CINXE.COM

Unidades naturais – Wikipédia, a enciclopédia livre

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="pt" dir="ltr"> <head> <meta charset="UTF-8"> <title>Unidades naturais – Wikipédia, a enciclopédia livre</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )ptwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t."," \t,"],"wgDigitTransformTable":["",""], "wgDefaultDateFormat":"dmy","wgMonthNames":["","janeiro","fevereiro","março","abril","maio","junho","julho","agosto","setembro","outubro","novembro","dezembro"],"wgRequestId":"6b28d416-d818-46bc-876d-8393782b47d5","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Unidades_naturais","wgTitle":"Unidades naturais","wgCurRevisionId":64773646,"wgRevisionId":64773646,"wgArticleId":1579004,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["!Predefinição Webarchive wayback links","!Artigos que carecem de notas de rodapé desde fevereiro de 2011","!Artigos que carecem de notas de rodapé sem indicação de tema","!Esboços sobre física","!Esboços maiores que 15000 bytes","Unidades naturais"],"wgPageViewLanguage":"pt","wgPageContentLanguage":"pt","wgPageContentModel":"wikitext","wgRelevantPageName":"Unidades_naturais","wgRelevantArticleId":1579004,"wgIsProbablyEditable":true, "wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"pt","pageLanguageDir":"ltr","pageVariantFallbacks":"pt"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":20000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q3962243","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":true, "wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false,"wgSiteNoticeId":"2.30"};RLSTATE={"ext.gadget.FeedbackHighlight-base":"ready","ext.gadget.keepPDU":"ready","ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready","ext.dismissableSiteNotice.styles":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.Topicon","ext.gadget.Metacaixa","ext.gadget.TitleRewrite", "ext.gadget.ElementosOcultaveis","ext.gadget.FeedbackHighlight","ext.gadget.ReferenceTooltips","ext.gadget.NewVillagePump","ext.gadget.wikibugs","ext.gadget.charinsert","ext.gadget.requestForAdminship","ext.gadget.WikiMiniAtlas","ext.gadget.PagesForDeletion","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","oojs-ui.styles.icons-media","oojs-ui-core.icons","wikibase.sidebar.tracking","ext.dismissableSiteNotice"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=pt&amp;modules=ext.cite.styles%7Cext.dismissableSiteNotice.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=pt&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=pt&amp;modules=ext.gadget.FeedbackHighlight-base%2CkeepPDU&amp;only=styles&amp;skin=vector-2022"> <link rel="stylesheet" href="/w/load.php?lang=pt&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Unidades naturais – Wikipédia, a enciclopédia livre"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//pt.m.wikipedia.org/wiki/Unidades_naturais"> <link rel="alternate" type="application/x-wiki" title="Editar" href="/w/index.php?title=Unidades_naturais&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipédia (pt)"> <link rel="EditURI" type="application/rsd+xml" href="//pt.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://pt.wikipedia.org/wiki/Unidades_naturais"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.pt"> <link rel="alternate" type="application/atom+xml" title="&#039;&#039;Feed&#039;&#039; Atom Wikipédia" href="/w/index.php?title=Especial:Mudan%C3%A7as_recentes&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Unidades_naturais rootpage-Unidades_naturais skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Saltar para o conteúdo</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="&#039;&#039;Site&#039;&#039;"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Menu principal" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Menu principal</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Menu principal</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">mover para a barra lateral</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">ocultar</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navegação </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Wikip%C3%A9dia:P%C3%A1gina_principal" title="Visitar a página principal [z]" accesskey="z"><span>Página principal</span></a></li><li id="n-featuredcontent" class="mw-list-item"><a href="/wiki/Portal:Conte%C3%BAdo_destacado"><span>Conteúdo destacado</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Eventos_atuais" title="Informação temática sobre eventos atuais"><span>Eventos atuais</span></a></li><li id="n-villagepump" class="mw-list-item"><a href="/wiki/Wikip%C3%A9dia:Esplanada"><span>Esplanada</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Especial:Aleat%C3%B3ria" title="Carregar página aleatória [x]" accesskey="x"><span>Página aleatória</span></a></li><li id="n-portals" class="mw-list-item"><a href="/wiki/Portal:%C3%8Dndice"><span>Portais</span></a></li><li id="n-bug_in_article" class="mw-list-item"><a href="/wiki/Wikip%C3%A9dia:Informe_um_erro"><span>Informar um erro</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Colaboração </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-welcome" class="mw-list-item"><a href="/wiki/Wikip%C3%A9dia:Boas-vindas"><span>Boas-vindas</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/Ajuda:P%C3%A1gina_principal" title="Um local reservado para auxílio."><span>Ajuda</span></a></li><li id="n-Páginas-de-testes-públicas" class="mw-list-item"><a href="/wiki/Ajuda:P%C3%A1gina_de_testes"><span>Páginas de testes públicas</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikip%C3%A9dia:Portal_comunit%C3%A1rio" title="Sobre o projeto"><span>Portal comunitário</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Especial:Mudan%C3%A7as_recentes" title="Uma lista de mudanças recentes nesta wiki [r]" accesskey="r"><span>Mudanças recentes</span></a></li><li id="n-maintenance" class="mw-list-item"><a href="/wiki/Wikip%C3%A9dia:Manuten%C3%A7%C3%A3o"><span>Manutenção</span></a></li><li id="n-createpage" class="mw-list-item"><a href="/wiki/Ajuda:Guia_de_edi%C3%A7%C3%A3o/Como_come%C3%A7ar_uma_p%C3%A1gina"><span>Criar página</span></a></li><li id="n-newpages-description" class="mw-list-item"><a href="/wiki/Especial:P%C3%A1ginas_novas"><span>Páginas novas</span></a></li><li id="n-contact-description" class="mw-list-item"><a href="/wiki/Wikip%C3%A9dia:Contato"><span>Contato</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Wikip%C3%A9dia:P%C3%A1gina_principal" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipédia" src="/static/images/mobile/copyright/wikipedia-wordmark-fr.svg" style="width: 7.4375em; height: 1.125em;"> <img class="mw-logo-tagline" alt="" src="/static/images/mobile/copyright/wikipedia-tagline-pt.svg" width="120" height="13" style="width: 7.5em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Especial:Pesquisar" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Pesquisar na Wikipédia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Busca</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Pesquisar na Wikipédia" aria-label="Pesquisar na Wikipédia" autocapitalize="sentences" title="Pesquisar na Wikipédia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Especial:Pesquisar"> </div> <button class="cdx-button cdx-search-input__end-button">Pesquisar</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Ferramentas pessoais"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Aspeto"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Aspeto" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Aspeto</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=20120521SB001&amp;uselang=pt" class=""><span>Donativos</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Especial:Criar_conta&amp;returnto=Unidades+naturais" title="É encorajado a criar uma conta e iniciar sessão; no entanto, não é obrigatório" class=""><span>Criar uma conta</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Especial:Entrar&amp;returnto=Unidades+naturais" title="Aconselhamos-lhe a criar uma conta na Wikipédia, embora tal não seja obrigatório. [o]" accesskey="o" class=""><span>Entrar</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Mais opções" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Ferramentas pessoais" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Ferramentas pessoais</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="Menu do utilizador" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=20120521SB001&amp;uselang=pt"><span>Donativos</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Especial:Criar_conta&amp;returnto=Unidades+naturais" title="É encorajado a criar uma conta e iniciar sessão; no entanto, não é obrigatório"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Criar uma conta</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Especial:Entrar&amp;returnto=Unidades+naturais" title="Aconselhamos-lhe a criar uma conta na Wikipédia, embora tal não seja obrigatório. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Entrar</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Páginas para editores sem sessão iniciada <a href="/wiki/Ajuda:Introduction" aria-label="Saiba mais sobre edição"><span>saber mais</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Especial:Minhas_contribui%C3%A7%C3%B5es" title="Uma lista de edições feitas a partir deste endereço IP [y]" accesskey="y"><span>Contribuições</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Especial:Minha_discuss%C3%A3o" title="Discussão sobre edições feitas a partir deste endereço IP [n]" accesskey="n"><span>Discussão</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><div id="mw-dismissablenotice-anonplace"></div><script>(function(){var node=document.getElementById("mw-dismissablenotice-anonplace");if(node){node.outerHTML="\u003Cdiv class=\"mw-dismissable-notice\"\u003E\u003Cdiv class=\"mw-dismissable-notice-close\"\u003E[\u003Ca tabindex=\"0\" role=\"button\"\u003Eocultar\u003C/a\u003E]\u003C/div\u003E\u003Cdiv class=\"mw-dismissable-notice-body\"\u003E\u003C!-- CentralNotice --\u003E\u003Cdiv id=\"localNotice\" data-nosnippet=\"\"\u003E\u003Cdiv class=\"anonnotice\" lang=\"pt\" dir=\"ltr\"\u003E\u003C/div\u003E\u003C/div\u003E\u003C/div\u003E\u003C/div\u003E";}}());</script></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="&#039;&#039;Site&#039;&#039;"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Conteúdo" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Conteúdo</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">mover para a barra lateral</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">ocultar</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">Início</div> </a> </li> <li id="toc-Constantes_físicas_pretendentes_a_serem_usadas_em_sistemas_de_unidades_naturais" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Constantes_físicas_pretendentes_a_serem_usadas_em_sistemas_de_unidades_naturais"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Constantes físicas pretendentes a serem usadas em sistemas de unidades naturais</span> </div> </a> <ul id="toc-Constantes_físicas_pretendentes_a_serem_usadas_em_sistemas_de_unidades_naturais-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Unidades_de_Planck" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Unidades_de_Planck"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Unidades de Planck</span> </div> </a> <ul id="toc-Unidades_de_Planck-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Unidades_de_Stoney" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Unidades_de_Stoney"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Unidades de Stoney</span> </div> </a> <ul id="toc-Unidades_de_Stoney-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Unidades_de_&quot;Schrödinger&quot;" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Unidades_de_&quot;Schrödinger&quot;"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Unidades de "Schrödinger"</span> </div> </a> <ul id="toc-Unidades_de_&quot;Schrödinger&quot;-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Unidades_atômicas_(Hartree)" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Unidades_atômicas_(Hartree)"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Unidades atômicas (Hartree)</span> </div> </a> <ul id="toc-Unidades_atômicas_(Hartree)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sistema_eletrônico_de_unidades" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Sistema_eletrônico_de_unidades"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Sistema eletrônico de unidades</span> </div> </a> <ul id="toc-Sistema_eletrônico_de_unidades-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sistema_de_unidades_eletrodinâmicas_quânticas_(Stille)" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Sistema_de_unidades_eletrodinâmicas_quânticas_(Stille)"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Sistema de unidades eletrodinâmicas quânticas (Stille)</span> </div> </a> <ul id="toc-Sistema_de_unidades_eletrodinâmicas_quânticas_(Stille)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Unidades_geometrizadas" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Unidades_geometrizadas"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Unidades geometrizadas</span> </div> </a> <ul id="toc-Unidades_geometrizadas-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Unidades_de_N_corpos" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Unidades_de_N_corpos"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Unidades de N corpos</span> </div> </a> <ul id="toc-Unidades_de_N_corpos-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Ver_também" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Ver_também"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Ver também</span> </div> </a> <ul id="toc-Ver_também-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Referências" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Referências"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>Referências</span> </div> </a> <ul id="toc-Referências-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Conteúdo" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Alternar o índice" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Alternar o índice</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Unidades naturais</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Ir para um artigo noutra língua. Disponível em 26 línguas" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-26" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">26 línguas</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%88%D8%AD%D8%AF%D8%A7%D8%AA_%D8%B7%D8%A8%D9%8A%D8%B9%D9%8A%D8%A9" title="وحدات طبيعية — árabe" lang="ar" hreflang="ar" data-title="وحدات طبيعية" data-language-autonym="العربية" data-language-local-name="árabe" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Unitat_natural" title="Unitat natural — catalão" lang="ca" hreflang="ca" data-title="Unitat natural" data-language-autonym="Català" data-language-local-name="catalão" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/P%C5%99irozen%C3%A1_soustava_jednotek" title="Přirozená soustava jednotek — checo" lang="cs" hreflang="cs" data-title="Přirozená soustava jednotek" data-language-autonym="Čeština" data-language-local-name="checo" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%9F%C4%95%D1%80%D1%87%C4%95%D1%81%D0%B5%D0%BD_%D0%BD%D0%B0%D1%82%D1%83%D1%80%D0%B0%D0%BB%D0%BB%C4%83_%D1%82%D1%8B%D1%82%C4%83%D0%BC%C4%95%D1%81%D0%B5%D0%BC" title="Пĕрчĕсен натураллă тытăмĕсем — chuvash" lang="cv" hreflang="cv" data-title="Пĕрчĕсен натураллă тытăмĕсем" data-language-autonym="Чӑвашла" data-language-local-name="chuvash" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Nat%C3%BCrliche_Einheiten" title="Natürliche Einheiten — alemão" lang="de" hreflang="de" data-title="Natürliche Einheiten" data-language-autonym="Deutsch" data-language-local-name="alemão" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Natural_units" title="Natural units — inglês" lang="en" hreflang="en" data-title="Natural units" data-language-autonym="English" data-language-local-name="inglês" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Loomulike_%C3%BChikute_s%C3%BCsteem" title="Loomulike ühikute süsteem — estónio" lang="et" hreflang="et" data-title="Loomulike ühikute süsteem" data-language-autonym="Eesti" data-language-local-name="estónio" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%DB%8C%DA%A9%D8%A7%D9%87%D8%A7%DB%8C_%D8%B7%D8%A8%DB%8C%D8%B9%DB%8C" title="یکاهای طبیعی — persa" lang="fa" hreflang="fa" data-title="یکاهای طبیعی" data-language-autonym="فارسی" data-language-local-name="persa" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Luonnolliset_yksik%C3%B6t" title="Luonnolliset yksiköt — finlandês" lang="fi" hreflang="fi" data-title="Luonnolliset yksiköt" data-language-autonym="Suomi" data-language-local-name="finlandês" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Syst%C3%A8me_d%27unit%C3%A9s_naturelles" title="Système d&#039;unités naturelles — francês" lang="fr" hreflang="fr" data-title="Système d&#039;unités naturelles" data-language-autonym="Français" data-language-local-name="francês" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/Aonaid_n%C3%A1d%C3%BArtha" title="Aonaid nádúrtha — irlandês" lang="ga" hreflang="ga" data-title="Aonaid nádúrtha" data-language-autonym="Gaeilge" data-language-local-name="irlandês" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D4%B2%D5%B6%D5%A1%D5%AF%D5%A1%D5%B6_%D5%B4%D5%AB%D5%A1%D5%BE%D5%B8%D6%80%D5%B6%D5%A5%D6%80" title="Բնական միավորներ — arménio" lang="hy" hreflang="hy" data-title="Բնական միավորներ" data-language-autonym="Հայերեն" data-language-local-name="arménio" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Unit%C3%A0_naturali" title="Unità naturali — italiano" lang="it" hreflang="it" data-title="Unità naturali" data-language-autonym="Italiano" data-language-local-name="italiano" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E8%87%AA%E7%84%B6%E5%8D%98%E4%BD%8D%E7%B3%BB" title="自然単位系 — japonês" lang="ja" hreflang="ja" data-title="自然単位系" data-language-autonym="日本語" data-language-local-name="japonês" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%9E%90%EC%97%B0%EB%8B%A8%EC%9C%84%EA%B3%84" title="자연단위계 — coreano" lang="ko" hreflang="ko" data-title="자연단위계" data-language-autonym="한국어" data-language-local-name="coreano" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Natuurlijke_eenheden" title="Natuurlijke eenheden — neerlandês" lang="nl" hreflang="nl" data-title="Natuurlijke eenheden" data-language-autonym="Nederlands" data-language-local-name="neerlandês" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Naturlige_enheter" title="Naturlige enheter — norueguês bokmål" lang="nb" hreflang="nb" data-title="Naturlige enheter" data-language-autonym="Norsk bokmål" data-language-local-name="norueguês bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%95%E0%A9%81%E0%A8%A6%E0%A8%B0%E0%A8%A4%E0%A9%80_%E0%A8%87%E0%A8%95%E0%A8%BE%E0%A8%88%E0%A8%86%E0%A8%82" title="ਕੁਦਰਤੀ ਇਕਾਈਆਂ — panjabi" lang="pa" hreflang="pa" data-title="ਕੁਦਰਤੀ ਇਕਾਈਆਂ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="panjabi" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Unit%C4%83%C8%9Bi_naturale" title="Unități naturale — romeno" lang="ro" hreflang="ro" data-title="Unități naturale" data-language-autonym="Română" data-language-local-name="romeno" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%95%D1%81%D1%82%D0%B5%D1%81%D1%82%D0%B2%D0%B5%D0%BD%D0%BD%D1%8B%D0%B5_%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D1%8B_%D0%B5%D0%B4%D0%B8%D0%BD%D0%B8%D1%86" title="Естественные системы единиц — russo" lang="ru" hreflang="ru" data-title="Естественные системы единиц" data-language-autonym="Русский" data-language-local-name="russo" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Natural_units" title="Natural units — Simple English" lang="en-simple" hreflang="en-simple" data-title="Natural units" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Naravne_enote" title="Naravne enote — esloveno" lang="sl" hreflang="sl" data-title="Naravne enote" data-language-autonym="Slovenščina" data-language-local-name="esloveno" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Naturliga_enheter" title="Naturliga enheter — sueco" lang="sv" hreflang="sv" data-title="Naturliga enheter" data-language-autonym="Svenska" data-language-local-name="sueco" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Do%C4%9Fal_birimler" title="Doğal birimler — turco" lang="tr" hreflang="tr" data-title="Doğal birimler" data-language-autonym="Türkçe" data-language-local-name="turco" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9F%D1%80%D0%B8%D1%80%D0%BE%D0%B4%D0%BD%D1%96_%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B8_%D0%BE%D0%B4%D0%B8%D0%BD%D0%B8%D1%86%D1%8C" title="Природні системи одиниць — ucraniano" lang="uk" hreflang="uk" data-title="Природні системи одиниць" data-language-autonym="Українська" data-language-local-name="ucraniano" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E8%87%AA%E7%84%B6%E5%8D%95%E4%BD%8D%E5%88%B6" title="自然单位制 — chinês" lang="zh" hreflang="zh" data-title="自然单位制" data-language-autonym="中文" data-language-local-name="chinês" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q3962243#sitelinks-wikipedia" title="Editar hiperligações interlínguas" class="wbc-editpage">Editar hiperligações</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Espaços nominais"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Unidades_naturais" title="Ver a página de conteúdo [c]" accesskey="c"><span>Artigo</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Discuss%C3%A3o:Unidades_naturais" rel="discussion" title="Discussão sobre o conteúdo da página [t]" accesskey="t"><span>Discussão</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Mudar a variante da língua" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">português</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Vistas"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Unidades_naturais"><span>Ler</span></a></li><li id="ca-ve-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Unidades_naturais&amp;veaction=edit" title="Editar esta página [v]" accesskey="v"><span>Editar</span></a></li><li id="ca-edit" class="collapsible vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Unidades_naturais&amp;action=edit" title="Editar o código-fonte desta página [e]" accesskey="e"><span>Editar código-fonte</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Unidades_naturais&amp;action=history" title="Edições anteriores desta página. [h]" accesskey="h"><span>Ver histórico</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Ferramentas de página"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Ferramentas" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Ferramentas</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Ferramentas</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">mover para a barra lateral</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">ocultar</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="Mais opções" > <div class="vector-menu-heading"> Operações </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Unidades_naturais"><span>Ler</span></a></li><li id="ca-more-ve-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Unidades_naturais&amp;veaction=edit" title="Editar esta página [v]" accesskey="v"><span>Editar</span></a></li><li id="ca-more-edit" class="collapsible vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Unidades_naturais&amp;action=edit" title="Editar o código-fonte desta página [e]" accesskey="e"><span>Editar código-fonte</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Unidades_naturais&amp;action=history"><span>Ver histórico</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> Geral </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Especial:P%C3%A1ginas_afluentes/Unidades_naturais" title="Lista de todas as páginas que contêm hiperligações para esta [j]" accesskey="j"><span>Páginas afluentes</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Especial:Altera%C3%A7%C3%B5es_relacionadas/Unidades_naturais" rel="nofollow" title="Mudanças recentes nas páginas para as quais esta contém hiperligações [k]" accesskey="k"><span>Alterações relacionadas</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:Carregar_ficheiro" title="Carregar ficheiros [u]" accesskey="u"><span>Carregar ficheiro</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Especial:P%C3%A1ginas_especiais" title="Lista de páginas especiais [q]" accesskey="q"><span>Páginas especiais</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Unidades_naturais&amp;oldid=64773646" title="Hiperligação permanente para esta revisão desta página"><span>Hiperligação permanente</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Unidades_naturais&amp;action=info" title="Mais informações sobre esta página"><span>Informações da página</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Especial:Citar&amp;page=Unidades_naturais&amp;id=64773646&amp;wpFormIdentifier=titleform" title="Informação sobre como citar esta página"><span>Citar esta página</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Especial:UrlShortener&amp;url=https%3A%2F%2Fpt.wikipedia.org%2Fwiki%2FUnidades_naturais"><span>Obter URL encurtado</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Especial:QrCode&amp;url=https%3A%2F%2Fpt.wikipedia.org%2Fwiki%2FUnidades_naturais"><span>Descarregar código QR</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Imprimir/exportar </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=Especial:Livro&amp;bookcmd=book_creator&amp;referer=Unidades+naturais"><span>Criar um livro</span></a></li><li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Especial:DownloadAsPdf&amp;page=Unidades_naturais&amp;action=show-download-screen"><span>Descarregar como PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Unidades_naturais&amp;printable=yes" title="Versão para impressão desta página [p]" accesskey="p"><span>Versão para impressão</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> Noutros projetos </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Natural_units" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q3962243" title="Hiperligação para o elemento do repositório de dados [g]" accesskey="g"><span>Elemento Wikidata</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Ferramentas de página"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Aspeto"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Aspeto</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">mover para a barra lateral</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">ocultar</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">Origem: Wikipédia, a enciclopédia livre.</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="pt" dir="ltr"><style data-mw-deduplicate="TemplateStyles:r68971778">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}.mw-parser-output .cmbox{margin:3px 0;border-collapse:collapse;border:1px solid #a2a9b1;background-color:#dfe8ff;box-sizing:border-box;color:var(--color-base)}.mw-parser-output .cmbox-speedy{border:4px solid #b32424;background-color:#ffdbdb}.mw-parser-output .cmbox-delete{background-color:#ffdbdb}.mw-parser-output .cmbox-content{background-color:#ffe7ce}.mw-parser-output .cmbox-style{background-color:#fff9db}.mw-parser-output .cmbox-move{background-color:#e4d8ff}.mw-parser-output .cmbox-protection{background-color:#efefe1}.mw-parser-output .cmbox .mbox-text{border:none;padding:0.25em 0.9em;width:100%}.mw-parser-output .cmbox .mbox-image{border:none;padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .cmbox .mbox-imageright{border:none;padding:2px 0.9em 2px 0;text-align:center}.mw-parser-output .cmbox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .cmbox .mbox-invalid-type{text-align:center}@media(min-width:720px){.mw-parser-output .cmbox{margin:3px 10%}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .cmbox{background-color:#0d1a27}html.skin-theme-clientpref-night .mw-parser-output .cmbox-speedy,html.skin-theme-clientpref-night .mw-parser-output .cmbox-delete{background-color:#300}html.skin-theme-clientpref-night .mw-parser-output .cmbox-content{background-color:#331a00}html.skin-theme-clientpref-night .mw-parser-output .cmbox-style{background-color:#332b00}html.skin-theme-clientpref-night .mw-parser-output .cmbox-move{background-color:#08001a}html.skin-theme-clientpref-night .mw-parser-output .cmbox-protection{background-color:#212112}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cmbox{background-color:#0d1a27}html.skin-theme-clientpref-os .mw-parser-output .cmbox-speedy,html.skin-theme-clientpref-os .mw-parser-output .cmbox-delete{background-color:#300}html.skin-theme-clientpref-os .mw-parser-output .cmbox-content{background-color:#331a00}html.skin-theme-clientpref-os .mw-parser-output .cmbox-style{background-color:#332b00}html.skin-theme-clientpref-os .mw-parser-output .cmbox-move{background-color:#08001a}html.skin-theme-clientpref-os .mw-parser-output .cmbox-protection{background-color:#212112}}.mw-parser-output .fmbox{clear:both;margin:0.2em 0;width:100%;border:1px solid #a2a9b1;background-color:var(--background-color-interactive-subtle,#f8f9fa);box-sizing:border-box;color:var(--color-base,#202122)}.mw-parser-output .fmbox-warning{border:1px solid #bb7070;background-color:#ffdbdb}.mw-parser-output .fmbox-editnotice{background-color:transparent}.mw-parser-output .fmbox .mbox-text{border:none;padding:0.25em 0.9em;width:100%}.mw-parser-output .fmbox .mbox-image{border:none;padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .fmbox .mbox-imageright{border:none;padding:2px 0.9em 2px 0;text-align:center}.mw-parser-output .fmbox .mbox-invalid-type{text-align:center}@media screen{html.skin-theme-clientpref-night .mw-parser-output .fmbox-warning{background-color:#683131}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .fmbox-warning{background-color:#683131}}.mw-parser-output .imbox{margin:4px 0;border-collapse:collapse;border:3px solid #36c;background-color:var(--background-color-interactive-subtle,#f8f9fa);box-sizing:border-box}.mw-parser-output .imbox .mbox-text .imbox{margin:0 -0.5em;display:block}.mw-parser-output .imbox-speedy{border:3px solid #b32424;background-color:#fee7e6}.mw-parser-output .imbox-delete{border:3px solid #b32424}.mw-parser-output .imbox-content{border:3px solid #f28500}.mw-parser-output .imbox-style{border:3px solid #fc3}.mw-parser-output .imbox-move{border:3px solid #9932cc}.mw-parser-output .imbox-protection{border:3px solid #a2a9b1}.mw-parser-output .imbox-license{border:3px solid #88a}.mw-parser-output .imbox-featured{border:3px solid #cba135}.mw-parser-output .imbox .mbox-text{border:none;padding:0.25em 0.9em;width:100%}.mw-parser-output .imbox .mbox-image{border:none;padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .imbox .mbox-imageright{border:none;padding:2px 0.9em 2px 0;text-align:center}.mw-parser-output .imbox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .imbox .mbox-invalid-type{text-align:center}@media(min-width:720px){.mw-parser-output .imbox{margin:4px 10%}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .imbox-speedy{background-color:#310402}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .imbox-speedy{background-color:#310402}}.mw-parser-output .ombox{margin:4px 0;border-collapse:collapse;background-color:var(--background-color-neutral-subtle,#f8f9fa);box-sizing:border-box;border:1px solid #a2a9b1;color:var(--color-base,#202122)}.mw-parser-output .ombox.mbox-small{font-size:88%;line-height:1.25em}.mw-parser-output .ombox-speedy{border:2px solid #b32424;background-color:#fee7e6}.mw-parser-output .ombox-delete{border:2px solid #b32424}.mw-parser-output .ombox-content{border:1px solid #f28500}.mw-parser-output .ombox-style{border:1px solid #fc3}.mw-parser-output .ombox-move{border:1px solid #9932cc}.mw-parser-output .ombox-protection{border:2px solid #a2a9b1}.mw-parser-output .ombox .mbox-text{border:none;padding:0.25em 0.9em;width:100%}.mw-parser-output .ombox .mbox-image{border:none;padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .ombox .mbox-imageright{border:none;padding:2px 0.9em 2px 0;text-align:center}.mw-parser-output .ombox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ombox .mbox-invalid-type{text-align:center}@media(min-width:720px){.mw-parser-output .ombox{margin:4px 10%}.mw-parser-output .ombox.mbox-small{clear:right;float:right;margin:4px 0 4px 1em;width:238px}}body.skin--responsive .mw-parser-output table.ombox img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .ombox-speedy{background-color:#310402}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .ombox-speedy{background-color:#310402}}.mw-parser-output .tmbox{margin:4px 0;border-collapse:collapse;border:1px solid #c0c090;background-color:#f8eaba;box-sizing:border-box}.mw-parser-output .tmbox.mbox-small{font-size:88%;line-height:1.25em}.mw-parser-output .tmbox-speedy{border:2px solid #b32424;background-color:#fee7e6}.mw-parser-output .tmbox-delete{border:2px solid #b32424}.mw-parser-output .tmbox-content{border:1px solid #c0c090}.mw-parser-output .tmbox-style{border:2px solid #fc3}.mw-parser-output .tmbox-move{border:2px solid #9932cc}.mw-parser-output .tmbox .mbox-text{border:none;padding:0.25em 0.9em;width:100%}.mw-parser-output .tmbox .mbox-image{border:none;padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .tmbox .mbox-imageright{border:none;padding:2px 0.9em 2px 0;text-align:center}.mw-parser-output .tmbox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .tmbox .mbox-invalid-type{text-align:center}@media(min-width:720px){.mw-parser-output .tmbox{margin:4px 10%}.mw-parser-output .tmbox.mbox-small{clear:right;float:right;margin:4px 0 4px 1em;width:238px}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .tmbox{background-color:#2e2505}html.skin-theme-clientpref-night .mw-parser-output .tmbox-speedy{background-color:#310402}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .tmbox{background-color:#2e2505}html.skin-theme-clientpref-os .mw-parser-output .tmbox-speedy{background-color:#310402}}body.skin--responsive .mw-parser-output table.tmbox img{max-width:none!important}</style><table class="box-Mais_notas plainlinks metadata ambox ambox-content ambox-Refimprove" role="presentation"><tbody><tr><td class="mbox-image"><div style="width:52px"><span typeof="mw:File"><a href="/wiki/Ficheiro:Question_book-new.svg" class="mw-file-description"><img alt="Esta página cita fontes, mas não cobrem todo o conteúdo" src="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Question_book-new.svg/50px-Question_book-new.svg.png" decoding="async" width="50" height="39" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Question_book-new.svg/75px-Question_book-new.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/99/Question_book-new.svg/100px-Question_book-new.svg.png 2x" data-file-width="512" data-file-height="399" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">Este artigo ou secção <a href="/wiki/Wikip%C3%A9dia:Livro_de_estilo/Cite_as_fontes" title="Wikipédia:Livro de estilo/Cite as fontes">cita fontes</a>, mas que <b><a href="/wiki/Wikip%C3%A9dia:V" class="mw-redirect" title="Wikipédia:V">não cobrem</a> todo o conteúdo</b>.<span class="hide-when-compact"> Ajude a <a href="/wiki/Wikip%C3%A9dia:Livro_de_estilo/Refer%C3%AAncias_e_notas_de_rodap%C3%A9" title="Wikipédia:Livro de estilo/Referências e notas de rodapé">inserir referências</a> (<small><i>Encontre fontes:</i> <span class="plainlinks"><a rel="nofollow" class="external text" href="https://wikipedialibrary.wmflabs.org/">ABW</a> &#160;&#8226;&#32; <a rel="nofollow" class="external text" href="https://www.periodicos.capes.gov.br">CAPES</a> &#160;&#8226;&#32; <a rel="nofollow" class="external text" href="https://www.google.com/search?as_eq=wikipedia&amp;as_epq=Unidades+naturais">Google</a> (<a rel="nofollow" class="external text" href="https://www.google.com/search?hl=pt&amp;tbm=nws&amp;q=Unidades+naturais&amp;oq=Unidades+naturais">N</a>&#160;&#8226;&#32;<a rel="nofollow" class="external text" href="http://books.google.com/books?&amp;as_brr=0&amp;as_epq=Unidades+naturais">L</a>&#160;&#8226;&#32;<a rel="nofollow" class="external text" href="https://scholar.google.com/scholar?hl=pt&amp;q=Unidades+naturais">A</a>)</span></small>).</span> <small class="date-container"><i>(<span class="date">Fevereiro de 2011</span>)</i></small></div></td></tr></tbody></table> <p>Em <a href="/wiki/F%C3%ADsica" title="Física">física</a>, <b>unidades naturais</b> são <a href="/wiki/Unidade_de_medida" title="Unidade de medida">unidades físicas</a> de <a href="/wiki/Medida" class="mw-disambig" title="Medida">medida</a> definidas em termos de <a href="/wiki/Constantes_f%C3%ADsicas" class="mw-redirect" title="Constantes físicas">constantes físicas</a> universais. Dessa maneira, quaisquer constantes físicas escolhidas tomam o valor de <b>1</b> quando expressos em termos de um conjunto particular de unidades naturais. </p><p>Unidades naturais representam <a href="/wiki/Express%C3%A3o_matem%C3%A1tica" title="Expressão matemática">expressões algébricas</a> particulares <a href="/w/index.php?title=Adimensionaliza%C3%A7%C3%A3o&amp;action=edit&amp;redlink=1" class="new" title="Adimensionalização (página não existe)">elegantemente simplificadas</a> aparecendo em leis físicas ou a <a href="/wiki/Constante_de_normaliza%C3%A7%C3%A3o" title="Constante de normalização">normalização</a> de algumas grandezas físicas escolhidas que são propriedades de <a href="/wiki/Part%C3%ADcula_elementar" title="Partícula elementar">partículas elementares</a> universais e que devem razoavelmente se acreditar serem constantes. Contudo, o que pode ser apenas uma hipótese, acredita-se e força-se a serem constantes em um sistema de unidades naturais, e pode muito bem ser permitido ou mesmo variável em outro sistema natural de unidades. Unidades naturais <i>são</i> naturais porque a origem de sua definição advém somente de propriedades da <a href="/wiki/Natureza" title="Natureza">natureza</a> e não de qualquer constructo humano. <a href="/wiki/Unidades_de_Planck" title="Unidades de Planck">Unidades de Planck</a> são frequentemente, sem qualificação, chamadas "<i>unidades naturais</i>" mas são somente um sistema de unidades entre outros sistemas. Unidades de Planck podem ser consideradas únicas no que tal sistema de unidades não é baseado em propriedades de qualquer <a href="/wiki/Modelos_f%C3%ADsicos" class="mw-redirect" title="Modelos físicos">protótipo</a> (no sentido de "modelo físico"), objeto, ou <a href="/wiki/Part%C3%ADcula_subat%C3%B4mica" title="Partícula subatômica">partícula</a> mas são baseadas somente em propriedades do <a href="/w/index.php?title=Espa%C3%A7o_livre&amp;action=edit&amp;redlink=1" class="new" title="Espaço livre (página não existe)">espaço livre</a>. </p><p>Como com qualquer conjunto de unidades básicas ou <a href="/w/index.php?title=Unidade_fundamental&amp;action=edit&amp;redlink=1" class="new" title="Unidade fundamental (página não existe)">unidades fundamentais</a>, as unidades básicas de um conjunto de unidades naturais irá incluir definições e valores para <a href="/wiki/Comprimento" title="Comprimento">comprimento</a>, <a href="/wiki/Massa" title="Massa">massa</a>, <a href="/wiki/Tempo" title="Tempo">tempo</a>, <a href="/wiki/Temperatura" title="Temperatura">temperatura</a>, e <a href="/wiki/Carga_el%C3%A9trica" title="Carga elétrica">carga elétrica</a>. Alguns físicos não têm reconhecido a temperatura como uma dimensão fundamental de grandeza física, já que ela simplesmente expressa a <a href="/wiki/Energia" title="Energia">energia</a> por <a href="/wiki/Graus_de_liberdade_(f%C3%ADsica)" title="Graus de liberdade (física)">grau de liberdade</a> de uma partícula a qual pode ser expressa em termos de energia (ou massa, comprimento e tempo). Virtualmente cada sistema de unidades naturais normaliza a <a href="/wiki/Constante_de_Boltzmann" title="Constante de Boltzmann">constante de Boltzmann</a> a <i>k</i>=1, a qual pode ser entendido como simplesmente outra expressão da definição da unidade de temperatura. Em acréscimo, alguns físicos reconhecem carga elétrica como um dimensão fundamental isolada de grandeza física, mesmo se ela tenha sido expressa em termos de massa, comprimento e tempo em sistemas de unidades tais como o sistema eletrostático <a href="/wiki/Sistema_CGS_de_unidades" title="Sistema CGS de unidades">"CGS"</a>. Virtualmente cada sistema de unidades normaliza a <a href="/wiki/Constante_de_permissividade_do_v%C3%A1cuo" title="Constante de permissividade do vácuo">permissividade do espaço livre</a> a ε<sub>0</sub>=(4π)<sup>-1</sup>, a qual pode ser entendido como uma expressão da definição de unidade de carga. Isto sugere que a controversa<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span>[</span>1<span>]</span></a></sup> adoção em unidades CGS e subsequentemente unidades SI da ideia de Georgi de expressar a <a href="/wiki/Lei_de_Coulomb" title="Lei de Coulomb">lei de Coulomb</a> não como F=kq<sub>1</sub>q<sub>2</sub>/r<sup>2</sup> mas numa "racionalizada" forma de F= (4πε<sub>0</sub>)<sup>-1</sup>q<sub>1</sub>q<sub>2</sub>/r<sup>2</sup> pode não ter sido a "escolha mais natural" de todas. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Constantes_físicas_pretendentes_a_serem_usadas_em_sistemas_de_unidades_naturais"><span id="Constantes_f.C3.ADsicas_pretendentes_a_serem_usadas_em_sistemas_de_unidades_naturais"></span>Constantes físicas pretendentes a serem usadas em sistemas de unidades naturais</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Unidades_naturais&amp;veaction=edit&amp;section=1" title="Editar secção: Constantes físicas pretendentes a serem usadas em sistemas de unidades naturais" class="mw-editsection-visualeditor"><span>editar</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Unidades_naturais&amp;action=edit&amp;section=1" title="Editar código-fonte da secção: Constantes físicas pretendentes a serem usadas em sistemas de unidades naturais"><span>editar código-fonte</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>As constantes físicas pretendentes a serem normalizadas são escolhidas daquelas da tabela abaixo. Note-se que somente um menor conjunto delas pode ser normalizada em qualquer sistema de unidades sem contradição por definição (<i>e.g.</i>, <i>m<sub>e</sub></i> e <i>m<sub>p</sub></i> não podem ambas serem definidas como a unidade de massa em um único sistema). </p> <table class="wikitable" style="margin: 1em auto 1em auto; background-color: #ffffff"> <tbody><tr> <th>Constante </th> <th>Símbolo </th> <th>Dimensão </th></tr> <tr> <td><a href="/wiki/Velocidade_da_luz" title="Velocidade da luz">velocidade da luz</a> no vácuo </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {c}\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {c}\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4c001199185ee8d68e90694c69528d2ed43859e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.587ex; height:1.676ex;" alt="{\displaystyle {c}\ }"></span> </td> <td><a href="/wiki/Comprimento" title="Comprimento">L</a> <a href="/wiki/Tempo" title="Tempo">T</a><sup>-1</sup> </td></tr> <tr> <td><a href="/wiki/Constante_gravitacional" class="mw-redirect" title="Constante gravitacional">Constante gravitacional</a> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {G}\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> </mrow> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {G}\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/77fe9a8b002a55a0c5fc913414642e58c5ec3ea5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.407ex; height:2.176ex;" alt="{\displaystyle {G}\ }"></span> </td> <td><a href="/wiki/Massa" title="Massa">M</a><sup>-1</sup>L<sup>3</sup>T<sup>-2</sup> </td></tr> <tr> <td><a href="/wiki/Constante_de_Planck" title="Constante de Planck">Constante de Planck</a> ("reduzida") </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \hbar ={\frac {h}{2\pi }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi class="MJX-variant">&#x210F;<!-- ℏ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>h</mi> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \hbar ={\frac {h}{2\pi }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df05180652a87fe1af83af4bba3402117bd18466" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:7.736ex; height:5.343ex;" alt="{\displaystyle \hbar ={\frac {h}{2\pi }}}"></span> </td> <td>ML<sup>2</sup>T<sup>-1</sup> </td></tr> <tr> <td><a href="/wiki/Lei_de_Coulomb" title="Lei de Coulomb">Constante da força de Coulomb</a> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{4\pi \varepsilon _{0}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{4\pi \varepsilon _{0}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e66755e48a90db06e3ffcb12f11156e018e76a85" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:5.468ex; height:5.676ex;" alt="{\displaystyle {\frac {1}{4\pi \varepsilon _{0}}}}"></span> onde <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\varepsilon _{0}}\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\varepsilon _{0}}\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/009f347885bd6e996b9874fb569659291db42ce1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.718ex; height:2.009ex;" alt="{\displaystyle {\varepsilon _{0}}\ }"></span> é a <a href="/wiki/Constante_de_permissividade_do_v%C3%A1cuo" title="Constante de permissividade do vácuo">permissividade do espaço livre</a> </td> <td><a href="/wiki/Carga_el%C3%A9trica" title="Carga elétrica">Q</a><sup>-2</sup> M L<sup>3</sup> T<sup>-2</sup> </td></tr> <tr> <td><a href="/wiki/Carga_elementar" title="Carga elementar">Carga elementar</a> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>e</mi> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a4204fc2368e201092faf08ddfcb3d4781dd7b53" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.664ex; height:1.676ex;" alt="{\displaystyle e\ }"></span> </td> <td>Q </td></tr> <tr> <td><a href="/wiki/El%C3%A9tron" title="Elétron">Massa do elétron</a> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{e}\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> </msub> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{e}\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2e4ed4496246f8ee0df8ba4ad77733e50b480e12" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.619ex; height:2.009ex;" alt="{\displaystyle m_{e}\ }"></span> </td> <td>M </td></tr> <tr> <td><a href="/wiki/Pr%C3%B3ton" title="Próton">Massa do próton</a> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{p}\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{p}\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ad4f90b7a20d503700b60823eb84154756db1603" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.68ex; height:2.343ex;" alt="{\displaystyle m_{p}\ }"></span> </td> <td>M </td></tr> <tr> <td><a href="/wiki/Constante_de_Boltzmann" title="Constante de Boltzmann">Constante de Boltzmann</a> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {k}\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {k}\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e06fcc0234af1df544bd987427c6ca3222972b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.792ex; height:2.176ex;" alt="{\displaystyle {k}\ }"></span> </td> <td>ML<sup>2</sup>T<sup>-2</sup><a href="/wiki/Temperatura" title="Temperatura">Θ</a><sup>-1</sup> </td></tr></tbody></table> <p><a href="/wiki/Constante_fundamental" title="Constante fundamental">Constantes físicas adimensionais</a> tais como a <a href="/wiki/Constante_de_estrutura_fina" title="Constante de estrutura fina">constante de estrutura fina</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha \ \equiv {\frac {e^{2}}{\hbar c(4\pi \varepsilon _{0})}}={\frac {1}{137.03599911}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> <mtext>&#xA0;</mtext> <mo>&#x2261;<!-- ≡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mi class="MJX-variant">&#x210F;<!-- ℏ --></mi> <mi>c</mi> <mo stretchy="false">(</mo> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>137.03599911</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha \ \equiv {\frac {e^{2}}{\hbar c(4\pi \varepsilon _{0})}}={\frac {1}{137.03599911}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f595771dd05965b1814828734b468d4dba69c43" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:32.126ex; height:6.509ex;" alt="{\displaystyle \alpha \ \equiv {\frac {e^{2}}{\hbar c(4\pi \varepsilon _{0})}}={\frac {1}{137.03599911}}}"></span></dd></dl> <p>não podem tomar um valor numérico diferente não importando em qual sistema de unidades é usada. De forma criteriosa escolhem-se unidades que podem somente normalizar constantes físicas que tenham dimensão. Desde que α é um <a href="/wiki/N%C3%BAmero_adimensional" class="mw-redirect" title="Número adimensional">número adimensional</a> fixo não igual a 1, não é possível definir um sistema natural de unidades que normalize <b>todas</b> as constantes físicas que compreendem α. Qualquer 3 das 4 constantes: <i>c</i>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \hbar }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi class="MJX-variant">&#x210F;<!-- ℏ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \hbar }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/de68de3a92517953436c93b5a76461d49160cc41" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.306ex; height:2.176ex;" alt="{\displaystyle \hbar }"></span>, <i>e</i>, ou 4πε<sub>0</sub>, podem ser normalizadas (deixando a constante física restante tomar um valor que é uma simples função de α, atestando a natureza fundamental da constante de estrutura fina) mas não todas as 4. </p> <div class="mw-heading mw-heading2"><h2 id="Unidades_de_Planck">Unidades de Planck</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Unidades_naturais&amp;veaction=edit&amp;section=2" title="Editar secção: Unidades de Planck" class="mw-editsection-visualeditor"><span>editar</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Unidades_naturais&amp;action=edit&amp;section=2" title="Editar código-fonte da secção: Unidades de Planck"><span>editar código-fonte</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="hatnote"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3a/Magnifying_glass_01.svg/17px-Magnifying_glass_01.svg.png" decoding="async" width="17" height="17" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3a/Magnifying_glass_01.svg/26px-Magnifying_glass_01.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3a/Magnifying_glass_01.svg/34px-Magnifying_glass_01.svg.png 2x" data-file-width="663" data-file-height="659" /></span></span>Ver artigo&#32;principal: <a href="/wiki/Unidades_de_Planck" title="Unidades de Planck">Unidades de Planck</a></div> <table class="wikitable" align="right" style="margin-left: 1em; background-color: #ffffff"> <tbody><tr> <th>Grandeza </th> <th>Expressão </th> <th>Valor métrico </th></tr> <tr align="left"> <td><a href="/wiki/Comprimento" title="Comprimento">Comprimento</a> (L) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle l_{P}={\sqrt {\frac {\hbar G}{c^{3}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>l</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mrow> <mi class="MJX-variant">&#x210F;<!-- ℏ --></mi> <mi>G</mi> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mfrac> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle l_{P}={\sqrt {\frac {\hbar G}{c^{3}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a9401bb65a656ca06096321f14ef99665dc41b36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:11.551ex; height:6.343ex;" alt="{\displaystyle l_{P}={\sqrt {\frac {\hbar G}{c^{3}}}}}"></span> </td> <td>1.61609735×10<sup>-35</sup> m </td></tr> <tr> <td><a href="/wiki/Massa" title="Massa">Massa</a> (M) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{P}={\sqrt {\frac {\hbar c}{G}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mrow> <mi class="MJX-variant">&#x210F;<!-- ℏ --></mi> <mi>c</mi> </mrow> <mi>G</mi> </mfrac> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{P}={\sqrt {\frac {\hbar c}{G}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b81be68fd5a211d266aa0b5d75d910eeee37d59" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:12.078ex; height:6.176ex;" alt="{\displaystyle m_{P}={\sqrt {\frac {\hbar c}{G}}}}"></span> </td> <td>21.7664598 μg </td></tr> <tr> <td><a href="/wiki/Tempo" title="Tempo">Tempo</a> (T) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t_{P}={\sqrt {\frac {\hbar G}{c^{5}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mrow> <mi class="MJX-variant">&#x210F;<!-- ℏ --></mi> <mi>G</mi> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> </mfrac> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t_{P}={\sqrt {\frac {\hbar G}{c^{5}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/628b580dcd254a7fde49a8edd9bde8f79b34f1e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:11.698ex; height:6.343ex;" alt="{\displaystyle t_{P}={\sqrt {\frac {\hbar G}{c^{5}}}}}"></span> </td> <td>5.3907205×10<sup>-44</sup> s </td></tr> <tr> <td><a href="/wiki/Carga_el%C3%A9trica" title="Carga elétrica">Carga elétrica</a> (Q) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q_{P}={\sqrt {\hbar c(4\pi \varepsilon _{0})}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi class="MJX-variant">&#x210F;<!-- ℏ --></mi> <mi>c</mi> <mo stretchy="false">(</mo> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q_{P}={\sqrt {\hbar c(4\pi \varepsilon _{0})}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38da22787010ed096841c85a8caa3b700697ed69" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:16.68ex; height:4.843ex;" alt="{\displaystyle q_{P}={\sqrt {\hbar c(4\pi \varepsilon _{0})}}}"></span> </td> <td>1.87554573×10<sup>-18</sup> C </td></tr> <tr> <td><a href="/wiki/Temperatura" title="Temperatura">Temperatura</a> (Θ) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{P}={\sqrt {\frac {\hbar c^{5}}{Gk^{2}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mrow> <mi class="MJX-variant">&#x210F;<!-- ℏ --></mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> </mrow> <mrow> <mi>G</mi> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{P}={\sqrt {\frac {\hbar c^{5}}{Gk^{2}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ebbadd1beeda3033f6bab1ad1ab64bc628c094fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:13.175ex; height:7.509ex;" alt="{\displaystyle T_{P}={\sqrt {\frac {\hbar c^{5}}{Gk^{2}}}}}"></span> </td> <td>1.4169206×10<sup>32</sup> K </td></tr></tbody></table> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c=1\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>=</mo> <mn>1</mn> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c=1\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8d272662909ab4ecb5e2d2836e9acf1a97c079ad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.848ex; height:2.176ex;" alt="{\displaystyle c=1\ }"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G=1\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo>=</mo> <mn>1</mn> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G=1\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d786e6c185c86c005f3a96398f3e20e6b49c8044" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.668ex; height:2.176ex;" alt="{\displaystyle G=1\ }"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \hbar =1\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi class="MJX-variant">&#x210F;<!-- ℏ --></mi> <mo>=</mo> <mn>1</mn> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \hbar =1\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa32eab3c9559e0a58fa26db69e2c450b284bd0b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.148ex; height:2.176ex;" alt="{\displaystyle \hbar =1\ }"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{4\pi \varepsilon _{0}}}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{4\pi \varepsilon _{0}}}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f22c12dfd6a6ee2655db2715e04d805dd355eb1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:9.729ex; height:5.676ex;" alt="{\displaystyle {\frac {1}{4\pi \varepsilon _{0}}}=1}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k=1\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>=</mo> <mn>1</mn> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k=1\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df3c2c1094c69deef780e9c5280f17a4a6431a17" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.053ex; height:2.176ex;" alt="{\displaystyle k=1\ }"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e={\sqrt {\alpha }}\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>e</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>&#x03B1;<!-- α --></mi> </msqrt> </mrow> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e={\sqrt {\alpha }}\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f354085c6bfad73ad2d4994ea4f15cb41745eac0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:8.186ex; height:3.009ex;" alt="{\displaystyle e={\sqrt {\alpha }}\ }"></span></dd></dl> <p>As constantes físicas que as unidades de Planck normalizam são propriedades do <a href="/w/index.php?title=Espa%C3%A7o_livre&amp;action=edit&amp;redlink=1" class="new" title="Espaço livre (página não existe)">espaço livre</a> e não propriedades (tais como carga, massa, tamanho ou raio) de qualquer objeto ou <a href="/wiki/Part%C3%ADcula_elementar" title="Partícula elementar">partícula elementar</a> (que teria que ser escolhido arbitrariamente). Sendo assim, as unidades de Planck são definidas independentemente da <a href="/wiki/Carga_elementar" title="Carga elementar">carga elementar</a> a qual, se medida em termos de unidades de Planck, chega-se a raiz quadrada da <a href="/wiki/Constante_de_estrutura_fina" title="Constante de estrutura fina">constante de estrutura fina</a>, √α. Em unidades de Planck uma variação concebível no valor da adimensional α seria considerada como devida a uma variação do carga elementar. </p> <div class="mw-heading mw-heading2"><h2 id="Unidades_de_Stoney">Unidades de Stoney</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Unidades_naturais&amp;veaction=edit&amp;section=3" title="Editar secção: Unidades de Stoney" class="mw-editsection-visualeditor"><span>editar</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Unidades_naturais&amp;action=edit&amp;section=3" title="Editar código-fonte da secção: Unidades de Stoney"><span>editar código-fonte</span></a><span class="mw-editsection-bracket">]</span></span></div> <table class="wikitable" align="right" style="margin-left: 1em; background-color: #ffffff"> <tbody><tr> <th>Grandeza </th> <th>Expressão </th> <th>Valor métrico </th></tr> <tr align="left"> <td><a href="/wiki/Comprimento" title="Comprimento">Comprimento</a> (L) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle l_{S}={\sqrt {\frac {Ge^{2}}{c^{4}(4\pi \varepsilon _{0})}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>l</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mrow> <mi>G</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mfrac> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle l_{S}={\sqrt {\frac {Ge^{2}}{c^{4}(4\pi \varepsilon _{0})}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/13107583b736e94b26a5ce6b6900fe14a05f976e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:16.747ex; height:7.676ex;" alt="{\displaystyle l_{S}={\sqrt {\frac {Ge^{2}}{c^{4}(4\pi \varepsilon _{0})}}}}"></span> </td> <td>1.38068×10<sup>-36</sup> m </td></tr> <tr> <td><a href="/wiki/Massa" title="Massa">Massa</a> (M) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{S}={\sqrt {\frac {e^{2}}{G(4\pi \varepsilon _{0})}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mi>G</mi> <mo stretchy="false">(</mo> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mfrac> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{S}={\sqrt {\frac {e^{2}}{G(4\pi \varepsilon _{0})}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0663ace52d914764c273e82be1b163c88bc6bde8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:17.859ex; height:7.676ex;" alt="{\displaystyle m_{S}={\sqrt {\frac {e^{2}}{G(4\pi \varepsilon _{0})}}}}"></span> </td> <td>1.85921×10<sup>-9</sup> kg </td></tr> <tr> <td><a href="/wiki/Tempo" title="Tempo">Tempo</a> (T) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t_{S}={\sqrt {\frac {Ge^{2}}{c^{6}(4\pi \varepsilon _{0})}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mrow> <mi>G</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mfrac> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t_{S}={\sqrt {\frac {Ge^{2}}{c^{6}(4\pi \varepsilon _{0})}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1265863cc28a14c2daaf5890cc12dc83acdd5083" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:16.893ex; height:7.676ex;" alt="{\displaystyle t_{S}={\sqrt {\frac {Ge^{2}}{c^{6}(4\pi \varepsilon _{0})}}}}"></span> </td> <td>4.60544×10<sup>-45</sup> s </td></tr> <tr> <td><a href="/wiki/Carga_el%C3%A9trica" title="Carga elétrica">Carga elétrica</a> (Q) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q_{S}=e\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mi>e</mi> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q_{S}=e\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2df7818f129d65333790aa59255961bbc6011a5f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.092ex; height:2.009ex;" alt="{\displaystyle q_{S}=e\ }"></span> </td> <td>1.60218×10<sup>-19</sup> C </td></tr> <tr> <td><a href="/wiki/Temperatura" title="Temperatura">Temperatura</a> (Θ) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{S}={\sqrt {\frac {c^{4}e^{2}}{G(4\pi \varepsilon _{0})k^{2}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <mi>G</mi> <mo stretchy="false">(</mo> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{S}={\sqrt {\frac {c^{4}e^{2}}{G(4\pi \varepsilon _{0})k^{2}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4f92bffe2081f18abf6265317adf7d5c07a42a57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:19.442ex; height:7.676ex;" alt="{\displaystyle T_{S}={\sqrt {\frac {c^{4}e^{2}}{G(4\pi \varepsilon _{0})k^{2}}}}}"></span> </td> <td>1.21028×10<sup>31</sup> K </td></tr></tbody></table> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c=1\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>=</mo> <mn>1</mn> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c=1\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8d272662909ab4ecb5e2d2836e9acf1a97c079ad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.848ex; height:2.176ex;" alt="{\displaystyle c=1\ }"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G=1\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo>=</mo> <mn>1</mn> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G=1\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d786e6c185c86c005f3a96398f3e20e6b49c8044" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.668ex; height:2.176ex;" alt="{\displaystyle G=1\ }"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e=1\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>e</mi> <mo>=</mo> <mn>1</mn> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e=1\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6aa4b16dec5a6513c7c44fc6f89971bc8953135f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.925ex; height:2.176ex;" alt="{\displaystyle e=1\ }"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{4\pi \varepsilon _{0}}}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{4\pi \varepsilon _{0}}}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f22c12dfd6a6ee2655db2715e04d805dd355eb1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:9.729ex; height:5.676ex;" alt="{\displaystyle {\frac {1}{4\pi \varepsilon _{0}}}=1}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k=1\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>=</mo> <mn>1</mn> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k=1\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df3c2c1094c69deef780e9c5280f17a4a6431a17" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.053ex; height:2.176ex;" alt="{\displaystyle k=1\ }"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \hbar ={\frac {1}{\alpha }}\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi class="MJX-variant">&#x210F;<!-- ℏ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>&#x03B1;<!-- α --></mi> </mfrac> </mrow> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \hbar ={\frac {1}{\alpha }}\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/82097caab48235c5f08b5c526633755115ad222e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:7.309ex; height:5.176ex;" alt="{\displaystyle \hbar ={\frac {1}{\alpha }}\ }"></span></dd></dl> <p><a href="/wiki/George_Johnstone_Stoney" title="George Johnstone Stoney">George Johnstone Stoney</a> foi o primeiro físico a introduzir o conceito de unidades naturais. Ele apresentou a ideia em um artigo intitulado <i>"On the Physical Units of Nature"</i> (<i>Sobre as Unidades Físicas da Natureza</i>) entregue à <i><a href="/w/index.php?title=British_Association&amp;action=edit&amp;redlink=1" class="new" title="British Association (página não existe)">British Association</a></i> em 1874.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span>[</span>2<span>]</span></a></sup> Unidades de Stoney fixam a <a href="/wiki/Carga_do_el%C3%A9tron" title="Carga do elétron">carga elementar</a> e permitem à <a href="/wiki/Constante_de_Planck" title="Constante de Planck">constante de Planck</a> flutuar. Elas podem ser obtidas das <a href="/wiki/Unidades_de_Planck" title="Unidades de Planck">unidades de Planck</a> com a substituição: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \hbar \leftarrow \alpha \hbar ={\frac {e^{2}}{c(4\pi \varepsilon _{0})}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi class="MJX-variant">&#x210F;<!-- ℏ --></mi> <mo stretchy="false">&#x2190;<!-- ← --></mo> <mi>&#x03B1;<!-- α --></mi> <mi class="MJX-variant">&#x210F;<!-- ℏ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mi>c</mi> <mo stretchy="false">(</mo> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \hbar \leftarrow \alpha \hbar ={\frac {e^{2}}{c(4\pi \varepsilon _{0})}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23ec466699476e34f18c161e422fa4aafd1c08f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:19.098ex; height:6.509ex;" alt="{\displaystyle \hbar \leftarrow \alpha \hbar ={\frac {e^{2}}{c(4\pi \varepsilon _{0})}}}"></span>.</dd></dl> <p>Isto remove a constante de Planck das definições e o valor tomado em unidades de Stoney é o recíproco da <a href="/wiki/Constante_de_estrutura_fina" title="Constante de estrutura fina">constante de estrutura fina</a>, 1/α. Em unidades de Stoney uma variação considerável no valor da adimensional α será considerada devida à variação na constante de Planck. </p> <div class="mw-heading mw-heading2"><h2 id="Unidades_de_&quot;Schrödinger&quot;"><span id="Unidades_de_.22Schr.C3.B6dinger.22"></span>Unidades de "Schrödinger"</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Unidades_naturais&amp;veaction=edit&amp;section=4" title="Editar secção: Unidades de &quot;Schrödinger&quot;" class="mw-editsection-visualeditor"><span>editar</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Unidades_naturais&amp;action=edit&amp;section=4" title="Editar código-fonte da secção: Unidades de &quot;Schrödinger&quot;"><span>editar código-fonte</span></a><span class="mw-editsection-bracket">]</span></span></div> <table class="wikitable" align="right" style="margin-left: 1em; background-color: #ffffff"> <tbody><tr> <th>Grandeza </th> <th>Expressão </th> <th>Valor métrico </th></tr> <tr align="left"> <td><a href="/wiki/Comprimento" title="Comprimento">Comprimento</a> (L) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle l_{\psi }={\sqrt {\frac {\hbar ^{4}G(4\pi \varepsilon _{0})^{3}}{e^{6}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>l</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C8;<!-- ψ --></mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mrow> <msup> <mi class="MJX-variant">&#x210F;<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mi>G</mi> <mo stretchy="false">(</mo> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msup> </mfrac> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle l_{\psi }={\sqrt {\frac {\hbar ^{4}G(4\pi \varepsilon _{0})^{3}}{e^{6}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a581121fe43ccdbdedd23ab31e9fd5ce4c8f128" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:19.952ex; height:7.676ex;" alt="{\displaystyle l_{\psi }={\sqrt {\frac {\hbar ^{4}G(4\pi \varepsilon _{0})^{3}}{e^{6}}}}}"></span> </td> <td>2.59276×10<sup>-32</sup> m </td></tr> <tr> <td><a href="/wiki/Massa" title="Massa">Massa</a> (M) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{\psi }={\sqrt {\frac {e^{2}}{G(4\pi \varepsilon _{0})}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C8;<!-- ψ --></mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mi>G</mi> <mo stretchy="false">(</mo> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mfrac> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{\psi }={\sqrt {\frac {e^{2}}{G(4\pi \varepsilon _{0})}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea5d06bc601ea462bbc369b31ee3fdd909169cc7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:17.869ex; height:7.676ex;" alt="{\displaystyle m_{\psi }={\sqrt {\frac {e^{2}}{G(4\pi \varepsilon _{0})}}}}"></span> </td> <td>1.85921×10<sup>-9</sup> kg </td></tr> <tr> <td><a href="/wiki/Tempo" title="Tempo">Tempo</a> (T) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t_{\psi }={\sqrt {\frac {\hbar ^{6}G(4\pi \varepsilon _{0})^{5}}{e^{10}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C8;<!-- ψ --></mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mrow> <msup> <mi class="MJX-variant">&#x210F;<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msup> <mi>G</mi> <mo stretchy="false">(</mo> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msup> </mfrac> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t_{\psi }={\sqrt {\frac {\hbar ^{6}G(4\pi \varepsilon _{0})^{5}}{e^{10}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76eca0efc88c1f95825fbd4cc91bef7c63f17879" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:20.099ex; height:7.676ex;" alt="{\displaystyle t_{\psi }={\sqrt {\frac {\hbar ^{6}G(4\pi \varepsilon _{0})^{5}}{e^{10}}}}}"></span> </td> <td>1.18516×10<sup>-38</sup> s </td></tr> <tr> <td><a href="/wiki/Carga_el%C3%A9trica" title="Carga elétrica">Carga elétrica</a> (Q) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q_{\psi }=e\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C8;<!-- ψ --></mi> </mrow> </msub> <mo>=</mo> <mi>e</mi> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q_{\psi }=e\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5a652c8e35cc96b97d4d2000ab7cddfd1df00be9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.102ex; height:2.343ex;" alt="{\displaystyle q_{\psi }=e\ }"></span> </td> <td>1.602176487×10<sup>-19</sup> C </td></tr> <tr> <td><a href="/wiki/Temperatura" title="Temperatura">Temperatura</a> (Θ) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{\psi }={\sqrt {\frac {e^{10}}{\hbar ^{4}(4\pi \varepsilon _{0})^{5}Gk^{2}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C8;<!-- ψ --></mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msup> <mrow> <msup> <mi class="MJX-variant">&#x210F;<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> <mi>G</mi> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{\psi }={\sqrt {\frac {e^{10}}{\hbar ^{4}(4\pi \varepsilon _{0})^{5}Gk^{2}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3397fd83d636aa9b3ad560734db126332f02a214" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:22.882ex; height:7.676ex;" alt="{\displaystyle T_{\psi }={\sqrt {\frac {e^{10}}{\hbar ^{4}(4\pi \varepsilon _{0})^{5}Gk^{2}}}}}"></span> </td> <td>6.44490×10<sup>26</sup> K </td></tr></tbody></table> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e=1\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>e</mi> <mo>=</mo> <mn>1</mn> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e=1\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6aa4b16dec5a6513c7c44fc6f89971bc8953135f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.925ex; height:2.176ex;" alt="{\displaystyle e=1\ }"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G=1\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo>=</mo> <mn>1</mn> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G=1\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d786e6c185c86c005f3a96398f3e20e6b49c8044" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.668ex; height:2.176ex;" alt="{\displaystyle G=1\ }"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \hbar =1\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi class="MJX-variant">&#x210F;<!-- ℏ --></mi> <mo>=</mo> <mn>1</mn> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \hbar =1\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa32eab3c9559e0a58fa26db69e2c450b284bd0b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.148ex; height:2.176ex;" alt="{\displaystyle \hbar =1\ }"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{4\pi \varepsilon _{0}}}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{4\pi \varepsilon _{0}}}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f22c12dfd6a6ee2655db2715e04d805dd355eb1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:9.729ex; height:5.676ex;" alt="{\displaystyle {\frac {1}{4\pi \varepsilon _{0}}}=1}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k=1\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>=</mo> <mn>1</mn> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k=1\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df3c2c1094c69deef780e9c5280f17a4a6431a17" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.053ex; height:2.176ex;" alt="{\displaystyle k=1\ }"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c={\frac {1}{\alpha }}\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>&#x03B1;<!-- α --></mi> </mfrac> </mrow> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c={\frac {1}{\alpha }}\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee602fd385794ad78200f3fafcc79c966bfeb010" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:7.01ex; height:5.176ex;" alt="{\displaystyle c={\frac {1}{\alpha }}\ }"></span></dd></dl> <p>O nome foi cunhado por <a href="/w/index.php?title=Michael_Duff&amp;action=edit&amp;redlink=1" class="new" title="Michael Duff (página não existe)">Michael Duff</a><a rel="nofollow" class="external autonumber" href="http://www.arxiv.org/abs/hep-th/0208093">[1]</a>. Elas podem ser obtidas das <a href="/wiki/Unidades_de_Planck" title="Unidades de Planck">unidades de Planck</a> com a substituição: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c\leftarrow \alpha c={\frac {e^{2}}{\hbar (4\pi \varepsilon _{0})}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo stretchy="false">&#x2190;<!-- ← --></mo> <mi>&#x03B1;<!-- α --></mi> <mi>c</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mi class="MJX-variant">&#x210F;<!-- ℏ --></mi> <mo stretchy="false">(</mo> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c\leftarrow \alpha c={\frac {e^{2}}{\hbar (4\pi \varepsilon _{0})}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2149d6c64fc863a4042b5d47e31f0b9020d9d521" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:18.798ex; height:6.509ex;" alt="{\displaystyle c\leftarrow \alpha c={\frac {e^{2}}{\hbar (4\pi \varepsilon _{0})}}}"></span>.</dd></dl> <p>Isto remove a <a href="/wiki/Velocidade_da_luz" title="Velocidade da luz">velocidade da luz</a> das definições e o valor tomado em unidades de Schrödinger é a recíproca da <a href="/wiki/Constante_de_estrutura_fina" title="Constante de estrutura fina">constante de estrutura fina</a>, 1/α. Em unidades de Schrödinger uma considerável variação no valor da adimensional α será considerada devida a variação da velocidade da luz. </p> <div class="mw-heading mw-heading2"><h2 id="Unidades_atômicas_(Hartree)"><span id="Unidades_at.C3.B4micas_.28Hartree.29"></span>Unidades atômicas (Hartree)</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Unidades_naturais&amp;veaction=edit&amp;section=5" title="Editar secção: Unidades atômicas (Hartree)" class="mw-editsection-visualeditor"><span>editar</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Unidades_naturais&amp;action=edit&amp;section=5" title="Editar código-fonte da secção: Unidades atômicas (Hartree)"><span>editar código-fonte</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="hatnote"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3a/Magnifying_glass_01.svg/17px-Magnifying_glass_01.svg.png" decoding="async" width="17" height="17" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3a/Magnifying_glass_01.svg/26px-Magnifying_glass_01.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3a/Magnifying_glass_01.svg/34px-Magnifying_glass_01.svg.png 2x" data-file-width="663" data-file-height="659" /></span></span>Ver artigo&#32;principal: <a href="/wiki/Unidades_at%C3%B4micas" title="Unidades atômicas">Unidades atômicas</a></div> <table class="wikitable" align="right" style="margin-left: 1em; background-color: #ffffff"> <tbody><tr> <th>Grandeza </th> <th>Expressão </th></tr> <tr align="left"> <td><a href="/wiki/Comprimento" title="Comprimento">Comprimento</a> (L) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle l_{A}={\frac {\hbar ^{2}(4\pi \varepsilon _{0})}{m_{e}e^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>l</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi class="MJX-variant">&#x210F;<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> </msub> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle l_{A}={\frac {\hbar ^{2}(4\pi \varepsilon _{0})}{m_{e}e^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af56dc8b0abb778ed023dc3e58a30b51845f5c49" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:14.91ex; height:6.509ex;" alt="{\displaystyle l_{A}={\frac {\hbar ^{2}(4\pi \varepsilon _{0})}{m_{e}e^{2}}}}"></span> </td></tr> <tr> <td><a href="/wiki/Massa" title="Massa">Massa</a> (M) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{A}=m_{e}\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> </msub> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{A}=m_{e}\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01e4b3966415363e723283ad2a2905d99819c4b1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.223ex; height:2.009ex;" alt="{\displaystyle m_{A}=m_{e}\ }"></span> </td></tr> <tr> <td><a href="/wiki/Tempo" title="Tempo">Tempo</a> (T) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t_{A}={\frac {\hbar ^{3}(4\pi \varepsilon _{0})^{2}}{m_{e}e^{4}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi class="MJX-variant">&#x210F;<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> </msub> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t_{A}={\frac {\hbar ^{3}(4\pi \varepsilon _{0})^{2}}{m_{e}e^{4}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fbc630ed332db6b5536d077ba6cf4cd14cd46ae5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:16.111ex; height:6.509ex;" alt="{\displaystyle t_{A}={\frac {\hbar ^{3}(4\pi \varepsilon _{0})^{2}}{m_{e}e^{4}}}}"></span> </td></tr> <tr> <td><a href="/wiki/Carga_el%C3%A9trica" title="Carga elétrica">Carga elétrica</a> (Q) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q_{A}=e\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <mo>=</mo> <mi>e</mi> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q_{A}=e\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34fbbeb26f3cfabfaca6a076aa5425bbbfc3b86e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.264ex; height:2.009ex;" alt="{\displaystyle q_{A}=e\ }"></span> </td></tr> <tr> <td><a href="/wiki/Temperatura" title="Temperatura">Temperatura</a> (Θ) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{A}={\frac {m_{e}e^{4}}{\hbar ^{2}(4\pi \varepsilon _{0})^{2}k}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> </msub> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mrow> <mrow> <msup> <mi class="MJX-variant">&#x210F;<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>k</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{A}={\frac {m_{e}e^{4}}{\hbar ^{2}(4\pi \varepsilon _{0})^{2}k}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed5f42f13b28f1561d35da15d3f4652e36a33e4c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:17.84ex; height:6.509ex;" alt="{\displaystyle T_{A}={\frac {m_{e}e^{4}}{\hbar ^{2}(4\pi \varepsilon _{0})^{2}k}}}"></span> </td></tr></tbody></table> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e=1\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>e</mi> <mo>=</mo> <mn>1</mn> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e=1\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6aa4b16dec5a6513c7c44fc6f89971bc8953135f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.925ex; height:2.176ex;" alt="{\displaystyle e=1\ }"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{e}=1\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> </msub> <mo>=</mo> <mn>1</mn> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{e}=1\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f70ce417efd3a047ff7c8d2dbd085e65c90e3faa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.88ex; height:2.509ex;" alt="{\displaystyle m_{e}=1\ }"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \hbar =1\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi class="MJX-variant">&#x210F;<!-- ℏ --></mi> <mo>=</mo> <mn>1</mn> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \hbar =1\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa32eab3c9559e0a58fa26db69e2c450b284bd0b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.148ex; height:2.176ex;" alt="{\displaystyle \hbar =1\ }"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{4\pi \varepsilon _{0}}}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{4\pi \varepsilon _{0}}}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f22c12dfd6a6ee2655db2715e04d805dd355eb1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:9.729ex; height:5.676ex;" alt="{\displaystyle {\frac {1}{4\pi \varepsilon _{0}}}=1}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k=1\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>=</mo> <mn>1</mn> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k=1\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df3c2c1094c69deef780e9c5280f17a4a6431a17" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.053ex; height:2.176ex;" alt="{\displaystyle k=1\ }"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c={\frac {1}{\alpha }}\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>&#x03B1;<!-- α --></mi> </mfrac> </mrow> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c={\frac {1}{\alpha }}\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee602fd385794ad78200f3fafcc79c966bfeb010" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:7.01ex; height:5.176ex;" alt="{\displaystyle c={\frac {1}{\alpha }}\ }"></span></dd></dl> <p>Primeiramente proposta por <a href="/wiki/Douglas_Hartree" title="Douglas Hartree">Douglas Hartree</a> para simplificar a física do <a href="/wiki/%C3%81tomo_de_hidrog%C3%AAnio" class="mw-redirect" title="Átomo de hidrogênio">átomo de hidrogênio</a>. <a href="/w/index.php?title=Michael_Duff&amp;action=edit&amp;redlink=1" class="new" title="Michael Duff (página não existe)">Michael Duff</a><a rel="nofollow" class="external autonumber" href="http://www.arxiv.org/abs/hep-th/0208093">[2]</a> chama estas de "unidades de Bohr". A unidade de <a href="/wiki/Energia" title="Energia">energia</a> neste sistema é a energia total do <a href="/wiki/El%C3%A9tron" title="Elétron">elétron</a> na órbita circular do <a href="/wiki/%C3%81tomo_de_Bohr" title="Átomo de Bohr">átomo de Bohr</a> e é chamada de <a href="/wiki/Hartree" title="Hartree">energia de Hartree</a>, <i>E</i><sub>h</sub>. A unidade de velocidade é a velocidade deste elétron, a unidade de massa é a <a href="/wiki/El%C3%A9tron" title="Elétron">massa do elétron</a>, <i>m</i><sub>e</sub>, e a unidade de comprimento é o <a href="/wiki/Raio_de_Bohr" title="Raio de Bohr">raio de Bohr</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{0}=4\pi \varepsilon _{0}\hbar ^{2}/m_{e}e^{2}\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mi class="MJX-variant">&#x210F;<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> </msub> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{0}=4\pi \varepsilon _{0}\hbar ^{2}/m_{e}e^{2}\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d0d9398eb58172be93c05470edf68e8ddf50da48" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.31ex; height:3.176ex;" alt="{\displaystyle a_{0}=4\pi \varepsilon _{0}\hbar ^{2}/m_{e}e^{2}\ }"></span>. Elas podem ser obtidas das unidades de "Schrödinger" com a substituição: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G\leftarrow \alpha G\left({\frac {m_{P}}{m_{e}}}\right)^{2}={\frac {e^{2}}{4\pi \varepsilon _{0}m_{e}^{2}}}\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo stretchy="false">&#x2190;<!-- ← --></mo> <mi>&#x03B1;<!-- α --></mi> <mi>G</mi> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> </msub> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msubsup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mrow> </mfrac> </mrow> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G\leftarrow \alpha G\left({\frac {m_{P}}{m_{e}}}\right)^{2}={\frac {e^{2}}{4\pi \varepsilon _{0}m_{e}^{2}}}\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24ede55363ebcd6309d6966a08ea4bae2d925b5e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:29.816ex; height:6.509ex;" alt="{\displaystyle G\leftarrow \alpha G\left({\frac {m_{P}}{m_{e}}}\right)^{2}={\frac {e^{2}}{4\pi \varepsilon _{0}m_{e}^{2}}}\ }"></span>.</dd></dl> <p>Isto remove a <a href="/wiki/Velocidade_da_luz" title="Velocidade da luz">velocidade da luz</a> (assim como a <a href="/wiki/Constante_gravitacional" class="mw-redirect" title="Constante gravitacional">constante gravitacional</a>) das definições e o valor tomada em unidades atômicas é o recíproco da <a href="/wiki/Constante_de_estrutura_fina" title="Constante de estrutura fina">constante de estrutura fina</a>, 1/α. Em unidades atômicas uma considerável variação no valor da adimensional α será considerada devida à variação da velocidade da luz. </p> <div class="mw-heading mw-heading2"><h2 id="Sistema_eletrônico_de_unidades"><span id="Sistema_eletr.C3.B4nico_de_unidades"></span>Sistema eletrônico de unidades</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Unidades_naturais&amp;veaction=edit&amp;section=6" title="Editar secção: Sistema eletrônico de unidades" class="mw-editsection-visualeditor"><span>editar</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Unidades_naturais&amp;action=edit&amp;section=6" title="Editar código-fonte da secção: Sistema eletrônico de unidades"><span>editar código-fonte</span></a><span class="mw-editsection-bracket">]</span></span></div> <table class="wikitable" align="right" style="margin-left: 1em; background-color: #ffffff"> <tbody><tr> <th>Grandeza </th> <th>Expressão </th></tr> <tr align="left"> <td><a href="/wiki/Comprimento" title="Comprimento">Comprimento</a> (L) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle l_{e}={\frac {e^{2}}{c^{2}m_{e}(4\pi \varepsilon _{0})}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>l</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle l_{e}={\frac {e^{2}}{c^{2}m_{e}(4\pi \varepsilon _{0})}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a4d6ad019ce911122700b71461db579b42f7111e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:17.168ex; height:6.509ex;" alt="{\displaystyle l_{e}={\frac {e^{2}}{c^{2}m_{e}(4\pi \varepsilon _{0})}}}"></span> </td></tr> <tr> <td><a href="/wiki/Massa" title="Massa">Massa</a> (M) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{e}=m_{e}\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> </msub> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{e}=m_{e}\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b3310bd4bf6ef38aa38a2b03e37de492154ad5e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.757ex; height:2.009ex;" alt="{\displaystyle m_{e}=m_{e}\ }"></span> </td></tr> <tr> <td><a href="/wiki/Tempo" title="Tempo">Tempo</a> (T) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t_{e}={\frac {e^{2}}{c^{3}m_{e}(4\pi \varepsilon _{0})}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t_{e}={\frac {e^{2}}{c^{3}m_{e}(4\pi \varepsilon _{0})}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ef3f4b9cc6fe1fdd9fe8d9a57c80dba7d944e05" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:17.314ex; height:6.509ex;" alt="{\displaystyle t_{e}={\frac {e^{2}}{c^{3}m_{e}(4\pi \varepsilon _{0})}}}"></span> </td></tr> <tr> <td><a href="/wiki/Carga_el%C3%A9trica" title="Carga elétrica">Carga elétrica</a> (Q) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q_{e}=e\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> </msub> <mo>=</mo> <mi>e</mi> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q_{e}=e\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53be9220d8b60ed046e74ba283b5a3880975c461" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.798ex; height:2.009ex;" alt="{\displaystyle q_{e}=e\ }"></span> </td></tr> <tr> <td><a href="/wiki/Temperatura" title="Temperatura">Temperatura</a> (Θ) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{e}={\frac {m_{e}c^{2}}{k}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> </msub> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mi>k</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{e}={\frac {m_{e}c^{2}}{k}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db8a20cb29db79266fc7d8412c9d02156158d715" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:11.39ex; height:5.843ex;" alt="{\displaystyle T_{e}={\frac {m_{e}c^{2}}{k}}}"></span> </td></tr></tbody></table> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c=1\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>=</mo> <mn>1</mn> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c=1\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8d272662909ab4ecb5e2d2836e9acf1a97c079ad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.848ex; height:2.176ex;" alt="{\displaystyle c=1\ }"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e=1\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>e</mi> <mo>=</mo> <mn>1</mn> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e=1\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6aa4b16dec5a6513c7c44fc6f89971bc8953135f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.925ex; height:2.176ex;" alt="{\displaystyle e=1\ }"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{e}=1\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> </msub> <mo>=</mo> <mn>1</mn> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{e}=1\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f70ce417efd3a047ff7c8d2dbd085e65c90e3faa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.88ex; height:2.509ex;" alt="{\displaystyle m_{e}=1\ }"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{4\pi \varepsilon _{0}}}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{4\pi \varepsilon _{0}}}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f22c12dfd6a6ee2655db2715e04d805dd355eb1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:9.729ex; height:5.676ex;" alt="{\displaystyle {\frac {1}{4\pi \varepsilon _{0}}}=1}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k=1\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>=</mo> <mn>1</mn> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k=1\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df3c2c1094c69deef780e9c5280f17a4a6431a17" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.053ex; height:2.176ex;" alt="{\displaystyle k=1\ }"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \hbar ={\frac {1}{\alpha }}\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi class="MJX-variant">&#x210F;<!-- ℏ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>&#x03B1;<!-- α --></mi> </mfrac> </mrow> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \hbar ={\frac {1}{\alpha }}\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/82097caab48235c5f08b5c526633755115ad222e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:7.309ex; height:5.176ex;" alt="{\displaystyle \hbar ={\frac {1}{\alpha }}\ }"></span></dd></dl> <p><a href="/w/index.php?title=Michael_Duff&amp;action=edit&amp;redlink=1" class="new" title="Michael Duff (página não existe)">Michael Duff</a><a rel="nofollow" class="external autonumber" href="http://www.arxiv.org/abs/hep-th/0208093">[3]</a> chamou estas "unidades de Dirac". Elas podem ser obtidas das <b>unidades de Stoney</b> com a substituição: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G\leftarrow \alpha G\left({\frac {m_{P}}{m_{e}}}\right)^{2}={\frac {e^{2}}{4\pi \varepsilon _{0}m_{e}^{2}}}\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo stretchy="false">&#x2190;<!-- ← --></mo> <mi>&#x03B1;<!-- α --></mi> <mi>G</mi> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> </msub> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msubsup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mrow> </mfrac> </mrow> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G\leftarrow \alpha G\left({\frac {m_{P}}{m_{e}}}\right)^{2}={\frac {e^{2}}{4\pi \varepsilon _{0}m_{e}^{2}}}\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24ede55363ebcd6309d6966a08ea4bae2d925b5e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:29.816ex; height:6.509ex;" alt="{\displaystyle G\leftarrow \alpha G\left({\frac {m_{P}}{m_{e}}}\right)^{2}={\frac {e^{2}}{4\pi \varepsilon _{0}m_{e}^{2}}}\ }"></span>.</dd></dl> <p>Elas podem ser obtidas das <a href="/wiki/Unidades_at%C3%B4micas" title="Unidades atômicas">unidades atômicas</a> com a substituição: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \hbar \leftarrow \alpha \hbar ={\frac {e^{2}}{c(4\pi \varepsilon _{0})}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi class="MJX-variant">&#x210F;<!-- ℏ --></mi> <mo stretchy="false">&#x2190;<!-- ← --></mo> <mi>&#x03B1;<!-- α --></mi> <mi class="MJX-variant">&#x210F;<!-- ℏ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mi>c</mi> <mo stretchy="false">(</mo> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \hbar \leftarrow \alpha \hbar ={\frac {e^{2}}{c(4\pi \varepsilon _{0})}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23ec466699476e34f18c161e422fa4aafd1c08f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:19.098ex; height:6.509ex;" alt="{\displaystyle \hbar \leftarrow \alpha \hbar ={\frac {e^{2}}{c(4\pi \varepsilon _{0})}}}"></span>.</dd></dl> <p>Similarmente às unidades de Stoney, uma variação considerável no valor de α será considerada devida a variação na constante de Planck. </p> <div class="mw-heading mw-heading2"><h2 id="Sistema_de_unidades_eletrodinâmicas_quânticas_(Stille)"><span id="Sistema_de_unidades_eletrodin.C3.A2micas_qu.C3.A2nticas_.28Stille.29"></span>Sistema de unidades eletrodinâmicas quânticas (Stille)</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Unidades_naturais&amp;veaction=edit&amp;section=7" title="Editar secção: Sistema de unidades eletrodinâmicas quânticas (Stille)" class="mw-editsection-visualeditor"><span>editar</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Unidades_naturais&amp;action=edit&amp;section=7" title="Editar código-fonte da secção: Sistema de unidades eletrodinâmicas quânticas (Stille)"><span>editar código-fonte</span></a><span class="mw-editsection-bracket">]</span></span></div> <table class="wikitable" align="right" style="margin-left: 1em; background-color: #ffffff"> <tbody><tr> <th>Grandeza </th> <th>Expressão </th></tr> <tr align="left"> <td><a href="/wiki/Comprimento" title="Comprimento">Comprimento</a> (L) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle l_{\mathrm {QED} }={\frac {\hbar }{m_{p}c}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>l</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">Q</mi> <mi mathvariant="normal">E</mi> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi class="MJX-variant">&#x210F;<!-- ℏ --></mi> <mrow> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mi>c</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle l_{\mathrm {QED} }={\frac {\hbar }{m_{p}c}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d88830b51f32e0241fcbca31667e1a6a0fa12475" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:12.62ex; height:6.009ex;" alt="{\displaystyle l_{\mathrm {QED} }={\frac {\hbar }{m_{p}c}}}"></span> </td></tr> <tr> <td><a href="/wiki/Massa" title="Massa">Massa</a> (M) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{\mathrm {QED} }=m_{p}\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">Q</mi> <mi mathvariant="normal">E</mi> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo>=</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{\mathrm {QED} }=m_{p}\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/42a204247cd449fa0e6e70994d406c120db10f00" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:12.705ex; height:2.343ex;" alt="{\displaystyle m_{\mathrm {QED} }=m_{p}\ }"></span> </td></tr> <tr> <td><a href="/wiki/Tempo" title="Tempo">Tempo</a> (T) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t_{\mathrm {QED} }={\frac {\hbar }{m_{p}c^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">Q</mi> <mi mathvariant="normal">E</mi> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi class="MJX-variant">&#x210F;<!-- ℏ --></mi> <mrow> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t_{\mathrm {QED} }={\frac {\hbar }{m_{p}c^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7298fe020b4b39ad768ab208232d494e979c7000" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:13.82ex; height:6.176ex;" alt="{\displaystyle t_{\mathrm {QED} }={\frac {\hbar }{m_{p}c^{2}}}}"></span> </td></tr> <tr> <td><a href="/wiki/Carga_el%C3%A9trica" title="Carga elétrica">Carga elétrica</a> (Q) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q_{\mathrm {QED} }=e\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">Q</mi> <mi mathvariant="normal">E</mi> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo>=</mo> <mi>e</mi> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q_{\mathrm {QED} }=e\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/22d7d4d71cf1fc113a01b9ca8cfd16469174ac9a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:9.685ex; height:2.343ex;" alt="{\displaystyle q_{\mathrm {QED} }=e\ }"></span> </td></tr> <tr> <td><a href="/wiki/Temperatura" title="Temperatura">Temperatura</a> (Θ) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{\mathrm {QED} }={\frac {m_{p}c^{2}}{k}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">Q</mi> <mi mathvariant="normal">E</mi> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mi>k</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{\mathrm {QED} }={\frac {m_{p}c^{2}}{k}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/80ca649e92914baf9a53f22f065504c6d285c46c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:14.338ex; height:6.009ex;" alt="{\displaystyle T_{\mathrm {QED} }={\frac {m_{p}c^{2}}{k}}}"></span> </td></tr></tbody></table> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c=1\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>=</mo> <mn>1</mn> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c=1\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8d272662909ab4ecb5e2d2836e9acf1a97c079ad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.848ex; height:2.176ex;" alt="{\displaystyle c=1\ }"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e=1\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>e</mi> <mo>=</mo> <mn>1</mn> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e=1\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6aa4b16dec5a6513c7c44fc6f89971bc8953135f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.925ex; height:2.176ex;" alt="{\displaystyle e=1\ }"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{p}=1\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>=</mo> <mn>1</mn> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{p}=1\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d11da3d828f3ecc75fda19dd4b7be9befa6d560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.941ex; height:2.843ex;" alt="{\displaystyle m_{p}=1\ }"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{4\pi \varepsilon _{0}}}={\alpha }\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{4\pi \varepsilon _{0}}}={\alpha }\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5894655c9275a0d68c2c5b37d733a2871ad0043a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:10.635ex; height:5.676ex;" alt="{\displaystyle {\frac {1}{4\pi \varepsilon _{0}}}={\alpha }\ }"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k=1\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>=</mo> <mn>1</mn> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k=1\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df3c2c1094c69deef780e9c5280f17a4a6431a17" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.053ex; height:2.176ex;" alt="{\displaystyle k=1\ }"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \hbar =1\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi class="MJX-variant">&#x210F;<!-- ℏ --></mi> <mo>=</mo> <mn>1</mn> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \hbar =1\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa32eab3c9559e0a58fa26db69e2c450b284bd0b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.148ex; height:2.176ex;" alt="{\displaystyle \hbar =1\ }"></span></dd></dl> <p>Também a <a href="/w/index.php?title=Massa_do_pr%C3%B3ton&amp;action=edit&amp;redlink=1" class="new" title="Massa do próton (página não existe)">massa do próton</a> podem ser substituída pela <a href="/w/index.php?title=Massa_do_el%C3%A9tron&amp;action=edit&amp;redlink=1" class="new" title="Massa do elétron (página não existe)">massa do elétron</a>. Uma variação considerável no valor de α seria considerada como devida a variação em <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varepsilon _{0}\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varepsilon _{0}\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f8a2174977276f49cef175213d540fd5062520f3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.718ex; height:2.009ex;" alt="{\displaystyle \varepsilon _{0}\ }"></span>. A métrica de Minkowsky é invariante frente à transformação de Lorentz. </p> <div class="mw-heading mw-heading2"><h2 id="Unidades_geometrizadas">Unidades geometrizadas</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Unidades_naturais&amp;veaction=edit&amp;section=8" title="Editar secção: Unidades geometrizadas" class="mw-editsection-visualeditor"><span>editar</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Unidades_naturais&amp;action=edit&amp;section=8" title="Editar código-fonte da secção: Unidades geometrizadas"><span>editar código-fonte</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="hatnote"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3a/Magnifying_glass_01.svg/17px-Magnifying_glass_01.svg.png" decoding="async" width="17" height="17" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3a/Magnifying_glass_01.svg/26px-Magnifying_glass_01.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3a/Magnifying_glass_01.svg/34px-Magnifying_glass_01.svg.png 2x" data-file-width="663" data-file-height="659" /></span></span>Ver artigo&#32;principal: <a href="/wiki/Sistema_de_unidade_geometrizada" title="Sistema de unidade geometrizada">Sistema de unidade geometrizada</a></div> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c=1\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>=</mo> <mn>1</mn> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c=1\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8d272662909ab4ecb5e2d2836e9acf1a97c079ad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.848ex; height:2.176ex;" alt="{\displaystyle c=1\ }"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G=1\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo>=</mo> <mn>1</mn> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G=1\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d786e6c185c86c005f3a96398f3e20e6b49c8044" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.668ex; height:2.176ex;" alt="{\displaystyle G=1\ }"></span></dd></dl> <p>O sistema de unidades geometrizadas não é um sistema completamente definido ou único. Neste sistema, as unidades físicas básicas são escolhidas de modo que <a href="/wiki/Velocidade_da_luz" title="Velocidade da luz">velocidade da luz</a> e a <a href="/wiki/Constante_gravitacional" class="mw-redirect" title="Constante gravitacional">constante gravitacional</a> são definidas iguais à unidade, deixando a latitude também definir algumas outras constantes, tais como a <a href="/wiki/Constante_de_Boltzmann" title="Constante de Boltzmann">constante de Boltzmann</a> e a <a href="/wiki/Lei_de_Coulomb" title="Lei de Coulomb">constante da força de Coulomb</a> iguais à unidade: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k=1\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>=</mo> <mn>1</mn> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k=1\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df3c2c1094c69deef780e9c5280f17a4a6431a17" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.053ex; height:2.176ex;" alt="{\displaystyle k=1\ }"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{4\pi \varepsilon _{0}}}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{4\pi \varepsilon _{0}}}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f22c12dfd6a6ee2655db2715e04d805dd355eb1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:9.729ex; height:5.676ex;" alt="{\displaystyle {\frac {1}{4\pi \varepsilon _{0}}}=1}"></span></dd></dl> <p>Se a <a href="/wiki/Constante_de_Planck" title="Constante de Planck">constante reduzida de Planck</a> também definida à unidade, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \hbar =1\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi class="MJX-variant">&#x210F;<!-- ℏ --></mi> <mo>=</mo> <mn>1</mn> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \hbar =1\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa32eab3c9559e0a58fa26db69e2c450b284bd0b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.148ex; height:2.176ex;" alt="{\displaystyle \hbar =1\ }"></span></dd></dl> <p>então as unidades geometrizadas são idênticas as <a href="/wiki/Unidades_de_Planck" title="Unidades de Planck">unidades de Planck</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Unidades_de_N_corpos">Unidades de N corpos</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Unidades_naturais&amp;veaction=edit&amp;section=9" title="Editar secção: Unidades de N corpos" class="mw-editsection-visualeditor"><span>editar</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Unidades_naturais&amp;action=edit&amp;section=9" title="Editar código-fonte da secção: Unidades de N corpos"><span>editar código-fonte</span></a><span class="mw-editsection-bracket">]</span></span></div> <table class="wikitable" align="right" style="margin-left: 1em; background-color: #ffffff"> <tbody><tr> <th>Grandeza </th> <th>Expressão </th></tr> <tr align="left"> <td><a href="/wiki/Comprimento" title="Comprimento">Comprimento</a> (R) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{R}}={\frac {1}{N(N-1)}}\sum _{i=1}^{N}\sum _{j=1}^{N}{\frac {1}{r_{j}-r_{i}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>R</mi> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>N</mi> <mo stretchy="false">(</mo> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{R}}={\frac {1}{N(N-1)}}\sum _{i=1}^{N}\sum _{j=1}^{N}{\frac {1}{r_{j}-r_{i}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ece75f78b68a7eef4532760dfd0dde27d2b8129b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:31.829ex; height:7.676ex;" alt="{\displaystyle {\frac {1}{R}}={\frac {1}{N(N-1)}}\sum _{i=1}^{N}\sum _{j=1}^{N}{\frac {1}{r_{j}-r_{i}}}}"></span> </td></tr> <tr> <td><a href="/wiki/Massa" title="Massa">Massa</a> (M) </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M=\sum _{i=1}^{N}m_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M=\sum _{i=1}^{N}m_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6cc9f145d9dab4b6b5b44eba25973eec259c631" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:12.123ex; height:7.343ex;" alt="{\displaystyle M=\sum _{i=1}^{N}m_{i}}"></span> </td></tr></tbody></table> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M=1\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo>=</mo> <mn>1</mn> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M=1\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3460b86c5dbf5f9ed1ad1f91bab0e74ef545fdb0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.284ex; height:2.176ex;" alt="{\displaystyle M=1\ }"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G=1\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo>=</mo> <mn>1</mn> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G=1\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d786e6c185c86c005f3a96398f3e20e6b49c8044" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.668ex; height:2.176ex;" alt="{\displaystyle G=1\ }"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R=1\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo>=</mo> <mn>1</mn> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R=1\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d50c7f47e6053b1c2dc885dd3b1c653e41a12994" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.606ex; height:2.176ex;" alt="{\displaystyle R=1\ }"></span></dd></dl> <p>Unidades de N corpos são um sistema de unidades completamente autocontido usado para <a href="/wiki/Simula%C3%A7%C3%A3o_de_N_corpos" title="Simulação de N corpos">simulações de N corpos</a> de sistemas autogravitantes em <a href="/wiki/Astrof%C3%ADsica" title="Astrofísica">astrofísica</a>. Neste sistema, as unidades físicas básicas são escolhidas de modo que a massa total (M), a <a href="/wiki/Constante_gravitacional" class="mw-redirect" title="Constante gravitacional">constante gravitacional</a> (G) e o <a href="/wiki/Teorema_do_virial" title="Teorema do virial">raio virial</a> (R) são definidos como iguais à unidade. O pressuposto subjacente é que o sistema de N objetos (estrelas) satisfaz o <a href="/w/index.php?title=Teorema_virial&amp;action=edit&amp;redlink=1" class="new" title="Teorema virial (página não existe)">teorema virial</a>. A consequência das unidades padrões de N corpos é que a velocidade de dispersão do sistema é <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v=1/{\sqrt {2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> <mo>=</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v=1/{\sqrt {2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9c8630597cf8ccbe19e613e86b93650e7c43921" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.649ex; height:3.176ex;" alt="{\displaystyle v=1/{\sqrt {2}}}"></span> e que a dinâmica da passagem do tempo estabelece-se em escala como <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t=2{\sqrt {2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mo>=</mo> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t=2{\sqrt {2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/69469bce678e604889509d6d3ee28f4fd90d2eb2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.199ex; height:3.009ex;" alt="{\displaystyle t=2{\sqrt {2}}}"></span>. </p><p>A primeira menção das unidades padrões de N corpos foi feito por Michel Hénon (1971) <a rel="nofollow" class="external autonumber" href="http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1971Ap%26SS..14..151H&amp;db_key=AST&amp;data_type=HTML&amp;format=&amp;high=45c123dad007642">[4]</a>. Elas foram adotadas por Haldan Cohn (1979) <a rel="nofollow" class="external autonumber" href="http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1979ApJ...234.1036C&amp;db_key=AST&amp;data_type=HTML&amp;format=&amp;high=439859188922689">[5]</a> e posteriormente largamente divulgadas e generalizadas por Douglas Heggie e Robert Mathieu (1986). <a rel="nofollow" class="external autonumber" href="http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1986LNP...267..233H&amp;db_key=AST&amp;data_type=HTML&amp;format=&amp;high=439859188922689">[6]</a> </p> <div class="mw-heading mw-heading2"><h2 id="Ver_também"><span id="Ver_tamb.C3.A9m"></span>Ver também</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Unidades_naturais&amp;veaction=edit&amp;section=10" title="Editar secção: Ver também" class="mw-editsection-visualeditor"><span>editar</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Unidades_naturais&amp;action=edit&amp;section=10" title="Editar código-fonte da secção: Ver também"><span>editar código-fonte</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/An%C3%A1lise_dimensional" title="Análise dimensional">Análise dimensional</a></li> <li><a href="/wiki/Constante_f%C3%ADsica" title="Constante física">Constante física</a></li> <li><a href="/w/index.php?title=Unidades_antr%C3%B3picas&amp;action=edit&amp;redlink=1" class="new" title="Unidades antrópicas (página não existe)">Unidades antrópicas</a></li> <li><a href="/w/index.php?title=Unidade_fundamental&amp;action=edit&amp;redlink=1" class="new" title="Unidade fundamental (página não existe)">Unidade fundamental</a></li></ul> <h2 id="Referências" style="cursor: help;" title="Esta seção foi configurada para não ser editável diretamente. Edite a página toda ou a seção anterior em vez disso."><span id="Refer.C3.AAncias"></span>Referências</h2> <div class="reflist" style="list-style-type: decimal;"><div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><a href="#cite_ref-1">↑</a></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://alpha.montclair.edu/~kowalskiL/SI/SI_PAGE.HTML">A Short History of the SI Units in Electricity</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20090429035624/http://alpha.montclair.edu/~kowalskiL/SI/SI_PAGE.HTML">Arquivado em</a> 29 de abril de 2009, no <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>., Ludwik Kowalski, The Physics Teacher, February, 1986, (volume 24 #32) pages 97-99</span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><a href="#cite_ref-2">↑</a></span> <span class="reference-text">Ray, T.P. (1981). "Stoney's Fundamental Units". Irish Astronomical Journal 15: 152. </span> </li> </ol></div></div> <div role="navigation" class="navbox" aria-labelledby="Sistemas_de_unidades" style="padding:3px"><table class="nowraplinks collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div class="plainlinks hlist navbar mini"><ul><li class="nv-ver"><a href="/wiki/Predefini%C3%A7%C3%A3o:Sistemas_de_medi%C3%A7%C3%A3o" title="Predefinição:Sistemas de medição"><abbr title="Ver esta predefinição" style=";;background:none transparent;border:none;-moz-box-shadow:none;-webkit-box-shadow:none;box-shadow:none; padding:0;">v</abbr></a></li><li class="nv-discutir"><a href="/w/index.php?title=Predefini%C3%A7%C3%A3o_Discuss%C3%A3o:Sistemas_de_medi%C3%A7%C3%A3o&amp;action=edit&amp;redlink=1" class="new" title="Predefinição Discussão:Sistemas de medição (página não existe)"><abbr title="Discutir esta predefinição" style=";;background:none transparent;border:none;-moz-box-shadow:none;-webkit-box-shadow:none;box-shadow:none; padding:0;">d</abbr></a></li><li class="nv-editar"><a class="external text" href="https://pt.wikipedia.org/w/index.php?title=Predefini%C3%A7%C3%A3o:Sistemas_de_medi%C3%A7%C3%A3o&amp;action=edit"><abbr title="Editar esta predefinição" style=";;background:none transparent;border:none;-moz-box-shadow:none;-webkit-box-shadow:none;box-shadow:none; padding:0;">e</abbr></a></li></ul></div><div id="Sistemas_de_unidades" style="font-size:114%;margin:0 4em"><a href="/wiki/Sistema_de_unidades" title="Sistema de unidades">Sistemas de unidades</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Sistema_m%C3%A9trico" title="Sistema métrico">Sistema métrico</a></th><td class="navbox-list navbox-odd" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"><div> <p> <span style="white-space:nowrap"><a href="/wiki/Sistema_Internacional_de_Unidades" title="Sistema Internacional de Unidades">Sistema Internacional de Unidades</a>&#160;<b>·</b></span> <span style="white-space:nowrap"> <a href="/wiki/Sistema_MKS_de_unidades" title="Sistema MKS de unidades">Sistema MKS de unidades</a>&#160;<b>·</b></span> <span style="white-space:nowrap"> <a href="/wiki/Sistema_CGS_de_unidades" title="Sistema CGS de unidades">Sistema CGS de unidades</a>&#160;<b>·</b></span> <span style="white-space:nowrap"> <a href="/wiki/Sistema_metro-tonelada-segundo_de_unidades" title="Sistema metro-tonelada-segundo de unidades">Sistema MTS de unidades </a>&#160;<b>·</b></span> <span style="white-space:nowrap"> <a href="/w/index.php?title=Sistema_t%C3%A9cnico_de_unidades&amp;action=edit&amp;redlink=1" class="new" title="Sistema técnico de unidades (página não existe)">Sistema técnico de unidades</a></span> </p> </div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a class="mw-selflink selflink">Unidades naturais</a></th><td class="navbox-list navbox-even" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"><div> <p> <span style="white-space:nowrap"><a href="/wiki/Sistema_de_unidade_geometrizada" title="Sistema de unidade geometrizada">Sistema geométricos</a>&#160;<b>·</b></span> <span style="white-space:nowrap"> <a href="/wiki/Unidades_de_Planck" title="Unidades de Planck">Planck</a>&#160;<b>·</b></span> <span style="white-space:nowrap"> <a class="mw-selflink-fragment" href="#Unidades_de_Stoney">Stoney</a>&#160;<b>·</b></span> <span style="white-space:nowrap"> <a class="mw-selflink-fragment" href="#Unidades_de_&quot;Schrödinger&quot;">"Schrödinger"</a>&#160;<b>·</b></span> <span style="white-space:nowrap"> <a href="/wiki/Unidades_at%C3%B4micas" title="Unidades atômicas">Atômica</a>&#160;<b>·</b></span> <span style="white-space:nowrap"> <a class="mw-selflink-fragment" href="#Sistema_Eletrônico_de_unidades">Eletrônico</a>&#160;<b>·</b></span> <span style="white-space:nowrap"> <a class="mw-selflink-fragment" href="#Sistema_eletrodinâmico_de_unidades_Quantum">Quantum eletrodinâmico</a></span> </p> </div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Sistemas convencionais</th><td class="navbox-list navbox-odd" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"><div> <p> <span style="white-space:nowrap"><a href="/wiki/Sistema_astron%C3%B4mico_de_unidades" title="Sistema astronômico de unidades">Astronômico</a>&#160;<b>·</b></span> <span style="white-space:nowrap"> <a href="/w/index.php?title=Unidade_el%C3%A9trica_convencional&amp;action=edit&amp;redlink=1" class="new" title="Unidade elétrica convencional (página não existe)">Elétrico</a>&#160;<b>·</b></span> <span style="white-space:nowrap"> <a href="/w/index.php?title=Escala_Internacional_de_Temperatura_de_1990&amp;action=edit&amp;redlink=1" class="new" title="Escala Internacional de Temperatura de 1990 (página não existe)">Temperatura</a>&#160;<b>·</b></span> <span style="white-space:nowrap"> <a href="/wiki/Unidades_inglesas_de_engenharia" title="Unidades inglesas de engenharia">Unidades inglesas de engenharia</a></span> </p> </div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Sistemas tradicionais</th><td class="navbox-list navbox-even" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"><div> <p> <span style="white-space:nowrap"><a href="/wiki/Avoirdupois" title="Avoirdupois">Avoirdupois</a>&#160;<b>·</b></span> <span style="white-space:nowrap"> <a href="/w/index.php?title=Sistema_apotec%C3%A1rio&amp;action=edit&amp;redlink=1" class="new" title="Sistema apotecário (página não existe)">Apotecário</a>&#160;<b>·</b></span> <span style="white-space:nowrap"> <a href="/wiki/Unidade_inglesa" title="Unidade inglesa">Inglês/Imperial</a>&#160;<b>·</b></span> <span style="white-space:nowrap"> <a href="/w/index.php?title=Unidades_de_medida_canadenses&amp;action=edit&amp;redlink=1" class="new" title="Unidades de medida canadenses (página não existe)">Canadense</a>&#160;<b>·</b></span> <span style="white-space:nowrap"> <a href="/w/index.php?title=Unidades_usuais_nos_Estados_Unidos_da_Am%C3%A9rica&amp;action=edit&amp;redlink=1" class="new" title="Unidades usuais nos Estados Unidos da América (página não existe)">US</a>&#160;<b>·</b></span> <span style="white-space:nowrap"> <a href="/w/index.php?title=Unidades_de_medida_dinamarquesas&amp;action=edit&amp;redlink=1" class="new" title="Unidades de medida dinamarquesas (página não existe)">Dinamarquês</a>&#160;<b>·</b></span> <span style="white-space:nowrap"> <a href="/w/index.php?title=Unidades_de_medida_holandesas&amp;action=edit&amp;redlink=1" class="new" title="Unidades de medida holandesas (página não existe)">Holandês</a>&#160;<b>·</b></span> <span style="white-space:nowrap"> <a href="/w/index.php?title=Unidades_de_medida_finlandesas&amp;action=edit&amp;redlink=1" class="new" title="Unidades de medida finlandesas (página não existe)">Finlandês</a>&#160;<b>·</b></span> <span style="white-space:nowrap"> <a href="/w/index.php?title=Unidades_de_medida_francesas&amp;action=edit&amp;redlink=1" class="new" title="Unidades de medida francesas (página não existe)">Francês</a>&#160;<b>·</b></span> <span style="white-space:nowrap"> <a href="/w/index.php?title=Unidades_de_medida_alem%C3%A3s&amp;action=edit&amp;redlink=1" class="new" title="Unidades de medida alemãs (página não existe)">Alemão</a>&#160;<b>·</b></span> <span style="white-space:nowrap"> <a href="/w/index.php?title=Antigas_unidades_de_medida_irlandesas&amp;action=edit&amp;redlink=1" class="new" title="Antigas unidades de medida irlandesas (página não existe)">Irlandês</a>&#160;<b>·</b></span> <span style="white-space:nowrap"> <a href="/w/index.php?title=Unidades_de_medida_maltesas&amp;action=edit&amp;redlink=1" class="new" title="Unidades de medida maltesas (página não existe)">Maltês</a>&#160;<b>·</b></span> <span style="white-space:nowrap"> <a href="/w/index.php?title=Unidades_de_medida_norueguesas&amp;action=edit&amp;redlink=1" class="new" title="Unidades de medida norueguesas (página não existe)">Norueguês</a>&#160;<b>·</b></span> <span style="white-space:nowrap"> <a href="/w/index.php?title=Unidades_de_medi%C3%A7%C3%A3o_escocesas_obsoletas&amp;action=edit&amp;redlink=1" class="new" title="Unidades de medição escocesas obsoletas (página não existe)">Escocês</a>&#160;<b>·</b></span> <span style="white-space:nowrap"> <a href="/w/index.php?title=Unidades_de_medi%C3%A7%C3%A3o_espanholas_obsoletas&amp;action=edit&amp;redlink=1" class="new" title="Unidades de medição espanholas obsoletas (página não existe)">Espanhol</a>&#160;<b>·</b></span> <span style="white-space:nowrap"> <a href="/wiki/Antigas_unidades_de_medida_portuguesas" title="Antigas unidades de medida portuguesas">Português</a>&#160;<b>·</b></span> <span style="white-space:nowrap"> <a href="/w/index.php?title=Unidades_de_medida_suecas&amp;action=edit&amp;redlink=1" class="new" title="Unidades de medida suecas (página não existe)">Sueco</a>&#160;<b>·</b></span> <span style="white-space:nowrap"> <a href="/w/index.php?title=Unidades_de_medi%C3%A7%C3%A3o_polacas_obsoletas&amp;action=edit&amp;redlink=1" class="new" title="Unidades de medição polacas obsoletas (página não existe)">Polaco</a>&#160;<b>·</b></span> <span style="white-space:nowrap"> <a href="/w/index.php?title=Unidades_de_medida_romenas&amp;action=edit&amp;redlink=1" class="new" title="Unidades de medida romenas (página não existe)">Romeno</a>&#160;<b>·</b></span> <span style="white-space:nowrap"> <a href="/w/index.php?title=Pesos_e_medidas_obsoletas_russas&amp;action=edit&amp;redlink=1" class="new" title="Pesos e medidas obsoletas russas (página não existe)">Russo</a>&#160;<b>·</b></span> <span style="white-space:nowrap"> <a href="/w/index.php?title=Pesos_e_medidas_obsoletas_t%C3%A1rtaros&amp;action=edit&amp;redlink=1" class="new" title="Pesos e medidas obsoletas tártaros (página não existe)">Tártaro</a>&#160;<b>·</b></span> <span style="white-space:nowrap"> <a href="/w/index.php?title=Unidades_de_medida_hindus&amp;action=edit&amp;redlink=1" class="new" title="Unidades de medida hindus (página não existe)">Hindu</a>&#160;<b>·</b></span> <span style="white-space:nowrap"> <a href="/w/index.php?title=Pesos_e_Medidas_Pegu&amp;action=edit&amp;redlink=1" class="new" title="Pesos e Medidas Pegu (página não existe)">Pegu</a>&#160;<b>·</b></span> <span style="white-space:nowrap"> <a href="/wiki/Unidades_de_medida_chinesas" title="Unidades de medida chinesas">Chinês</a>&#160;<b>·</b></span> <span style="white-space:nowrap"> <a href="/wiki/Unidades_de_medida_japonesas" title="Unidades de medida japonesas">Japonês</a>&#160;<b>·</b></span> <span style="white-space:nowrap"> <a href="/w/index.php?title=Peso_Troy&amp;action=edit&amp;redlink=1" class="new" title="Peso Troy (página não existe)">Troy</a>&#160;<b>·</b></span> <span style="white-space:nowrap"> <a href="/w/index.php?title=Unidades_de_medi%C3%A7%C3%A3o_de_taiwanesas&amp;action=edit&amp;redlink=1" class="new" title="Unidades de medição de taiwanesas (página não existe)">Taiwanês</a></span> </p> </div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Sistemas antigos</th><td class="navbox-list navbox-odd" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"><div> <p> <span style="white-space:nowrap"><a href="/w/index.php?title=Pesos_e_medidas_da_Gr%C3%A9cia_Antiga&amp;action=edit&amp;redlink=1" class="new" title="Pesos e medidas da Grécia Antiga (página não existe)">Grego</a>&#160;<b>·</b></span> <span style="white-space:nowrap"> <a href="/wiki/Unidades_de_medida_da_Roma_Antiga" title="Unidades de medida da Roma Antiga">Romano</a>&#160;<b>·</b></span> <span style="white-space:nowrap"> <a href="/w/index.php?title=Pesos_e_medidas_do_Egito_Antigo&amp;action=edit&amp;redlink=1" class="new" title="Pesos e medidas do Egito Antigo (página não existe)">Egípcio</a>&#160;<b>·</b></span> <span style="white-space:nowrap"> <a href="/w/index.php?title=Pesos_e_medidas_hebraico_antigo&amp;action=edit&amp;redlink=1" class="new" title="Pesos e medidas hebraico antigo (página não existe)">Hebraico</a>&#160;<b>·</b></span> <span style="white-space:nowrap"> <a href="/w/index.php?title=Pesos_e_medidas_%C3%A1rabe_antigo&amp;action=edit&amp;redlink=1" class="new" title="Pesos e medidas árabe antigo (página não existe)">Arábico</a>&#160;<b>·</b></span> <span style="white-space:nowrap"> <a href="/wiki/Unidades_de_medida_da_antiga_Mesopot%C3%A2mia" title="Unidades de medida da antiga Mesopotâmia">Mesopotâmio</a>&#160;<b>·</b></span> <span style="white-space:nowrap"> <a href="/w/index.php?title=Unidades_de_medida_persa&amp;action=edit&amp;redlink=1" class="new" title="Unidades de medida persa (página não existe)">Persa</a>&#160;<b>·</b></span> <span style="white-space:nowrap"> <a href="/w/index.php?title=Hist%C3%B3ria_dos_sistemas_de_medi%C3%A7%C3%A3o_na_%C3%8Dndia&amp;action=edit&amp;redlink=1" class="new" title="História dos sistemas de medição na Índia (página não existe)">Indiano</a></span> </p> </div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Outros sistemas</th><td class="navbox-list navbox-even" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"><div> <p> <span style="white-space:nowrap"><a href="/wiki/Modulor" title="Modulor">Modulor</a></span> </p> </div></div></td></tr></tbody></table></div> <table class="noprint" style="border-top:none; border-bottom:none; background:transparent; color: inherit"><tbody><tr> <td style="text-align: center;"><span typeof="mw:File"><a href="/wiki/Ficheiro:U%2B269B.svg" class="mw-file-description"><img alt="Ícone de esboço" src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a2/U%2B269B.svg/35px-U%2B269B.svg.png" decoding="async" width="35" height="35" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a2/U%2B269B.svg/53px-U%2B269B.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a2/U%2B269B.svg/70px-U%2B269B.svg.png 2x" data-file-width="180" data-file-height="180" /></a></span></td> <td><i>Este artigo sobre <a href="/wiki/F%C3%ADsica" title="Física">física</a> é um <a href="/wiki/Wikip%C3%A9dia:Esbo%C3%A7o" title="Wikipédia:Esboço">esboço</a>. Você pode ajudar a Wikipédia <b><span class="plainlinks"><a class="external text" href="https://pt.wikipedia.org/w/index.php?title=Unidades_naturais&amp;action=edit">expandindo-o</a></span></b>.</i><div class="plainlinks hlist navbar mini" style="position:absolute; right:15px; font-size:smaller; display:none;"><ul><li class="nv-ver"><a href="/wiki/Predefini%C3%A7%C3%A3o:Esbo%C3%A7o-f%C3%ADsica" title="Predefinição:Esboço-física"><abbr title="Ver esta predefinição">v</abbr></a></li><li class="nv-discutir"><a href="/wiki/Predefini%C3%A7%C3%A3o_Discuss%C3%A3o:Esbo%C3%A7o-f%C3%ADsica" title="Predefinição Discussão:Esboço-física"><abbr title="Discutir esta predefinição">d</abbr></a></li><li class="nv-editar"><a class="external text" href="https://pt.wikipedia.org/w/index.php?title=Predefini%C3%A7%C3%A3o:Esbo%C3%A7o-f%C3%ADsica&amp;action=edit"><abbr title="Editar esta predefinição">e</abbr></a></li></ul></div></td> </tr></tbody></table> <!-- NewPP limit report Parsed by mw‐web.eqiad.canary‐544b6cccb‐zzr62 Cached time: 20241119155119 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.253 seconds Real time usage: 0.445 seconds Preprocessor visited node count: 1368/1000000 Post‐expand include size: 43083/2097152 bytes Template argument size: 618/2097152 bytes Highest expansion depth: 12/100 Expensive parser function count: 2/500 Unstrip recursion depth: 0/20 Unstrip post‐expand size: 13873/5000000 bytes Lua time usage: 0.089/10.000 seconds Lua memory usage: 1372457/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 186.128 1 -total 64.48% 120.024 1 Predefinição:Mais_notas 53.67% 99.899 1 Predefinição:Ambox 13.79% 25.658 1 Predefinição:Sistemas_de_medição 12.16% 22.638 1 Predefinição:Navbox 8.91% 16.584 1 Predefinição:Esboço-física 8.05% 14.991 1 Predefinição:Esboço_personalizado 5.41% 10.066 1 Predefinição:Referências 5.29% 9.846 1 Predefinição:Asbox 4.76% 8.869 3 Predefinição:AP --> <!-- Saved in parser cache with key ptwiki:pcache:idhash:1579004-0!canonical and timestamp 20241119155119 and revision id 64773646. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Obtida de "<a dir="ltr" href="https://pt.wikipedia.org/w/index.php?title=Unidades_naturais&amp;oldid=64773646">https://pt.wikipedia.org/w/index.php?title=Unidades_naturais&amp;oldid=64773646</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Especial:Categorias" title="Especial:Categorias">Categoria</a>: <ul><li><a href="/wiki/Categoria:Unidades_naturais" title="Categoria:Unidades naturais">Unidades naturais</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Categorias ocultas: <ul><li><a href="/wiki/Categoria:!Predefini%C3%A7%C3%A3o_Webarchive_wayback_links" title="Categoria:!Predefinição Webarchive wayback links">!Predefinição Webarchive wayback links</a></li><li><a href="/wiki/Categoria:!Artigos_que_carecem_de_notas_de_rodap%C3%A9_desde_fevereiro_de_2011" title="Categoria:!Artigos que carecem de notas de rodapé desde fevereiro de 2011">!Artigos que carecem de notas de rodapé desde fevereiro de 2011</a></li><li><a href="/wiki/Categoria:!Artigos_que_carecem_de_notas_de_rodap%C3%A9_sem_indica%C3%A7%C3%A3o_de_tema" title="Categoria:!Artigos que carecem de notas de rodapé sem indicação de tema">!Artigos que carecem de notas de rodapé sem indicação de tema</a></li><li><a href="/wiki/Categoria:!Esbo%C3%A7os_sobre_f%C3%ADsica" title="Categoria:!Esboços sobre física">!Esboços sobre física</a></li><li><a href="/wiki/Categoria:!Esbo%C3%A7os_maiores_que_15000_bytes" title="Categoria:!Esboços maiores que 15000 bytes">!Esboços maiores que 15000 bytes</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> Esta página foi editada pela última vez às 22h32min de 19 de novembro de 2022.</li> <li id="footer-info-copyright">Este texto é disponibilizado nos termos da licença <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by-sa/4.0/deed.pt">Atribuição-CompartilhaIgual 4.0 Internacional (CC BY-SA 4.0) da Creative Commons</a>; pode estar sujeito a condições adicionais. Para mais detalhes, consulte as <a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use">condições de utilização</a>.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy/pt-br">Política de privacidade</a></li> <li id="footer-places-about"><a href="/wiki/Wikip%C3%A9dia:Sobre">Sobre a Wikipédia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikip%C3%A9dia:Aviso_geral">Avisos gerais</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Código de conduta</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Programadores</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/pt.wikipedia.org">Estatísticas</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Declaração sobre ''cookies''</a></li> <li id="footer-places-mobileview"><a href="//pt.m.wikipedia.org/w/index.php?title=Unidades_naturais&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Versão móvel</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-r2wfs","wgBackendResponseTime":151,"wgPageParseReport":{"limitreport":{"cputime":"0.253","walltime":"0.445","ppvisitednodes":{"value":1368,"limit":1000000},"postexpandincludesize":{"value":43083,"limit":2097152},"templateargumentsize":{"value":618,"limit":2097152},"expansiondepth":{"value":12,"limit":100},"expensivefunctioncount":{"value":2,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":13873,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 186.128 1 -total"," 64.48% 120.024 1 Predefinição:Mais_notas"," 53.67% 99.899 1 Predefinição:Ambox"," 13.79% 25.658 1 Predefinição:Sistemas_de_medição"," 12.16% 22.638 1 Predefinição:Navbox"," 8.91% 16.584 1 Predefinição:Esboço-física"," 8.05% 14.991 1 Predefinição:Esboço_personalizado"," 5.41% 10.066 1 Predefinição:Referências"," 5.29% 9.846 1 Predefinição:Asbox"," 4.76% 8.869 3 Predefinição:AP"]},"scribunto":{"limitreport-timeusage":{"value":"0.089","limit":"10.000"},"limitreport-memusage":{"value":1372457,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.canary-544b6cccb-zzr62","timestamp":"20241119155119","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Unidades naturais","url":"https:\/\/pt.wikipedia.org\/wiki\/Unidades_naturais","sameAs":"http:\/\/www.wikidata.org\/entity\/Q3962243","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q3962243","author":{"@type":"Organization","name":"Contribuidores dos projetos da Wikimedia"},"publisher":{"@type":"Organization","name":"Funda\u00e7\u00e3o Wikimedia, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2008-02-12T18:38:54Z","dateModified":"2022-11-19T22:32:43Z"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10