapter-46-problem-8eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/7645b9e1-7ae9-4ff9-a755-4c8ea69412f7","value":"7","children":[]},{"text":"","textPrefix":" 9EQ","href":"/solution-answer/chapter-46-problem-9eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/bc8ad96f-1ec9-4451-8b19-998a7f715567","value":"8","children":[]},{"text":"","textPrefix":" 10EQ","href":"/solution-answer/chapter-46-problem-10eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/92e02554-89f2-4c29-9311-e5d711b29022","value":"9","children":[]},{"text":"","textPrefix":" 11EQ","href":"/solution-answer/chapter-46-problem-11eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/039bcb37-94b9-4570-83c1-4c0a51efdd75","value":"10","children":[]},{"text":"","textPrefix":" 12EQ","href":"/solution-answer/chapter-46-problem-12eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/990e950f-076e-4e5c-83d2-09bdd1377e25","value":"11","children":[]},{"text":"","textPrefix":" 13EQ","href":"/solution-answer/chapter-46-problem-13eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/0ce61510-4c0e-496a-bc85-783b8ee6d8f6","value":"12","children":[]},{"text":"","textPrefix":" 14EQ","href":"/solution-answer/chapter-46-problem-14eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/aee685ec-cfb3-4359-8bbe-56b2e69b73a6","value":"13","children":[]},{"text":"","textPrefix":" 15EQ","href":"/solution-answer/chapter-46-problem-15eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/c09be867-acd9-48d9-ae4b-c48902122e90","value":"14","children":[]},{"text":"","textPrefix":" 16EQ","href":"/solution-answer/chapter-46-problem-16eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/dbef44a8-29f5-4922-9510-bf98bc4372fb","value":"15","children":[]},{"text":"","textPrefix":" 17EQ","href":"/solution-answer/chapter-46-problem-17eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/5baabf42-2461-4920-8fe9-597cb373948c","value":"16","children":[]},{"text":"","textPrefix":" 18EQ","href":"/solution-answer/chapter-46-problem-18eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/0aabe316-b66f-4367-8594-2de0caba3248","value":"17","children":[]},{"text":"","textPrefix":" 19EQ","href":"/solution-answer/chapter-46-problem-19eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/7976b327-bc4c-49c4-9eb3-a94a8d199cab","value":"18","children":[]},{"text":"","textPrefix":" 20EQ","href":"/solution-answer/chapter-46-problem-20eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/95a20930-4d1a-436d-bfe5-ec937daa8123","value":"19","children":[]},{"text":"","textPrefix":" 21EQ","href":"/solution-answer/chapter-46-problem-21eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/6dfa9857-a288-48a7-bfae-896a1c8e9aaf","value":"20","children":[]},{"text":"","textPrefix":" 22EQ","href":"/solution-answer/chapter-46-problem-22eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/72f87eca-2435-480e-a0ef-4f640c3efde6","value":"21","children":[]},{"text":"","textPrefix":" 23EQ","href":"/solution-answer/chapter-46-problem-23eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/0dc68b6d-062f-47c0-981a-6cec9919bb1e","value":"22","children":[]},{"text":"","textPrefix":" 24EQ","href":"/solution-answer/chapter-46-problem-24eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/4cb3ece5-eb1e-4059-8a6a-1df458a8216e","value":"23","children":[]},{"text":"","textPrefix":" 25EQ","href":"/solution-answer/chapter-46-problem-25eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/49ab1b3c-9093-45f3-8c30-6b4f0e346218","value":"24","children":[]},{"text":"","textPrefix":" 26EQ","href":"/solution-answer/chapter-46-problem-26eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/5726fcd0-db88-4710-9d61-cb63e58e5b04","value":"25","children":[]},{"text":"","textPrefix":" 27EQ","href":"/solution-answer/chapter-46-problem-27eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/c75dc083-cadc-47a8-9b9f-8a189982e514","value":"26","children":[]},{"text":"","textPrefix":" 28EQ","href":"/solution-answer/chapter-46-problem-28eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/40d7b115-a7ee-4f13-9f5c-319dbf581743","value":"27","children":[]},{"text":"","textPrefix":" 29EQ","href":"/solution-answer/chapter-46-problem-29eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/7616e53a-4913-4974-a81b-edb2478ef9a5","value":"28","children":[]},{"text":"","textPrefix":" 30EQ","href":"/solution-answer/chapter-46-problem-30eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/15ade3b1-5f9f-47a4-be43-76e786aa18a9","value":"29","children":[]},{"text":"","textPrefix":" 31EQ","href":"/solution-answer/chapter-46-problem-31eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/01031bff-b702-4998-8775-ed65c676b004","value":"30","children":[]},{"text":"","textPrefix":" 32EQ","href":"/solution-answer/chapter-46-problem-32eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/d87658ff-9320-4ad1-847b-627770874316","value":"31","children":[]},{"text":"","textPrefix":" 33EQ","href":"/solution-answer/chapter-46-problem-33eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/e1afb9ab-fcae-4c1c-8756-7b93c7494dd8","value":"32","children":[]},{"text":"","textPrefix":" 34EQ","href":"/solution-answer/chapter-46-problem-34eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/77746006-5344-4791-b176-f279d236b94d","value":"33","children":[]},{"text":"","textPrefix":" 35EQ","href":"/solution-answer/chapter-46-problem-35eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/ef35345f-6d91-47d0-81bd-da80c01425f2","value":"34","children":[]},{"text":"","textPrefix":" 36EQ","href":"/solution-answer/chapter-46-problem-36eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/009645b4-8904-4a78-a934-ee3d695f518a","value":"35","children":[]},{"text":"","textPrefix":" 37EQ","href":"/solution-answer/chapter-46-problem-37eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/616b714a-649e-4fd6-bade-9f44d38287f6","value":"36","children":[]},{"text":"","textPrefix":" 38EQ","href":"/solution-answer/chapter-46-problem-38eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/cfccac5c-9e10-4deb-ac18-17da0b5a6f73","value":"37","children":[]},{"text":"","textPrefix":" 39EQ","href":"/solution-answer/chapter-46-problem-39eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/873669ed-d5cb-4009-8d59-acb16832d39e","value":"38","children":[]},{"text":"","textPrefix":" 40EQ","href":"/solution-answer/chapter-46-problem-40eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/2a050ed1-6ea0-4648-8b4b-46b5e55ff0e5","value":"39","children":[]},{"text":"","textPrefix":" 41EQ","href":"/solution-answer/chapter-46-problem-41eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/c5485a15-a0e2-4ac8-929f-6c5ad8fe4da0","value":"40","children":[]},{"text":"","textPrefix":" 42EQ","href":"/solution-answer/chapter-46-problem-42eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/635f94c9-85f1-4ea2-9144-c3e64a410d7b","value":"41","children":[]},{"text":"","textPrefix":" 43EQ","href":"/solution-answer/chapter-46-problem-43eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/7e7365da-983b-4492-baea-77f73341f312","value":"42","children":[]},{"text":"","textPrefix":" 44EQ","href":"/solution-answer/chapter-46-problem-44eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/0ec68f47-03d9-4ac3-9b2a-382c4e293ab0","value":"43","children":[]},{"text":"","textPrefix":" 45EQ","href":"/solution-answer/chapter-46-problem-45eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/986620fe-cab7-4762-b741-ac82342a65cc","value":"44","children":[]},{"text":"","textPrefix":" 46EQ","href":"/solution-answer/chapter-46-problem-46eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/59721bc4-9b60-43c6-bec4-a936fa7def65","value":"45","children":[]},{"text":"","textPrefix":" 47EQ","href":"/solution-answer/chapter-46-problem-47eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/86c92f76-7b42-4713-977a-313b6f343719","value":"46","children":[]},{"text":"","textPrefix":" 48EQ","href":"/solution-answer/chapter-46-problem-48eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/9476cf1a-5bf9-4247-9ce7-5320f8b68770","value":"47","children":[]},{"text":"","textPrefix":" 49EQ","href":"/solution-answer/chapter-46-problem-49eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/341ba018-a92b-4ae3-a660-004f196d16b1","value":"48","children":[]},{"text":"","textPrefix":" 50EQ","href":"/solution-answer/chapter-46-problem-50eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/70a3c944-0b0c-43a9-9c3e-c5f83913f4ad","value":"49","children":[]},{"text":"","textPrefix":" 51EQ","href":"/solution-answer/chapter-46-problem-51eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/bba322a6-e4ca-437b-9fec-0c0e1c700173","value":"50","children":[]},{"text":"","textPrefix":" 52EQ","href":"/solution-answer/chapter-46-problem-52eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/cf0ad57c-b53a-4862-82aa-16d2e820b354","value":"51","children":[]},{"text":"","textPrefix":" 53EQ","href":"/solution-answer/chapter-46-problem-53eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/6baf4437-c6b4-4199-b1b7-d3eac4df9028","value":"52","children":[]},{"text":"","textPrefix":" 54EQ","href":"/solution-answer/chapter-46-problem-54eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/11c36afe-4ce1-4b65-93a3-e48b60ff2415","value":"53","children":[]},{"text":"","textPrefix":" 55EQ","href":"/solution-answer/chapter-46-problem-55eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/99b17048-ae99-495c-ab1b-4dbc49360bef","value":"54","children":[]},{"text":"","textPrefix":" 56EQ","href":"/solution-answer/chapter-46-problem-56eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/4c6aac50-639e-48ed-892e-959444734ea5","value":"55","children":[]},{"text":"","textPrefix":" 57EQ","href":"/solution-answer/chapter-46-problem-57eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/e792cc24-5361-4cd8-9666-fb67645270ec","value":"56","children":[]},{"text":"","textPrefix":" 58EQ","href":"/solution-answer/chapter-46-problem-58eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/2d01330f-2ba4-4cad-a711-8e2fe6a3e771","value":"57","children":[]},{"text":"","textPrefix":" 59EQ","href":"/solution-answer/chapter-46-problem-59eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/6c748eda-f6da-425d-8c31-d1029249d602","value":"58","children":[]},{"text":"","textPrefix":" 60EQ","href":"/solution-answer/chapter-46-problem-60eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/7eac6a14-871b-49cf-813b-06da857b4a4d","value":"59","children":[]},{"text":"","textPrefix":" 61EQ","href":"/solution-answer/chapter-46-problem-61eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/130cb125-1473-4382-b3f2-f95caab49eb7","value":"60","children":[]},{"text":"","textPrefix":" 62EQ","href":"/solution-answer/chapter-46-problem-62eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/64ed985f-0403-481a-bb26-dca61337d3db","value":"61","children":[]},{"text":"","textPrefix":" 63EQ","href":"/solution-answer/chapter-46-problem-63eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/cf7bf6e9-315b-48bb-b421-56bbdab6572b","value":"62","children":[]},{"text":"","textPrefix":" 64EQ","href":"/solution-answer/chapter-46-problem-64eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/faa1ffe4-684d-4327-8342-0a4e3b01b45e","value":"63","children":[]},{"text":"","textPrefix":" 65EQ","href":"/solution-answer/chapter-46-problem-65eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/b7f02b85-cbbb-4e22-b11e-0acda009f539","value":"64","children":[]},{"text":"","textPrefix":" 66EQ","href":"/solution-answer/chapter-46-problem-66eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/f58fad96-cb74-4ab7-953b-397a3dd98a1b","value":"65","children":[]},{"text":"","textPrefix":" 67EQ","href":"/solution-answer/chapter-46-problem-67eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/30d929e7-a88e-42ec-a3d7-8ac7d0226dd2","value":"66","children":[]},{"text":"","textPrefix":" 68EQ","href":"/solution-answer/chapter-46-problem-68eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/f77003eb-b8eb-4196-84ee-4ee2ebdef02e","value":"67","children":[]},{"text":"Let x=x(t) be a twice-differentiable function and consider the second order differential equation...","textPrefix":" 69EQ","href":"/solution-answer/chapter-46-problem-69eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/let-xxt-be-a-twice-differentiable-function-and-consider-the-second-order-differential-equation/bea81a49-561f-4f50-a38c-2e5d5215c5db","value":"68","children":[]},{"text":"","textPrefix":" 70EQ","href":"/solution-answer/chapter-46-problem-70eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/9ee9e739-a9b6-43b2-ab41-6febed683e3f","value":"69","children":[]},{"text":"","textPrefix":" 71EQ","href":"/solution-answer/chapter-46-problem-71eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/58496825-edab-43e2-9014-fb71f46a3ec0","value":"70","children":[]},{"text":"","textPrefix":" 72EQ","href":"/solution-answer/chapter-46-problem-72eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/c0cfb0bb-7ac2-45d2-854c-5ae03391f726","value":"71","children":[]},{"text":"","textPrefix":" 73EQ","href":"/solution-answer/chapter-46-problem-73eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/ab436e9e-9b61-4228-a61d-b0b6a4bb0f1d","value":"72","children":[]},{"text":"","textPrefix":" 74EQ","href":"/solution-answer/chapter-46-problem-74eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/e408004c-b7f7-496c-bb61-aa73484d1a34","value":"73","children":[]},{"text":"","textPrefix":" 75EQ","href":"/solution-answer/chapter-46-problem-75eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/16c3ccda-8b51-46ce-b304-302cb39641a7","value":"74","children":[]},{"text":"","textPrefix":" 76EQ","href":"/solution-answer/chapter-46-problem-76eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/bf1e95f5-2b9e-49dd-9bc4-d58bb884d07a","value":"75","children":[]},{"text":"","textPrefix":" 77EQ","href":"/solution-answer/chapter-46-problem-77eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/099fe539-4871-4a9f-b20b-36d2a047352f","value":"76","children":[]},{"text":"","textPrefix":" 78EQ","href":"/solution-answer/chapter-46-problem-78eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/0821e50b-f4ad-4c27-b63a-db6c24536cb3","value":"77","children":[]},{"text":"","textPrefix":" 79EQ","href":"/solution-answer/chapter-46-problem-79eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/997165ae-30af-4716-a845-c04f7fd188ee","value":"78","children":[]},{"text":"","textPrefix":" 80EQ","href":"/solution-answer/chapter-46-problem-80eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/2c0eabe4-7466-44bd-8641-e927c630f62e","value":"79","children":[]},{"text":"","textPrefix":" 81EQ","href":"/solution-answer/chapter-46-problem-81eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/894a6246-85cd-4cd6-a180-542a687a84c5","value":"80","children":[]},{"text":"","textPrefix":" 82EQ","href":"/solution-answer/chapter-46-problem-82eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/5999e9ba-c491-4f15-a3f4-36256fde36c8","value":"81","children":[]},{"text":"","textPrefix":" 83EQ","href":"/solution-answer/chapter-46-problem-83eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/ebb6d29e-e0b0-43fd-8225-38ff9988886b","value":"82","children":[]},{"text":"","textPrefix":" 84EQ","href":"/solution-answer/chapter-46-problem-84eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/9d061543-8fcf-47af-bc05-24a6f80b0559","value":"83","children":[]},{"text":"","textPrefix":" 85EQ","href":"/solution-answer/chapter-46-problem-85eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/ce6051b5-ae17-4939-9ac9-cd8a23648fd7","value":"84","children":[]},{"text":"","textPrefix":" 86EQ","href":"/solution-answer/chapter-46-problem-86eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/760309b4-7629-400b-b9c3-e1d961f2f7f8","value":"85","children":[]},{"text":"","textPrefix":" 87EQ","href":"/solution-answer/chapter-46-problem-87eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/1366c3d0-bdb8-40aa-9d39-bf8b81c030d9","value":"86","children":[]},{"text":"","textPrefix":" 88EQ","href":"/solution-answer/chapter-46-problem-88eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/7e7077cc-5e88-4cd6-adb0-3fe10f1e4f35","value":"87","children":[]},{"text":"","textPrefix":" 89EQ","href":"/solution-answer/chapter-46-problem-89eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/b232728b-4643-42fb-bba9-fec521d4102b","value":"88","children":[]},{"text":"","textPrefix":" 90EQ","href":"/solution-answer/chapter-46-problem-90eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/c24299a7-9270-4bdf-8f57-ae4db66ae598","value":"89","children":[]},{"text":"","textPrefix":" 91EQ","href":"/solution-answer/chapter-46-problem-91eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/f91df7be-29cb-4c58-af02-cecd6485f996","value":"90","children":[]},{"text":"","textPrefix":" 92EQ","href":"/solution-answer/chapter-46-problem-92eq-linear-algebra-a-modern-introduction-4th-edition/9781285463247/c4434e22-e923-4c91-974c-ab07c580bb15","value":"91","children":[]}],"defaultChildValue":"0"}},"similarTextnooksHref":"/subject/math/algebra/textbook-answers","qnaZippiesProps":{"headerProps":{"title":"Related questions","iconUrl":"/static/compass_v2/leftrail/relatedQuestions.svg","iconWidth":"12px","iconHeight":"14px","iconAlt":"","iconBackgroundColor":"#D8199E","buttonAriaProps":{"aria-label":"open related questions","aria-controls":"related-question-panel","id":"related-question-left-rail"}},"zippies":[{"question":"For each surface below, give a parameterization r(u, v); be sure to use rectangular bounds (u, v) ∈…","answer":"1. Upside-Down ConeFor the cone with height 3, tip at the origin, and circular base of radius…","href":"/questions-and-answers/for-each-surface-below-give-a-parameterization-ru-v-be-sure-to-use-rectangular-bounds-u-v-euro-a-b-x/006d8bc0-4c32-4524-8342-d66ab1ecce20"},{"question":"SITUATION NO. 02 P14-P1S\nGiven the following field notes for a differential leveling\nAll units are…","answer":"","href":"/questions-and-answers/situation-no.-02-p14-p1s-given-the-following-field-notes-for-a-differential-leveling-all-units-are-i/8f1b5988-8093-44c2-867d-41e7ece794b4"},{"question":"solve it","answer":"1. For which values of x is f(x) continuous? f(x) is continuous for x in the interval (-1, ∞) 2.…","href":"/questions-and-answers/in-this-question-well-gather-information-for-sketching-the-function-1.-for-which-values-of-a-is-fx-c/482e679a-44b9-4595-b81e-54f3275a456d"},{"question":"2. Consider the function f : R2 R defined by\nf(x) = ||x||³,\nwhere ||x|| = √√x² + x².\n(i) Compute the…","answer":"","href":"/questions-and-answers/2.-consider-the-function-f-r2-r-defined-by-fx-ororxoror-where-ororxoror-x-x.-i-compute-the-gradient-/b6b6b732-a600-48e2-a284-b2e1074af05d"},{"question":"please help thank you a lot. also please don't use chat gpt because that answer is wrong","answer":"Step 1:Method 1 Step 2:Method 2 Step 3: Step 4:","href":"/questions-and-answers/consider-the-circle-c-of-unit-radius.-as-an-equation-c-is-given-by-x-y-1.-find-all-tangent-lines-to-/ef40dfb8-d484-4398-858c-d74e1799346c"},{"question":"Explain step by step of how they got to the answer for both problems","answer":"","href":"/questions-and-answers/pt-1-1-152-pt-t-.-t-12-.-2t-2tt-152-.-5t-1-12-211-152-tt-12-51-21-1-11-1-71-2-y-6e2x-dy-dx-62e2x-12e/98e17122-dd9d-48d5-8eb6-0a6d9b0ffaa1"},{"question":"मा\nWith explanation\nQ / Prove that L{ {\"} = \"!\n5n+1\nand steps of solution?","answer":"","href":"/questions-and-answers/with-explanation-q-prove-that-l-5n1-and-steps-of-solution/760f3d21-3443-4ba0-8b54-98a13b5453dd"},{"question":"Q1 (9 points)\nLet z(x, y) and w(x, y) be smooth functions that satisfy the equations\nw+w³ + x²yz + 4…","answer":"Step 1: Set up The question:Analyze the question and observe what is given to you and what you need…","href":"/questions-and-answers/q1-9-points-let-zx-y-and-wx-y-be-smooth-functions-that-satisfy-the-equations-ww-xyz-4-0-zwxyw10-and-/98117767-6e6c-4fbe-a9dc-b2ddc0dbf0c4"},{"question":"Pls help ASAP. Pls show all work and steps. Pls circle the final answer.","answer":"Here is the step-by-step explanation:The equation of the plane is given…","href":"/questions-and-answers/18.-find-the-intercepts-of-the-plane-x-y-z-5-4-3-s-1-0-1-t-1-4-2./f26995ff-bd62-4447-b22d-1af81ce50d25"},{"question":"GRADED EXERCISE 5:\n1\n3. A 6-ft man walks away from a 9-ft lamppost at a rate of\nft/sec. If the light…","answer":"Problem 3: Related Rates ProblemWe are given:A 6 ft tall man walks away from a 9 ft tall lamppost at…","href":"/questions-and-answers/graded-exercise-5-1-3.-a-6-ft-man-walks-away-from-a-9-ft-lamppost-at-a-rate-of-ftsec.-if-the-light-a/eb5f6d51-f758-4236-80e3-a57906e04775"},{"question":"Pls help ASAP. Pls show all work and steps. Pls circle the final answer.","answer":"Steps and explanations are as follows:In case of any doubt, please let me know. Thank you.","href":"/questions-and-answers/17.-the-line-42-2-s-5-3-1-se-r-crosses-the-xz-plane-and-the-yz-plane-at-points-a-as-b-respectively.-/b12fe077-2a06-4ede-a8d7-2aface8021c2"},{"question":"1. A GRAPHING CALCULATOR IS REQUIRED FOR THIS QUESTION.\nYou are permitted to use your calculator to…","answer":"Here is the calculation for the answer in Part (d) using Desmos graphing calculator. To find x,…","href":"/questions-and-answers/1.-a-graphing-calculator-is-required-for-this-question.-you-are-permitted-to-use-your-calculator-to-/45c63827-ba91-4c25-9eaf-d171442444e0"},{"question":"Pls help ASAP. Pls show all work and steps. Pls circle the final answer.","answer":"1. Assuming they are asking for the value of m for which both planes will be perpendicular:To make…","href":"/questions-and-answers/7.-determine-the-value-of-m-will-make-the-planes-new-shequel-2x-my-3z-1-0-and-p2-2mx-3y-2z-4-0-6-a.-/a6d0780e-9876-44a1-bae9-fe8845836b12"},{"question":"Help solve step by step","answer":"Step 1: Identify the derivative rules that applyConstant Rule: (where c = constant, ex: 10)d/dx (c)…","href":"/questions-and-answers/5t-7t-rt-31-1-rt-31-1-10t-7-5t-7t33t-13-31-132-31-1-101-7-95t-7t3t-1-31-16-31-110t-7-95t-71-31-14-30/f40d27b8-1680-4449-ad72-f2d189a7fa73"},{"question":"Consider the following heat equation on a rod (which includes heat loss through the lateral side and…","answer":"If doubt then aks. Please like.","href":"/questions-and-answers/consider-the-following-heat-equation-on-a-rod-which-includes-heat-loss-through-the-lateral-side-and-/457d5f8b-f55e-4c47-839b-420898ae2a2f"},{"question":"Look at the figure:The radius r measures 10cm and the radius R measures 20cm. The height h1 measures…","answer":"(c) If the height of the cylinder were to change from 25cm to 25.2cm and all other measurements…","href":"/questions-and-answers/24-1.3.-241/a03313e0-7b8a-491d-a04c-172aa15b86be"},{"question":"Please help on all asked questions, Pls show all work and steps, and circle the final answer.","answer":"Step 1:13. a) The provided function is:f(x)=x2−3x+6 ..........(1)It is needed to obtain the…","href":"/questions-and-answers/13.-find-the-equation-of-the-tangent-to-the-following-functions-at-the-indicated-point.-a-fx-x-3x6-a/a9d6b522-ef33-4ef0-af1e-dd115908c7a9"},{"question":"Classify each of the following first order differential equations\n(x + 1) y' + (x + y)² = x²\nУ\nxy…","answer":"Explanation:","href":"/questions-and-answers/classify-each-of-the-following-first-order-differential-equations-x-1-y-x-y-x-u-xy-32-14-dz-2y-dy-0-/367b7e47-1875-4039-ac10-736269e4bc0d"},{"question":"solve part e","answer":"Step 1:","href":"/questions-and-answers/in-this-question-we-will-consider-the-function-a-use-asymptotics-as-in-the-first-week-of-class-to-ma/7620e6bf-bc29-4e06-85a0-6d0755c7ca1b"},{"question":"In Exercises 33-38, find the value of (fog)' at the given value of x.\n√√√x, x = 1\nu³ + 1, u = g(x) =…","answer":"We are given two functions, f(u) and g(x), and we are asked to find the derivative of the composite…","href":"/questions-and-answers/in-exercises-33-38-find-the-value-of-fog-at-the-given-value-of-x.-x-x-1-u-1-u-gx-x-33.-fu-u-1-3-34.-/84831e5e-41d3-4150-9c6c-303936265658"},{"question":"4. Find, if any, the horizontal asymptotes of the following functions and use that information\nto…","answer":"(a)f(x)=x4+3x2+7x+10(x+1)4 Degree of the numerator: 4 (after expansion)Degree of the denominator:…","href":"/questions-and-answers/4.-find-if-any-the-horizontal-asymptotes-of-the-following-functions-and-use-that-information-to-matc/abbb095b-fdb3-4664-99fb-b534d12eead9"},{"question":"Could section E and F be solved explicitly please?","answer":"","href":"/questions-and-answers/consider-the-following-heat-equation-on-a-rod-which-includes-heat-loss-through-the-lateral-side-and-/00faa39d-77d1-4183-84c5-f0f27d083011"},{"question":"question says to rank in order the following options","answer":"The effective annual rate (EAR) represents how much interest you earn in a year after compounding.…","href":"/questions-and-answers/a-12percent-interest-compounded-annually-b-11percent-interest-compounded-monthly-c-10percent-interes/0acd2c38-bb43-40f2-aed9-261804e22bc0"},{"question":"Find the general and particular solution.\ny\"+6y' + 10y=22+20x, y(0) = 2, y'(0) = -2","answer":"Approach to solving the question: Solution for Differential EquationConsider the differential…","href":"/questions-and-answers/find-the-general-and-particular-solution.-y6y-10y2220x-y0-2-y0-2/0183b442-b78f-40a3-983a-b28fde102362"},{"question":"Let C be the curve consisting of the three line segments from (0, 0) to (1, 1), from (1, 1) to (1,…","answer":"Step 1:","href":"/questions-and-answers/let-c-be-the-curve-consisting-of-the-three-line-segments-from-00-to-1-1-from-1-1-to-1-1-and-from-1-1/6200e566-8cac-4a4c-a501-344166e0625a"},{"question":"The solution of the initial value problem.\n=\nS t y + 4 y\n√ty 4y = 4\nโy(1) = 4\nt4\nis\nS\nУ\nt4 +7\n2t4…","answer":"Step 1: Step 2:Step 3: Step 4:","href":"/questions-and-answers/the-solution-of-the-initial-value-problem.-s-t-y-4-y-ty-4y-4-y1-4-t4-is-s-u-t4-7-2t4-5t4-1-y-t8-1-ln/a901f485-c2ec-438e-a239-a8ade9fd4597"},{"question":"Please help on all asked questions, Pls show all work and steps, and circle the final answer.","answer":"Step 1: Step 2: Step 3: Step 4:","href":"/questions-and-answers/1-1-0-19-13-c-lim-x-3-x-3-x-3-a-113-b-1-d-lim-2h-1-h-1-h-1-a-009-b-infinity-c-1-19-d-113-d-0/f2672bb3-d5a6-4249-b33d-35c48e24460b"},{"question":"Use RREF method to solve the linear system\nx1\n+ 3x2\n=\n9,\n2x1 + x2\n8.\nWe must show the elementary row…","answer":"","href":"/questions-and-answers/use-rref-method-to-solve-the-linear-system-x1-3x2-9-2x1-x2-8.-we-must-show-the-elementary-row-operat/bb19fb93-0de3-49c0-afe2-2e8fcf3a4b51"},{"question":"find x for\n√x+2=-2","answer":"There is no solution to the equation x+2=−2,because the square root of a number is always…","href":"/questions-and-answers/find-x-for-x2-2/c8e43830-d8ae-4c56-afbf-ddb3fb02a7ad"},{"question":"Differentiate the function.\nv = (√x+·\nv' =\nEnhanced Feedback\n1\n2\n3","answer":"Step 1: Given function v=(x+3x1)2. We have to find v'. (differentiation of the function v) Step…","href":"/questions-and-answers/differentiate-the-function.-v-x-v-enhanced-feedback-1-2-3/d2d77d63-51bf-4399-862f-c931cb670145"},{"question":"Find the limit. Hint use Polar Coordinates.\nx2y2\nlim\n(x,y)+(0,0) x²+y2","answer":"First, we need to find the first order partial derivatives of the function f(x,y) = x*y^(-2) +…","href":"/questions-and-answers/find-the-limit.-hint-use-polar-coordinates.-x2y2-lim-xy00-xy2-find-all-first-and-second-order-partia/3fdf73f5-70c3-488d-98ae-966cd890bce4"},{"question":"A ladder 23 feet long leans against a wall and the foot of the ladder is sliding away at a constant…","answer":"if doubt arises please mention in the comments.","href":"/questions-and-answers/a-ladder-23-feet-long-leans-against-a-wall-and-the-foot-of-the-ladder-is-sliding-away-at-a-constant-/f55543c1-01b6-4022-ac3a-ac6600631e3c"},{"question":"b)\nVing\nafter July). (2)\nc)\nwhat kind of time will:\nlation\n(5)\n5) A bank advertises that it…","answer":"Because the bank employs continuous compounding, your money will increase steadily over time. We…","href":"/questions-and-answers/b-ving-after-july.-2-c-what-kind-of-time-will-lation-5-5-a-bank-advertises-that-it-compounds-continu/a78e1e4e-f61e-4e52-9b7b-39a900d4cddb"},{"question":"6) For the graph provided answer the following:\na)\nFor which x is the function discontinuous? What…","answer":"(a)The function is discontinuous at x=Reason-5The limx→−5f(x) does not exist since its left-hand…","href":"/questions-and-answers/6-for-the-graph-provided-answer-the-following-a-for-which-x-is-the-function-discontinuous-what-is-th/02f06d40-56e4-4dca-a988-9d9c30bb05bc"},{"question":"Diego deposited a certain sum of money in a bank 4 years ago. The bank had been paying interest at…","answer":"Step 1:For the compounded continuously, the formula for the amount at time t is given by…","href":"/questions-and-answers/diego-deposited-a-certain-sum-of-money-in-a-bank-4-years-ago.-the-bank-had-been-paying-interest-at-t/ecad4ecc-71e7-480d-abfc-078188f3f996"},{"question":"Do not use AI apps for solving these maths . To solve by handwriting","answer":"We are asked to find the limit of the function (x-2)^-16 as x approaches 2 using L'Hopital's Rule.…","href":"/questions-and-answers/course-name-calculus-with-analytical-geometry-1-course-code-math-132-do-not-use-artificial-intellige/528c6715-d869-4cf2-9064-17c76ad16160"},{"question":"Problem 1. Discrete stochastic integrals for general martingales.\nn=0\nLet (Mn) be a martingale with…","answer":"Part (a): Prove that E[In]=0The process (In) is defined as:In=∑k=1nZk(Mk−Mk−1)Since (Mn) is…","href":"/questions-and-answers/problem-1.-discrete-stochastic-integrals-for-general-martingales.-n0-let-mn-be-a-martingale-with-res/9eb11759-f171-4a0b-a65d-81744bca2af7"},{"question":"pls draw the graph by showing and incorporating everything.","answer":"f)","href":"/questions-and-answers/8.-consider-the-function-x-x-8x-18x-27-and-in-factored-form-fx-x-1x-3-a-determine-the-x-and-y-interc/7396f302-08b7-4a73-b792-50312cfc678f"},{"question":"2) Find the value of b in the definite integral below.\nL\ntan(x) dr = 2","answer":"","href":"/questions-and-answers/2-find-the-value-of-b-in-the-definite-integral-below.-l-tanx-dr-2/6f8d8a07-431a-41b5-83f4-79557b7e36b6"},{"question":"Instruction:\nCourse Name: Calculus with Analytical Geometry-1\nCourse Code: MATH 132\n1. Solution must…","answer":"","href":"/questions-and-answers/instruction-course-name-calculus-with-analytical-geometry-1-course-code-math-132-1.-solution-must-ha/ac2efcb0-bf9a-4e8a-9933-7be6fd20bdce"},{"question":"#5, 43 a and b\nHello!\nPlease , can you help me with the attached Calculus problem seen in the…","answer":"Let's solve these limits using the indicated substitution (t=x1). a)(limx→∞xsin(x1)) Substitute…","href":"/questions-and-answers/43.-in-parts-a-c-find-the-limit-by-making-the-indicated-substitution.-1-1-a-lim-x-sin-t-8x-x-x-b-lim/13504673-d604-4429-bf7d-994fee343a88"},{"question":"Which of the following is a solution of the initial value problem\nS\n1\nSy ln(y) dx + x dy = 0\n\\y(e) =…","answer":"Step 1: Step 2: Step 3: Step 4:","href":"/questions-and-answers/which-of-the-following-is-a-solution-of-the-initial-value-problem-s-1-sy-lny-dx-x-dy-0-ye-e-hint-int/12e1a97c-bd92-4513-968c-8bc492c18bd6"},{"question":"Please help on all asked questions. Please show all work and steps. Pls circle the final answer.","answer":"","href":"/questions-and-answers/6.-if-f4-3-and-f4-5-find-g4-where-gx-xfx./b8ce1ea8-10ec-488d-9075-b13e2d3f62a7"},{"question":"Please help me with these questions. I am having trouble understanding what to do. I keep getting…","answer":"Part (a):","href":"/questions-and-answers/find-the-radius-of-convergence-r-of-the-series.-x5-5-inn-n-2-r-5-find-the-interval-i-of-convergence-/e211fe8d-36c4-4d32-bf4a-dfc163e81632"},{"question":"0\n5.\nχ\n√√ x³ sin dx =\nS:\nx3\n3x²\nsin\nx\nX2\n-2 cos\n6x\n-4 sin\nX\n8 cos\nx\n16 sin\nNIX","answer":"If you have any problem let me know in comment section thank you.","href":"/questions-and-answers/0-5.-x-x-sin-dx-s-x3-3x-sin-x-x2-2-cos-6x-4-sin-x-8-cos-x-16-sin-nix/93117b08-0722-4d84-9d68-900f611dcc2d"},{"question":"#5, 15\nPlease help me solve this problem in the attached image. Thank you.\nThe instruction for the…","answer":"","href":"/questions-and-answers/15.-lim-x0-2-x-_-3-sinx-3-x-x/73fbb3e8-e068-48c3-9aff-0d099815b641"},{"question":"1. S\nx+1\n√x-5\ndx","answer":"Step 1: Step 2: Step 3: Step 4:","href":"/questions-and-answers/1.-s-x1-x-5-dx/a37fb278-ae7e-44a1-b275-cb93375ae90d"},{"question":"Answer all parts and show work pls","answer":"If you have any problem let me know in the comment section thank you.","href":"/questions-and-answers/use-integration-by-parts-to-find-the-indefinite-integral.-1.-x-cos-x-dx-fx-2.-xe-dx-xex-dx-math-iz-a/cd033a0e-e20e-4cbb-9b23-9c3910d6587c"},{"question":"4. (i) Let f R2 → R be defined by\nf(x1, x2) = 2x 8x1x2+4x+1.\nFind all local minima of ƒ on R².\n[20…","answer":"Step 1: Step 2: Step 3: Step 4:","href":"/questions-and-answers/4.-i-let-f-r2-r-be-defined-by-fx1-x2-2x-8x1x24x1.-find-all-local-minima-of-f-on-r.-20-marks-ii-does-/670ba45a-5246-49f8-8827-0ee152ae211d"},{"question":"X\n+…","answer":"a.It is given that there are 200 students in the class and 35% are science majors. Hence number of…","href":"/questions-and-answers/x-c.instructure.comcourses1512external_toolsretrievedisplayfull_widthandurlhttpspercent3apercent2fpe/809df3a4-fef7-4981-af50-2d6389a16afd"}],"onExpandGtmEvent":{"event":"User Expands Similar Questions in Left Rail Solution Page","location":"QNA Solution"}},"conceptExplainerZippiesProps":null},"qnaQuestionHeaderProps":{"satisfactionPercentage":null,"shouldShowRating":false},"slug":"e-show-that-vx-t-ux-t-ux-t-is-solution-of-a-homogeneous-problem-with-a-different-initial-condition-a","shouldLoadABTasty":false,"qnAAggregateRatingXmlSchemaData":null}},"page":"/questions-and-answers/[...id]","query":{"id":["e-show-that-vx-t-ux-t-ux-t-is-solution-of-a-homogeneous-problem-with-a-different-initial-condition-a","0d7ed346-3e61-48a0-8236-b42a96af6267"]},"buildId":"f63bc52d7815b708337400d031020df4256805dc","assetPrefix":"/v2","isFallback":false,"gip":true,"scriptLoader":[]}</script></body></html>