CINXE.COM
Editors’ Picks – Towards Data Science
<!DOCTYPE html><html xmlns:cc="http://creativecommons.org/ns#"><head prefix="og: http://ogp.me/ns# fb: http://ogp.me/ns/fb# medium-com: http://ogp.me/ns/fb/medium-com#"><meta http-equiv="Content-Type" content="text/html; charset=utf-8"><meta name="viewport" content="width=device-width, initial-scale=1.0, viewport-fit=contain"><title>Editors’ Picks – Towards Data Science</title><link rel="canonical" href="https://towardsdatascience.com/editors-picks/home"><meta name="robots" content="index,follow"><meta name="title" content="Editors’ Picks – Towards Data Science"><meta name="referrer" content="unsafe-url"><meta name="description" content="Discover the best of Towards Data Science: from hands-on tutorials and cutting-edge research to the latest on data science and machine learning tools. Your home for data science and AI. The world’s leading publication for data science, data analytics, data engineering, machine learning, and artificial intelligence professionals."><meta name="theme-color" content="#000000"><meta property="og:title" content="Editors’ Picks – Towards Data Science"><meta property="twitter:title" content="Editors’ Picks – Towards Data Science"><meta property="og:url" content="https://towardsdatascience.com/editors-picks/home"><meta property="og:image" content="https://cdn-images-1.medium.com/max/1200/1*CJe3891yB1A1mzMdqemkdg.jpeg"><meta property="fb:app_id" content="542599432471018"><meta property="og:description" content="Discover the best of Towards Data Science: from hands-on tutorials and cutting-edge research to the latest on data science and machine learning tools. Your home for data science and AI. The world’s leading publication for data science, data analytics, data engineering, machine learning, and artificial intelligence professionals."><meta name="twitter:description" content="Discover the best of Towards Data Science: from hands-on tutorials and cutting-edge research to the latest on data science and machine learning tools. Your home for data science and AI. The world’s leading publication for data science, data analytics, data engineering, machine learning, and artificial intelligence professionals."><meta name="twitter:image:src" content="https://cdn-images-1.medium.com/max/1200/1*CJe3891yB1A1mzMdqemkdg.jpeg"><meta property="og:type" content="medium-com:collection"><meta name="twitter:card" content="summary_large_image"><meta name="twitter:site" content="@TDataScience"><meta property="og:site_name" content="Towards Data Science"><meta name="twitter:app:name:iphone" content="Medium"><meta name="twitter:app:id:iphone" content="828256236"><meta property="al:ios:app_name" content="Medium"><meta property="al:ios:app_store_id" content="828256236"><meta property="al:android:package" content="com.medium.reader"><meta property="al:android:app_name" content="Medium"><meta property="al:web:url" content="https://towardsdatascience.com/editors-picks/home"><link rel="search" type="application/opensearchdescription+xml" title="Medium" href="/osd.xml" /><link rel="alternate" href="android-app://com.medium.reader/https/medium.com" /><link rel="stylesheet" href="https://cdn-static-1.medium.com/_/fp/css/main-branding-base.ouwh4uMviI3QQWIjxRhkHA.12.css"><script>!function(n,e){var t,o,i,c=[],f={passive:!0,capture:!0},r=new Date,a="pointerup",u="pointercancel";function p(n,c){t||(t=c,o=n,i=new Date,w(e),s())}function s(){o>=0&&o<i-r&&(c.forEach(function(n){n(o,t)}),c=[])}function l(t){if(t.cancelable){var o=(t.timeStamp>1e12?new Date:performance.now())-t.timeStamp;"pointerdown"==t.type?function(t,o){function i(){p(t,o),r()}function c(){r()}function r(){e(a,i,f),e(u,c,f)}n(a,i,f),n(u,c,f)}(o,t):p(o,t)}}function w(n){["click","mousedown","keydown","touchstart","pointerdown"].forEach(function(e){n(e,l,f)})}w(n),self.perfMetrics=self.perfMetrics||{},self.perfMetrics.onFirstInputDelay=function(n){c.push(n),s()}}(addEventListener,removeEventListener);</script><script>document.domain = document.domain;</script><script>if (window.top !== window.self) window.location = 'about:blank';var OB_startTime = new Date().getTime(); var OB_loadErrors = []; function _onerror(e) { OB_loadErrors.push(e) }; if (document.addEventListener) document.addEventListener("error", _onerror, true); else if (document.attachEvent) document.attachEvent("onerror", _onerror); function _asyncScript(u) {var d = document, f = d.getElementsByTagName("script")[0], s = d.createElement("script"); s.type = "text/javascript"; s.async = true; s.src = u; f.parentNode.insertBefore(s, f);}function _asyncStyles(u) {var d = document, f = d.getElementsByTagName("script")[0], s = d.createElement("link"); s.rel = "stylesheet"; s.href = u; f.parentNode.insertBefore(s, f); return s}(new Image()).src = "/_/stat?event=pixel.load&origin=" + encodeURIComponent(location.origin);</script><script>window.ga=window.ga||function(){(ga.q=ga.q||[]).push(arguments)};ga.l=+new Date; ga("create", "G-7JY7T788PK", "auto", {"allowLinker": true, "legacyCookieDomain": window.location.hostname});ga("send", "pageview");</script><script async src="https://www.google-analytics.com/analytics.js"></script><script>(function () {var height = window.innerHeight || document.documentElement.clientHeight || document.body.clientHeight; var width = window.innerWidth || document.documentElement.clientWidth || document.body.clientWidth; document.write("<style>section.section-image--fullBleed.is-backgrounded {padding-top: " + Math.round(1.1 * height) + "px;}section.section-image--fullScreen.is-backgrounded, section.section-image--coverFade.is-backgrounded {min-height: " + height + "px; padding-top: " + Math.round(0.5 * height) + "px;}.u-height100vh {height: " + height + "px !important;}.u-height110vh {height: " + Math.round(1.1 * height) + "px !important;}.u-minHeight100vh {min-height: " + height + "px !important;}.u-maxHeight100vh {max-height: " + height + "px !important;}section.section-image--coverFade {height: " + height + "px;}.section-aspectRatioViewportPlaceholder, .section-aspectRatioViewportCropPlaceholder {max-height: " + height + "px;}.section-aspectRatioViewportBottomSpacer, .section-aspectRatioViewportBottomPlaceholder {max-height: " + Math.round(0.5 * height) + "px;}.zoomable:before {top: " + (-1 * height) + "px; left: " + (-1 * width) + "px; padding: " + height + "px " + width + "px;}</style>");})()</script><!--[if lt IE 9]><script charset="UTF-8" src="https://cdn-static-1.medium.com/_/fp/js/shiv.RI2ePTZ5gFmMgLzG5bEVAA.12.js"></script><![endif]--><link rel="icon" href="https://cdn-images-1.medium.com/fit/c/256/256/1*VzTUkfeGymHP4Bvav-T-lA.png" class="js-favicon"><link rel="apple-touch-icon" sizes="152x152" href="https://cdn-images-1.medium.com/fit/c/304/304/1*CJe3891yB1A1mzMdqemkdg.jpeg"><link rel="apple-touch-icon" sizes="120x120" href="https://cdn-images-1.medium.com/fit/c/240/240/1*CJe3891yB1A1mzMdqemkdg.jpeg"><link rel="apple-touch-icon" sizes="76x76" href="https://cdn-images-1.medium.com/fit/c/152/152/1*CJe3891yB1A1mzMdqemkdg.jpeg"><link rel="apple-touch-icon" sizes="60x60" href="https://cdn-images-1.medium.com/fit/c/120/120/1*CJe3891yB1A1mzMdqemkdg.jpeg"><link rel="mask-icon" href="https://cdn-static-1.medium.com/_/fp/icons/monogram-mask.KPLCSFEZviQN0jQ7veN2RQ.12.svg" color="#171717"></head><body itemscope class=" browser-ie os-windows v-unbound v-glyph v-glyph--m2-unbound-source-serif-pro is-noJs"><script>document.body.className = document.body.className.replace(/(^|\s)is-noJs(\s|$)/, "$1is-js$2")</script><div class="site-main" id="container"><div class="butterBar butterBar--error"></div><div class="surface"><div id="prerendered" class="screenContent"><div class="metabar u-clearfix u-boxShadow4px12pxBlackLighter u-textColorTransparentWhiteDarker js-metabar"><div class="branch-journeys-top"></div><div class="js-metabarMiddle metabar-inner u-marginAuto u-maxWidth1032 u-flexCenter u-justifyContentSpaceBetween u-height65 u-xs-height56 u-paddingHorizontal20"><div class="metabar-block u-flex1 u-flexCenter"><div class="js-metabarLogoLeft"><a href="https://medium.com/" data-log-event="home" class="siteNav-logo u-fillBlack u-flex0 u-flexCenter u-paddingTop0"><span class="svgIcon svgIcon--wordmarkMedium svgIcon--120x26px u-flex"><svg class="svgIcon-use" width="120" height="26" ><path d="M29.57 1.404l.036-.008V1.12h-7.27l-6.75 15.979-6.75-15.98H1.003v.278l.035.008c1.327.302 2 .752 2 2.374v18.993c0 1.623-.676 2.073-2.003 2.374L1 25.153v.279h5.315v-.278l-.035-.008c-1.327-.302-2-.751-2-2.374V4.88l8.67 20.552h.492l8.924-21.125V23.24c-.114 1.282-.782 1.677-1.983 1.95l-.036.009v.275h9.259V25.2l-.036-.008c-1.203-.274-1.886-.67-2-1.95l-.006-19.464h.006c0-1.622.674-2.072 2-2.374zm4.23 12.582c.15-3.412 1.367-5.875 3.41-5.918.629.01 1.157.219 1.568.62.872.852 1.282 2.634 1.219 5.298h-6.198zm-.092.962h10.85v-.046c-.03-2.61-.78-4.64-2.228-6.033-1.25-1.204-3.103-1.867-5.048-1.867h-.043c-1.01 0-2.248.246-3.13.693a7.316 7.316 0 00-2.623 2.086c-1.185 1.479-1.903 3.477-2.078 5.724a13.717 13.717 0 00-.04.755c-.004.195-.005.39-.001.587.117 5.087 2.846 9.153 7.692 9.153 4.254 0 6.73-3.132 7.348-7.336l-.312-.11c-1.085 2.259-3.034 3.628-5.252 3.461-3.028-.228-5.347-3.32-5.137-7.066m23.122 6.893c-.356.85-1.099 1.319-2.094 1.319-.995 0-1.905-.689-2.552-1.939-.694-1.342-1.06-3.24-1.06-5.487 0-4.678 1.445-7.704 3.68-7.704.937 0 1.674.468 2.026 1.284v12.527zm7.198 3.335c-1.327-.316-2-.787-2-2.492V0l-8.062 2.392v.293l.05-.004c1.111-.09 1.866.064 2.304.472.343.32.51.809.51 1.498v3.11C56.033 7.25 55.088 7 53.94 7c-2.326 0-4.453.987-5.986 2.779-1.599 1.867-2.444 4.42-2.444 7.38 0 5.287 2.584 8.84 6.43 8.84 2.25 0 4.06-1.242 4.888-3.336v2.811h7.233v-.29l-.035-.008zM70.94 3.085c0-1.65-1.236-2.896-2.875-2.896-1.632 0-2.908 1.272-2.908 2.896 0 1.624 1.278 2.896 2.908 2.896 1.64 0 2.875-1.245 2.875-2.896zm1.903 22.092c-1.327-.316-2-.787-2-2.492h-.006V7.055l-7.234 2.092v.284l.043.004c1.566.14 1.994.683 1.994 2.525v13.515h7.24v-.29l-.037-.008zm18.536 0c-1.327-.316-2-.787-2-2.492V7.055L82.49 9.078v.285l.04.004c1.28.136 1.65.71 1.65 2.56v9.88c-.426.85-1.227 1.356-2.196 1.39-1.573 0-2.439-1.07-2.439-3.012V7.055l-7.234 2.092v.284l.044.004c1.565.14 1.994.683 1.994 2.525v8.362a9.443 9.443 0 00.15 1.741l.13.57C75.243 24.845 76.848 26 79.362 26c2.129 0 3.996-1.328 4.818-3.405v2.885h7.233v-.291l-.034-.012zm28.102.298v-.291l-.035-.009c-1.44-.334-2.001-.964-2.001-2.248V12.295C117.445 8.98 115.597 7 112.5 7c-2.257 0-4.16 1.314-4.893 3.36-.582-2.168-2.257-3.36-4.734-3.36-2.175 0-3.88 1.156-4.612 3.11V7.056l-7.233 2.006v.286l.043.004c1.547.138 1.994.697 1.994 2.492v13.631h6.75v-.29l-.037-.01c-1.148-.271-1.519-.767-1.519-2.04V10.95c.304-.715.917-1.562 2.127-1.562 1.504 0 2.266 1.05 2.266 3.116v12.972h6.751v-.29l-.035-.01c-1.149-.271-1.52-.767-1.52-2.04V12.294a7.107 7.107 0 00-.095-1.21c.322-.777.97-1.696 2.23-1.696 1.524 0 2.265 1.02 2.265 3.116v12.972h7.233z"/></svg></span><span class="u-textScreenReader">Homepage</span></a></div><div class="u-paddingLeft10 u-sm-show r-paddingRight10"><a href="https://rsci.app.link/?%24canonical_url=https%3A%2F%2Fmedium.com/towards-data-science%3F~feature=LoMobileNavBar&~channel=ShowCollectionHome&~stage=m2">Open in app</a></div></div><div class="metabar-block u-flex0 u-flexCenter"><div class="u-flexCenter u-height65 u-xs-height56"><div class="buttonSet buttonSet--wide u-lineHeightInherit"><a class="button button--primary button--chromeless u-accentColor--buttonNormal is-inSiteNavBar u-xs-hide js-signInButton" href="https://medium.com/m/signin?redirect=https%3A%2F%2Ftowardsdatascience.com%2Feditors-picks%2Fhome&source=--------------------------nav_reg&operation=login" data-action="sign-in-prompt" data-redirect="https://towardsdatascience.com/editors-picks/home" data-action-source="--------------------------nav_reg">Sign in</a><a class="button button--primary button--withChrome u-accentColor--buttonNormal is-inSiteNavBar js-signUpButton" href="https://medium.com/m/signin?redirect=https%3A%2F%2Ftowardsdatascience.com%2Feditors-picks%2Fhome&source=--------------------------nav_reg&operation=register" data-action="sign-up-prompt" data-redirect="https://towardsdatascience.com/editors-picks/home" data-action-source="--------------------------nav_reg">Get started</a></div></div></div></div><div class="u-tintBgColor u-tintSpectrum " ><div class="metabar-inner u-marginAuto u-maxWidth1032 u-paddingHorizontal20 js-metabarBottom"><nav role="navigation" class="metabar-block metabar-block--below u-flexCenter u-overflowHidden u-height54"><div class="u-flexCenter u-overflowHidden"><div class="u-marginRight40"><a href="https://towardsdatascience.com?source=logo-lo_711729b13ab5---7f60cf5620c9" class="u-flexCenter js-collectionLogoOrName"><img height="36" width="115" src="https://cdn-images-1.medium.com/letterbox/230/72/50/50/1*cFFKn8rFH4ZndmaYeAs6iQ.png?source=logoAvatar-lo_711729b13ab5---7f60cf5620c9" alt="Towards Data Science" /></a></div><div class="u-overflowHidden u-xs-hide"><ul class="u-textAlignLeft u-noWrap u-overflowX u-height80 u-marginTop40 js-collectionNavItems"><li class="metabar-navItem js-collectionNavItem u-inlineBlock u-fontSize13 u-textUppercase u-letterSpacing1px u-textColorNormal u-xs-paddingRight12 u-xs-marginRight0 u-xs-paddingTop10"><a class="link link--darken u-accentColor--textDarken link--noUnderline u-baseColor--link js-navItemLink" href="https://towardsdatascience.com/latest">Latest</a></li><li class="metabar-navItem js-collectionNavItem u-inlineBlock u-fontSize13 u-textUppercase u-letterSpacing1px u-textColorNormal u-xs-paddingRight12 u-xs-marginRight0 u-xs-paddingTop10"><a class="link link--darker link--darken u-accentColor--textDarken link--noUnderline u-baseColor--link js-navItemLink" href="https://towardsdatascience.com/editors-picks/home">Editors' Picks</a></li><li class="metabar-navItem js-collectionNavItem u-inlineBlock u-fontSize13 u-textUppercase u-letterSpacing1px u-textColorNormal u-xs-paddingRight12 u-xs-marginRight0 u-xs-paddingTop10"><a class="link link--darken u-accentColor--textDarken link--noUnderline u-baseColor--link js-navItemLink" href="https://towardsdatascience.com/deep-dives/home">Deep Dives</a></li><li class="metabar-navItem js-collectionNavItem u-inlineBlock u-fontSize13 u-textUppercase u-letterSpacing1px u-textColorNormal u-xs-paddingRight12 u-xs-marginRight0 u-xs-paddingTop10"><a class="link link--darken u-accentColor--textDarken link--noUnderline u-baseColor--link js-navItemLink" href="https://towardsdatascience.com/about-us/home">About</a></li><li class="metabar-navItem js-collectionNavItem u-inlineBlock u-fontSize13 u-textUppercase u-letterSpacing1px u-textColorNormal u-xs-paddingRight12 u-xs-marginRight0 u-xs-paddingTop10"><a class="link link--darken u-accentColor--textDarken link--noUnderline u-baseColor--link js-navItemLink" href="https://towardsdatascience.com/questions-96667b06af5">Contribute</a></li><span class="u-borderLeft1 u-baseColor--borderLight"></span><li class="metabar-navItem js-collectionNavItem is-external u-inlineBlock u-fontSize13 u-textUppercase u-letterSpacing1px u-textColorNormal u-xs-paddingRight12 u-xs-marginRight0 u-xs-paddingTop10"><a class="link link--darkenOnHover u-accentColor--textDarken link--noUnderline u-baseColor--link js-navItemLink" href="https://medium.com/towards-data-science/newsletter" rel="nofollow noopener" target="_blank">Newsletter</a></li></ul></div></div></nav></div></div></div><div class="metabar metabar--spacer js-metabarSpacer u-tintBgColor u-height119 u-xs-height110"></div><h1 class="u-maxWidth1000 u-marginAuto u-paddingTop10 u-paddingLeft20 u-paddingRight20 u-alignMiddle u-height110 u-fontSize50 u-textColorDark u-contentSansRegular u-noWrapWithEllipsis u-xs-fontSize40 u-xs-height100 u-xs-textAlignCenter">Editors’ Picks</h1><div class="u-widthFull u-borderBottomLighter"></div><div class="u-marginBottom40 js-categoryStream"><div class="streamItem streamItem--section js-streamItem"><section class="u-marginTop30 u-xs-margin0 u-marginBottom15 u-maxWidth1032 u-sm-paddingLeft20 u-sm-paddingRight20 u-borderBox u-marginAuto"><div class="row u-marginTop30 u-marginLeftNegative12 u-marginRightNegative12"><div class="col u-xs-size12of12 js-trackPostPresentation u-paddingLeft12 u-marginBottom15 u-paddingRight12 u-size6of12" data-source="collection_category---4------0-----------------------" data-post-id="2dc9beb69b27" data-index="0"><div class="u-lineHeightBase postItem"><a href="https://towardsdatascience.com/roadmap-to-becoming-a-data-scientist-part-1-maths-2dc9beb69b27?source=collection_category---4------0-----------------------" data-action="open-post" data-action-value="https://towardsdatascience.com/roadmap-to-becoming-a-data-scientist-part-1-maths-2dc9beb69b27?source=collection_category---4------0-----------------------" class="u-block u-xs-height170 u-width600 u-height272 u-backgroundSizeCover u-backgroundOriginBorderBox u-backgroundColorGrayLight u-borderLighter" style="background-image: url("https://cdn-images-1.medium.com/max/1200/1*E0V_rBGKoNg-zb7r399HcQ.png"); background-position: 50% 50% !important;"><span class="u-textScreenReader">Roadmap to Becoming a Data Scientist, Part 1: Maths</span></a></div><div class="col u-xs-marginBottom10 u-paddingLeft0 u-paddingRight0 u-paddingTop15 u-marginBottom30"><a class="" href="https://towardsdatascience.com/roadmap-to-becoming-a-data-scientist-part-1-maths-2dc9beb69b27?source=collection_category---4------0-----------------------" data-action-source="collection_category---4------0-----------------------" data-post-id="2dc9beb69b27"><h3 class="u-contentSansBold u-lineHeightTightest u-xs-fontSize24 u-paddingBottom2 u-paddingTop5 u-fontSize32"><div class="u-letterSpacingTight u-lineHeightTighter u-breakWord u-textOverflowEllipsis u-lineClamp3 u-fontSize24">Roadmap to Becoming a Data Scientist, Part 1: Maths</div></h3><div class="u-contentSansThin u-lineHeightBaseSans u-fontSize24 u-xs-fontSize18 u-textColorNormal u-baseColor--textNormal"><div class="u-fontSize18 u-letterSpacingTight u-lineHeightTight u-marginTop7 u-textColorNormal u-baseColor--textNormal">Identifying fundamental math skills to master for aspiring Data Scientists</div></div></a><div class="u-clearfix u-marginTop20"><div class="u-flexCenter"><div class="postMetaInline-avatar u-flex0"><a class="link u-baseColor--link avatar" href="https://towardsdatascience.com/@slavahead" data-action="show-user-card" data-action-value="c8a0ca9d85d8" data-action-type="hover" data-user-id="c8a0ca9d85d8" data-collection-slug="towards-data-science" dir="auto"><img src="https://cdn-images-1.medium.com/fit/c/72/72/1*9xLh34e9CdTnShI8pgYdbg.jpeg" class="avatar-image u-size36x36 u-xs-size32x32" alt="Go to the profile of Vyacheslav Efimov"></a></div><div class="postMetaInline postMetaInline-authorLockup ui-captionStrong u-flex1 u-noWrapWithEllipsis"><a class="ds-link ds-link--styleSubtle link link--darken link--accent u-accentColor--textNormal u-accentColor--textDarken" href="https://towardsdatascience.com/@slavahead" data-action="show-user-card" data-action-value="c8a0ca9d85d8" data-action-type="hover" data-user-id="c8a0ca9d85d8" data-collection-slug="towards-data-science" dir="auto">Vyacheslav Efimov</a><div class="ui-caption u-fontSize12 u-baseColor--textNormal u-textColorNormal js-postMetaInlineSupplemental"><time datetime="2024-11-27T15:02:20.045Z">Nov 27</time><span class="middotDivider u-fontSize12"></span><span class="readingTime" title="11 min read"></span><span class="u-paddingLeft4"><span class="svgIcon svgIcon--star svgIcon--15px"><svg class="svgIcon-use" width="15" height="15" ><path d="M7.438 2.324c.034-.099.09-.099.123 0l1.2 3.53a.29.29 0 00.26.19h3.884c.11 0 .127.049.038.111L9.8 8.327a.271.271 0 00-.099.291l1.2 3.53c.034.1-.011.131-.098.069l-3.142-2.18a.303.303 0 00-.32 0l-3.145 2.182c-.087.06-.132.03-.099-.068l1.2-3.53a.271.271 0 00-.098-.292L2.056 6.146c-.087-.06-.071-.112.038-.112h3.884a.29.29 0 00.26-.19l1.2-3.52z"/></svg></span></span></div></div></div></div></div></div><div class="col u-xs-size12of12 js-trackPostPresentation u-paddingLeft12 u-marginBottom15 u-paddingRight12 u-size6of12" data-source="collection_category---4------1-----------------------" data-post-id="1f7d26f2a215" data-index="1"><div class="u-lineHeightBase postItem"><a href="https://towardsdatascience.com/step-by-step-guide-for-building-waffle-charts-in-plotly-1f7d26f2a215?source=collection_category---4------1-----------------------" data-action="open-post" data-action-value="https://towardsdatascience.com/step-by-step-guide-for-building-waffle-charts-in-plotly-1f7d26f2a215?source=collection_category---4------1-----------------------" class="u-block u-xs-height170 u-width600 u-height272 u-backgroundSizeCover u-backgroundOriginBorderBox u-backgroundColorGrayLight u-borderLighter" style="background-image: url("https://cdn-images-1.medium.com/max/1200/1*PyPJX_tl8OnGbPrJi3XIkA.png"); background-position: 50% 50% !important;"><span class="u-textScreenReader">Step-by-Step Guide for Building Waffle Charts in Plotly</span></a></div><div class="col u-xs-marginBottom10 u-paddingLeft0 u-paddingRight0 u-paddingTop15 u-marginBottom30"><a class="" href="https://towardsdatascience.com/step-by-step-guide-for-building-waffle-charts-in-plotly-1f7d26f2a215?source=collection_category---4------1-----------------------" data-action-source="collection_category---4------1-----------------------" data-post-id="1f7d26f2a215"><h3 class="u-contentSansBold u-lineHeightTightest u-xs-fontSize24 u-paddingBottom2 u-paddingTop5 u-fontSize32"><div class="u-letterSpacingTight u-lineHeightTighter u-breakWord u-textOverflowEllipsis u-lineClamp3 u-fontSize24">Step-by-Step Guide for Building Waffle Charts in Plotly</div></h3><div class="u-contentSansThin u-lineHeightBaseSans u-fontSize24 u-xs-fontSize18 u-textColorNormal u-baseColor--textNormal"><div class="u-fontSize18 u-letterSpacingTight u-lineHeightTight u-marginTop7 u-textColorNormal u-baseColor--textNormal">Learn how to create custom waffle charts in Python using Plotly for data visualization</div></div></a><div class="u-clearfix u-marginTop20"><div class="u-flexCenter"><div class="postMetaInline-avatar u-flex0"><a class="link u-baseColor--link avatar" href="https://towardsdatascience.com/@amandaiglesiasmoreno" data-action="show-user-card" data-action-value="1bace2932c65" data-action-type="hover" data-user-id="1bace2932c65" data-collection-slug="towards-data-science" dir="auto"><img src="https://cdn-images-1.medium.com/fit/c/72/72/1*IE_eo0PTq6ctHLy2G9anBA.jpeg" class="avatar-image u-size36x36 u-xs-size32x32" alt="Go to the profile of Amanda Iglesias Moreno"></a></div><div class="postMetaInline postMetaInline-authorLockup ui-captionStrong u-flex1 u-noWrapWithEllipsis"><a class="ds-link ds-link--styleSubtle link link--darken link--accent u-accentColor--textNormal u-accentColor--textDarken" href="https://towardsdatascience.com/@amandaiglesiasmoreno" data-action="show-user-card" data-action-value="1bace2932c65" data-action-type="hover" data-user-id="1bace2932c65" data-collection-slug="towards-data-science" dir="auto">Amanda Iglesias Moreno</a><div class="ui-caption u-fontSize12 u-baseColor--textNormal u-textColorNormal js-postMetaInlineSupplemental"><time datetime="2024-11-25T09:02:11.731Z">Nov 25</time><span class="middotDivider u-fontSize12"></span><span class="readingTime" title="11 min read"></span><span class="u-paddingLeft4"><span class="svgIcon svgIcon--star svgIcon--15px"><svg class="svgIcon-use" width="15" height="15" ><path d="M7.438 2.324c.034-.099.09-.099.123 0l1.2 3.53a.29.29 0 00.26.19h3.884c.11 0 .127.049.038.111L9.8 8.327a.271.271 0 00-.099.291l1.2 3.53c.034.1-.011.131-.098.069l-3.142-2.18a.303.303 0 00-.32 0l-3.145 2.182c-.087.06-.132.03-.099-.068l1.2-3.53a.271.271 0 00-.098-.292L2.056 6.146c-.087-.06-.071-.112.038-.112h3.884a.29.29 0 00.26-.19l1.2-3.52z"/></svg></span></span></div></div></div></div></div></div></div></section></div><div class="streamItem streamItem--section js-streamItem"><section class="u-marginTop30 u-xs-margin0 u-marginBottom15 u-maxWidth1032 u-sm-paddingLeft20 u-sm-paddingRight20 u-borderBox u-marginAuto"><header class="heading heading--borderedBottom u-fontSize18 u-contentSansThin" ><div class="u-clearfix"><div class="heading-content u-floatLeft"><span class="heading-title heading-title--dark heading-title--lineHeightTight u-fontSize18 u-contentSansThin">Latest</span></div></div></header><div class="row u-marginTop30 u-marginLeftNegative12 u-marginRightNegative12"><div class="col u-xs-size12of12 js-trackPostPresentation u-paddingLeft12 u-marginBottom15 u-paddingRight12 u-size4of12" data-source="collection_category---4------0-----------------------" data-post-id="d984bde99981" data-index="0"><div class="u-lineHeightBase postItem"><a href="https://towardsdatascience.com/perform-outlier-detection-more-effectively-using-subsets-of-features-d984bde99981?source=collection_category---4------0-----------------------" data-action="open-post" data-action-value="https://towardsdatascience.com/perform-outlier-detection-more-effectively-using-subsets-of-features-d984bde99981?source=collection_category---4------0-----------------------" class="u-block u-xs-height170 u-height172 u-backgroundSizeCover u-backgroundOriginBorderBox u-backgroundColorGrayLight u-borderLighter" style="background-image: url("https://cdn-images-1.medium.com/max/800/1*xSilYlAPKbKt3fJCB9SatA.png"); background-position: 50% 50% !important;"><span class="u-textScreenReader">Perform Outlier Detection More Effectively Using Subsets of Features</span></a></div><div class="col u-xs-marginBottom10 u-paddingLeft0 u-paddingRight0 u-paddingTop15 u-marginBottom30"><a class="" href="https://towardsdatascience.com/perform-outlier-detection-more-effectively-using-subsets-of-features-d984bde99981?source=collection_category---4------0-----------------------" data-action-source="collection_category---4------0-----------------------" data-post-id="d984bde99981"><h3 class="u-contentSansBold u-lineHeightTightest u-xs-fontSize24 u-paddingBottom2 u-paddingTop5 u-fontSize32"><div class="u-letterSpacingTight u-lineHeightTighter u-breakWord u-textOverflowEllipsis u-lineClamp3 u-fontSize24">Perform Outlier Detection More Effectively Using Subsets of Features</div></h3><div class="u-contentSansThin u-lineHeightBaseSans u-fontSize24 u-xs-fontSize18 u-textColorNormal u-baseColor--textNormal"><div class="u-fontSize18 u-letterSpacingTight u-lineHeightTight u-marginTop7 u-textColorNormal u-baseColor--textNormal">Identify relevant subspaces: subsets of features that allow you to most effectively perform outlier detection on tabular data</div></div></a><div class="u-clearfix u-marginTop20"><div class="u-flexCenter"><div class="postMetaInline-avatar u-flex0"><a class="link u-baseColor--link avatar" href="https://towardsdatascience.com/@wkennedy934" data-action="show-user-card" data-action-value="5176dd5e0bcf" data-action-type="hover" data-user-id="5176dd5e0bcf" data-collection-slug="towards-data-science" dir="auto"><img src="https://cdn-images-1.medium.com/fit/c/72/72/1*v8pf2r3SPMLuHoSmF4IwlA.png" class="avatar-image u-size36x36 u-xs-size32x32" alt="Go to the profile of W Brett Kennedy"></a></div><div class="postMetaInline postMetaInline-authorLockup ui-captionStrong u-flex1 u-noWrapWithEllipsis"><a class="ds-link ds-link--styleSubtle link link--darken link--accent u-accentColor--textNormal u-accentColor--textDarken" href="https://towardsdatascience.com/@wkennedy934" data-action="show-user-card" data-action-value="5176dd5e0bcf" data-action-type="hover" data-user-id="5176dd5e0bcf" data-collection-slug="towards-data-science" dir="auto">W Brett Kennedy</a><div class="ui-caption u-fontSize12 u-baseColor--textNormal u-textColorNormal js-postMetaInlineSupplemental"><time datetime="2024-11-24T22:36:33.160Z">Nov 24</time><span class="middotDivider u-fontSize12"></span><span class="readingTime" title="28 min read"></span></div></div></div></div></div></div><div class="col u-xs-size12of12 js-trackPostPresentation u-paddingLeft12 u-marginBottom15 u-paddingRight12 u-size4of12" data-source="collection_category---4------1-----------------------" data-post-id="dc4ec62ec8dd" data-index="1"><div class="u-lineHeightBase postItem"><a href="https://towardsdatascience.com/another-hike-up-everest-dc4ec62ec8dd?source=collection_category---4------1-----------------------" data-action="open-post" data-action-value="https://towardsdatascience.com/another-hike-up-everest-dc4ec62ec8dd?source=collection_category---4------1-----------------------" class="u-block u-xs-height170 u-height172 u-backgroundSizeCover u-backgroundOriginBorderBox u-backgroundColorGrayLight u-borderLighter" style="background-image: url("https://cdn-images-1.medium.com/max/800/0*p_DcoiYTwMfOuDw_.jpg"); background-position: 50% 50% !important;"><span class="u-textScreenReader">Another Hike Up Everest</span></a></div><div class="col u-xs-marginBottom10 u-paddingLeft0 u-paddingRight0 u-paddingTop15 u-marginBottom30"><a class="" href="https://towardsdatascience.com/another-hike-up-everest-dc4ec62ec8dd?source=collection_category---4------1-----------------------" data-action-source="collection_category---4------1-----------------------" data-post-id="dc4ec62ec8dd"><h3 class="u-contentSansBold u-lineHeightTightest u-xs-fontSize24 u-paddingBottom2 u-paddingTop5 u-fontSize32"><div class="u-letterSpacingTight u-lineHeightTighter u-breakWord u-textOverflowEllipsis u-lineClamp3 u-fontSize24">Another Hike Up Everest</div></h3><div class="u-contentSansThin u-lineHeightBaseSans u-fontSize24 u-xs-fontSize18 u-textColorNormal u-baseColor--textNormal"><div class="u-fontSize18 u-letterSpacingTight u-lineHeightTight u-marginTop7 u-textColorNormal u-baseColor--textNormal">How to make progress on hard problems in AI</div></div></a><div class="u-clearfix u-marginTop20"><div class="u-flexCenter"><div class="postMetaInline-avatar u-flex0"><a class="link u-baseColor--link avatar" href="https://towardsdatascience.com/@jamesbarney71" data-action="show-user-card" data-action-value="b7c226dc9b8e" data-action-type="hover" data-user-id="b7c226dc9b8e" data-collection-slug="towards-data-science" dir="auto"><img src="https://cdn-images-1.medium.com/fit/c/72/72/1*cnIbCvO9N7Qt0_R_ukwd8A@2x.jpeg" class="avatar-image u-size36x36 u-xs-size32x32" alt="Go to the profile of James Barney"></a></div><div class="postMetaInline postMetaInline-authorLockup ui-captionStrong u-flex1 u-noWrapWithEllipsis"><a class="ds-link ds-link--styleSubtle link link--darken link--accent u-accentColor--textNormal u-accentColor--textDarken" href="https://towardsdatascience.com/@jamesbarney71" data-action="show-user-card" data-action-value="b7c226dc9b8e" data-action-type="hover" data-user-id="b7c226dc9b8e" data-collection-slug="towards-data-science" dir="auto">James Barney</a><div class="ui-caption u-fontSize12 u-baseColor--textNormal u-textColorNormal js-postMetaInlineSupplemental"><time datetime="2024-11-22T17:35:24.688Z">Nov 22</time><span class="middotDivider u-fontSize12"></span><span class="readingTime" title="8 min read"></span></div></div></div></div></div></div><div class="col u-xs-size12of12 js-trackPostPresentation u-paddingLeft12 u-marginBottom15 u-paddingRight12 u-size4of12" data-source="collection_category---4------2-----------------------" data-post-id="89fb4f64baaa" data-index="2"><div class="u-lineHeightBase postItem"><a href="https://towardsdatascience.com/are-you-sure-you-want-to-become-a-data-science-manager-89fb4f64baaa?source=collection_category---4------2-----------------------" data-action="open-post" data-action-value="https://towardsdatascience.com/are-you-sure-you-want-to-become-a-data-science-manager-89fb4f64baaa?source=collection_category---4------2-----------------------" class="u-block u-xs-height170 u-height172 u-backgroundSizeCover u-backgroundOriginBorderBox u-backgroundColorGrayLight u-borderLighter" style="background-image: url("https://cdn-images-1.medium.com/max/800/0*NSCdUN2Idn0mARmw.jpeg"); background-position: 50% 50% !important;"><span class="u-textScreenReader">Are You Sure You Want to Become a Data Science Manager?</span></a></div><div class="col u-xs-marginBottom10 u-paddingLeft0 u-paddingRight0 u-paddingTop15 u-marginBottom30"><a class="" href="https://towardsdatascience.com/are-you-sure-you-want-to-become-a-data-science-manager-89fb4f64baaa?source=collection_category---4------2-----------------------" data-action-source="collection_category---4------2-----------------------" data-post-id="89fb4f64baaa"><h3 class="u-contentSansBold u-lineHeightTightest u-xs-fontSize24 u-paddingBottom2 u-paddingTop5 u-fontSize32"><div class="u-letterSpacingTight u-lineHeightTighter u-breakWord u-textOverflowEllipsis u-lineClamp3 u-fontSize24">Are You Sure You Want to Become a Data Science Manager?</div></h3><div class="u-contentSansThin u-lineHeightBaseSans u-fontSize24 u-xs-fontSize18 u-textColorNormal u-baseColor--textNormal"><div class="u-fontSize18 u-letterSpacingTight u-lineHeightTight u-marginTop7 u-textColorNormal u-baseColor--textNormal">Don’t rush into the fancy title until you have read this.</div></div></a><div class="u-clearfix u-marginTop20"><div class="u-flexCenter"><div class="postMetaInline-avatar u-flex0"><a class="link u-baseColor--link avatar" href="https://towardsdatascience.com/@joparga3" data-action="show-user-card" data-action-value="8572724a5d2c" data-action-type="hover" data-user-id="8572724a5d2c" data-collection-slug="towards-data-science" dir="auto"><img src="https://cdn-images-1.medium.com/fit/c/72/72/1*muI5QEd6YqFGJDIrf4h2Mg@2x.jpeg" class="avatar-image u-size36x36 u-xs-size32x32" alt="Go to the profile of Jose Parreño"></a></div><div class="postMetaInline postMetaInline-authorLockup ui-captionStrong u-flex1 u-noWrapWithEllipsis"><a class="ds-link ds-link--styleSubtle link link--darken link--accent u-accentColor--textNormal u-accentColor--textDarken" href="https://towardsdatascience.com/@joparga3" data-action="show-user-card" data-action-value="8572724a5d2c" data-action-type="hover" data-user-id="8572724a5d2c" data-collection-slug="towards-data-science" dir="auto">Jose Parreño</a><div class="ui-caption u-fontSize12 u-baseColor--textNormal u-textColorNormal js-postMetaInlineSupplemental"><time datetime="2024-11-22T14:02:14.134Z">Nov 22</time><span class="middotDivider u-fontSize12"></span><span class="readingTime" title="15 min read"></span><span class="u-paddingLeft4"><span class="svgIcon svgIcon--star svgIcon--15px"><svg class="svgIcon-use" width="15" height="15" ><path d="M7.438 2.324c.034-.099.09-.099.123 0l1.2 3.53a.29.29 0 00.26.19h3.884c.11 0 .127.049.038.111L9.8 8.327a.271.271 0 00-.099.291l1.2 3.53c.034.1-.011.131-.098.069l-3.142-2.18a.303.303 0 00-.32 0l-3.145 2.182c-.087.06-.132.03-.099-.068l1.2-3.53a.271.271 0 00-.098-.292L2.056 6.146c-.087-.06-.071-.112.038-.112h3.884a.29.29 0 00.26-.19l1.2-3.52z"/></svg></span></span></div></div></div></div></div></div></div><div class="row u-marginTop30 u-marginLeftNegative12 u-marginRightNegative12"><div class="col u-xs-size12of12 js-trackPostPresentation u-paddingLeft12 u-marginBottom15 u-paddingRight12 u-size4of12" data-source="collection_category---4------3-----------------------" data-post-id="df37b015fd8a" data-index="3"><div class="u-lineHeightBase postItem"><a href="https://towardsdatascience.com/chatgpt-two-years-later-df37b015fd8a?source=collection_category---4------3-----------------------" data-action="open-post" data-action-value="https://towardsdatascience.com/chatgpt-two-years-later-df37b015fd8a?source=collection_category---4------3-----------------------" class="u-block u-xs-height170 u-height172 u-backgroundSizeCover u-backgroundOriginBorderBox u-backgroundColorGrayLight u-borderLighter" style="background-image: url("https://cdn-images-1.medium.com/max/800/0*x2yONxpFFkJFk6b8"); background-position: 50% 50% !important;"><span class="u-textScreenReader">ChatGPT: Two Years Later</span></a></div><div class="col u-xs-marginBottom10 u-paddingLeft0 u-paddingRight0 u-paddingTop15 u-marginBottom30"><a class="" href="https://towardsdatascience.com/chatgpt-two-years-later-df37b015fd8a?source=collection_category---4------3-----------------------" data-action-source="collection_category---4------3-----------------------" data-post-id="df37b015fd8a"><h3 class="u-contentSansBold u-lineHeightTightest u-xs-fontSize24 u-paddingBottom2 u-paddingTop5 u-fontSize32"><div class="u-letterSpacingTight u-lineHeightTighter u-breakWord u-textOverflowEllipsis u-lineClamp3 u-fontSize24">ChatGPT: Two Years Later</div></h3><div class="u-contentSansThin u-lineHeightBaseSans u-fontSize24 u-xs-fontSize18 u-textColorNormal u-baseColor--textNormal"><div class="u-fontSize18 u-letterSpacingTight u-lineHeightTight u-marginTop7 u-textColorNormal u-baseColor--textNormal">Tracing the impact of the generative AI revolution</div></div></a><div class="u-clearfix u-marginTop20"><div class="u-flexCenter"><div class="postMetaInline-avatar u-flex0"><a class="link u-baseColor--link avatar" href="https://towardsdatascience.com/@dataista0" data-action="show-user-card" data-action-value="6bf482880276" data-action-type="hover" data-user-id="6bf482880276" data-collection-slug="towards-data-science" dir="auto"><img src="https://cdn-images-1.medium.com/fit/c/72/72/1*NokRrlCsBxVA6TST9y7Xpg.jpeg" class="avatar-image u-size36x36 u-xs-size32x32" alt="Go to the profile of Julián Peller"></a></div><div class="postMetaInline postMetaInline-authorLockup ui-captionStrong u-flex1 u-noWrapWithEllipsis"><a class="ds-link ds-link--styleSubtle link link--darken link--accent u-accentColor--textNormal u-accentColor--textDarken" href="https://towardsdatascience.com/@dataista0" data-action="show-user-card" data-action-value="6bf482880276" data-action-type="hover" data-user-id="6bf482880276" data-collection-slug="towards-data-science" dir="auto">Julián Peller</a><div class="ui-caption u-fontSize12 u-baseColor--textNormal u-textColorNormal js-postMetaInlineSupplemental"><time datetime="2024-11-21T21:32:07.066Z">Nov 21</time><span class="middotDivider u-fontSize12"></span><span class="readingTime" title="19 min read"></span></div></div></div></div></div></div><div class="col u-xs-size12of12 js-trackPostPresentation u-paddingLeft12 u-marginBottom15 u-paddingRight12 u-size4of12" data-source="collection_category---4------4-----------------------" data-post-id="21e5e961fce1" data-index="4"><div class="u-lineHeightBase postItem"><a href="https://towardsdatascience.com/distributed-decentralized-training-of-neural-networks-a-primer-21e5e961fce1?source=collection_category---4------4-----------------------" data-action="open-post" data-action-value="https://towardsdatascience.com/distributed-decentralized-training-of-neural-networks-a-primer-21e5e961fce1?source=collection_category---4------4-----------------------" class="u-block u-xs-height170 u-height172 u-backgroundSizeCover u-backgroundOriginBorderBox u-backgroundColorGrayLight u-borderLighter" style="background-image: url("https://cdn-images-1.medium.com/max/800/1*JXpT8DmKql-GFhhm1kvagA.jpeg"); background-position: 50% 50% !important;"><span class="u-textScreenReader">Distributed Decentralized Training of Neural Networks: A Primer</span></a></div><div class="col u-xs-marginBottom10 u-paddingLeft0 u-paddingRight0 u-paddingTop15 u-marginBottom30"><a class="" href="https://towardsdatascience.com/distributed-decentralized-training-of-neural-networks-a-primer-21e5e961fce1?source=collection_category---4------4-----------------------" data-action-source="collection_category---4------4-----------------------" data-post-id="21e5e961fce1"><h3 class="u-contentSansBold u-lineHeightTightest u-xs-fontSize24 u-paddingBottom2 u-paddingTop5 u-fontSize32"><div class="u-letterSpacingTight u-lineHeightTighter u-breakWord u-textOverflowEllipsis u-lineClamp3 u-fontSize24">Distributed Decentralized Training of Neural Networks: A Primer</div></h3><div class="u-contentSansThin u-lineHeightBaseSans u-fontSize24 u-xs-fontSize18 u-textColorNormal u-baseColor--textNormal"><div class="u-fontSize18 u-letterSpacingTight u-lineHeightTight u-marginTop7 u-textColorNormal u-baseColor--textNormal">Data Parallelism, Butterfly All-Reduce, Gossiping and More…</div></div></a><div class="u-clearfix u-marginTop20"><div class="u-flexCenter"><div class="postMetaInline-avatar u-flex0"><a class="link u-baseColor--link avatar" href="https://towardsdatascience.com/@RobertTLange" data-action="show-user-card" data-action-value="638b9cae9933" data-action-type="hover" data-user-id="638b9cae9933" data-collection-slug="towards-data-science" dir="auto"><img src="https://cdn-images-1.medium.com/fit/c/72/72/1*G2R6dj1CbcCBTYaRdsW9Hg.jpeg" class="avatar-image u-size36x36 u-xs-size32x32" alt="Go to the profile of Robert Lange"></a></div><div class="postMetaInline postMetaInline-authorLockup ui-captionStrong u-flex1 u-noWrapWithEllipsis"><a class="ds-link ds-link--styleSubtle link link--darken link--accent u-accentColor--textNormal u-accentColor--textDarken" href="https://towardsdatascience.com/@RobertTLange" data-action="show-user-card" data-action-value="638b9cae9933" data-action-type="hover" data-user-id="638b9cae9933" data-collection-slug="towards-data-science" dir="auto">Robert Lange</a><div class="ui-caption u-fontSize12 u-baseColor--textNormal u-textColorNormal js-postMetaInlineSupplemental"><time datetime="2024-11-19T15:54:09.504Z">Nov 19</time><span class="middotDivider u-fontSize12"></span><span class="readingTime" title="9 min read"></span><span class="u-paddingLeft4"><span class="svgIcon svgIcon--star svgIcon--15px"><svg class="svgIcon-use" width="15" height="15" ><path d="M7.438 2.324c.034-.099.09-.099.123 0l1.2 3.53a.29.29 0 00.26.19h3.884c.11 0 .127.049.038.111L9.8 8.327a.271.271 0 00-.099.291l1.2 3.53c.034.1-.011.131-.098.069l-3.142-2.18a.303.303 0 00-.32 0l-3.145 2.182c-.087.06-.132.03-.099-.068l1.2-3.53a.271.271 0 00-.098-.292L2.056 6.146c-.087-.06-.071-.112.038-.112h3.884a.29.29 0 00.26-.19l1.2-3.52z"/></svg></span></span></div></div></div></div></div></div><div class="col u-xs-size12of12 js-trackPostPresentation u-paddingLeft12 u-marginBottom15 u-paddingRight12 u-size4of12" data-source="collection_category---4------5-----------------------" data-post-id="bdcaaf940fbb" data-index="5"><div class="u-lineHeightBase postItem"><a href="https://towardsdatascience.com/of-llms-gradients-and-quantum-mechanics-bdcaaf940fbb?source=collection_category---4------5-----------------------" data-action="open-post" data-action-value="https://towardsdatascience.com/of-llms-gradients-and-quantum-mechanics-bdcaaf940fbb?source=collection_category---4------5-----------------------" class="u-block u-xs-height170 u-height172 u-backgroundSizeCover u-backgroundOriginBorderBox u-backgroundColorGrayLight u-borderLighter" style="background-image: url("https://cdn-images-1.medium.com/max/800/1*k4jo2Bj4ksUPg3-r7lADCA.jpeg"); background-position: 50% 50% !important;"><span class="u-textScreenReader">Of LLMs, Gradients, and Quantum Mechanics</span></a></div><div class="col u-xs-marginBottom10 u-paddingLeft0 u-paddingRight0 u-paddingTop15 u-marginBottom30"><a class="" href="https://towardsdatascience.com/of-llms-gradients-and-quantum-mechanics-bdcaaf940fbb?source=collection_category---4------5-----------------------" data-action-source="collection_category---4------5-----------------------" data-post-id="bdcaaf940fbb"><h3 class="u-contentSansBold u-lineHeightTightest u-xs-fontSize24 u-paddingBottom2 u-paddingTop5 u-fontSize32"><div class="u-letterSpacingTight u-lineHeightTighter u-breakWord u-textOverflowEllipsis u-lineClamp3 u-fontSize24">Of LLMs, Gradients, and Quantum Mechanics</div></h3><div class="u-contentSansThin u-lineHeightBaseSans u-fontSize24 u-xs-fontSize18 u-textColorNormal u-baseColor--textNormal"><div class="u-fontSize18 u-letterSpacingTight u-lineHeightTight u-marginTop7 u-textColorNormal u-baseColor--textNormal">Can Quantum Computing help improving our ability to train Large Neural Networks encoding language models (LLMs)?</div></div></a><div class="u-clearfix u-marginTop20"><div class="u-flexCenter"><div class="postMetaInline-avatar u-flex0"><a class="link u-baseColor--link avatar" href="https://towardsdatascience.com/@riccardo-disipio" data-action="show-user-card" data-action-value="4267d9884285" data-action-type="hover" data-user-id="4267d9884285" data-collection-slug="towards-data-science" dir="auto"><img src="https://cdn-images-1.medium.com/fit/c/72/72/1*lkmBq7I0CsPzLoQFqjJP_w.jpeg" class="avatar-image u-size36x36 u-xs-size32x32" alt="Go to the profile of Riccardo Di Sipio"></a></div><div class="postMetaInline postMetaInline-authorLockup ui-captionStrong u-flex1 u-noWrapWithEllipsis"><a class="ds-link ds-link--styleSubtle link link--darken link--accent u-accentColor--textNormal u-accentColor--textDarken" href="https://towardsdatascience.com/@riccardo-disipio" data-action="show-user-card" data-action-value="4267d9884285" data-action-type="hover" data-user-id="4267d9884285" data-collection-slug="towards-data-science" dir="auto">Riccardo Di Sipio</a><div class="ui-caption u-fontSize12 u-baseColor--textNormal u-textColorNormal js-postMetaInlineSupplemental"><time datetime="2024-11-12T17:05:24.023Z">Nov 12</time><span class="middotDivider u-fontSize12"></span><span class="readingTime" title="13 min read"></span><span class="u-paddingLeft4"><span class="svgIcon svgIcon--star svgIcon--15px"><svg class="svgIcon-use" width="15" height="15" ><path d="M7.438 2.324c.034-.099.09-.099.123 0l1.2 3.53a.29.29 0 00.26.19h3.884c.11 0 .127.049.038.111L9.8 8.327a.271.271 0 00-.099.291l1.2 3.53c.034.1-.011.131-.098.069l-3.142-2.18a.303.303 0 00-.32 0l-3.145 2.182c-.087.06-.132.03-.099-.068l1.2-3.53a.271.271 0 00-.098-.292L2.056 6.146c-.087-.06-.071-.112.038-.112h3.884a.29.29 0 00.26-.19l1.2-3.52z"/></svg></span></span></div></div></div></div></div></div></div><div class="row u-marginTop30 u-marginLeftNegative12 u-marginRightNegative12"><div class="col u-xs-size12of12 js-trackPostPresentation u-paddingLeft12 u-marginBottom15 u-paddingRight12 u-size4of12" data-source="collection_category---4------6-----------------------" data-post-id="7dfeec78f2a2" data-index="6"><div class="u-lineHeightBase postItem"><a href="https://towardsdatascience.com/feature-engineering-techniques-for-healthcare-data-analysis-part-i-7dfeec78f2a2?source=collection_category---4------6-----------------------" data-action="open-post" data-action-value="https://towardsdatascience.com/feature-engineering-techniques-for-healthcare-data-analysis-part-i-7dfeec78f2a2?source=collection_category---4------6-----------------------" class="u-block u-xs-height170 u-height172 u-backgroundSizeCover u-backgroundOriginBorderBox u-backgroundColorGrayLight u-borderLighter" style="background-image: url("https://cdn-images-1.medium.com/max/800/0*-myVMqAbgTVn8lT_"); background-position: 50% 50% !important;"><span class="u-textScreenReader">Feature Engineering Techniques for Healthcare Data Analysis — Part I.</span></a></div><div class="col u-xs-marginBottom10 u-paddingLeft0 u-paddingRight0 u-paddingTop15 u-marginBottom30"><a class="" href="https://towardsdatascience.com/feature-engineering-techniques-for-healthcare-data-analysis-part-i-7dfeec78f2a2?source=collection_category---4------6-----------------------" data-action-source="collection_category---4------6-----------------------" data-post-id="7dfeec78f2a2"><h3 class="u-contentSansBold u-lineHeightTightest u-xs-fontSize24 u-paddingBottom2 u-paddingTop5 u-fontSize32"><div class="u-letterSpacingTight u-lineHeightTighter u-breakWord u-textOverflowEllipsis u-lineClamp3 u-fontSize24">Feature Engineering Techniques for Healthcare Data Analysis — Part I.</div></h3><div class="u-contentSansThin u-lineHeightBaseSans u-fontSize24 u-xs-fontSize18 u-textColorNormal u-baseColor--textNormal"><div class="u-fontSize18 u-letterSpacingTight u-lineHeightTight u-marginTop7 u-textColorNormal u-baseColor--textNormal">Feature engineering techniques for healthcare data analysis, focusing on real-world challenges and practical solutions.</div></div></a><div class="u-clearfix u-marginTop20"><div class="u-flexCenter"><div class="postMetaInline-avatar u-flex0"><a class="link u-baseColor--link avatar" href="https://towardsdatascience.com/@panData" data-action="show-user-card" data-action-value="1c040843e458" data-action-type="hover" data-user-id="1c040843e458" data-collection-slug="towards-data-science" dir="auto"><img src="https://cdn-images-1.medium.com/fit/c/72/72/1*Dn6n6ct8Y_AL4zvtFcUetQ.jpeg" class="avatar-image u-size36x36 u-xs-size32x32" alt="Go to the profile of Leo Anello"></a></div><div class="postMetaInline postMetaInline-authorLockup ui-captionStrong u-flex1 u-noWrapWithEllipsis"><a class="ds-link ds-link--styleSubtle link link--darken link--accent u-accentColor--textNormal u-accentColor--textDarken" href="https://towardsdatascience.com/@panData" data-action="show-user-card" data-action-value="1c040843e458" data-action-type="hover" data-user-id="1c040843e458" data-collection-slug="towards-data-science" dir="auto">Leo Anello</a><div class="ui-caption u-fontSize12 u-baseColor--textNormal u-textColorNormal js-postMetaInlineSupplemental"><time datetime="2024-11-15T13:02:46.244Z">Nov 15</time><span class="middotDivider u-fontSize12"></span><span class="readingTime" title="38 min read"></span><span class="u-paddingLeft4"><span class="svgIcon svgIcon--star svgIcon--15px"><svg class="svgIcon-use" width="15" height="15" ><path d="M7.438 2.324c.034-.099.09-.099.123 0l1.2 3.53a.29.29 0 00.26.19h3.884c.11 0 .127.049.038.111L9.8 8.327a.271.271 0 00-.099.291l1.2 3.53c.034.1-.011.131-.098.069l-3.142-2.18a.303.303 0 00-.32 0l-3.145 2.182c-.087.06-.132.03-.099-.068l1.2-3.53a.271.271 0 00-.098-.292L2.056 6.146c-.087-.06-.071-.112.038-.112h3.884a.29.29 0 00.26-.19l1.2-3.52z"/></svg></span></span></div></div></div></div></div></div><div class="col u-xs-size12of12 js-trackPostPresentation u-paddingLeft12 u-marginBottom15 u-paddingRight12 u-size4of12" data-source="collection_category---4------7-----------------------" data-post-id="17aa54fd5e4e" data-index="7"><div class="u-lineHeightBase postItem"><a href="https://towardsdatascience.com/successful-ai-ethics-governance-at-scale-bridging-the-organizational-and-implementation-gaps-17aa54fd5e4e?source=collection_category---4------7-----------------------" data-action="open-post" data-action-value="https://towardsdatascience.com/successful-ai-ethics-governance-at-scale-bridging-the-organizational-and-implementation-gaps-17aa54fd5e4e?source=collection_category---4------7-----------------------" class="u-block u-xs-height170 u-height172 u-backgroundSizeCover u-backgroundOriginBorderBox u-backgroundColorGrayLight u-borderLighter" style="background-image: url("https://cdn-images-1.medium.com/max/800/1*-OqpKO96l09Gzb4qwsAiDA.jpeg"); background-position: 50% 50% !important;"><span class="u-textScreenReader">Successful AI Ethics & Governance at Scale: Bridging The Organizational and Implementation Gaps</span></a></div><div class="col u-xs-marginBottom10 u-paddingLeft0 u-paddingRight0 u-paddingTop15 u-marginBottom30"><a class="" href="https://towardsdatascience.com/successful-ai-ethics-governance-at-scale-bridging-the-organizational-and-implementation-gaps-17aa54fd5e4e?source=collection_category---4------7-----------------------" data-action-source="collection_category---4------7-----------------------" data-post-id="17aa54fd5e4e"><h3 class="u-contentSansBold u-lineHeightTightest u-xs-fontSize24 u-paddingBottom2 u-paddingTop5 u-fontSize32"><div class="u-letterSpacingTight u-lineHeightTighter u-breakWord u-textOverflowEllipsis u-lineClamp3 u-fontSize24">Successful AI Ethics & Governance at Scale: Bridging The Organizational and Implementation Gaps</div></h3><div class="u-contentSansThin u-lineHeightBaseSans u-fontSize24 u-xs-fontSize18 u-textColorNormal u-baseColor--textNormal"><div class="u-fontSize18 u-letterSpacingTight u-lineHeightTight u-marginTop7 u-textColorNormal u-baseColor--textNormal">The road from ethics to executives winds through lawyers and LLMs</div></div></a><div class="u-clearfix u-marginTop20"><div class="u-flexCenter"><div class="postMetaInline-avatar u-flex0"><a class="link u-baseColor--link avatar" href="https://towardsdatascience.com/@jasontwidjaja" data-action="show-user-card" data-action-value="e7e9224fe265" data-action-type="hover" data-user-id="e7e9224fe265" data-collection-slug="towards-data-science" dir="auto"><img src="https://cdn-images-1.medium.com/fit/c/72/72/1*IBx8N1IButnxAzCCR9mOlA.jpeg" class="avatar-image u-size36x36 u-xs-size32x32" alt="Go to the profile of Jason Tamara Widjaja"></a></div><div class="postMetaInline postMetaInline-authorLockup ui-captionStrong u-flex1 u-noWrapWithEllipsis"><a class="ds-link ds-link--styleSubtle link link--darken link--accent u-accentColor--textNormal u-accentColor--textDarken" href="https://towardsdatascience.com/@jasontwidjaja" data-action="show-user-card" data-action-value="e7e9224fe265" data-action-type="hover" data-user-id="e7e9224fe265" data-collection-slug="towards-data-science" dir="auto">Jason Tamara Widjaja</a><div class="ui-caption u-fontSize12 u-baseColor--textNormal u-textColorNormal js-postMetaInlineSupplemental"><time datetime="2024-11-14T05:21:38.386Z">Nov 13</time><span class="middotDivider u-fontSize12"></span><span class="readingTime" title="9 min read"></span><span class="u-paddingLeft4"><span class="svgIcon svgIcon--star svgIcon--15px"><svg class="svgIcon-use" width="15" height="15" ><path d="M7.438 2.324c.034-.099.09-.099.123 0l1.2 3.53a.29.29 0 00.26.19h3.884c.11 0 .127.049.038.111L9.8 8.327a.271.271 0 00-.099.291l1.2 3.53c.034.1-.011.131-.098.069l-3.142-2.18a.303.303 0 00-.32 0l-3.145 2.182c-.087.06-.132.03-.099-.068l1.2-3.53a.271.271 0 00-.098-.292L2.056 6.146c-.087-.06-.071-.112.038-.112h3.884a.29.29 0 00.26-.19l1.2-3.52z"/></svg></span></span></div></div></div></div></div></div><div class="col u-xs-size12of12 js-trackPostPresentation u-paddingLeft12 u-marginBottom15 u-paddingRight12 u-size4of12" data-source="collection_category---4------8-----------------------" data-post-id="c292ec0747db" data-index="8"><div class="u-lineHeightBase postItem"><a href="https://towardsdatascience.com/can-you-tell-free-python-art-from-multi-million-dollar-pieces-c292ec0747db?source=collection_category---4------8-----------------------" data-action="open-post" data-action-value="https://towardsdatascience.com/can-you-tell-free-python-art-from-multi-million-dollar-pieces-c292ec0747db?source=collection_category---4------8-----------------------" class="u-block u-xs-height170 u-height172 u-backgroundSizeCover u-backgroundOriginBorderBox u-backgroundColorGrayLight u-borderLighter" style="background-image: url("https://cdn-images-1.medium.com/max/800/1*uCJHMOtnbJerV4Vvky83cQ.png"); background-position: 50% 50% !important;"><span class="u-textScreenReader">Can You Tell Free Python Art from Multi-Million Dollar Pieces?</span></a></div><div class="col u-xs-marginBottom10 u-paddingLeft0 u-paddingRight0 u-paddingTop15 u-marginBottom30"><a class="" href="https://towardsdatascience.com/can-you-tell-free-python-art-from-multi-million-dollar-pieces-c292ec0747db?source=collection_category---4------8-----------------------" data-action-source="collection_category---4------8-----------------------" data-post-id="c292ec0747db"><h3 class="u-contentSansBold u-lineHeightTightest u-xs-fontSize24 u-paddingBottom2 u-paddingTop5 u-fontSize32"><div class="u-letterSpacingTight u-lineHeightTighter u-breakWord u-textOverflowEllipsis u-lineClamp3 u-fontSize24">Can You Tell Free Python Art from Multi-Million Dollar Pieces?</div></h3><div class="u-contentSansThin u-lineHeightBaseSans u-fontSize24 u-xs-fontSize18 u-textColorNormal u-baseColor--textNormal"><div class="u-fontSize18 u-letterSpacingTight u-lineHeightTight u-marginTop7 u-textColorNormal u-baseColor--textNormal">Follow along for a Python generative art tutorial, inspired by Piet Mondrian and Josef Albers. From Code to Canvas, Part I.</div></div></a><div class="u-clearfix u-marginTop20"><div class="u-flexCenter"><div class="postMetaInline-avatar u-flex0"><a class="link u-baseColor--link avatar" href="https://towardsdatascience.com/@gordunanna" data-action="show-user-card" data-action-value="6b453743a21c" data-action-type="hover" data-user-id="6b453743a21c" data-collection-slug="towards-data-science" dir="auto"><img src="https://cdn-images-1.medium.com/fit/c/72/72/1*xcymf5kJLwwvARr1elDC_g@2x.jpeg" class="avatar-image u-size36x36 u-xs-size32x32" alt="Go to the profile of Anna Gordun Peiro"></a></div><div class="postMetaInline postMetaInline-authorLockup ui-captionStrong u-flex1 u-noWrapWithEllipsis"><a class="ds-link ds-link--styleSubtle link link--darken link--accent u-accentColor--textNormal u-accentColor--textDarken" href="https://towardsdatascience.com/@gordunanna" data-action="show-user-card" data-action-value="6b453743a21c" data-action-type="hover" data-user-id="6b453743a21c" data-collection-slug="towards-data-science" dir="auto">Anna Gordun Peiro</a><div class="ui-caption u-fontSize12 u-baseColor--textNormal u-textColorNormal js-postMetaInlineSupplemental"><time datetime="2024-11-13T13:02:11.900Z">Nov 13</time><span class="middotDivider u-fontSize12"></span><span class="readingTime" title="6 min read"></span></div></div></div></div></div></div></div><div class="row u-marginTop30 u-marginLeftNegative12 u-marginRightNegative12"><div class="col u-xs-size12of12 js-trackPostPresentation u-paddingLeft12 u-marginBottom15 u-paddingRight12 u-size4of12" data-source="collection_category---4------9-----------------------" data-post-id="a718748c7fd5" data-index="9"><div class="u-lineHeightBase postItem"><a href="https://towardsdatascience.com/a-birds-eye-view-of-linear-algebra-matrix-chain-multiplication-a718748c7fd5?source=collection_category---4------9-----------------------" data-action="open-post" data-action-value="https://towardsdatascience.com/a-birds-eye-view-of-linear-algebra-matrix-chain-multiplication-a718748c7fd5?source=collection_category---4------9-----------------------" class="u-block u-xs-height170 u-height172 u-backgroundSizeCover u-backgroundOriginBorderBox u-backgroundColorGrayLight u-borderLighter" style="background-image: url("https://cdn-images-1.medium.com/max/800/1*bOeUCBUwHK0Eb_PB0M-SLg.png"); background-position: 50% 50% !important;"><span class="u-textScreenReader">A Bird’s-Eye View of Linear Algebra: Matrix Chain Multiplication</span></a></div><div class="col u-xs-marginBottom10 u-paddingLeft0 u-paddingRight0 u-paddingTop15 u-marginBottom30"><a class="" href="https://towardsdatascience.com/a-birds-eye-view-of-linear-algebra-matrix-chain-multiplication-a718748c7fd5?source=collection_category---4------9-----------------------" data-action-source="collection_category---4------9-----------------------" data-post-id="a718748c7fd5"><h3 class="u-contentSansBold u-lineHeightTightest u-xs-fontSize24 u-paddingBottom2 u-paddingTop5 u-fontSize32"><div class="u-letterSpacingTight u-lineHeightTighter u-breakWord u-textOverflowEllipsis u-lineClamp3 u-fontSize24">A Bird’s-Eye View of Linear Algebra: Matrix Chain Multiplication</div></h3><div class="u-contentSansThin u-lineHeightBaseSans u-fontSize24 u-xs-fontSize18 u-textColorNormal u-baseColor--textNormal"><div class="u-fontSize18 u-letterSpacingTight u-lineHeightTight u-marginTop7 u-textColorNormal u-baseColor--textNormal">Linear algebra is the backbone of AI. Matrix multiplication is the fundamental operation of linear algebra. What if there is a whole chain?</div></div></a><div class="u-clearfix u-marginTop20"><div class="u-flexCenter"><div class="postMetaInline-avatar u-flex0"><a class="link u-baseColor--link avatar" href="https://towardsdatascience.com/@rohitpandey576" data-action="show-user-card" data-action-value="a743c5fec8cd" data-action-type="hover" data-user-id="a743c5fec8cd" data-collection-slug="towards-data-science" dir="auto"><img src="https://cdn-images-1.medium.com/fit/c/72/72/0*Issa3TOcli4KzNYa.jpg" class="avatar-image u-size36x36 u-xs-size32x32" alt="Go to the profile of Rohit Pandey"></a></div><div class="postMetaInline postMetaInline-authorLockup ui-captionStrong u-flex1 u-noWrapWithEllipsis"><a class="ds-link ds-link--styleSubtle link link--darken link--accent u-accentColor--textNormal u-accentColor--textDarken" href="https://towardsdatascience.com/@rohitpandey576" data-action="show-user-card" data-action-value="a743c5fec8cd" data-action-type="hover" data-user-id="a743c5fec8cd" data-collection-slug="towards-data-science" dir="auto">Rohit Pandey</a><div class="ui-caption u-fontSize12 u-baseColor--textNormal u-textColorNormal js-postMetaInlineSupplemental"><time datetime="2024-11-13T01:22:21.113Z">Nov 12</time><span class="middotDivider u-fontSize12"></span><span class="readingTime" title="23 min read"></span><span class="u-paddingLeft4"><span class="svgIcon svgIcon--star svgIcon--15px"><svg class="svgIcon-use" width="15" height="15" ><path d="M7.438 2.324c.034-.099.09-.099.123 0l1.2 3.53a.29.29 0 00.26.19h3.884c.11 0 .127.049.038.111L9.8 8.327a.271.271 0 00-.099.291l1.2 3.53c.034.1-.011.131-.098.069l-3.142-2.18a.303.303 0 00-.32 0l-3.145 2.182c-.087.06-.132.03-.099-.068l1.2-3.53a.271.271 0 00-.098-.292L2.056 6.146c-.087-.06-.071-.112.038-.112h3.884a.29.29 0 00.26-.19l1.2-3.52z"/></svg></span></span></div></div></div></div></div></div><div class="col u-xs-size12of12 js-trackPostPresentation u-paddingLeft12 u-marginBottom15 u-paddingRight12 u-size4of12" data-source="collection_category---4------10-----------------------" data-post-id="17b4ec4e7691" data-index="10"><div class="u-lineHeightBase postItem"><a href="https://towardsdatascience.com/economics-of-hosting-open-source-llms-17b4ec4e7691?source=collection_category---4------10-----------------------" data-action="open-post" data-action-value="https://towardsdatascience.com/economics-of-hosting-open-source-llms-17b4ec4e7691?source=collection_category---4------10-----------------------" class="u-block u-xs-height170 u-height172 u-backgroundSizeCover u-backgroundOriginBorderBox u-backgroundColorGrayLight u-borderLighter" style="background-image: url("https://cdn-images-1.medium.com/max/800/1*rM3YJWOWVwBzDGPV-pw0Aw.png"); background-position: 50% 50% !important;"><span class="u-textScreenReader">Economics of Hosting Open Source LLMs</span></a></div><div class="col u-xs-marginBottom10 u-paddingLeft0 u-paddingRight0 u-paddingTop15 u-marginBottom30"><a class="" href="https://towardsdatascience.com/economics-of-hosting-open-source-llms-17b4ec4e7691?source=collection_category---4------10-----------------------" data-action-source="collection_category---4------10-----------------------" data-post-id="17b4ec4e7691"><h3 class="u-contentSansBold u-lineHeightTightest u-xs-fontSize24 u-paddingBottom2 u-paddingTop5 u-fontSize32"><div class="u-letterSpacingTight u-lineHeightTighter u-breakWord u-textOverflowEllipsis u-lineClamp3 u-fontSize24">Economics of Hosting Open Source LLMs</div></h3><div class="u-contentSansThin u-lineHeightBaseSans u-fontSize24 u-xs-fontSize18 u-textColorNormal u-baseColor--textNormal"><div class="u-fontSize18 u-letterSpacingTight u-lineHeightTight u-marginTop7 u-textColorNormal u-baseColor--textNormal">Leveraging various deployment options</div></div></a><div class="u-clearfix u-marginTop20"><div class="u-flexCenter"><div class="postMetaInline-avatar u-flex0"><a class="link u-baseColor--link avatar" href="https://towardsdatascience.com/@ilsilfverskiold" data-action="show-user-card" data-action-value="53550965faed" data-action-type="hover" data-user-id="53550965faed" data-collection-slug="towards-data-science" dir="auto"><img src="https://cdn-images-1.medium.com/fit/c/72/72/1*1civF6o1TQqHJyhani-99w.png" class="avatar-image u-size36x36 u-xs-size32x32" alt="Go to the profile of Ida Silfverskiöld"></a></div><div class="postMetaInline postMetaInline-authorLockup ui-captionStrong u-flex1 u-noWrapWithEllipsis"><a class="ds-link ds-link--styleSubtle link link--darken link--accent u-accentColor--textNormal u-accentColor--textDarken" href="https://towardsdatascience.com/@ilsilfverskiold" data-action="show-user-card" data-action-value="53550965faed" data-action-type="hover" data-user-id="53550965faed" data-collection-slug="towards-data-science" dir="auto">Ida Silfverskiöld</a><div class="ui-caption u-fontSize12 u-baseColor--textNormal u-textColorNormal js-postMetaInlineSupplemental"><time datetime="2024-11-12T14:57:01.479Z">Nov 12</time><span class="middotDivider u-fontSize12"></span><span class="readingTime" title="19 min read"></span><span class="u-paddingLeft4"><span class="svgIcon svgIcon--star svgIcon--15px"><svg class="svgIcon-use" width="15" height="15" ><path d="M7.438 2.324c.034-.099.09-.099.123 0l1.2 3.53a.29.29 0 00.26.19h3.884c.11 0 .127.049.038.111L9.8 8.327a.271.271 0 00-.099.291l1.2 3.53c.034.1-.011.131-.098.069l-3.142-2.18a.303.303 0 00-.32 0l-3.145 2.182c-.087.06-.132.03-.099-.068l1.2-3.53a.271.271 0 00-.098-.292L2.056 6.146c-.087-.06-.071-.112.038-.112h3.884a.29.29 0 00.26-.19l1.2-3.52z"/></svg></span></span></div></div></div></div></div></div><div class="col u-xs-size12of12 js-trackPostPresentation u-paddingLeft12 u-marginBottom15 u-paddingRight12 u-size4of12" data-source="collection_category---4------11-----------------------" data-post-id="d299b638773b" data-index="11"><div class="u-lineHeightBase postItem"><a href="https://towardsdatascience.com/what-did-i-learn-from-building-llm-applications-in-2024-part-1-d299b638773b?source=collection_category---4------11-----------------------" data-action="open-post" data-action-value="https://towardsdatascience.com/what-did-i-learn-from-building-llm-applications-in-2024-part-1-d299b638773b?source=collection_category---4------11-----------------------" class="u-block u-xs-height170 u-height172 u-backgroundSizeCover u-backgroundOriginBorderBox u-backgroundColorGrayLight u-borderLighter" style="background-image: url("https://cdn-images-1.medium.com/max/800/1*oEXNPL3qOT_XHdJnDUJDcQ.jpeg"); background-position: 50% 50% !important;"><span class="u-textScreenReader">What Did I Learn from Building LLM Applications in 2024? — Part 1</span></a></div><div class="col u-xs-marginBottom10 u-paddingLeft0 u-paddingRight0 u-paddingTop15 u-marginBottom30"><a class="" href="https://towardsdatascience.com/what-did-i-learn-from-building-llm-applications-in-2024-part-1-d299b638773b?source=collection_category---4------11-----------------------" data-action-source="collection_category---4------11-----------------------" data-post-id="d299b638773b"><h3 class="u-contentSansBold u-lineHeightTightest u-xs-fontSize24 u-paddingBottom2 u-paddingTop5 u-fontSize32"><div class="u-letterSpacingTight u-lineHeightTighter u-breakWord u-textOverflowEllipsis u-lineClamp3 u-fontSize24">What Did I Learn from Building LLM Applications in 2024? — Part 1</div></h3><div class="u-contentSansThin u-lineHeightBaseSans u-fontSize24 u-xs-fontSize18 u-textColorNormal u-baseColor--textNormal"><div class="u-fontSize18 u-letterSpacingTight u-lineHeightTight u-marginTop7 u-textColorNormal u-baseColor--textNormal">An engineer’s journey to building LLM-native applications</div></div></a><div class="u-clearfix u-marginTop20"><div class="u-flexCenter"><div class="postMetaInline-avatar u-flex0"><a class="link u-baseColor--link avatar" href="https://towardsdatascience.com/@cleancoder" data-action="show-user-card" data-action-value="d4bbc4d61092" data-action-type="hover" data-user-id="d4bbc4d61092" data-collection-slug="towards-data-science" dir="auto"><img src="https://cdn-images-1.medium.com/fit/c/72/72/1*DUP9k15e2-cZj27IJxFCpQ.jpeg" class="avatar-image u-size36x36 u-xs-size32x32" alt="Go to the profile of Satwiki De"></a></div><div class="postMetaInline postMetaInline-authorLockup ui-captionStrong u-flex1 u-noWrapWithEllipsis"><a class="ds-link ds-link--styleSubtle link link--darken link--accent u-accentColor--textNormal u-accentColor--textDarken" href="https://towardsdatascience.com/@cleancoder" data-action="show-user-card" data-action-value="d4bbc4d61092" data-action-type="hover" data-user-id="d4bbc4d61092" data-collection-slug="towards-data-science" dir="auto">Satwiki De</a><div class="ui-caption u-fontSize12 u-baseColor--textNormal u-textColorNormal js-postMetaInlineSupplemental"><time datetime="2024-11-04T17:29:34.465Z">Nov 4</time><span class="middotDivider u-fontSize12"></span><span class="readingTime" title="7 min read"></span></div></div></div></div></div></div></div><div class="row u-marginTop30 u-marginLeftNegative12 u-marginRightNegative12"><div class="col u-xs-size12of12 js-trackPostPresentation u-paddingLeft12 u-marginBottom15 u-paddingRight12 u-size4of12" data-source="collection_category---4------12-----------------------" data-post-id="f54552c15a16" data-index="12"><div class="u-lineHeightBase postItem"><a href="https://towardsdatascience.com/vision-transformer-with-batchnorm-optimizing-the-depth-f54552c15a16?source=collection_category---4------12-----------------------" data-action="open-post" data-action-value="https://towardsdatascience.com/vision-transformer-with-batchnorm-optimizing-the-depth-f54552c15a16?source=collection_category---4------12-----------------------" class="u-block u-xs-height170 u-height172 u-backgroundSizeCover u-backgroundOriginBorderBox u-backgroundColorGrayLight u-borderLighter" style="background-image: url("https://cdn-images-1.medium.com/max/800/1*v6VyXY-JfEYjDeIqXityZw.png"); background-position: 50% 50% !important;"><span class="u-textScreenReader">Vision Transformer with BatchNorm: Optimizing the depth</span></a></div><div class="col u-xs-marginBottom10 u-paddingLeft0 u-paddingRight0 u-paddingTop15 u-marginBottom30"><a class="" href="https://towardsdatascience.com/vision-transformer-with-batchnorm-optimizing-the-depth-f54552c15a16?source=collection_category---4------12-----------------------" data-action-source="collection_category---4------12-----------------------" data-post-id="f54552c15a16"><h3 class="u-contentSansBold u-lineHeightTightest u-xs-fontSize24 u-paddingBottom2 u-paddingTop5 u-fontSize32"><div class="u-letterSpacingTight u-lineHeightTighter u-breakWord u-textOverflowEllipsis u-lineClamp3 u-fontSize24">Vision Transformer with BatchNorm: Optimizing the depth</div></h3><div class="u-contentSansThin u-lineHeightBaseSans u-fontSize24 u-xs-fontSize18 u-textColorNormal u-baseColor--textNormal"><div class="u-fontSize18 u-letterSpacingTight u-lineHeightTight u-marginTop7 u-textColorNormal u-baseColor--textNormal">How integrating BatchNorm in a standard Vision transformer architecture results in faster convergence for a smaller depth, resulting in…</div></div></a><div class="u-clearfix u-marginTop20"><div class="u-flexCenter"><div class="postMetaInline-avatar u-flex0"><a class="link u-baseColor--link avatar" href="https://towardsdatascience.com/@anindya.hepth" data-action="show-user-card" data-action-value="6527aecbd3c5" data-action-type="hover" data-user-id="6527aecbd3c5" data-collection-slug="towards-data-science" dir="auto"><img src="https://cdn-images-1.medium.com/fit/c/72/72/1*k81KjiGOVtd6w9OEVI_LUA.jpeg" class="avatar-image u-size36x36 u-xs-size32x32" alt="Go to the profile of Anindya Dey, PhD"></a></div><div class="postMetaInline postMetaInline-authorLockup ui-captionStrong u-flex1 u-noWrapWithEllipsis"><a class="ds-link ds-link--styleSubtle link link--darken link--accent u-accentColor--textNormal u-accentColor--textDarken" href="https://towardsdatascience.com/@anindya.hepth" data-action="show-user-card" data-action-value="6527aecbd3c5" data-action-type="hover" data-user-id="6527aecbd3c5" data-collection-slug="towards-data-science" dir="auto">Anindya Dey, PhD</a><div class="ui-caption u-fontSize12 u-baseColor--textNormal u-textColorNormal js-postMetaInlineSupplemental"><time datetime="2024-11-08T13:02:26.391Z">Nov 8</time><span class="middotDivider u-fontSize12"></span><span class="readingTime" title="14 min read"></span></div></div></div></div></div></div><div class="col u-xs-size12of12 js-trackPostPresentation u-paddingLeft12 u-marginBottom15 u-paddingRight12 u-size4of12" data-source="collection_category---4------13-----------------------" data-post-id="fd45be625dfe" data-index="13"><div class="u-lineHeightBase postItem"><a href="https://towardsdatascience.com/watermarking-for-ai-text-and-synthetic-proteins-fighting-misinformation-and-bioterrorism-fd45be625dfe?source=collection_category---4------13-----------------------" data-action="open-post" data-action-value="https://towardsdatascience.com/watermarking-for-ai-text-and-synthetic-proteins-fighting-misinformation-and-bioterrorism-fd45be625dfe?source=collection_category---4------13-----------------------" class="u-block u-xs-height170 u-height172 u-backgroundSizeCover u-backgroundOriginBorderBox u-backgroundColorGrayLight u-borderLighter" style="background-image: url("https://cdn-images-1.medium.com/max/800/1*_S2lHpvzamkQ6DWcy9_6Wg.jpeg"); background-position: 50% 50% !important;"><span class="u-textScreenReader">Watermarking for AI Text and Synthetic Proteins: Fighting Misinformation and Bioterrorism</span></a></div><div class="col u-xs-marginBottom10 u-paddingLeft0 u-paddingRight0 u-paddingTop15 u-marginBottom30"><a class="" href="https://towardsdatascience.com/watermarking-for-ai-text-and-synthetic-proteins-fighting-misinformation-and-bioterrorism-fd45be625dfe?source=collection_category---4------13-----------------------" data-action-source="collection_category---4------13-----------------------" data-post-id="fd45be625dfe"><h3 class="u-contentSansBold u-lineHeightTightest u-xs-fontSize24 u-paddingBottom2 u-paddingTop5 u-fontSize32"><div class="u-letterSpacingTight u-lineHeightTighter u-breakWord u-textOverflowEllipsis u-lineClamp3 u-fontSize24">Watermarking for AI Text and Synthetic Proteins: Fighting Misinformation and Bioterrorism</div></h3><div class="u-contentSansThin u-lineHeightBaseSans u-fontSize24 u-xs-fontSize18 u-textColorNormal u-baseColor--textNormal"><div class="u-fontSize18 u-letterSpacingTight u-lineHeightTight u-marginTop7 u-textColorNormal u-baseColor--textNormal">Understanding AI applications in bio for machine learning engineers</div></div></a><div class="u-clearfix u-marginTop20"><div class="u-flexCenter"><div class="postMetaInline-avatar u-flex0"><a class="link u-baseColor--link avatar" href="https://towardsdatascience.com/@meghanheintz" data-action="show-user-card" data-action-value="7175001fc1a" data-action-type="hover" data-user-id="7175001fc1a" data-collection-slug="towards-data-science" dir="auto"><img src="https://cdn-images-1.medium.com/fit/c/72/72/1*Tespb9SFbU5QAxy8f7bhnA.png" class="avatar-image u-size36x36 u-xs-size32x32" alt="Go to the profile of Meghan Heintz"></a></div><div class="postMetaInline postMetaInline-authorLockup ui-captionStrong u-flex1 u-noWrapWithEllipsis"><a class="ds-link ds-link--styleSubtle link link--darken link--accent u-accentColor--textNormal u-accentColor--textDarken" href="https://towardsdatascience.com/@meghanheintz" data-action="show-user-card" data-action-value="7175001fc1a" data-action-type="hover" data-user-id="7175001fc1a" data-collection-slug="towards-data-science" dir="auto">Meghan Heintz</a><div class="ui-caption u-fontSize12 u-baseColor--textNormal u-textColorNormal js-postMetaInlineSupplemental"><time datetime="2024-11-07T18:10:47.254Z">Nov 7</time><span class="middotDivider u-fontSize12"></span><span class="readingTime" title="7 min read"></span></div></div></div></div></div></div><div class="col u-xs-size12of12 js-trackPostPresentation u-paddingLeft12 u-marginBottom15 u-paddingRight12 u-size4of12" data-source="collection_category---4------14-----------------------" data-post-id="6fea564215e4" data-index="14"><div class="u-lineHeightBase postItem"><a href="https://towardsdatascience.com/markov-decision-problems-in-robotics-6fea564215e4?source=collection_category---4------14-----------------------" data-action="open-post" data-action-value="https://towardsdatascience.com/markov-decision-problems-in-robotics-6fea564215e4?source=collection_category---4------14-----------------------" class="u-block u-xs-height170 u-height172 u-backgroundSizeCover u-backgroundOriginBorderBox u-backgroundColorGrayLight u-borderLighter" style="background-image: url("https://cdn-images-1.medium.com/max/800/1*D0UQMoa_iibdZsn7pm_p5Q.png"); background-position: 50% 50% !important;"><span class="u-textScreenReader">Markov Decision Problems in Robotics</span></a></div><div class="col u-xs-marginBottom10 u-paddingLeft0 u-paddingRight0 u-paddingTop15 u-marginBottom30"><a class="" href="https://towardsdatascience.com/markov-decision-problems-in-robotics-6fea564215e4?source=collection_category---4------14-----------------------" data-action-source="collection_category---4------14-----------------------" data-post-id="6fea564215e4"><h3 class="u-contentSansBold u-lineHeightTightest u-xs-fontSize24 u-paddingBottom2 u-paddingTop5 u-fontSize32"><div class="u-letterSpacingTight u-lineHeightTighter u-breakWord u-textOverflowEllipsis u-lineClamp3 u-fontSize24">Markov Decision Problems in Robotics</div></h3><div class="u-contentSansThin u-lineHeightBaseSans u-fontSize24 u-xs-fontSize18 u-textColorNormal u-baseColor--textNormal"><div class="u-fontSize18 u-letterSpacingTight u-lineHeightTight u-marginTop7 u-textColorNormal u-baseColor--textNormal">Using a real-world example to explain MDPs, the Bellman equation and value iteration</div></div></a><div class="u-clearfix u-marginTop20"><div class="u-flexCenter"><div class="postMetaInline-avatar u-flex0"><a class="link u-baseColor--link avatar" href="https://towardsdatascience.com/@nikolaus.correll" data-action="show-user-card" data-action-value="8624c420e311" data-action-type="hover" data-user-id="8624c420e311" data-collection-slug="towards-data-science" dir="auto"><img src="https://cdn-images-1.medium.com/fit/c/72/72/0*16C4ZpLAHBnmozRf" class="avatar-image u-size36x36 u-xs-size32x32" alt="Go to the profile of Nikolaus Correll"></a></div><div class="postMetaInline postMetaInline-authorLockup ui-captionStrong u-flex1 u-noWrapWithEllipsis"><a class="ds-link ds-link--styleSubtle link link--darken link--accent u-accentColor--textNormal u-accentColor--textDarken" href="https://towardsdatascience.com/@nikolaus.correll" data-action="show-user-card" data-action-value="8624c420e311" data-action-type="hover" data-user-id="8624c420e311" data-collection-slug="towards-data-science" dir="auto">Nikolaus Correll</a><div class="ui-caption u-fontSize12 u-baseColor--textNormal u-textColorNormal js-postMetaInlineSupplemental"><time datetime="2024-11-07T12:02:06.068Z">Nov 7</time><span class="middotDivider u-fontSize12"></span><span class="readingTime" title="10 min read"></span><span class="u-paddingLeft4"><span class="svgIcon svgIcon--star svgIcon--15px"><svg class="svgIcon-use" width="15" height="15" ><path d="M7.438 2.324c.034-.099.09-.099.123 0l1.2 3.53a.29.29 0 00.26.19h3.884c.11 0 .127.049.038.111L9.8 8.327a.271.271 0 00-.099.291l1.2 3.53c.034.1-.011.131-.098.069l-3.142-2.18a.303.303 0 00-.32 0l-3.145 2.182c-.087.06-.132.03-.099-.068l1.2-3.53a.271.271 0 00-.098-.292L2.056 6.146c-.087-.06-.071-.112.038-.112h3.884a.29.29 0 00.26-.19l1.2-3.52z"/></svg></span></span></div></div></div></div></div></div></div></section></div></div><style class="js-collectionStyle"> .u-accentColor--borderLight {border-color: #668AAA !important;} .u-accentColor--borderNormal {border-color: #668AAA !important;} .u-accentColor--borderDark {border-color: #5A7690 !important;} .u-accentColor--iconLight .svgIcon,.u-accentColor--iconLight.svgIcon {fill: #668AAA !important;} .u-accentColor--iconNormal .svgIcon,.u-accentColor--iconNormal.svgIcon {fill: #668AAA !important;} .u-accentColor--iconDark .svgIcon,.u-accentColor--iconDark.svgIcon {fill: #5A7690 !important;} .u-accentColor--textNormal {color: #5A7690 !important;} .u-accentColor--hoverTextNormal:hover {color: #5A7690 !important;} .u-accentColor--textNormal.u-accentColor--textDarken:hover {color: #546C83 !important;} .u-accentColor--textDark {color: #546C83 !important;} .u-accentColor--backgroundLight {background-color: #668AAA !important;} .u-accentColor--backgroundNormal {background-color: #668AAA !important;} .u-accentColor--backgroundDark {background-color: #5A7690 !important;} .u-accentColor--buttonDark {border-color: #5A7690 !important; color: #546C83 !important;} .u-accentColor--buttonDark:hover {border-color: #546C83 !important;} .u-accentColor--buttonDark .icon:before,.u-accentColor--buttonDark .svgIcon{color: #5A7690 !important; fill: #5A7690 !important;} .u-accentColor--buttonNormal:not(.clapButton--largePill) {border-color: #668AAA !important; color: #5A7690 !important;} .u-accentColor--buttonNormal:hover {border-color: #5A7690 !important;} .u-accentColor--buttonNormal .icon:before,.u-accentColor--buttonNormal .svgIcon{color: #668AAA !important; fill: #668AAA !important;} .u-accentColor--buttonNormal.button--filled .icon:before,.u-accentColor--buttonNormal.button--filled .svgIcon{color: rgba(255, 255, 255, 1) !important; fill: rgba(255, 255, 255, 1) !important;} .u-accentColor--buttonDark.button--filled,.u-accentColor--buttonDark.button--withChrome.is-active,.u-accentColor--fillWhenActive.is-active {background-color: #5A7690 !important; border-color: #5A7690 !important; color: rgba(255, 255, 255, 1) !important; fill: rgba(255, 255, 255, 1) !important;} .u-accentColor--buttonNormal.button--filled:not(.clapButton--largePill),.u-accentColor--buttonNormal.button--withChrome.is-active:not(.clapButton--largePill) {background-color: #668AAA !important; border-color: #668AAA !important; color: rgba(255, 255, 255, 1) !important; fill: rgba(255, 255, 255, 1) !important;} .postArticle.is-withAccentColors .markup--user,.postArticle.is-withAccentColors .markup--query {color: #5A7690 !important;}.u-tintBgColor {background-color: rgba(53, 88, 118, 1) !important;}.u-tintBgColor .u-fadeLeft:before {background-image: linear-gradient(to right, rgba(53, 88, 118, 1) 0%, rgba(53, 88, 118, 0) 100%) !important;}.u-tintBgColor .u-fadeRight:after {background-image: linear-gradient(to right, rgba(53, 88, 118, 0) 0%, rgba(53, 88, 118, 1) 100%) !important;} .u-tintSpectrum .u-baseColor--borderLight {border-color: #9FB3C6 !important;} .u-tintSpectrum .u-baseColor--borderNormal {border-color: #C5D2E1 !important;} .u-tintSpectrum .u-baseColor--borderDark {border-color: #E9F1FA !important;} .u-tintSpectrum .u-baseColor--iconLight .svgIcon,.u-tintSpectrum .u-baseColor--iconLight.svgIcon {fill: #9FB3C6 !important;} .u-tintSpectrum .u-baseColor--iconNormal .svgIcon,.u-tintSpectrum .u-baseColor--iconNormal.svgIcon {fill: #C5D2E1 !important;} .u-tintSpectrum .u-baseColor--iconDark .svgIcon,.u-tintSpectrum .u-baseColor--iconDark.svgIcon {fill: #E9F1FA !important;} .u-tintSpectrum .u-baseColor--textNormal {color: #C5D2E1 !important;} .u-tintSpectrum .u-baseColor--textNormal.u-baseColor--textDarken:hover {color: #FBFFFF !important;} .u-tintSpectrum .u-baseColor--textDark {color: #FBFFFF !important;} .u-tintSpectrum .u-baseColor--textDarker {color: #FBFFFF !important;} .u-tintSpectrum .u-baseColor--backgroundLight {background-color: #9FB3C6 !important;} .u-tintSpectrum .u-baseColor--backgroundNormal {background-color: #C5D2E1 !important;} .u-tintSpectrum .u-baseColor--backgroundDark {background-color: #E9F1FA !important;} .u-tintSpectrum .u-baseColor--buttonLight {border-color: #9FB3C6 !important; color: #9FB3C6 !important;} .u-tintSpectrum .u-baseColor--buttonLight:hover {border-color: #9FB3C6 !important;} .u-tintSpectrum .u-baseColor--buttonLight .icon:before,.u-tintSpectrum .u-baseColor--buttonLight .svgIcon {color: #9FB3C6 !important; fill: #9FB3C6 !important;} .u-tintSpectrum .u-baseColor--buttonDark {border-color: #E9F1FA !important; color: #FBFFFF !important;} .u-tintSpectrum .u-baseColor--buttonDark:hover {border-color: #FBFFFF !important;} .u-tintSpectrum .u-baseColor--buttonDark .icon:before,.u-tintSpectrum .u-baseColor--buttonDark .svgIcon {color: #E9F1FA !important; fill: #E9F1FA !important;} .u-tintSpectrum .u-baseColor--buttonNormal {border-color: #C5D2E1 !important; color: #C5D2E1 !important;} .u-tintSpectrum .u-baseColor--buttonNormal:hover {border-color: #E9F1FA !important;} .u-tintSpectrum .u-baseColor--buttonNormal .icon:before,.u-tintSpectrum .u-baseColor--buttonNormal .svgIcon {color: #C5D2E1 !important; fill: #C5D2E1 !important;} .u-tintSpectrum .u-baseColor--buttonDark.button--filled,.u-tintSpectrum .u-baseColor--buttonDark.button--withChrome.is-active {background-color: #E9F1FA !important; border-color: #E9F1FA !important; color: rgba(53, 88, 118, 1) !important; fill: rgba(53, 88, 118, 1) !important;} .u-tintSpectrum .u-baseColor--buttonNormal.button--filled,.u-tintSpectrum .u-baseColor--buttonNormal.button--withChrome.is-active {background-color: #C5D2E1 !important; border-color: #C5D2E1 !important; color: rgba(53, 88, 118, 1) !important; fill: rgba(53, 88, 118, 1) !important;} .u-tintSpectrum .u-baseColor--link {color: #C5D2E1 !important;} .u-tintSpectrum .u-baseColor--link.link--darkenOnHover:hover {color: #FBFFFF !important;} .u-tintSpectrum .u-baseColor--link.link--darken:hover,.u-tintSpectrum .u-baseColor--link.link--darken:focus,.u-tintSpectrum .u-baseColor--link.link--darken:active {color: #FBFFFF !important;} .u-tintSpectrum .u-baseColor--link.link--dark {color: #FBFFFF !important;} .u-tintSpectrum .u-baseColor--link.link--dark.link--darken:hover,.u-tintSpectrum .u-baseColor--link.link--dark.link--darken:focus,.u-tintSpectrum .u-baseColor--link.link--dark.link--darken:active {color: #FBFFFF !important;} .u-tintSpectrum .u-baseColor--link.link--darker {color: #FBFFFF !important;} .u-tintSpectrum .u-baseColor--placeholderNormal ::-webkit-input-placeholder {color: #9FB3C6;} .u-tintSpectrum .u-baseColor--placeholderNormal ::-moz-placeholder {color: #9FB3C6;} .u-tintSpectrum .u-baseColor--placeholderNormal :-ms-input-placeholder {color: #9FB3C6;} .u-tintSpectrum .ui-h1,.u-tintSpectrum .ui-h2,.u-tintSpectrum .ui-h3,.u-tintSpectrum .ui-h4,.u-tintSpectrum .ui-brand1,.u-tintSpectrum .ui-brand2,.u-tintSpectrum .ui-captionStrong {color: #FBFFFF !important; fill: #FBFFFF !important;} .u-tintSpectrum .ui-body,.u-tintSpectrum .ui-caps {color: #FBFFFF !important; fill: #FBFFFF !important;} .u-tintSpectrum .ui-summary,.u-tintSpectrum .ui-caption {color: #9FB3C6 !important; fill: #9FB3C6 !important;} .u-tintSpectrum .u-accentColor--borderLight {border-color: #9FB3C6 !important;} .u-tintSpectrum .u-accentColor--borderNormal {border-color: #C5D2E1 !important;} .u-tintSpectrum .u-accentColor--borderDark {border-color: #E9F1FA !important;} .u-tintSpectrum .u-accentColor--iconLight .svgIcon,.u-tintSpectrum .u-accentColor--iconLight.svgIcon {fill: #9FB3C6 !important;} .u-tintSpectrum .u-accentColor--iconNormal .svgIcon,.u-tintSpectrum .u-accentColor--iconNormal.svgIcon {fill: #C5D2E1 !important;} .u-tintSpectrum .u-accentColor--iconDark .svgIcon,.u-tintSpectrum .u-accentColor--iconDark.svgIcon {fill: #E9F1FA !important;} .u-tintSpectrum .u-accentColor--textNormal {color: #C5D2E1 !important;} .u-tintSpectrum .u-accentColor--hoverTextNormal:hover {color: #C5D2E1 !important;} .u-tintSpectrum .u-accentColor--textNormal.u-accentColor--textDarken:hover {color: #FBFFFF !important;} .u-tintSpectrum .u-accentColor--textDark {color: #FBFFFF !important;} .u-tintSpectrum .u-accentColor--backgroundLight {background-color: #9FB3C6 !important;} .u-tintSpectrum .u-accentColor--backgroundNormal {background-color: #C5D2E1 !important;} .u-tintSpectrum .u-accentColor--backgroundDark {background-color: #E9F1FA !important;} .u-tintSpectrum .u-accentColor--buttonDark {border-color: #E9F1FA !important; color: #FBFFFF !important;} .u-tintSpectrum .u-accentColor--buttonDark:hover {border-color: #FBFFFF !important;} .u-tintSpectrum .u-accentColor--buttonDark .icon:before,.u-tintSpectrum .u-accentColor--buttonDark .svgIcon{color: #E9F1FA !important; fill: #E9F1FA !important;} .u-tintSpectrum .u-accentColor--buttonNormal:not(.clapButton--largePill) {border-color: #C5D2E1 !important; color: #C5D2E1 !important;} .u-tintSpectrum .u-accentColor--buttonNormal:hover {border-color: #E9F1FA !important;} .u-tintSpectrum .u-accentColor--buttonNormal .icon:before,.u-tintSpectrum .u-accentColor--buttonNormal .svgIcon{color: #C5D2E1 !important; fill: #C5D2E1 !important;} .u-tintSpectrum .u-accentColor--buttonNormal.button--filled .icon:before,.u-tintSpectrum .u-accentColor--buttonNormal.button--filled .svgIcon{color: rgba(53, 88, 118, 1) !important; fill: rgba(53, 88, 118, 1) !important;} .u-tintSpectrum .u-accentColor--buttonDark.button--filled,.u-tintSpectrum .u-accentColor--buttonDark.button--withChrome.is-active,.u-tintSpectrum .u-accentColor--fillWhenActive.is-active {background-color: #E9F1FA !important; border-color: #E9F1FA !important; color: rgba(53, 88, 118, 1) !important; fill: rgba(53, 88, 118, 1) !important;} .u-tintSpectrum .u-accentColor--buttonNormal.button--filled:not(.clapButton--largePill),.u-tintSpectrum .u-accentColor--buttonNormal.button--withChrome.is-active:not(.clapButton--largePill) {background-color: #C5D2E1 !important; border-color: #C5D2E1 !important; color: rgba(53, 88, 118, 1) !important; fill: rgba(53, 88, 118, 1) !important;} .u-tintSpectrum .postArticle.is-withAccentColors .markup--user,.u-tintSpectrum .postArticle.is-withAccentColors .markup--query {color: #C5D2E1 !important;} .u-accentColor--highlightFaint {background-color: rgba(233, 242, 253, 1) !important;} .u-accentColor--highlightStrong.is-active .svgIcon {fill: rgba(200, 228, 255, 1) !important;} .postArticle.is-withAccentColors .markup--quote.is-other {background-color: rgba(233, 242, 253, 1) !important;} body.is-withMagicUnderlines .postArticle.is-withAccentColors .markup--quote.is-other {background-color: transparent !important; background-image: linear-gradient(to bottom, rgba(233, 242, 253, 1), rgba(233, 242, 253, 1));} .postArticle.is-withAccentColors .markup--quote.is-me {background-color: rgba(215, 235, 254, 1) !important;} body.is-withMagicUnderlines .postArticle.is-withAccentColors .markup--quote.is-me {background-color: transparent !important; background-image: linear-gradient(to bottom, rgba(215, 235, 254, 1), rgba(215, 235, 254, 1));} .postArticle.is-withAccentColors .markup--quote.is-targeted {background-color: rgba(200, 228, 255, 1) !important;} body.is-withMagicUnderlines .postArticle.is-withAccentColors .markup--quote.is-targeted {background-color: transparent !important; background-image: linear-gradient(to bottom, rgba(200, 228, 255, 1), rgba(200, 228, 255, 1));} .postArticle.is-withAccentColors .markup--quote.is-selected {background-color: rgba(200, 228, 255, 1) !important;} body.is-withMagicUnderlines .postArticle.is-withAccentColors .markup--quote.is-selected {background-color: transparent !important; background-image: linear-gradient(to bottom, rgba(200, 228, 255, 1), rgba(200, 228, 255, 1));} .postArticle.is-withAccentColors .markup--highlight {background-color: rgba(200, 228, 255, 1) !important;} body.is-withMagicUnderlines .postArticle.is-withAccentColors .markup--highlight {background-color: transparent !important; background-image: linear-gradient(to bottom, rgba(200, 228, 255, 1), rgba(200, 228, 255, 1));}</style><style class="js-collectionStyleConstant">.u-imageBgColor {background-color: rgba(0, 0, 0, 0.24705882352941178);} .u-imageSpectrum .u-baseColor--borderLight {border-color: rgba(255, 255, 255, 0.6980392156862745) !important;} .u-imageSpectrum .u-baseColor--borderNormal {border-color: rgba(255, 255, 255, 0.8980392156862745) !important;} .u-imageSpectrum .u-baseColor--borderDark {border-color: rgba(255, 255, 255, 0.9490196078431372) !important;} .u-imageSpectrum .u-baseColor--iconLight .svgIcon,.u-imageSpectrum .u-baseColor--iconLight.svgIcon {fill: rgba(255, 255, 255, 0.8) !important;} .u-imageSpectrum .u-baseColor--iconNormal .svgIcon,.u-imageSpectrum .u-baseColor--iconNormal.svgIcon {fill: rgba(255, 255, 255, 0.9490196078431372) !important;} .u-imageSpectrum .u-baseColor--iconDark .svgIcon,.u-imageSpectrum .u-baseColor--iconDark.svgIcon {fill: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .u-baseColor--textNormal {color: rgba(255, 255, 255, 0.9490196078431372) !important;} .u-imageSpectrum .u-baseColor--textNormal.u-baseColor--textDarken:hover {color: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .u-baseColor--textDark {color: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .u-baseColor--textDarker {color: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .u-baseColor--backgroundLight {background-color: rgba(255, 255, 255, 0.8980392156862745) !important;} .u-imageSpectrum .u-baseColor--backgroundNormal {background-color: rgba(255, 255, 255, 0.9490196078431372) !important;} .u-imageSpectrum .u-baseColor--backgroundDark {background-color: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .u-baseColor--buttonLight {border-color: rgba(255, 255, 255, 0.6980392156862745) !important; color: rgba(255, 255, 255, 0.8) !important;} .u-imageSpectrum .u-baseColor--buttonLight:hover {border-color: rgba(255, 255, 255, 0.6980392156862745) !important;} .u-imageSpectrum .u-baseColor--buttonLight .icon:before,.u-imageSpectrum .u-baseColor--buttonLight .svgIcon {color: rgba(255, 255, 255, 0.8) !important; fill: rgba(255, 255, 255, 0.8) !important;} .u-imageSpectrum .u-baseColor--buttonDark {border-color: rgba(255, 255, 255, 0.9490196078431372) !important; color: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .u-baseColor--buttonDark:hover {border-color: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .u-baseColor--buttonDark .icon:before,.u-imageSpectrum .u-baseColor--buttonDark .svgIcon {color: rgba(255, 255, 255, 1) !important; fill: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .u-baseColor--buttonNormal {border-color: rgba(255, 255, 255, 0.8980392156862745) !important; color: rgba(255, 255, 255, 0.9490196078431372) !important;} .u-imageSpectrum .u-baseColor--buttonNormal:hover {border-color: rgba(255, 255, 255, 0.9490196078431372) !important;} .u-imageSpectrum .u-baseColor--buttonNormal .icon:before,.u-imageSpectrum .u-baseColor--buttonNormal .svgIcon {color: rgba(255, 255, 255, 0.9490196078431372) !important; fill: rgba(255, 255, 255, 0.9490196078431372) !important;} .u-imageSpectrum .u-baseColor--buttonDark.button--filled,.u-imageSpectrum .u-baseColor--buttonDark.button--withChrome.is-active {background-color: rgba(255, 255, 255, 1) !important; border-color: rgba(255, 255, 255, 1) !important; color: rgba(0, 0, 0, 0.24705882352941178) !important; fill: rgba(0, 0, 0, 0.24705882352941178) !important;} .u-imageSpectrum .u-baseColor--buttonNormal.button--filled,.u-imageSpectrum .u-baseColor--buttonNormal.button--withChrome.is-active {background-color: rgba(255, 255, 255, 0.9490196078431372) !important; border-color: rgba(255, 255, 255, 0.9490196078431372) !important; color: rgba(0, 0, 0, 0.24705882352941178) !important; fill: rgba(0, 0, 0, 0.24705882352941178) !important;} .u-imageSpectrum .u-baseColor--link {color: rgba(255, 255, 255, 0.9490196078431372) !important;} .u-imageSpectrum .u-baseColor--link.link--darkenOnHover:hover {color: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .u-baseColor--link.link--darken:hover,.u-imageSpectrum .u-baseColor--link.link--darken:focus,.u-imageSpectrum .u-baseColor--link.link--darken:active {color: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .u-baseColor--link.link--dark {color: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .u-baseColor--link.link--dark.link--darken:hover,.u-imageSpectrum .u-baseColor--link.link--dark.link--darken:focus,.u-imageSpectrum .u-baseColor--link.link--dark.link--darken:active {color: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .u-baseColor--link.link--darker {color: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .u-baseColor--placeholderNormal ::-webkit-input-placeholder {color: rgba(255, 255, 255, 0.8);} .u-imageSpectrum .u-baseColor--placeholderNormal ::-moz-placeholder {color: rgba(255, 255, 255, 0.8);} .u-imageSpectrum .u-baseColor--placeholderNormal :-ms-input-placeholder {color: rgba(255, 255, 255, 0.8);} .u-imageSpectrum .ui-h1,.u-imageSpectrum .ui-h2,.u-imageSpectrum .ui-h3,.u-imageSpectrum .ui-h4,.u-imageSpectrum .ui-brand1,.u-imageSpectrum .ui-brand2,.u-imageSpectrum .ui-captionStrong {color: rgba(255, 255, 255, 1) !important; fill: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .ui-body,.u-imageSpectrum .ui-caps {color: rgba(255, 255, 255, 1) !important; fill: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .ui-summary,.u-imageSpectrum .ui-caption {color: rgba(255, 255, 255, 0.8) !important; fill: rgba(255, 255, 255, 0.8) !important;} .u-imageSpectrum .u-accentColor--borderLight {border-color: rgba(255, 255, 255, 0.6980392156862745) !important;} .u-imageSpectrum .u-accentColor--borderNormal {border-color: rgba(255, 255, 255, 0.8980392156862745) !important;} .u-imageSpectrum .u-accentColor--borderDark {border-color: rgba(255, 255, 255, 0.9490196078431372) !important;} .u-imageSpectrum .u-accentColor--iconLight .svgIcon,.u-imageSpectrum .u-accentColor--iconLight.svgIcon {fill: rgba(255, 255, 255, 0.8) !important;} .u-imageSpectrum .u-accentColor--iconNormal .svgIcon,.u-imageSpectrum .u-accentColor--iconNormal.svgIcon {fill: rgba(255, 255, 255, 0.9490196078431372) !important;} .u-imageSpectrum .u-accentColor--iconDark .svgIcon,.u-imageSpectrum .u-accentColor--iconDark.svgIcon {fill: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .u-accentColor--textNormal {color: rgba(255, 255, 255, 0.9490196078431372) !important;} .u-imageSpectrum .u-accentColor--hoverTextNormal:hover {color: rgba(255, 255, 255, 0.9490196078431372) !important;} .u-imageSpectrum .u-accentColor--textNormal.u-accentColor--textDarken:hover {color: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .u-accentColor--textDark {color: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .u-accentColor--backgroundLight {background-color: rgba(255, 255, 255, 0.8980392156862745) !important;} .u-imageSpectrum .u-accentColor--backgroundNormal {background-color: rgba(255, 255, 255, 0.9490196078431372) !important;} .u-imageSpectrum .u-accentColor--backgroundDark {background-color: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .u-accentColor--buttonDark {border-color: rgba(255, 255, 255, 0.9490196078431372) !important; color: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .u-accentColor--buttonDark:hover {border-color: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .u-accentColor--buttonDark .icon:before,.u-imageSpectrum .u-accentColor--buttonDark .svgIcon{color: rgba(255, 255, 255, 1) !important; fill: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .u-accentColor--buttonNormal:not(.clapButton--largePill) {border-color: rgba(255, 255, 255, 0.8980392156862745) !important; color: rgba(255, 255, 255, 0.9490196078431372) !important;} .u-imageSpectrum .u-accentColor--buttonNormal:hover {border-color: rgba(255, 255, 255, 0.9490196078431372) !important;} .u-imageSpectrum .u-accentColor--buttonNormal .icon:before,.u-imageSpectrum .u-accentColor--buttonNormal .svgIcon{color: rgba(255, 255, 255, 0.9490196078431372) !important; fill: rgba(255, 255, 255, 0.9490196078431372) !important;} .u-imageSpectrum .u-accentColor--buttonNormal.button--filled .icon:before,.u-imageSpectrum .u-accentColor--buttonNormal.button--filled .svgIcon{color: rgba(0, 0, 0, 0.24705882352941178) !important; fill: rgba(0, 0, 0, 0.24705882352941178) !important;} .u-imageSpectrum .u-accentColor--buttonDark.button--filled,.u-imageSpectrum .u-accentColor--buttonDark.button--withChrome.is-active,.u-imageSpectrum .u-accentColor--fillWhenActive.is-active {background-color: rgba(255, 255, 255, 1) !important; border-color: rgba(255, 255, 255, 1) !important; color: rgba(0, 0, 0, 0.24705882352941178) !important; fill: rgba(0, 0, 0, 0.24705882352941178) !important;} .u-imageSpectrum .u-accentColor--buttonNormal.button--filled:not(.clapButton--largePill),.u-imageSpectrum .u-accentColor--buttonNormal.button--withChrome.is-active:not(.clapButton--largePill) {background-color: rgba(255, 255, 255, 0.9490196078431372) !important; border-color: rgba(255, 255, 255, 0.9490196078431372) !important; color: rgba(0, 0, 0, 0.24705882352941178) !important; fill: rgba(0, 0, 0, 0.24705882352941178) !important;} .u-imageSpectrum .postArticle.is-withAccentColors .markup--user,.u-imageSpectrum .postArticle.is-withAccentColors .markup--query {color: rgba(255, 255, 255, 0.9490196078431372) !important;} .u-imageSpectrum .u-accentColor--highlightFaint {background-color: rgba(255, 255, 255, 0.2) !important;} .u-imageSpectrum .u-accentColor--highlightStrong.is-active .svgIcon {fill: rgba(255, 255, 255, 0.6) !important;} .postArticle.is-withAccentColors .u-imageSpectrum .markup--quote.is-other {background-color: rgba(255, 255, 255, 0.2) !important;} body.is-withMagicUnderlines .postArticle.is-withAccentColors .u-imageSpectrum .markup--quote.is-other {background-color: transparent !important; background-image: linear-gradient(to bottom, rgba(255, 255, 255, 0.2), rgba(255, 255, 255, 0.2));} .postArticle.is-withAccentColors .u-imageSpectrum .markup--quote.is-me {background-color: rgba(255, 255, 255, 0.4) !important;} body.is-withMagicUnderlines .postArticle.is-withAccentColors .u-imageSpectrum .markup--quote.is-me {background-color: transparent !important; background-image: linear-gradient(to bottom, rgba(255, 255, 255, 0.4), rgba(255, 255, 255, 0.4));} .postArticle.is-withAccentColors .u-imageSpectrum .markup--quote.is-targeted {background-color: rgba(255, 255, 255, 0.6) !important;} body.is-withMagicUnderlines .postArticle.is-withAccentColors .u-imageSpectrum .markup--quote.is-targeted {background-color: transparent !important; background-image: linear-gradient(to bottom, rgba(255, 255, 255, 0.6), rgba(255, 255, 255, 0.6));} .postArticle.is-withAccentColors .u-imageSpectrum .markup--quote.is-selected {background-color: rgba(255, 255, 255, 0.6) !important;} body.is-withMagicUnderlines .postArticle.is-withAccentColors .u-imageSpectrum .markup--quote.is-selected {background-color: transparent !important; background-image: linear-gradient(to bottom, rgba(255, 255, 255, 0.6), rgba(255, 255, 255, 0.6));} .postArticle.is-withAccentColors .u-imageSpectrum .markup--highlight {background-color: rgba(255, 255, 255, 0.6) !important;} body.is-withMagicUnderlines .postArticle.is-withAccentColors .u-imageSpectrum .markup--highlight {background-color: transparent !important; background-image: linear-gradient(to bottom, rgba(255, 255, 255, 0.6), rgba(255, 255, 255, 0.6));}.u-resetSpectrum .u-tintBgColor {background-color: rgba(255, 255, 255, 1) !important;}.u-resetSpectrum .u-tintBgColor .u-fadeLeft:before {background-image: linear-gradient(to right, rgba(255, 255, 255, 1) 0%, rgba(255, 255, 255, 0) 100%) !important;}.u-resetSpectrum .u-tintBgColor .u-fadeRight:after {background-image: linear-gradient(to right, rgba(255, 255, 255, 0) 0%, rgba(255, 255, 255, 1) 100%) !important;} .u-resetSpectrum .u-baseColor--borderLight {border-color: rgba(0, 0, 0, 0.2980392156862745) !important;} .u-resetSpectrum .u-baseColor--borderNormal {border-color: rgba(0, 0, 0, 0.4980392156862745) !important;} .u-resetSpectrum .u-baseColor--borderDark {border-color: rgba(0, 0, 0, 0.6) !important;} .u-resetSpectrum .u-baseColor--iconLight .svgIcon,.u-resetSpectrum .u-baseColor--iconLight.svgIcon {fill: rgba(0, 0, 0, 0.2980392156862745) !important;} .u-resetSpectrum .u-baseColor--iconNormal .svgIcon,.u-resetSpectrum .u-baseColor--iconNormal.svgIcon {fill: rgba(0, 0, 0, 0.4980392156862745) !important;} .u-resetSpectrum .u-baseColor--iconDark .svgIcon,.u-resetSpectrum .u-baseColor--iconDark.svgIcon {fill: rgba(0, 0, 0, 0.6) !important;} .u-resetSpectrum .u-baseColor--textNormal {color: rgba(0, 0, 0, 0.4980392156862745) !important;} .u-resetSpectrum .u-baseColor--textNormal.u-baseColor--textDarken:hover {color: rgba(0, 0, 0, 0.6) !important;} .u-resetSpectrum .u-baseColor--textDark {color: rgba(0, 0, 0, 0.6) !important;} .u-resetSpectrum .u-baseColor--textDarker {color: rgba(0, 0, 0, 0.8) !important;} .u-resetSpectrum .u-baseColor--backgroundLight {background-color: rgba(0, 0, 0, 0.09803921568627451) !important;} .u-resetSpectrum .u-baseColor--backgroundNormal {background-color: rgba(0, 0, 0, 0.2) !important;} .u-resetSpectrum .u-baseColor--backgroundDark {background-color: rgba(0, 0, 0, 0.2980392156862745) !important;} .u-resetSpectrum .u-baseColor--buttonLight {border-color: rgba(0, 0, 0, 0.2980392156862745) !important; color: rgba(0, 0, 0, 0.2980392156862745) !important;} .u-resetSpectrum .u-baseColor--buttonLight:hover {border-color: rgba(0, 0, 0, 0.2980392156862745) !important;} .u-resetSpectrum .u-baseColor--buttonLight .icon:before,.u-resetSpectrum .u-baseColor--buttonLight .svgIcon {color: rgba(0, 0, 0, 0.2980392156862745) !important; fill: rgba(0, 0, 0, 0.2980392156862745) !important;} .u-resetSpectrum .u-baseColor--buttonDark {border-color: rgba(0, 0, 0, 0.6) !important; color: rgba(0, 0, 0, 0.6) !important;} .u-resetSpectrum .u-baseColor--buttonDark:hover {border-color: rgba(0, 0, 0, 0.8) !important;} .u-resetSpectrum .u-baseColor--buttonDark .icon:before,.u-resetSpectrum .u-baseColor--buttonDark .svgIcon {color: rgba(0, 0, 0, 0.6) !important; fill: rgba(0, 0, 0, 0.6) !important;} .u-resetSpectrum .u-baseColor--buttonNormal {border-color: rgba(0, 0, 0, 0.4980392156862745) !important; color: rgba(0, 0, 0, 0.4980392156862745) !important;} .u-resetSpectrum .u-baseColor--buttonNormal:hover {border-color: rgba(0, 0, 0, 0.6) !important;} .u-resetSpectrum .u-baseColor--buttonNormal .icon:before,.u-resetSpectrum .u-baseColor--buttonNormal .svgIcon {color: rgba(0, 0, 0, 0.4980392156862745) !important; fill: rgba(0, 0, 0, 0.4980392156862745) !important;} .u-resetSpectrum .u-baseColor--buttonDark.button--filled,.u-resetSpectrum .u-baseColor--buttonDark.button--withChrome.is-active {background-color: rgba(0, 0, 0, 0.2980392156862745) !important; border-color: rgba(0, 0, 0, 0.2980392156862745) !important; color: rgba(255, 255, 255, 1) !important; fill: rgba(255, 255, 255, 1) !important;} .u-resetSpectrum .u-baseColor--buttonNormal.button--filled,.u-resetSpectrum .u-baseColor--buttonNormal.button--withChrome.is-active {background-color: rgba(0, 0, 0, 0.2) !important; border-color: rgba(0, 0, 0, 0.2) !important; color: rgba(255, 255, 255, 1) !important; fill: rgba(255, 255, 255, 1) !important;} .u-resetSpectrum .u-baseColor--link {color: rgba(0, 0, 0, 0.4980392156862745) !important;} .u-resetSpectrum .u-baseColor--link.link--darkenOnHover:hover {color: rgba(0, 0, 0, 0.6) !important;} .u-resetSpectrum .u-baseColor--link.link--darken:hover,.u-resetSpectrum .u-baseColor--link.link--darken:focus,.u-resetSpectrum .u-baseColor--link.link--darken:active {color: rgba(0, 0, 0, 0.6) !important;} .u-resetSpectrum .u-baseColor--link.link--dark {color: rgba(0, 0, 0, 0.6) !important;} .u-resetSpectrum .u-baseColor--link.link--dark.link--darken:hover,.u-resetSpectrum .u-baseColor--link.link--dark.link--darken:focus,.u-resetSpectrum .u-baseColor--link.link--dark.link--darken:active {color: rgba(0, 0, 0, 0.8) !important;} .u-resetSpectrum .u-baseColor--link.link--darker {color: rgba(0, 0, 0, 0.8) !important;} .u-resetSpectrum .u-baseColor--placeholderNormal ::-webkit-input-placeholder {color: rgba(0, 0, 0, 0.2980392156862745);} .u-resetSpectrum .u-baseColor--placeholderNormal ::-moz-placeholder {color: rgba(0, 0, 0, 0.2980392156862745);} .u-resetSpectrum .u-baseColor--placeholderNormal :-ms-input-placeholder {color: rgba(0, 0, 0, 0.2980392156862745);} .u-resetSpectrum .ui-h1,.u-resetSpectrum .ui-h2,.u-resetSpectrum .ui-h3,.u-resetSpectrum .ui-h4,.u-resetSpectrum .ui-brand1,.u-resetSpectrum .ui-brand2,.u-resetSpectrum .ui-captionStrong {color: rgba(0, 0, 0, 0.8) !important; fill: rgba(0, 0, 0, 0.8) !important;} .u-resetSpectrum .ui-body,.u-resetSpectrum .ui-caps {color: rgba(0, 0, 0, 0.6) !important; fill: rgba(0, 0, 0, 0.6) !important;} .u-resetSpectrum .ui-summary,.u-resetSpectrum .ui-caption {color: rgba(0, 0, 0, 0.2980392156862745) !important; fill: rgba(0, 0, 0, 0.2980392156862745) !important;} .u-resetSpectrum .u-accentColor--borderLight {border-color: rgba(26, 137, 23, 1) !important;} .u-resetSpectrum .u-accentColor--borderNormal {border-color: rgba(26, 137, 23, 1) !important;} .u-resetSpectrum .u-accentColor--borderDark {border-color: rgba(17, 128, 14, 1) !important;} .u-resetSpectrum .u-accentColor--iconLight .svgIcon,.u-resetSpectrum .u-accentColor--iconLight.svgIcon {fill: rgba(26, 137, 23, 1) !important;} .u-resetSpectrum .u-accentColor--iconNormal .svgIcon,.u-resetSpectrum .u-accentColor--iconNormal.svgIcon {fill: rgba(17, 128, 14, 1) !important;} .u-resetSpectrum .u-accentColor--iconDark .svgIcon,.u-resetSpectrum .u-accentColor--iconDark.svgIcon {fill: rgba(15, 115, 12, 1) !important;} .u-resetSpectrum .u-accentColor--textNormal {color: rgba(17, 128, 14, 1) !important;} .u-resetSpectrum .u-accentColor--hoverTextNormal:hover {color: rgba(17, 128, 14, 1) !important;} .u-resetSpectrum .u-accentColor--textNormal.u-accentColor--textDarken:hover {color: rgba(15, 115, 12, 1) !important;} .u-resetSpectrum .u-accentColor--textDark {color: rgba(15, 115, 12, 1) !important;} .u-resetSpectrum .u-accentColor--backgroundLight {background-color: rgba(26, 137, 23, 1) !important;} .u-resetSpectrum .u-accentColor--backgroundNormal {background-color: rgba(17, 128, 14, 1) !important;} .u-resetSpectrum .u-accentColor--backgroundDark {background-color: rgba(15, 115, 12, 1) !important;} .u-resetSpectrum .u-accentColor--buttonDark {border-color: rgba(17, 128, 14, 1) !important; color: rgba(15, 115, 12, 1) !important;} .u-resetSpectrum .u-accentColor--buttonDark:hover {border-color: rgba(15, 115, 12, 1) !important;} .u-resetSpectrum .u-accentColor--buttonDark .icon:before,.u-resetSpectrum .u-accentColor--buttonDark .svgIcon{color: rgba(15, 115, 12, 1) !important; fill: rgba(15, 115, 12, 1) !important;} .u-resetSpectrum .u-accentColor--buttonNormal:not(.clapButton--largePill) {border-color: rgba(26, 137, 23, 1) !important; color: rgba(17, 128, 14, 1) !important;} .u-resetSpectrum .u-accentColor--buttonNormal:hover {border-color: rgba(17, 128, 14, 1) !important;} .u-resetSpectrum .u-accentColor--buttonNormal .icon:before,.u-resetSpectrum .u-accentColor--buttonNormal .svgIcon{color: rgba(17, 128, 14, 1) !important; fill: rgba(17, 128, 14, 1) !important;} .u-resetSpectrum .u-accentColor--buttonNormal.button--filled .icon:before,.u-resetSpectrum .u-accentColor--buttonNormal.button--filled .svgIcon{color: rgba(255, 255, 255, 1) !important; fill: rgba(255, 255, 255, 1) !important;} .u-resetSpectrum .u-accentColor--buttonDark.button--filled,.u-resetSpectrum .u-accentColor--buttonDark.button--withChrome.is-active,.u-resetSpectrum .u-accentColor--fillWhenActive.is-active {background-color: rgba(15, 115, 12, 1) !important; border-color: rgba(15, 115, 12, 1) !important; color: rgba(255, 255, 255, 1) !important; fill: rgba(255, 255, 255, 1) !important;} .u-resetSpectrum .u-accentColor--buttonNormal.button--filled:not(.clapButton--largePill),.u-resetSpectrum .u-accentColor--buttonNormal.button--withChrome.is-active:not(.clapButton--largePill) {background-color: rgba(17, 128, 14, 1) !important; border-color: rgba(17, 128, 14, 1) !important; color: rgba(255, 255, 255, 1) !important; fill: rgba(255, 255, 255, 1) !important;} .u-resetSpectrum .postArticle.is-withAccentColors .markup--user,.u-resetSpectrum .postArticle.is-withAccentColors .markup--query {color: rgba(17, 128, 14, 1) !important;}</style><div class="container u-maxWidth1072 u-hide"><div class="u-marginTop10 u-paddingTop10 u-paddingBottom30 u-borderTopLighter"><div class="linkSet u-clearfix"><div class="u-floatRight u-textColorNormal u-baseColor--textNormal u-xs-floatLeft"><a class="button button--chromeless u-baseColor--buttonNormal u-marginLeft15 u-lineHeight35 u-xs-block u-xs-marginLeft0" href="https://towardsdatascience.com/about" title="About Towards Data Science" aria-label="About Towards Data Science" data-collection-slug="towards-data-science">About Towards Data Science</a><span class="middotDivider u-xs-hide"></span><a class="button button--chromeless u-baseColor--buttonNormal u-lineHeight35 u-xs-block" href="https://towardsdatascience.com/latest" title="Latest Stories for Towards Data Science" aria-label="Latest Stories for Towards Data Science" data-collection-slug="towards-data-science">Latest Stories</a><span class="middotDivider u-xs-hide"></span><a class="button button--chromeless u-baseColor--buttonNormal u-lineHeight35 u-xs-block" href="https://towardsdatascience.com/archive" title="Archive for Towards Data Science" aria-label="Archive for Towards Data Science" data-collection-slug="towards-data-science">Archive</a><span class="middotDivider u-xs-hide"></span><a class="button button--chromeless u-baseColor--buttonNormal u-lineHeight35 u-xs-block" href="https://medium.com/about">About Medium</a><span class="middotDivider u-xs-hide"></span><a class="button button--chromeless u-baseColor--buttonNormal u-lineHeight35 u-xs-block" href="https://policy.medium.com/medium-terms-of-service-9db0094a1e0f">Terms</a><span class="middotDivider u-xs-hide"></span><a class="button button--chromeless u-baseColor--buttonNormal u-lineHeight35 u-xs-block" href="https://policy.medium.com/medium-privacy-policy-f03bf92035c9">Privacy</a><span class="middotDivider u-xs-hide"></span><a class="button button--chromeless u-baseColor--buttonNormal u-lineHeight35 u-xs-block" href="https://medium.com/business">Teams</a></div></div></div></div></div></div></div><div class="loadingBar"></div><script>// <![CDATA[ window["obvInit"] = function (opt_embedded) {window["obvInit"]["embedded"] = opt_embedded; window["obvInit"]["ready"] = true;} // ]]></script><script>// <![CDATA[ var GLOBALS = {"audioUrl":"https://d1fcbxp97j4nb2.cloudfront.net","baseUrl":"https://towardsdatascience.com","buildLabel":"20241126-1740-root","currentUser":{"userId":"lo_711729b13ab5","isVerified":false,"subscriberEmail":"","hasPastMemberships":false,"isEnrolledInHightower":false,"isEligibleForHightower":true,"hightowerLastLockedAt":0,"isWriterProgramEnrolled":true,"isWriterProgramInvited":false,"isWriterProgramOptedOut":false,"writerProgramVersion":0,"writerProgramEnrolledAt":0,"friendLinkOnboarding":0,"hasAdditionalUnlocks":false,"hasApiAccess":false,"writerProgramDistributionSettingOptedIn":false,"isSuspended":false,"collectionOnboardingSeen":0,"atsQualifiedAt":0},"currentUserHasUnverifiedEmail":false,"isAuthenticated":false,"isCurrentUserVerified":false,"miroUrl":"https://cdn-images-1.medium.com","moduleUrls":{"base":"https://cdn-static-1.medium.com/_/fp/gen-js/main-base.bundle.95z8xpkUEidhPbIWsh2BVw.12.js","common-async":"https://cdn-static-1.medium.com/_/fp/gen-js/main-common-async.bundle.zqOu8dxaQRtqDyChHdOWlQ.12.js","hightower":"https://cdn-static-1.medium.com/_/fp/gen-js/main-hightower.bundle.y0UkxCxPBUbLlduk5XbwLQ.12.js","home-screens":"https://cdn-static-1.medium.com/_/fp/gen-js/main-home-screens.bundle.eZhPgaD8AglnbC5Rzxqvhg.12.js","misc-screens":"https://cdn-static-1.medium.com/_/fp/gen-js/main-misc-screens.bundle.XeRjm4FlHTBOsUvoOQ6Ppg.12.js","notes":"https://cdn-static-1.medium.com/_/fp/gen-js/main-notes.bundle.r9MSvtAmj0CMkyIC0CCCbA.12.js","payments":"https://cdn-static-1.medium.com/_/fp/gen-js/main-payments.bundle.AiXyuYj3AvxRA1-7HEyP9Q.12.js","posters":"https://cdn-static-1.medium.com/_/fp/gen-js/main-posters.bundle.fsLyLvZO4VZXL_zb4RXgeg.12.js","power-readers":"https://cdn-static-1.medium.com/_/fp/gen-js/main-power-readers.bundle.6Dyc-nVN2MDV_AM9XDAZug.12.js","pubs":"https://cdn-static-1.medium.com/_/fp/gen-js/main-pubs.bundle.rUyrVjlTpUj61voxnZosQw.12.js","stats":"https://cdn-static-1.medium.com/_/fp/gen-js/main-stats.bundle.2I2tXSo7-rbez_WYXfga0Q.12.js"},"previewConfig":{"weightThreshold":1,"weightImageParagraph":0.51,"weightIframeParagraph":0.8,"weightTextParagraph":0.08,"weightEmptyParagraph":0,"weightP":0.003,"weightH":0.005,"weightBq":0.003,"minPTextLength":60,"truncateBoundaryChars":20,"detectTitle":true,"detectTitleLevThreshold":0.15},"productName":"Medium","supportsEdit":false,"termsUrl":"//policy.medium.com/medium-terms-of-service-9db0094a1e0f","textshotHost":"textshot.textshot-production.svc.cluster.local","transactionId":"1732731634747:5e7b873836f3","useragent":{"browser":"ie","family":"ie","os":"windows","version":7,"supportsDesktopEdit":false,"supportsInteract":false,"supportsView":true,"isMobile":false,"isTablet":false,"isNative":false,"supportsFileAPI":false,"isTier1":false,"clientVersion":"","clientChannel":"","supportsRealScrollEvents":false,"supportsVhUnits":false,"ruinsViewportSections":false,"supportsHtml5Video":false,"supportsMagicUnderlines":false,"isWebView":false,"isFacebookWebView":false,"supportsProgressiveMedia":false,"supportsPromotedPosts":true,"isBot":false,"isNativeIphone":false,"supportsCssVariables":false,"supportsVideoSections":true,"emojiSupportLevel":1,"isSearchBot":false,"isSyndicationBot":false,"isNativeAndroid":false,"isNativeIos":false,"isSeoAuditBot":false,"isInternalApp":false,"supportsApplePay":false,"supportsScrollableMetabar":false},"variants":{"allow_access":true,"allow_signup":true,"allow_test_auth":"disallow","android_enable_editor_new_publishing_flow":true,"android_enable_friend_links_creation":true,"android_enable_friend_links_postpage_banners":true,"android_enable_image_sharer":true,"android_enable_lists_v2":true,"android_enable_syntax_highlight":true,"android_enable_topic_portals":true,"android_rating_prompt_stories_read_threshold":2,"android_two_hour_refresh":true,"available_annual_plan":"2c754bcc2995","available_annual_premium_plan":"4a442ace1476","available_monthly_plan":"60e220181034","available_monthly_premium_plan":"12a660186432","browsable_stream_config_bucket":"curated-topics","can_receive_tips_v0":true,"can_send_tips_v0":true,"coronavirus_topic_recirc":true,"disable_partner_program_enrollment":true,"enable_abandoned_cart_promotion_email":true,"enable_android_dynamic_aspirational_paywall":true,"enable_android_dynamic_programming_paywall":true,"enable_android_miro_v2":true,"enable_android_offline_reading":true,"enable_android_verified_author":true,"enable_app_flirty_thirty":true,"enable_apple_sign_in":true,"enable_apple_webhook":true,"enable_aurora_pub_follower_page":true,"enable_author_cards":true,"enable_author_cards_byline":true,"enable_auto_follow_on_subscribe":true,"enable_automod":true,"enable_bayesian_average_pub_search":true,"enable_bg_post_post":true,"enable_billing_frequency_on_step2":"control","enable_boost_nia_v01":true,"enable_braintree_apple_pay":true,"enable_braintree_client":true,"enable_braintree_google_pay":true,"enable_braintree_integration":true,"enable_braintree_paypal":true,"enable_braintree_trial_membership":true,"enable_braintree_webhook":true,"enable_branch_io":true,"enable_cache_less_following_feed":true,"enable_configure_pronouns":true,"enable_conversion_model_v2":"group_2","enable_conversion_ranker_v2":"control","enable_creator_welcome_email":true,"enable_deprecate_legacy_providers_v3":true,"enable_diversification_rex":true,"enable_entities_to_follow_v2":true,"enable_eventstats_event_processing":true,"enable_explicit_signals":true,"enable_explicit_signals_updated_post_previews":true,"enable_footer_app_buttons":true,"enable_google_one_tap":true,"enable_google_webhook":true,"enable_group_gifting":true,"enable_iceland_forced_android":true,"enable_import":true,"enable_intrinsic_automatic_actions":true,"enable_ios_autorefresh":true,"enable_ios_dynamic_paywall_aspiriational":true,"enable_ios_dynamic_paywall_programming":true,"enable_ios_easy_resubscribe":true,"enable_ios_offline_reading":true,"enable_legacy_feed_in_iceland":true,"enable_lite_archive_page":true,"enable_lite_continue_this_thread":true,"enable_lite_homepage":true,"enable_lite_response_markup":true,"enable_lite_server_upstream_deadlines":true,"enable_lo_homepage":"control","enable_maim_the_meter":true,"enable_marketing_emails":true,"enable_mastodon_avatar_upload":true,"enable_mastodon_for_members":true,"enable_mastodon_for_members_username_selection":true,"enable_medium2_kbfd":true,"enable_members_only_audio":true,"enable_ml_rank_rex_anno":true,"enable_moc_load_processor_all_recs_surfaces":true,"enable_moc_load_processor_c":true,"enable_moc_load_processor_first_story":true,"enable_new_manage_membership_flow":true,"enable_new_stripe_customers":true,"enable_newsletter_lo_flow_custom_domains":true,"enable_pill_based_home_feed":true,"enable_post_bottom_responses":true,"enable_post_bottom_responses_input":true,"enable_pp_country_expansion":true,"enable_pp_v4":true,"enable_pre_pp_v4":true,"enable_premium_tier":true,"enable_premium_tier_badge":true,"enable_publication_hierarchy_web":true,"enable_ranker_v10":"control","enable_recaptcha_enterprise":true,"enable_recirc_model":true,"enable_recommended_publishers_query":true,"enable_rex_aggregator_v2":true,"enable_rex_new_push_notification_endpoint":true,"enable_rex_reading_history":true,"enable_rito_upstream_deadlines":true,"enable_seamless_social_sharing":true,"enable_see_pronouns":true,"enable_sharer_create_post_share_key":true,"enable_sharer_validate_post_share_key":true,"enable_simplified_digest_v2_b":true,"enable_speechify_ios":true,"enable_speechify_widget":true,"enable_sprig":true,"enable_starspace":true,"enable_susi_redesign_android":true,"enable_susi_redesign_ios":true,"enable_switch_plan_premium_tier":true,"enable_tag_recs":true,"enable_tick_landing_page":true,"enable_tipping_v0_android":true,"enable_tipping_v0_ios":true,"enable_tribute_landing_page":true,"enable_update_explore_wtf":true,"enable_update_topic_portals_wtf":true,"enable_updated_pub_recs_ui":true,"enable_verifications_service":true,"glyph_font_set":"m2-unbound-source-serif-pro","goliath_externalsearch_enable_comment_deindexation":true,"ios_display_paywall_after_onboarding":true,"ios_enable_friend_links_creation":true,"ios_enable_friend_links_postpage_banners":true,"ios_enable_home_post_menu":true,"ios_enable_lock_responses":true,"ios_enable_verified_book_author":true,"ios_iceland_nux":true,"ios_in_app_free_trial":true,"ios_remove_twitter_onboarding_step":true,"ios_social_share_sheet":true,"limit_post_referrers":true,"limit_user_follows":true,"mobile_custom_app_icon":true,"num_post_bottom_responses_to_show":"3","onboarding_tags_from_top_views":true,"reader_fair_distribution_non_qp":true,"redefined_top_posts":true,"reengagement_notification_duration":3,"rex_generator_max_candidates":1000,"signin_services":"twitter,facebook,google,email,google-fastidv,google-one-tap,apple","signup_services":"twitter,facebook,google,email,google-fastidv,google-one-tap,apple","skip_fs_cache_user_vals":true},"xsrfToken":"","iosAppId":"828256236","supportEmail":"yourfriends@medium.com","fp":{"/icons/monogram-mask.svg":"https://cdn-static-1.medium.com/_/fp/icons/monogram-mask.KPLCSFEZviQN0jQ7veN2RQ.12.svg","/icons/favicon-medium-editor.ico":"https://cdn-static-1.medium.com/_/fp/icons/favicon-medium-editor.PiakrZWB7Yb80quUVQWM6g.12.ico"},"authBaseUrl":"https://medium.com","imageUploadSizeMb":25,"isAuthDomainRequest":false,"domainCollectionSlug":"towards-data-science","algoliaApiEndpoint":"https://MQ57UUUQZ2-dsn.algolia.net","algoliaAppId":"MQ57UUUQZ2","algoliaSearchOnlyApiKey":"394474ced050e3911ae2249ecc774921","iosAppStoreUrl":"https://itunes.apple.com/app/medium-everyones-stories/id828256236?pt=698524&mt=8","iosAppLinkBaseUrl":"medium:","algoliaIndexPrefix":"medium_","androidPlayStoreUrl":"https://play.google.com/store/apps/details?id=com.medium.reader","googleClientId":"216296035834-k1k6qe060s2tp2a2jam4ljdcms00sttg.apps.googleusercontent.com","androidPackage":"com.medium.reader","androidPlayStoreMarketScheme":"market://details?id=com.medium.reader","googleAuthUri":"https://accounts.google.com/o/oauth2/auth","androidScheme":"medium","layoutData":{"useDynamicScripts":false,"googleAnalyticsTrackingCode":"G-7JY7T788PK","jsShivUrl":"https://cdn-static-1.medium.com/_/fp/js/shiv.RI2ePTZ5gFmMgLzG5bEVAA.12.js","useDynamicCss":false,"faviconUrl":"https://miro.medium.com/v2/5d8de952517e8160e40ef9841c781cdc14a5db313057fa3c3de41c6f5b494b19","faviconImageId":"5d8de952517e8160e40ef9841c781cdc14a5db313057fa3c3de41c6f5b494b19","fontSets":[{"id":8,"url":"https://glyph.medium.com/css/e/sr/latin/e/ssr/latin/e/ssb/latin/m2-unbound-source-serif-pro.css"},{"id":11,"url":"https://glyph.medium.com/css/m2-unbound-source-serif-pro.css"},{"id":9,"url":"https://glyph.medium.com/css/mkt.css"}],"glyphUrl":"https://glyph.medium.com"},"authBaseUrlRev":"moc.muidem//:sptth","stripePublishableKey":"pk_live_7FReX44VnNIInZwrIIx6ghjl","archiveUploadSizeMb":100,"previewConfig2":{"weightThreshold":1,"weightImageParagraph":0.05,"raiseImage":true,"enforceHeaderHierarchy":true,"isImageInsetRight":true},"isAmp":false,"iosScheme":"medium","facebook":{"key":"542599432471018","namespace":"medium-com","scope":{"default":["public_profile","email"],"connect":["public_profile","email"],"login":["public_profile","email"],"share":["public_profile","email"]}},"memberContentTopicId":"13d7efd82fb2","audioContentTopicId":"3792abbd134","isDoNotAuth":false,"buggle":{"videoUrl":"https://cdn-videos-1.medium.com","audioUrl":"https://cdn-audio-1.medium.com"},"referrerType":5,"partnerProgramEmail":"partnerprogram@medium.com","recaptchaKey":"6Lfc37IUAAAAAKGGtC6rLS13R1Hrw_BqADfS1LRk","countryCode":"SG","bypassMeter":false,"branchKey":"key_live_ofxXr2qTrrU9NqURK8ZwEhknBxiI6KBm","paypal":{"clientMode":"production","oneYearGift":{"name":"Medium Membership (1 Year, Digital Gift Code)","description":"Unlimited access to the best and brightest stories on Medium. Gift codes can be redeemed at medium.com/redeem.","price":"50.00","currency":"USD","sku":"membership-gift-1-yr"}},"collectionConfig":{"mediumOwnedAndOperatedCollectionIds":["8a9336e5bb4","b7e45b22fec3","193b68bd4fba","8d6b8a439e32","54c98c43354d","3f6ecf56618","d944778ce714","92d2092dc598","ae2a65f35510","1285ba81cada","544c7006046e","fc8964313712","40187e704f1c","88d9857e584e","7b6769f2748b","bcc38c8f6edf","cef6983b292","cb8577c9149e","444d13b52878","713d7dbc99b0","ef8e90590e66","191186aaafa0","55760f21cdc5","9dc80918cc93","bdc4052bbdba","8ccfed20cbb2"]},"bypassMeterWithShareKey":false,"recaptcha3Key":"6Lf8R9wUAAAAABMI_85Wb8melS7Zj6ziuf99Yot5","braintreeClientKey":"production_zjkj96jm_m56f8fqpf7ngnrd4","cdcMessaging":[{"text":"For more information on the novel coronavirus and Covid-19, visit ","href":"","type":"text","start":0,"end":0},{"text":"cdc.gov","href":"https://www.cdc.gov/coronavirus/2019-nCoV","type":"link","start":66,"end":73},{"text":".","href":"","type":"text","start":0,"end":0}],"braintree":{"merchantId":"m56f8fqpf7ngnrd4"},"diagnostics":{},"domain":"medium.com"} // ]]></script><script charset="UTF-8" src="https://cdn-static-1.medium.com/_/fp/gen-js/main-base.bundle.95z8xpkUEidhPbIWsh2BVw.12.js" async></script><script>// <![CDATA[ window["obvInit"]({"references":{"Collection":{"7f60cf5620c9":{"id":"7f60cf5620c9","name":"Towards Data Science","slug":"towards-data-science","tags":["DATA SCIENCE","MACHINE LEARNING","ARTIFICIAL INTELLIGENCE","DATA ENGINEERING","DATA"],"creatorId":"9c70285657bb","description":"Your home for data science and AI. The world’s leading publication for data science, data analytics, data engineering, machine learning, and artificial intelligence professionals.","shortDescription":"Your home for data science and AI.","image":{"imageId":"1*CJe3891yB1A1mzMdqemkdg.jpeg","filter":"","backgroundSize":"","originalWidth":2861,"originalHeight":2861,"strategy":"resample","height":0,"width":0},"metadata":{"followerCount":768721,"activeAt":1732726931837},"virtuals":{"permissions":{"canPublish":false,"canPublishAll":false,"canRepublish":false,"canRemove":false,"canManageAll":false,"canSubmit":false,"canEditPosts":false,"canAddWriters":false,"canViewStats":false,"canSendNewsletter":false,"canViewLockedPosts":false,"canViewCloaked":false,"canEditOwnPosts":false,"canBeAssignedAuthor":false,"canEnrollInHightower":false,"canLockPostsForMediumMembers":false,"canLockOwnPostsForMediumMembers":false,"canViewNewsletterV2Stats":false,"canCreateNewsletterV3":false},"isSubscribed":false,"isEnrolledInHightower":false,"isEligibleForHightower":false,"isSubscribedToCollectionEmails":false,"isMuted":false,"canToggleEmail":false,"isWriter":false},"logo":{"imageId":"1*cFFKn8rFH4ZndmaYeAs6iQ.png","filter":"","backgroundSize":"","originalWidth":2381,"originalHeight":743,"strategy":"resample","height":0,"width":0},"twitterUsername":"TDataScience","collectionMastheadId":"8b6aceffde6","domain":"towardsdatascience.com","sections":[{"type":2,"collectionHeaderMetadata":{"title":"","description":"The world’s leading publication for data science, AI, data analytics, data engineering and ML professionals.","backgroundImage":{},"logoImage":{"id":"1*1m9fjwOZWwXIP82RWvRH5A@2x.png","originalWidth":1589,"originalHeight":661,"alt":"Towards Data Science"},"alignment":2,"layout":5}},{"type":1,"postListMetadata":{"source":1,"layout":4,"number":2,"postIds":[]}},{"type":1,"postListMetadata":{"source":1,"layout":4,"number":9,"postIds":[],"sectionHeader":"Latest"}},{"type":3,"promoMetadata":{"sectionHeader":"","promoId":"f9f3fdba6ebf"}},{"type":1,"postListMetadata":{"source":4,"layout":4,"number":6,"postIds":[],"tagSlug":"Editors Pick","sectionHeader":"Editors' Picks"}},{"type":1,"postListMetadata":{"source":4,"layout":4,"number":2,"postIds":[],"tagSlug":"Tds Features","sectionHeader":"Features"}},{"type":3,"promoMetadata":{"sectionHeader":"","promoId":"efaedc412a41"}},{"type":1,"postListMetadata":{"source":3,"layout":4,"number":3,"postIds":["60bb69a22759","c57724e9c461","69019493b259"],"sectionHeader":"Trending articles"}},{"type":1,"postListMetadata":{"source":3,"layout":4,"number":3,"postIds":["182a5ef6588c","e24b50e1d292","68b2303cc9c5"],"sectionHeader":"Popular from our archive"}},{"type":1,"postListMetadata":{"source":4,"layout":4,"number":6,"postIds":[],"tagSlug":"Deep Dives","sectionHeader":"Deep Dives"}},{"type":1,"postListMetadata":{"source":3,"layout":5,"number":3,"postIds":["d691af11cc2f","c2c8e712c971","3bf37f75a345"],"sectionHeader":"About"}},{"type":1,"postListMetadata":{"source":1,"layout":5,"number":16,"postIds":[],"sectionHeader":"Latest"}}],"tintColor":"#FF355876","lightText":true,"favicon":{"imageId":"1*VzTUkfeGymHP4Bvav-T-lA.png","filter":"","backgroundSize":"","originalWidth":207,"originalHeight":206,"strategy":"resample","height":0,"width":0},"colorPalette":{"defaultBackgroundSpectrum":{"colorPoints":[{"color":"#FF668AAA","point":0},{"color":"#FF61809D","point":0.1},{"color":"#FF5A7690","point":0.2},{"color":"#FF546C83","point":0.3},{"color":"#FF4D6275","point":0.4},{"color":"#FF455768","point":0.5},{"color":"#FF3D4C5A","point":0.6},{"color":"#FF34414C","point":0.7},{"color":"#FF2B353E","point":0.8},{"color":"#FF21282F","point":0.9},{"color":"#FF161B1F","point":1}],"backgroundColor":"#FFFFFFFF"},"tintBackgroundSpectrum":{"colorPoints":[{"color":"#FF355876","point":0},{"color":"#FF4D6C88","point":0.1},{"color":"#FF637F99","point":0.2},{"color":"#FF7791A8","point":0.3},{"color":"#FF8CA2B7","point":0.4},{"color":"#FF9FB3C6","point":0.5},{"color":"#FFB2C3D4","point":0.6},{"color":"#FFC5D2E1","point":0.7},{"color":"#FFD7E2EE","point":0.8},{"color":"#FFE9F1FA","point":0.9},{"color":"#FFFBFFFF","point":1}],"backgroundColor":"#FF355876"},"highlightSpectrum":{"colorPoints":[{"color":"#FFEDF4FC","point":0},{"color":"#FFE9F2FD","point":0.1},{"color":"#FFE6F1FD","point":0.2},{"color":"#FFE2EFFD","point":0.3},{"color":"#FFDFEEFD","point":0.4},{"color":"#FFDBECFE","point":0.5},{"color":"#FFD7EBFE","point":0.6},{"color":"#FFD4E9FE","point":0.7},{"color":"#FFD0E7FF","point":0.8},{"color":"#FFCCE6FF","point":0.9},{"color":"#FFC8E4FF","point":1}],"backgroundColor":"#FFFFFFFF"},"darkBackgroundSpectrum":{"colorPoints":[{"color":"#FF7EA2C3","point":0},{"color":"#FF8AAAC9","point":0.1},{"color":"#FF95B2CE","point":0.2},{"color":"#FFA0BAD3","point":0.3},{"color":"#FFABC2D9","point":0.4},{"color":"#FFB6CADE","point":0.5},{"color":"#FFC1D2E3","point":0.6},{"color":"#FFCBD9E8","point":0.7},{"color":"#FFD6E1EC","point":0.8},{"color":"#FFE0E8F1","point":0.9},{"color":"#FFEAEFF6","point":1}],"backgroundColor":"#FF000000"}},"navItems":[{"type":8,"title":"Latest","url":"https://towardsdatascience.com/latest"},{"type":4,"title":"Editors' Picks","url":"https://towardsdatascience.com/editors-picks/home","topicId":"20b4f3e27fbe","source":"topicId"},{"type":4,"title":"Deep Dives","url":"https://towardsdatascience.com/deep-dives/home","topicId":"8ad314313527","source":"topicId"},{"type":4,"title":"About","url":"https://towardsdatascience.com/about-us/home","topicId":"e4bc46bb3ab0","source":"topicId"},{"type":2,"title":"Contribute","postId":"96667b06af5","url":"https://towardsdatascience.com/questions-96667b06af5","source":"postId"},{"type":3,"title":"Newsletter","url":"https://medium.com/towards-data-science/newsletter"}],"colorBehavior":2,"collectionFeatures":[29,30,27,25],"ampLogo":{"imageId":"","filter":"","backgroundSize":"","originalWidth":0,"originalHeight":0,"strategy":"resample","height":0,"width":0},"header":{"title":"","description":"The world’s leading publication for data science, AI, data analytics, data engineering and ML professionals.","backgroundImage":{},"logoImage":{"id":"1*1m9fjwOZWwXIP82RWvRH5A@2x.png","originalWidth":1589,"originalHeight":661,"alt":"Towards Data Science"},"alignment":2,"layout":5},"paidForDomainAt":1509037374118,"subscriberCount":768721,"tagline":"A Medium publication sharing concepts, ideas and codes.","isOptedIntoAurora":false,"newsletterV3":{"newsletterV3Id":"d6fe9076899","type":1,"name":"The Variable","description":"Every Thursday, the Variable delivers the very best of Towards Data Science: from hands-on tutorials and cutting-edge research to the latest on data science and machine learning tools.","collectionId":"7f60cf5620c9","newsletterSlug":"the-variable","isSubscribed":false,"showPromo":true,"avatarImageId":"","creatorId":"895063a310f4","showNewsletterPostsInCollectionHome":true,"exportableSubscribersCount":52145,"subscribersCount":132088,"promoHeadline":"","promoBody":"","replyToEmail":""},"isCurationAllowedByDefault":false,"polarisCoverImage":{"imageId":"1*CJe3891yB1A1mzMdqemkdg.jpeg","filter":"","backgroundSize":"","originalWidth":2861,"originalHeight":2861,"strategy":"resample","height":0,"width":0},"ptsQualifiedAt":1616092952992,"type":"Collection"}},"User":{"c8a0ca9d85d8":{"userId":"c8a0ca9d85d8","name":"Vyacheslav Efimov","username":"slavahead","createdAt":1603393368208,"imageId":"1*9xLh34e9CdTnShI8pgYdbg.jpeg","backgroundImageId":"","bio":"BSc in Software Engineering 👨🎓 | Passionate Machine Learning Engineer 👨💻 | Writer for Towards Data Science ✍️","twitterScreenName":"","allowNotes":1,"mediumMemberAt":1655658796000,"isWriterProgramEnrolled":true,"isSuspended":false,"firstOpenedIosApp":1612477699109,"isMembershipTrialEligible":false,"facebookDisplayName":"","optInToIceland":true,"userFlags":[3],"hasCompletedProfile":true,"isCreatorPartnerProgramEnrolled":true,"userDismissableFlags":[32,29,21,19,18,47,12,44,8,7,5,3,2,10,1,33],"hasSeenIcelandOnboarding":true,"postSubscribeMembershipUpsellShownAt":0,"languageCode":"it-it","type":"User"},"1bace2932c65":{"userId":"1bace2932c65","name":"Amanda Iglesias Moreno","username":"amandaiglesiasmoreno","createdAt":1560449233132,"imageId":"1*IE_eo0PTq6ctHLy2G9anBA.jpeg","backgroundImageId":"","bio":"Data Scientist at Statista | Expertise in Data Visualization, Geodata, AI & Machine Learning","twitterScreenName":"","allowNotes":1,"mediumMemberAt":1716395017941,"isWriterProgramEnrolled":true,"isSuspended":false,"firstOpenedAndroidApp":1607974708049,"isMembershipTrialEligible":true,"facebookDisplayName":"Amanda Iglesias Moreno","optInToIceland":true,"subdomainCreatedAt":1605011625755,"hasCompletedProfile":false,"isCreatorPartnerProgramEnrolled":true,"userDismissableFlags":[32,29,21,18,49,48,47,12,44,41,8,50,5,30,3,2,1,33],"hasSeenIcelandOnboarding":true,"postSubscribeMembershipUpsellShownAt":0,"languageCode":"es-es","type":"User"},"5176dd5e0bcf":{"userId":"5176dd5e0bcf","name":"W Brett Kennedy","username":"wkennedy934","createdAt":1715176925157,"imageId":"1*v8pf2r3SPMLuHoSmF4IwlA.png","backgroundImageId":"","bio":"Author of Outlier Detection in Python. www.linkedin.com/in/wbkenn/, github.com/Brett-Kennedy, www.manning.com/books/outlier-detection-in-python","twitterScreenName":"","allowNotes":1,"mediumMemberAt":1715540056000,"isWriterProgramEnrolled":true,"isSuspended":false,"isMembershipTrialEligible":true,"facebookDisplayName":"","optInToIceland":true,"hasCompletedProfile":false,"userDismissableFlags":[29],"hasSeenIcelandOnboarding":false,"postSubscribeMembershipUpsellShownAt":0,"languageCode":"en-us","type":"User"},"b7c226dc9b8e":{"userId":"b7c226dc9b8e","name":"James Barney","username":"jamesbarney71","createdAt":1538161434829,"imageId":"1*cnIbCvO9N7Qt0_R_ukwd8A@2x.jpeg","backgroundImageId":"","bio":"A passionate technologist with a strong background in cloud engineering, platform engineering, and data engineering. https://www.linkedin.com/in/james-barney/","twitterScreenName":"","allowNotes":1,"mediumMemberAt":1720184260000,"isWriterProgramEnrolled":true,"isSuspended":false,"firstOpenedIosApp":1718132820741,"isMembershipTrialEligible":true,"facebookDisplayName":"","optInToIceland":true,"hasCompletedProfile":true,"userDismissableFlags":[8,47,29,12,2],"hasSeenIcelandOnboarding":true,"postSubscribeMembershipUpsellShownAt":0,"languageCode":"en-us","type":"User"},"8572724a5d2c":{"userId":"8572724a5d2c","name":"Jose Parreño","username":"joparga3","createdAt":1580644646150,"imageId":"1*muI5QEd6YqFGJDIrf4h2Mg@2x.jpeg","backgroundImageId":"","bio":"Sr. Data Science manager at Skyscanner. Data Science leadership, data storytelling and niche machine learning.","twitterScreenName":"","allowNotes":1,"mediumMemberAt":1720599223000,"isWriterProgramEnrolled":true,"isSuspended":false,"firstOpenedIosApp":1695475039008,"isMembershipTrialEligible":true,"facebookDisplayName":"","optInToIceland":true,"hasCompletedProfile":true,"isCreatorPartnerProgramEnrolled":true,"userDismissableFlags":[47,29],"hasSeenIcelandOnboarding":true,"postSubscribeMembershipUpsellShownAt":0,"languageCode":"en","type":"User"},"6bf482880276":{"userId":"6bf482880276","name":"Julián Peller","username":"dataista0","createdAt":1391841609381,"imageId":"1*NokRrlCsBxVA6TST9y7Xpg.jpeg","backgroundImageId":"1*TyW2LLEV8gqMKU-rsVegwQ.jpeg","bio":"Lead Data Scientist @ EverythingALS","twitterScreenName":"dataista0","allowNotes":1,"mediumMemberAt":0,"isWriterProgramEnrolled":true,"isSuspended":false,"isMembershipTrialEligible":true,"facebookDisplayName":"Julián Peller","optInToIceland":true,"subdomainCreatedAt":1615175923654,"hasCompletedProfile":false,"userDismissableFlags":[32,29,12,8,3,2,18,1,33],"hasSeenIcelandOnboarding":true,"postSubscribeMembershipUpsellShownAt":0,"languageCode":"es-419","type":"User"},"638b9cae9933":{"userId":"638b9cae9933","name":"Robert Lange","username":"RobertTLange","createdAt":1567248583119,"imageId":"1*G2R6dj1CbcCBTYaRdsW9Hg.jpeg","backgroundImageId":"","bio":"Deep Learning PhD @TU Berlin. Research Scientist @Sakana.AI. ✍️ 2x Google DeepMind Intern 🧑🔬 Follow me: https://x.com/RobertTLange","twitterScreenName":"","allowNotes":1,"mediumMemberAt":0,"isWriterProgramEnrolled":true,"isSuspended":false,"firstOpenedIosApp":1567402381746,"isMembershipTrialEligible":true,"facebookDisplayName":"","optInToIceland":true,"hasCompletedProfile":false,"isCreatorPartnerProgramEnrolled":true,"userDismissableFlags":[32,29,22,21,19,18,47,12,11,9,8,5,3,2,1,33],"hasSeenIcelandOnboarding":true,"postSubscribeMembershipUpsellShownAt":0,"languageCode":"en-gb","type":"User"},"4267d9884285":{"userId":"4267d9884285","name":"Riccardo Di Sipio","username":"riccardo-disipio","createdAt":1551882677796,"imageId":"1*lkmBq7I0CsPzLoQFqjJP_w.jpeg","backgroundImageId":"","bio":"Senior Machine Learning developer at Dayforce. NLP, LLMs, graph neural networks. Formerly physicist at U Toronto, Bologna, CERN LHC/ATLAS.","twitterScreenName":"","allowNotes":1,"mediumMemberAt":0,"isWriterProgramEnrolled":true,"isSuspended":false,"isMembershipTrialEligible":true,"facebookDisplayName":"","optInToIceland":true,"subdomainCreatedAt":1608246176055,"hasCompletedProfile":true,"isCreatorPartnerProgramEnrolled":true,"userDismissableFlags":[32,29,21,19,18,49,48,47,12,11,9,8,50,5,3,2,1,33],"hasSeenIcelandOnboarding":true,"postSubscribeMembershipUpsellShownAt":0,"languageCode":"en-us","type":"User"},"1c040843e458":{"userId":"1c040843e458","name":"Leo Anello","username":"panData","createdAt":1675551357378,"imageId":"1*Dn6n6ct8Y_AL4zvtFcUetQ.jpeg","backgroundImageId":"","bio":"☕ My personal repository showcasing the Projects I've applied, studied, & self-taught skills.","allowNotes":1,"mediumMemberAt":1711738655000,"isWriterProgramEnrolled":true,"isSuspended":false,"firstOpenedIosApp":1690592255357,"firstOpenedAndroidApp":1675690938453,"isMembershipTrialEligible":true,"optInToIceland":true,"hasCompletedProfile":true,"isCreatorPartnerProgramEnrolled":true,"userDismissableFlags":[47,29,44,6,50,37,30,36,19,2,33,49],"hasSeenIcelandOnboarding":true,"postSubscribeMembershipUpsellShownAt":0,"languageCode":"en-us","type":"User"},"e7e9224fe265":{"userId":"e7e9224fe265","name":"Jason Tamara Widjaja","username":"jasontwidjaja","createdAt":1466669413024,"imageId":"1*IBx8N1IButnxAzCCR9mOlA.jpeg","backgroundImageId":"","bio":"Quora top writer, value driven, hype allergic and people centred. I lead data science and AI teams in MSD and advocate ethical AI & diversity in tech.","twitterScreenName":"","allowNotes":1,"mediumMemberAt":1579616413000,"isWriterProgramEnrolled":true,"isSuspended":false,"firstOpenedAndroidApp":1574362252207,"isMembershipTrialEligible":true,"facebookDisplayName":"Jason T Widjaja","optInToIceland":true,"subdomainCreatedAt":1606365297953,"hasCompletedProfile":false,"isCreatorPartnerProgramEnrolled":true,"userDismissableFlags":[32,29,21,19,49,48,12,11,9,8,50,5,3,2,1,33],"hasSeenIcelandOnboarding":true,"postSubscribeMembershipUpsellShownAt":0,"languageCode":"en-us","type":"User"},"6b453743a21c":{"userId":"6b453743a21c","name":"Anna Gordun Peiro","username":"gordunanna","createdAt":1720614598515,"imageId":"1*xcymf5kJLwwvARr1elDC_g@2x.jpeg","backgroundImageId":"","bio":"Engineer at Airbus by day , Carrie Bradshaw’s alter ego by night","twitterScreenName":"","allowNotes":1,"mediumMemberAt":1720624201000,"isWriterProgramEnrolled":true,"isSuspended":false,"firstOpenedIosApp":1720615259555,"isMembershipTrialEligible":true,"facebookDisplayName":"","optInToIceland":true,"hasCompletedProfile":true,"userDismissableFlags":[47,29],"hasSeenIcelandOnboarding":true,"postSubscribeMembershipUpsellShownAt":0,"languageCode":"ca-es","type":"User"},"a743c5fec8cd":{"userId":"a743c5fec8cd","name":"Rohit Pandey","username":"rohitpandey576","createdAt":1503440964163,"imageId":"0*Issa3TOcli4KzNYa.jpg","backgroundImageId":"","bio":"I like to explain data science concepts through words, visualizations and code in the hope one of them will click. For my day job, I work at Microsoft Azure.","twitterScreenName":"rohitpandey576","allowNotes":1,"mediumMemberAt":1633929451000,"isWriterProgramEnrolled":true,"isSuspended":false,"firstOpenedIosApp":1663570369784,"isMembershipTrialEligible":true,"facebookDisplayName":"","optInToIceland":true,"hasCompletedProfile":false,"isCreatorPartnerProgramEnrolled":true,"userDismissableFlags":[32,29,21,19,18,49,47,12,11,9,8,50,3,2,1,33],"hasSeenIcelandOnboarding":true,"postSubscribeMembershipUpsellShownAt":0,"languageCode":"en-us","type":"User"},"53550965faed":{"userId":"53550965faed","name":"Ida Silfverskiöld","username":"ilsilfverskiold","createdAt":1488807265094,"imageId":"1*1civF6o1TQqHJyhani-99w.png","backgroundImageId":"","bio":"Building stuff | Consultant | Connect 🤝 github.com/ilsilfverskiold & linkedin.com/in/ida-silfverskiold | Tech trends 🧡 docs.safron.io","twitterScreenName":"","allowNotes":1,"mediumMemberAt":1711629523000,"isWriterProgramEnrolled":true,"isSuspended":false,"firstOpenedIosApp":1652348028068,"isMembershipTrialEligible":true,"facebookDisplayName":"","optInToIceland":true,"hasCompletedProfile":true,"isCreatorPartnerProgramEnrolled":true,"userDismissableFlags":[32,29,21,19,16,47,12,44,9,8,3,2,33],"hasSeenIcelandOnboarding":true,"postSubscribeMembershipUpsellShownAt":0,"languageCode":"en-gb","type":"User"},"d4bbc4d61092":{"userId":"d4bbc4d61092","name":"Satwiki De","username":"cleancoder","createdAt":1594618481224,"imageId":"1*DUP9k15e2-cZj27IJxFCpQ.jpeg","backgroundImageId":"","bio":"Software Engineer @Microsoft | Experienced in App Dev, Cloud-native solutions, DevOps & Generative AI | Curious explorer of tech and life","twitterScreenName":"","allowNotes":1,"mediumMemberAt":0,"isWriterProgramEnrolled":true,"isSuspended":false,"firstOpenedIosApp":1643734185068,"firstOpenedAndroidApp":1594618481831,"isMembershipTrialEligible":true,"facebookDisplayName":"","optInToIceland":true,"hasCompletedProfile":false,"userDismissableFlags":[8,32,29,19,2,33],"hasSeenIcelandOnboarding":true,"postSubscribeMembershipUpsellShownAt":0,"languageCode":"en","type":"User"},"6527aecbd3c5":{"userId":"6527aecbd3c5","name":"Anindya Dey, PhD","username":"anindya.hepth","createdAt":1691733976665,"imageId":"1*k81KjiGOVtd6w9OEVI_LUA.jpeg","backgroundImageId":"","bio":"Theoretical physicist by training, transitioning to the world of ML. Current interests include transformer-based models for Computer Vision and LLMs.","twitterScreenName":"","allowNotes":1,"mediumMemberAt":1691734413000,"isWriterProgramEnrolled":true,"isSuspended":false,"isMembershipTrialEligible":true,"facebookDisplayName":"","optInToIceland":true,"hasCompletedProfile":false,"isCreatorPartnerProgramEnrolled":true,"userDismissableFlags":[19,29,37],"hasSeenIcelandOnboarding":false,"postSubscribeMembershipUpsellShownAt":0,"languageCode":"en-us","type":"User"},"7175001fc1a":{"userId":"7175001fc1a","name":"Meghan Heintz","username":"meghanheintz","createdAt":1473393977156,"imageId":"1*Tespb9SFbU5QAxy8f7bhnA.png","backgroundImageId":"","bio":"Staff Software Engineer, AI and ML at Dune","twitterScreenName":"","allowNotes":1,"mediumMemberAt":1732566888833,"isWriterProgramEnrolled":true,"isSuspended":false,"firstOpenedIosApp":1730400169684,"isMembershipTrialEligible":true,"facebookDisplayName":"Meghan Heintz","optInToIceland":true,"hasCompletedProfile":true,"isCreatorPartnerProgramEnrolled":true,"userDismissableFlags":[47,29,12,8,21,3,19,2,18,1,33],"hasSeenIcelandOnboarding":true,"postSubscribeMembershipUpsellShownAt":0,"languageCode":"en-us","type":"User"},"8624c420e311":{"userId":"8624c420e311","name":"Nikolaus Correll","username":"nikolaus.correll","createdAt":1596746169527,"imageId":"0*16C4ZpLAHBnmozRf","backgroundImageId":"","bio":"Nikolaus is a Professor of Computer Science and Robotics at the University of Colorado Boulder, robotics entrepreneur, and consultant.","twitterScreenName":"","allowNotes":1,"mediumMemberAt":1704696968000,"isWriterProgramEnrolled":true,"isSuspended":false,"firstOpenedIosApp":1705494765258,"isMembershipTrialEligible":true,"facebookDisplayName":"","optInToIceland":true,"hasCompletedProfile":true,"isCreatorPartnerProgramEnrolled":true,"userDismissableFlags":[47,29,37,19],"hasSeenIcelandOnboarding":true,"postSubscribeMembershipUpsellShownAt":0,"languageCode":"en","type":"User"}},"Post":{"2dc9beb69b27":{"id":"2dc9beb69b27","versionId":"4d6844fb15ce","creatorId":"c8a0ca9d85d8","homeCollectionId":"7f60cf5620c9","title":"Roadmap to Becoming a Data Scientist, Part 1: Maths","detectedLanguage":"en","latestVersion":"4d6844fb15ce","latestPublishedVersion":"4d6844fb15ce","hasUnpublishedEdits":false,"latestRev":2235,"createdAt":1731185622890,"updatedAt":1732724845770,"acceptedAt":0,"firstPublishedAt":1732719740045,"latestPublishedAt":1732719740045,"vote":false,"experimentalCss":"","displayAuthor":"","content":{"subtitle":"Identifying fundamental math skills to master for aspiring Data Scientists","postDisplay":{"coverless":true}},"virtuals":{"statusForCollection":"APPROVED","allowNotes":true,"previewImage":{"imageId":"1*E0V_rBGKoNg-zb7r399HcQ.png","filter":"","backgroundSize":"","originalWidth":1658,"originalHeight":1066,"strategy":"resample","height":0,"width":0},"wordCount":2476,"imageCount":12,"readingTime":10.693396226415095,"subtitle":"Identifying fundamental math skills to master for aspiring Data Scientists","publishedInCount":1,"usersBySocialRecommends":[],"noIndex":false,"recommends":4,"isBookmarked":false,"tags":[{"slug":"data-science","name":"Data Science","postCount":347124,"metadata":{"postCount":347124,"coverImage":{"id":"1*Yajp0Wd7P8zjtA4D5uWZ7Q.jpeg","originalWidth":640,"originalHeight":425}},"type":"Tag"},{"slug":"roadmaps","name":"Roadmaps","postCount":6356,"metadata":{"postCount":6356,"coverImage":{"id":"1*N43-WHSSXGei3wMywLtE0w.jpeg","originalWidth":1120,"originalHeight":1120,"isFeatured":true}},"type":"Tag"},{"slug":"careers","name":"Careers","postCount":135810,"metadata":{"postCount":135810,"coverImage":{"id":"1*CMV8oSUcBy4lnzqiCy45GA.jpeg","originalWidth":3456,"originalHeight":4608,"isFeatured":true}},"type":"Tag"},{"slug":"mathematics","name":"Mathematics","postCount":34739,"metadata":{"postCount":34739,"coverImage":{"id":"0*sHF3qxdjF5sX0GaE","originalWidth":3976,"originalHeight":2652,"isFeatured":true,"unsplashPhotoId":"52gEprMkp7M"}},"type":"Tag"},{"slug":"editors-pick","name":"Editors Pick","postCount":4813,"metadata":{"postCount":4813,"coverImage":{"id":"1*aFX8XyDbU5UCBAEKMEQ-xQ.png","originalWidth":1680,"originalHeight":1232,"isFeatured":true}},"type":"Tag"}],"socialRecommendsCount":0,"responsesCreatedCount":1,"links":{"entries":[{"url":"https://arxiv.org/pdf/2109.12171","alts":[],"httpStatus":200},{"url":"https://www.linkedin.com/in/vyacheslav-efimov/","alts":[],"httpStatus":999},{"url":"https://www.instagram.com/code_with_slava/","alts":[],"httpStatus":200},{"url":"https://medium.com/towards-data-science/demystifying-confidence-intervals-with-examples-7bdef30f7b0a","alts":[{"type":3,"url":"medium://p/7bdef30f7b0a"},{"type":2,"url":"medium://p/7bdef30f7b0a"}],"httpStatus":200}],"version":"0.3","generatedAt":1732719741660},"isLockedPreviewOnly":false,"metaDescription":"","totalClapCount":72,"sectionCount":1,"readingList":0,"topics":[{"topicId":"7808efc0cf94","slug":"math","createdAt":1494090780021,"deletedAt":0,"image":{"id":"1*S4y5QE8kNj1Im9dAcGQtOA@2x.jpeg","originalWidth":1800,"originalHeight":1200},"name":"Math","description":"Add it up.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Math News and Articles — Medium","type":"Topic"},{"topicId":"ae5d4995e225","slug":"data-science","createdAt":1493923906289,"deletedAt":0,"image":{"id":"1*NHWOEki_ncCX-xzbKtkEWw@2x.jpeg","originalWidth":5760,"originalHeight":3840},"name":"Data Science","description":"Query this.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Data Science News and Articles — Medium","type":"Topic"},{"topicId":"af49579e220a","slug":"work","createdAt":1487918186996,"deletedAt":0,"image":{"id":"1*knbAt5qCQCelKx0BDkzZpQ@2x.jpeg","originalWidth":5018,"originalHeight":3049},"name":"Work","description":"The meaning behind the meetings.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Work Life: Articles and News — Medium","type":"Topic"}]},"coverless":true,"slug":"roadmap-to-becoming-a-data-scientist-part-1-maths","translationSourcePostId":"","translationSourceCreatorId":"","isApprovedTranslation":false,"inResponseToPostId":"","inResponseToRemovedAt":0,"isTitleSynthesized":false,"allowResponses":true,"importedUrl":"","importedPublishedAt":0,"visibility":2,"uniqueSlug":"roadmap-to-becoming-a-data-scientist-part-1-maths-2dc9beb69b27","previewContent":{"bodyModel":{"paragraphs":[{"name":"previewImage","type":4,"text":"","layout":10,"metadata":{"id":"1*E0V_rBGKoNg-zb7r399HcQ.png","originalWidth":1658,"originalHeight":1066,"isFeatured":true}},{"name":"previewTitle","type":3,"text":"Roadmap to Becoming a Data Scientist, Part 1: Maths","alignment":1},{"name":"previewSubtitle","type":13,"text":"Identifying fundamental math skills to master for…","alignment":1}],"sections":[{"startIndex":0}]},"isFullContent":false,"subtitle":"Identifying fundamental math skills to master for aspiring Data Scientists"},"license":0,"inResponseToMediaResourceId":"","canonicalUrl":"","approvedHomeCollectionId":"7f60cf5620c9","isNewsletter":false,"newsletterId":"9b8f7df54caf","webCanonicalUrl":"","mediumUrl":"","migrationId":"","notifyFollowers":true,"notifyTwitter":false,"notifyFacebook":false,"responseHiddenOnParentPostAt":0,"isSeries":false,"isSubscriptionLocked":true,"seriesLastAppendedAt":0,"audioVersionDurationSec":0,"sequenceId":"","isEligibleForRevenue":true,"isBlockedFromHightower":false,"deletedAt":0,"lockedPostSource":1,"hightowerMinimumGuaranteeStartsAt":0,"hightowerMinimumGuaranteeEndsAt":0,"featureLockRequestAcceptedAt":0,"mongerRequestType":1,"layerCake":0,"socialTitle":"","socialDek":"","editorialPreviewTitle":"","editorialPreviewDek":"","curationEligibleAt":1732558894337,"primaryTopicId":"ae5d4995e225","isProxyPost":false,"proxyPostFaviconUrl":"","proxyPostProviderName":"","proxyPostType":0,"isSuspended":false,"isLimitedState":false,"seoTitle":"","previewContent2":{"bodyModel":{"paragraphs":[{"name":"ee07","type":3,"text":"Roadmap to Becoming a Data Scientist, Part 1: Maths","markups":[]},{"name":"bbe6","type":13,"text":"Identifying fundamental math skills for aspiring data scientists","markups":[{"type":1,"start":0,"end":64}]},{"name":"96d2","type":4,"text":"","markups":[],"layout":1,"metadata":{"id":"1*E0V_rBGKoNg-zb7r399HcQ.png","originalWidth":1658,"originalHeight":1066,"isFeatured":true}},{"name":"ead1","type":3,"text":"Introduction","markups":[]},{"name":"47fe","type":1,"text":"Data science is undoubtedly one of the most fascinating fields today. Following significant breakthroughs in machine learning about a decade ago, data science has surged in popularity within the tech community. Each year, we witness increasingly powerful tools that once seemed unimaginable. Innovations such as the Transformer architecture, ChatGPT, the…","markups":[{"type":2,"start":316,"end":340},{"type":2,"start":342,"end":349},{"type":2,"start":355,"end":390},{"type":2,"start":424,"end":446},{"type":2,"start":459,"end":463}],"hasDropCap":true}],"sections":[{"name":"344b","startIndex":0}]},"isFullContent":false,"subtitle":"Identifying fundamental math skills to master for aspiring Data Scientists"},"cardType":0,"isDistributionAlertDismissed":false,"isShortform":false,"shortformType":0,"responsesLocked":false,"isLockedResponse":false,"isPublishToEmail":true,"responseDistribution":0,"isMarkedPaywallOnly":false,"type":"Post"},"1f7d26f2a215":{"id":"1f7d26f2a215","versionId":"6ffb13e6a308","creatorId":"1bace2932c65","homeCollectionId":"7f60cf5620c9","title":"Step-by-Step Guide for Building Waffle Charts in Plotly","detectedLanguage":"en","latestVersion":"6ffb13e6a308","latestPublishedVersion":"6ffb13e6a308","hasUnpublishedEdits":false,"latestRev":2142,"createdAt":1727977879820,"updatedAt":1732589648159,"acceptedAt":0,"firstPublishedAt":1732525331731,"latestPublishedAt":1732525331731,"vote":false,"experimentalCss":"","displayAuthor":"","content":{"subtitle":"Learn how to create custom waffle charts in Python using Plotly for data visualization","postDisplay":{"coverless":true}},"virtuals":{"statusForCollection":"APPROVED","allowNotes":true,"previewImage":{"imageId":"1*PyPJX_tl8OnGbPrJi3XIkA.png","filter":"","backgroundSize":"","originalWidth":1129,"originalHeight":724,"strategy":"resample","height":0,"width":0},"wordCount":2414,"imageCount":18,"readingTime":10.75943396226415,"subtitle":"Learn how to create custom waffle charts in Python using Plotly for data visualization","publishedInCount":1,"usersBySocialRecommends":[],"noIndex":false,"recommends":52,"isBookmarked":false,"tags":[{"slug":"data-visualization","name":"Data Visualization","postCount":66742,"metadata":{"postCount":66742,"coverImage":{"id":"0*pv-cTgMuAxVugzu0","originalWidth":7146,"originalHeight":7162,"isFeatured":true,"alt":"Photo by USGS on Unsplash","unsplashPhotoId":"hoS3dzgpHzw"}},"type":"Tag"},{"slug":"data-science","name":"Data Science","postCount":347124,"metadata":{"postCount":347124,"coverImage":{"id":"1*Yajp0Wd7P8zjtA4D5uWZ7Q.jpeg","originalWidth":640,"originalHeight":425}},"type":"Tag"},{"slug":"data-storytelling","name":"Data Storytelling","postCount":1206,"metadata":{"postCount":1206,"coverImage":{"id":"1*PyPJX_tl8OnGbPrJi3XIkA.png","originalWidth":1129,"originalHeight":724,"isFeatured":true}},"type":"Tag"},{"slug":"editors-pick","name":"Editors Pick","postCount":4813,"metadata":{"postCount":4813,"coverImage":{"id":"1*aFX8XyDbU5UCBAEKMEQ-xQ.png","originalWidth":1680,"originalHeight":1232,"isFeatured":true}},"type":"Tag"},{"slug":"plotly","name":"Plotly","postCount":1931,"metadata":{"postCount":1931,"coverImage":{"id":"1*PyPJX_tl8OnGbPrJi3XIkA.png","originalWidth":1129,"originalHeight":724,"isFeatured":true}},"type":"Tag"}],"socialRecommendsCount":0,"responsesCreatedCount":10,"links":{"entries":[{"url":"https://fonts.google.com/specimen/Poppins","alts":[],"httpStatus":200},{"url":"https://towardsdatascience.com/step-by-step-guide-for-building-interactive-calendars-in-plotly-277053f6ee7c","alts":[{"type":3,"url":"medium://p/277053f6ee7c"},{"type":2,"url":"medium://p/277053f6ee7c"}],"httpStatus":200},{"url":"https://towardsdatascience.com/seven-key-features-you-should-know-for-creating-professional-visualizations-with-plotly-f89558de5d0c","alts":[{"type":3,"url":"medium://p/f89558de5d0c"},{"type":2,"url":"medium://p/f89558de5d0c"}],"httpStatus":200},{"url":"https://towardsdatascience.com/constructing-hexagon-maps-with-h3-and-plotly-a-comprehensive-tutorial-8f37a91573bb","alts":[{"type":3,"url":"medium://p/8f37a91573bb"},{"type":2,"url":"medium://p/8f37a91573bb"}],"httpStatus":200},{"url":"https://opendata-ajuntament.barcelona.cat/data/es/dataset/pad_mdbas_niv-educa-esta_sexe/resource/072daedd-2816-4d49-9afb-7a7dee4d1741","alts":[],"httpStatus":200}],"version":"0.3","generatedAt":1732525333536},"isLockedPreviewOnly":false,"metaDescription":"","totalClapCount":400,"sectionCount":7,"readingList":0,"topics":[{"topicId":"22d054b693da","slug":"visual-design","createdAt":1490119315338,"deletedAt":0,"image":{"id":"1*Su6vAh8QOnSkcOrlJAyLmw@2x.jpeg","originalWidth":5184,"originalHeight":3456},"name":"Visual Design","description":"More than just a pretty typeface.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Visual Design: Articles and News — Medium","type":"Topic"},{"topicId":"ae5d4995e225","slug":"data-science","createdAt":1493923906289,"deletedAt":0,"image":{"id":"1*NHWOEki_ncCX-xzbKtkEWw@2x.jpeg","originalWidth":5760,"originalHeight":3840},"name":"Data Science","description":"Query this.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Data Science News and Articles — Medium","type":"Topic"},{"topicId":"decb52b64abf","slug":"programming","createdAt":1493934116328,"deletedAt":0,"image":{"id":"1*iPa136b1cGEO7lvoXg6uHQ@2x.jpeg","originalWidth":6016,"originalHeight":4016},"name":"Programming","description":"The good, the bad, the buggy.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Programming News and Articles — Medium","type":"Topic"}]},"coverless":true,"slug":"step-by-step-guide-for-building-waffle-charts-in-plotly","translationSourcePostId":"","translationSourceCreatorId":"","isApprovedTranslation":false,"inResponseToPostId":"","inResponseToRemovedAt":0,"isTitleSynthesized":true,"allowResponses":true,"importedUrl":"","importedPublishedAt":0,"visibility":2,"uniqueSlug":"step-by-step-guide-for-building-waffle-charts-in-plotly-1f7d26f2a215","previewContent":{"bodyModel":{"paragraphs":[{"name":"previewImage","type":4,"text":"","layout":10,"metadata":{"id":"1*PyPJX_tl8OnGbPrJi3XIkA.png","originalWidth":1129,"originalHeight":724,"isFeatured":true}},{"name":"95ff","type":3,"text":"Step-by-Step Guide for Building Waffle Charts in Plotly","markups":[],"alignment":1},{"name":"9307","type":13,"text":"Learn how to create custom waffle charts in…","markups":[],"alignment":1}],"sections":[{"startIndex":0}]},"isFullContent":false,"subtitle":"Learn how to create custom waffle charts in Python using Plotly for data visualization"},"license":0,"inResponseToMediaResourceId":"","canonicalUrl":"","approvedHomeCollectionId":"7f60cf5620c9","isNewsletter":false,"newsletterId":"67cb77b4e2db","webCanonicalUrl":"","mediumUrl":"","migrationId":"","notifyFollowers":true,"notifyTwitter":false,"notifyFacebook":false,"responseHiddenOnParentPostAt":0,"isSeries":false,"isSubscriptionLocked":true,"seriesLastAppendedAt":0,"audioVersionDurationSec":0,"sequenceId":"","isEligibleForRevenue":true,"isBlockedFromHightower":false,"deletedAt":0,"lockedPostSource":1,"hightowerMinimumGuaranteeStartsAt":0,"hightowerMinimumGuaranteeEndsAt":0,"featureLockRequestAcceptedAt":0,"mongerRequestType":1,"layerCake":1,"socialTitle":"","socialDek":"","editorialPreviewTitle":"","editorialPreviewDek":"","curationEligibleAt":1732228352162,"primaryTopicId":"ae5d4995e225","isProxyPost":false,"proxyPostFaviconUrl":"","proxyPostProviderName":"","proxyPostType":0,"isSuspended":false,"isLimitedState":false,"seoTitle":"","previewContent2":{"bodyModel":{"paragraphs":[{"name":"95ff","type":3,"text":"Step-by-Step Guide for Building Waffle Charts in Plotly","markups":[]},{"name":"9307","type":13,"text":"Learn how to create custom waffle charts in Python using Plotly for data visualization","markups":[]},{"name":"05df","type":4,"text":"Waffle Charts in Plotly (Image by the Author)","markups":[],"layout":1,"metadata":{"id":"1*PyPJX_tl8OnGbPrJi3XIkA.png","originalWidth":1129,"originalHeight":724,"isFeatured":true}},{"name":"4b61","type":1,"text":"Plotly is one of the most complete libraries for visualizing data in Python and, without a doubt, my favorite. It has a wide range of visualizations already defined, from basic visualizations, such as bar charts or pie charts, to more specific visualizations from the statistical or data science area, such…","markups":[{"type":1,"start":0,"end":75}]}],"sections":[{"name":"8a9f","startIndex":0}]},"isFullContent":false,"subtitle":"Learn how to create custom waffle charts in Python using Plotly for data visualization"},"cardType":0,"isDistributionAlertDismissed":false,"isShortform":false,"shortformType":0,"responsesLocked":false,"isLockedResponse":false,"isPublishToEmail":true,"responseDistribution":0,"isMarkedPaywallOnly":false,"type":"Post"},"d984bde99981":{"id":"d984bde99981","versionId":"cffd7bdfbb9c","creatorId":"5176dd5e0bcf","homeCollectionId":"7f60cf5620c9","title":"Perform Outlier Detection More Effectively Using Subsets of Features","detectedLanguage":"en","latestVersion":"cffd7bdfbb9c","latestPublishedVersion":"cffd7bdfbb9c","hasUnpublishedEdits":false,"latestRev":3619,"createdAt":1725843765363,"updatedAt":1732557243619,"acceptedAt":0,"firstPublishedAt":1732487793160,"latestPublishedAt":1732557243619,"vote":false,"experimentalCss":"","displayAuthor":"","content":{"subtitle":"Identify relevant subspaces: subsets of features that allow you to most effectively perform outlier detection on tabular data","postDisplay":{"coverless":true}},"virtuals":{"statusForCollection":"APPROVED","allowNotes":true,"previewImage":{"imageId":"1*xSilYlAPKbKt3fJCB9SatA.png","filter":"","backgroundSize":"","originalWidth":975,"originalHeight":270,"strategy":"resample","height":0,"width":0},"wordCount":7149,"imageCount":4,"readingTime":27.677358490566036,"subtitle":"Identify relevant subspaces: subsets of features that allow you to most effectively perform outlier detection on tabular data","publishedInCount":1,"usersBySocialRecommends":[],"noIndex":false,"recommends":73,"isBookmarked":false,"tags":[{"slug":"outlier-detection","name":"Outlier Detection","postCount":447,"metadata":{"postCount":447,"coverImage":{"id":"1*xSilYlAPKbKt3fJCB9SatA.png","originalWidth":975,"originalHeight":270,"isFeatured":true}},"type":"Tag"},{"slug":"anomaly-detection","name":"Anomaly Detection","postCount":1812,"metadata":{"postCount":1812,"coverImage":{"id":"1*xSilYlAPKbKt3fJCB9SatA.png","originalWidth":975,"originalHeight":270,"isFeatured":true}},"type":"Tag"},{"slug":"data-science","name":"Data Science","postCount":347124,"metadata":{"postCount":347124,"coverImage":{"id":"1*Yajp0Wd7P8zjtA4D5uWZ7Q.jpeg","originalWidth":640,"originalHeight":425}},"type":"Tag"},{"slug":"subspace","name":"Subspace","postCount":361,"metadata":{"postCount":361,"coverImage":{"id":"1*xSilYlAPKbKt3fJCB9SatA.png","originalWidth":975,"originalHeight":270,"isFeatured":true}},"type":"Tag"},{"slug":"editors-pick","name":"Editors Pick","postCount":4813,"metadata":{"postCount":4813,"coverImage":{"id":"1*aFX8XyDbU5UCBAEKMEQ-xQ.png","originalWidth":1680,"originalHeight":1232,"isFeatured":true}},"type":"Tag"}],"socialRecommendsCount":0,"responsesCreatedCount":9,"links":{"entries":[{"url":"https://www.manning.com/books/outlier-detection-in-python","alts":[],"httpStatus":200},{"url":"https://www.openml.org/search?type=data&sort=version&status=any&order=asc&exact_name=baseball&id=185","alts":[],"httpStatus":200},{"url":"https://towardsdatascience.com/using-pca-for-outlier-detection-afecab4d2b78","alts":[{"type":3,"url":"medium://p/afecab4d2b78"},{"type":2,"url":"medium://p/afecab4d2b78"}],"httpStatus":200},{"url":"https://towardsdatascience.com/counts-outlier-detector-interpretable-outlier-detection-ead0d469557a","alts":[{"type":3,"url":"medium://p/ead0d469557a"},{"type":2,"url":"medium://p/ead0d469557a"}],"httpStatus":200},{"url":"https://towardsdatascience.com/distance-metric-learning-for-outlier-detection-5b4840d01246","alts":[{"type":3,"url":"medium://p/5b4840d01246"},{"type":2,"url":"medium://p/5b4840d01246"}],"httpStatus":200},{"url":"https://github.com/yzhao062/pyod","alts":[],"httpStatus":200},{"url":"https://towardsdatascience.com/interpretable-outlier-detection-frequent-patterns-outlier-factor-fpof-0d9cbf51b17a","alts":[{"type":3,"url":"medium://p/0d9cbf51b17a"},{"type":2,"url":"medium://p/0d9cbf51b17a"}],"httpStatus":200},{"url":"https://towardsdatascience.com/shared-nearest-neighbors-a-more-robust-distance-metric-064d7f99ffb7","alts":[{"type":3,"url":"medium://p/064d7f99ffb7"},{"type":2,"url":"medium://p/064d7f99ffb7"}],"httpStatus":200},{"url":"https://medium.com/towards-data-science/doping-a-technique-to-test-outlier-detectors-3f6b847ab8d4","alts":[{"type":3,"url":"medium://p/3f6b847ab8d4"},{"type":2,"url":"medium://p/3f6b847ab8d4"}],"httpStatus":200},{"url":"https://medium.com/towards-data-science/interpretable-outlier-detection-frequent-patterns-outlier-factor-fpof-0d9cbf51b17a","alts":[{"type":3,"url":"medium://p/0d9cbf51b17a"},{"type":2,"url":"medium://p/0d9cbf51b17a"}],"httpStatus":200},{"url":"https://medium.com/towards-data-science/counts-outlier-detector-interpretable-outlier-detection-ead0d469557a","alts":[{"type":3,"url":"medium://p/ead0d469557a"},{"type":2,"url":"medium://p/ead0d469557a"}],"httpStatus":200},{"url":"https://medium.com/towards-data-science/a-simple-example-using-pca-for-outlier-detection-ab2773b98e4a","alts":[{"type":2,"url":"medium://p/ab2773b98e4a"},{"type":3,"url":"medium://p/ab2773b98e4a"}],"httpStatus":200}],"version":"0.3","generatedAt":1732557244979},"isLockedPreviewOnly":false,"metaDescription":"","totalClapCount":431,"sectionCount":1,"readingList":0,"topics":[{"topicId":"1af65db9c2f8","slug":"artificial-intelligence","createdAt":1487916832419,"deletedAt":0,"image":{"id":"1*A28aHchbaA8zNVXraBq0Ug@2x.jpeg","originalWidth":4866,"originalHeight":3244},"name":"Artificial Intelligence","description":"Born to be bot.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"AI News and Artificial Intelligence Articles — Medium","type":"Topic"},{"topicId":"1eca0103fff3","slug":"machine-learning","createdAt":1534449726145,"deletedAt":0,"image":{"id":"1*gFJS3amhZEg_z39D5EErVg@2x.png","originalWidth":2800,"originalHeight":1750},"name":"Machine Learning","description":"Teaching the learners.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Machine Learning News and Articles — Medium","type":"Topic"},{"topicId":"ae5d4995e225","slug":"data-science","createdAt":1493923906289,"deletedAt":0,"image":{"id":"1*NHWOEki_ncCX-xzbKtkEWw@2x.jpeg","originalWidth":5760,"originalHeight":3840},"name":"Data Science","description":"Query this.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Data Science News and Articles — Medium","type":"Topic"}]},"coverless":true,"slug":"perform-outlier-detection-more-effectively-using-subsets-of-features","translationSourcePostId":"","translationSourceCreatorId":"","isApprovedTranslation":false,"inResponseToPostId":"","inResponseToRemovedAt":0,"isTitleSynthesized":false,"allowResponses":true,"importedUrl":"","importedPublishedAt":0,"visibility":0,"uniqueSlug":"perform-outlier-detection-more-effectively-using-subsets-of-features-d984bde99981","previewContent":{"bodyModel":{"paragraphs":[{"name":"previewImage","type":4,"text":"","layout":10,"metadata":{"id":"1*xSilYlAPKbKt3fJCB9SatA.png","originalWidth":975,"originalHeight":270,"isFeatured":true}},{"name":"b030","type":3,"text":"Perform Outlier Detection More Effectively Using Subsets of Features","markups":[],"alignment":1},{"name":"1ee6","type":13,"text":"Identify relevant subspaces…","markups":[],"alignment":1}],"sections":[{"startIndex":0}]},"isFullContent":false,"subtitle":"Identify relevant subspaces: subsets of features that allow you to most effectively perform outlier detection on tabular data"},"license":0,"inResponseToMediaResourceId":"","canonicalUrl":"","approvedHomeCollectionId":"7f60cf5620c9","isNewsletter":false,"newsletterId":"20315febbe5e","webCanonicalUrl":"","mediumUrl":"","migrationId":"","notifyFollowers":true,"notifyTwitter":false,"notifyFacebook":false,"responseHiddenOnParentPostAt":0,"isSeries":false,"isSubscriptionLocked":false,"seriesLastAppendedAt":0,"audioVersionDurationSec":0,"sequenceId":"","isEligibleForRevenue":false,"isBlockedFromHightower":false,"deletedAt":0,"lockedPostSource":0,"hightowerMinimumGuaranteeStartsAt":0,"hightowerMinimumGuaranteeEndsAt":0,"featureLockRequestAcceptedAt":0,"mongerRequestType":1,"layerCake":1,"socialTitle":"","socialDek":"","editorialPreviewTitle":"","editorialPreviewDek":"","curationEligibleAt":0,"primaryTopicId":"ae5d4995e225","isProxyPost":false,"proxyPostFaviconUrl":"","proxyPostProviderName":"","proxyPostType":0,"isSuspended":false,"isLimitedState":false,"seoTitle":"","previewContent2":{"bodyModel":{"paragraphs":[{"name":"b030","type":3,"text":"Perform Outlier Detection More Effectively Using Subsets of Features","markups":[]},{"name":"1ee6","type":13,"text":"Identify relevant subspaces: subsets of features that allow you to most effectively perform outlier detection on tabular data","markups":[]},{"name":"f958","type":1,"text":"This article is part of a series related to the challenges, and the techniques that may be used, to best identify outliers in data, including articles related to using PCA, Distance Metric Learning, Shared Nearest Neighbors, Frequent Patterns Outlier Factor, Counts Outlier Detector (a multi-dimensional histogram-based method), and doping. This…","markups":[{"type":3,"start":168,"end":171,"href":"https://towardsdatascience.com/using-pca-for-outlier-detection-afecab4d2b78","title":"","rel":"","anchorType":0},{"type":3,"start":173,"end":197,"href":"https://towardsdatascience.com/distance-metric-learning-for-outlier-detection-5b4840d01246","title":"","rel":"","anchorType":0},{"type":3,"start":199,"end":223,"href":"https://towardsdatascience.com/shared-nearest-neighbors-a-more-robust-distance-metric-064d7f99ffb7","title":"","rel":"","anchorType":0},{"type":3,"start":225,"end":257,"href":"https://towardsdatascience.com/interpretable-outlier-detection-frequent-patterns-outlier-factor-fpof-0d9cbf51b17a","title":"","rel":"","anchorType":0},{"type":3,"start":259,"end":282,"href":"https://towardsdatascience.com/counts-outlier-detector-interpretable-outlier-detection-ead0d469557a","title":"","rel":"","anchorType":0},{"type":3,"start":333,"end":339,"href":"https://medium.com/towards-data-science/doping-a-technique-to-test-outlier-detectors-3f6b847ab8d4","title":"","rel":"","anchorType":0},{"type":3,"start":393,"end":420,"href":"https://www.manning.com/books/outlier-detection-in-python","title":"","rel":"","anchorType":0}]}],"sections":[{"name":"e19e","startIndex":0}]},"isFullContent":false,"subtitle":"Identify relevant subspaces: subsets of features that allow you to most effectively perform outlier detection on tabular data"},"cardType":0,"isDistributionAlertDismissed":false,"isShortform":false,"shortformType":0,"responsesLocked":false,"isLockedResponse":false,"isPublishToEmail":true,"responseDistribution":0,"isMarkedPaywallOnly":false,"type":"Post"},"dc4ec62ec8dd":{"id":"dc4ec62ec8dd","versionId":"33ff76e04ac1","creatorId":"b7c226dc9b8e","homeCollectionId":"7f60cf5620c9","title":"Another Hike Up Everest","detectedLanguage":"en","latestVersion":"33ff76e04ac1","latestPublishedVersion":"33ff76e04ac1","hasUnpublishedEdits":false,"latestRev":1240,"createdAt":1732110105739,"updatedAt":1732406430718,"acceptedAt":0,"firstPublishedAt":1732296924688,"latestPublishedAt":1732296924688,"vote":false,"experimentalCss":"","displayAuthor":"","content":{"subtitle":"How to make progress on hard problems in AI","postDisplay":{"coverless":true}},"virtuals":{"statusForCollection":"APPROVED","allowNotes":true,"previewImage":{"imageId":"0*p_DcoiYTwMfOuDw_.jpg","filter":"","backgroundSize":"","originalWidth":2560,"originalHeight":1920,"strategy":"resample","height":0,"width":0},"wordCount":1828,"imageCount":4,"readingTime":7.59811320754717,"subtitle":"How to make progress on hard problems in AI","publishedInCount":1,"usersBySocialRecommends":[],"noIndex":false,"recommends":16,"isBookmarked":false,"tags":[{"slug":"ai","name":"AI","postCount":430513,"metadata":{"postCount":430513,"coverImage":{"id":"0*Zs_B6zDXGdgkK2jv","originalWidth":5120,"originalHeight":2880,"isFeatured":true,"unsplashPhotoId":"_nWaeTF6qo0"}},"type":"Tag"},{"slug":"problem-solving","name":"Problem Solving","postCount":22784,"metadata":{"postCount":22784,"coverImage":{"id":"1*zSSdjaFinA3dTjzZIirC4A.jpeg","originalWidth":519,"originalHeight":519}},"type":"Tag"},{"slug":"scalability","name":"Scalability","postCount":66223,"metadata":{"postCount":66223,"coverImage":{"id":"1*fO3cuvXj0hahTXpcKS6wTA.jpeg","originalWidth":2880,"originalHeight":1440,"isFeatured":true}},"type":"Tag"},{"slug":"human-in-the-loop","name":"Human In The Loop","postCount":218,"metadata":{"postCount":218,"coverImage":{"id":"0*p_DcoiYTwMfOuDw_.jpg","originalWidth":2560,"originalHeight":1920,"isFeatured":true}},"type":"Tag"},{"slug":"editors-pick","name":"Editors Pick","postCount":4813,"metadata":{"postCount":4813,"coverImage":{"id":"1*aFX8XyDbU5UCBAEKMEQ-xQ.png","originalWidth":1680,"originalHeight":1232,"isFeatured":true}},"type":"Tag"}],"socialRecommendsCount":0,"responsesCreatedCount":5,"links":{"entries":[{"url":"https://en.wikipedia.org/wiki/Gartner_hype_cycle","alts":[],"httpStatus":200},{"url":"https://en.wikipedia.org/wiki/Mount_Everest","alts":[],"httpStatus":200},{"url":"https://python.langchain.com/docs/how_to/#output-parsers","alts":[],"httpStatus":200},{"url":"https://www.investopedia.com/terms/b/big-hairy-audacious-goal-bhag.asp","alts":[],"httpStatus":200},{"url":"https://docs.pydantic.dev/latest/","alts":[],"httpStatus":200},{"url":"https://commons.wikimedia.org/wiki/File:Inside_Khumbu-Icefall.jpg","alts":[],"httpStatus":200},{"url":"https://commons.m.wikimedia.org/wiki/File:1963_American_Everest_expedition.svg","alts":[],"httpStatus":200},{"url":"https://www.nytimes.com/2018/09/24/business/walmart-blockchain-lettuce.html","alts":[{"type":3,"url":"nyt://article/2155bc6a-2e22-5f11-8dde-acd4cdaf9caa"},{"type":2,"url":"nytimes://www.nytimes.com/2018/09/24/business/walmart-blockchain-lettuce.html"}],"httpStatus":200},{"url":"https://www.nytimes.com/2012/02/12/sunday-review/big-datas-impact-in-the-world.html","alts":[{"type":3,"url":"nyt://article/358bf54c-e4ba-5a4e-b974-3341517805b1"},{"type":2,"url":"nytimes://www.nytimes.com/2012/02/12/sunday-review/big-datas-impact-in-the-world.html"}],"httpStatus":200}],"version":"0.3","generatedAt":1732296925205},"isLockedPreviewOnly":false,"metaDescription":"","totalClapCount":183,"sectionCount":1,"readingList":0,"topics":[{"topicId":"1af65db9c2f8","slug":"artificial-intelligence","createdAt":1487916832419,"deletedAt":0,"image":{"id":"1*A28aHchbaA8zNVXraBq0Ug@2x.jpeg","originalWidth":4866,"originalHeight":3244},"name":"Artificial Intelligence","description":"Born to be bot.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"AI News and Artificial Intelligence Articles — Medium","type":"Topic"},{"topicId":"f862bfc84e38","slug":"technology","createdAt":1487918016768,"deletedAt":0,"image":{"id":"1*XxQLrxqHUlIHg5j-eIQrPQ@2x.png","originalWidth":640,"originalHeight":384},"name":"Technology","description":"The download.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Technology News and Articles — Medium","type":"Topic"}]},"coverless":true,"slug":"another-hike-up-everest","translationSourcePostId":"","translationSourceCreatorId":"","isApprovedTranslation":false,"inResponseToPostId":"","inResponseToRemovedAt":0,"isTitleSynthesized":true,"allowResponses":true,"importedUrl":"","importedPublishedAt":0,"visibility":0,"uniqueSlug":"another-hike-up-everest-dc4ec62ec8dd","previewContent":{"bodyModel":{"paragraphs":[{"name":"previewImage","type":4,"text":"","layout":10,"metadata":{"id":"0*p_DcoiYTwMfOuDw_.jpg","originalWidth":2560,"originalHeight":1920,"isFeatured":true}},{"name":"168f","type":2,"text":"Another Hike Up Everest","markups":[],"alignment":1},{"name":"29ac","type":13,"text":"How to make progress on hard problems in AI","markups":[],"alignment":1}],"sections":[{"startIndex":0}]},"isFullContent":false,"subtitle":"How to make progress on hard problems in AI"},"license":0,"inResponseToMediaResourceId":"","canonicalUrl":"","approvedHomeCollectionId":"7f60cf5620c9","isNewsletter":false,"newsletterId":"","webCanonicalUrl":"","mediumUrl":"","migrationId":"","notifyFollowers":true,"notifyTwitter":false,"notifyFacebook":false,"responseHiddenOnParentPostAt":0,"isSeries":false,"isSubscriptionLocked":false,"seriesLastAppendedAt":0,"audioVersionDurationSec":0,"sequenceId":"","isEligibleForRevenue":false,"isBlockedFromHightower":false,"deletedAt":0,"lockedPostSource":0,"hightowerMinimumGuaranteeStartsAt":0,"hightowerMinimumGuaranteeEndsAt":0,"featureLockRequestAcceptedAt":0,"mongerRequestType":1,"layerCake":1,"socialTitle":"","socialDek":"","editorialPreviewTitle":"","editorialPreviewDek":"","curationEligibleAt":0,"primaryTopicId":"1af65db9c2f8","isProxyPost":false,"proxyPostFaviconUrl":"","proxyPostProviderName":"","proxyPostType":0,"isSuspended":false,"isLimitedState":false,"seoTitle":"","previewContent2":{"bodyModel":{"paragraphs":[{"name":"168f","type":2,"text":"Another Hike Up Everest","markups":[]},{"name":"29ac","type":13,"text":"How to make progress on hard problems in AI","markups":[]},{"name":"2bb9","type":4,"text":"Mount Everest, known locally as Sagarmatha or Chomolangma (Wikipedia)","markups":[{"type":3,"start":59,"end":68,"href":"https://en.wikipedia.org/wiki/Mount_Everest","title":"","rel":"noopener","anchorType":0},{"type":1,"start":32,"end":42},{"type":1,"start":46,"end":58}],"layout":1,"metadata":{"id":"0*p_DcoiYTwMfOuDw_.jpg","originalWidth":2560,"originalHeight":1920,"isFeatured":true}},{"name":"ebd4","type":1,"text":"New technology is born, matured, and eventually replaced. AI is no different and will follow this curve. Many news articles are already proclaiming that Generative AI (Gen AI) has arrived at the Trough of Disillusionment: the point in adoption where the early adopters are realizing the promises of the new…","markups":[]}],"sections":[{"name":"3cc9","startIndex":0,"textLayout":1,"imageLayout":1,"backgroundColor":1,"type":0,"videoLayout":1}]},"isFullContent":false,"subtitle":"How to make progress on hard problems in AI"},"cardType":0,"isDistributionAlertDismissed":false,"isShortform":false,"shortformType":0,"responsesLocked":false,"isLockedResponse":false,"isPublishToEmail":false,"responseDistribution":0,"isMarkedPaywallOnly":false,"type":"Post"},"89fb4f64baaa":{"id":"89fb4f64baaa","versionId":"d77a78d222c9","creatorId":"8572724a5d2c","homeCollectionId":"7f60cf5620c9","title":"Are You Sure You Want to Become a Data Science Manager?","detectedLanguage":"en","latestVersion":"d77a78d222c9","latestPublishedVersion":"d77a78d222c9","hasUnpublishedEdits":false,"latestRev":386,"createdAt":1732179015767,"updatedAt":1732600871505,"acceptedAt":0,"firstPublishedAt":1732284134134,"latestPublishedAt":1732284134134,"vote":false,"experimentalCss":"","displayAuthor":"","content":{"subtitle":"Don’t rush into the fancy title until you have read this.","postDisplay":{"coverless":true}},"virtuals":{"statusForCollection":"APPROVED","allowNotes":true,"previewImage":{"imageId":"0*NSCdUN2Idn0mARmw.jpeg","filter":"","backgroundSize":"","originalWidth":1456,"originalHeight":1091,"strategy":"resample","height":0,"width":0},"wordCount":3549,"imageCount":7,"readingTime":14.44245283018868,"subtitle":"Don’t rush into the fancy title until you have read this.","publishedInCount":1,"usersBySocialRecommends":[],"noIndex":false,"recommends":71,"isBookmarked":false,"tags":[{"slug":"data-science","name":"Data Science","postCount":347124,"metadata":{"postCount":347124,"coverImage":{"id":"1*Yajp0Wd7P8zjtA4D5uWZ7Q.jpeg","originalWidth":640,"originalHeight":425}},"type":"Tag"},{"slug":"management","name":"Management","postCount":94246,"metadata":{"postCount":94246,"coverImage":{"id":"1*iA2gos6-vtBzDWtSNX16PQ.jpeg","originalWidth":2250,"originalHeight":1617,"isFeatured":true,"alt":"Staying or gowing away"}},"type":"Tag"},{"slug":"leadership","name":"Leadership","postCount":293849,"metadata":{"postCount":293849,"coverImage":{"id":"1*x3eOBvKInrpkalYofhODIQ.jpeg"}},"type":"Tag"},{"slug":"editors-pick","name":"Editors Pick","postCount":4813,"metadata":{"postCount":4813,"coverImage":{"id":"1*aFX8XyDbU5UCBAEKMEQ-xQ.png","originalWidth":1680,"originalHeight":1232,"isFeatured":true}},"type":"Tag"},{"slug":"data-science-careers","name":"Data Science Careers","postCount":1020,"metadata":{"postCount":1020,"coverImage":{"id":"0*NSCdUN2Idn0mARmw.jpeg","originalWidth":1456,"originalHeight":1091,"isFeatured":true}},"type":"Tag"}],"socialRecommendsCount":0,"responsesCreatedCount":11,"links":{"entries":[{"url":"www.linkedin.com/in/joseparrenogarcia","alts":[],"httpStatus":0},{"url":"https://unsplash.com/photos/a-group-of-people-working-in-a-factory-7YUvAUbfSV0?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash","alts":[],"httpStatus":200},{"url":"https://unsplash.com/@benjaminelliott?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash","alts":[],"httpStatus":200},{"url":"https://unsplash.com/photos/green-and-white-maze-illustration-vc9u77c0LO4?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash","alts":[],"httpStatus":200},{"url":"https://unsplash.com/@museumsvictoria?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash","alts":[],"httpStatus":200},{"url":"https://open.substack.com/pub/joseparreogarcia/p/are-you-sure-you-want-to-become-a?r=48950f&utm_campaign=post&utm_medium=web&showWelcomeOnShare=true","alts":[],"httpStatus":200},{"url":"https://unsplash.com/photos/green-grass-field-under-white-sky-during-daytime-_J8IRsA4hG0?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash","alts":[],"httpStatus":200},{"url":"https://joseparreogarcia.substack.com/?r=48950f&utm_campaign=pub-share-checklist","alts":[],"httpStatus":200},{"url":"https://medium.com/@joparga3/subscribe","alts":[],"httpStatus":200},{"url":"https://medium.com/@joparga3/all-my-written-articles-in-one-place-24ccd6689f72","alts":[{"type":3,"url":"medium://p/24ccd6689f72"},{"type":2,"url":"medium://p/24ccd6689f72"}],"httpStatus":200},{"url":"https://medium.com/towards-data-science/my-weekly-calendar-as-a-senior-data-science-manager-d57112ae372d","alts":[{"type":3,"url":"medium://p/d57112ae372d"},{"type":2,"url":"medium://p/d57112ae372d"}],"httpStatus":200},{"url":"https://unsplash.com/@rowanfreeman?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash","alts":[],"httpStatus":200}],"version":"0.3","generatedAt":1732284136669},"isLockedPreviewOnly":false,"metaDescription":"","totalClapCount":405,"sectionCount":2,"readingList":0,"topics":[{"topicId":"6846c2fd686b","slug":"leadership","createdAt":1487665048760,"deletedAt":0,"image":{"id":"1*vzWzeHIePfOxPdexHmrjVg@2x.jpeg","originalWidth":6000,"originalHeight":4000},"name":"Leadership","description":"Go forth and manage.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Leadership Articles, News and Stories — Medium","type":"Topic"},{"topicId":"ae5d4995e225","slug":"data-science","createdAt":1493923906289,"deletedAt":0,"image":{"id":"1*NHWOEki_ncCX-xzbKtkEWw@2x.jpeg","originalWidth":5760,"originalHeight":3840},"name":"Data Science","description":"Query this.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Data Science News and Articles — Medium","type":"Topic"},{"topicId":"af49579e220a","slug":"work","createdAt":1487918186996,"deletedAt":0,"image":{"id":"1*knbAt5qCQCelKx0BDkzZpQ@2x.jpeg","originalWidth":5018,"originalHeight":3049},"name":"Work","description":"The meaning behind the meetings.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Work Life: Articles and News — Medium","type":"Topic"}]},"coverless":true,"slug":"are-you-sure-you-want-to-become-a-data-science-manager","translationSourcePostId":"","translationSourceCreatorId":"","isApprovedTranslation":false,"inResponseToPostId":"","inResponseToRemovedAt":0,"isTitleSynthesized":true,"allowResponses":true,"importedUrl":"","importedPublishedAt":0,"visibility":2,"uniqueSlug":"are-you-sure-you-want-to-become-a-data-science-manager-89fb4f64baaa","previewContent":{"bodyModel":{"paragraphs":[{"name":"previewImage","type":4,"text":"","layout":10,"metadata":{"id":"0*NSCdUN2Idn0mARmw.jpeg","originalWidth":1456,"originalHeight":1091,"isFeatured":true}},{"name":"4c6e","type":3,"text":"Are You Sure You Want to Become a Data Science Manager?","markups":[],"alignment":1},{"name":"4175","type":13,"text":"Don’t rush into the fancy title until you have…","markups":[],"alignment":1}],"sections":[{"startIndex":0}]},"isFullContent":false,"subtitle":"Don’t rush into the fancy title until you have read this."},"license":0,"inResponseToMediaResourceId":"","canonicalUrl":"","approvedHomeCollectionId":"7f60cf5620c9","isNewsletter":false,"newsletterId":"dcc864473038","webCanonicalUrl":"","mediumUrl":"","migrationId":"","notifyFollowers":true,"notifyTwitter":false,"notifyFacebook":false,"responseHiddenOnParentPostAt":0,"isSeries":false,"isSubscriptionLocked":true,"seriesLastAppendedAt":0,"audioVersionDurationSec":0,"sequenceId":"","isEligibleForRevenue":true,"isBlockedFromHightower":false,"deletedAt":0,"lockedPostSource":1,"hightowerMinimumGuaranteeStartsAt":0,"hightowerMinimumGuaranteeEndsAt":0,"featureLockRequestAcceptedAt":0,"mongerRequestType":1,"layerCake":1,"socialTitle":"","socialDek":"","editorialPreviewTitle":"","editorialPreviewDek":"","curationEligibleAt":1732179613448,"primaryTopicId":"ae5d4995e225","isProxyPost":false,"proxyPostFaviconUrl":"","proxyPostProviderName":"","proxyPostType":0,"isSuspended":false,"isLimitedState":false,"seoTitle":"","previewContent2":{"bodyModel":{"paragraphs":[{"name":"4c6e","type":3,"text":"Are You Sure You Want to Become a Data Science Manager?","markups":[]},{"name":"4175","type":13,"text":"Don’t rush into the fancy title until you have read this.","markups":[]},{"name":"7831","type":4,"text":"Photo by Benjamin Elliott on Unsplash","markups":[{"type":3,"start":9,"end":25,"href":"https://unsplash.com/@benjaminelliott?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash","title":"","rel":"nofollow ugc noopener","anchorType":0},{"type":3,"start":29,"end":37,"href":"https://unsplash.com/photos/green-and-white-maze-illustration-vc9u77c0LO4?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash","title":"","rel":"nofollow ugc noopener","anchorType":0}],"layout":1,"metadata":{"id":"0*NSCdUN2Idn0mARmw.jpeg","originalWidth":1456,"originalHeight":1091,"isFeatured":true}},{"name":"6868","type":1,"text":"Picture this. You have just delivered a killer project, your team’s buzzing, and then — bam! You are asked, ‘Have you ever thought about leading the team?’ Sounds tempting, right? But hold on — do you really know what you’re signing up for?","markups":[{"type":1,"start":0,"end":13},{"type":1,"start":194,"end":240},{"type":2,"start":108,"end":155},{"type":2,"start":194,"end":240}]},{"name":"b6f2","type":1,"text":"As a data science manager, I have…","markups":[{"type":1,"start":337,"end":406}]}],"sections":[{"name":"0338","startIndex":0}]},"isFullContent":false,"subtitle":"Don’t rush into the fancy title until you have read this."},"cardType":0,"isDistributionAlertDismissed":false,"isShortform":false,"shortformType":0,"responsesLocked":false,"isLockedResponse":false,"isPublishToEmail":true,"responseDistribution":0,"isMarkedPaywallOnly":false,"type":"Post"},"df37b015fd8a":{"id":"df37b015fd8a","versionId":"be09451605c6","creatorId":"6bf482880276","homeCollectionId":"7f60cf5620c9","title":"ChatGPT: Two Years Later","detectedLanguage":"en","latestVersion":"be09451605c6","latestPublishedVersion":"be09451605c6","hasUnpublishedEdits":false,"latestRev":175,"createdAt":1732128549369,"updatedAt":1732580283829,"acceptedAt":0,"firstPublishedAt":1732224727066,"latestPublishedAt":1732580283829,"vote":false,"experimentalCss":"","displayAuthor":"","content":{"subtitle":"Tracing the impact of the generative AI revolution","postDisplay":{"coverless":true}},"virtuals":{"statusForCollection":"APPROVED","allowNotes":true,"previewImage":{"imageId":"0*x2yONxpFFkJFk6b8","filter":"","backgroundSize":"","originalWidth":6000,"originalHeight":4000,"strategy":"resample","height":0,"width":0},"wordCount":4731,"imageCount":8,"readingTime":18.98616352201258,"subtitle":"Tracing the impact of the generative AI revolution","publishedInCount":1,"usersBySocialRecommends":[],"noIndex":false,"recommends":51,"isBookmarked":false,"tags":[{"slug":"chatgpt","name":"ChatGPT","postCount":108960,"metadata":{"postCount":108960,"coverImage":{"id":"1*Or9pvsgU20ZGhsLnsHPYUA.jpeg","originalWidth":1024,"originalHeight":1024,"isFeatured":true}},"type":"Tag"},{"slug":"gen-ai-revolution","name":"Gen Ai Revolution","postCount":339,"metadata":{"postCount":339,"coverImage":{"id":"0*x2yONxpFFkJFk6b8","originalWidth":6000,"originalHeight":4000,"isFeatured":true,"unsplashPhotoId":"7iq4VEHLNGU"}},"type":"Tag"},{"slug":"llm","name":"Llm","postCount":27765,"metadata":{"postCount":27765,"coverImage":{"id":"1*8yJrgGPFwHBY8lpIFg7ERQ.png","originalWidth":940,"originalHeight":788,"isFeatured":true}},"type":"Tag"},{"slug":"nvidia","name":"Nvidia","postCount":6925,"metadata":{"postCount":6925,"coverImage":{"id":"0*x2yONxpFFkJFk6b8","originalWidth":6000,"originalHeight":4000,"isFeatured":true,"unsplashPhotoId":"7iq4VEHLNGU"}},"type":"Tag"},{"slug":"editors-pick","name":"Editors Pick","postCount":4813,"metadata":{"postCount":4813,"coverImage":{"id":"1*aFX8XyDbU5UCBAEKMEQ-xQ.png","originalWidth":1680,"originalHeight":1232,"isFeatured":true}},"type":"Tag"}],"socialRecommendsCount":0,"responsesCreatedCount":14,"links":{"entries":[{"url":"https://www.anthropic.com/news/3-5-models-and-computer-use","alts":[],"httpStatus":200},{"url":"https://unsplash.com?utm_source=medium&utm_medium=referral","alts":[],"httpStatus":200},{"url":"https://en.wikipedia.org/wiki/Artificial_Intelligence_Act","alts":[],"httpStatus":200},{"url":"https://en.wikipedia.org/wiki/Deep_Blue_versus_Garry_Kasparov","alts":[],"httpStatus":200},{"url":"https://www.bbc.com/news/articles/cq6l241z5mjo","alts":[{"type":1,"url":"https://cdn.ampproject.org/c/s/www.bbc.com/news/articles/cq6l241z5mjo.amp"}],"httpStatus":200},{"url":"https://www.bbc.com/news/articles/cpdlpj9zn9go","alts":[{"type":1,"url":"https://cdn.ampproject.org/c/s/www.bbc.com/news/articles/cpdlpj9zn9go.amp"}],"httpStatus":200},{"url":"https://www.bbc.com/news/articles/cg4yerrg451o","alts":[{"type":1,"url":"https://cdn.ampproject.org/c/s/www.bbc.com/news/articles/cg4yerrg451o.amp"}],"httpStatus":200},{"url":"https://en.wikipedia.org/wiki/Turing_test","alts":[],"httpStatus":200},{"url":"https://www.forbes.com/sites/torconstantino/2024/10/25/openai-reported-to-launch-its-orion-model-in-december---or-maybe-not/","alts":[],"httpStatus":200},{"url":"https://unsplash.com/@shutter_speed_?utm_source=medium&utm_medium=referral","alts":[],"httpStatus":200},{"url":"https://theweek.com/google/959623/googles-bard-ai-chatbot-makes-100bn-mistake","alts":[],"httpStatus":200},{"url":"https://unsplash.com/@freshvanroot?utm_source=medium&utm_medium=referral","alts":[],"httpStatus":200},{"url":"https://unsplash.com/@dkfra19?utm_source=medium&utm_medium=referral","alts":[],"httpStatus":200},{"url":"https://misinforeview.hks.harvard.edu/article/misinformation-reloaded-fears-about-the-impact-of-generative-ai-on-misinformation-are-overblown/","alts":[],"httpStatus":200},{"url":"https://openai.com/index/gpts-are-gpts/","alts":[],"httpStatus":403},{"url":"https://openai.com/o1/","alts":[],"httpStatus":403},{"url":"https://unsplash.com/@vackground?utm_source=medium&utm_medium=referral","alts":[],"httpStatus":200},{"url":"https://www.brennancenter.org/our-work/analysis-opinion/senate-ai-hearings-highlight-increased-need-regulation","alts":[],"httpStatus":200},{"url":"https://x.com/MorningBrew/status/1803814254044139836","alts":[],"httpStatus":200},{"url":"https://arxiv.org/pdf/1706.03762","alts":[],"httpStatus":200},{"url":"https://www.bloomberg.com/news/articles/2024-10-02/ai-can-only-do-5-of-jobs-says-mit-economist-who-fears-crash","alts":[],"httpStatus":200},{"url":"https://www.investors.com/news/sp500-stocks-12-trillion-market-cap-earnings-amazon-apple-google-meta-microsoft/","alts":[],"httpStatus":403},{"url":"https://techcrunch.com/2023/12/07/googles-best-gemini-demo-was-faked/","alts":[],"httpStatus":200},{"url":"https://www.anthropic.com/news/mapping-mind-language-model","alts":[],"httpStatus":200},{"url":"https://www.anthropic.com/news/golden-gate-claude","alts":[],"httpStatus":200},{"url":"https://unsplash.com/@therealnick?utm_source=medium&utm_medium=referral","alts":[],"httpStatus":200},{"url":"https://unsplash.com/@guillaumeperigois?utm_source=medium&utm_medium=referral","alts":[],"httpStatus":200},{"url":"https://www.nber.org/papers/w32966","alts":[],"httpStatus":200},{"url":"https://www.cognition.ai/blog/introducing-devin","alts":[],"httpStatus":200},{"url":"https://unsplash.com/@trisolarian?utm_source=medium&utm_medium=referral","alts":[],"httpStatus":200},{"url":"https://companiesmarketcap.com/","alts":[],"httpStatus":200},{"url":"https://unsplash.com/@paulequay?utm_source=medium&utm_medium=referral","alts":[],"httpStatus":200},{"url":"https://www.youtube.com/watch?v=WXuK6gekU1Y","alts":[],"httpStatus":200},{"url":"https://gitclear-public.s3.us-west-2.amazonaws.com/Coding-on-Copilot-2024-Developer-Research.pdf","alts":[],"httpStatus":200},{"url":"https://www.ft.com/content/4c9b009f-7d33-4975-b4be-a36c714bf1a8","alts":[],"httpStatus":200},{"url":"https://www.youtube.com/watch?v=KSixVG8Z5rQ","alts":[],"httpStatus":200},{"url":"https://www.youtube.com/watch?v=xXCBz_8hM9w","alts":[],"httpStatus":200},{"url":"https://www.youtube.com/watch?v=tNmgmwEtoWE","alts":[],"httpStatus":200},{"url":"https://www.nature.com/articles/d41586-024-03310-8","alts":[],"httpStatus":200},{"url":"https://www.ft.com/content/4c9b009f-7d33-4975-b4be-a36c714bf1a8?utm_source=chatgpt.com","alts":[],"httpStatus":200}],"version":"0.3","generatedAt":1732580284877},"isLockedPreviewOnly":false,"metaDescription":"","totalClapCount":435,"sectionCount":1,"readingList":0,"topics":[{"topicId":"1af65db9c2f8","slug":"artificial-intelligence","createdAt":1487916832419,"deletedAt":0,"image":{"id":"1*A28aHchbaA8zNVXraBq0Ug@2x.jpeg","originalWidth":4866,"originalHeight":3244},"name":"Artificial Intelligence","description":"Born to be bot.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"AI News and Artificial Intelligence Articles — Medium","type":"Topic"},{"topicId":"1eca0103fff3","slug":"machine-learning","createdAt":1534449726145,"deletedAt":0,"image":{"id":"1*gFJS3amhZEg_z39D5EErVg@2x.png","originalWidth":2800,"originalHeight":1750},"name":"Machine Learning","description":"Teaching the learners.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Machine Learning News and Articles — Medium","type":"Topic"},{"topicId":"f862bfc84e38","slug":"technology","createdAt":1487918016768,"deletedAt":0,"image":{"id":"1*XxQLrxqHUlIHg5j-eIQrPQ@2x.png","originalWidth":640,"originalHeight":384},"name":"Technology","description":"The download.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Technology News and Articles — Medium","type":"Topic"}]},"coverless":true,"slug":"chatgpt-two-years-later","translationSourcePostId":"","translationSourceCreatorId":"","isApprovedTranslation":false,"inResponseToPostId":"","inResponseToRemovedAt":0,"isTitleSynthesized":false,"allowResponses":true,"importedUrl":"","importedPublishedAt":0,"visibility":0,"uniqueSlug":"chatgpt-two-years-later-df37b015fd8a","previewContent":{"bodyModel":{"paragraphs":[{"name":"previewImage","type":4,"text":"","layout":10,"metadata":{"id":"0*x2yONxpFFkJFk6b8","originalWidth":6000,"originalHeight":4000,"isFeatured":true,"unsplashPhotoId":"7iq4VEHLNGU"}},{"name":"4670","type":3,"text":"ChatGPT: Two Years Later","markups":[],"alignment":1},{"name":"b413","type":13,"text":"Tracing the impact of the generative AI revolution","markups":[],"alignment":1}],"sections":[{"startIndex":0}]},"isFullContent":false,"subtitle":"Tracing the impact of the generative AI revolution"},"license":0,"inResponseToMediaResourceId":"","canonicalUrl":"","approvedHomeCollectionId":"7f60cf5620c9","isNewsletter":false,"newsletterId":"95c56765262e","webCanonicalUrl":"","mediumUrl":"","migrationId":"","notifyFollowers":true,"notifyTwitter":false,"notifyFacebook":false,"responseHiddenOnParentPostAt":0,"isSeries":false,"isSubscriptionLocked":false,"seriesLastAppendedAt":0,"audioVersionDurationSec":0,"sequenceId":"","isEligibleForRevenue":false,"isBlockedFromHightower":false,"deletedAt":0,"lockedPostSource":0,"hightowerMinimumGuaranteeStartsAt":0,"hightowerMinimumGuaranteeEndsAt":0,"featureLockRequestAcceptedAt":0,"mongerRequestType":1,"layerCake":1,"socialTitle":"","socialDek":"","editorialPreviewTitle":"","editorialPreviewDek":"","curationEligibleAt":0,"primaryTopicId":"1af65db9c2f8","isProxyPost":false,"proxyPostFaviconUrl":"","proxyPostProviderName":"","proxyPostType":0,"isSuspended":false,"isLimitedState":false,"seoTitle":"","previewContent2":{"bodyModel":{"paragraphs":[{"name":"4670","type":3,"text":"ChatGPT: Two Years Later","markups":[]},{"name":"b413","type":13,"text":"Tracing the impact of the generative AI revolution","markups":[]},{"name":"f058","type":4,"text":"Tracing the impact of the generative AI revolution (Photo by vackground.com on Unsplash).","markups":[{"type":3,"start":61,"end":75,"href":"https://unsplash.com/@vackground?utm_source=medium&utm_medium=referral","title":"","rel":"photo-creator","anchorType":0},{"type":3,"start":79,"end":87,"href":"https://unsplash.com?utm_source=medium&utm_medium=referral","title":"","rel":"photo-source","anchorType":0}],"layout":3,"metadata":{"id":"0*x2yONxpFFkJFk6b8","originalWidth":6000,"originalHeight":4000,"isFeatured":true,"unsplashPhotoId":"7iq4VEHLNGU"}},{"name":"1e10","type":3,"text":"Happy birthday, Mr. Chatbot","markups":[]},{"name":"eeea","type":1,"text":"This November 30 marks the second anniversary of ChatGPT’s launch, an event that sent shockwaves through technology, society, and the economy. The space opened by this milestone has not always made it easy — or perhaps even possible — to separate reality from expectations. For example, this year Nvidia became…","markups":[]}],"sections":[{"name":"142b","startIndex":0}]},"isFullContent":false,"subtitle":"Tracing the impact of the generative AI revolution"},"cardType":0,"isDistributionAlertDismissed":false,"isShortform":false,"shortformType":0,"responsesLocked":false,"isLockedResponse":false,"isPublishToEmail":true,"responseDistribution":0,"isMarkedPaywallOnly":false,"type":"Post"},"21e5e961fce1":{"id":"21e5e961fce1","versionId":"1fb7e505bf02","creatorId":"638b9cae9933","homeCollectionId":"7f60cf5620c9","title":"Distributed Decentralized Training of Neural Networks: A Primer","detectedLanguage":"en","latestVersion":"1fb7e505bf02","latestPublishedVersion":"1fb7e505bf02","hasUnpublishedEdits":false,"latestRev":152,"createdAt":1731835351980,"updatedAt":1732072387137,"acceptedAt":0,"firstPublishedAt":1732031649504,"latestPublishedAt":1732031649504,"vote":false,"experimentalCss":"","displayAuthor":"","content":{"subtitle":"Data Parallelism, Butterfly All-Reduce, Gossiping and More…","postDisplay":{"coverless":true}},"virtuals":{"statusForCollection":"APPROVED","allowNotes":true,"previewImage":{"imageId":"1*JXpT8DmKql-GFhhm1kvagA.jpeg","filter":"","backgroundSize":"","originalWidth":0,"originalHeight":0,"strategy":"resample","height":0,"width":0},"wordCount":2108,"imageCount":1,"readingTime":8.154716981132076,"subtitle":"Data Parallelism, Butterfly All-Reduce, Gossiping and More…","publishedInCount":1,"usersBySocialRecommends":[],"noIndex":false,"recommends":91,"isBookmarked":false,"tags":[{"slug":"deep-learning","name":"Deep Learning","postCount":101344,"metadata":{"postCount":101344,"coverImage":{"id":"1*fZNeYeBJCz4ZiJmtxxVv7Q.jpeg","originalWidth":1024,"originalHeight":960}},"type":"Tag"},{"slug":"decentralized-training","name":"Decentralized Training","postCount":3,"metadata":{"postCount":3,"coverImage":{"id":"1*JXpT8DmKql-GFhhm1kvagA.jpeg","isFeatured":true,"alt":"Uploaded Image"}},"type":"Tag"},{"slug":"gpu","name":"Gpu","postCount":5136,"metadata":{"postCount":5136,"coverImage":{"id":"1*scZIHYB7GAg0qbEgKGBe9Q.png","originalWidth":597,"originalHeight":325,"isFeatured":true}},"type":"Tag"},{"slug":"artificial-intelligence","name":"Artificial Intelligence","postCount":458956,"metadata":{"postCount":458956,"coverImage":{"id":"1*gAn_BSffVBcwCIR6bDgK1g.jpeg"}},"type":"Tag"},{"slug":"editors-pick","name":"Editors Pick","postCount":4813,"metadata":{"postCount":4813,"coverImage":{"id":"1*aFX8XyDbU5UCBAEKMEQ-xQ.png","originalWidth":1680,"originalHeight":1232,"isFeatured":true}},"type":"Tag"}],"socialRecommendsCount":0,"responsesCreatedCount":19,"links":{"entries":[{"url":"https://lilianweng.github.io/posts/2021-09-25-train-large/","alts":[],"httpStatus":200},{"url":"https://arxiv.org/abs/2311.08105","alts":[],"httpStatus":200},{"url":"https://arxiv.org/abs/2407.07852","alts":[],"httpStatus":200},{"url":"https://arxiv.org/abs/1602.01783","alts":[],"httpStatus":200},{"url":"https://arxiv.org/abs/2301.11913","alts":[],"httpStatus":200},{"url":"https://www.primeintellect.ai/blog/intellect-1","alts":[],"httpStatus":200},{"url":"https://github.com/PrimeIntellect-ai/prime","alts":[],"httpStatus":200},{"url":"https://openreview.net/pdf?id=cwWfDHYpb1z","alts":[],"httpStatus":200},{"url":"https://github.com/learning-at-home/hivemind","alts":[],"httpStatus":200},{"url":"https://graphics.stanford.edu/courses/cs321/Private/Readings/boyd-gossip.pdf","alts":[],"httpStatus":200},{"url":"https://github.com/PrimeIntellect-ai/OpenDiLoCo","alts":[],"httpStatus":200},{"url":"https://people.eecs.berkeley.edu/~jfc/papers/13/butterflymixing.pdf","alts":[],"httpStatus":200},{"url":"https://proceedings.neurips.cc/paper_files/paper/2011/file/218a0aefd1d1a4be65601cc6ddc1520e-Paper.pdf","alts":[],"httpStatus":0}],"version":"0.3","generatedAt":1732031659673},"isLockedPreviewOnly":false,"metaDescription":"","totalClapCount":537,"sectionCount":1,"readingList":0,"topics":[{"topicId":"1af65db9c2f8","slug":"artificial-intelligence","createdAt":1487916832419,"deletedAt":0,"image":{"id":"1*A28aHchbaA8zNVXraBq0Ug@2x.jpeg","originalWidth":4866,"originalHeight":3244},"name":"Artificial Intelligence","description":"Born to be bot.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"AI News and Artificial Intelligence Articles — Medium","type":"Topic"},{"topicId":"1eca0103fff3","slug":"machine-learning","createdAt":1534449726145,"deletedAt":0,"image":{"id":"1*gFJS3amhZEg_z39D5EErVg@2x.png","originalWidth":2800,"originalHeight":1750},"name":"Machine Learning","description":"Teaching the learners.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Machine Learning News and Articles — Medium","type":"Topic"},{"topicId":"ae5d4995e225","slug":"data-science","createdAt":1493923906289,"deletedAt":0,"image":{"id":"1*NHWOEki_ncCX-xzbKtkEWw@2x.jpeg","originalWidth":5760,"originalHeight":3840},"name":"Data Science","description":"Query this.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Data Science News and Articles — Medium","type":"Topic"}]},"coverless":true,"slug":"distributed-decentralized-training-of-neural-networks-a-primer","translationSourcePostId":"","translationSourceCreatorId":"","isApprovedTranslation":false,"inResponseToPostId":"","inResponseToRemovedAt":0,"isTitleSynthesized":false,"allowResponses":true,"importedUrl":"","importedPublishedAt":0,"visibility":2,"uniqueSlug":"distributed-decentralized-training-of-neural-networks-a-primer-21e5e961fce1","previewContent":{"bodyModel":{"paragraphs":[{"name":"previewImage","type":4,"text":"","layout":10,"metadata":{"id":"1*JXpT8DmKql-GFhhm1kvagA.jpeg","isFeatured":true,"alt":"Uploaded Image"}},{"name":"8fe3","type":3,"text":"Distributed Decentralized Training of Neural Networks: A Primer","markups":[],"alignment":1}],"sections":[{"startIndex":0}]},"isFullContent":false,"subtitle":"Data Parallelism, Butterfly All-Reduce, Gossiping and More…"},"license":0,"inResponseToMediaResourceId":"","canonicalUrl":"","approvedHomeCollectionId":"7f60cf5620c9","isNewsletter":false,"newsletterId":"eebedfb65026","webCanonicalUrl":"","mediumUrl":"","migrationId":"","notifyFollowers":true,"notifyTwitter":false,"notifyFacebook":false,"responseHiddenOnParentPostAt":0,"isSeries":false,"isSubscriptionLocked":true,"seriesLastAppendedAt":0,"audioVersionDurationSec":0,"sequenceId":"","isEligibleForRevenue":true,"isBlockedFromHightower":false,"deletedAt":0,"lockedPostSource":1,"hightowerMinimumGuaranteeStartsAt":0,"hightowerMinimumGuaranteeEndsAt":0,"featureLockRequestAcceptedAt":0,"mongerRequestType":1,"layerCake":1,"socialTitle":"","socialDek":"","editorialPreviewTitle":"","editorialPreviewDek":"","curationEligibleAt":1731836366756,"primaryTopicId":"ae5d4995e225","isProxyPost":false,"proxyPostFaviconUrl":"","proxyPostProviderName":"","proxyPostType":0,"isSuspended":false,"isLimitedState":false,"seoTitle":"","previewContent2":{"bodyModel":{"paragraphs":[{"name":"8fe3","type":3,"text":"Distributed Decentralized Training of Neural Networks: A Primer","markups":[]},{"name":"1044","type":11,"text":"Audio transcript of the blog. (Generated by OpenAI's Text-To-Speech API)","markups":[],"layout":1,"iframe":{"mediaResourceId":"1b0f75220bdb1904ad1b9df6b8ec1ff1","iframeWidth":800,"iframeHeight":166,"thumbnailUrl":"https://i.embed.ly/1/image?url=https%3A%2F%2Fi1.sndcdn.com%2Fartworks-ruPvOzDcA2hayfaj-zeyTuA-t500x500.jpg&key=a19fcc184b9711e1b4764040d3dc5c07"}},{"name":"c895","type":1,"text":"As artificial intelligence advances, training large-scale neural networks, including large language models, has become increasingly critical. The growing size and complexity of these models not only elevate the costs and energy requirements associated with training but also highlight the necessity…","markups":[]}],"sections":[{"name":"edc8","startIndex":0}]},"isFullContent":false,"subtitle":"Data Parallelism, Butterfly All-Reduce, Gossiping and More…"},"cardType":0,"isDistributionAlertDismissed":false,"isShortform":false,"shortformType":0,"responsesLocked":false,"isLockedResponse":false,"isPublishToEmail":true,"responseDistribution":0,"isMarkedPaywallOnly":false,"type":"Post"},"bdcaaf940fbb":{"id":"bdcaaf940fbb","versionId":"c4eb87862558","creatorId":"4267d9884285","homeCollectionId":"7f60cf5620c9","title":"Of LLMs, Gradients, and Quantum Mechanics","detectedLanguage":"en","latestVersion":"c4eb87862558","latestPublishedVersion":"c4eb87862558","hasUnpublishedEdits":false,"latestRev":2163,"createdAt":1731087321972,"updatedAt":1731913019988,"acceptedAt":0,"firstPublishedAt":1731431124023,"latestPublishedAt":1731694111942,"vote":false,"experimentalCss":"","displayAuthor":"","content":{"subtitle":"Can Quantum Computing help improving our ability to train Large Neural Networks encoding language models (LLMs)?","postDisplay":{"coverless":true}},"virtuals":{"statusForCollection":"APPROVED","allowNotes":true,"previewImage":{"imageId":"1*k4jo2Bj4ksUPg3-r7lADCA.jpeg","filter":"","backgroundSize":"","originalWidth":6016,"originalHeight":4016,"strategy":"resample","height":0,"width":0},"wordCount":2779,"imageCount":18,"readingTime":12.13679245283019,"subtitle":"Can Quantum Computing help improving our ability to train Large Neural Networks encoding language models (LLMs)?","publishedInCount":1,"usersBySocialRecommends":[],"noIndex":false,"recommends":26,"isBookmarked":false,"tags":[{"slug":"large-language-models","name":"Large Language Models","postCount":15001,"metadata":{"postCount":15001,"coverImage":{"id":"1*TRfxFbnLDx9IqpvghpbURA.jpeg","originalWidth":1152,"originalHeight":896,"isFeatured":true}},"type":"Tag"},{"slug":"quantum-computing","name":"Quantum Computing","postCount":14700,"metadata":{"postCount":14700,"coverImage":{"id":"1*vfwf3F-a5uxoeyWOjUIj8g.jpeg","originalWidth":602,"originalHeight":340}},"type":"Tag"},{"slug":"neural-networks","name":"Neural Networks","postCount":22458,"metadata":{"postCount":22458,"coverImage":{"id":"0*o1fn20Z5x8KXBc9t","originalWidth":4416,"originalHeight":2488,"isFeatured":true,"unsplashPhotoId":"mA29hJXQHGs"}},"type":"Tag"},{"slug":"machine-learning","name":"Machine Learning","postCount":354532,"metadata":{"postCount":354532,"coverImage":{"id":"1*8yJrgGPFwHBY8lpIFg7ERQ.png","originalWidth":940,"originalHeight":788,"isFeatured":true}},"type":"Tag"},{"slug":"editors-pick","name":"Editors Pick","postCount":4813,"metadata":{"postCount":4813,"coverImage":{"id":"1*aFX8XyDbU5UCBAEKMEQ-xQ.png","originalWidth":1680,"originalHeight":1232,"isFeatured":true}},"type":"Tag"}],"socialRecommendsCount":0,"responsesCreatedCount":4,"links":{"entries":[{"url":"https://en.wikipedia.org/wiki/Softmax_function","alts":[],"httpStatus":200},{"url":"https://en.wikipedia.org/wiki/Kernel_density_estimation","alts":[],"httpStatus":200},{"url":"https://www.geeksforgeeks.org/what-is-fully-connected-layer-in-deep-learning/","alts":[],"httpStatus":200},{"url":"https://www.geeksforgeeks.org/supervised-unsupervised-learning/","alts":[],"httpStatus":200},{"url":"https://en.wikipedia.org/wiki/Quantum_computing","alts":[],"httpStatus":200},{"url":"https://en.wikipedia.org/wiki/Monotonic_function","alts":[],"httpStatus":200},{"url":"https://en.wikipedia.org/wiki/General_covariance","alts":[],"httpStatus":200},{"url":"https://aws.amazon.com/what-is/autoregressive-models/","alts":[],"httpStatus":200},{"url":"https://en.wikipedia.org/wiki/Quantum_tunnelling","alts":[],"httpStatus":200},{"url":"https://en.wikipedia.org/wiki/Classical_limit","alts":[],"httpStatus":200},{"url":"https://en.wikipedia.org/wiki/Differentiable_function","alts":[],"httpStatus":200},{"url":"https://www.datacamp.com/tutorial/loss-function-in-machine-learning","alts":[],"httpStatus":403},{"url":"https://en.wikipedia.org/wiki/Neural_network_(machine_learning)","alts":[],"httpStatus":200},{"url":"https://en.wikipedia.org/wiki/Covariance_and_contravariance_of_vectors","alts":[],"httpStatus":200},{"url":"https://en.wikipedia.org/wiki/GPT-4","alts":[],"httpStatus":200},{"url":"https://en.wikipedia.org/wiki/Fubini%E2%80%93Study_metric","alts":[],"httpStatus":200},{"url":"https://en.wikipedia.org/wiki/Fisher_information","alts":[],"httpStatus":200},{"url":"https://en.wikipedia.org/wiki/Block_matrix","alts":[],"httpStatus":200},{"url":"https://en.wikipedia.org/wiki/Covariance","alts":[],"httpStatus":200},{"url":"https://aws.amazon.com/what-is/gpt","alts":[],"httpStatus":200},{"url":"https://en.wikipedia.org/wiki/General_relativity#Definition_and_basic_applications","alts":[],"httpStatus":200},{"url":"https://en.wikipedia.org/wiki/Large_language_model","alts":[],"httpStatus":200},{"url":"https://arxiv.org/abs/2001.08361","alts":[],"httpStatus":200},{"url":"https://arxiv.org/abs/1909.02108","alts":[],"httpStatus":200},{"url":"https://arxiv.org/abs/2110.06510","alts":[],"httpStatus":200},{"url":"https://arxiv.org/pdf/1909.02108","alts":[],"httpStatus":200},{"url":"https://arxiv.org/pdf/2004.10802","alts":[],"httpStatus":200},{"url":"https://arxiv.org/pdf/2001.08361","alts":[],"httpStatus":200},{"url":"https://pennylane.ai/qml/demos/tutorial_quantum_natural_gradient/","alts":[],"httpStatus":200},{"url":"https://pennylane.ai/qml/glossary/variational_circuit/","alts":[],"httpStatus":200},{"url":"https://arxiv.org/pdf/2406.05295","alts":[],"httpStatus":200},{"url":"https://en.wikipedia.org/wiki/Quantum_entanglement","alts":[],"httpStatus":200},{"url":"https://docs.pennylane.ai/en/stable/code/api/pennylane.QNGOptimizer.html#pennylane.QNGOptimizer","alts":[],"httpStatus":200},{"url":"https://pmc.ncbi.nlm.nih.gov/articles/PMC11228526/","alts":[],"httpStatus":200},{"url":"https://towardsdatascience.com/a-quick-guide-to-cross-entropy-loss-function-8f3410ec6ab1?source=your_stories_page-------------------------------------","alts":[{"type":3,"url":"medium://p/8f3410ec6ab1"},{"type":2,"url":"medium://p/8f3410ec6ab1"}],"httpStatus":200},{"url":"https://www.its.caltech.edu/~daw/papers/98-Wage2.pdf","alts":[],"httpStatus":200},{"url":"https://www.robots.ox.ac.uk/~lsgs/posts/2019-09-27-info-geom.html","alts":[],"httpStatus":200},{"url":"https://www.nature.com/articles/s41467-018-07090-4","alts":[],"httpStatus":200}],"version":"0.3","generatedAt":1731694112974},"isLockedPreviewOnly":false,"metaDescription":"","totalClapCount":130,"sectionCount":1,"readingList":0,"topics":[{"topicId":"1af65db9c2f8","slug":"artificial-intelligence","createdAt":1487916832419,"deletedAt":0,"image":{"id":"1*A28aHchbaA8zNVXraBq0Ug@2x.jpeg","originalWidth":4866,"originalHeight":3244},"name":"Artificial Intelligence","description":"Born to be bot.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"AI News and Artificial Intelligence Articles — Medium","type":"Topic"},{"topicId":"1eca0103fff3","slug":"machine-learning","createdAt":1534449726145,"deletedAt":0,"image":{"id":"1*gFJS3amhZEg_z39D5EErVg@2x.png","originalWidth":2800,"originalHeight":1750},"name":"Machine Learning","description":"Teaching the learners.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Machine Learning News and Articles — Medium","type":"Topic"},{"topicId":"9ff4c9770e22","slug":"science","createdAt":1490119357713,"deletedAt":0,"image":{"id":"1*A6TotBcTdB2v0-WzLx6nOQ@2x.jpeg","originalWidth":5184,"originalHeight":3456},"name":"Science","description":"Of rocks and rockets.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Science Articles and News — Medium","type":"Topic"},{"topicId":"ae5d4995e225","slug":"data-science","createdAt":1493923906289,"deletedAt":0,"image":{"id":"1*NHWOEki_ncCX-xzbKtkEWw@2x.jpeg","originalWidth":5760,"originalHeight":3840},"name":"Data Science","description":"Query this.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Data Science News and Articles — Medium","type":"Topic"}]},"coverless":true,"slug":"of-llms-gradients-and-quantum-mechanics","translationSourcePostId":"","translationSourceCreatorId":"","isApprovedTranslation":false,"inResponseToPostId":"","inResponseToRemovedAt":0,"isTitleSynthesized":true,"allowResponses":true,"importedUrl":"","importedPublishedAt":0,"visibility":2,"uniqueSlug":"of-llms-gradients-and-quantum-mechanics-bdcaaf940fbb","previewContent":{"bodyModel":{"paragraphs":[{"name":"previewImage","type":4,"text":"","layout":10,"metadata":{"id":"1*k4jo2Bj4ksUPg3-r7lADCA.jpeg","originalWidth":6016,"originalHeight":4016,"isFeatured":true}},{"name":"ac82","type":3,"text":"Of LLMs, Gradients, and Quantum Mechanics","markups":[],"alignment":1},{"name":"7606","type":13,"text":"Can Quantum Computing help improving our ability to train…","markups":[],"alignment":1}],"sections":[{"startIndex":0}]},"isFullContent":false,"subtitle":"Can Quantum Computing help improving our ability to train Large Neural Networks encoding language models (LLMs)?"},"license":0,"inResponseToMediaResourceId":"","canonicalUrl":"","approvedHomeCollectionId":"7f60cf5620c9","isNewsletter":false,"newsletterId":"404dbdc9b986","webCanonicalUrl":"","mediumUrl":"","migrationId":"","notifyFollowers":true,"notifyTwitter":false,"notifyFacebook":false,"responseHiddenOnParentPostAt":0,"isSeries":false,"isSubscriptionLocked":true,"seriesLastAppendedAt":0,"audioVersionDurationSec":0,"sequenceId":"","isEligibleForRevenue":true,"isBlockedFromHightower":false,"deletedAt":0,"lockedPostSource":1,"hightowerMinimumGuaranteeStartsAt":0,"hightowerMinimumGuaranteeEndsAt":0,"featureLockRequestAcceptedAt":0,"mongerRequestType":1,"layerCake":1,"socialTitle":"","socialDek":"","editorialPreviewTitle":"","editorialPreviewDek":"","curationEligibleAt":1731431122938,"primaryTopicId":"1eca0103fff3","isProxyPost":false,"proxyPostFaviconUrl":"","proxyPostProviderName":"","proxyPostType":0,"isSuspended":false,"isLimitedState":false,"seoTitle":"","previewContent2":{"bodyModel":{"paragraphs":[{"name":"ac82","type":3,"text":"Of LLMs, Gradients, and Quantum Mechanics","markups":[]},{"name":"7606","type":13,"text":"Can Quantum Computing help improving our ability to train Large Neural Networks encoding language models (LLMs)?","markups":[]},{"name":"54ca","type":4,"text":"Photo by Alessio Soggetti (@asoggetti) from Unsplash.com","markups":[],"layout":1,"metadata":{"id":"1*k4jo2Bj4ksUPg3-r7lADCA.jpeg","originalWidth":6016,"originalHeight":4016,"isFeatured":true}},{"name":"149a","type":13,"text":"What is “training”?","markups":[]},{"name":"7219","type":1,"text":"In the lingo of Artificial Intelligence (AI) studies, “training” means optimizing a statistical model, often implemented as a neural network, to make predictions based on some input data and a measure of how good these predictions are (“cost” or “loss” function). There are three main paradigms in which such procedure…","markups":[{"type":3,"start":126,"end":140,"href":"https://en.wikipedia.org/wiki/Neural_network_(machine_learning)","title":"","rel":"noopener","anchorType":0},{"type":3,"start":280,"end":294,"href":"https://www.geeksforgeeks.org/supervised-unsupervised-learning/","title":"","rel":"noopener","anchorType":0},{"type":3,"start":363,"end":377,"href":"https://aws.amazon.com/what-is/autoregressive-models/","title":"","rel":"noopener","anchorType":0},{"type":1,"start":411,"end":421},{"type":1,"start":576,"end":588},{"type":1,"start":764,"end":777},{"type":2,"start":96,"end":101},{"type":2,"start":331,"end":341},{"type":2,"start":343,"end":355},{"type":2,"start":384,"end":397},{"type":2,"start":530,"end":534},{"type":2,"start":709,"end":713}]}],"sections":[{"name":"6baa","startIndex":0}]},"isFullContent":false,"subtitle":"Can Quantum Computing help improving our ability to train Large Neural Networks encoding language models (LLMs)?"},"cardType":0,"isDistributionAlertDismissed":false,"isShortform":false,"shortformType":0,"responsesLocked":false,"isLockedResponse":false,"isPublishToEmail":true,"responseDistribution":0,"isMarkedPaywallOnly":false,"type":"Post"},"7dfeec78f2a2":{"id":"7dfeec78f2a2","versionId":"7c3b03459417","creatorId":"1c040843e458","homeCollectionId":"7f60cf5620c9","title":"Feature Engineering Techniques for Healthcare Data Analysis — Part I.","detectedLanguage":"en","latestVersion":"7c3b03459417","latestPublishedVersion":"7c3b03459417","hasUnpublishedEdits":false,"latestRev":2611,"createdAt":1730884993724,"updatedAt":1732086673628,"acceptedAt":0,"firstPublishedAt":1731675766244,"latestPublishedAt":1731934198311,"vote":false,"experimentalCss":"","displayAuthor":"","content":{"subtitle":"Feature engineering techniques for healthcare data analysis, focusing on real-world challenges and practical solutions.","postDisplay":{"coverless":true}},"virtuals":{"statusForCollection":"APPROVED","allowNotes":true,"previewImage":{"imageId":"0*-myVMqAbgTVn8lT_","filter":"","backgroundSize":"","originalWidth":4475,"originalHeight":2983,"strategy":"resample","height":0,"width":0},"wordCount":9205,"imageCount":39,"readingTime":37.43584905660378,"subtitle":"Feature engineering techniques for healthcare data analysis, focusing on real-world challenges and practical solutions.","publishedInCount":1,"usersBySocialRecommends":[],"noIndex":false,"recommends":57,"isBookmarked":false,"tags":[{"slug":"data-science","name":"Data Science","postCount":347124,"metadata":{"postCount":347124,"coverImage":{"id":"1*Yajp0Wd7P8zjtA4D5uWZ7Q.jpeg","originalWidth":640,"originalHeight":425}},"type":"Tag"},{"slug":"programming","name":"Programming","postCount":448088,"metadata":{"postCount":448088,"coverImage":{"id":"1*t5dwn8IabnCdEpoO-6Toog.png","originalWidth":1920,"originalHeight":1080,"isFeatured":true,"alt":"Kubernetes"}},"type":"Tag"},{"slug":"editors-pick","name":"Editors Pick","postCount":4813,"metadata":{"postCount":4813,"coverImage":{"id":"1*aFX8XyDbU5UCBAEKMEQ-xQ.png","originalWidth":1680,"originalHeight":1232,"isFeatured":true}},"type":"Tag"},{"slug":"healthcare-data","name":"Healthcare Data","postCount":250,"metadata":{"postCount":250,"coverImage":{"id":"0*-myVMqAbgTVn8lT_","originalWidth":4475,"originalHeight":2983,"isFeatured":true,"unsplashPhotoId":"U4FyCp3-KzY"}},"type":"Tag"},{"slug":"feature-engineering","name":"Feature Engineering","postCount":2741,"metadata":{"postCount":2741,"coverImage":{"id":"0*kaHUryj3uots4rpZ","originalWidth":4416,"originalHeight":2488,"isFeatured":true,"unsplashPhotoId":"IeoTsrwBmp4"}},"type":"Tag"}],"socialRecommendsCount":0,"responsesCreatedCount":2,"links":{"entries":[{"url":"https://unsplash.com?utm_source=medium&utm_medium=referral","alts":[],"httpStatus":200},{"url":"https://www.cms.gov/medicare/quality/value-based-programs/hospital-readmissions","alts":[],"httpStatus":200},{"url":"https://github.com/Anello92/feature-engineering-techniques-python","alts":[],"httpStatus":200},{"url":"https://www.linkedin.com/in/anello92/","alts":[],"httpStatus":999},{"url":"https://unsplash.com/@gpiron?utm_source=medium&utm_medium=referral","alts":[],"httpStatus":200},{"url":"https://archive.ics.uci.edu/dataset/296/diabetes+130-us+hospitals+for+years+1999-2008","alts":[],"httpStatus":200}],"version":"0.3","generatedAt":1731934202581},"isLockedPreviewOnly":false,"metaDescription":"","totalClapCount":311,"sectionCount":3,"readingList":0,"topics":[{"topicId":"1eca0103fff3","slug":"machine-learning","createdAt":1534449726145,"deletedAt":0,"image":{"id":"1*gFJS3amhZEg_z39D5EErVg@2x.png","originalWidth":2800,"originalHeight":1750},"name":"Machine Learning","description":"Teaching the learners.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Machine Learning News and Articles — Medium","type":"Topic"},{"topicId":"ae5d4995e225","slug":"data-science","createdAt":1493923906289,"deletedAt":0,"image":{"id":"1*NHWOEki_ncCX-xzbKtkEWw@2x.jpeg","originalWidth":5760,"originalHeight":3840},"name":"Data Science","description":"Query this.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Data Science News and Articles — Medium","type":"Topic"},{"topicId":"d61cf867d93f","slug":"health","createdAt":1493930296516,"deletedAt":0,"image":{"id":"1*sDLqtash5p_3dq8wlztLaQ@2x.jpeg","originalWidth":1997,"originalHeight":3000},"name":"Health","description":"Body talk.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Health Articles and News — Medium","type":"Topic"},{"topicId":"decb52b64abf","slug":"programming","createdAt":1493934116328,"deletedAt":0,"image":{"id":"1*iPa136b1cGEO7lvoXg6uHQ@2x.jpeg","originalWidth":6016,"originalHeight":4016},"name":"Programming","description":"The good, the bad, the buggy.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Programming News and Articles — Medium","type":"Topic"}]},"coverless":true,"slug":"feature-engineering-techniques-for-healthcare-data-analysis-part-i","translationSourcePostId":"","translationSourceCreatorId":"","isApprovedTranslation":false,"inResponseToPostId":"","inResponseToRemovedAt":0,"isTitleSynthesized":false,"allowResponses":true,"importedUrl":"","importedPublishedAt":0,"visibility":2,"uniqueSlug":"feature-engineering-techniques-for-healthcare-data-analysis-part-i-7dfeec78f2a2","previewContent":{"bodyModel":{"paragraphs":[{"name":"previewImage","type":4,"text":"","layout":10,"metadata":{"id":"0*-myVMqAbgTVn8lT_","originalWidth":4475,"originalHeight":2983,"isFeatured":true,"unsplashPhotoId":"U4FyCp3-KzY"}},{"name":"previewTitle","type":3,"text":"Feature Engineering Techniques for Healthcare Data Analysis — Part I.","alignment":1},{"name":"previewSubtitle","type":13,"text":"Feature engineering techniques…","alignment":1}],"sections":[{"startIndex":0}]},"isFullContent":false,"subtitle":"Feature engineering techniques for healthcare data analysis, focusing on real-world challenges and practical solutions."},"license":0,"inResponseToMediaResourceId":"","canonicalUrl":"","approvedHomeCollectionId":"7f60cf5620c9","isNewsletter":false,"newsletterId":"32a95843f40e","webCanonicalUrl":"","mediumUrl":"","migrationId":"","notifyFollowers":true,"notifyTwitter":false,"notifyFacebook":false,"responseHiddenOnParentPostAt":0,"isSeries":false,"isSubscriptionLocked":true,"seriesLastAppendedAt":0,"audioVersionDurationSec":0,"sequenceId":"","isEligibleForRevenue":true,"isBlockedFromHightower":false,"deletedAt":0,"lockedPostSource":1,"hightowerMinimumGuaranteeStartsAt":0,"hightowerMinimumGuaranteeEndsAt":0,"featureLockRequestAcceptedAt":0,"mongerRequestType":1,"layerCake":6,"socialTitle":"","socialDek":"","editorialPreviewTitle":"","editorialPreviewDek":"","curationEligibleAt":1732086673487,"primaryTopicId":"ae5d4995e225","isProxyPost":false,"proxyPostFaviconUrl":"","proxyPostProviderName":"","proxyPostType":0,"isSuspended":false,"isLimitedState":false,"seoTitle":" Feature Engineering Techniques | Part I | Leo Anello | Medium","previewContent2":{"bodyModel":{"paragraphs":[{"name":"5aeb","type":3,"text":"Techniques in Feature Engineering:","markups":[]},{"name":"e351","type":13,"text":"Real-World Healthcare Data Challenges — Part I.","markups":[]},{"name":"eb94","type":4,"text":"Photo by Piron Guillaume on Unsplash","markups":[{"type":3,"start":9,"end":24,"href":"https://unsplash.com/@gpiron?utm_source=medium&utm_medium=referral","title":"","rel":"photo-creator","anchorType":0},{"type":3,"start":28,"end":36,"href":"https://unsplash.com?utm_source=medium&utm_medium=referral","title":"","rel":"photo-source","anchorType":0}],"layout":1,"metadata":{"id":"0*-myVMqAbgTVn8lT_","originalWidth":4475,"originalHeight":2983,"isFeatured":true,"unsplashPhotoId":"U4FyCp3-KzY"}},{"name":"1710","type":1,"text":"In this project, we dive into feature engineering for medical data, where precision is essential. This is a comprehensive project that will take you through each phase of data analysis. Enjoy the journey, and don’t miss the recommended resources along the way.","markups":[{"type":1,"start":30,"end":49},{"type":1,"start":54,"end":66}]},{"name":"4329","type":1,"text":"Hospital readmissions — when discharged patients return to…","markups":[{"type":1,"start":0,"end":21},{"type":1,"start":226,"end":239}]}],"sections":[{"name":"2bba","startIndex":0}]},"isFullContent":false,"subtitle":"Feature engineering techniques for healthcare data analysis, focusing on real-world challenges and practical solutions."},"cardType":0,"isDistributionAlertDismissed":false,"isShortform":false,"shortformType":0,"responsesLocked":false,"isLockedResponse":false,"isPublishToEmail":true,"responseDistribution":0,"isMarkedPaywallOnly":false,"type":"Post"},"17aa54fd5e4e":{"id":"17aa54fd5e4e","versionId":"1b8ac339629e","creatorId":"e7e9224fe265","homeCollectionId":"7f60cf5620c9","title":"Successful AI Ethics & Governance at Scale: Bridging The Organizational and Implementation Gaps","detectedLanguage":"en","latestVersion":"1b8ac339629e","latestPublishedVersion":"1b8ac339629e","hasUnpublishedEdits":false,"latestRev":1179,"createdAt":1729920057918,"updatedAt":1731947816227,"acceptedAt":0,"firstPublishedAt":1731561698386,"latestPublishedAt":1731947816227,"vote":false,"experimentalCss":"","displayAuthor":"","content":{"subtitle":"The road from ethics to executives winds through lawyers and LLMs","postDisplay":{"coverless":true}},"virtuals":{"statusForCollection":"APPROVED","allowNotes":true,"previewImage":{"imageId":"1*-OqpKO96l09Gzb4qwsAiDA.jpeg","filter":"","backgroundSize":"","originalWidth":5388,"originalHeight":3462,"strategy":"resample","height":0,"width":0},"wordCount":2114,"imageCount":1,"readingTime":8.177358490566037,"subtitle":"The road from ethics to executives winds through lawyers and LLMs","publishedInCount":1,"usersBySocialRecommends":[],"noIndex":false,"recommends":7,"isBookmarked":false,"tags":[{"slug":"ai-ethics","name":"Ai Ethics","postCount":3102,"metadata":{"postCount":3102,"coverImage":{"id":"1*5WRrPojT4lKCcWZqCiiwkg.jpeg","originalWidth":3500,"originalHeight":2333,"isFeatured":true}},"type":"Tag"},{"slug":"ai-governance","name":"Ai Governance","postCount":668,"metadata":{"postCount":668,"coverImage":{"id":"1*65_Z75c2tnLQOCfPT80pLA.png","originalWidth":956,"originalHeight":898,"isFeatured":true}},"type":"Tag"},{"slug":"explainable-ai","name":"Explainable Ai","postCount":2079,"metadata":{"postCount":2079,"coverImage":{"id":"1*ncfjCpCN8XqYBj7wyZziow.png","originalWidth":1500,"originalHeight":850,"isFeatured":true}},"type":"Tag"},{"slug":"editors-pick","name":"Editors Pick","postCount":4813,"metadata":{"postCount":4813,"coverImage":{"id":"1*aFX8XyDbU5UCBAEKMEQ-xQ.png","originalWidth":1680,"originalHeight":1232,"isFeatured":true}},"type":"Tag"},{"slug":"artificial-intelligence","name":"Artificial Intelligence","postCount":458956,"metadata":{"postCount":458956,"coverImage":{"id":"1*gAn_BSffVBcwCIR6bDgK1g.jpeg"}},"type":"Tag"}],"socialRecommendsCount":0,"responsesCreatedCount":2,"links":{"entries":[{"url":"http://Munn, L. The uselessness of AI ethics. AI Ethics 3, 869–877 (2023). https://doi.org/10.1007/s43681-022-00209-w","alts":[],"httpStatus":0},{"url":"https://www.idc.com/getdoc.jsp?containerId=prUS52530724","alts":[],"httpStatus":403},{"url":"https://www.weforum.org/stories/2023/06/how-to-regulate-ai-without-stifling-innovation/","alts":[],"httpStatus":403},{"url":"https://doi.org/10.1007/s43681-022-00209-w","alts":[],"httpStatus":200},{"url":"https://doi.org/10.1007/s00146-021-01148-6","alts":[],"httpStatus":200},{"url":"https://doi.org/10.1007/s11023-020-09517-8","alts":[],"httpStatus":200},{"url":"https://towardsdatascience.com/successful-ai-ethics-governance-at-scale-bridging-the-interpretation-gap-a8249b547e62","alts":[{"type":3,"url":"medium://p/a8249b547e62"},{"type":2,"url":"medium://p/a8249b547e62"}],"httpStatus":200},{"url":"https://www.freepik.com/free-photo/business-people-connected-by-strings_18416447.htm#fromView=search&page=3&position=6&uuid=82bead65-1603-45e8-aeb3-69c549581ac8","alts":[],"httpStatus":200},{"url":"https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206","alts":[],"httpStatus":200}],"version":"0.3","generatedAt":1731947818106},"isLockedPreviewOnly":false,"metaDescription":"","totalClapCount":17,"sectionCount":1,"readingList":0,"topics":[{"topicId":"1af65db9c2f8","slug":"artificial-intelligence","createdAt":1487916832419,"deletedAt":0,"image":{"id":"1*A28aHchbaA8zNVXraBq0Ug@2x.jpeg","originalWidth":4866,"originalHeight":3244},"name":"Artificial Intelligence","description":"Born to be bot.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"AI News and Artificial Intelligence Articles — Medium","type":"Topic"},{"topicId":"1eca0103fff3","slug":"machine-learning","createdAt":1534449726145,"deletedAt":0,"image":{"id":"1*gFJS3amhZEg_z39D5EErVg@2x.png","originalWidth":2800,"originalHeight":1750},"name":"Machine Learning","description":"Teaching the learners.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Machine Learning News and Articles — Medium","type":"Topic"}]},"coverless":true,"slug":"successful-ai-ethics-governance-at-scale-bridging-the-organizational-and-implementation-gaps","translationSourcePostId":"","translationSourceCreatorId":"","isApprovedTranslation":false,"inResponseToPostId":"","inResponseToRemovedAt":0,"isTitleSynthesized":false,"allowResponses":true,"importedUrl":"","importedPublishedAt":0,"visibility":2,"uniqueSlug":"successful-ai-ethics-governance-at-scale-bridging-the-organizational-and-implementation-gaps-17aa54fd5e4e","previewContent":{"bodyModel":{"paragraphs":[{"name":"previewImage","type":4,"text":"","layout":10,"metadata":{"id":"1*-OqpKO96l09Gzb4qwsAiDA.jpeg","originalWidth":5388,"originalHeight":3462,"isFeatured":true,"alt":"Five business people connected by string"}},{"name":"34f6","type":3,"text":"Successful AI Ethics & Governance at Scale: Bridging The Organizational and Implementation Gaps","markups":[],"alignment":1}],"sections":[{"startIndex":0}]},"isFullContent":false,"subtitle":"The road from ethics to executives winds through lawyers and LLMs"},"license":0,"inResponseToMediaResourceId":"","canonicalUrl":"","approvedHomeCollectionId":"7f60cf5620c9","isNewsletter":false,"newsletterId":"8fbcd9d6675b","webCanonicalUrl":"","mediumUrl":"","migrationId":"","notifyFollowers":true,"notifyTwitter":false,"notifyFacebook":false,"responseHiddenOnParentPostAt":0,"isSeries":false,"isSubscriptionLocked":true,"seriesLastAppendedAt":0,"audioVersionDurationSec":0,"sequenceId":"","isEligibleForRevenue":true,"isBlockedFromHightower":false,"deletedAt":0,"lockedPostSource":1,"hightowerMinimumGuaranteeStartsAt":0,"hightowerMinimumGuaranteeEndsAt":0,"featureLockRequestAcceptedAt":0,"mongerRequestType":1,"layerCake":6,"socialTitle":"","socialDek":"","editorialPreviewTitle":"","editorialPreviewDek":"","curationEligibleAt":1731304235465,"primaryTopicId":"1af65db9c2f8","isProxyPost":false,"proxyPostFaviconUrl":"","proxyPostProviderName":"","proxyPostType":0,"isSuspended":false,"isLimitedState":false,"seoTitle":"","previewContent2":{"bodyModel":{"paragraphs":[{"name":"34f6","type":3,"text":"Successful AI Ethics & Governance at Scale: Bridging The Organizational and Implementation Gaps","markups":[]},{"name":"a676","type":13,"text":"The road from ethics to executives winds through lawyers and LLMs","markups":[]},{"name":"0387","type":4,"text":"Designed by Freepik","markups":[{"type":3,"start":12,"end":19,"href":"https://www.freepik.com/free-photo/business-people-connected-by-strings_18416447.htm#fromView=search&page=3&position=6&uuid=82bead65-1603-45e8-aeb3-69c549581ac8","title":"","rel":"","anchorType":0}],"layout":3,"metadata":{"id":"1*-OqpKO96l09Gzb4qwsAiDA.jpeg","originalWidth":5388,"originalHeight":3462,"isFeatured":true,"alt":"Five business people connected by string"}},{"name":"0c63","type":1,"text":"When it comes to AI governance, what do the world’s largest AI companies, the world’s smartest AI academics, and the world’s most famous consulting firms have in common?","markups":[]},{"name":"170d","type":1,"text":"None of them are responsible for actually making it work in your company.","markups":[]},{"name":"c61d","type":1,"text":"This is part 2 of a series on successful…","markups":[{"type":3,"start":103,"end":153,"href":"https://towardsdatascience.com/successful-ai-ethics-governance-at-scale-bridging-the-interpretation-gap-a8249b547e62","title":"","rel":"","anchorType":0}]}],"sections":[{"name":"a451","startIndex":0}]},"isFullContent":false,"subtitle":"The road from ethics to executives winds through lawyers and LLMs"},"cardType":0,"isDistributionAlertDismissed":false,"isShortform":false,"shortformType":0,"responsesLocked":false,"isLockedResponse":false,"isPublishToEmail":true,"responseDistribution":0,"isMarkedPaywallOnly":false,"type":"Post"},"c292ec0747db":{"id":"c292ec0747db","versionId":"af0805719ce8","creatorId":"6b453743a21c","homeCollectionId":"7f60cf5620c9","title":"Can You Tell Free Python Art from Multi-Million Dollar Pieces?","detectedLanguage":"en","latestVersion":"af0805719ce8","latestPublishedVersion":"af0805719ce8","hasUnpublishedEdits":false,"latestRev":1954,"createdAt":1728038161038,"updatedAt":1731621101749,"acceptedAt":0,"firstPublishedAt":1731502931900,"latestPublishedAt":1731621101749,"vote":false,"experimentalCss":"","displayAuthor":"","content":{"subtitle":"Follow along for a Python generative art tutorial, inspired by Piet Mondrian and Josef Albers. From Code to Canvas, Part I.","postDisplay":{"coverless":true}},"virtuals":{"statusForCollection":"APPROVED","allowNotes":true,"previewImage":{"imageId":"1*uCJHMOtnbJerV4Vvky83cQ.png","filter":"","backgroundSize":"","originalWidth":4032,"originalHeight":2400,"strategy":"resample","height":0,"width":0},"wordCount":1073,"imageCount":8,"readingTime":5.182389937106919,"subtitle":"Follow along for a Python generative art tutorial, inspired by Piet Mondrian and Josef Albers. From Code to Canvas, Part I.","publishedInCount":1,"usersBySocialRecommends":[],"noIndex":false,"recommends":20,"isBookmarked":false,"tags":[{"slug":"python","name":"Python","postCount":259576,"metadata":{"postCount":259576,"coverImage":{"id":"1*uiA0nCufUQs-K64ebSUhew.jpeg","originalWidth":1280,"originalHeight":800,"isFeatured":true}},"type":"Tag"},{"slug":"data-science","name":"Data Science","postCount":347124,"metadata":{"postCount":347124,"coverImage":{"id":"1*Yajp0Wd7P8zjtA4D5uWZ7Q.jpeg","originalWidth":640,"originalHeight":425}},"type":"Tag"},{"slug":"generative-ai-tools","name":"Generative Ai Tools","postCount":17213,"metadata":{"postCount":17213,"coverImage":{"id":"1*x8AJtp9Saog3IWmvqNs5Gw.png","originalWidth":993,"originalHeight":611,"isFeatured":true}},"type":"Tag"},{"slug":"art","name":"Art","postCount":291094,"metadata":{"postCount":291094,"coverImage":{"id":"1*TFIVCve0PBiRC96eJuOFUw.jpeg"}},"type":"Tag"},{"slug":"editors-pick","name":"Editors Pick","postCount":4813,"metadata":{"postCount":4813,"coverImage":{"id":"1*aFX8XyDbU5UCBAEKMEQ-xQ.png","originalWidth":1680,"originalHeight":1232,"isFeatured":true}},"type":"Tag"}],"socialRecommendsCount":0,"responsesCreatedCount":2,"links":{"entries":[{"url":"https://pypi.org/project/mondrian-maker/#description","alts":[],"httpStatus":200},{"url":"https://unsplash.com/es/@yoyoqua","alts":[],"httpStatus":200},{"url":"https://github.com/BlakeRMills/MetBrewer","alts":[],"httpStatus":200}],"version":"0.3","generatedAt":1731621102274},"isLockedPreviewOnly":false,"metaDescription":"","totalClapCount":185,"sectionCount":2,"readingList":0,"topics":[{"topicId":"1af65db9c2f8","slug":"artificial-intelligence","createdAt":1487916832419,"deletedAt":0,"image":{"id":"1*A28aHchbaA8zNVXraBq0Ug@2x.jpeg","originalWidth":4866,"originalHeight":3244},"name":"Artificial Intelligence","description":"Born to be bot.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"AI News and Artificial Intelligence Articles — Medium","type":"Topic"},{"topicId":"2cdb28854f0c","slug":"art","createdAt":1493946907492,"deletedAt":0,"image":{"id":"1*H2blBoEmzkSusI_a4Bk0dg@2x.jpeg","originalWidth":3888,"originalHeight":2592},"name":"Art","description":"Feast your retinas.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Art News, Articles and Stories — Medium","type":"Topic"},{"topicId":"decb52b64abf","slug":"programming","createdAt":1493934116328,"deletedAt":0,"image":{"id":"1*iPa136b1cGEO7lvoXg6uHQ@2x.jpeg","originalWidth":6016,"originalHeight":4016},"name":"Programming","description":"The good, the bad, the buggy.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Programming News and Articles — Medium","type":"Topic"}]},"coverless":true,"slug":"can-you-tell-free-python-art-from-multi-million-dollar-pieces","translationSourcePostId":"","translationSourceCreatorId":"","isApprovedTranslation":false,"inResponseToPostId":"","inResponseToRemovedAt":0,"isTitleSynthesized":true,"allowResponses":true,"importedUrl":"","importedPublishedAt":0,"visibility":0,"uniqueSlug":"can-you-tell-free-python-art-from-multi-million-dollar-pieces-c292ec0747db","previewContent":{"bodyModel":{"paragraphs":[{"name":"previewImage","type":4,"text":"","layout":10,"metadata":{"id":"1*uCJHMOtnbJerV4Vvky83cQ.png","originalWidth":4032,"originalHeight":2400,"isFeatured":true}},{"name":"8117","type":3,"text":"Can You Tell Free Python Art from Multi-Million Dollar Pieces?","markups":[],"alignment":1},{"name":"b49c","type":13,"text":"Follow along for a Python generative…","markups":[],"alignment":1}],"sections":[{"startIndex":0}]},"isFullContent":false,"subtitle":"Follow along for a Python generative art tutorial, inspired by Piet Mondrian and Josef Albers. From Code to Canvas, Part I."},"license":0,"inResponseToMediaResourceId":"","canonicalUrl":"","approvedHomeCollectionId":"7f60cf5620c9","isNewsletter":false,"newsletterId":"6ef314ed526b","webCanonicalUrl":"","mediumUrl":"","migrationId":"","notifyFollowers":true,"notifyTwitter":false,"notifyFacebook":false,"responseHiddenOnParentPostAt":0,"isSeries":false,"isSubscriptionLocked":false,"seriesLastAppendedAt":0,"audioVersionDurationSec":0,"sequenceId":"","isEligibleForRevenue":false,"isBlockedFromHightower":false,"deletedAt":0,"lockedPostSource":0,"hightowerMinimumGuaranteeStartsAt":0,"hightowerMinimumGuaranteeEndsAt":0,"featureLockRequestAcceptedAt":0,"mongerRequestType":1,"layerCake":6,"socialTitle":"","socialDek":"","editorialPreviewTitle":"","editorialPreviewDek":"","curationEligibleAt":0,"primaryTopicId":"2cdb28854f0c","isProxyPost":false,"proxyPostFaviconUrl":"","proxyPostProviderName":"","proxyPostType":0,"isSuspended":false,"isLimitedState":false,"seoTitle":"","previewContent2":{"bodyModel":{"paragraphs":[{"name":"8117","type":3,"text":"Can You Tell Free Python Art from Multi-Million Dollar Pieces?","markups":[]},{"name":"b49c","type":13,"text":"Follow along for a Python generative art tutorial, inspired by Piet Mondrian and Josef Albers. From Code to Canvas, Part I.","markups":[]},{"name":"32b3","type":4,"text":"Which are the three real pieces? Image created by Author from Ioana Cristiana’s photo. Piet…","markups":[{"type":3,"start":62,"end":79,"href":"https://unsplash.com/es/@yoyoqua","title":"","rel":"","anchorType":0},{"type":1,"start":154,"end":176}],"layout":1,"metadata":{"id":"1*uCJHMOtnbJerV4Vvky83cQ.png","originalWidth":4032,"originalHeight":2400,"isFeatured":true}},{"name":"6db8","type":1,"text":"One of these pieces has been generated by Python and the rest are Piet Mondrian originals. Which one is the odd one out? I’ll give you the answer a few paragraphs down but first I need to tell you why I am using Python for art generation and not a…","markups":[]}],"sections":[{"name":"8245","startIndex":0}]},"isFullContent":false,"subtitle":"Follow along for a Python generative art tutorial, inspired by Piet Mondrian and Josef Albers. From Code to Canvas, Part I."},"cardType":0,"isDistributionAlertDismissed":false,"isShortform":false,"shortformType":0,"responsesLocked":false,"isLockedResponse":false,"isPublishToEmail":true,"responseDistribution":0,"isMarkedPaywallOnly":false,"type":"Post"},"a718748c7fd5":{"id":"a718748c7fd5","versionId":"163b11e8e31a","creatorId":"a743c5fec8cd","homeCollectionId":"7f60cf5620c9","title":"A Bird’s-Eye View of Linear Algebra: Matrix Chain Multiplication","detectedLanguage":"en","latestVersion":"163b11e8e31a","latestPublishedVersion":"163b11e8e31a","hasUnpublishedEdits":false,"latestRev":2855,"createdAt":1729322188689,"updatedAt":1731746267442,"acceptedAt":0,"firstPublishedAt":1731460941113,"latestPublishedAt":1731746267442,"vote":false,"experimentalCss":"","displayAuthor":"","content":{"subtitle":"Linear algebra is the backbone of AI. Matrix multiplication is the fundamental operation of linear algebra. What if there is a whole chain?","postDisplay":{"coverless":true}},"virtuals":{"statusForCollection":"APPROVED","allowNotes":true,"previewImage":{"imageId":"1*bOeUCBUwHK0Eb_PB0M-SLg.png","filter":"","backgroundSize":"","originalWidth":1024,"originalHeight":1024,"strategy":"resample","height":0,"width":0},"wordCount":5344,"imageCount":32,"readingTime":22.516037735849057,"subtitle":"Linear algebra is the backbone of AI. Matrix multiplication is the fundamental operation of linear algebra. What if there is a whole chain?","publishedInCount":1,"usersBySocialRecommends":[],"noIndex":false,"recommends":28,"isBookmarked":false,"tags":[{"slug":"linear-algebra","name":"Linear Algebra","postCount":1917,"metadata":{"postCount":1917,"coverImage":{"id":"1*KNOrQ_sGaFLM4OMm9GoMNA.png","originalWidth":985,"originalHeight":548,"isFeatured":true,"alt":"neural network notation"}},"type":"Tag"},{"slug":"data-science","name":"Data Science","postCount":347124,"metadata":{"postCount":347124,"coverImage":{"id":"1*Yajp0Wd7P8zjtA4D5uWZ7Q.jpeg","originalWidth":640,"originalHeight":425}},"type":"Tag"},{"slug":"neural-networks","name":"Neural Networks","postCount":22458,"metadata":{"postCount":22458,"coverImage":{"id":"0*o1fn20Z5x8KXBc9t","originalWidth":4416,"originalHeight":2488,"isFeatured":true,"unsplashPhotoId":"mA29hJXQHGs"}},"type":"Tag"},{"slug":"machine-learning","name":"Machine Learning","postCount":354532,"metadata":{"postCount":354532,"coverImage":{"id":"1*8yJrgGPFwHBY8lpIFg7ERQ.png","originalWidth":940,"originalHeight":788,"isFeatured":true}},"type":"Tag"},{"slug":"editors-pick","name":"Editors Pick","postCount":4813,"metadata":{"postCount":4813,"coverImage":{"id":"1*aFX8XyDbU5UCBAEKMEQ-xQ.png","originalWidth":1680,"originalHeight":1232,"isFeatured":true}},"type":"Tag"}],"socialRecommendsCount":0,"responsesCreatedCount":2,"links":{"entries":[{"url":"/towards-data-science/a-birds-eye-view-of-linear-algebra-the-basics-29ad2122d98f","alts":[],"httpStatus":0},{"url":"/p/1e5fd752a3be","alts":[],"httpStatus":0},{"url":"/p/fe5b88a57f66","alts":[],"httpStatus":0},{"url":"https://en.wikipedia.org/wiki/Hansel_and_Gretel","alts":[],"httpStatus":200},{"url":"https://math.stackexchange.com/questions/4978156/starting-the-catalan-recurrence-at-1-instead-of-0-leads-to-wrong-result","alts":[],"httpStatus":200},{"url":"https://math.stackexchange.com/questions/3047309/catalan-numbers-why-is-there-a-division-by-n1","alts":[],"httpStatus":200},{"url":"https://en.wikipedia.org/wiki/Binomial_coefficient","alts":[],"httpStatus":200},{"url":"https://math.stackexchange.com/questions/3062462/catalan-numbers-bijection-between-applications-of-a-binary-operator-and-dyck-wo","alts":[],"httpStatus":200},{"url":"https://arxiv.org/abs/2106.09685","alts":[],"httpStatus":200},{"url":"https://math.stackexchange.com/a/4991079/155881","alts":[],"httpStatus":200},{"url":"https://math.stackexchange.com/a/1511332/155881","alts":[],"httpStatus":200},{"url":"https://oeis.org","alts":[],"httpStatus":200},{"url":"https://www.buymeacoffee.com/w045tn0iqw","alts":[],"httpStatus":200},{"url":"https://oeis.org/A000108","alts":[],"httpStatus":200},{"url":"https://www.youtube.com/watch?v=DhRoTONcyZE","alts":[],"httpStatus":200},{"url":"https://towardsdatascience.com/a-birds-eye-view-of-linear-algebra-rank-nullity-and-why-row-rank-equals-column-rank-bc084e0e1075","alts":[{"type":3,"url":"medium://p/bc084e0e1075"},{"type":2,"url":"medium://p/bc084e0e1075"}],"httpStatus":200},{"url":"https://medium.com/towards-data-science/a-birds-eye-view-of-linear-algebra-why-is-matrix-multiplication-like-that-a4d94067651e","alts":[{"type":3,"url":"medium://p/a4d94067651e"},{"type":2,"url":"medium://p/a4d94067651e"}],"httpStatus":200}],"version":"0.3","generatedAt":1731746268603},"isLockedPreviewOnly":false,"metaDescription":"","totalClapCount":260,"sectionCount":1,"readingList":0,"topics":[{"topicId":"1af65db9c2f8","slug":"artificial-intelligence","createdAt":1487916832419,"deletedAt":0,"image":{"id":"1*A28aHchbaA8zNVXraBq0Ug@2x.jpeg","originalWidth":4866,"originalHeight":3244},"name":"Artificial Intelligence","description":"Born to be bot.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"AI News and Artificial Intelligence Articles — Medium","type":"Topic"},{"topicId":"7808efc0cf94","slug":"math","createdAt":1494090780021,"deletedAt":0,"image":{"id":"1*S4y5QE8kNj1Im9dAcGQtOA@2x.jpeg","originalWidth":1800,"originalHeight":1200},"name":"Math","description":"Add it up.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Math News and Articles — Medium","type":"Topic"},{"topicId":"ae5d4995e225","slug":"data-science","createdAt":1493923906289,"deletedAt":0,"image":{"id":"1*NHWOEki_ncCX-xzbKtkEWw@2x.jpeg","originalWidth":5760,"originalHeight":3840},"name":"Data Science","description":"Query this.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Data Science News and Articles — Medium","type":"Topic"},{"topicId":"decb52b64abf","slug":"programming","createdAt":1493934116328,"deletedAt":0,"image":{"id":"1*iPa136b1cGEO7lvoXg6uHQ@2x.jpeg","originalWidth":6016,"originalHeight":4016},"name":"Programming","description":"The good, the bad, the buggy.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Programming News and Articles — Medium","type":"Topic"}]},"coverless":true,"slug":"a-birds-eye-view-of-linear-algebra-matrix-chain-multiplication","translationSourcePostId":"","translationSourceCreatorId":"","isApprovedTranslation":false,"inResponseToPostId":"","inResponseToRemovedAt":0,"isTitleSynthesized":false,"allowResponses":true,"importedUrl":"","importedPublishedAt":0,"visibility":2,"uniqueSlug":"a-birds-eye-view-of-linear-algebra-matrix-chain-multiplication-a718748c7fd5","previewContent":{"bodyModel":{"paragraphs":[{"name":"previewImage","type":4,"text":"","layout":10,"metadata":{"id":"1*bOeUCBUwHK0Eb_PB0M-SLg.png","originalWidth":1024,"originalHeight":1024,"isFeatured":true}},{"name":"5c38","type":3,"text":"A Bird’s-Eye View of Linear Algebra: Matrix Chain Multiplication","markups":[],"alignment":1},{"name":"303f","type":13,"text":"Linear algebra is the backbone of…","markups":[],"alignment":1}],"sections":[{"startIndex":0}]},"isFullContent":false,"subtitle":"Linear algebra is the backbone of AI. Matrix multiplication is the fundamental operation of linear algebra. What if there is a whole chain?"},"license":0,"inResponseToMediaResourceId":"","canonicalUrl":"","approvedHomeCollectionId":"7f60cf5620c9","isNewsletter":false,"newsletterId":"8919e753466e","webCanonicalUrl":"","mediumUrl":"","migrationId":"","notifyFollowers":true,"notifyTwitter":false,"notifyFacebook":false,"responseHiddenOnParentPostAt":0,"isSeries":false,"isSubscriptionLocked":true,"seriesLastAppendedAt":0,"audioVersionDurationSec":0,"sequenceId":"","isEligibleForRevenue":true,"isBlockedFromHightower":false,"deletedAt":0,"lockedPostSource":1,"hightowerMinimumGuaranteeStartsAt":0,"hightowerMinimumGuaranteeEndsAt":0,"featureLockRequestAcceptedAt":0,"mongerRequestType":1,"layerCake":1,"socialTitle":"","socialDek":"","editorialPreviewTitle":"","editorialPreviewDek":"","curationEligibleAt":1731226358631,"primaryTopicId":"ae5d4995e225","isProxyPost":false,"proxyPostFaviconUrl":"","proxyPostProviderName":"","proxyPostType":0,"isSuspended":false,"isLimitedState":false,"seoTitle":"","previewContent2":{"bodyModel":{"paragraphs":[{"name":"5c38","type":3,"text":"A Bird’s-Eye View of Linear Algebra: Matrix Chain Multiplication","markups":[]},{"name":"303f","type":13,"text":"Linear algebra is the backbone of AI. Matrix multiplication is the fundamental operation of linear algebra. What if there is a whole chain?","markups":[]},{"name":"adf8","type":4,"text":"Image created with midjourney","markups":[],"layout":1,"metadata":{"id":"1*bOeUCBUwHK0Eb_PB0M-SLg.png","originalWidth":1024,"originalHeight":1024,"isFeatured":true}},{"name":"64a2","type":1,"text":"This is the fourth chapter of the in-progress book on linear algebra. The table of contents so far:","markups":[]},{"name":"b506","type":9,"text":"Chapter-1: The basics","markups":[{"type":3,"start":0,"end":21,"href":"/towards-data-science/a-birds-eye-view-of-linear-algebra-the-basics-29ad2122d98f","title":"","rel":"noopener","anchorType":0}]},{"name":"4232","type":9,"text":"Chapter-2: The measure of a map — determinants","markups":[{"type":3,"start":11,"end":46,"href":"/p/1e5fd752a3be","title":"","rel":"noopener","anchorType":0}]},{"name":"cb3f","type":9,"text":"Chapter-3: Why is matrix multiplication the way it is?","markups":[{"type":3,"start":0,"end":54,"href":"https://medium.com/towards-data-science/a-birds-eye-view-of-linear-algebra-why-is-matrix-multiplication-like-that-a4d94067651e","title":"","rel":"","anchorType":0},{"type":1,"start":0,"end":11}]},{"name":"e07f","type":9,"text":"Chapter-4 (current): Matrix chain multiplication","markups":[]},{"name":"ee7c","type":9,"text":"Chapter-5: Systems of equations, linear regression and…","markups":[{"type":3,"start":11,"end":70,"href":"/p/fe5b88a57f66","title":"","rel":"noopener","anchorType":0}]}],"sections":[{"name":"5285","startIndex":0}]},"isFullContent":false,"subtitle":"Linear algebra is the backbone of AI. Matrix multiplication is the fundamental operation of linear algebra. What if there is a whole chain?"},"cardType":0,"isDistributionAlertDismissed":false,"isShortform":false,"shortformType":0,"responsesLocked":false,"isLockedResponse":false,"isPublishToEmail":true,"responseDistribution":0,"isMarkedPaywallOnly":false,"type":"Post"},"17b4ec4e7691":{"id":"17b4ec4e7691","versionId":"13ac48b37642","creatorId":"53550965faed","homeCollectionId":"7f60cf5620c9","title":"Economics of Hosting Open Source LLMs","detectedLanguage":"en","latestVersion":"13ac48b37642","latestPublishedVersion":"13ac48b37642","hasUnpublishedEdits":false,"latestRev":6026,"createdAt":1726755105095,"updatedAt":1731653843060,"acceptedAt":0,"firstPublishedAt":1731423421479,"latestPublishedAt":1731653843060,"vote":false,"experimentalCss":"","displayAuthor":"","content":{"subtitle":"Leveraging various deployment options","postDisplay":{"coverless":true}},"virtuals":{"statusForCollection":"APPROVED","allowNotes":true,"previewImage":{"imageId":"1*rM3YJWOWVwBzDGPV-pw0Aw.png","filter":"","backgroundSize":"","originalWidth":1550,"originalHeight":1110,"strategy":"resample","height":0,"width":0},"wordCount":4366,"imageCount":20,"readingTime":18.225471698113207,"subtitle":"Leveraging various deployment options","publishedInCount":1,"usersBySocialRecommends":[],"noIndex":false,"recommends":167,"isBookmarked":false,"tags":[{"slug":"data-science","name":"Data Science","postCount":347124,"metadata":{"postCount":347124,"coverImage":{"id":"1*Yajp0Wd7P8zjtA4D5uWZ7Q.jpeg","originalWidth":640,"originalHeight":425}},"type":"Tag"},{"slug":"software-development","name":"Software Development","postCount":326803,"metadata":{"postCount":326803,"coverImage":{"id":"1*t5dwn8IabnCdEpoO-6Toog.png","originalWidth":1920,"originalHeight":1080,"isFeatured":true,"alt":"Kubernetes"}},"type":"Tag"},{"slug":"deployment","name":"Deployment","postCount":9554,"metadata":{"postCount":9554,"coverImage":{"id":"1*scZIHYB7GAg0qbEgKGBe9Q.png","originalWidth":597,"originalHeight":325,"isFeatured":true}},"type":"Tag"},{"slug":"large-language-models","name":"Large Language Models","postCount":15001,"metadata":{"postCount":15001,"coverImage":{"id":"1*TRfxFbnLDx9IqpvghpbURA.jpeg","originalWidth":1152,"originalHeight":896,"isFeatured":true}},"type":"Tag"},{"slug":"editors-pick","name":"Editors Pick","postCount":4813,"metadata":{"postCount":4813,"coverImage":{"id":"1*aFX8XyDbU5UCBAEKMEQ-xQ.png","originalWidth":1680,"originalHeight":1232,"isFeatured":true}},"type":"Tag"}],"socialRecommendsCount":0,"responsesCreatedCount":13,"links":{"entries":[{"url":"https://www.python.org/","alts":[],"httpStatus":200},{"url":"https://www.bentoml.com/blog/benchmarking-llm-inference-backends","alts":[],"httpStatus":200},{"url":"https://aws.amazon.com/blogs/compute/hosting-hugging-face-models-on-aws-lambda/","alts":[],"httpStatus":200},{"url":"https://git-scm.com/","alts":[],"httpStatus":200},{"url":"https://modal.com/docs/guide/webhooks","alts":[],"httpStatus":200},{"url":"https://huggingface.co/docs/transformers/en/main_classes/pipelines","alts":[],"httpStatus":200},{"url":"https://huggingface.co/ilsilfverskiold/tech-keywords-extractor","alts":[],"httpStatus":200},{"url":"https://docs.aws.amazon.com/cdk/latest/guide/getting_started.html","alts":[],"httpStatus":200},{"url":"https://github.com/ilsilfverskiold/Awesome-LLM-Resources-List/blob/main/helpers/scripts/modal/public_hf_model.py","alts":[],"httpStatus":200},{"url":"https://docs.google.com/spreadsheets/d/1iGpwMQ_q7jSa7WhJ5zxd-L1wcC52mX88f-hz0nux-iU/edit?usp=sharing","alts":[],"httpStatus":200},{"url":"https://github.com/ilsilfverskiold/Awesome-LLM-Resources-List","alts":[],"httpStatus":200},{"url":"https://github.com/ilsilfverskiold/Awesome-LLM-Resources-List?tab=readme-ov-file#serverless-hosting-of-privateos-models","alts":[],"httpStatus":200},{"url":"https://github.com/ilsilfverskiold/Awesome-LLM-Resources-List?tab=readme-ov-file#local-inference","alts":[],"httpStatus":200},{"url":"https://github.com/ilsilfverskiold/Awesome-LLM-Resources-List?tab=readme-ov-file#llm-serving-frameworks","alts":[],"httpStatus":200},{"url":"https://github.com/ilsilfverskiold/Awesome-LLM-Resources-List?tab=readme-ov-file#access-off-the-shelf-os-models-via-api","alts":[],"httpStatus":200},{"url":"https://medium.com/@ilsilfverskiold/17b4ec4e7691?source=friends_link&sk=2649166d7d7a839885bb3fff2a3922bd","alts":[{"type":3,"url":"medium://p/17b4ec4e7691"},{"type":2,"url":"medium://p/17b4ec4e7691"}],"httpStatus":200},{"url":"https://github.com/ilsilfverskiold/Awesome-LLM-Resources-List/tree/main?tab=readme-ov-file#serverless-hosting-of-privateos-models","alts":[],"httpStatus":200},{"url":"https://medium.com/towards-data-science/fine-tune-smaller-transformer-models-text-classification-77cbbd3bf02b","alts":[{"type":3,"url":"medium://p/77cbbd3bf02b"},{"type":2,"url":"medium://p/77cbbd3bf02b"}],"httpStatus":200},{"url":"https://medium.com/gitconnected/fine-tune-smaller-nlp-models-with-hugging-face-for-specific-use-cases-1745813471dc","alts":[{"type":3,"url":"medium://p/1745813471dc"},{"type":2,"url":"medium://p/1745813471dc"}],"httpStatus":200}],"version":"0.3","generatedAt":1731653844805},"isLockedPreviewOnly":false,"metaDescription":"","totalClapCount":926,"sectionCount":2,"readingList":0,"topics":[{"topicId":"1af65db9c2f8","slug":"artificial-intelligence","createdAt":1487916832419,"deletedAt":0,"image":{"id":"1*A28aHchbaA8zNVXraBq0Ug@2x.jpeg","originalWidth":4866,"originalHeight":3244},"name":"Artificial Intelligence","description":"Born to be bot.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"AI News and Artificial Intelligence Articles — Medium","type":"Topic"},{"topicId":"55f1c20aba7a","slug":"software-engineering","createdAt":1491949272237,"deletedAt":0,"image":{"id":"1*U8FboK4lz1wqwQC6IcqxKw@2x.jpeg","originalWidth":5507,"originalHeight":3098},"name":"Software Engineering","description":"Back-end to front-end.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Software Engineering News and Articles — Medium","type":"Topic"},{"topicId":"ae5d4995e225","slug":"data-science","createdAt":1493923906289,"deletedAt":0,"image":{"id":"1*NHWOEki_ncCX-xzbKtkEWw@2x.jpeg","originalWidth":5760,"originalHeight":3840},"name":"Data Science","description":"Query this.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Data Science News and Articles — Medium","type":"Topic"},{"topicId":"decb52b64abf","slug":"programming","createdAt":1493934116328,"deletedAt":0,"image":{"id":"1*iPa136b1cGEO7lvoXg6uHQ@2x.jpeg","originalWidth":6016,"originalHeight":4016},"name":"Programming","description":"The good, the bad, the buggy.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Programming News and Articles — Medium","type":"Topic"}]},"coverless":true,"slug":"economics-of-hosting-open-source-llms","translationSourcePostId":"","translationSourceCreatorId":"","isApprovedTranslation":false,"inResponseToPostId":"","inResponseToRemovedAt":0,"isTitleSynthesized":true,"allowResponses":true,"importedUrl":"","importedPublishedAt":0,"visibility":2,"uniqueSlug":"economics-of-hosting-open-source-llms-17b4ec4e7691","previewContent":{"bodyModel":{"paragraphs":[{"name":"cf09","type":13,"text":"Large Language Models in Production","markups":[],"alignment":1},{"name":"6252","type":3,"text":"Economics of Hosting Open Source LLMs","markups":[],"alignment":1},{"name":"9904","type":13,"text":"Leveraging various deployment options","markups":[],"alignment":1}],"sections":[{"startIndex":0}]},"isFullContent":false,"subtitle":"Leveraging various deployment options"},"license":0,"inResponseToMediaResourceId":"","canonicalUrl":"","approvedHomeCollectionId":"7f60cf5620c9","isNewsletter":false,"newsletterId":"c8435e35a794","webCanonicalUrl":"","mediumUrl":"","migrationId":"","notifyFollowers":true,"notifyTwitter":false,"notifyFacebook":false,"responseHiddenOnParentPostAt":0,"isSeries":false,"isSubscriptionLocked":true,"seriesLastAppendedAt":0,"audioVersionDurationSec":0,"sequenceId":"","isEligibleForRevenue":true,"isBlockedFromHightower":false,"deletedAt":0,"lockedPostSource":1,"hightowerMinimumGuaranteeStartsAt":0,"hightowerMinimumGuaranteeEndsAt":0,"featureLockRequestAcceptedAt":0,"mongerRequestType":1,"layerCake":1,"socialTitle":"","socialDek":"","editorialPreviewTitle":"","editorialPreviewDek":"","curationEligibleAt":1731183334520,"primaryTopicId":"ae5d4995e225","isProxyPost":false,"proxyPostFaviconUrl":"","proxyPostProviderName":"","proxyPostType":0,"isSuspended":false,"isLimitedState":false,"seoTitle":"","previewContent2":{"bodyModel":{"paragraphs":[{"name":"cf09","type":13,"text":"Large Language Models in Production","markups":[]},{"name":"6252","type":3,"text":"Economics of Hosting Open Source LLMs","markups":[]},{"name":"9904","type":13,"text":"Leveraging various deployment options","markups":[]},{"name":"c18e","type":4,"text":"Total Processing Time on GPU vs CPU — Not to scale* | Image by author","markups":[],"layout":1,"metadata":{"id":"1*rM3YJWOWVwBzDGPV-pw0Aw.png","originalWidth":1550,"originalHeight":1110}},{"name":"f4b4","type":1,"text":"If you’re not a member but want to read this article, see this friend link here.","markups":[{"type":3,"start":75,"end":80,"href":"https://medium.com/@ilsilfverskiold/17b4ec4e7691?source=friends_link&sk=2649166d7d7a839885bb3fff2a3922bd","title":"","rel":"","anchorType":0},{"type":2,"start":0,"end":80}]},{"name":"2d3f","type":1,"text":"If you’ve been experimenting with open-source models of different sizes, you’re probably asking yourself: what’s the most efficient way to deploy them?","markups":[]},{"name":"f089","type":1,"text":"What’s the pricing difference between on-demand and serverless providers, and is it…","markups":[{"type":1,"start":38,"end":47},{"type":1,"start":52,"end":72}]}],"sections":[{"name":"7395","startIndex":0}]},"isFullContent":false,"subtitle":"Leveraging various deployment options"},"cardType":0,"isDistributionAlertDismissed":false,"isShortform":false,"shortformType":0,"responsesLocked":false,"isLockedResponse":false,"isPublishToEmail":true,"responseDistribution":0,"isMarkedPaywallOnly":false,"type":"Post"},"d299b638773b":{"id":"d299b638773b","versionId":"e312570dd885","creatorId":"d4bbc4d61092","homeCollectionId":"7f60cf5620c9","title":"What Did I Learn from Building LLM Applications in 2024? — Part 1","detectedLanguage":"en","latestVersion":"e312570dd885","latestPublishedVersion":"e312570dd885","hasUnpublishedEdits":false,"latestRev":902,"createdAt":1724695193824,"updatedAt":1731555593214,"acceptedAt":0,"firstPublishedAt":1730741374465,"latestPublishedAt":1731114310338,"vote":false,"experimentalCss":"","displayAuthor":"","content":{"subtitle":"An engineer’s journey to building LLM-native applications","postDisplay":{"coverless":true}},"virtuals":{"statusForCollection":"APPROVED","allowNotes":true,"previewImage":{"imageId":"1*oEXNPL3qOT_XHdJnDUJDcQ.jpeg","filter":"","backgroundSize":"","originalWidth":1792,"originalHeight":1024,"strategy":"resample","height":0,"width":0},"wordCount":1755,"imageCount":1,"readingTime":6.8226415094339625,"subtitle":"An engineer’s journey to building LLM-native applications","publishedInCount":1,"usersBySocialRecommends":[],"noIndex":false,"recommends":43,"isBookmarked":false,"tags":[{"slug":"llm-applications","name":"Llm Applications","postCount":743,"metadata":{"postCount":743,"coverImage":{"id":"1*5wRr_p_6j46v5Ge43jvpOw.gif","originalWidth":500,"originalHeight":214,"isFeatured":true}},"type":"Tag"},{"slug":"generative-ai-use-cases","name":"Generative Ai Use Cases","postCount":5155,"metadata":{"postCount":5155,"coverImage":{"id":"1*Or9pvsgU20ZGhsLnsHPYUA.jpeg","originalWidth":1024,"originalHeight":1024,"isFeatured":true}},"type":"Tag"},{"slug":"gpt","name":"Gpt","postCount":7424,"metadata":{"postCount":7424,"coverImage":{"id":"1*v4S_C6p1X3z61Gq7Muq1IA.png","originalWidth":1343,"originalHeight":614,"isFeatured":true}},"type":"Tag"},{"slug":"openai","name":"OpenAI","postCount":35440,"metadata":{"postCount":35440,"coverImage":{"id":"1*xWx6mCcI3zNIyzrmRZkbKw.png","originalWidth":1920,"originalHeight":1080,"isFeatured":true}},"type":"Tag"},{"slug":"editors-pick","name":"Editors Pick","postCount":4813,"metadata":{"postCount":4813,"coverImage":{"id":"1*aFX8XyDbU5UCBAEKMEQ-xQ.png","originalWidth":1680,"originalHeight":1232,"isFeatured":true}},"type":"Tag"}],"socialRecommendsCount":0,"responsesCreatedCount":1,"links":{"entries":[],"version":"0.3","generatedAt":1731114310461},"isLockedPreviewOnly":false,"metaDescription":"","totalClapCount":220,"sectionCount":3,"readingList":0,"topics":[{"topicId":"1af65db9c2f8","slug":"artificial-intelligence","createdAt":1487916832419,"deletedAt":0,"image":{"id":"1*A28aHchbaA8zNVXraBq0Ug@2x.jpeg","originalWidth":4866,"originalHeight":3244},"name":"Artificial Intelligence","description":"Born to be bot.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"AI News and Artificial Intelligence Articles — Medium","type":"Topic"},{"topicId":"1eca0103fff3","slug":"machine-learning","createdAt":1534449726145,"deletedAt":0,"image":{"id":"1*gFJS3amhZEg_z39D5EErVg@2x.png","originalWidth":2800,"originalHeight":1750},"name":"Machine Learning","description":"Teaching the learners.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Machine Learning News and Articles — Medium","type":"Topic"},{"topicId":"96f161863a28","slug":"product-management","createdAt":1545072594068,"deletedAt":0,"image":{"id":"1*FrDceIp-Kg1_gi8QKNYvYA@2x.jpeg","originalWidth":4000,"originalHeight":2666},"name":"Product Management","description":"Bridging the gaps.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Product Management: Articles and News — Medium","type":"Topic"},{"topicId":"decb52b64abf","slug":"programming","createdAt":1493934116328,"deletedAt":0,"image":{"id":"1*iPa136b1cGEO7lvoXg6uHQ@2x.jpeg","originalWidth":6016,"originalHeight":4016},"name":"Programming","description":"The good, the bad, the buggy.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Programming News and Articles — Medium","type":"Topic"}]},"coverless":true,"slug":"what-did-i-learn-from-building-llm-applications-in-2024-part-1","translationSourcePostId":"","translationSourceCreatorId":"","isApprovedTranslation":false,"inResponseToPostId":"","inResponseToRemovedAt":0,"isTitleSynthesized":false,"allowResponses":true,"importedUrl":"","importedPublishedAt":0,"visibility":0,"uniqueSlug":"what-did-i-learn-from-building-llm-applications-in-2024-part-1-d299b638773b","previewContent":{"bodyModel":{"paragraphs":[{"name":"previewImage","type":4,"text":"","layout":10,"metadata":{"id":"1*oEXNPL3qOT_XHdJnDUJDcQ.jpeg","originalWidth":1792,"originalHeight":1024,"isFeatured":true}},{"name":"f883","type":3,"text":"What Did I Learn from Building LLM Applications in 2024? — Part 1","markups":[],"alignment":1},{"name":"8dd7","type":13,"text":"An engineer’s journey to building…","markups":[],"alignment":1}],"sections":[{"startIndex":0}]},"isFullContent":false,"subtitle":"An engineer’s journey to building LLM-native applications"},"license":0,"inResponseToMediaResourceId":"","canonicalUrl":"","approvedHomeCollectionId":"7f60cf5620c9","isNewsletter":false,"newsletterId":"afd31bfb68fd","webCanonicalUrl":"","mediumUrl":"","migrationId":"","notifyFollowers":true,"notifyTwitter":false,"notifyFacebook":false,"responseHiddenOnParentPostAt":0,"isSeries":false,"isSubscriptionLocked":false,"seriesLastAppendedAt":0,"audioVersionDurationSec":0,"sequenceId":"","isEligibleForRevenue":false,"isBlockedFromHightower":false,"deletedAt":0,"lockedPostSource":0,"hightowerMinimumGuaranteeStartsAt":0,"hightowerMinimumGuaranteeEndsAt":0,"featureLockRequestAcceptedAt":0,"mongerRequestType":1,"layerCake":1,"socialTitle":"","socialDek":"","editorialPreviewTitle":"","editorialPreviewDek":"","curationEligibleAt":0,"primaryTopicId":"1af65db9c2f8","isProxyPost":false,"proxyPostFaviconUrl":"","proxyPostProviderName":"","proxyPostType":0,"isSuspended":false,"isLimitedState":false,"seoTitle":"","previewContent2":{"bodyModel":{"paragraphs":[{"name":"f883","type":3,"text":"What Did I Learn from Building LLM Applications in 2024? — Part 1","markups":[]},{"name":"8dd7","type":13,"text":"An engineer’s journey to building LLM-native applications","markups":[]},{"name":"181a","type":4,"text":"","markups":[],"layout":1,"metadata":{"id":"1*oEXNPL3qOT_XHdJnDUJDcQ.jpeg","originalWidth":1792,"originalHeight":1024,"isFeatured":true}},{"name":"79e4","type":1,"text":"Large Language Models (LLMs) are poised to transform the way we approach AI and it is already being quite noticeable with innovative designs of integrating LLMs with web applications. Since late 2022, multiple frameworks, SDKs and tools have been introduced to demonstrate the integration of LLMs with web applications or…","markups":[]}],"sections":[{"name":"b095","startIndex":0}]},"isFullContent":false,"subtitle":"An engineer’s journey to building LLM-native applications"},"cardType":0,"isDistributionAlertDismissed":false,"isShortform":false,"shortformType":0,"responsesLocked":false,"isLockedResponse":false,"isPublishToEmail":true,"responseDistribution":0,"isMarkedPaywallOnly":false,"type":"Post"},"f54552c15a16":{"id":"f54552c15a16","versionId":"e371adbcaf75","creatorId":"6527aecbd3c5","homeCollectionId":"7f60cf5620c9","title":"Vision Transformer with BatchNorm: Optimizing the depth","detectedLanguage":"en","latestVersion":"e371adbcaf75","latestPublishedVersion":"e371adbcaf75","hasUnpublishedEdits":false,"latestRev":3893,"createdAt":1726453673046,"updatedAt":1731808718522,"acceptedAt":0,"firstPublishedAt":1731070946391,"latestPublishedAt":1731808718522,"vote":false,"experimentalCss":"","displayAuthor":"","content":{"subtitle":"How integrating BatchNorm in a standard Vision transformer architecture results in faster convergence for a smaller depth, resulting in…","postDisplay":{"coverless":true}},"virtuals":{"statusForCollection":"APPROVED","allowNotes":true,"previewImage":{"imageId":"1*v6VyXY-JfEYjDeIqXityZw.png","filter":"","backgroundSize":"","originalWidth":432,"originalHeight":426,"strategy":"resample","height":0,"width":0},"wordCount":3082,"imageCount":15,"readingTime":13.130188679245283,"subtitle":"How integrating BatchNorm in a standard Vision transformer architecture results in faster convergence for a smaller depth, resulting in…","publishedInCount":1,"usersBySocialRecommends":[],"noIndex":false,"recommends":20,"isBookmarked":false,"tags":[{"slug":"deep-learning","name":"Deep Learning","postCount":101344,"metadata":{"postCount":101344,"coverImage":{"id":"1*fZNeYeBJCz4ZiJmtxxVv7Q.jpeg","originalWidth":1024,"originalHeight":960}},"type":"Tag"},{"slug":"batch-normalization","name":"Batch Normalization","postCount":195,"metadata":{"postCount":195,"coverImage":{"id":"0*muI3T6nR8Pcy2cTo","originalWidth":6720,"originalHeight":4480,"isFeatured":true,"unsplashPhotoId":"GAo1tW2l9lY"}},"type":"Tag"},{"slug":"vision-transformer","name":"Vision Transformer","postCount":401,"metadata":{"postCount":401,"coverImage":{"id":"1*2Zm79L9ApLDCqsZVBpltyQ.png","originalWidth":1138,"originalHeight":411,"isFeatured":true}},"type":"Tag"},{"slug":"deep-neural-networks","name":"Deep Neural Networks","postCount":554,"metadata":{"postCount":554,"coverImage":{"id":"1*v6VyXY-JfEYjDeIqXityZw.png","originalWidth":432,"originalHeight":426,"isFeatured":true}},"type":"Tag"},{"slug":"editors-pick","name":"Editors Pick","postCount":4813,"metadata":{"postCount":4813,"coverImage":{"id":"1*aFX8XyDbU5UCBAEKMEQ-xQ.png","originalWidth":1680,"originalHeight":1232,"isFeatured":true}},"type":"Tag"}],"socialRecommendsCount":0,"responsesCreatedCount":1,"links":{"entries":[{"url":"https://arxiv.org/abs/2010.11929","alts":[],"httpStatus":200},{"url":"https://pytorch.org/vision/main/generated/torchvision.transforms.RandomAffine.html","alts":[],"httpStatus":200},{"url":"https://pytorch.org/vision/main/generated/torchvision.transforms.RandomRotation.html","alts":[],"httpStatus":200},{"url":"https://pytorch.org/vision/0.16/generated/torchvision.transforms.v2.RandomZoomOut.html","alts":[],"httpStatus":200},{"url":"https://arxiv.org/abs/1502.03167","alts":[],"httpStatus":200},{"url":"https://github.com/anindyahepth/BatchNorm_in_Transformers_CV","alts":[],"httpStatus":200},{"url":"https://medium.com/towards-data-science/speeding-up-the-vision-transformer-with-batch-normalization-d37f13f20ae7","alts":[{"type":3,"url":"medium://p/d37f13f20ae7"},{"type":2,"url":"medium://p/d37f13f20ae7"}],"httpStatus":200}],"version":"0.3","generatedAt":1731808720032},"isLockedPreviewOnly":false,"metaDescription":"","totalClapCount":132,"sectionCount":2,"readingList":0,"topics":[{"topicId":"1eca0103fff3","slug":"machine-learning","createdAt":1534449726145,"deletedAt":0,"image":{"id":"1*gFJS3amhZEg_z39D5EErVg@2x.png","originalWidth":2800,"originalHeight":1750},"name":"Machine Learning","description":"Teaching the learners.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Machine Learning News and Articles — Medium","type":"Topic"},{"topicId":"7808efc0cf94","slug":"math","createdAt":1494090780021,"deletedAt":0,"image":{"id":"1*S4y5QE8kNj1Im9dAcGQtOA@2x.jpeg","originalWidth":1800,"originalHeight":1200},"name":"Math","description":"Add it up.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Math News and Articles — Medium","type":"Topic"}]},"coverless":true,"slug":"vision-transformer-with-batchnorm-optimizing-the-depth","translationSourcePostId":"","translationSourceCreatorId":"","isApprovedTranslation":false,"inResponseToPostId":"","inResponseToRemovedAt":0,"isTitleSynthesized":false,"allowResponses":true,"importedUrl":"","importedPublishedAt":0,"visibility":0,"uniqueSlug":"vision-transformer-with-batchnorm-optimizing-the-depth-f54552c15a16","previewContent":{"bodyModel":{"paragraphs":[{"name":"previewImage","type":4,"text":"","layout":10,"metadata":{"id":"1*v6VyXY-JfEYjDeIqXityZw.png","originalWidth":432,"originalHeight":426,"isFeatured":true}},{"name":"previewTitle","type":3,"text":"Vision Transformer with BatchNorm: Optimizing the depth","alignment":1},{"name":"previewSubtitle","type":13,"text":"How integrating BatchNorm in a standard Vision…","alignment":1}],"sections":[{"startIndex":0}]},"isFullContent":false,"subtitle":"How integrating BatchNorm in a standard Vision transformer architecture results in faster convergence for a smaller depth, resulting in…"},"license":0,"inResponseToMediaResourceId":"","canonicalUrl":"","approvedHomeCollectionId":"7f60cf5620c9","isNewsletter":false,"newsletterId":"fbab281a63b2","webCanonicalUrl":"","mediumUrl":"","migrationId":"","notifyFollowers":true,"notifyTwitter":false,"notifyFacebook":false,"responseHiddenOnParentPostAt":0,"isSeries":false,"isSubscriptionLocked":false,"seriesLastAppendedAt":0,"audioVersionDurationSec":0,"sequenceId":"","isEligibleForRevenue":false,"isBlockedFromHightower":false,"deletedAt":0,"lockedPostSource":0,"hightowerMinimumGuaranteeStartsAt":0,"hightowerMinimumGuaranteeEndsAt":0,"featureLockRequestAcceptedAt":0,"mongerRequestType":1,"layerCake":1,"socialTitle":"","socialDek":"","editorialPreviewTitle":"","editorialPreviewDek":"","curationEligibleAt":0,"primaryTopicId":"1eca0103fff3","isProxyPost":false,"proxyPostFaviconUrl":"","proxyPostProviderName":"","proxyPostType":0,"isSuspended":false,"isLimitedState":false,"seoTitle":"","previewContent2":{"bodyModel":{"paragraphs":[{"name":"608a","type":3,"text":"Vision Transformer with BatchNorm","markups":[]},{"name":"1e97","type":13,"text":"How integrating BatchNorm in a standard Vision transformer architecture leads to faster convergence and a more stable network","markups":[]},{"name":"7434","type":4,"text":"Comparing Vision Transformer without and with BatchNorm at various depths.","markups":[],"layout":1,"metadata":{"id":"1*v6VyXY-JfEYjDeIqXityZw.png","originalWidth":432,"originalHeight":426,"isFeatured":true}},{"name":"ce9c","type":13,"text":"Introduction","markups":[]},{"name":"5f5e","type":1,"text":"The Vision Transformer (ViT) is the first purely self-attention-based architecture for image classification tasks. While ViTs do perform better than the CNN-based architectures, they require pre-training over very large datasets. In an attempt to look for modifications of the ViT which may lead to faster training and inference — especially…","markups":[{"type":3,"start":4,"end":22,"href":"https://arxiv.org/abs/2010.11929","title":"","rel":"noopener ugc nofollow","anchorType":0},{"type":3,"start":418,"end":434,"href":"https://medium.com/towards-data-science/speeding-up-the-vision-transformer-with-batch-normalization-d37f13f20ae7","title":"","rel":"","anchorType":0}]}],"sections":[{"name":"1d9e","startIndex":0}]},"isFullContent":false,"subtitle":"How integrating BatchNorm in a standard Vision transformer architecture results in faster convergence for a smaller depth, resulting in…"},"cardType":0,"isDistributionAlertDismissed":false,"isShortform":false,"shortformType":0,"responsesLocked":false,"isLockedResponse":false,"isPublishToEmail":true,"responseDistribution":0,"isMarkedPaywallOnly":false,"type":"Post"},"fd45be625dfe":{"id":"fd45be625dfe","versionId":"83daf32745af","creatorId":"7175001fc1a","homeCollectionId":"7f60cf5620c9","title":"Watermarking for AI Text and Synthetic Proteins: Fighting Misinformation and Bioterrorism","detectedLanguage":"en","latestVersion":"83daf32745af","latestPublishedVersion":"83daf32745af","hasUnpublishedEdits":false,"latestRev":459,"createdAt":1730313922064,"updatedAt":1731538500239,"acceptedAt":0,"firstPublishedAt":1731003047254,"latestPublishedAt":1731003047254,"vote":false,"experimentalCss":"","displayAuthor":"","content":{"subtitle":"Understanding AI applications in bio for machine learning engineers","postDisplay":{"coverless":true}},"virtuals":{"statusForCollection":"APPROVED","allowNotes":true,"previewImage":{"imageId":"1*_S2lHpvzamkQ6DWcy9_6Wg.jpeg","filter":"","backgroundSize":"","originalWidth":8000,"originalHeight":4500,"strategy":"resample","height":0,"width":0},"wordCount":1409,"imageCount":8,"readingTime":6.450314465408805,"subtitle":"Understanding AI applications in bio for machine learning engineers","publishedInCount":1,"usersBySocialRecommends":[],"noIndex":false,"recommends":20,"isBookmarked":false,"tags":[{"slug":"llm","name":"Llm","postCount":27765,"metadata":{"postCount":27765,"coverImage":{"id":"1*8yJrgGPFwHBY8lpIFg7ERQ.png","originalWidth":940,"originalHeight":788,"isFeatured":true}},"type":"Tag"},{"slug":"biology","name":"Biology","postCount":17119,"metadata":{"postCount":17119,"coverImage":{"id":"1*T9A3nWhUxCRlemaA3t4asg.jpeg","originalWidth":719,"originalHeight":568}},"type":"Tag"},{"slug":"gemini","name":"Gemini","postCount":4862,"metadata":{"postCount":4862,"coverImage":{"id":"1*TNHcqVU-iSKnwgpRu1R7RQ.jpeg","originalWidth":1472,"originalHeight":832,"isFeatured":true}},"type":"Tag"},{"slug":"synthetic-biology","name":"Synthetic Biology","postCount":1252,"metadata":{"postCount":1252,"coverImage":{"id":"1*11SBhwckvO3HGlbpZZk-4w.jpeg","originalWidth":1260,"originalHeight":720,"isFeatured":true}},"type":"Tag"},{"slug":"editors-pick","name":"Editors Pick","postCount":4813,"metadata":{"postCount":4813,"coverImage":{"id":"1*aFX8XyDbU5UCBAEKMEQ-xQ.png","originalWidth":1680,"originalHeight":1232,"isFeatured":true}},"type":"Tag"}],"socialRecommendsCount":0,"responsesCreatedCount":2,"links":{"entries":[{"url":"https://en.wikipedia.org/wiki/2001_anthrax_attacks","alts":[],"httpStatus":200},{"url":"https://x.com/JeremyNguyenPhD/status/1774021645709295840","alts":[],"httpStatus":200},{"url":"https://press.asimov.com/articles/dna-screening","alts":[],"httpStatus":200},{"url":"https://www.science.org/doi/10.1126/science.add2187","alts":[],"httpStatus":403},{"url":"https://simple.wikipedia.org/wiki/Battle_of_Actium#/media/File:Castro_Battle_of_Actium.jpg","alts":[],"httpStatus":200},{"url":"https://unsplash.com/photos/a-group-of-colorful-butterflies-de3yM8H00vo","alts":[],"httpStatus":200},{"url":"https://github.com/facebookresearch/esm","alts":[],"httpStatus":200},{"url":"https://open.clemson.edu/mfh_reports/7/","alts":[],"httpStatus":200},{"url":"https://towardsdatascience.com/what-is-gumbel-softmax-7f6d9cdcb90e","alts":[{"type":3,"url":"medium://p/7f6d9cdcb90e"},{"type":2,"url":"medium://p/7f6d9cdcb90e"}],"httpStatus":200},{"url":"https://www.nature.com/articles/s41586-024-08025-4#MOESM1","alts":[],"httpStatus":200},{"url":"https://medium.com/@meghanheintz/list/understanding-ai-applications-in-bio-for-ml-engineers-7b9e9551bb7f","alts":[{"type":3,"url":"medium://@meghanheintz/list/understanding-ai-applications-in-bio-for-ml-engineers-7b9e9551bb7f"},{"type":2,"url":"medium://@meghanheintz/list/understanding-ai-applications-in-bio-for-ml-engineers-7b9e9551bb7f"}],"httpStatus":200},{"url":"https://www.nature.com/articles/s41586-024-08025-4","alts":[],"httpStatus":200},{"url":"https://www.biorxiv.org/content/10.1101/2024.05.02.591928v1.full.pdf","alts":[],"httpStatus":200},{"url":"https://www.medrxiv.org/content/10.1101/2024.05.14.24307373v2.full-text","alts":[],"httpStatus":200}],"version":"0.3","generatedAt":1731003049655},"isLockedPreviewOnly":false,"metaDescription":"","totalClapCount":186,"sectionCount":2,"readingList":0,"topics":[{"topicId":"1af65db9c2f8","slug":"artificial-intelligence","createdAt":1487916832419,"deletedAt":0,"image":{"id":"1*A28aHchbaA8zNVXraBq0Ug@2x.jpeg","originalWidth":4866,"originalHeight":3244},"name":"Artificial Intelligence","description":"Born to be bot.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"AI News and Artificial Intelligence Articles — Medium","type":"Topic"},{"topicId":"1eca0103fff3","slug":"machine-learning","createdAt":1534449726145,"deletedAt":0,"image":{"id":"1*gFJS3amhZEg_z39D5EErVg@2x.png","originalWidth":2800,"originalHeight":1750},"name":"Machine Learning","description":"Teaching the learners.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Machine Learning News and Articles — Medium","type":"Topic"},{"topicId":"9ff4c9770e22","slug":"science","createdAt":1490119357713,"deletedAt":0,"image":{"id":"1*A6TotBcTdB2v0-WzLx6nOQ@2x.jpeg","originalWidth":5184,"originalHeight":3456},"name":"Science","description":"Of rocks and rockets.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Science Articles and News — Medium","type":"Topic"},{"topicId":"ae5d4995e225","slug":"data-science","createdAt":1493923906289,"deletedAt":0,"image":{"id":"1*NHWOEki_ncCX-xzbKtkEWw@2x.jpeg","originalWidth":5760,"originalHeight":3840},"name":"Data Science","description":"Query this.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Data Science News and Articles — Medium","type":"Topic"}]},"coverless":true,"slug":"watermarking-for-ai-text-and-synthetic-proteins-fighting-misinformation-and-bioterrorism","translationSourcePostId":"","translationSourceCreatorId":"","isApprovedTranslation":false,"inResponseToPostId":"","inResponseToRemovedAt":0,"isTitleSynthesized":false,"allowResponses":true,"importedUrl":"","importedPublishedAt":0,"visibility":0,"uniqueSlug":"watermarking-for-ai-text-and-synthetic-proteins-fighting-misinformation-and-bioterrorism-fd45be625dfe","previewContent":{"bodyModel":{"paragraphs":[{"name":"previewImage","type":4,"text":"","layout":10,"metadata":{"id":"1*_S2lHpvzamkQ6DWcy9_6Wg.jpeg","originalWidth":8000,"originalHeight":4500,"isFeatured":true}},{"name":"previewTitle","type":3,"text":"Watermarking for AI Text and Synthetic Proteins: Fighting Misinformation and Bioterrorism","alignment":1}],"sections":[{"startIndex":0}]},"isFullContent":false,"subtitle":"Understanding AI applications in bio for machine learning engineers"},"license":0,"inResponseToMediaResourceId":"","canonicalUrl":"","approvedHomeCollectionId":"7f60cf5620c9","isNewsletter":false,"newsletterId":"7e1ef1a266e0","webCanonicalUrl":"","mediumUrl":"","migrationId":"","notifyFollowers":true,"notifyTwitter":false,"notifyFacebook":false,"responseHiddenOnParentPostAt":0,"isSeries":false,"isSubscriptionLocked":false,"seriesLastAppendedAt":0,"audioVersionDurationSec":0,"sequenceId":"","isEligibleForRevenue":false,"isBlockedFromHightower":false,"deletedAt":0,"lockedPostSource":0,"hightowerMinimumGuaranteeStartsAt":0,"hightowerMinimumGuaranteeEndsAt":0,"featureLockRequestAcceptedAt":0,"mongerRequestType":1,"layerCake":1,"socialTitle":"","socialDek":"","editorialPreviewTitle":"","editorialPreviewDek":"","curationEligibleAt":0,"primaryTopicId":"1af65db9c2f8","isProxyPost":false,"proxyPostFaviconUrl":"","proxyPostProviderName":"","proxyPostType":0,"isSuspended":false,"isLimitedState":false,"seoTitle":"Watermarking for AI Text and Synthetic Proteins","previewContent2":{"bodyModel":{"paragraphs":[{"name":"4395","type":4,"text":"Image of colorful virus mutation by Nataliya Smirnova on UnSplash","markups":[{"type":3,"start":57,"end":65,"href":"https://unsplash.com/photos/a-group-of-colorful-butterflies-de3yM8H00vo","title":"","rel":"","anchorType":0}],"layout":1,"metadata":{"id":"1*_S2lHpvzamkQ6DWcy9_6Wg.jpeg","originalWidth":8000,"originalHeight":4500,"isFeatured":true}},{"name":"605a","type":3,"text":"Watermarking for AI Text and Synthetic Proteins","markups":[]},{"name":"b4d7","type":13,"text":"Understanding AI applications in bio for machine learning engineers","markups":[]},{"name":"3b11","type":1,"text":"Misinformation and bioterrorism are not new threats, but the scale and ease with which they can be unleashed has rapidly increased. LLMs make the creation of autonomous chatbots intent on sowing discord trivial, while generative protein design models dramatically expand the population of actors capable of committing biowarfare. The tools…","markups":[{"type":3,"start":158,"end":177,"href":"https://open.clemson.edu/mfh_reports/7/","title":"","rel":"","anchorType":0},{"type":3,"start":318,"end":328,"href":"https://press.asimov.com/articles/dna-screening","title":"","rel":"","anchorType":0},{"type":2,"start":486,"end":498}]}],"sections":[{"name":"0bc6","startIndex":0}]},"isFullContent":false,"subtitle":"Understanding AI applications in bio for machine learning engineers"},"cardType":0,"isDistributionAlertDismissed":false,"isShortform":false,"shortformType":0,"responsesLocked":false,"isLockedResponse":false,"isPublishToEmail":true,"responseDistribution":0,"isMarkedPaywallOnly":false,"type":"Post"},"6fea564215e4":{"id":"6fea564215e4","versionId":"abd79a499ca6","creatorId":"8624c420e311","homeCollectionId":"7f60cf5620c9","title":"Markov Decision Problems in Robotics","detectedLanguage":"en","latestVersion":"abd79a499ca6","latestPublishedVersion":"abd79a499ca6","hasUnpublishedEdits":false,"latestRev":1232,"createdAt":1730781676619,"updatedAt":1731967389725,"acceptedAt":0,"firstPublishedAt":1730980926068,"latestPublishedAt":1731967389725,"vote":false,"experimentalCss":"","displayAuthor":"","content":{"subtitle":"Using a real-world example to explain MDPs, the Bellman equation and value iteration","postDisplay":{"coverless":true}},"virtuals":{"statusForCollection":"APPROVED","allowNotes":true,"previewImage":{"imageId":"1*D0UQMoa_iibdZsn7pm_p5Q.png","filter":"","backgroundSize":"","originalWidth":1100,"originalHeight":594,"strategy":"resample","height":0,"width":0},"wordCount":2104,"imageCount":10,"readingTime":9.189622641509434,"subtitle":"Using a real-world example to explain MDPs, the Bellman equation and value iteration","publishedInCount":1,"usersBySocialRecommends":[],"noIndex":false,"recommends":52,"isBookmarked":false,"tags":[{"slug":"markov-decision-process","name":"Markov Decision Process","postCount":209,"metadata":{"postCount":209,"coverImage":{"id":"0*RDluVawx8npJIJYz","originalWidth":3840,"originalHeight":2560,"isFeatured":true,"unsplashPhotoId":"8TKU0XZPnY0"}},"type":"Tag"},{"slug":"reinforcement-learning","name":"Reinforcement Learning","postCount":7645,"metadata":{"postCount":7645,"coverImage":{"id":"1*WY6Q8r-32vnZ_lgV3WrnMA.jpeg","originalWidth":1792,"originalHeight":1024,"isFeatured":true}},"type":"Tag"},{"slug":"robotics","name":"Robotics","postCount":29479,"metadata":{"postCount":29479,"coverImage":{"id":"1*YQ-CPql8jXoUv-UYrR6Wpw.jpeg","originalWidth":300,"originalHeight":168,"isFeatured":true}},"type":"Tag"},{"slug":"bellman-equation","name":"Bellman Equation","postCount":59,"metadata":{"postCount":59,"coverImage":{"id":"1*NoV4y5BxjGs5PZD3gZzgpw.gif","originalWidth":484,"originalHeight":324,"isFeatured":true}},"type":"Tag"},{"slug":"editors-pick","name":"Editors Pick","postCount":4813,"metadata":{"postCount":4813,"coverImage":{"id":"1*aFX8XyDbU5UCBAEKMEQ-xQ.png","originalWidth":1680,"originalHeight":1232,"isFeatured":true}},"type":"Tag"}],"socialRecommendsCount":0,"responsesCreatedCount":3,"links":{"entries":[{"url":"https://en.wikipedia.org/wiki/Q-learning","alts":[],"httpStatus":200},{"url":"https://en.wikipedia.org/wiki/Richard_E._Bellman","alts":[],"httpStatus":200},{"url":"https://medium.com/towards-data-science/markov-decision-problems-in-robotics-6fea564215e4?sk=c3a956e684268afe9f33821e58b1ff90","alts":[{"type":3,"url":"medium://p/6fea564215e4"},{"type":2,"url":"medium://p/6fea564215e4"}],"httpStatus":200}],"version":"0.3","generatedAt":1731967390829},"isLockedPreviewOnly":false,"metaDescription":"","totalClapCount":367,"sectionCount":1,"readingList":0,"topics":[{"topicId":"1eca0103fff3","slug":"machine-learning","createdAt":1534449726145,"deletedAt":0,"image":{"id":"1*gFJS3amhZEg_z39D5EErVg@2x.png","originalWidth":2800,"originalHeight":1750},"name":"Machine Learning","description":"Teaching the learners.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Machine Learning News and Articles — Medium","type":"Topic"},{"topicId":"7808efc0cf94","slug":"math","createdAt":1494090780021,"deletedAt":0,"image":{"id":"1*S4y5QE8kNj1Im9dAcGQtOA@2x.jpeg","originalWidth":1800,"originalHeight":1200},"name":"Math","description":"Add it up.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Math News and Articles — Medium","type":"Topic"},{"topicId":"ae5d4995e225","slug":"data-science","createdAt":1493923906289,"deletedAt":0,"image":{"id":"1*NHWOEki_ncCX-xzbKtkEWw@2x.jpeg","originalWidth":5760,"originalHeight":3840},"name":"Data Science","description":"Query this.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Data Science News and Articles — Medium","type":"Topic"}]},"coverless":true,"slug":"markov-decision-problems-in-robotics","translationSourcePostId":"","translationSourceCreatorId":"","isApprovedTranslation":false,"inResponseToPostId":"","inResponseToRemovedAt":0,"isTitleSynthesized":true,"allowResponses":true,"importedUrl":"","importedPublishedAt":0,"visibility":2,"uniqueSlug":"markov-decision-problems-in-robotics-6fea564215e4","previewContent":{"bodyModel":{"paragraphs":[{"name":"previewImage","type":4,"text":"","layout":10,"metadata":{"id":"1*D0UQMoa_iibdZsn7pm_p5Q.png","originalWidth":1100,"originalHeight":594,"isFeatured":true}},{"name":"3da1","type":3,"text":"Markov Decision Problems in Robotics","markups":[],"alignment":1},{"name":"85b8","type":13,"text":"Using a real-world example to explain MDPs, the Bellman equation…","markups":[],"alignment":1}],"sections":[{"startIndex":0}]},"isFullContent":false,"subtitle":"Using a real-world example to explain MDPs, the Bellman equation and value iteration"},"license":0,"inResponseToMediaResourceId":"","canonicalUrl":"","approvedHomeCollectionId":"7f60cf5620c9","isNewsletter":false,"newsletterId":"85bbe855d17d","webCanonicalUrl":"","mediumUrl":"","migrationId":"","notifyFollowers":true,"notifyTwitter":false,"notifyFacebook":false,"responseHiddenOnParentPostAt":0,"isSeries":false,"isSubscriptionLocked":true,"seriesLastAppendedAt":0,"audioVersionDurationSec":0,"sequenceId":"","isEligibleForRevenue":true,"isBlockedFromHightower":false,"deletedAt":0,"lockedPostSource":1,"hightowerMinimumGuaranteeStartsAt":0,"hightowerMinimumGuaranteeEndsAt":0,"featureLockRequestAcceptedAt":0,"mongerRequestType":1,"layerCake":1,"socialTitle":"","socialDek":"","editorialPreviewTitle":"","editorialPreviewDek":"","curationEligibleAt":1730792528225,"primaryTopicId":"1eca0103fff3","isProxyPost":false,"proxyPostFaviconUrl":"","proxyPostProviderName":"","proxyPostType":0,"isSuspended":false,"isLimitedState":false,"seoTitle":"","previewContent2":{"bodyModel":{"paragraphs":[{"name":"3da1","type":3,"text":"Markov Decision Problems in Robotics","markups":[]},{"name":"85b8","type":13,"text":"Using a real-world example to explain MDPs, the Bellman equation and value iteration","markups":[]},{"name":"c9de","type":1,"text":"Markov Decision Problems (MDP) are a central topic in robotics and AI as they are the gateway to more complex topics such as Reinforcement Learning and Partially Observable MDPs. In the large majority of online materials, MDP are explained using a “grid world” example. If you find it difficult to…","markups":[]}],"sections":[{"name":"7ad2","startIndex":0}]},"isFullContent":false,"subtitle":"Using a real-world example to explain MDPs, the Bellman equation and value iteration"},"cardType":0,"isDistributionAlertDismissed":false,"isShortform":false,"shortformType":0,"responsesLocked":false,"isLockedResponse":false,"isPublishToEmail":true,"responseDistribution":0,"isMarkedPaywallOnly":false,"type":"Post"}}},"paging":{"path":"/_/api/collections/7f60cf5620c9/topics/20b4f3e27fbe","next":{"to":"1732731634829","ignoredIds":["2dc9beb69b27","1f7d26f2a215","d984bde99981","dc4ec62ec8dd","89fb4f64baaa","df37b015fd8a","21e5e961fce1","bdcaaf940fbb","7dfeec78f2a2","17aa54fd5e4e","c292ec0747db","a718748c7fd5","17b4ec4e7691","d299b638773b","f54552c15a16","fd45be625dfe","6fea564215e4"],"page":3}},"collection":{"id":"7f60cf5620c9","name":"Towards Data Science","slug":"towards-data-science","tags":["DATA SCIENCE","MACHINE LEARNING","ARTIFICIAL INTELLIGENCE","DATA ENGINEERING","DATA"],"creatorId":"9c70285657bb","description":"Your home for data science and AI. The world’s leading publication for data science, data analytics, data engineering, machine learning, and artificial intelligence professionals.","shortDescription":"Your home for data science and AI.","image":{"imageId":"1*CJe3891yB1A1mzMdqemkdg.jpeg","filter":"","backgroundSize":"","originalWidth":2861,"originalHeight":2861,"strategy":"resample","height":0,"width":0},"metadata":{"followerCount":768721,"activeAt":1732726931837},"virtuals":{"permissions":{"canPublish":false,"canPublishAll":false,"canRepublish":false,"canRemove":false,"canManageAll":false,"canSubmit":false,"canEditPosts":false,"canAddWriters":false,"canViewStats":false,"canSendNewsletter":false,"canViewLockedPosts":false,"canViewCloaked":false,"canEditOwnPosts":false,"canBeAssignedAuthor":false,"canEnrollInHightower":false,"canLockPostsForMediumMembers":false,"canLockOwnPostsForMediumMembers":false,"canViewNewsletterV2Stats":false,"canCreateNewsletterV3":false},"isSubscribed":false,"isEnrolledInHightower":false,"isEligibleForHightower":false,"isSubscribedToCollectionEmails":false,"isMuted":false,"canToggleEmail":false,"isWriter":false},"logo":{"imageId":"1*cFFKn8rFH4ZndmaYeAs6iQ.png","filter":"","backgroundSize":"","originalWidth":2381,"originalHeight":743,"strategy":"resample","height":0,"width":0},"twitterUsername":"TDataScience","collectionMastheadId":"8b6aceffde6","domain":"towardsdatascience.com","sections":[{"type":2,"collectionHeaderMetadata":{"title":"","description":"The world’s leading publication for data science, AI, data analytics, data engineering and ML professionals.","backgroundImage":{},"logoImage":{"id":"1*1m9fjwOZWwXIP82RWvRH5A@2x.png","originalWidth":1589,"originalHeight":661,"alt":"Towards Data Science"},"alignment":2,"layout":5}},{"type":1,"postListMetadata":{"source":1,"layout":4,"number":2,"postIds":[]}},{"type":1,"postListMetadata":{"source":1,"layout":4,"number":9,"postIds":[],"sectionHeader":"Latest"}},{"type":3,"promoMetadata":{"sectionHeader":"","promoId":"f9f3fdba6ebf"}},{"type":1,"postListMetadata":{"source":4,"layout":4,"number":6,"postIds":[],"tagSlug":"Editors Pick","sectionHeader":"Editors' Picks"}},{"type":1,"postListMetadata":{"source":4,"layout":4,"number":2,"postIds":[],"tagSlug":"Tds Features","sectionHeader":"Features"}},{"type":3,"promoMetadata":{"sectionHeader":"","promoId":"efaedc412a41"}},{"type":1,"postListMetadata":{"source":3,"layout":4,"number":3,"postIds":["60bb69a22759","c57724e9c461","69019493b259"],"sectionHeader":"Trending articles"}},{"type":1,"postListMetadata":{"source":3,"layout":4,"number":3,"postIds":["182a5ef6588c","e24b50e1d292","68b2303cc9c5"],"sectionHeader":"Popular from our archive"}},{"type":1,"postListMetadata":{"source":4,"layout":4,"number":6,"postIds":[],"tagSlug":"Deep Dives","sectionHeader":"Deep Dives"}},{"type":1,"postListMetadata":{"source":3,"layout":5,"number":3,"postIds":["d691af11cc2f","c2c8e712c971","3bf37f75a345"],"sectionHeader":"About"}},{"type":1,"postListMetadata":{"source":1,"layout":5,"number":16,"postIds":[],"sectionHeader":"Latest"}}],"tintColor":"#FF355876","lightText":true,"favicon":{"imageId":"1*VzTUkfeGymHP4Bvav-T-lA.png","filter":"","backgroundSize":"","originalWidth":207,"originalHeight":206,"strategy":"resample","height":0,"width":0},"colorPalette":{"defaultBackgroundSpectrum":{"colorPoints":[{"color":"#FF668AAA","point":0},{"color":"#FF61809D","point":0.1},{"color":"#FF5A7690","point":0.2},{"color":"#FF546C83","point":0.3},{"color":"#FF4D6275","point":0.4},{"color":"#FF455768","point":0.5},{"color":"#FF3D4C5A","point":0.6},{"color":"#FF34414C","point":0.7},{"color":"#FF2B353E","point":0.8},{"color":"#FF21282F","point":0.9},{"color":"#FF161B1F","point":1}],"backgroundColor":"#FFFFFFFF"},"tintBackgroundSpectrum":{"colorPoints":[{"color":"#FF355876","point":0},{"color":"#FF4D6C88","point":0.1},{"color":"#FF637F99","point":0.2},{"color":"#FF7791A8","point":0.3},{"color":"#FF8CA2B7","point":0.4},{"color":"#FF9FB3C6","point":0.5},{"color":"#FFB2C3D4","point":0.6},{"color":"#FFC5D2E1","point":0.7},{"color":"#FFD7E2EE","point":0.8},{"color":"#FFE9F1FA","point":0.9},{"color":"#FFFBFFFF","point":1}],"backgroundColor":"#FF355876"},"highlightSpectrum":{"colorPoints":[{"color":"#FFEDF4FC","point":0},{"color":"#FFE9F2FD","point":0.1},{"color":"#FFE6F1FD","point":0.2},{"color":"#FFE2EFFD","point":0.3},{"color":"#FFDFEEFD","point":0.4},{"color":"#FFDBECFE","point":0.5},{"color":"#FFD7EBFE","point":0.6},{"color":"#FFD4E9FE","point":0.7},{"color":"#FFD0E7FF","point":0.8},{"color":"#FFCCE6FF","point":0.9},{"color":"#FFC8E4FF","point":1}],"backgroundColor":"#FFFFFFFF"},"darkBackgroundSpectrum":{"colorPoints":[{"color":"#FF7EA2C3","point":0},{"color":"#FF8AAAC9","point":0.1},{"color":"#FF95B2CE","point":0.2},{"color":"#FFA0BAD3","point":0.3},{"color":"#FFABC2D9","point":0.4},{"color":"#FFB6CADE","point":0.5},{"color":"#FFC1D2E3","point":0.6},{"color":"#FFCBD9E8","point":0.7},{"color":"#FFD6E1EC","point":0.8},{"color":"#FFE0E8F1","point":0.9},{"color":"#FFEAEFF6","point":1}],"backgroundColor":"#FF000000"}},"navItems":[{"type":8,"title":"Latest","url":"https://towardsdatascience.com/latest"},{"type":4,"title":"Editors' Picks","url":"https://towardsdatascience.com/editors-picks/home","topicId":"20b4f3e27fbe","source":"topicId"},{"type":4,"title":"Deep Dives","url":"https://towardsdatascience.com/deep-dives/home","topicId":"8ad314313527","source":"topicId"},{"type":4,"title":"About","url":"https://towardsdatascience.com/about-us/home","topicId":"e4bc46bb3ab0","source":"topicId"},{"type":2,"title":"Contribute","postId":"96667b06af5","url":"https://towardsdatascience.com/questions-96667b06af5","source":"postId"},{"type":3,"title":"Newsletter","url":"https://medium.com/towards-data-science/newsletter"}],"colorBehavior":2,"collectionFeatures":[29,30,27,25],"ampLogo":{"imageId":"","filter":"","backgroundSize":"","originalWidth":0,"originalHeight":0,"strategy":"resample","height":0,"width":0},"header":{"title":"","description":"The world’s leading publication for data science, AI, data analytics, data engineering and ML professionals.","backgroundImage":{},"logoImage":{"id":"1*1m9fjwOZWwXIP82RWvRH5A@2x.png","originalWidth":1589,"originalHeight":661,"alt":"Towards Data Science"},"alignment":2,"layout":5},"paidForDomainAt":1509037374118,"subscriberCount":768721,"tagline":"A Medium publication sharing concepts, ideas and codes.","isOptedIntoAurora":false,"newsletterV3":{"newsletterV3Id":"d6fe9076899","type":1,"name":"The Variable","description":"Every Thursday, the Variable delivers the very best of Towards Data Science: from hands-on tutorials and cutting-edge research to the latest on data science and machine learning tools.","collectionId":"7f60cf5620c9","newsletterSlug":"the-variable","isSubscribed":false,"showPromo":true,"avatarImageId":"","creatorId":"895063a310f4","showNewsletterPostsInCollectionHome":true,"exportableSubscribersCount":52145,"subscribersCount":132088,"promoHeadline":"","promoBody":"","replyToEmail":""},"isCurationAllowedByDefault":false,"polarisCoverImage":{"imageId":"1*CJe3891yB1A1mzMdqemkdg.jpeg","filter":"","backgroundSize":"","originalWidth":2861,"originalHeight":2861,"strategy":"resample","height":0,"width":0},"ptsQualifiedAt":1616092952992,"type":"Collection"},"topic":{"topicId":"20b4f3e27fbe","collectionId":"7f60cf5620c9","createdAt":0,"slug":"editors-picks","header":{},"sections":[{"source":4,"layout":4,"number":2,"title":"","items":[{"postId":"2dc9beb69b27","itemType":"postId"},{"postId":"1f7d26f2a215","itemType":"postId"}],"tagSlug":"Editors Pick"},{"source":4,"layout":4,"number":15,"title":"Latest","items":[{"postId":"d984bde99981","itemType":"postId"},{"postId":"dc4ec62ec8dd","itemType":"postId"},{"postId":"89fb4f64baaa","itemType":"postId"},{"postId":"df37b015fd8a","itemType":"postId"},{"postId":"21e5e961fce1","itemType":"postId"},{"postId":"bdcaaf940fbb","itemType":"postId"},{"postId":"7dfeec78f2a2","itemType":"postId"},{"postId":"17aa54fd5e4e","itemType":"postId"},{"postId":"c292ec0747db","itemType":"postId"},{"postId":"a718748c7fd5","itemType":"postId"},{"postId":"17b4ec4e7691","itemType":"postId"},{"postId":"d299b638773b","itemType":"postId"},{"postId":"f54552c15a16","itemType":"postId"},{"postId":"fd45be625dfe","itemType":"postId"},{"postId":"6fea564215e4","itemType":"postId"}],"tagSlug":"Editors Pick"},{"source":4,"layout":4,"number":2,"title":"Features","tagSlug":"Tds Features"},{"source":4,"layout":4,"number":6,"title":"Hands On Tutorials","tagSlug":"Hands On Tutorials"},{"source":4,"layout":4,"number":6,"title":"Deep Dives","tagSlug":"Deep Dives"},{"source":3,"layout":4,"number":3,"title":"Popular from our archive","items":[{"postId":"182a5ef6588c","itemType":"postId"},{"postId":"e24b50e1d292","itemType":"postId"},{"postId":"68b2303cc9c5","itemType":"postId"}],"tagSlug":""},{"source":3,"layout":2,"number":1,"title":"Contribute","items":[{"postId":"96667b06af5","itemType":"postId"}],"tagSlug":""},{"source":4,"layout":4,"number":15,"title":"Last chance to read","tagSlug":"Editors Pick"}],"title":"Editors’ Picks","description":"Discover the best of Towards Data Science: from hands-on tutorials and cutting-edge research to the latest on data science and machine learning tools.","type":"CollectionTopic"},"header":{"title":"Editors’ Picks","description":"Discover the best of Towards Data Science: from hands-on tutorials and cutting-edge research to the latest on data science and machine learning tools.","alignment":1},"streamItems":[{"createdAt":1732731635114,"randomId":"b8b77a3c8def","section":{"items":[{"post":{"postId":"2dc9beb69b27"},"itemType":"post"},{"post":{"postId":"1f7d26f2a215"},"itemType":"post"}],"layout":4},"itemType":"section","type":"StreamItem"},{"createdAt":1732731635114,"randomId":"6699ea05f545","section":{"items":[{"post":{"postId":"d984bde99981"},"itemType":"post"},{"post":{"postId":"dc4ec62ec8dd"},"itemType":"post"},{"post":{"postId":"89fb4f64baaa"},"itemType":"post"},{"post":{"postId":"df37b015fd8a"},"itemType":"post"},{"post":{"postId":"21e5e961fce1"},"itemType":"post"},{"post":{"postId":"bdcaaf940fbb"},"itemType":"post"},{"post":{"postId":"7dfeec78f2a2"},"itemType":"post"},{"post":{"postId":"17aa54fd5e4e"},"itemType":"post"},{"post":{"postId":"c292ec0747db"},"itemType":"post"},{"post":{"postId":"a718748c7fd5"},"itemType":"post"},{"post":{"postId":"17b4ec4e7691"},"itemType":"post"},{"post":{"postId":"d299b638773b"},"itemType":"post"},{"post":{"postId":"f54552c15a16"},"itemType":"post"},{"post":{"postId":"fd45be625dfe"},"itemType":"post"},{"post":{"postId":"6fea564215e4"},"itemType":"post"}],"layout":4,"heading":{"fallbackTitle":"Latest","headingBasic":{"title":"Latest"},"headingType":"headingBasic"}},"itemType":"section","type":"StreamItem"}]}) // ]]></script><script>(function(){function c(){var b=a.contentDocument||a.contentWindow.document;if(b){var d=b.createElement('script');d.innerHTML="window.__CF$cv$params={r:'8e94220c3a3ece1f',t:'MTczMjczMTYzNS4wMDAwMDA='};var a=document.createElement('script');a.nonce='';a.src='/cdn-cgi/challenge-platform/scripts/jsd/main.js';document.getElementsByTagName('head')[0].appendChild(a);";b.getElementsByTagName('head')[0].appendChild(d)}}if(document.body){var a=document.createElement('iframe');a.height=1;a.width=1;a.style.position='absolute';a.style.top=0;a.style.left=0;a.style.border='none';a.style.visibility='hidden';document.body.appendChild(a);if('loading'!==document.readyState)c();else if(window.addEventListener)document.addEventListener('DOMContentLoaded',c);else{var e=document.onreadystatechange||function(){};document.onreadystatechange=function(b){e(b);'loading'!==document.readyState&&(document.onreadystatechange=e,c())}}}})();</script></body></html>