CINXE.COM
(PDF) Redox conditions of late Early Triassic oceanic region around the South Kitakami Microcontinent | Takanobu Tsuihiji - Academia.edu
<!DOCTYPE html> <html > <head> <meta charset="utf-8"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <meta content="width=device-width, initial-scale=1" name="viewport"> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs"> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="cRhjZzVvt752uFff3fxl749ErugBdIaQ3rP4g2LyLATpIJz37f5mVb/hnirqioEoNn5jMZ/zWUYzvbnANtYnew==" /> <meta name="citation_title" content="Redox conditions of late Early Triassic oceanic region around the South Kitakami Microcontinent" /> <meta name="citation_publication_date" content="2016/03/10" /> <meta name="citation_journal_title" content="Japan Geoscience Union" /> <meta name="citation_author" content="Takanobu Tsuihiji" /> <meta name="twitter:card" content="summary" /> <meta name="twitter:url" content="https://www.academia.edu/110076277/Redox_conditions_of_late_Early_Triassic_oceanic_region_around_the_South_Kitakami_Microcontinent" /> <meta name="twitter:title" content="Redox conditions of late Early Triassic oceanic region around the South Kitakami Microcontinent" /> <meta name="twitter:description" content="Academia.edu is a platform for academics to share research papers." /> <meta name="twitter:image" content="https://0.academia-photos.com/39916965/29540510/27481843/s200_takanobu.tsuihiji.jpg" /> <meta property="fb:app_id" content="2369844204" /> <meta property="og:type" content="article" /> <meta property="og:url" content="https://www.academia.edu/110076277/Redox_conditions_of_late_Early_Triassic_oceanic_region_around_the_South_Kitakami_Microcontinent" /> <meta property="og:title" content="Redox conditions of late Early Triassic oceanic region around the South Kitakami Microcontinent" /> <meta property="og:image" content="http://a.academia-assets.com/images/open-graph-icons/fb-paper.gif" /> <meta property="og:description" content="Redox conditions of late Early Triassic oceanic region around the South Kitakami Microcontinent" /> <meta property="article:author" content="https://independent.academia.edu/TakanobuTsuihiji" /> <meta name="description" content="Redox conditions of late Early Triassic oceanic region around the South Kitakami Microcontinent" /> <title>(PDF) Redox conditions of late Early Triassic oceanic region around the South Kitakami Microcontinent | Takanobu Tsuihiji - Academia.edu</title> <link rel="canonical" href="https://www.academia.edu/110076277/Redox_conditions_of_late_Early_Triassic_oceanic_region_around_the_South_Kitakami_Microcontinent" /> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "single_work", 'action': "show", 'controller_action': 'single_work#show', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script> var $controller_name = 'single_work'; var $action_name = "show"; var $rails_env = 'production'; var $app_rev = '39314d9bcf4522f48eeb027cf31da0a13496d2ce'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.require = { config: function() { return function() {} } } </script> <script> window.Aedu = window.Aedu || {}; window.Aedu.hit_data = null; window.Aedu.serverRenderTime = new Date(1733927096000); window.Aedu.timeDifference = new Date().getTime() - 1733927096000; </script> <script type="application/ld+json">{"@context":"https://schema.org","@type":"ScholarlyArticle","author":[{"@context":"https://schema.org","@type":"Person","name":"Takanobu Tsuihiji"}],"contributor":[],"dateCreated":"2023-11-28","dateModified":"2023-11-28","datePublished":"2016-03-10","headline":"Redox conditions of late Early Triassic oceanic region around the South Kitakami Microcontinent","image":"https://attachments.academia-assets.com/108006193/thumbnails/1.jpg","inLanguage":"en","keywords":["Geography","Geology"],"publication":"Japan Geoscience Union","publisher":{"@context":"https://schema.org","@type":"Organization","name":"Japan Geoscience Union"},"sourceOrganization":[{"@context":"https://schema.org","@type":"EducationalOrganization","name":null}],"thumbnailUrl":"https://attachments.academia-assets.com/108006193/thumbnails/1.jpg","url":"https://www.academia.edu/110076277/Redox_conditions_of_late_Early_Triassic_oceanic_region_around_the_South_Kitakami_Microcontinent"}</script><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/single_work_page/loswp-102fa537001ba4d8dcd921ad9bd56c474abc201906ea4843e7e7efe9dfbf561d.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-8d679e925718b5e8e4b18e9a4fab37f7eaa99e43386459376559080ac8f2856a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/text_button-73590134e40cdb49f9abdc8e796cc00dc362693f3f0f6137d6cf9bb78c318ce7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> </head> <body> <div id='react-modal'></div> <div class="js-upgrade-ie-banner" style="display: none; text-align: center; padding: 8px 0; background-color: #ebe480;"><p style="color: #000; font-size: 12px; margin: 0 0 4px;">Academia.edu no longer supports Internet Explorer.</p><p style="color: #000; font-size: 12px; margin: 0;">To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.querySelector('.js-upgrade-ie-banner').style.display = 'block'; }</script> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "36d9ecfe3feaa0760c8fa396a0d32cff63c91b64f667d7a1e07e962ffff333df", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="njjSO7gO6+wYdL3JZ2ltqwmV6Tv/YyNhdJQR2wyb2FkGAC2rYJ86B9EtdDxQH4lssK8k4mHk/LeZmlCYWL/TJg==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://www.academia.edu/110076277/Redox_conditions_of_late_Early_Triassic_oceanic_region_around_the_South_Kitakami_Microcontinent" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="+3ULK73aCpO9uX6PV3Mtnf1/FluUS9qFI6DzEvIqDA1jTfS7ZUvbeHTgt3pgBclaREXbggrMBVPOrrJRpg4Hcg==" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><input class="btn btn-primary btn-block g-recaptcha js-password-reset-submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" type="submit" value="Email me a link" /></form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script> <div class="header--container" id="main-header-container"><div class="header--inner-container header--inner-container-ds2"><div class="header-ds2--left-wrapper"><div class="header-ds2--left-wrapper-inner"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="hide-on-desktop-redesign" style="height: 24px; width: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hide-on-mobile-redesign" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a><div class="header--search-container header--search-container-ds2"><form class="js-SiteSearch-form select2-no-default-pills" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><svg style="width: 14px; height: 14px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="search" class="header--search-icon svg-inline--fa fa-search fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M505 442.7L405.3 343c-4.5-4.5-10.6-7-17-7H372c27.6-35.3 44-79.7 44-128C416 93.1 322.9 0 208 0S0 93.1 0 208s93.1 208 208 208c48.3 0 92.7-16.4 128-44v16.3c0 6.4 2.5 12.5 7 17l99.7 99.7c9.4 9.4 24.6 9.4 33.9 0l28.3-28.3c9.4-9.4 9.4-24.6.1-34zM208 336c-70.7 0-128-57.2-128-128 0-70.7 57.2-128 128-128 70.7 0 128 57.2 128 128 0 70.7-57.2 128-128 128z"></path></svg><input class="header--search-input header--search-input-ds2 js-SiteSearch-form-input" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" /></form></div></div></div><nav class="header--nav-buttons header--nav-buttons-ds2 js-main-nav"><a class="ds2-5-button ds2-5-button--secondary js-header-login-url header-button-ds2 header-login-ds2 hide-on-mobile-redesign" href="https://www.academia.edu/login" rel="nofollow">Log In</a><a class="ds2-5-button ds2-5-button--secondary header-button-ds2 hide-on-mobile-redesign" href="https://www.academia.edu/signup" rel="nofollow">Sign Up</a><button class="header--hamburger-button header--hamburger-button-ds2 hide-on-desktop-redesign js-header-hamburger-button"><div class="icon-bar"></div><div class="icon-bar" style="margin-top: 4px;"></div><div class="icon-bar" style="margin-top: 4px;"></div></button></nav></div><ul class="header--dropdown-container js-header-dropdown"><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/login" rel="nofollow">Log In</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/signup" rel="nofollow">Sign Up</a></li><li class="header--dropdown-row js-header-dropdown-expand-button"><button class="header--dropdown-button">more<svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="caret-down" class="header--dropdown-button-icon svg-inline--fa fa-caret-down fa-w-10" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><path fill="currentColor" d="M31.3 192h257.3c17.8 0 26.7 21.5 14.1 34.1L174.1 354.8c-7.8 7.8-20.5 7.8-28.3 0L17.2 226.1C4.6 213.5 13.5 192 31.3 192z"></path></svg></button></li><li><ul class="header--expanded-dropdown-container"><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/about">About</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/press">Press</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/documents">Papers</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/terms">Terms</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/privacy">Privacy</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/copyright">Copyright</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/hiring"><svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="header--dropdown-row-icon svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>We're Hiring!</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://support.academia.edu/"><svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="header--dropdown-row-icon svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>Help Center</a></li><li class="header--dropdown-row js-header-dropdown-collapse-button"><button class="header--dropdown-button">less<svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="caret-up" class="header--dropdown-button-icon svg-inline--fa fa-caret-up fa-w-10" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><path fill="currentColor" d="M288.662 352H31.338c-17.818 0-26.741-21.543-14.142-34.142l128.662-128.662c7.81-7.81 20.474-7.81 28.284 0l128.662 128.662c12.6 12.599 3.676 34.142-14.142 34.142z"></path></svg></button></li></ul></li></ul></div> <script src="//a.academia-assets.com/assets/webpack_bundles/fast_loswp-bundle-85e1f6e5aefed21344b25292b138fad229d4259fa0bd3341a6b90fec2f5f6977.js" defer="defer"></script><script>window.loswp = {}; window.loswp.author = 39916965; window.loswp.bulkDownloadFilterCounts = {}; window.loswp.hasDownloadableAttachment = true; window.loswp.hasViewableAttachments = true; // TODO: just use routes for this window.loswp.loginUrl = "https://www.academia.edu/login?post_login_redirect_url=https%3A%2F%2Fwww.academia.edu%2F110076277%2FRedox_conditions_of_late_Early_Triassic_oceanic_region_around_the_South_Kitakami_Microcontinent%3Fauto%3Ddownload"; window.loswp.translateUrl = "https://www.academia.edu/login?post_login_redirect_url=https%3A%2F%2Fwww.academia.edu%2F110076277%2FRedox_conditions_of_late_Early_Triassic_oceanic_region_around_the_South_Kitakami_Microcontinent%3Fshow_translation%3Dtrue"; window.loswp.previewableAttachments = [{"id":108006193,"identifier":"Attachment_108006193","shouldShowBulkDownload":false}]; window.loswp.shouldDetectTimezone = true; window.loswp.shouldShowBulkDownload = true; window.loswp.showSignupCaptcha = false window.loswp.willEdgeCache = false; window.loswp.work = {"work":{"id":110076277,"created_at":"2023-11-28T18:54:33.586-08:00","from_world_paper_id":244263501,"updated_at":"2023-11-28T19:20:04.013-08:00","_data":{"publisher":"Japan Geoscience Union","publication_date":"2016,3,10","publication_name":"Japan Geoscience Union"},"document_type":"paper","pre_hit_view_count_baseline":null,"quality":"low","language":"en","title":"Redox conditions of late Early Triassic oceanic region around the South Kitakami Microcontinent","broadcastable":false,"draft":null,"has_indexable_attachment":true,"indexable":true}}["work"]; window.loswp.workCoauthors = [39916965]; window.loswp.locale = "en"; window.loswp.countryCode = "SG"; window.loswp.cwvAbTestBucket = ""; window.loswp.designVariant = "ds_vanilla"; window.loswp.fullPageMobileSutdModalVariant = "full_page_mobile_sutd_modal"; window.loswp.useOptimizedScribd4genScript = false; window.loswp.appleClientId = 'edu.academia.applesignon';</script><script defer="" src="https://accounts.google.com/gsi/client"></script><div class="ds-loswp-container"><div class="ds-work-card--grid-container"><div class="ds-work-card--container js-loswp-work-card"><div class="ds-work-card--cover"><div class="ds-work-cover--wrapper"><div class="ds-work-cover--container"><button class="ds-work-cover--clickable js-swp-download-button" data-signup-modal="{"location":"swp-splash-paper-cover","attachmentId":108006193,"attachmentType":"pdf"}"><img alt="First page of “Redox conditions of late Early Triassic oceanic region around the South Kitakami Microcontinent”" class="ds-work-cover--cover-thumbnail" src="https://0.academia-photos.com/attachment_thumbnails/108006193/mini_magick20231129-1-c25qgm.png?1701226676" /><img alt="PDF Icon" class="ds-work-cover--file-icon" src="//a.academia-assets.com/images/single_work_splash/adobe_icon.svg" /><div class="ds-work-cover--hover-container"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span><p>Download Free PDF</p></div><div class="ds-work-cover--ribbon-container">Download Free PDF</div><div class="ds-work-cover--ribbon-triangle"></div></button></div></div></div><div class="ds-work-card--work-information"><h1 class="ds-work-card--work-title">Redox conditions of late Early Triassic oceanic region around the South Kitakami Microcontinent</h1><div class="ds-work-card--work-authors ds-work-card--detail"><a class="ds-work-card--author js-wsj-grid-card-author ds2-5-body-md ds2-5-body-link" data-author-id="39916965" href="https://independent.academia.edu/TakanobuTsuihiji"><img alt="Profile image of Takanobu Tsuihiji" class="ds-work-card--author-avatar" src="https://0.academia-photos.com/39916965/29540510/27481843/s65_takanobu.tsuihiji.jpg" />Takanobu Tsuihiji</a></div><div class="ds-work-card--detail"><p class="ds-work-card--detail ds2-5-body-sm">2016, Japan Geoscience Union</p></div><div class="ds-work-card--button-container"><button class="ds2-5-button js-swp-download-button" data-signup-modal="{"location":"continue-reading-button--work-card","attachmentId":108006193,"attachmentType":"pdf","workUrl":"https://www.academia.edu/110076277/Redox_conditions_of_late_Early_Triassic_oceanic_region_around_the_South_Kitakami_Microcontinent"}">See full PDF</button><button class="ds2-5-button ds2-5-button--secondary js-swp-download-button" data-signup-modal="{"location":"download-pdf-button--work-card","attachmentId":108006193,"attachmentType":"pdf","workUrl":"https://www.academia.edu/110076277/Redox_conditions_of_late_Early_Triassic_oceanic_region_around_the_South_Kitakami_Microcontinent"}"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span>Download PDF</button></div></div></div></div><div data-auto_select="false" data-client_id="331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b" data-doc_id="108006193" data-landing_url="https://www.academia.edu/110076277/Redox_conditions_of_late_Early_Triassic_oceanic_region_around_the_South_Kitakami_Microcontinent" data-login_uri="https://www.academia.edu/registrations/google_one_tap" data-moment_callback="onGoogleOneTapEvent" id="g_id_onload"></div><div class="ds-top-related-works--grid-container"><div class="ds-related-content--container ds-top-related-works--container"><h2 class="ds-related-content--heading">Related papers</h2><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="0" data-entity-id="5741035" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/5741035/Redox_change_in_sedimentary_environments_of_Triassic_bedded_cherts_central_Japan_possible_reflection_of_sea_level_change">Redox change in sedimentary environments of Triassic bedded cherts, central Japan: possible reflection of sea-level change</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="8351574" href="https://nagoya-u.academia.edu/Kenichirosugitani">Kenichiro sugitani</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Geological Magazine, 1998</p><p class="ds-related-work--abstract ds2-5-body-sm">Middle Triassic radiolarian bedded cherts in the Mino Belt, central Japan, include a sequence showing an abrupt facies change from the lower to the upper, where grey-black bedded cherts enriched in carbonaceous matter and framboidal pyrite are overlain by brick-red hematitic bedded cherts. Brownish-yellow chert enriched in goethite and purple-red chert occur at the boundary between the grey-black bedded cherts and the brick-red bedded cherts. This facies change is in accordance with stratigraphic variations of geochemical characteristics; the lower section grey-black bedded cherts, compared with the upper section brick-red bedded cherts, are enriched in C tot and S tot , and are characterized by lower MnO/TiO 2 , higher FeO/Fe 2 O 3 * (total iron as Fe 2 O 3 ) and more variable Fe 2 O 3 */TiO 2 values. Some of the lower section samples, in addition, are characterized by an enrichment in some transition metals (Ni, Cu, and Zn). The covariation of mineralogical and geochemical characteristics indicates that sedimentary environments and diagenetic processes were different between the lower and the upper section bedded cherts. During the deposition of the lower section bedded cherts, the sedimentary environment was anoxic and bacterial sulphate reduction occurred during the early diagenetic stage. In contrast, the upper section bedded cherts were subjected to less reducing diagenetic processes; active sulphate reduction did not occur. The change of sedimentary environment and diagenetic process at the site of deposition is likely to be attributed to the fluctuated concentration of dissolved oxygen in the water mass of a semi-closed marginal ocean basin, which was potentially caused by sea-level change that occurred during Middle Triassic time.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Redox change in sedimentary environments of Triassic bedded cherts, central Japan: possible reflection of sea-level change","attachmentId":49158846,"attachmentType":"pdf","work_url":"https://www.academia.edu/5741035/Redox_change_in_sedimentary_environments_of_Triassic_bedded_cherts_central_Japan_possible_reflection_of_sea_level_change","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/5741035/Redox_change_in_sedimentary_environments_of_Triassic_bedded_cherts_central_Japan_possible_reflection_of_sea_level_change"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="1" data-entity-id="117605842" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/117605842/Actively_forming_Kuroko_type_VMS_mineralisation_at_Iheya_North_Okinawa_Trough_Japan_New_geochemical_petrographic_and_%CE%B434S_isotope_results">Actively forming Kuroko-type VMS mineralisation at Iheya North, Okinawa Trough, Japan: New geochemical, petrographic and δ34S isotope results</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="5043256" href="https://uq.academia.edu/GordonSoutham">Gordon Southam</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Applied Earth Science, 2016</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Actively forming Kuroko-type VMS mineralisation at Iheya North, Okinawa Trough, Japan: New geochemical, petrographic and δ34S isotope results","attachmentId":113418874,"attachmentType":"pdf","work_url":"https://www.academia.edu/117605842/Actively_forming_Kuroko_type_VMS_mineralisation_at_Iheya_North_Okinawa_Trough_Japan_New_geochemical_petrographic_and_%CE%B434S_isotope_results","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/117605842/Actively_forming_Kuroko_type_VMS_mineralisation_at_Iheya_North_Okinawa_Trough_Japan_New_geochemical_petrographic_and_%CE%B434S_isotope_results"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="2" data-entity-id="34475265" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/34475265/Pyrite_morphology_and_redox_fluctuations_recorded_in_the_Ediacaran_Doushantuo_Formation">Pyrite morphology and redox fluctuations recorded in the Ediacaran Doushantuo Formation</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="33033554" href="https://independent.academia.edu/GanqingJiang">Ganqing Jiang</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Palaeogeography, Palaeoclimatology, Palaeoecology, 2012</p><p class="ds-related-work--abstract ds2-5-body-sm">Recent geochemical studies of the Doushantuo Formation (ca. in South China suggested that the Ediacaran ocean was strongly stratified, with an oxic surface layer above a euxinic wedge that was sandwiched within ferruginous deep waters. This ocean redox model, however, was derived largely from the data obtained from stratigraphic sections in the Yangtze Gorges area that, according to recent paleogeographic reconstruction, were deposited in a restricted intrashelf lagoon. In order to test the redox conditions in open-ocean, deep-water environments, we have conducted a detailed morphological analysis of authigenic pyrites from the upper to lower slope sections of the Doushantuo Formation. In analogy to modern euxinic basins such as the Black Sea, framboidal pyrites with smaller and less variable size distribution are taken as evidence for sulfide precipitation in euxinic water column, while larger and more variable framboidal and euhedral pyrites are formed or diagenetically altered in sediments with an overlying oxic/ dysoxic water column. Except for a few brief intervals, pyrites from the Doushantuo Formation in upper slope sections (Siduping and Taoying sections) are mainly of early diagenetic origin and do not record water column euxinia during deposition. In contrast, pyrites from the Doushantuo Formation in the lower slope section (Wuhe section) are dominated by fine-grained framboids indicative of pervasive water column euxinia below chemocline. In both upper and lower slope sections, temporal changes in genetic pyrite types occur at centimeter to decameter scales, suggesting frequent chemocline fluctuations. The overall decrease in abundance of framboidal pyrites toward the upper Doushantuo Formation in upper slope sections suggests increasing water column oxygenation and deepening of the chemocline. Macroalgae and metazoan fossils are found mainly from shale intervals without syngenetic pyrites in upper slope sections, indicating the sensitivity of macroscopic eukaryotes to the ocean chemocline. The redox fluctuations recorded by the Doushantuo pyrites compels for comprehensive geochemical data in deep-water successions to further test the existing paleoceanographic models of the Ediacaran ocean.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Pyrite morphology and redox fluctuations recorded in the Ediacaran Doushantuo Formation","attachmentId":54347299,"attachmentType":"pdf","work_url":"https://www.academia.edu/34475265/Pyrite_morphology_and_redox_fluctuations_recorded_in_the_Ediacaran_Doushantuo_Formation","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/34475265/Pyrite_morphology_and_redox_fluctuations_recorded_in_the_Ediacaran_Doushantuo_Formation"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="3" data-entity-id="107501134" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/107501134/Geology_geophysics_geochemistry_and_deep_sea_mineral_deposits_Federated_States_of_Micronesia_KORDI_USGS_R_V_Farnella_Cruise_F11_90_CP">Geology, geophysics, geochemistry, and deep-sea mineral deposits, Federated States of Micronesia: KORDI-USGS R.V. Farnella Cruise F11-90-CP</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="100860899" href="https://independent.academia.edu/HeinJames">James Hein</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Open-File Report, 1992</p><p class="ds-related-work--abstract ds2-5-body-sm">Ifalik Atoll-Tarang Bank and trends east-west. This segment consists of large carbonate(?) banks and atolls and is generally of less than 2500 m water depth. The western third of Caroline Ridge extends from Ifalik Atoll-Tarang Bank to the Yap trench and trends northwestward. This segment consists of a large shallow-water (<2500 m) ridge bounded by, and cut by, narrow troughs that represent strike-slip faults (southern margin; Hamiltonj 1985), normal faults (northern margin; Andrews, 1971), and small spreading basins. Seismic profiles presented here show that both the north and south flanks of Caroline Ridge are block faulted. The origin of the western two-thirds of Caroline Ridge is unknown. West Caroline Ridge was proposed to be a relict island arc by Bracey and Andrews (1974). However, Hamilton (1985) disagreed with their interpretation and speculated that the ridge represents a leaky transform fault that connects the Mussau and Mariana trenches. Perfit and Fornari (1982) called on a combination of leaky transform fault and hot spot volcanism to form the ridge. Hegarty and Weissel (1988) suggested that the western part of Caroline Ridge, as well as Eauripik Rise, formed when a melting anomaly passed beneath the Pacific plate during the late Oligocene. Our work indicates that west Caroline Ridge, Sorol Trough, and associated topographic features may represent an extinct(?) spreading centertransform fault system. Vogt et al. (1976) suggested this possibility in passing, but provided no corroborative evidence. Eauripik Rise may also be an extinct spreading center, one of three in the Caroline Basin, which is located south of Caroline Ridge (Winterer et al., 1971; Erlandson et al., 1976; Mammerickx, 1978). The Yap arc and trench represent an Oligocene(?) and Neogene convergent plate margin, but one that is distinct in many ways from other west anq southwest Pacific arcs (Cole et al., 1960; Johnson et al., 1960; Hawkins and Batiza, 1977). For example, the distance between the arc summit and trench axis is very narrow and subduction may have ended in the late Miocene. Also, many of the rocks recovered from the arc (inner trench wall, summit, and summit islands) are metamorphic rocks of greenschist and amphibolite grade (Johnson et al., 1960; Shiraki, 1971). Many of the volcanic rocks have an oceanic crust compositional signature and thus may be obducted oceanic crust (Hawkins and Batiza, 1977; Woridng group, 1977). Other rocks belong to the calc-alkaline and island arc tholeiite series (Beccaliva et al., 1980; Crawford et al., 1986). Rocks dredged from the outer trench slope have a MORB-like composition and are about 7 m.y. old (Beccaluva et al., 1980). Hydrothermal mineralization of Quaternary sandstones collected by us from the central Yap arc indicate that the suggestions that subduction ended in the late Miocene and that back-arc basin crust was obducted onto the volcanic arc need to be modified, or at least must account for Quaternary hydrothermal activity at the! summit of the arc (Hawkins and Batiza, 1977). | METHODS The two main types of shipboard navigation uied were GPS (the U.S. Navy's Global Positioning System) and an integrated navigation system to do direct ranging on Loran C stations (Gann, 1988). The Japanese Loran chain was used while in the FSM area. Seismic surveys included 3.5 and 10 kHz bathymetry and analog and digital single-channel seismics collected with a 195 in3 airgun. The velocity of sound used to calculate sediment thicknesses was 1500 m/s. Sound velocity in sediment typically ranges from 1500-2200 m/s for the upper 1500 m of section. CTD-oxygen profiles and water samples were taken with a Neil Brown rosette. One to four water samples were taken per CTD cast and analyzed for oxygen content to calibrate the oxygen profiles. Standard Winkler titrations were performed to determine oxygen contents. X ray diffraction analyses were conducted on a Phillips diffractometer, with Ni-filtered, Cu-ka radiation and a curved-crystal carbon monochrdmator. Abundances of major oxides in substrate rocks were determined by X ray fluorescence spectroscopy (Taggart et al., 1987), Fe(II) by colorimetric titration (Peck, 1964), CQz by coulometrfc titration (Engleman et al., 1985), H2O+ by water evolved at 950°C as determined coulometrically by Karl-Fischer titration (Jackson et al., 1987), and H2O-by sample weight difference at 110°C|for greater than 1 hour (Shapiro, 1975). WATER COLUMN STUDIES Eleven CTD-oxygen profiles were taken over ses.mounts throughout the area of study (Figs. 81-91). The CTD stations upper flanks of the topographic features studied, in water Below 1500 m, the temperature, salinity, and oxygen values study region. However, the characteristics of the water column at shallower water depths. The water depth to the top of the low of 240 m over west Lanthe Bank, the southernmost station arcs junction, the northernmost station (Table 4). In fact, the minimum zone has a weak positive correlation (coefficient = that is it deepens to the north. From the 11 CTD stations, the; regional banks, ridges, and troughs were either over the summit or the depths between 2147 and 2930 m. were fairly uniform over this large did vary with geographic location oxygen-minimum zone varies from a , to 400 m over the Mariana-Yap water depth to the top of the oxygen-0.599) with latitude of the 11 stations, mean water depth of the top of the oxygen-minimum zone is 289 m, 16 m shallower than it is in the Marshall Islands EEZ (Hein, Kang, et al., 1990). The lowest minimum oxygen content measured in any of the profiles was over Olapahd Seamount, the station farthest to the east, and the highest minimum content was over the Mariana-Yap arcs juncture, the station farthest to the northeast. The three stations with the highest minimum oxygen contents occur along the Mariana-Yap arcs (Table 4). In fact, the degree of depletion in oxygen (lowest oxygen content at each station) has a weak positive (coefficient = 0.617) correlation with latitude and moderately strong negative (coefficient =-0.807) correlation with longitude. In other words, seawater is more depleted in oxygen to the east and south. This pattern is typical for this region of the equatorial Pacific. There is a core of generally low oxygen contents in water shallower than 250 m that extends from the South American coast westward across the Pacific, with the lowest oxygen values found to the east (Pickard and Emery, 1982). This pattern of oxygen content distribution is due to the equatorial zone of high biological productivity. The greater quantities of organic matter produced to the south and east are oxidized in the water column and, combined with zooplankton respiration, deplete the seawater in oxygen, thereby raising the top boundary of the oxygen-minimum zone. In order to compare temperature profiles from the 11 stations, we looked at the water depth at each station corresponding to 10°C; the 10*C isotherm corresponds roughly to the boundary between the seasonal and permanent thermocline in the region and occurs at water depths near the top of the oxygen-minimum zone (Table 4). The deepest level of the 10*C isotherm is over Pali Seamount and the shallowest level is over west Lanthe Bank. However, this parameter does not correlate with latitude or longitude and overall varies little (61 m) throughout the area. In the Marshall Islands, the depth to this isothermal boundary varied by 110 m. The mean regional water depth of the 10°C isotherm for the EEZ of FSM is 288 m, compared to 247 m for the Marshall Islands EEZ. Salinity profiles are similar throughout the region. Minimum values of about 33.9%c occur at the sea surface (Figs. 81-91). Salinity increase rapidly to maximum values of about 34.9%c at water depths that range from 100-140 m. The high salinity values are typical of equatorial waters that extend across the entire Pacific. These waters are among the most saline in the Pacific. The equatorial water is separate from, and does not mix with, the warmer less saline surface waters because of the strong density difference between them. Salinity then decreases rapidly to intermediate values of about 34.5%c at water depths that range from 205-320 m. This low saline water represents the northward limit of the Antarctic Intermediate Water. Below 400 m, salinity then increases uniformly to the bottom of the profiles. GEOLOGY, PETROLOGY, AND GEOCHEMISTRY Rock and Sediment Ages Unconsolidated sediment occurs throughout the area studied, but is thin in most areas. Sediment is most commonly white to brown foraminiferal-nannofossil ooze of Quaternary age, but may be as old as late Miocene in places (Table 5). Slightly calcareous or noncalcareous muds occur in several places, for example, Pliocene aged serpentine mud of mixed grey, blue, and green colors was recovered from the northern Yap arc (Table 5: D7-1); grey mud recovered from Hunter Bank on the central Yap arc is probably of similar composition and age. Green-brown volcaniclastic(?) mud was recovered from Sorol Trough.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Geology, geophysics, geochemistry, and deep-sea mineral deposits, Federated States of Micronesia: KORDI-USGS R.V. Farnella Cruise F11-90-CP","attachmentId":106150957,"attachmentType":"pdf","work_url":"https://www.academia.edu/107501134/Geology_geophysics_geochemistry_and_deep_sea_mineral_deposits_Federated_States_of_Micronesia_KORDI_USGS_R_V_Farnella_Cruise_F11_90_CP","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/107501134/Geology_geophysics_geochemistry_and_deep_sea_mineral_deposits_Federated_States_of_Micronesia_KORDI_USGS_R_V_Farnella_Cruise_F11_90_CP"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="4" data-entity-id="114528824" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/114528824/Geochemistry_of_ODP_Sites_128_798_and_128_799_sediments_supplement_to_Minai_Yoshitaka_Matsumoto_Ryo_Watanabe_Yoshio_Tominaga_Takeshi_1992_Geochemistry_of_rare_earths_and_other_trace_elements_in_sediments_from_Sites_798_and_799_Japan_Sea_In_Pisciotto_KA_Ingle_JCJr_von_Breymann_">Geochemistry of ODP Sites 128-798 and 128-799 sediments, supplement to: Minai, Yoshitaka; Matsumoto, Ryo; Watanabe, Yoshio; Tominaga, Takeshi (1992): Geochemistry of rare earths and other trace elements in sediments from Sites 798 and 799, Japan Sea. In: Pisciotto, KA; Ingle, JCJr.; von Breymann,...</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="66402658" href="https://musashi.academia.edu/YoshitakaMinai">Yoshitaka Minai</a></div><p class="ds-related-work--metadata ds2-5-body-xs">1992</p><p class="ds-related-work--abstract ds2-5-body-sm">Nineteen trace elements, including seven rare earth elements (REE's), and 10 major and minor elements in 76 sediment samples from Sites 798 (Oki Ridge) and 799 (Yamato Trough) were determined by means of instrumental neutron activation analysis and X-ray fluorescence spectrometry. Most REE patterns (chondrite-normalized) of the sediments from both sites were nearly identical to the patterns of terrigenous materials. The cerium anomaly (slightly positive) frequently appeared in REE patterns of the sediments (200-750 mbsf) from Site 799. Cerium may be selectively incorporated into the sediments with hydrogenous manganese precipitation. However, the degree of the anomaly was not well correlated with manganese content, suggesting that cerium may behave as a trivalent REE (like the other REE's) during diagenesis while manganese is transported in the sediment column accompanied by reduction to a lower oxidation state. The Th/Sc ratio of the sediments from Sites 798 and 799 tended to decrease with penetration depth. Such a depth profile may indicate a decrease in basic volcanism activities from the Pliocene (Site 798) and Miocene (Site 799). The La/Yb ratio and degree of europium anomaly also varied with depth, which may imply that two or more components with different REE patterns were supplied throughout sedimentation at sites in the Japan Sea.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Geochemistry of ODP Sites 128-798 and 128-799 sediments, supplement to: Minai, Yoshitaka; Matsumoto, Ryo; Watanabe, Yoshio; Tominaga, Takeshi (1992): Geochemistry of rare earths and other trace elements in sediments from Sites 798 and 799, Japan Sea. In: Pisciotto, KA; Ingle, JCJr.; von Breymann,...","attachmentId":111203824,"attachmentType":"pdf","work_url":"https://www.academia.edu/114528824/Geochemistry_of_ODP_Sites_128_798_and_128_799_sediments_supplement_to_Minai_Yoshitaka_Matsumoto_Ryo_Watanabe_Yoshio_Tominaga_Takeshi_1992_Geochemistry_of_rare_earths_and_other_trace_elements_in_sediments_from_Sites_798_and_799_Japan_Sea_In_Pisciotto_KA_Ingle_JCJr_von_Breymann_","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/114528824/Geochemistry_of_ODP_Sites_128_798_and_128_799_sediments_supplement_to_Minai_Yoshitaka_Matsumoto_Ryo_Watanabe_Yoshio_Tominaga_Takeshi_1992_Geochemistry_of_rare_earths_and_other_trace_elements_in_sediments_from_Sites_798_and_799_Japan_Sea_In_Pisciotto_KA_Ingle_JCJr_von_Breymann_"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="5" data-entity-id="94848543" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/94848543/Actively_forming_Kuroko_type_volcanic_hosted_massive_sulfide_VHMS_mineralization_at_Iheya_North_Okinawa_Trough_Japan">Actively forming Kuroko-type volcanic-hosted massive sulfide (VHMS) mineralization at Iheya North, Okinawa Trough, Japan</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="44653928" href="https://independent.academia.edu/JuanCarlosCorona">Juan Carlos Corona</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Ore Geology Reviews, 2017</p><p class="ds-related-work--abstract ds2-5-body-sm">Modern seafloor hydrothermal systems provide important insights into the formation and discovery of ancient volcanic-hosted massive sulfide (VHMS) deposits. In 2010, Integrated Ocean Drilling Program (IODP) Expedition 331 drilled five sites in the Iheya North hydrothermal field in the middle Okinawa Trough, back-arc basin, Japan. Hydrothermal alteration and sulfide mineralization is hosted in a geologically complex, mixed sequence of coarse, pumiceous, volcaniclastic and fine hemipelagic sediments, overlying a dacitic to rhyolitic volcanic substrate. At site C0016, located adjacent to the foot of the actively venting North Big Chimney massive sulfide mound, massive sphalerite-(pyrite-chalcopyrite±galena)rich sulfides were intersected (to 30.2% Zn, 12.3% Pb, 2.68% Cu, 33.1 ppm Ag and 0.07 ppm Au) that strongly resemble the black ore of the Miocene-age Kuroko deposits of Japan. Sulfide mineralization shows clear evidence of formation through a combination of surface detrital and subsurface chemical processes, with at least some sphalerite precipitating into void space in the rock. Volcanic rocks beneath massive sulfides exhibit quartzmuscovite/illite and quartz-Mg-chlorite alteration reminiscent of VHMS proximal footwall alteration associated with Kuroko-type deposits, characterised by increasing MgO, Fe/Zn and Cu/Zn with depth. Recovered felsic footwall rocks are of FII to FIII affinity with welldeveloped negative Eu anomalies, consistent with VHMS-hosting felsic rocks in Phanerozoic ensialic arc/back-arc settings worldwide. Site C0013, ~100 m east of North Big Chimney, represents a likely location of recent high temperature discharge, preserved as surficial coarse-grained sulfidic sediments (43.2% Zn, 4.4% Pb, 5.4% Cu, 42 ppm Ag and 0.02 ppm Au) containing high concentrations of As, Cd, Mo, Sb, and W. Near surface hydrothermal alteration is dominated by kaolinite and muscovite with locally abundant native sulfur, indicative of acidic hydrothermal fluids. Alteration grades to Mg-chlorite dominated assemblages at depths of >5 mbsf (metres below sea floor). Late coarse-grained anhydrite veining overprints earlier alteration and is interpreted to have precipitated from down welling seawater as hydrothermal activity waned. At site C0014, ~350 m farther east, hydrothermal assemblages are characterized by illite/montmorillonite, with Mg-chlorite present at depths below ~30 mbsf. Recovered lithologies from distal, recharge site C0017 are unaltered, with low MgO, Fe 2 O 3 and base metal concentrations. Mineralization and alteration assemblages are consistent with the Iheya North system representing a modern analogue for Kuroko-type VHMS mineralization. Fluid flow is focussed laterally along pumiceous volcaniclastic strata (compartmentalized between Highlights</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Actively forming Kuroko-type volcanic-hosted massive sulfide (VHMS) mineralization at Iheya North, Okinawa Trough, Japan","attachmentId":97194267,"attachmentType":"pdf","work_url":"https://www.academia.edu/94848543/Actively_forming_Kuroko_type_volcanic_hosted_massive_sulfide_VHMS_mineralization_at_Iheya_North_Okinawa_Trough_Japan","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/94848543/Actively_forming_Kuroko_type_volcanic_hosted_massive_sulfide_VHMS_mineralization_at_Iheya_North_Okinawa_Trough_Japan"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="6" data-entity-id="15488345" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/15488345/28_SEDIMENT_GEOCHEMISTRY_CLAY_MINERALOGY_AND_DIAGENESIS_A_SYNTHESIS_OF_DATA_FROM_LEG_131_NANKAI_TROUGH1">28. SEDIMENT GEOCHEMISTRY, CLAY MINERALOGY, AND DIAGENESIS: A SYNTHESIS OF DATA FROM LEG 131, NANKAI TROUGH1</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="34633588" href="https://independent.academia.edu/JGieskes">Joris Gieskes</a></div><p class="ds-related-work--metadata ds2-5-body-xs">www-odp.tamu.edu</p><p class="ds-related-work--abstract ds2-5-body-sm">This paper presents a synthesis of data from X-ray diffraction analyses of clay minerals and X-ray fluorescence analyses of bulk mudstones from Ocean Drilling Program Site 808. The samples come from three closely spaced holes drilled through the toe of the Nankai accretionary prism offshore Shikoku, Japan. Detrital assemblages of clay minerals are unusually uniform throughout the Nankai trench-wedge facies. Illite is the most abundant detrital clay mineral, followed by chlorite, smectite, and traces of kaolinite. Relative percentages of smectite increase within the upper subunit of the Shikoku Basin stratigraphy. This subunit contains abundant layers of volcanic ash, and the corresponding change in clay mineralogy probably was caused by synvolcanic weathering in source areas during the Pliocene, together with in-situ alteration of disseminated glass shards within the Shikoku Basin.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"28. SEDIMENT GEOCHEMISTRY, CLAY MINERALOGY, AND DIAGENESIS: A SYNTHESIS OF DATA FROM LEG 131, NANKAI TROUGH1","attachmentId":43149737,"attachmentType":"pdf","work_url":"https://www.academia.edu/15488345/28_SEDIMENT_GEOCHEMISTRY_CLAY_MINERALOGY_AND_DIAGENESIS_A_SYNTHESIS_OF_DATA_FROM_LEG_131_NANKAI_TROUGH1","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/15488345/28_SEDIMENT_GEOCHEMISTRY_CLAY_MINERALOGY_AND_DIAGENESIS_A_SYNTHESIS_OF_DATA_FROM_LEG_131_NANKAI_TROUGH1"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="7" data-entity-id="85207441" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/85207441/Petrology_of_Basic_Igneous_Rocks_from_the_Floor_of_the_Sulu_Sea">Petrology of Basic Igneous Rocks from the Floor of the Sulu Sea</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32793501" href="https://independent.academia.edu/LCivetta">L. Civetta</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Proceedings of the Ocean Drilling Program, 1991</p><p class="ds-related-work--abstract ds2-5-body-sm">Major and trace elements, mineral chemistry, and Sr-Nd isotope ratios are reported for representative igneous rocks drilled from the Sulu Basin basement (Site 768) and Cagayan Ridge (Sites 769, 771) during Ocean Drilling Program Leg 124. The Sulu Basin basement rocks, cored for about 220 m beneath late early Miocene pelagic sediments, consist, downhole, of pillow basalts (Unit 1), dolerite (Unit 2), and two-pyroxene microgabbro (Unit 3), followed by pillowed and massive basalts (Units 4, 5, 6, 7, and 8). Basalts and dolerites are relatively homogeneous in petrochemical features, except for LOI and elements such as Na, K, Rb, Cs, Li, and Ti, which suffered intense and variable mobilization due to seawater alteration and low-grade greenschist facies oceanic metamorphism. Ca and Mg contents also appear significantly influenced by halmyrolysis in some samples. Some basalts of Unit 1 have a picritic character (mg = 77), which mainly reflects the composition of the primary magma as evidenced by their quenched texture. The high mg (81-77) of the two-pyroxene microgabbro in Unit 3 reflects not only a primary picritic composition, but also olivine accumulation. Basalts and dolerites of Units 1, 2, 4, 5, 6, and 7 have mg (74-64), Ni (234-46) and Cr (490-47), variations compatible with moderate fractionation of mantle-derived primary magmas. Clinopyroxene chemistry, together with the presence of orthopyroxene, indicate a subalkaline nature of Sulu Basement magmas. Their relatively high ratios between LFSE (K, Rb, Ba, Th) and HFSE (Nb, Zr, Hf, Ti, Y) and the REE distribution (Ce N /Yb N = 1.6-1.0) coherently indicate normal-MORB/IAT transitional features. Consistent isotope ratios were obtained for picritic basalts and basalts from Unit 1 and microgabbro from Unit 3 (143 Nd/ 144 Nd = 0.51297-0.51301 and ^Sr/^Sr = 0.70308-0.70340). These petrochemical characteristics imply that oceanic crust creation in the Sulu Basin developed from a basaltic magmatism generated from MORB-like mantle sources, which were modified by subduction-related geochemical components. Basaltic to andesitic lava flows and clasts in tuffs cored beneath late early to early middle Miocene sediments in the Cagayan Ridge suffered only seafloor alteration, which did not substantially affect their primary composition. Petrographical and geochemical features are completely comparable with tholeiitic (Ce N /Yb N = 1.5-2.9) and calc-alkaline (Ce N /Ybvi 2.8-2.9) island arc magmas, except for unusually low Nd isotope ratios (143 Nd/ 144 Nd = 0.51286-0.51280 with δ7 Sr/ 86 Sr = 0.70292-0.70309). The data obtained in this paper, while confirming the arc-magma affinity for Cagayan Ridge volcanics, further indicate that Sulu Basin back-arc magmatism with MORB/IAT transitional character was also generated from subduction-modified intraoceanic mantle sources. The older (middle Eocene) Celebes Basin oceanic crust, generated by a pure, normal MORB magmatism thus represents a distinct magmatic system with respect \o that of the Sulu Sea.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Petrology of Basic Igneous Rocks from the Floor of the Sulu Sea","attachmentId":89976558,"attachmentType":"pdf","work_url":"https://www.academia.edu/85207441/Petrology_of_Basic_Igneous_Rocks_from_the_Floor_of_the_Sulu_Sea","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/85207441/Petrology_of_Basic_Igneous_Rocks_from_the_Floor_of_the_Sulu_Sea"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="8" data-entity-id="49001357" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/49001357/Oceanic_arc_subduction_stagnation_and_exhumation_zircon_U_Pb_geochronology_and_trace_element_geochemistry_of_the_Sanbagawa_eclogites_in_central_Shikoku_SW_Japan">Oceanic-arc subduction, stagnation, and exhumation: zircon U-Pb geochronology and trace-element geochemistry of the Sanbagawa eclogites in central Shikoku, SW Japan</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="94236554" href="https://tohoku.academia.edu/tatsukix">Tatsuki Tsujimori</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Lithos, 2020</p><p class="ds-related-work--abstract ds2-5-body-sm">In the Iratsu and the quartz-bearing eclogite bodies of the Sanbagawa high-pressure type metamorphic belt, southwest Japan, zircon U–Pb dating and trace-element analysis of the mafic gneiss combined with its geologic structure revealed that the protolith basaltic rock constituted the topographic high on a seafloor in relation to intra-oceanic arc magmatism at ca. 195 Ma. Moreover, the metamorphic zircon U–Pb data and the rare-earth element patterns obtained from the subordinated metasedimentary rocks of the Iratsu and the quartz-bearing eclogite bodies indicate that both bodies were subducted from a trench at ca. 120 Ma and underwent the eclogite facies metamorphism between ca. 120 Ma and ca. 90 Ma. This study, combined with previous studies for the Sanbagawa rocks and the Jurassic-Cretaceous accretionary complexes in Japan, identifies the following constraints that led to the tectonic evolution of the Sanbagawa eclogites: 1) the metamorphic unit including the Iratsu and the quartz-bearing eclogite bodies (the Besshi unit) was subducted from a trench at ca. 120 Ma. 2) This unit was stagnated at the depth of the eclogite-facies condition between ca. 120 Ma and ca. 90 Ma. 3) The eclogites in the Besshi unit was exhumed with the younger metamorphic rocks which were subducted at ca. 100–90 Ma (Asemi-gawa unit). 4) The Besshi unit is a high-pressure metamorphic equivalent of the non- or weakly metamorphic Sanbosan accretionary complex and the Mikabu greenstones from a standpoint of age similarity on accretion. The probable mechanism for the stagnation of the Besshi unit at the depth of the eclogite-facies condition needs 1) the detachment of oceanic-arc material from the subducting slab, driven by the resistance against thesubduction of the topographic-high part underneath the forearc, and 2) the oceanward movement of the entire arc-trench system, which might have depressed the subduction of the Besshi unit into a deeper depth than its eclogite depth.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Oceanic-arc subduction, stagnation, and exhumation: zircon U-Pb geochronology and trace-element geochemistry of the Sanbagawa eclogites in central Shikoku, SW Japan","attachmentId":67389855,"attachmentType":"pdf","work_url":"https://www.academia.edu/49001357/Oceanic_arc_subduction_stagnation_and_exhumation_zircon_U_Pb_geochronology_and_trace_element_geochemistry_of_the_Sanbagawa_eclogites_in_central_Shikoku_SW_Japan","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/49001357/Oceanic_arc_subduction_stagnation_and_exhumation_zircon_U_Pb_geochronology_and_trace_element_geochemistry_of_the_Sanbagawa_eclogites_in_central_Shikoku_SW_Japan"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="9" data-entity-id="30369445" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/30369445/34_Geochemistry_of_Sediments_and_Interstitial_Waters_from_Oki_Ridge_and_Kita_Yamato_Trough_Japan_SEA1">34. Geochemistry of Sediments and Interstitial Waters from Oki Ridge and Kita-Yamato Trough, Japan SEA1</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="15658280" href="https://independent.academia.edu/BarryHanan">Barry Hanan</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Integrated Ocean Drilling Program: Preliminary Reports</p><p class="ds-related-work--abstract ds2-5-body-sm">Interstitial waters in sediments below 400 (Site 798) and 435 meters below seafloor (Site 799) have chloride concentrations of 516-527 and 501-515 mM, respectively, lower than the 540 mM of the modern-day Japan Sea. The chemical composition of interstitial waters, bulk sediments, clay-size sediment fraction, and carbonate nodules from Oki Ridge (Site 798) and Kita-Yamato Trough (Site 799), Japan Sea, reflect in-situ diagenetic processes superimposed on geochemical signals that may indicate freshening of Miocene local marginal basin waters. Interstitial waters at both sites exhibit changes in chemical composition which coincide with the occurrence of low-porosity and high-bulk density layers composed of dolomite and opal-CT, which impede diffusive communication with the overlying interstitial waters. Based on interstitial water stable isotope evidence and mass-balance calculations of chloride dilution, diagenetic reactions that involve the release of structural bound water from opal-A and/or clay minerals contribute to the observed geochemical signals, but cannot account for all the measured chloride dilution.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"34. Geochemistry of Sediments and Interstitial Waters from Oki Ridge and Kita-Yamato Trough, Japan SEA1","attachmentId":50819706,"attachmentType":"pdf","work_url":"https://www.academia.edu/30369445/34_Geochemistry_of_Sediments_and_Interstitial_Waters_from_Oki_Ridge_and_Kita_Yamato_Trough_Japan_SEA1","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/30369445/34_Geochemistry_of_Sediments_and_Interstitial_Waters_from_Oki_Ridge_and_Kita_Yamato_Trough_Japan_SEA1"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div></div></div><div class="ds-sticky-ctas--wrapper js-loswp-sticky-ctas hidden"><div class="ds-sticky-ctas--grid-container"><div class="ds-sticky-ctas--container"><button class="ds2-5-button js-swp-download-button" data-signup-modal="{"location":"continue-reading-button--sticky-ctas","attachmentId":108006193,"attachmentType":"pdf","workUrl":null}">See full PDF</button><button class="ds2-5-button ds2-5-button--secondary js-swp-download-button" data-signup-modal="{"location":"download-pdf-button--sticky-ctas","attachmentId":108006193,"attachmentType":"pdf","workUrl":null}"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span>Download PDF</button></div></div></div><div class="ds-below-fold--grid-container"><div class="ds-work--container js-loswp-embedded-document"><div class="attachment_preview" data-attachment="Attachment_108006193" style="display: none"><div class="js-scribd-document-container"><div class="scribd--document-loading js-scribd-document-loader" style="display: block;"><img alt="Loading..." src="//a.academia-assets.com/images/loaders/paper-load.gif" /><p>Loading Preview</p></div></div><div style="text-align: center;"><div class="scribd--no-preview-alert js-preview-unavailable"><p>Sorry, preview is currently unavailable. You can download the paper by clicking the button above.</p></div></div></div></div><div class="ds-sidebar--container js-work-sidebar"><div class="ds-related-content--container"><h2 class="ds-related-content--heading">Related papers</h2><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="0" data-entity-id="116099964" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/116099964/_Appendix_Mineral_composition_of_ODP_Leg_128_sandstone_samples_supplement_to_Boggs_Sam_Seyedolali_Abbas_1992_Provenance_of_Miocene_sandstones_from_Sites_796_797_and_799_Japan_Sea_In_Pisciotto_KA_Ingle_JCJr_von_Breymann_MT_Barron_J_et_al_eds_Proceedings_of_the_Ocean_Dri_">(Appendix) Mineral composition of ODP Leg 128 sandstone samples, supplement to: Boggs, Sam; Seyedolali, Abbas (1992): Provenance of Miocene sandstones from Sites 796, 797, and 799, Japan Sea. In: Pisciotto, KA; Ingle, JCJr.; von Breymann, MT; Barron, J; et al. (eds.), Proceedings of the Ocean Dri...</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="254814967" href="https://independent.academia.edu/SamBoggs2">Sam Boggs</a></div><p class="ds-related-work--metadata ds2-5-body-xs">1992</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"(Appendix) Mineral composition of ODP Leg 128 sandstone samples, supplement to: Boggs, Sam; Seyedolali, Abbas (1992): Provenance of Miocene sandstones from Sites 796, 797, and 799, Japan Sea. In: Pisciotto, KA; Ingle, JCJr.; von Breymann, MT; Barron, J; et al. (eds.), Proceedings of the Ocean Dri...","attachmentId":112323860,"attachmentType":"pdf","work_url":"https://www.academia.edu/116099964/_Appendix_Mineral_composition_of_ODP_Leg_128_sandstone_samples_supplement_to_Boggs_Sam_Seyedolali_Abbas_1992_Provenance_of_Miocene_sandstones_from_Sites_796_797_and_799_Japan_Sea_In_Pisciotto_KA_Ingle_JCJr_von_Breymann_MT_Barron_J_et_al_eds_Proceedings_of_the_Ocean_Dri_","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/116099964/_Appendix_Mineral_composition_of_ODP_Leg_128_sandstone_samples_supplement_to_Boggs_Sam_Seyedolali_Abbas_1992_Provenance_of_Miocene_sandstones_from_Sites_796_797_and_799_Japan_Sea_In_Pisciotto_KA_Ingle_JCJr_von_Breymann_MT_Barron_J_et_al_eds_Proceedings_of_the_Ocean_Dri_"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="1" data-entity-id="61889531" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/61889531/Major_and_trace_element_chemistry_and_D_H_18O_16O_87Sr_86Sr_and_143Nd_144Nd_ratios_of_rocks_from_the_spreading_center_of_the_Okinawa_Trough_a_marginal_back_arc_basin">Major and trace element chemistry and D/H, 18O/16O, 87Sr/86Sr and 143Nd/144Nd ratios of rocks from the spreading center of the Okinawa Trough, a marginal back-arc basin</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="46474546" href="https://independent.academia.edu/Kusakabe">M. Kusakabe</a></div><p class="ds-related-work--metadata ds2-5-body-xs">GEOCHEMICAL JOURNAL, 1991</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Major and trace element chemistry and D/H, 18O/16O, 87Sr/86Sr and 143Nd/144Nd ratios of rocks from the spreading center of the Okinawa Trough, a marginal back-arc basin","attachmentId":74808548,"attachmentType":"pdf","work_url":"https://www.academia.edu/61889531/Major_and_trace_element_chemistry_and_D_H_18O_16O_87Sr_86Sr_and_143Nd_144Nd_ratios_of_rocks_from_the_spreading_center_of_the_Okinawa_Trough_a_marginal_back_arc_basin","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/61889531/Major_and_trace_element_chemistry_and_D_H_18O_16O_87Sr_86Sr_and_143Nd_144Nd_ratios_of_rocks_from_the_spreading_center_of_the_Okinawa_Trough_a_marginal_back_arc_basin"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="2" data-entity-id="84597479" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/84597479/Redox_conditions_in_the_end_Early_Triassic_Panthalassa">Redox conditions in the end-Early Triassic Panthalassa</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="198335253" href="https://independent.academia.edu/KunioKaiho">Kunio Kaiho</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Palaeogeography, Palaeoclimatology, Palaeoecology, 2015</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Redox conditions in the end-Early Triassic Panthalassa","attachmentId":89564188,"attachmentType":"pdf","work_url":"https://www.academia.edu/84597479/Redox_conditions_in_the_end_Early_Triassic_Panthalassa","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/84597479/Redox_conditions_in_the_end_Early_Triassic_Panthalassa"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="3" data-entity-id="80461225" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/80461225/Major_and_trace_element_geochemistry_and_Os_isotopic_composition_of_metalliferous_umbers_from_the_Late_Cretaceous_Japanese_accretionary_complex">Major and trace element geochemistry and Os isotopic composition of metalliferous umbers from the Late Cretaceous Japanese accretionary complex</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="194118335" href="https://independent.academia.edu/KatsuhikoSuzuki2">Katsuhiko Suzuki</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Geochemistry, Geophysics, Geosystems, 2005</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Major and trace element geochemistry and Os isotopic composition of metalliferous umbers from the Late Cretaceous Japanese accretionary complex","attachmentId":86834990,"attachmentType":"pdf","work_url":"https://www.academia.edu/80461225/Major_and_trace_element_geochemistry_and_Os_isotopic_composition_of_metalliferous_umbers_from_the_Late_Cretaceous_Japanese_accretionary_complex","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/80461225/Major_and_trace_element_geochemistry_and_Os_isotopic_composition_of_metalliferous_umbers_from_the_Late_Cretaceous_Japanese_accretionary_complex"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="4" data-entity-id="5798157" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/5798157/An_80_million_year_oceanic_redox_history_from_Permian_to_Jurassic_pelagic_sediments_of_the_Mino_Tamba_terrane_SW_Japan_and_the_origin_of_four_mass_extinctions">An 80 million year oceanic redox history from Permian to Jurassic pelagic sediments of the Mino-Tamba terrane, SW Japan, and the origin of four mass extinctions</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="8495838" href="https://leeds.academia.edu/PaulWignall">Paul Wignall</a></div><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"An 80 million year oceanic redox history from Permian to Jurassic pelagic sediments of the Mino-Tamba terrane, SW Japan, and the origin of four mass extinctions","attachmentId":32815434,"attachmentType":"pdf","work_url":"https://www.academia.edu/5798157/An_80_million_year_oceanic_redox_history_from_Permian_to_Jurassic_pelagic_sediments_of_the_Mino_Tamba_terrane_SW_Japan_and_the_origin_of_four_mass_extinctions","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/5798157/An_80_million_year_oceanic_redox_history_from_Permian_to_Jurassic_pelagic_sediments_of_the_Mino_Tamba_terrane_SW_Japan_and_the_origin_of_four_mass_extinctions"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="5" data-entity-id="112860293" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/112860293/Primary_Composition_Alteration_and_Origin_of_Cretaceous_Volcaniclastic_Rocks_East_Mariana_Basin_Site_585_Leg_89_">Primary Composition, Alteration, and Origin of Cretaceous Volcaniclastic Rocks, East Mariana Basin (Site 585, Leg 89)</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="20943705" href="https://ankara.academia.edu/lotharviereck">lothar viereck</a></div><p class="ds-related-work--metadata ds2-5-body-xs">1986</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Primary Composition, Alteration, and Origin of Cretaceous Volcaniclastic Rocks, East Mariana Basin (Site 585, Leg 89)","attachmentId":109961984,"attachmentType":"pdf","work_url":"https://www.academia.edu/112860293/Primary_Composition_Alteration_and_Origin_of_Cretaceous_Volcaniclastic_Rocks_East_Mariana_Basin_Site_585_Leg_89_","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/112860293/Primary_Composition_Alteration_and_Origin_of_Cretaceous_Volcaniclastic_Rocks_East_Mariana_Basin_Site_585_Leg_89_"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="6" data-entity-id="81836865" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/81836865/Composition_of_Co_rich_ferromanganese_crusts_and_substrate_rocks_from_the_NW_Marshall_Islands_and_international_waters_to_the_north_Tunes_6_cruise">Composition of Co-rich ferromanganese crusts and substrate rocks from the NW Marshall Islands and international waters to the north, Tunes 6 cruise</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="119801828" href="https://independent.academia.edu/MalcolmPringle2">Malcolm Pringle</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Open-File Report, 1997</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Composition of Co-rich ferromanganese crusts and substrate rocks from the NW Marshall Islands and international waters to the north, Tunes 6 cruise","attachmentId":87742142,"attachmentType":"pdf","work_url":"https://www.academia.edu/81836865/Composition_of_Co_rich_ferromanganese_crusts_and_substrate_rocks_from_the_NW_Marshall_Islands_and_international_waters_to_the_north_Tunes_6_cruise","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/81836865/Composition_of_Co_rich_ferromanganese_crusts_and_substrate_rocks_from_the_NW_Marshall_Islands_and_international_waters_to_the_north_Tunes_6_cruise"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="7" data-entity-id="51952614" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/51952614/Volcaniclastic_sediments_process_interaction_and_depositional_setting_of_the_Mio_Pliocene_Miura_Group_SE_Japan">Volcaniclastic sediments, process interaction and depositional setting of the Mio-Pliocene Miura Group, SE Japan</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32628415" href="https://hw.academia.edu/DorrikStow">Dorrik Stow</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Sedimentary Geology, 1998</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Volcaniclastic sediments, process interaction and depositional setting of the Mio-Pliocene Miura Group, SE Japan","attachmentId":69443050,"attachmentType":"pdf","work_url":"https://www.academia.edu/51952614/Volcaniclastic_sediments_process_interaction_and_depositional_setting_of_the_Mio_Pliocene_Miura_Group_SE_Japan","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/51952614/Volcaniclastic_sediments_process_interaction_and_depositional_setting_of_the_Mio_Pliocene_Miura_Group_SE_Japan"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="8" data-entity-id="107969723" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/107969723/Mineralogy_and_Geochemistry_of_Sedimentary_Deposits_on_Emperor_Seamounts_Sites_430_431_and_432_Authigenesis_of_Silicates_Phosphates_and_Ferromanganese_Oxides">Mineralogy and Geochemistry of Sedimentary Deposits on Emperor Seamounts, Sites 430, 431, and 432: Authigenesis of Silicates, Phosphates, and Ferromanganese Oxides</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="140515486" href="https://unistra.academia.edu/AnneKarpoff">Anne Karpoff</a></div><p class="ds-related-work--metadata ds2-5-body-xs">U.S. Government Printing Office eBooks, 1980</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Mineralogy and Geochemistry of Sedimentary Deposits on Emperor Seamounts, Sites 430, 431, and 432: Authigenesis of Silicates, Phosphates, and Ferromanganese Oxides","attachmentId":106482053,"attachmentType":"pdf","work_url":"https://www.academia.edu/107969723/Mineralogy_and_Geochemistry_of_Sedimentary_Deposits_on_Emperor_Seamounts_Sites_430_431_and_432_Authigenesis_of_Silicates_Phosphates_and_Ferromanganese_Oxides","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/107969723/Mineralogy_and_Geochemistry_of_Sedimentary_Deposits_on_Emperor_Seamounts_Sites_430_431_and_432_Authigenesis_of_Silicates_Phosphates_and_Ferromanganese_Oxides"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="9" data-entity-id="30775587" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/30775587/Geochemistry_of_Lower_Cretaceous_sediments_Inner_Zone_of_Southwest_Japan_Constraints_on_provenance_and_tectonic_environment">Geochemistry of Lower Cretaceous sediments, Inner Zone of Southwest Japan. Constraints on provenance and tectonic environment</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="58638268" href="https://ug-gh.academia.edu/DanielAsiedu">Daniel Asiedu</a><span>, </span><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="58529115" href="https://independent.academia.edu/ShigeyukiSuzuki">Shigeyuki Suzuki</a></div><p class="ds-related-work--metadata ds2-5-body-xs">GEOCHEMICAL JOURNAL, 2000</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Geochemistry of Lower Cretaceous sediments, Inner Zone of Southwest Japan. Constraints on provenance and tectonic environment","attachmentId":51211377,"attachmentType":"pdf","work_url":"https://www.academia.edu/30775587/Geochemistry_of_Lower_Cretaceous_sediments_Inner_Zone_of_Southwest_Japan_Constraints_on_provenance_and_tectonic_environment","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/30775587/Geochemistry_of_Lower_Cretaceous_sediments_Inner_Zone_of_Southwest_Japan_Constraints_on_provenance_and_tectonic_environment"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="10" data-entity-id="107344074" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/107344074/Nd_Sr_and_Pb_isotopic_and_REE_geochemical_study_of_some_Miocene_submarine_hydrothermal_deposits_Kuroko_deposits_in_Japan">Nd, Sr and Pb isotopic and REE geochemical study of some Miocene submarine hydrothermal deposits (Kuroko deposits) in Japan</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="5445714" href="https://independent.academia.edu/YasutakaTerakado">Yasutaka Terakado</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Contributions to Mineralogy and Petrology, 2005</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Nd, Sr and Pb isotopic and REE geochemical study of some Miocene submarine hydrothermal deposits (Kuroko deposits) in Japan","attachmentId":106035673,"attachmentType":"pdf","work_url":"https://www.academia.edu/107344074/Nd_Sr_and_Pb_isotopic_and_REE_geochemical_study_of_some_Miocene_submarine_hydrothermal_deposits_Kuroko_deposits_in_Japan","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/107344074/Nd_Sr_and_Pb_isotopic_and_REE_geochemical_study_of_some_Miocene_submarine_hydrothermal_deposits_Kuroko_deposits_in_Japan"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="11" data-entity-id="9828009" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/9828009/Changes_in_productivity_and_redox_conditions_in_the_Panthalassic_Ocean_during_the_latest_Permian_2010_GEOLOGY_">Changes in productivity and redox conditions in the Panthalassic Ocean during the latest Permian (2010, GEOLOGY)</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="23702898" href="https://uc.academia.edu/ThomasAlgeo">Thomas Algeo</a></div><p class="ds-related-work--metadata ds2-5-body-xs">GEOLOGY, 2010</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Changes in productivity and redox conditions in the Panthalassic Ocean during the latest Permian (2010, GEOLOGY)","attachmentId":35995733,"attachmentType":"pdf","work_url":"https://www.academia.edu/9828009/Changes_in_productivity_and_redox_conditions_in_the_Panthalassic_Ocean_during_the_latest_Permian_2010_GEOLOGY_","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/9828009/Changes_in_productivity_and_redox_conditions_in_the_Panthalassic_Ocean_during_the_latest_Permian_2010_GEOLOGY_"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="12" data-entity-id="24640614" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/24640614/Geochemistry_and_Isotopic_Composition_of_Volcanic_Rocks_from_the_Yamato_Basin_Hole_794D_Sea_of_Japan">Geochemistry and Isotopic Composition of Volcanic Rocks from the Yamato Basin: Hole 794D, Sea of Japan</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="37956481" href="https://independent.academia.edu/APouclet">A. Pouclet</a><span>, </span><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32739966" href="https://independent.academia.edu/HBellon">H. Bellon</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Proceedings of the Ocean Drilling Program, 1992</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Geochemistry and Isotopic Composition of Volcanic Rocks from the Yamato Basin: Hole 794D, Sea of Japan","attachmentId":44966662,"attachmentType":"pdf","work_url":"https://www.academia.edu/24640614/Geochemistry_and_Isotopic_Composition_of_Volcanic_Rocks_from_the_Yamato_Basin_Hole_794D_Sea_of_Japan","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/24640614/Geochemistry_and_Isotopic_Composition_of_Volcanic_Rocks_from_the_Yamato_Basin_Hole_794D_Sea_of_Japan"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="13" data-entity-id="957655" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/957655/Petrological_reconstruction_of_Triassic_seamounts_oceanic_islands_within_the_Palaeotethys_Geochemical_implications_from_the_Karakaya_subduction_accretion_Complex_">Petrological reconstruction of Triassic seamounts/oceanic islands within the Palaeotethys: Geochemical implications from the Karakaya subduction/accretion Complex …</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="75904" href="https://metu.academia.edu/MCemalGoncuoglu">M. Cemal Goncuoglu</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Lithos, 2010</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Petrological reconstruction of Triassic seamounts/oceanic islands within the Palaeotethys: Geochemical implications from the Karakaya subduction/accretion Complex …","attachmentId":5852125,"attachmentType":"pdf","work_url":"https://www.academia.edu/957655/Petrological_reconstruction_of_Triassic_seamounts_oceanic_islands_within_the_Palaeotethys_Geochemical_implications_from_the_Karakaya_subduction_accretion_Complex_","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/957655/Petrological_reconstruction_of_Triassic_seamounts_oceanic_islands_within_the_Palaeotethys_Geochemical_implications_from_the_Karakaya_subduction_accretion_Complex_"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="14" data-entity-id="107969704" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/107969704/Cenozoic_and_Mesozoic_Sediments_from_the_Pigafetta_Basin_Leg_129_Sites_800_and_801_Mineralogical_and_Geochemical_Trends_of_the_Deposits_overlying_the_Oldest_Oceanic_Crust">Cenozoic and Mesozoic Sediments from the Pigafetta Basin, Leg 129, Sites 800 and 801: Mineralogical and Geochemical Trends of the Deposits overlying the Oldest Oceanic Crust</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="140515486" href="https://unistra.academia.edu/AnneKarpoff">Anne Karpoff</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Proceedings of the Ocean Drilling Program, 129 Scientific Results, 1992</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Cenozoic and Mesozoic Sediments from the Pigafetta Basin, Leg 129, Sites 800 and 801: Mineralogical and Geochemical Trends of the Deposits overlying the Oldest Oceanic Crust","attachmentId":106482086,"attachmentType":"pdf","work_url":"https://www.academia.edu/107969704/Cenozoic_and_Mesozoic_Sediments_from_the_Pigafetta_Basin_Leg_129_Sites_800_and_801_Mineralogical_and_Geochemical_Trends_of_the_Deposits_overlying_the_Oldest_Oceanic_Crust","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/107969704/Cenozoic_and_Mesozoic_Sediments_from_the_Pigafetta_Basin_Leg_129_Sites_800_and_801_Mineralogical_and_Geochemical_Trends_of_the_Deposits_overlying_the_Oldest_Oceanic_Crust"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="15" data-entity-id="26614969" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/26614969/Geochemical_contrast_between_the_Sanbagawa_psammitic_schists_Oboke_unit_and_the_Cretaceous_Shimanto_sandstones_in_Shikoku_Southwest_Japan_and_its_geologic_significance">Geochemical contrast between the Sanbagawa psammitic schists (Oboke unit) and the Cretaceous Shimanto sandstones in Shikoku, Southwest Japan and its geologic significance</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="33339267" href="https://independent.academia.edu/KazuoKiminami">Kazuo Kiminami</a></div><p class="ds-related-work--metadata ds2-5-body-xs">The Island Arc, 1999</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Geochemical contrast between the Sanbagawa psammitic schists (Oboke unit) and the Cretaceous Shimanto sandstones in Shikoku, Southwest Japan and its geologic significance","attachmentId":46901193,"attachmentType":"pdf","work_url":"https://www.academia.edu/26614969/Geochemical_contrast_between_the_Sanbagawa_psammitic_schists_Oboke_unit_and_the_Cretaceous_Shimanto_sandstones_in_Shikoku_Southwest_Japan_and_its_geologic_significance","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/26614969/Geochemical_contrast_between_the_Sanbagawa_psammitic_schists_Oboke_unit_and_the_Cretaceous_Shimanto_sandstones_in_Shikoku_Southwest_Japan_and_its_geologic_significance"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="16" data-entity-id="84776062" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/84776062/Paleo_redox_conditions_during_OAE_2_reflected_in_Demerara_Rise_sediment_geochemistry_ODP_Leg_207_">Paleo-redox conditions during OAE 2 reflected in Demerara Rise sediment geochemistry (ODP Leg 207)</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="38469597" href="https://io-warnemuende.academia.edu/MichaelEB%C3%B6ttcher">Michael E. Böttcher</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Palaeogeography, Palaeoclimatology, Palaeoecology, 2009</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Paleo-redox conditions during OAE 2 reflected in Demerara Rise sediment geochemistry (ODP Leg 207)","attachmentId":89682717,"attachmentType":"pdf","work_url":"https://www.academia.edu/84776062/Paleo_redox_conditions_during_OAE_2_reflected_in_Demerara_Rise_sediment_geochemistry_ODP_Leg_207_","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/84776062/Paleo_redox_conditions_during_OAE_2_reflected_in_Demerara_Rise_sediment_geochemistry_ODP_Leg_207_"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div></div><div class="ds-related-content--container"><h2 class="ds-related-content--heading">Related topics</h2><div class="ds-research-interests--pills-container"><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="261" href="https://www.academia.edu/Documents/in/Geography">Geography</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="406" href="https://www.academia.edu/Documents/in/Geology">Geology</a></div></div></div></div></div><div class="footer--content"><ul class="footer--main-links hide-on-mobile"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px; position: relative; bottom: -1px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a href="https://support.academia.edu/"><svg style="width: 12px; height: 12px; position: relative; bottom: -1px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer--research-interests"><li>Find new research papers in:</li><li><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul><ul class="footer--legal-links hide-on-mobile"><li><a href="https://www.academia.edu/terms">Terms</a></li><li><a href="https://www.academia.edu/privacy">Privacy</a></li><li><a href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2024</li></ul></div> </body> </html>