CINXE.COM
Search results for: seismic response analysis
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: seismic response analysis</title> <meta name="description" content="Search results for: seismic response analysis"> <meta name="keywords" content="seismic response analysis"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="seismic response analysis" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="seismic response analysis"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 31436</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: seismic response analysis</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31436</span> Selection of Rayleigh Damping Coefficients for Seismic Response Analysis of Soil Layers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huai-Feng%20Wang">Huai-Feng Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Meng-Lin%20Lou"> Meng-Lin Lou</a>, <a href="https://publications.waset.org/abstracts/search?q=Ru-Lin%20Zhang"> Ru-Lin Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One good analysis method in seismic response analysis is direct time integration, which widely adopts Rayleigh damping. An approach is presented for selection of Rayleigh damping coefficients to be used in seismic analyses to produce a response that is consistent with Modal damping response. In the presented approach, the expression of the error of peak response, acquired through complete quadratic combination method, and Rayleigh damping coefficients was set up and then the coefficients were produced by minimizing the error. Two finite element modes of soil layers, excited by 28 seismic waves, were used to demonstrate the feasibility and validity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rayleigh%20damping" title="Rayleigh damping">Rayleigh damping</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20damping" title=" modal damping"> modal damping</a>, <a href="https://publications.waset.org/abstracts/search?q=damping%20coefficients" title=" damping coefficients"> damping coefficients</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20response%20analysis" title=" seismic response analysis"> seismic response analysis</a> </p> <a href="https://publications.waset.org/abstracts/57421/selection-of-rayleigh-damping-coefficients-for-seismic-response-analysis-of-soil-layers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57421.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">438</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31435</span> Three Dimensional Numerical Analysis for Longitudinal Seismic Response of Tunnels under Asynchronous Earthquake</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peng%20Li">Peng Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Er-xiang%20Song"> Er-xiang Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerical analysis of longitudinal tunnel seismic response due to spatial variation of earthquake ground motion is an important issue that cannot be ignored in the design and safety evaluation of tunnel structures. In this paper, numerical methods for analysis of tunnel longitudinal response under asynchronous seismic wave is extensively studied, including the improvement of the 1D time-domain finite element method, three dimensional numerical simulation technique for the site asynchronous earthquake response as well as the 3-D soil-tunnel structure interaction analysis. The study outcome will be beneficial to aid further research on the nonlinear meticulous numerical analysis and seismic response mechanism of tunnel structures under asynchronous earthquake motion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asynchronous%20input" title="asynchronous input">asynchronous input</a>, <a href="https://publications.waset.org/abstracts/search?q=longitudinal%20seismic%20response" title=" longitudinal seismic response"> longitudinal seismic response</a>, <a href="https://publications.waset.org/abstracts/search?q=tunnel%20structure" title=" tunnel structure"> tunnel structure</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=traveling%20wave%20effect" title=" traveling wave effect"> traveling wave effect</a> </p> <a href="https://publications.waset.org/abstracts/9730/three-dimensional-numerical-analysis-for-longitudinal-seismic-response-of-tunnels-under-asynchronous-earthquake" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9730.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">437</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31434</span> Study on Seismic Response Feature of Multi-Span Bridges Crossing Fault</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yingxin%20Hui">Yingxin Hui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding seismic response feature of the bridges crossing fault is the basis of the seismic fortification. Taking a multi-span bridge crossing active fault under construction as an example, the seismic ground motions at bridge site were generated following hybrid simulation methodology. Multi-support excitations displacement input models and nonlinear time history analysis was used to calculate seismic response of structures, and the results were compared with bridge in the near-fault region. The results showed that the seismic response features of bridges crossing fault were different from the bridges in the near-fault region. The design according to the bridge in near-fault region would cause the calculation results with insecurity and non-reasonable if the effect of cross the fault was ignored. The design of seismic fortification should be based on seismic response feature, which could reduce the adverse effect caused by the structure damage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bridge%20engineering" title="bridge engineering">bridge engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20response%20feature" title=" seismic response feature"> seismic response feature</a>, <a href="https://publications.waset.org/abstracts/search?q=across%20faults" title=" across faults"> across faults</a>, <a href="https://publications.waset.org/abstracts/search?q=rupture%20directivity%20effect" title=" rupture directivity effect"> rupture directivity effect</a>, <a href="https://publications.waset.org/abstracts/search?q=fling%20step" title=" fling step"> fling step</a> </p> <a href="https://publications.waset.org/abstracts/19709/study-on-seismic-response-feature-of-multi-span-bridges-crossing-fault" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31433</span> Numerical Studying the Real Analysis of the Seismic Response of the Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noureddine%20Litim">Noureddine Litim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work is to theoretical and numerical studying the real analysis of the seismic response of the soil with an Elasto-plastic behavior. To perform this analysis, we used different core drilling performed at the tunnel T4 in El Horace section of the highway east-west. The two-dimensional model (2d) was established by the code of finite element plaxis to estimate the displacement amplification and accelerations caused by the seismic wave in the different core drilling and compared with the factor of acceleration given by the RPA (2003) in the area studying. Estimate the displacement amplification and accelerations caused by the seismic wave. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismic%20response" title="seismic response">seismic response</a>, <a href="https://publications.waset.org/abstracts/search?q=deposition%20of%20soil" title=" deposition of soil"> deposition of soil</a>, <a href="https://publications.waset.org/abstracts/search?q=plaxis" title=" plaxis"> plaxis</a>, <a href="https://publications.waset.org/abstracts/search?q=elasto-plastic" title=" elasto-plastic"> elasto-plastic</a> </p> <a href="https://publications.waset.org/abstracts/153874/numerical-studying-the-real-analysis-of-the-seismic-response-of-the-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153874.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31432</span> Natural Frequency Analysis of Small-Scale Arch Structure by Shaking Table Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gee-Cheol%20Kim">Gee-Cheol Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Joo-Won%20Kang"> Joo-Won Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Structural characteristics of spatial structure are different from that of rahmen structures and it has many factors that are unpredictable experientially. Both horizontal and vertical earthquake should be considered because of seismic behaviour characteristics of spatial structures. This experimental study is conducted about seismic response characteristics of roof structure according to the effect of columns or walls, through scale model of arch structure that has the basic dynamic characteristics of spatial structure. Though remarkable response is not occurred for horizontal direction in the region of higher frequency than the region of frequency that seismic energy is concentrated, relatively large response is occurred in vertical direction. It is proved that seismic response of arch structure with column is varied according to property of column. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arch%20structure" title="arch structure">arch structure</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20response" title=" seismic response"> seismic response</a>, <a href="https://publications.waset.org/abstracts/search?q=shaking%20table" title=" shaking table"> shaking table</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20structure" title=" spatial structure"> spatial structure</a> </p> <a href="https://publications.waset.org/abstracts/51316/natural-frequency-analysis-of-small-scale-arch-structure-by-shaking-table-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51316.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31431</span> Ground Response Analyses in Budapest Based on Site Investigations and Laboratory Measurements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zsolt%20Szilv%C3%A1gyi">Zsolt Szilvágyi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jakub%20Panuska"> Jakub Panuska</a>, <a href="https://publications.waset.org/abstracts/search?q=Orsolya%20Kegyes-Brassai"> Orsolya Kegyes-Brassai</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%81kos%20Wolf"> Ákos Wolf</a>, <a href="https://publications.waset.org/abstracts/search?q=P%C3%A9ter%20Tildy"> Péter Tildy</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20P.%20Ray"> Richard P. Ray</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Near-surface loose sediments and local ground conditions in general have a major influence on seismic response of structures. It is a difficult task to model ground behavior in seismic soil-structure-foundation interaction problems, fully account for them in seismic design of structures, or even properly consider them in seismic hazard assessment. In this study, we focused on applying seismic soil investigation methods, used for determining soil stiffness and damping properties, to response analysis used in seismic design. A site in Budapest, Hungary was investigated using Multichannel Analysis of Surface Waves, Seismic Cone Penetration Tests, Bender Elements, Resonant Column and Torsional Shear tests. Our aim was to compare the results of the different test methods and use the resulting soil properties for 1D ground response analysis. Often in practice, there are little-to no data available on dynamic soil properties and estimated parameters are used for design. Therefore, a comparison is made between results based on estimated parameters and those based on detailed investigations. Ground response results are also compared to Eurocode 8 design spectra. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MASW" title="MASW">MASW</a>, <a href="https://publications.waset.org/abstracts/search?q=resonant%20column%20test" title=" resonant column test"> resonant column test</a>, <a href="https://publications.waset.org/abstracts/search?q=SCPT" title=" SCPT"> SCPT</a>, <a href="https://publications.waset.org/abstracts/search?q=site%20response%20analysis" title=" site response analysis"> site response analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=torsional%20shear%20test" title=" torsional shear test"> torsional shear test</a> </p> <a href="https://publications.waset.org/abstracts/67550/ground-response-analyses-in-budapest-based-on-site-investigations-and-laboratory-measurements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67550.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31430</span> Seismic Vulnerability Analysis of Arch Dam Based on Response Surface Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Serges%20Mendomo%20Meye">Serges Mendomo Meye</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Guowei"> Li Guowei</a>, <a href="https://publications.waset.org/abstracts/search?q=Shen%20Zhenzhong"> Shen Zhenzhong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Earthquake is one of the main loads threatening dam safety. Once the dam is damaged, it will bring huge losses of life and property to the country and people. Therefore, it is very important to research the seismic safety of the dam. Due to the complex foundation conditions, high fortification intensity, and high scientific and technological content, it is necessary to adopt reasonable methods to evaluate the seismic safety performance of concrete arch dams built and under construction in strong earthquake areas. Structural seismic vulnerability analysis can predict the probability of structural failure at all levels under different intensity earthquakes, which can provide a scientific basis for reasonable seismic safety evaluation and decision-making. In this paper, the response surface method (RSM) is applied to the seismic vulnerability analysis of arch dams, which improves the efficiency of vulnerability analysis. Based on the central composite test design method, the material-seismic intensity samples are established. The response surface model (RSM) with arch crown displacement as performance index is obtained by finite element (FE) calculation of the samples, and then the accuracy of the response surface model (RSM) is verified. To obtain the seismic vulnerability curves, the seismic intensity measure ??(?1) is chosen to be 0.1~1.2g, with an interval of 0.1g and a total of 12 intensity levels. For each seismic intensity level, the arch crown displacement corresponding to 100 sets of different material samples can be calculated by algebraic operation of the response surface model (RSM), which avoids 1200 times of nonlinear dynamic calculation of arch dam; thus, the efficiency of vulnerability analysis is improved greatly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20concrete%20arch%20dam" title="high concrete arch dam">high concrete arch dam</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20index" title=" performance index"> performance index</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20method" title=" response surface method"> response surface method</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20vulnerability%20analysis" title=" seismic vulnerability analysis"> seismic vulnerability analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=vector-valued%20intensity%20measure" title=" vector-valued intensity measure"> vector-valued intensity measure</a> </p> <a href="https://publications.waset.org/abstracts/140363/seismic-vulnerability-analysis-of-arch-dam-based-on-response-surface-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140363.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31429</span> Evaluation of Response Modification Factor and Behavior of Seismic Base-Isolated RC Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Parsaeimaram">Mohammad Parsaeimaram</a>, <a href="https://publications.waset.org/abstracts/search?q=Fang%20Congqi"> Fang Congqi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, one of the significant seismic design parameter as response modification factor in reinforced concrete (RC) buildings with base isolation system was evaluated. The seismic isolation system is a capable approach to absorbing seismic energy at the base and transfer to the substructure with lower response modification factor as compared to non-isolated structures. A response spectrum method and static nonlinear pushover analysis in according to Uniform Building Code (UBC-97), have been performed on building models involve 5, 8, 12 and 15 stories building with fixed and isolated bases consist of identical moment resisting configurations. The isolation system is composed of lead rubber bearing (LRB) was designed with help UBC-97 parameters. The force-deformation behavior of isolators was modeled as bi-linear hysteretic behavior which can be effectively used to create the isolation systems. The obtained analytical results highlight the response modification factor of considered base isolation system with higher values than recommended in the codes. The response modification factor is used in modern seismic codes to scale down the elastic response of structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=response%20modification%20factor" title="response modification factor">response modification factor</a>, <a href="https://publications.waset.org/abstracts/search?q=base%20isolation%20system" title=" base isolation system"> base isolation system</a>, <a href="https://publications.waset.org/abstracts/search?q=pushover%20analysis" title=" pushover analysis"> pushover analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=lead%20rubber%20bearing" title=" lead rubber bearing"> lead rubber bearing</a>, <a href="https://publications.waset.org/abstracts/search?q=bi-linear%20hysteretic" title=" bi-linear hysteretic"> bi-linear hysteretic</a> </p> <a href="https://publications.waset.org/abstracts/72242/evaluation-of-response-modification-factor-and-behavior-of-seismic-base-isolated-rc-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72242.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31428</span> Seismic Response of Moment Resisting Steel Frame with Hysteresis Envelope Model of Joints</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krolo%20Paulina">Krolo Paulina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The seismic response of moment-resisting steel frames depends on the behavior of the joints, especially when they are considered as ductile zones. The aim of this research is to provide a realistic assessment of the moment-resisting steel frame behavior under seismic loading using nonlinear static pushover analysis (N2 method). The hysteresis behavior of the joints in the frame model was described using a new hysteresis envelope model. The obtained seismic response was compared with the results of the seismic analysis obtained for the same steel frame that takes into account the monotonic model of the joints. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beam-to-column%20joints" title="beam-to-column joints">beam-to-column joints</a>, <a href="https://publications.waset.org/abstracts/search?q=hysteresis%20envelope%20model" title=" hysteresis envelope model"> hysteresis envelope model</a>, <a href="https://publications.waset.org/abstracts/search?q=moment-resisting%20frame" title=" moment-resisting frame"> moment-resisting frame</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20static%20pushover%20analysis" title=" nonlinear static pushover analysis"> nonlinear static pushover analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=N2%20method" title=" N2 method"> N2 method</a> </p> <a href="https://publications.waset.org/abstracts/144790/seismic-response-of-moment-resisting-steel-frame-with-hysteresis-envelope-model-of-joints" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144790.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31427</span> Behaviour of Reinforced Concrete Infilled Frames under Seismic Loads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20Badla">W. Badla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A significant portion of the buildings constructed in Algeria is structural frames with infill panels which are usually considered as non structural components and are neglected in the analysis. However, these masonry panels tend to influence the structural response. Thus, these structures can be regarded as seismic risk buildings, although in the Algerian seismic code there is little guidance on the seismic evaluation of infilled frame buildings. In this study, three RC frames with 2, 4, and 8 story and subjected to three recorded Algerian accelerograms are studied. The diagonal strut approach is adopted for modeling the infill panels and a fiber model is used to model RC members. This paper reports on the seismic evaluation of RC frames with brick infill panels. The results obtained show that the masonry panels enhance the load lateral capacity of the buildings and the infill panel configuration influences the response of the structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismic%20design" title="seismic design">seismic design</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20frames" title=" RC frames"> RC frames</a>, <a href="https://publications.waset.org/abstracts/search?q=infill%20panels" title=" infill panels"> infill panels</a>, <a href="https://publications.waset.org/abstracts/search?q=non%20linear%20dynamic%20analysis" title=" non linear dynamic analysis"> non linear dynamic analysis</a> </p> <a href="https://publications.waset.org/abstracts/21693/behaviour-of-reinforced-concrete-infilled-frames-under-seismic-loads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21693.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">546</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31426</span> Seismic Performance Evaluation of Existing Building Using Structural Information Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Byungmin%20Cho">Byungmin Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Dongchul%20Lee"> Dongchul Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Taejin%20Kim"> Taejin Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Minhee%20Lee"> Minhee Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The procedure for the seismic retrofit of existing buildings includes the seismic evaluation. In the evaluation step, it is assessed whether the buildings have satisfactory performance against seismic load. Based on the results of that, the buildings are upgraded. To evaluate seismic performance of the buildings, it usually goes through the model transformation from elastic analysis to inelastic analysis. However, when the data is not delivered through the interwork, engineers should manually input the data. In this process, since it leads to inaccuracy and loss of information, the results of the analysis become less accurate. Therefore, in this study, the process for the seismic evaluation of existing buildings using structural information modeling is suggested. This structural information modeling makes the work economic and accurate. To this end, it is determined which part of the process could be computerized through the investigation of the process for the seismic evaluation based on ASCE 41. The structural information modeling process is developed to apply to the seismic evaluation using Perform 3D program usually used for the nonlinear response history analysis. To validate this process, the seismic performance of an existing building is investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=existing%20building" title="existing building">existing building</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20analysis" title=" nonlinear analysis"> nonlinear analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20performance" title=" seismic performance"> seismic performance</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20information%20modeling" title=" structural information modeling"> structural information modeling</a> </p> <a href="https://publications.waset.org/abstracts/31008/seismic-performance-evaluation-of-existing-building-using-structural-information-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31008.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31425</span> Regional Adjustment to the Analytical Attenuation Coefficient in the GMPM BSSA 14 for the Region of Spain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gonzalez%20Carlos">Gonzalez Carlos</a>, <a href="https://publications.waset.org/abstracts/search?q=Martinez%20Fransisco"> Martinez Fransisco</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are various types of analysis that allow us to involve seismic phenomena that cause strong requirements for structures that are designed by society; one of them is a probabilistic analysis which works from prediction equations that have been created based on metadata seismic compiled in different regions. These equations form models that are used to describe the 5% damped pseudo spectra response for the various zones considering some easily known input parameters. The biggest problem for the creation of these models requires data with great robust statistics that support the results, and there are several places where this type of information is not available, for which the use of alternative methodologies helps to achieve adjustments to different models of seismic prediction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GMPM" title="GMPM">GMPM</a>, <a href="https://publications.waset.org/abstracts/search?q=5%25%20damped%20pseudo-response%20spectra" title=" 5% damped pseudo-response spectra"> 5% damped pseudo-response spectra</a>, <a href="https://publications.waset.org/abstracts/search?q=models%20of%20seismic%20prediction" title=" models of seismic prediction"> models of seismic prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=PSHA" title=" PSHA"> PSHA</a> </p> <a href="https://publications.waset.org/abstracts/151393/regional-adjustment-to-the-analytical-attenuation-coefficient-in-the-gmpm-bssa-14-for-the-region-of-spain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151393.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31424</span> Comparison of the Seismic Response of Planar Regular and Irregular Steel Frames</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Robespierre%20Chavez">Robespierre Chavez</a>, <a href="https://publications.waset.org/abstracts/search?q=Eden%20Bojorquez"> Eden Bojorquez</a>, <a href="https://publications.waset.org/abstracts/search?q=Alfredo%20Reyes-Salazar"> Alfredo Reyes-Salazar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study compares the seismic response of regular and vertically irregular steel frames determined by nonlinear time history analysis and by using several sets of earthquake records, which are divided in two categories: The first category having 20 stiff-soil ground motion records obtained from the NGA database, and the second category having 30 soft-soil ground motions recorded in the Lake Zone of Mexico City and exhibiting a dominant period (Ts) of two seconds. The steel frames in both format regular and irregular were designed according to the Mexico City Seismic Design Provisions (MCSDP). The effects of irregularity throught the height on the maximum interstory drifts are estimated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=irregular%20steel%20frames" title="irregular steel frames">irregular steel frames</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20interstory%20drifts" title=" maximum interstory drifts"> maximum interstory drifts</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20response" title=" seismic response"> seismic response</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20records" title=" seismic records"> seismic records</a> </p> <a href="https://publications.waset.org/abstracts/42693/comparison-of-the-seismic-response-of-planar-regular-and-irregular-steel-frames" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42693.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31423</span> Accurate Algorithm for Selecting Ground Motions Satisfying Code Criteria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20J.%20Ha">S. J. Ha</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20J.%20Baik"> S. J. Baik</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20O.%20Kim"> T. O. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20W.%20Han"> S. W. Han</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For computing the seismic responses of structures, current seismic design provisions permit response history analyses (RHA) that can be used without limitations in height, seismic design category, and building irregularity. In order to obtain accurate seismic responses using RHA, it is important to use adequate input ground motions. Current seismic design provisions provide criteria for selecting ground motions. In this study, the accurate and computationally efficient algorithm is proposed for accurately selecting ground motions that satisfy the requirements specified in current seismic design provisions. The accuracy of the proposed algorithm is verified using single-degree-of-freedom systems with various natural periods and yield strengths. This study shows that the mean seismic responses obtained from RHA with seven and ten ground motions selected using the proposed algorithm produce errors within 20% and 13%, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algorithm" title="algorithm">algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20motion" title=" ground motion"> ground motion</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20history%20analysis" title=" response history analysis"> response history analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=selection" title=" selection"> selection</a> </p> <a href="https://publications.waset.org/abstracts/55643/accurate-algorithm-for-selecting-ground-motions-satisfying-code-criteria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55643.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31422</span> Analysis of Seismic Waves Generated by Blasting Operations and their Response on Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Ziaran">S. Ziaran</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Musil"> M. Musil</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Cekan"> M. Cekan</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Chlebo"> O. Chlebo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper analyzes the response of buildings and industrially structures on seismic waves (low frequency mechanical vibration) generated by blasting operations. The principles of seismic analysis can be applied for different kinds of excitation such as: earthquakes, wind, explosions, random excitation from local transportation, periodic excitation from large rotating and/or machines with reciprocating motion, metal forming processes such as forging, shearing and stamping, chemical reactions, construction and earth moving work, and other strong deterministic and random energy sources caused by human activities. The article deals with the response of seismic, low frequency, mechanical vibrations generated by nearby blasting operations on a residential home. The goal was to determine the fundamental natural frequencies of the measured structure; therefore it is important to determine the resonant frequencies to design a suitable modal damping. The article also analyzes the package of seismic waves generated by blasting (Primary waves – P-waves and Secondary waves S-waves) and investigated the transfer regions. For the detection of seismic waves resulting from an explosion, the Fast Fourier Transform (FFT) and modal analysis, in the frequency domain, is used and the signal was acquired and analyzed also in the time domain. In the conclusions the measured results of seismic waves caused by blasting in a nearby quarry and its effect on a nearby structure (house) is analyzed. The response on the house, including the fundamental natural frequency and possible fatigue damage is also assessed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20structure" title="building structure">building structure</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20waves" title=" seismic waves"> seismic waves</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20analysis" title=" spectral analysis"> spectral analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20response" title=" structural response"> structural response</a> </p> <a href="https://publications.waset.org/abstracts/2072/analysis-of-seismic-waves-generated-by-blasting-operations-and-their-response-on-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2072.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31421</span> Effects of Local Ground Conditions on Site Response Analysis Results in Hungary</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Orsolya%20Kegyes-Brassai">Orsolya Kegyes-Brassai</a>, <a href="https://publications.waset.org/abstracts/search?q=Zsolt%20Szilv%C3%A1gyi"> Zsolt Szilvágyi</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%81kos%20Wolf"> Ákos Wolf</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20P.%20Ray"> Richard P. Ray</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Local ground conditions have a substantial influence on the seismic response of structures. Their inclusion in seismic hazard assessment and structural design can be realized at different levels of sophistication. However, response results based on more advanced calculation methods e.g. nonlinear or equivalent linear site analysis tend to show significant discrepancies when compared to simpler approaches. This project's main objective was to compare results from several 1-D response programs to Eurocode 8 design spectra. Data from in-situ site investigations were used for assessing local ground conditions at several locations in Hungary. After discussion of the in-situ measurements and calculation methods used, a comprehensive evaluation of all major contributing factors for site response is given. While the Eurocode spectra should account for local ground conditions based on soil classification, there is a wide variation in peak ground acceleration determined from 1-D analyses versus Eurocode. Results show that current Eurocode 8 design spectra may not be conservative enough to account for local ground conditions typical for Hungary. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=1-D%20site%20response%20analysis" title="1-D site response analysis">1-D site response analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=multichannel%20analysis%20of%20surface%20waves%20%28MASW%29" title=" multichannel analysis of surface waves (MASW)"> multichannel analysis of surface waves (MASW)</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20CPT" title=" seismic CPT"> seismic CPT</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20hazard%20assessment" title=" seismic hazard assessment"> seismic hazard assessment</a> </p> <a href="https://publications.waset.org/abstracts/67541/effects-of-local-ground-conditions-on-site-response-analysis-results-in-hungary" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67541.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31420</span> Seismic Fragility Functions of RC Moment Frames Using Incremental Dynamic Analyses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seung-Won%20Lee">Seung-Won Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=JongSoo%20Lee"> JongSoo Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Won-Jik%20Yang"> Won-Jik Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyung-Joon%20Kim"> Hyung-Joon Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A capacity spectrum method (CSM), one of methodologies to evaluate seismic fragilities of building structures, has been long recognized as the most convenient method, even if it contains several limitations to predict the seismic response of structures of interest. This paper proposes the procedure to estimate seismic fragility curves using an incremental dynamic analysis (IDA) rather than the method adopting a CSM. To achieve the research purpose, this study compares the seismic fragility curves of a 5-story reinforced concrete (RC) moment frame obtained from both methods, an IDA method and a CSM. Both seismic fragility curves are similar in slight and moderate damage states whereas the fragility curve obtained from the IDA method presents less variation (or uncertainties) in extensive and complete damage states. This is due to the fact that the IDA method can properly capture the structural response beyond yielding rather than the CSM and can directly calculate higher mode effects. From these observations, the CSM could overestimate seismic vulnerabilities of the studied structure in extensive or complete damage states. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismic%20fragility%20curve" title="seismic fragility curve">seismic fragility curve</a>, <a href="https://publications.waset.org/abstracts/search?q=incremental%20dynamic%20analysis" title=" incremental dynamic analysis"> incremental dynamic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=capacity%20spectrum%20method" title=" capacity spectrum method"> capacity spectrum method</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20moment%20frame" title=" reinforced concrete moment frame"> reinforced concrete moment frame</a> </p> <a href="https://publications.waset.org/abstracts/21652/seismic-fragility-functions-of-rc-moment-frames-using-incremental-dynamic-analyses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21652.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31419</span> Seismic Soil-Pile Interaction Considering Nonlinear Soil Column Behavior in Saturated and Dry Soil Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Moeini">Mohammad Moeini</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehrdad%20Ghyabi"> Mehrdad Ghyabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kiarash%20Mohtasham%20Dolatshahi"> Kiarash Mohtasham Dolatshahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates seismic soil-pile interaction using the Beam on Nonlinear Winkler Foundation (BNWF) approach. Three soil types are considered to cover all the possible responses, as well as nonlinear site response analysis using finite element method in OpenSees platform. Excitations at each elevation that are output of the site response analysis are used as the input excitation to the soil pile system implementing multi-support excitation method. Spectral intensities of acceleration show that the extent of the response in sand is more severe than that of clay, in addition, increasing the PGA of ground strong motion will affect the sandy soil more, in comparison with clayey medium, which is an indicator of the sensitivity of soil-pile systems in sandy soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BNWF%20method" title="BNWF method">BNWF method</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-support%20excitation" title=" multi-support excitation"> multi-support excitation</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20site%20response%20analysis" title=" nonlinear site response analysis"> nonlinear site response analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20soil-pile%20interaction" title=" seismic soil-pile interaction"> seismic soil-pile interaction</a> </p> <a href="https://publications.waset.org/abstracts/64350/seismic-soil-pile-interaction-considering-nonlinear-soil-column-behavior-in-saturated-and-dry-soil-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64350.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31418</span> X-Bracing Configuration and Seismic Response</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Rahjoo">Saeed Rahjoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Babak%20H.%20Mamaqani"> Babak H. Mamaqani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concentric bracing systems have been in practice for many years because of their effectiveness in reducing seismic response. Depending on concept, seismic design codes provide various response modification factors (R), which itself consists of different terms, for different types of lateral load bearing systems but configuration of these systems are often ignored in the proposed values. This study aims at considering the effect of different x-bracing diagonal configuration on values of ductility dependent term in R computation. 51 models were created and nonlinear push over analysis has been performed. The main variables of this study were the suitable location of X–bracing diagonal configurations, which establishes better nonlinear behavior in concentric braced steel frames. Results show that some x-bracing diagonal configurations improve the seismic performance of CBF significantly and explicit consideration of lateral load bearing systems seems necessary. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bracing%20configuration" title="bracing configuration">bracing configuration</a>, <a href="https://publications.waset.org/abstracts/search?q=concentrically%20braced%20frame%20%28CBF%29" title=" concentrically braced frame (CBF)"> concentrically braced frame (CBF)</a>, <a href="https://publications.waset.org/abstracts/search?q=push%20over%20analyses" title=" push over analyses"> push over analyses</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20reduction%20factor" title=" response reduction factor"> response reduction factor</a> </p> <a href="https://publications.waset.org/abstracts/5888/x-bracing-configuration-and-seismic-response" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5888.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31417</span> Seismic Investigation on the Effect of Surface Structures and Twin Tunnel on the Site Response in Urban Areas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Abolhasan%20Naeini">Seyed Abolhasan Naeini</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeideh%20Mohammadi"> Saeideh Mohammadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Site response has a profound effect on earthquake damages. Seismic interaction of urban tunnels with surface structures could also affect seismic site response<strong><span dir="RTL">.</span></strong> Here, we use FLAC 2D to investigate the interaction of a single tunnel and twin tunnels-surface structures on the site response. Soil stratification and properties are selected based on Line. No 7 of the Tehran subway. The effect of surface structure is considered in two ways: Equivalent surcharge and geometrical modeling of the structure. Comparison of the results shows that consideration of the structure geometry is vital in dynamic analysis and leads to the changes in the magnitude of displacements, accelerations and response spectrum. Therefore it is necessary for the surface structures to be wholly modeled and not just considered as a surcharge in dynamic analysis. The use of twin tunnel also leads to the reduction of dynamic residual settlement<span dir="RTL">.</span> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=superstructure" title="superstructure">superstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=tunnel" title=" tunnel"> tunnel</a>, <a href="https://publications.waset.org/abstracts/search?q=site%20response" title=" site response"> site response</a>, <a href="https://publications.waset.org/abstracts/search?q=surcharge" title=" surcharge"> surcharge</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction" title=" interaction"> interaction</a> </p> <a href="https://publications.waset.org/abstracts/106616/seismic-investigation-on-the-effect-of-surface-structures-and-twin-tunnel-on-the-site-response-in-urban-areas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106616.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31416</span> Dynamic Analysis of Submerged Floating Tunnel Subjected to Hydrodynamic and Seismic Loadings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naik%20Muhammad">Naik Muhammad</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahid%20Ullah"> Zahid Ullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-Ho%20Choi"> Dong-Ho Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Submerged floating tunnel (SFT) is a new solution for the transportation infrastructure through sea straits, fjords, and inland waters, and can be a good alternative to long span suspension bridges. SFT is a massive cylindrical structure that floats at a certain depth below the water surface and subjected to extreme environmental conditions. The identification of dominant structural response of SFT becomes more important due to intended environmental conditions for the design of SFT. The time domain dynamic problem of SFT moored by vertical and inclined mooring cables/anchors is formulated. The dynamic time history analysis of SFT subjected to hydrodynamic and seismic excitations is performed. The SFT is modeled by finite element 3D beam, and the mooring cables are modeled by truss elements. Based on the dynamic time history analysis the displacements and internal forces of SFT were calculated. The response of SFT is presented for hydrodynamic and seismic excitations. The transverse internal forces of SFT were the maximum compared to vertical direction, for both hydrodynamic and seismic cases; this indicates that the cable system provides very small stiffness in transverse direction as compared to vertical direction of SFT. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=submerged%20floating%20tunnel" title="submerged floating tunnel">submerged floating tunnel</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodynamic%20analysis" title=" hydrodynamic analysis"> hydrodynamic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20history%20analysis" title=" time history analysis"> time history analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20response" title=" seismic response"> seismic response</a> </p> <a href="https://publications.waset.org/abstracts/68033/dynamic-analysis-of-submerged-floating-tunnel-subjected-to-hydrodynamic-and-seismic-loadings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68033.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31415</span> Seismic Hazard Assessment of Offshore Platforms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20D.%20Konstandakopoulou">F. D. Konstandakopoulou</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20A.%20Papagiannopoulos"> G. A. Papagiannopoulos</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20G.%20Pnevmatikos"> N. G. Pnevmatikos</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20D.%20Hatzigeorgiou"> G. D. Hatzigeorgiou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper examines the effects of pile-soil-structure interaction on the dynamic response of offshore platforms under the action of near-fault earthquakes. Two offshore platforms models are investigated, one with completely fixed supports and one with piles which are clamped into deformable layered soil. The soil deformability for the second model is simulated using non-linear springs. These platform models are subjected to near-fault seismic ground motions. The role of fault mechanism on platforms’ response is additionally investigated, while the study also examines the effects of different angles of incidence of seismic records on the maximum response of each platform. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hazard%20analysis" title="hazard analysis">hazard analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=offshore%20platforms" title=" offshore platforms"> offshore platforms</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquakes" title=" earthquakes"> earthquakes</a>, <a href="https://publications.waset.org/abstracts/search?q=safety" title=" safety"> safety</a> </p> <a href="https://publications.waset.org/abstracts/102575/seismic-hazard-assessment-of-offshore-platforms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102575.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31414</span> Seismicity and Ground Response Analysis for MP Tourism Office in Indore, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deepshikha%20Shukla">Deepshikha Shukla</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20H.%20Solanki"> C. H. Solanki</a>, <a href="https://publications.waset.org/abstracts/search?q=Mayank%20Desai"> Mayank Desai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the last few years, it has been observed that earthquake is proving a threat to the scientist across the world. With a large number of earthquakes occurring in day to day life, the threat to life and property has increased manifolds which call for an urgent attention of all the researchers globally to carry out the research in the field of Earthquake Engineering. Any hazard related to the earthquake and seismicity is considered to be seismic hazards. The common forms of seismic hazards are Ground Shaking, Structure Damage, Structural Hazards, Liquefaction, Landslides, Tsunami to name a few. Among all the natural hazards, the most devastating and damaging is the earthquake as all other hazards are triggered only after the occurrence of an earthquake. In order to quantify and estimate the seismicity and seismic hazards, many methods and approaches have been proposed in the past few years. Such approaches are Mathematical, Conventional and Computational. Convex Set Theory, Empirical Green’s Function are some of the Mathematical Approaches whereas the Deterministic and Probabilistic Approaches are the Conventional Approach for the estimation of the seismic Hazards. Ground response and Ground Shaking of a particular area or region plays an important role in the damage caused due to the earthquake. In this paper, seismic study using Deterministic Approach and 1 D Ground Response Analysis has been carried out for Madhya Pradesh Tourism Office in Indore Region in Madhya Pradesh in Central India. Indore lies in the seismic zone III (IS: 1893, 2002) in the Seismic Zoning map of India. There are various faults and lineament in this area and Narmada Some Fault and Gavilgadh fault are the active sources of earthquake in the study area. Deepsoil v6.1.7 has been used to perform the 1 D Linear Ground Response Analysis for the study area. The Peak Ground Acceleration (PGA) of the city ranges from 0.1g to 0.56g. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismicity" title="seismicity">seismicity</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20hazards" title=" seismic hazards"> seismic hazards</a>, <a href="https://publications.waset.org/abstracts/search?q=deterministic" title=" deterministic"> deterministic</a>, <a href="https://publications.waset.org/abstracts/search?q=probabilistic%20methods" title=" probabilistic methods"> probabilistic methods</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20response%20analysis" title=" ground response analysis"> ground response analysis</a> </p> <a href="https://publications.waset.org/abstracts/77022/seismicity-and-ground-response-analysis-for-mp-tourism-office-in-indore-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77022.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31413</span> Study of the Influence of Eccentricity Due to Configuration and Materials on Seismic Response of a Typical Building</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Latif%20Karimi">A. Latif Karimi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20K.%20Shrimali"> M. K. Shrimali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seismic design is a critical stage in the process of design and construction of a building. It includes strategies for designing earthquake-resistant buildings to ensure health, safety, and security of the building occupants and assets. Hence, it becomes very important to understand the behavior of structural members precisely, for construction of buildings that can yield a better response to seismic forces. This paper investigates the behavior of a typical structure when subjected to ground motion. The corresponding mode shapes and modal frequencies are studied to interpret the response of an actual structure using different fabricated models and 3D visual models. In this study, three different structural configurations are subjected to horizontal ground motion, and the effect of “stiffness eccentricity” and placement of infill walls are checked to determine how each parameter contributes in a building’s response to dynamic forces. The deformation data from lab experiments and the analysis on SAP2000 software are reviewed to obtain the results. This study revealed that seismic response in a building can be improved by introducing higher deformation capacity in the building. Also, proper design of infill walls and maintaining a symmetrical configuration in a building are the key factors in building stability during the earthquake. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eccentricity" title="eccentricity">eccentricity</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20response" title=" seismic response"> seismic response</a>, <a href="https://publications.waset.org/abstracts/search?q=mode%20shape" title=" mode shape"> mode shape</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20configuration" title=" building configuration"> building configuration</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20dynamics" title=" building dynamics"> building dynamics</a> </p> <a href="https://publications.waset.org/abstracts/90832/study-of-the-influence-of-eccentricity-due-to-configuration-and-materials-on-seismic-response-of-a-typical-building" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90832.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31412</span> Effects of Damper Locations and Base Isolators on Seismic Response of a Building Frame</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azin%20Shakibabarough">Azin Shakibabarough</a>, <a href="https://publications.waset.org/abstracts/search?q=Mojtaba%20Valinejadshoubi"> Mojtaba Valinejadshoubi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashutosh%20Bagchi"> Ashutosh Bagchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Structural vibration means repetitive motion that causes fatigue and reduction of the performance of a structure. An earthquake may release high amount of energy that can have adverse effect on all components of a structure. Therefore, decreasing of vibration or maintaining performance of structures such as bridges, dams, roads and buildings is important for life safety and reducing economic loss. When earthquake or any vibration happens, investigation on parts of a structure which sustain the seismic loads is mandatory to provide a safe condition for the occupants. One of the solutions for reducing the earthquake vibration in a structure is using of vibration control devices such as dampers and base isolators. The objective of this study is to investigate the optimal positions of friction dampers and base isolators for better seismic response of 2D frame. For this purpose, a two bay and six story frame with different distribution formats was modeled and some of their responses to earthquake such as inter-story drift, max joint displacement, max axial force and max bending moment were determined and compared using non-linear dynamic analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fast%20nonlinear%20analysis" title="fast nonlinear analysis">fast nonlinear analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20damper" title=" friction damper"> friction damper</a>, <a href="https://publications.waset.org/abstracts/search?q=base%20isolator" title=" base isolator"> base isolator</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20vibration%20control" title=" seismic vibration control"> seismic vibration control</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20response" title=" seismic response"> seismic response</a> </p> <a href="https://publications.waset.org/abstracts/50373/effects-of-damper-locations-and-base-isolators-on-seismic-response-of-a-building-frame" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50373.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31411</span> Seismic Response and Sensitivity Analysis of Circular Shallow Tunnels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siti%20Khadijah%20Che%20Osmi">Siti Khadijah Che Osmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Ahmad%20Syed"> Mohammed Ahmad Syed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Underground tunnels are one of the most popular public facilities for various applications such as transportation, water transfer, network utilities and etc. Experience from the past earthquake reveals that the underground tunnels also become vulnerable components and may damage at certain percentage depending on the level of ground shaking and induced phenomena. In this paper a numerical analysis is conducted in evaluating the sensitivity of two types of circular shallow tunnel lining models to wide ranging changes in the geotechnical design parameter. Critical analysis has been presented about the current methods of analysis, structural typology, ground motion characteristics, effect of soil conditions and associated uncertainties on the tunnel integrity. The response of the tunnel is evaluated through 2D non-linear finite element analysis, which critically assesses the impact of increasing levels of seismic loads. The finding from this study offer significant information on improving methods to assess the vulnerability of underground structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geotechnical%20design%20parameter" title="geotechnical design parameter">geotechnical design parameter</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20response" title=" seismic response"> seismic response</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity%20analysis" title=" sensitivity analysis"> sensitivity analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=shallow%20tunnel" title=" shallow tunnel"> shallow tunnel</a> </p> <a href="https://publications.waset.org/abstracts/27943/seismic-response-and-sensitivity-analysis-of-circular-shallow-tunnels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27943.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31410</span> Comparison of Seismic Response for Two RC Curved Bridges with Different Column Shapes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nina%20N.%20Serdar">Nina N. Serdar</a>, <a href="https://publications.waset.org/abstracts/search?q=Jelena%20R.%20Pejovi%C4%87"> Jelena R. Pejović</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents seismic risk assessment of two bridge structure, based on the probabilistic performance-based seismic assessment methodology. Both investigated bridges are tree span continuous RC curved bridges with the difference in column shapes. First bridge (type A) has a wall-type pier and second (type B) has a two-column bent with circular columns. Bridges are designed according to European standards: EN 1991-2, EN1992-1-1 and EN 1998-2. Aim of the performed analysis is to compare seismic behavior of these two structures and to detect the influence of column shapes on the seismic response. Seismic risk assessment is carried out by obtaining demand fragility curves. Non-linear model was constructed and time-history analysis was performed using thirty five pairs of horizontal ground motions selected to match site specific hazard. In performance based analysis, peak column drift ratio (CDR) was selected as engineering demand parameter (EDP). For seismic intensity measure (IM) spectral displacement was selected. Demand fragility curves that give probability of exceedance of certain value for chosen EDP were constructed and based on them conclusions were made. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RC%20curved%20bridge" title="RC curved bridge">RC curved bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=demand%20fragility%20curve" title=" demand fragility curve"> demand fragility curve</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20type%20column" title=" wall type column"> wall type column</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20time-history%20analysis" title=" nonlinear time-history analysis"> nonlinear time-history analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=circular%20column" title=" circular column"> circular column</a> </p> <a href="https://publications.waset.org/abstracts/48878/comparison-of-seismic-response-for-two-rc-curved-bridges-with-different-column-shapes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48878.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31409</span> Alternative Method of Determining Seismic Loads on Buildings Without Response Spectrum Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Razmik%20Atabekyan">Razmik Atabekyan</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Atabekyan"> V. Atabekyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article discusses a new alternative method for determination of seismic loads on buildings, based on resistance of structures to deformations of vibrations. The basic principles for determining seismic loads by spectral method were developed in 40… 50ies of the last century and further have been improved to pursuit true assessments of seismic effects. The base of the existing methods to determine seismic loads is response spectrum or dynamicity coefficient β (norms of RF), which are not definitively established. To this day there is no single, universal method for the determination of seismic loads and when trying to apply the norms of different countries, significant discrepancies between the results are obtained. On the other hand there is a contradiction of the results of macro seismic surveys of strong earthquakes with the principle of the calculation based on accelerations. It is well-known, on soft soils there is an increase of destructions (mainly due to large displacements), even though the accelerations decreases. Obviously, the seismic impacts are transmitted to the building through foundation, but paradoxically, the existing methods do not even include foundation data. Meanwhile acceleration of foundation of the building can differ several times from the acceleration of the ground. During earthquakes each building has its own peculiarities of behavior, depending on the interaction between the soil and the foundations, their dynamic characteristics and many other factors. In this paper we consider a new, alternative method of determining the seismic loads on buildings, without the use of response spectrum. The following main conclusions: 1) Seismic loads are revealed at the foundation level, which leads to redistribution and reduction of seismic loads on structures. 2) The proposed method is universal and allows determine the seismic loads without the use of response spectrum and any implicit coefficients. 3) The possibility of taking into account important factors such as the strength characteristics of the soils, the size of the foundation, the angle of incidence of the seismic ray and others. 4) Existing methods can adequately determine the seismic loads on buildings only for first form of vibrations, at an average soil conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismic%20loads" title="seismic loads">seismic loads</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20spectrum" title=" response spectrum"> response spectrum</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20characteristics%20of%20buildings" title=" dynamic characteristics of buildings"> dynamic characteristics of buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=momentum" title=" momentum"> momentum</a> </p> <a href="https://publications.waset.org/abstracts/22073/alternative-method-of-determining-seismic-loads-on-buildings-without-response-spectrum-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22073.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">505</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31408</span> Dynamic Test and Numerical Analysis of Twin Tunnel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Changwon%20Kwak">Changwon Kwak</a>, <a href="https://publications.waset.org/abstracts/search?q=Innjoon%20Park"> Innjoon Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Dongin%20Jang"> Dongin Jang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seismic load affects the behavior of underground structure like tunnel broadly. Seismic soil-structure interaction can play an important role in the dynamic behavior of tunnel. In this research, twin tunnel with flexible joint was physically modeled and the dynamic centrifuge test was performed to investigate seismic behavior of twin tunnel. Seismic waves have different frequency were exerted and the characteristics of response were obtained from the test. Test results demonstrated the amplification of peak acceleration in the longitudinal direction in seismic waves. The effect of the flexible joint was also verified. Additionally, 3-dimensional finite difference dynamic analysis was conducted and the analysis results exhibited good agreement with the test results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3-dimensional%20finite%20difference%20dynamic%20analysis" title="3-dimensional finite difference dynamic analysis">3-dimensional finite difference dynamic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20centrifuge%20test" title=" dynamic centrifuge test"> dynamic centrifuge test</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20joint" title=" flexible joint"> flexible joint</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20soil-structure%20interaction" title=" seismic soil-structure interaction"> seismic soil-structure interaction</a> </p> <a href="https://publications.waset.org/abstracts/47381/dynamic-test-and-numerical-analysis-of-twin-tunnel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31407</span> Evaluation of Site Laboratory Conditions Effect on Seismic Design Characteristics in Ramhormoz</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sayyed%20Yaghoub%20Zolfegharifar">Sayyed Yaghoub Zolfegharifar</a>, <a href="https://publications.waset.org/abstracts/search?q=Khairul%20Anuar%20Kassim"> Khairul Anuar Kassim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Khoramrooz"> Hossein Khoramrooz</a>, <a href="https://publications.waset.org/abstracts/search?q=Khodayar%20Farhadiasl"> Khodayar Farhadiasl</a>, <a href="https://publications.waset.org/abstracts/search?q=Sadegh%20Jahan"> Sadegh Jahan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Iran is one of the world's seismically active countries so that it experiences many small to medium earthquakes annually and a large earthquake every ten years. Due to seism tectonic conditions and special geographical and climatic position, Iran has the potential to create numerous severe earthquakes. Therefore, seismicity studies and seismic zonation of seismic zones of the country are necessary. In this article, the effect of local site conditions on the characteristics of seismic design in Rahmormoz will be examined. After analyzing the seismic hazard for Rahmormoz through deterministic and statistical methods and preparing the necessary geotechnical models based on available data, the ground response will be analyzed for different parts of the city based on four inputs and acceleration level estimated for bedrock through the equivalent linear method and by means of Deep Soil program. Finally, through the analysis of the obtained results, the seismic profiles of the ground surface for different parts of the city will be presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismic%20microzonation" title="seismic microzonation">seismic microzonation</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20response" title=" ground response"> ground response</a>, <a href="https://publications.waset.org/abstracts/search?q=resonance%20spectrum" title=" resonance spectrum"> resonance spectrum</a>, <a href="https://publications.waset.org/abstracts/search?q=period" title=" period"> period</a>, <a href="https://publications.waset.org/abstracts/search?q=site%20conditions" title=" site conditions"> site conditions</a> </p> <a href="https://publications.waset.org/abstracts/35992/evaluation-of-site-laboratory-conditions-effect-on-seismic-design-characteristics-in-ramhormoz" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35992.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=seismic%20response%20analysis&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=seismic%20response%20analysis&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=seismic%20response%20analysis&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=seismic%20response%20analysis&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=seismic%20response%20analysis&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=seismic%20response%20analysis&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=seismic%20response%20analysis&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=seismic%20response%20analysis&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=seismic%20response%20analysis&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=seismic%20response%20analysis&page=1047">1047</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=seismic%20response%20analysis&page=1048">1048</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=seismic%20response%20analysis&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>